
Pitfalls of High-Level
Cryptography in .NET

Stan Drapkin

April 2018

Who am I?

•Stan Drapkin – sdrapkin@sdprime.com

•CTO of IT firm (cybersecurity & regulatory compliance)

•OSS library author (github.com/sdrapkin)
Inferno – .NET crypto done right
TinyORM – .NET micro ORM done right

•Book author
“SecurityDriven .NET” (2014)
“Application Security in .NET, Succinctly” (2017)

2

I will talk about

Stages of crypto enlightenment

Symmetric
crypto

LL vs HL
crypto

Streaming
crypto

Asymmetric &
Hybrid crypto

RSA “fun”
Modern

EC crypto

3

4 stages of crypto enlightenment

A better solution might not need crypto at all

I’m doing it all wrong  should use HL API

I can encrypt & decrypt with AES

XOR is awesome – look Mom what I can do

4

4 stages of crypto enlightenment

A better solution might not need crypto at all

I’m doing it all wrong  should use HL API

I can encrypt & decrypt with AES

XOR is awesome – look Mom what I can do

5

“If you think cryptography is the answer to your
problem, then you don’t know what your problem is.”

Dr. Peter G. Neumann

Symmetric crypto

6

Low-level (LL) crypto API dangers

• “Pitfalls of System.Security.Cryptography” talk
Vladimir Kochetkov, 2015 (on YouTube)

Every step of LL crypto is filled with • decisions that
You are not aware you need to make
You are not qualified to make

One of key takeaways:•
Avoid LL crypto. Use HL crypto instead.

But do • you know what HL crypto API is, or should be?

7

Symptoms of non-HL crypto library

•API doesn’t feel .NET-native (feels like a LL wrapper)

•API is easy to misuse

•Forces you to generate weird LL things (Nonces, IVs)

•Forces you to make uncomfortable decisions
Algorithms, padding modes, key/nonce/IV/tag sizes, etc

•Lacks good streaming API

8

What is HL crypto API?

Intuitive• and eloquent to read and write

Easy to • learn

Easy to • use

Hard to • misuse

Powerful• (achieves the objective with little effort)

Low• -friction (just works – no caveats/constraints)

9

How do we find a HL crypto library for .NET?

•We could Google.. But that’s too easy.

•Let’s “research”, and try alternatives..

10

Authenticated Encryption: basic concepts

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

11

Plaintext P
(variable length)

key K

Authenticated Encryption: basic concepts

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

12

Plaintext P
(variable length)

key K

Authenticated Encryption: basic concepts

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

13

Plaintext P
(variable length)

key K

Authenticated Encryption: basic concepts

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

14

Plaintext P
(variable length)

key K

Authenticated Encryption: basic concepts

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

15

Plaintext P
(variable length)

key K

ഥN
Reuse of nonce N under same key K
- Compromises confidentiality of plaintext (a bad thing™)

AD
Associated Data
- Optional data which is authenticated, but not encrypted

#1

#2

#3

Libsodium.NET – the glorious choices

nonce = SecretAeadAes.GenerateNonce();
c = SecretAeadAes.Encrypt(p, nonce, key, ad);
d = SecretAeadAes.Decrypt(c, nonce, key, ad);

nonce = SecretAead.GenerateNonce();
c = SecretAead.Encrypt(p, nonce, key, ad);
d = SecretAead.Decrypt(c, nonce, key, ad);

nonce = SecretBox.GenerateNonce();
c = SecretBox.Create(p, nonce, key);
d = SecretBox.Open(c, nonce, key);

16

#1

#2

#3

Libsodium.NET – the glorious choices

nonce = SecretAeadAes.GenerateNonce();
c = SecretAeadAes.Encrypt(p, nonce, key, ad);
d = SecretAeadAes.Decrypt(c, nonce, key, ad);

nonce = SecretAead.GenerateNonce();
c = SecretAead.Encrypt(p, nonce, key, ad);
d = SecretAead.Decrypt(c, nonce, key, ad);

nonce = SecretBox.GenerateNonce();
c = SecretBox.Create(p, nonce, key);
d = SecretBox.Open(c, nonce, key);

17

AES-GCM with 96-bit nonce
550 GB/key; 64 GB/msg; 232 msg limit

#1

#2

#3

Libsodium.NET – the glorious choices

nonce = SecretAeadAes.GenerateNonce();
c = SecretAeadAes.Encrypt(p, nonce, key, ad);
d = SecretAeadAes.Decrypt(c, nonce, key, ad);

nonce = SecretAead.GenerateNonce();
c = SecretAead.Encrypt(p, nonce, key, ad);
d = SecretAead.Decrypt(c, nonce, key, ad);

nonce = SecretBox.GenerateNonce();
c = SecretBox.Create(p, nonce, key);
d = SecretBox.Open(c, nonce, key);

18

ChaCha20/Poly1305 with 64-bit nonce
64-bit nonce is too small
SHOULD NOT BE USED AT ALL

AES-GCM with 96-bit nonce
550 GB/key; 64 GB/msg; 232 msg limit

#1

#2

#3

Libsodium.NET – the glorious choices

nonce = SecretAeadAes.GenerateNonce();
c = SecretAeadAes.Encrypt(p, nonce, key, ad);
d = SecretAeadAes.Decrypt(c, nonce, key, ad);

nonce = SecretAead.GenerateNonce();
c = SecretAead.Encrypt(p, nonce, key, ad);
d = SecretAead.Decrypt(c, nonce, key, ad);

nonce = SecretBox.GenerateNonce();
c = SecretBox.Create(p, nonce, key);
d = SecretBox.Open(c, nonce, key);

19

ChaCha20/Poly1305 with 64-bit nonce
64-bit nonce is too small
SHOULD NOT BE USED AT ALL

AES-GCM with 96-bit nonce
550 GB/key; 64 GB/msg; 232 msg limit

xSalsa20/Poly1305 with 192-bit nonce
Missing AD (Associated Data)

Libsodium.NET – more questions arise

What to do with Nonce?
Manually append/prepend to ciphertext. Somehow.

AD can have any length, right?
16 bytes max.

What happens on decryption failure?
Exception is raised.

What if my key is not exactly 32 bytes?
Your problem. Libsodium keys must be exactly 32 bytes.

Can I reuse byte arrays to relieve GC pressure?
No.

20

Authenticated Encryption: comparison

Nonce N
(fixed length)

Ciphertext C
(variable length)

Auth. Tag T
(fixed length)

21

Plaintext P
(variable length)

AES-GCM 96 128 (<128) ഥNforgery of all C under same K

key K

Chacha/Poly 64 128 (<106) ഥNforgery of all C under ഥN

xSalsa/Poly 192 128 (<106) ഥN not probable

Inferno 320 128 (128) ഥN not probable; no forgeries ✔️

Libsodium.NET purpose – follow the docs

• “Libsodium.NET is a c# wrapper around libsodium”

• “Libsodium is a fork of NaCl with compatible API”

• “NaCl’s goal is to provide all of the core operations
needed to build higher-level cryptographic tools”

• If you need a HL crypto  pick a good HL crypto lib
Don’t take a LL lib wrapper, and pretend it is HL

22

Inferno

c = SuiteB.Encrypt(key, p, ad); // ad is optional, ofc

d = SuiteB.Decrypt(key, c, ad);

No • nonces

No decisions•

Decrypt error •  d is null
nothing is thrown

23

Let’s encrypt some strings – should be easy

•Only 2 possible values: “LEFT” and “RIGHT”

c1 = SuiteB.Encrypt(key, “LEFT”);

c2 = SuiteB.Encrypt(key, “RIGHT”);

•This is production-ready. Right?

•What is the problem? How can we fix it?

24

Let’s encrypt some strings – should be easy

Length leaking • – that’s not a “real” problem.. Right?

JANUARY 23, 2018:

“TINDER’S LACK OF ENCRYPTION LETS
STRANGERS SPY ON YOUR SWIPES”

Swipe-left = 278 bytes

Swipe-right = 374 bytes

http://images.gotinder.com

25

Let’s encrypt a file – how hard can it be?

•Libsodium.NET: not supported

• Inferno:
using (var fsource = new FileStream(“fname.txt”, FileMode.Open))

using (var ftarget = new FileStream(“fname.enc”, FileMode.Create))

using (var t = new EtM_EncryptTransform(key)) //  Inferno is used

using (var cryptoStream =
new CryptoStream(ftarget, t, CryptoStreamMode.Write))

await fsource.CopyToAsync(cryptoStream);

26

HL crypto – message limits with fixed key

Inferno: • 2112 messages of 264 blocks (ie. no limit)

Libsodium.NET: depends. • 238 or 264 bytes

27

https://blog.cloudflare.com/tls-nonce-nse/

Associated Data (AD) – different notions

Weak• : AD is not participating in enc/dec.

Strong• : AD is required for (ie. alters) enc/dec.

Inferno uses • “strong” AD (AD  encryption tweak)

Most other libraries use • “weak” AD

28

Which security level should HL crypto target?

•256-bit encryption, with 128-bit authentication tag.

•Why do we need 256-bit keys?

•To allow for potential biases in CSRBG key creation.

•What is bias?

29

No bias (good Random Bit Generator)

zero
50%

one
50%

PROBABILITY

30

25% bias (biased Random Bit Generator)

zero
44%one

56%

PROBABILITY

31

Which security level should HL crypto target?

•256-bit encryption, with 128-bit authentication tag.

•Why do we need 256-bit keys?

•To allow for potential biases in CSRBG key creation.

•N-bit RBG entropy = -LOG2(½ + |bias|) * N

•25% bias over 128-bit key  53 bits of entropy
Broken

•25% bias over 256-bit key  106 bits of entropy
Practically unbreakable

32

Symmetric crypto – summary

•Use a well-designed HL crypto library

•Encrypt streaming data with streaming crypto API

•Use 256-bit random keys (minimum length)

•HL crypto can leak confidentiality

33

Asymmetric & Hybrid crypto

34

RSA. You do know how to use it. Right?

35

RSA encryption: Quick refresher (Wikipedia)

36

Random
Number

Generator

RSA. Can you use it? Yes? Let’s test that.

37

var rsa = RSA.Create();

var c = rsa.Encrypt(p, paddingMode); //select mode

#1: Pkcs1

#2: OaepSHA1

#3: OaepSHA256

#4: OaepSHA384

#5: OaepSHA512

RSA. Can you use it? Yes? Let’s test that.

38

var rsa = RSA.Create();

var c = rsa.Encrypt(p, paddingMode); //select mode

#1: Pkcs1  does not throw

#2: OaepSHA1  does not throw

#3: OaepSHA256 throws “padding not valid” ex.

#4: OaepSHA384 throws “padding not valid” ex.

#5: OaepSHA512  throws “padding not valid” ex.

39

var rsa = RSA.Create();

var c = rsa.Encrypt(p, OaepSHA1);

•What RSA key size did we just use?

WriteLine(rsa.KeySize); // care to guess?

•We’re going to set the key size explicitly..

RSA. Can you use it? Yes? Let’s test that.

RSA. Can you use it? Yes? Let’s test that.

40

MS docs for “.KeySize”:
“Gets or sets the size, in bits, of the key modulus,
used by the asymmetric algorithm.” Perfect, let’s use it.

var rsa = RSA.Create();

rsa.KeySize = 3072; // proceed to encrypt secrets

WriteLine(rsa.KeySize); // care to guess?

rsa.ExportParameters(false).Modulus.Length * 8

RSA. Can you use it? Yes? Let’s test that.

41

•RSACng class – brand new in .NET 4.6

•Cng = Cryptography Next Generation!

var rsa = RSACng.Create();

rsa.KeySize = 3072;

WriteLine(rsa.KeySize); // 1024

WriteLine(rsa.GetType()); // RSACryptoServiceProvider

WHY ?!?!

RSA. Can you use it? Yes? Let’s test that.

42

var rsa = new RSACng(); // must use ctor directly

WriteLine(rsa.KeySize); // 2048, a better default

rsa.KeySize = 3072;

WriteLine(rsa.KeySize); // 3072 !!!

Achievement unlocked!

RSA. Default key sizes. Or are they?

•RSA.Create() return type can be set in machine.config
 RSA implementation could be changed on you
 Default keysize could be changed on you

•Never trust RSA defaults!

Set explicit keysize. Always.

43

RSA. Default key sizes. How good are they?

var rsa1 = new RSACryptoServiceProvider(); // 1024

var rsa2 = new RSACng(); // 2048

BitCoin Network (BCN) hashrate ≈ 264 hashes/second
≈ 290 hashes/year (as of February 2018)

≈ 270 “basic ops” can break RSA-1024 (1 BCN minute)

≈ 290 “basic ops” can break RSA-2048 (1 BCN year)

•Use explicit RSA keysize! (3072 or 4096 bits)

44

Basic operation?

RSA. How to export the public/private keys?

var rsa1 = new RSACryptoServiceProvider(4096);

var rsa2 = new RSACng(4096);

var kPub1 = rsa1.ExportCspBlob(includePrivateParameters: false); //532 bytes

var kPub2 = rsa2.Key.Export(CngKeyBlobFormat.GenericPublicBlob); //539 bytes

var kPrv1 = rsa1.ExportCspBlob(includePrivateParameters: true); // 2324 bytes

var kPrv2 = rsa2.Key.Export(CngKeyBlobFormat.GenericPrivateBlob); // 1051 bytes

•2 incompatible import/export APIs; be consistent
45

RSA. Can you use it? Let’s try to encrypt..

46

var data = new byte[640];

rsa.Encrypt(data, OaepSHA1);

CryptographicException: The parameter is incorrect.

•Trying all padding types… The same exception for all.

•Data it is. What’s wrong with the data? Let’s half it:

var data = new byte[320];

rsa.Encrypt(data, OaepSHA1); // seems to work..

RSA. Can you use it? Let’s try to encrypt..

47

We are told that • “SHA1-anything” is bad

Let• ’s switch padding from OaepSHA1 to OaepSHA256

var data = new byte[320];

rsa.Encrypt(data, OaepSHA256);

CryptographicException: The parameter is incorrect.

Data size limit is a function of • padding and keysize!

RSA. Can you use it? Yes? Let’s test that.

48

• Is there a magic formula for max data size? YES!

•You should use

int GetMaxDataSizeForEnc(RSAEncryptionPadding pad)

…which does not exist.

Basic information to use RSA correctly is not available.

Reasons to avoid RSA, even for signatures.

49

Poor• .NET API

Forces you to make • decisions (padding, data length)

RSA• -4096 is needed for 128-bit security level
(priv / pub / sig) = (• 1051 / 539 / 512) bytes

RSA• -15360 is needed for 256-bit security level
Unusable (keygen alone takes • 1.25 minutes on my laptop)

Slow• key generation, and slow signing
TLS: SIGN is on the Server (slow); VERIFY is on the Client•

50

Modern Elliptic-Curve (EC) crypto primitives.

51

•ECDSA – Digital Signature Algorithm
• replaces RSA signatures
• code: securitydriven.net/inferno/#DSA Signatures

•ECIES – Integrated Encryption Scheme
• replaces RSA hybrid encryption
• code: securitydriven.net/inferno/#ECIES example

•ECDH – Diffie-Hellman key exchange
• creates symmetric-encryption keys; forward secrecy
• code: securitydriven.net/inferno/#DHM Key Exchange

Summary

•Use HL crypto API that does not require decisions.

•Abandon RSA. If you can’t – learn to use it correctly.

•Get comfy with ECDSA/ECDH/ECIES (future talk?).

•Think about your goals – HL crypto doesn’t cure all.

“Cryptography doesn’t solve problems by itself.
Symmetric encryption merely turns your data
confidentiality problem into key management problem.”

CodesInChaos (StackOverflow)
52

Recommended resources

SecurityDriven.Inferno• (documentation)
decent HL crypto lib for .NET

Serious Cryptography•
great overview of modern crypto

Application Security in .NET, Succinctly•
free ebook covering more .NET security pitfalls

slideshare.net/• kochetkov.vladimir/appsec-net
simplified AppSec theory
explains causes of “insecurity” vs “lack of safety”

53

Thank you for your attention!

Questions?

sdrapkin@sdprime.com

twitter.com/sdrapkin

github.com/sdrapkin

54

Bonus slides

55

You said…

“…a better solution might not need crypto at all”

What does that mean? An example, perhaps?

56

CSRF – classic .NET protection

57

GET

#1. CSRF token in HTML hidden field (encr.)
#2. CSRF token as a response cookie

POST both CSRF tokens

Server checks that both tokens are received.
Server checks that both tokens are matching.

CSRF token generation/validation uses encryption

 complex, expensive (cpu, memory, latency, etc.)

 HTML token injection is complicated, messy, inconvenient

SERVERUSER AGENT

Preventing CSRF without crypto

#1 set-cookie:

S=7TWFDB5YR7MX3Z1AK4FB2D7ZJXX3DCWEGQG4S4PHMQ91BE5Y; HttpOnly

#2 set-cookie:

T=7TWFDB5YR7MX3Z1AK4FB2D;

30 • random bytes  Base32  48 chars. 22-char prefix = CSRF token T.

CSRF token + • 26-char secret = 48-char Session S. Each char = 5 bits of entropy.

CSRF token = • 110 bits (22*5). Secret Session part = 130 bits (26*5). NIST ✔️

No crypto at all•

HTML is untouched•

Developers don• ’t need to do anything
58

