
.NET

Monitoring

pipelines

Christophe Nasarre @chnasarre

2 | Copyright © 2019 Criteo

ETW and CLR Events .NET Core 3.0 and EventPipes

AGENDA

Better performance counters

Inside the CLR

Main events to monitor

EventPipe architecture

New tooling

Listen to events

Build your own counters

3 | Copyright © 2019 Criteo

How to measure your application performances

• Performance counters
• A lot of interesting details for .NET

• … but also wrong ones
(Gen 0 Size, Gen 0/1 counts, Thread count, …)

• Windows only

• Only a few are usable to start an investigations

4 | Copyright © 2019 Criteo

Event Tracing for Windows (a.k.a. ETW) architecture

• Kernel logging system
• Very low impact on production…

• Many providers
• Including .NET (with documentation)

• Create a session and listen
• … to all processes traces

https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-events

5 | Copyright © 2019 Criteo

CLR events internals

• All events are XML-described
• https://github.com/dotnet/coreclr/blob/master/src/vm/ClrEtwAll.man

• … but some embedded data might be missing with event pipes
(ex GCPerHeapHistory issue)

• The CLR is supporting keyword (=category) and level filtering

• … but might not be perfect and have impact on performance

• Additional filtering for GC events

• Great way to better understand how the CLR is working!
• Look for FireEtwXXX helper functions

• DEMO: collecting and viewing events with PerfView

https://github.com/dotnet/coreclr/blob/master/src/vm/ClrEtwAll.man
https://github.com/dotnet/coreclr/issues/24506

6 | Copyright © 2019 Criteo

How to listen to CLR events in C#: TraceEvent is your friend!

• TraceEvent is available as nuget but also from GitHub (Perfview repo)
• https://www.nuget.org/packages/Microsoft.Diagnostics.Tracing.TraceEvent/

• https://github.com/microsoft/perfview/tree/master/src/TraceEvent

• DEMO: collecting and viewing events in C# code

https://www.nuget.org/packages/Microsoft.Diagnostics.Tracing.TraceEvent/
https://github.com/microsoft/perfview/tree/master/src/TraceEvent

7 | Copyright © 2019 Criteo

Interesting CLR events (1/2)

• Exceptions thrown and caught
• ExceptionThrown

• Thread contention duration
• ContentionStart and ContentionStop

• ThreadPool starvation
• ThreadPoolWorkerThreadAdjustmentAdjustment

8 | Copyright © 2019 Criteo

Interesting CLR events (2/2)

• Called finalizers
• TypeBulkType and GCFinalizeObject

• Every 100 KB allocations (could be expensive)
• GCAllocationTick

• GC (Suspension + Pause) duration
• GCSuspendEEBegin and GCRestartEEEnd

• GC type, condemned generation and gens size
• GCStart, GCHeapStats, and GCGlobalHeapHistory

9 | Copyright © 2019 Criteo

.NET Core and EventPipe architecture

• Dedicated listener thread spawn by CLR
• Listen to session creation message from listener

• Create EventPipe to allow 2-way communication (No need to know the IPC protocol)

DEMO: namepipe on Windows with WinObjEx

static DWORD DiagnosticsServerThread(...)
{

switch(message)
{

case EventPipe:
EventPipeProtocolHelper::HandleIpcMessage()

case ...:
}

}

DiagnosticServer

EventPipe

Monitored Application

Monitoring tools

Domain Socket (Linux)

Named Pipe (Windows)

EventPipeClient

EventPipeEventSource.All += ...

10 | Copyright © 2019 Criteo

.NET Core and tooling – dotnet-trace, dotnet-counters, and… dotnet-dump!

• Installed “easily”… when .NET SDK 3.0 is already there
• dotnet tool list -g

• dotnet tool update <dotnet-XXX> -g

• Or recompiled from https://github.com/dotnet/diagnostics
• Could be easier if you need to deploy in containers

• Beware the changes between Previews (and probably next versions)

• Use different syntaxes: dotnet-XXX or dotnet XXX
• Tools are installed under C:\Users\<account>\.dotnet\tools

• Versioning under C:\Users\<account>\.dotnet\tools\.store\dotnet-trace\3.0.47001

DEMO: using the tools

https://github.com/dotnet/diagnostics

11 | Copyright © 2019 Criteo

.NET Core and tooling – getting the traces in C#

• TraceEvent support for event pipes
• via EventPipeEventSource and a stream return by EventPipeClient.CollectTracing

• same parsing code than ETW-based event tracing

• It is also possible to receive events in-proc with EventListener

• Work for both Windows and Linux

• Work both in-process and out-of-process

• DEMO: receiving events in-proc with EventListener

12 | Copyright © 2019 Criteo

RuntimeEventSource

_cpuTimeCounter = new PollingCounter("cpu-usage", this, ...);
...
_assemblyCounter = new PollingCounter("assembly-count", this, ...);

CounterGroup

internal override void WritePayload(...)
{

EventSource.Write("EventCounters",...);
}

xxxCounter

u

EventSource _eventSource;
List<DiagnosticCounter> _counters;
Timer? _pollingTimer;

v

w

x

Monitored Application dotnet-counters

EventPipe

Core CLR

Monitored Application dotnet-counters

EventPipe

Under the hood of .NET Core “counters”

• CLR and ASP.NET Core counters inherit from DiagnosticCounter
• EventCounter: min/max/mean based on a value

• IncrementingEventCounter: increment of a value

• PollingCounter: min=max=mean based on a value computed in a callback

• IncrementingPollingCounter: increment of a value computed in a callback

13 | Copyright © 2019 Criteo

Listening to .NET Core “counters” in C#

• Because you need to feed your monitoring pipeline

• Because dotnet-counters in not really “usable”…

• Because it is easy :^)

• DEMO: look at the code!

Counter API Type
cpu-usage RuntimeEventSourceHelper.GetCpuUsage() Mean

working-set Environment.WorkingSet / 1000000 Mean

gc-heap-size GC.GetTotalMemory(false) / 1000000 Mean

gen-0-gc-count GC.CollectionCount(0) Sum

gen-1-gc-count GC.CollectionCount(1) Sum

gen-2-gc-count GC.CollectionCount(2) Sum

exception-count Exception.GetExceptionCount() Sum

threadpool-thread-count ThreadPool.ThreadCount Mean

monitor-lock-contention-count Monitor.LockContentionCount Sum

threadpool-queue-length ThreadPool.PendingWorkItemCount Mean

threadpool-completed-items-count ThreadPool.CompletedWorkItemCount Sum

time-in-gc GC.GetLastGCPercentTimeInGC() Mean

gen-0-size GC.GetGenerationSize(0) Mean

gen-1-size GC.GetGenerationSize(1) Mean

gen-2-size GC.GetGenerationSize(2) Mean

loh-size GC.GetGenerationSize(3) Mean

alloc-rate GC.GetTotalAllocatedBytes() Sum

assembly-count System.Reflection.Assembly.GetAssemblyCount() Mean

14 | Copyright © 2019 Criteo

Writing your own .NET Core “counters” in C#

1. Derive a type from EventSource and give it a name

2. Create counters in its OnEventCommand
• In the EventCommand.Enable message processing

• Pick between EventCounter and PollingCounter

3. Update EventCounter with WriteMetric()

4. Update numbers used in PollingCounter callbacks
• Be thread safe!

5. Use the event source name as provider in dotnet-counters

• DEMO: show “Request with(out) GC” counters sample

Resources

Documentation & source code

• https://github.com/microsoft/dotnet-samples/tree/master/Microsoft.Diagnostics.Tracing/TraceEvent

• Blog series https://medium.com/@chnasarre

(source code https://github.com/chrisnas/ClrEvents)

• Core CLR source code https://github.com/dotnet/coreclr

Tools

PerfView https://github.com/microsoft/perfview

https://github.com/microsoft/dotnet-samples/tree/master/Microsoft.Diagnostics.Tracing/TraceEvent
https://medium.com/@chnasarre
https://github.com/chrisnas/ClrEvents
https://github.com/dotnet/coreclr
https://github.com/microsoft/perfview

