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2 | Copyright © 2019 Criteo Cri teo L



How to measure your application performances

* Performance counters
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Description:
This counter displays the number of garbage collected objects that survive a collection because they are waiting to be finalized. If these 4
objects hold references to other objects then those objects also survive but are not counted by this counter; the "Promoted E‘ﬂ
Finalization-Memory from Gen 0" and "Promoted Finalization-Memory from Gen 1" counters represent all the memory that survived due to '
finalization. This counter is not a cumulative counter; its updated at the end of every GC with count of the survivors during that =
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Event Tracing for Windows (a.k.a. ETW) architecture

Control—»
Data Flow ------ -

* Kernel logging system
* Very low impact on production...

Enable/Disable ession Control Events

* Many providers
* Including .NET (with documentation)

Session

* Create a session and listen
* ... to all processes traces

Logged
¢/ Events
'Real-Time /

y Delivery ;

Provider A @ Provider B |l Provider C
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https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-events

CLR events internals

* All events are XML-described

 https://github.com/dotnet/coreclr/blob/master/src/vm/CIrEtwAll.man

* ... but some embedded data might be missing with event pipes
(ex GCPerHeapHistory issue)

* The CLR is supporting keyword (=category) and level filtering

® ... but might not be perfect and have impact on performance
+ Additional filtering for GC events

* Great way to better understand how the CLR is working!
* Look for FireEtwXXX helper functions

* DEMQO: collecting and viewing events with PerfView
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https://github.com/dotnet/coreclr/blob/master/src/vm/ClrEtwAll.man
https://github.com/dotnet/coreclr/issues/24506

How to listen to CLR events in C#: TraceEvent is your friend!

TraceEvent is available as nuget but also from GitHub (Perfview repo)
https://www.nuget.org/packages/Microsoft.Diagnostics.Tracing.TraceEvent/
https://qithub.com/microsoft/perfview/tree/master/src/TraceEvent

‘;"t@ ETWTracebventSource
= & Base Types
=% Microsoft.Diagnostics. Tracing. TraceEventDispatcher

= &%[ Microsoft.Diagnostics. Tracing. TraceEventSource |
“® Microsoft.Diagnostics.Tracing.[TraceParserServices

“@ Systermn.|Disposable
@ System.|Disposable

DEMO: collecting and viewing events in C# code
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https://www.nuget.org/packages/Microsoft.Diagnostics.Tracing.TraceEvent/
https://github.com/microsoft/perfview/tree/master/src/TraceEvent

Interesting CLR events (1/2)

* Exceptions thrown and caught
* ExceptionThrown

* Thread contention duration
 ContentionStart and ContentionStop

* ThreadPool starvation
* ThreadPoolWorkerThreadAdjustmentAdjustment
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Interesting CLR events (2/2)

- Called finalizers
* TypeBulkType and GCFinalizeObject

* Every 100 KB allocations (could be expensive)
* GCAllocationTick

* GC (Suspension + Pause) duration
* GCSuspendEEBegin and GCRestartEEENd

* GC type, condemned generation and gens size
» GCStart, GCHeapStats, and GCGlobalHeapHistory
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.NET Core and EventPipe architecture

* Dedicated listener thread spawn by CLR

* Listen to session creation message from listener
* Create EventPipe to allow 2-way communication (No need to know the IPC protocol)

Monitored Application

Monitoring tools

Named Pipe (Windows)

D_

omain Socket (Linux)

DEMO: namepipe on Windows with WinObjEx
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.NET Core and tooling — dotnet-trace, dotnet-counters, and... dotnet-dump!

* Installed “easily”... when .NET SDK 3.0 is already there
* dotnet tool list -g
* dotnet tool update <dotnet-XXX> -g

* Or recompiled from https://github.com/dotnet/diagnostics

» Could be easier if you need to deploy in containers
» Beware the changes between Previews (and probably next versions)

* Use different syntaxes: dotnet-XXX or dotnet XXX

* Tools are installed under C:\Users\<account>\.dotnet\tools
* Versioning under C:\Users\<account>\.dotnet\tools\.store\dotnet-trace\3.0.47001

DEMOQO: using the tools
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https://github.com/dotnet/diagnostics

.NET Core and tooling — getting the traces in C#

* TraceEvent support for event pipes
* via EventPipeEventSource and a stream return by EventPipeClient.CollectTracing
* same parsing code than ETW-based event tracing
* It is also possible to receive events in-proc with EventListener

» Work for both Windows and Linux

* Work both in-process and out-of-process

* DEMO: receiving events in-proc with EventListener
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Under the hood of .NET Core “counters”

CLR and ASP.NET Core counters inherit from DiagnosticCounter

EventCounter: min/max/mean based on a value
IncrementingEventCounter: increment of a value

PollingCounter: min=max=mean based on a value computed in a callback
IncrementingPollingCounter: increment of a value computed in a callback

Monitored Application dotnet-counters
Rl:t‘,r to resume, q to quit.
CounterGroup MoEY enge
) g 355
EventSource _eventSource
List<DiagnosEicCounter‘>
Timer? _pollingTimer; XXXCOU ntE
C > Core CLR
| internal ove
C» { -
EventSoun | EventPi pe
}
RuntimeEventSource
_cpuTimeCounter = |new PollingCounterI("cpu-usage", this| ...);
;é;semblyCounter‘ = hew PollingCounter{"assembly-count", this! ...);
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Listening to .NET Core “counters” in C#

* Because you need to feed your monitoring pipeline

* Because dotnet-counters in not really “usable”...

* Because it is easy /)
RuntimeEventSourceHelper.GetCpuUsage() Mean
Environment.WorkingSet / 1000000 Mean
GC.GetTotalMemory(false) / 1000000 Mean
GC.CollectionCount(0) Sum
GC.CollectionCount(1) Sum
GC.CollectionCount(2) Sum
Exception.GetExceptionCount() Sum
threadpool-thread-count ThreadPool. ThreadCount Mean
Monitor.LockContentionCount Sum
ThreadPool.PendingWorkltemCount Mean
ThreadPool.CompletedWorkltemCount Sum
GC.GetLastGCPercentTimeInGC() Mean
GC.GetGenerationSize(0) Mean
GC.GetGenerationSize(1) Mean
. GC.GetGenerationSize(2 Mean
* DEMO: look at the code! D Mean
GC.GetTotalAllocatedBytes() Sum
System.Reflection.Assembly.GetAssemblyCount() ~ Mean

13 | Copyright © 2019 Criteo Cri teo L




Writing your own .NET Core “counters” in C#

1. Derive a type from EventSource and give it a name

2. Create counters in 1ts OnEventCommand
* In the EventCommand.Enable message processing
* Pick between EventCounter and PollingCounter

3. Update EventCounter with WriteMetric()

4. Update numbers used in PollingCounter callbacks
* Be thread safe!

5. Use the event source name as provider in dotnet-counters

* DEMQO: show “Request with(out) GC" counters sample
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Resources

Documentation & source code
« https://github.com/microsoft/dotnet-samples/tree/master/Microsoft.Diagnostics.Tracing/TraceEvent

* Blog series https://medium.com/@chnasarre

(source code https://github.com/chrisnas/ClrEvents)

« Core CLR source code https://github.com/dotnet/coreclr

Tools
PerfView https://github.com/microsoft/perfview
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