
DotNext 2019

The Power Of Composition

@ScottWlaschin

fsharpforfunandprofit.com

The Power Of Composition

1. The philosophy of composition

2. Ideas of functional programming

– Functions and how to compose them

– Types and how to compose them

3. Composition in practice

– Roman Numerals

– FizzBuzz gone carbonated

– Uh oh, monads!

– A web service

THE PHILOSOPHY OF

COMPOSITION

Prerequisites for

understanding composition

• You must have been a child at some point

• You must have played with Lego

• You must have played with toy trains

Lego

Philosophy

Lego Philosophy

1. All pieces are designed to be connected

2. The pieces are reusable in many contexts

3. Connect two pieces together and get

another "piece" that can still be connected

All pieces are designed to be connected

The pieces are reusable in different contexts

Connect two pieces together and
get another "piece" that can still be connected

Make big things from small things in the same way

Wooden Railway Track Philosophy

1. All pieces are designed to be connected

2. The pieces are reusable in many contexts

3. Connect two pieces together and get

another "piece" that can still be connected

All pieces are designed to be connected

The pieces are reusable in different contexts

Connect two pieces together and get
another "piece" that can still be connected

You can keep adding and adding.

Make big things from small things in the same way

If you understand Lego and wooden
railways, then you know

everything about composition!

THE IDEAS OF

FUNCTIONAL PROGRAMMING

Four ideas behind FP

Function

3. Types are not classes

1. Functions are things

2. Build bigger functions using

 composition

4. Build bigger types using

 composition

FP idea #1:

Functions are things

Function

The Tunnel of
Transformation
Function

apple -> banana

A function is a thing which
transforms inputs to outputs

A function is a standalone thing,

not attached to a class

A function is a standalone thing,

not attached to a class

It can be used for inputs and outputs

of other functions

A function can be an output thing

input

output

A function can be an input thing

input output

A function can be a parameter

input

output

input output

FP idea #2:

Build bigger functions

using composition

Function 1

apple -> banana

Function 2

banana -> cherry

>>
Function 1

apple -> banana
Function 2

banana -> cherry

New Function

apple -> cherry

Can't tell it was built
from smaller functions!

Where did the banana go?

Function composition in F# and C#

using the "piping" approach

int add1(int x) => x + 1;
int times2(int x) => x * 2;
int square(int x) => x * x;

add1(5); // = 6
times2(add1(5)); // = 12
square(times2(add1(5))); // = 144

Nested function calls
 can be confusing if too deep

add1 5 6 times2 12 square 144

5 |> add1 // = 6
5 |> add1 |> times2 // = 12
5 |> add1 |> times2 |> square // = 144

add1 times2 square 5 6 12 144

F# example

add1 times2 square 5 6 12 144

5.Pipe(add1);
5.Pipe(add1).Pipe(times2);
5.Pipe(add1).Pipe(times2).Pipe(square);

C# example

Building big things from functions
It's compositions all the way up

Low-level operation

ToUpper
string string

Low-level operation

Service

AddressValidator

A “Service” is just like a microservice
but without the "micro" in front

Validation

Result

Address

Low-level operation Low-level operation

Service

Use-case

UpdateProfileData
ChangeProfile

Result

ChangeProfile

Request

Service Service

Use-case

Web application

Http

Response

Http

Request

Use-case Use-case

Http

Response
Http

Request

Even for complex applications,
data flows only in one direction

FP idea #3:

Types are not classes

So, what is a type then?
A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

Set of

valid inputs

Set of

valid outputs

Function

1

2

3

4

5

6

This is type
"integer"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"string"

"abc"

"but"

"cobol"

"double"

"end"

"float"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"Person"

Donna Roy

Javier Mendoza

Nathan Logan

Shawna Ingram

Abel Ortiz

Lena Robbins

Gordon Wood

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"Fruit"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is a type of
Fruit->Fruit functions

A type is a just a name

for a set of things

FP idea #4:

Types can be composed too

Algebraic type system

Bigger types are built from smaller types by:

 Composing with “AND”

 Composing with “OR”

FruitSalad =

 AND AND

Compose with “AND”

Compose with “AND”

enum AppleVariety { Red, Green }
enum BananaVariety { Yellow, Brown }
enum CherryVariety { Tart, Sweet }

struct FruitSalad
{
 AppleVariety Apple;
 BananaVariety Banana;
 CherryVariety Cherry;
}

C# example

Apple AND
Banana AND

Cherry

Compose with “AND”

type AppleVariety = Red | Green
type BananaVariety = Yellow | Brown
type CherryVariety = Tart | Sweet

type FruitSalad = {
 Apple: AppleVariety
 Banana: BananaVariety
 Cherry: CherryVariety
 }

F# example

Snack = OR OR

Compose with “OR”

type Snack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherry of CherryVariety

A real world example

of composing types

Some requirements:

We accept three forms of payment:

Cash, Paypal, or CreditCard.

For Cash we don't need any extra information

For Paypal we need an email address

For Cards we need a card type and card number

interface IPaymentMethod
{..}

class Cash() : IPaymentMethod
{..}

class Paypal(string emailAddress): IPaymentMethod
{..}

class Card(string cardType, string cardNo) : IPaymentMethod
{..}

In OO design you would probably implement it as an
interface and a set of subclasses, like this:

type EmailAddress = string

type CardNumber = string

In F# you would probably implement by composing
types, like this:

type EmailAddress = ...

type CardNumber = …

type CardType = Visa | Mastercard

type CreditCardInfo = {

 CardType : CardType

 CardNumber : CardNumber

 }

type EmailAddress = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | PayPal of EmailAddress

 | Card of CreditCardInfo

type EmailAddress = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | PayPal of EmailAddress

 | Card of CreditCardInfo

type PaymentAmount = decimal

type Currency = EUR | USD | RUB

type EmailAddress = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | PayPal of EmailAddress

 | Card of CreditCardInfo

type PaymentAmount = decimal

type Currency = EUR | USD | RUB

type Payment = {

 Amount : PaymentAmount

 Currency : Currency

 Method : PaymentMethod }

type EmailAddress = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | PayPal of EmailAddress

 | Card of CreditCardInfo

type PaymentAmount = decimal

type Currency = EUR | USD | RUB

type Payment = {

 Amount : PaymentAmount

 Currency : Currency

 Method : PaymentMethod }

Composable types can be used as

executable documentation

type Deal = Deck -> (Deck * Card)

type PickupCard = (Hand * Card) -> Hand

type Suit = Club | Diamond | Spade | Heart

type Rank = Two | Three | Four | Five | Six | Seven | Eight

 | Nine | Ten | Jack | Queen | King | Ace

type Card = { Suit:Suit; Rank:Rank }

type Hand = Card list

type Deck = Card list

type Player = {Name:string; Hand:Hand}

type Game = { Deck:Deck; Players:Player list }

The domain on one screen!

type CardType = Visa | Mastercard

type CardNumber = string

type EmailAddress = string

type PaymentMethod =

 | Cash

 | PayPal of EmailAddress

 | Card of CreditCardInfo

 | Bitcoin of BitcoinAddress

A big topic and not enough time

More on DDD and designing with types at

fsharpforfunandprofit.com/ddd

Composition in practice:

Time for some real examples!

COMPOSITION WITH PIPING
(ROMAN NUMERALS)

Technique #1

To Roman Numerals

• Task: How to convert an arabic integer

to roman numerals?

• 5 => "V"

• 12 => "XII"

• 107 => "CVII"

To Roman Numerals

To Roman Numerals

• Use the "tally" approach

– Start with N copies of "I"

– Replace five "I"s with a "V"

– Replace two "V"s with a "X"

– Replace five "X"s with a "L"

– Replace two "L"s with a "C"

– etc

To Roman Numerals

number

etc

Replicate "I"

Replace_IIIII_V

Replace_VV_X

Replace_XXXXX_L

string ToRomanNumerals(int number)
{
 // define a helper function for each step
 string replace_IIIII_V(string s) =>
 s.Replace("IIIII", "V");
 string replace_VV_X(string s) =>
 s.Replace("VV", "X");
 string replace_XXXXX_L(string s) =>
 s.Replace("XXXXX", "L");
 string replace_LL_C(string s) =>
 s.Replace("LL", "C");

 // then combine them using piping
 return new string('I', number)
 .Pipe(replace_IIIII_V)
 .Pipe(replace_VV_X)
 .Pipe(replace_XXXXX_L)
 .Pipe(replace_LL_C);
}

C# example

let toRomanNumerals number =
 // define a helper function for each step
 let replace_IIIII_V str =
 replace "IIIII" "V" str
 let replace_VV_X str =
 replace "VV" "X" str
 let replace_XXXXX_L str =
 replace "XXXXX" "L" str
 let replace_LL_C str =
 replace "LL" "C" str

 // then combine them using piping
 String.replicate number "I"
 |> replace_IIIII_V
 |> replace_VV_X
 |> replace_XXXXX_L
 |> replace_LL_C

F# example

IT'S NOT ALWAYS THIS

EASY…

function A function B Compose

function A function B

function A and B

 Easy!

... But here is a challenge

function A Input Output

function B
Input 1 Output
Input 2

function A Input Output

function B
Input 1 Output
Input 2

Challenge #1: How can
we compose these?

COMPOSITION WITH CURRYING
(ROMAN NUMERALS)

Technique #2

The Replace function

oldValue outputString
newValue

inputString

Replace

Uh-oh! Composition problem

Replace I / V Replace V / X Replace X / L

Bad news:

Composition patterns

only work for functions that

have one parameter!

Good news!

Every function can be turned into

a one parameter function

Haskell Curry

We named this technique after him

Input A
Uncurried
Function

Input B
Output C

Curried
Function

Input A
Intermediate

Function
Output C Input B

What is currying?

after currying

Function as output

Input A
Uncurried
Function

Input B
Output C

Curried
Function

Input A
Intermediate

Function
Output C Input B

What is currying?

One input One input

Currying means that *every* function can be converted
to a series of one input functions

Replace

Before currying

 input.Replace(oldValue, newValue);

 string output

Replace
Old New

Old
New

After currying

Func<string,string> replace(string oldVal, string newVal) =>
 input => input.Replace(oldVal, newVal);

Replace
Old New

Old
New

After currying

Func<string,string> replace(string oldVal, string newVal) =>
 input => input.Replace(oldVal, newVal);

Func<string,string> replace(string oldVal, string newVal) =>
 input => input.Replace(oldVal, newVal);

Replace
Old New

Old
New

After currying

This lambda (function) is returned

 one-parameter
function

string ToRomanNumerals(int number)
{
 // define a general helper function
 Func<string,string> replace(
 string oldValue, string newValue) =>
 input => input.Replace(oldValue, newValue);

 // then use piping
 return new string('I', number)
 .Pipe(replace("IIIII","V"))
 .Pipe(replace("VV","X"))
 .Pipe(replace("XXXXX","L"))
 .Pipe(replace("LL","C"));
}

C# example

let toRomanNumerals number =
 // no helper function needed.
 // currying occurs automatically in F#

 // combine using piping
 String.replicate number "I"
 |> replace "IIIII" "V"
 |> replace "VV" "X"
 |> replace "XXXXX" "L"
 |> replace "LL" "C"

F# example

let toRomanNumerals number =
 // no helper function needed.
 // currying occurs automatically in F#

 // combine using piping
 String.replicate number "I"
 |> replace "IIIII" "V"
 |> replace "VV" "X"
 |> replace "XXXXX" "L"
 |> replace "LL" "C"

Only 2 of the 3
parameters are passed ?

Partial Application

Partial Application

let add x y = x + y
let multiply x y = x * y

5
|> add 2
|> multiply 3

Piping provides the missing argument

 partial application

Partial Application

Replace ReplaceOldNew

Old New

Old
New

String.replicate number "I"
 |> replace "IIIII" "V"
 |> replace "VV" "X"
 |> replace "XXXXX" "L"
 |> replace "LL" "C"

Only 2 parameters
passed in

Piping provides the missing argument

Pipelines

are extensible

let toRomanNumerals number =
 String.replicate number "I"
 |> replace "IIIII" "V"
 |> replace "VV" "X"
 |> replace "XXXXX" "L"
 |> replace "LL" "C"

Composable => extensible

 // can easily add new segments to the pipeline
 |> replace "VIIII" "IX"
 |> replace "IIII" "IV"
 |> replace "LXXXX" "XC"

function Input Output

function
Input 1 Output
Input 2

Challenge #1: How can we compose these?

Here is another challenge

function A Input Output

function B Input
Output 1

Output 2

function A Input Output

function B Input
Output 1

Output 2

Challenge #2: How can we compose these?

COMPOSITION WITH BIND
(FIZZBUZZ)

Technique #3

FizzBuzz definition

• Write a program that prints the numbers

from 1 to 100

• But:

– For multiples of three print "Fizz" instead

– For multiples of five print "Buzz" instead

– For multiples of both three and five print

"FizzBuzz" instead.

let fizzBuzz max =
 for n in [1..max] do
 if (isDivisibleBy n 15) then
 printfn "FizzBuzz"
 else if (isDivisibleBy n 3) then
 printfn "Fizz"
 else if (isDivisibleBy n 5) then
 printfn "Buzz"
 else
 printfn "%i" n

let isDivisibleBy n divisor =
 (n % divisor) = 0 // helper function

A simple F# implementation

let fizzBuzz max =
 for n in [1..max] do
 if (isDivisibleBy n 15) then
 printfn "FizzBuzz"
 else if (isDivisibleBy n 3) then
 printfn "Fizz"
 else if (isDivisibleBy n 5) then
 printfn "Buzz"
 else
 printfn "%i" n

let isDivisibleBy n divisor =
 (n % divisor) = 0 // helper function

A simple F# implementation

Pipeline implementation

Handle 3 case

Handle 5 case

number

Answer

Handle 15 case

Last step

number Handle case

Carbonated

(e.g. "Fizz", "Buzz")

Uncarbonated

(e.g. 2, 7, 13)

Uncarbonated

Carbonated

Input ->
or

Uncarbonated

Carbonated

Input ->

type CarbonationResult =
 | Uncarbonated of int // unprocessed
 | Carbonated of string // "Fizz", Buzz", etc

Idea from http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html

or

type CarbonationResult =
 | Uncarbonated of int // unprocessed
 | Carbonated of string // "Fizz", Buzz", etc

let carbonate divisor label n =
 if (isDivisibleBy n divisor) then
 Carbonated label
 else
 Uncarbonated n

Idea from http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html

type CarbonationResult =
 | Uncarbonated of int // unprocessed
 | Carbonated of string // "Fizz", Buzz", etc

let carbonate divisor label n =
 if (isDivisibleBy n divisor) then
 Carbonated label
 else
 Uncarbonated n

12 |> carbonate 3 "Fizz" // Carbonated "Fizz"

10 |> carbonate 3 "Fizz" // Uncarbonated 10

10 |> carbonate 5 "Buzz" // Carbonated "Buzz"

carbonate 5 "Buzz"

let fizzbuzz n =
 let result15 = n |> carbonate 15 "FizzBuzz"
 match result15 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 let result3 = n |> carbonate 3 "Fizz"
 match result3 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 let result5 = n |> carbonate 5 "Buzz"
 match result5 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 string n // convert to string

First implementation attempt

let fizzbuzz n =
 let result15 = n |> carbonate 15 "FizzBuzz"
 match result15 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 let result3 = n |> carbonate 3 "Fizz"
 match result3 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 let result5 = n |> carbonate 5 "Buzz"
 match result5 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 // do something with Uncarbonated value

let fizzbuzz n =
 let result15 = n |> carbonate 15 "FizzBuzz"
 match result15 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 let result3 = n |> carbonate 3 "Fizz"
 match result3 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 // do something with Uncarbonated value
 // ...
 // ...

let fizzbuzz n =
 let result15 = n |> carbonate 15 "FizzBuzz"
 match result15 with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 // do something with Uncarbonated value
 // ...
 // ...

if Carbonated then
 // return the string
if Uncarbonated then
 // do something with the number

If Uncarbonated

If Carbonated

Bypass and
return the string

let ifUncarbonatedDo f result =
 match result with
 | Carbonated str ->
 Carbonated str
 | Uncarbonated n ->
 f n

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

let lastStep result =
 match result with
 | Carbonated str ->
 str
 | Uncarbonated n ->
 string(n) // still not fizzy, so
 // convert to string

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> lastStep

Composable => easy to extend

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> ifUncarbonatedDo (carbonate 7 "Baz")
 |> lastStep

Composable => easy to extend

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> ifUncarbonatedDo (carbonate 7 "Baz")
 |> ifUncarbonatedDo (carbonate 11 "Pozz")
 |> lastStep

Composable => easy to extend

let fizzbuzz n =
 n
 |> carbonate 15 "FizzBuzz"
 |> ifUncarbonatedDo (carbonate 3 "Fizz")
 |> ifUncarbonatedDo (carbonate 5 "Buzz")
 |> ifUncarbonatedDo (carbonate 7 "Baz")
 |> ifUncarbonatedDo (carbonate 11 "Pozz")
 |> ifUncarbonatedDo (carbonate 13 "Tazz")
 |> lastStep

Composable => easy to extend

Another example:

Chaining tasks

When task
completes Wait Wait

a.k.a "promise", "future"

let taskExample input =
 let taskX = startTask input
 taskX.WhenFinished (fun x ->
 let taskY = startAnotherTask x
 taskY.WhenFinished (fun y ->
 let taskZ = startThirdTask y
 taskZ.WhenFinished (fun z ->
 etc

let taskExample input =
 let taskX = startTask input
 taskX.WhenFinished (fun x ->
 let taskY = startAnotherTask x
 taskY.WhenFinished (fun y ->
 let taskZ = startThirdTask y
 taskZ.WhenFinished (fun z ->
 do something

let taskExample input =
 let taskX = startTask input
 taskX.WhenFinished (fun x ->
 let taskY = startAnotherTask x
 taskY.WhenFinished (fun y ->
 do something

let taskExample input =
 let taskX = startTask input
 taskX.WhenFinished (fun x ->
 do something

let whenFinishedDo f task =
 task.WhenFinished (fun taskResult ->
 f taskResult)

let taskExample input =
 startTask input
 |> whenFinishedDo startAnotherTask
 |> whenFinishedDo startThirdTask
 |> whenFinishedDo ...

Parameterize the next step

MONADS!

Is there a general solution to

handling functions like this?

Yes! “Bind” is the answer!

Bind all the things!

How do we compose these?

>> >>

Composing one-track functions is fine...

>> >>

... and composing two-track functions is fine...

... but composing points/switches is not allowed!

Two-track input Two-track output

One-track input Two-track output

Two-track input Two-track output

Two-track input Two-track output

A function transformer

let bind nextFunction result =
 match result with
 | Uncarbonated n ->
 nextFunction n
 | Carbonated str ->
 Carbonated str

Two-track input Two-track output

let bind nextFunction result =
 match result with
 | Uncarbonated n ->
 nextFunction n
 | Carbonated str ->
 Carbonated str

Two-track input Two-track output

let bind nextFunction result =
 match result with
 | Uncarbonated n ->
 nextFunction n
 | Carbonated str ->
 Carbonated str

Two-track input Two-track output

let bind nextFunction result =
 match result with
 | Uncarbonated n ->
 nextFunction n
 | Carbonated str ->
 Carbonated str

Two-track input Two-track output

let bind nextFunction result =
 match result with
 | Uncarbonated n ->
 nextFunction n
 | Carbonated str ->
 Carbonated str

Two-track input Two-track output

FP terminology

• A monad is

– A data type

– With an associated "bind" function

– (and some other stuff)

• A monadic function is

– A switch/points function

– "bind" is used to compose them

type CarbonationResult =
 | Uncarbonated of int
 | Carbonated of string

function A Input Output

function B Input
Output 1

Output 2

Challenge #2: How can we compose these?

KLEISLI COMPOSITION
(WEB SERVICE)

Technique #4

=
compose

with

The result is the
same kind of thing

Kleisli Composition

Async<HttpContext option> HttpContext

A HttpHandler "WebPart"

Async<HttpContext option> HttpContext

A HttpHandler "WebPart"

= >=>

The result is another
HttpHandler so you can
keep adding and adding

Composition of HttpHandlers

Kleisli composition symbol

path "/hello"

Checks request path
(might fail)

matches path

doesn't match

OK "Hello"

Sets response

200 OK

path "/hello" >=> OK "Hello"

Checks request path
(might fail)

Sets response

>=>

A new WebPart

choose [

]

Picks first HttpHandler
that succeeds

choose [
 path "/hello" >=> OK "Hello"
 path "/goodbye" >=> OK "Goodbye"
]

Pick first path
that succeeds

GET

Only succeeds if
request is a GET

GET >=> choose [
 path "/hello" >=> OK "Hello"
 path "/goodbye" >=> OK "Goodbye"
]

let app = choose [

]

startWebServer defaultConfig app

 A complete web app

 GET >=> choose [
 path "/hello" >=> OK "Hello"
 path "/goodbye" >=> OK "Goodbye"
]

 POST >=> choose [
 path "/hello" >=> OK "Hello POST"
 path "/goodbye" >=> OK "Goodbye POST"
]

Http

Response
Http

Request

No classes, no inheritance, one-directional data flow!

Review

• The philosophy of composition

– Connectable, reusable parts

• FP principles:

– Composable functions

– Composable types

Review

A taste of various composition techniques:

– Piping with "|>"

– Currying/partial application

– Composition using "bind" (monads!)

– Kleisli composition using ">=>"

Don't worry about understanding it all,
but hopefully it's not so scary now!

Why bother?

Benefits of composition:

• Reusable – no strings attached

• Understandable – data flows in one direction

• Testable – parts can be tested in isolation

• Maintainable – all dependencies are explicit

• Extendable – can add new parts without touching
old code

• Different way of thinking – it's good for your
brain to learn new things!

Slides and video here

fsharpforfunandprofit.com/composition

Thank you, DotNext!

@ScottWlaschin Me on twitter

My book Ask me anything
about railways!

