Ml be using (¥ and F¥# code
examples, but the concepts will work
in most programming (anguage.&

DotNext 2019 .
The Power Of Composition

@ScottWlaschin

fsharpforfunandprofit.com

The Power Of Composition

|. The philosophy of composition

2. ldeas of functional programming
— Functions and how to compose them
— Types and how to compose them

3. Composition in practice
— Roman Numerals
— FizzBuzz gone carbonated

— Uh oh, monads! «
— A web service /'\

THE PHILOSOPHY OF
COMPOSITION

Prerequisites for
understanding composition

* You must have played with Lego

* You must have played with toy trains

Actwally not dre!
gooq\e ‘b\YO\-—

Lego
is beautiful Philosophy

Universal Building Sets

Whatitis

Have you ever seen any-
e it? Not just what she’s
t's made

they'v ed
Younger children build for fun.
LEGO*Uni al Building Sets for
children a
C lots 7-12 years
Older children build for realism. old
LEGO Universal Building Set E
children 7-12 have
piec

LEGO |
will he
some

themselv

Lego Philosophy

. All pieces are designed to be connected

2. The pieces are reusable in many contexts

. Connect two pieces together and get
another "piece” that can still be connected

All pieces are designed 1o be connected

—

[" r P

The pieces are rewsable in different contexts

They are <e\f contained.
No strings attached (iterally)

Connect two pieces ’coqether and
get another “piece” that can still be connected

You can keep adding and adding,

Make big things from f _sma\\’chinqs in the same way

. Sy
..ﬁﬂiﬁ%hwn e

vilklggk" e

TEeap
S R R B R e, g i, B e R R

& Rk%f:‘kkk‘>A_‘~\h\x§«kk
A . .

e A R

The Yower of

Composition

Wooden Railway Track Philosophy

. All pieces are designed to be connected
. The pieces are reusable in many contexts

. Connect two pieces together and get
another "piece” that can still be connected

Al pieces are designed to be connected

The pieces are rewsable in different contexts

Connect two piece.s ’coqe’cher and qe’c
another “piece” that can still be connected

Yow can keep adding and adding,

Make big things from small things in the same way

. -—

The Vower of Composition

If yow wnderstand Leqo and wooden
railways, then yow know
everything abowt composi’cion'.

THE IDEAS OF
FUNCTIONAL PROGRAMMING

Four ideas behind FP

|. Functions are things

2. Build bigger functions using
composition

3. Types are not classes

4. Build bigger types using
composition

if| Function

FP idea #1:
Functions are things

Function

m o m \

A function is a thing which
transforms iv\pu’cs to ou’cpu’cs

A function is a standalone thing,
not attached to a class

No .strinqs
attacheq!

A function is a standalone thing,
not attached to a class

It can be used for inputs and outputs
of other functions

A function can be an output thing

—> ﬂ E —> O

A function can be an input thing

S ¥iii

. —> [i —> (o

A function can be a parameter

Rabiii i

(e R (oo

) I

E —> O i -

il

m*,_,ﬂ
®

i — (v

i

E \

(e)

i (o

Yow can bwild very comy\ex systems
from this 5im\>\e Fowndation!

FP idea #2:
Build bigger functions

using composition

]

E

Function 1
apple -> banana

H Function 2

banana -> cherry

I—H

s
H Function 1 H Function 2
apple -> banana m \ : \) banana -> cherry
! >>

& Com\;os'\’cion

New func’aon

: New Functlon
[l> apple -

Cant tell it was built
from smaller functions!?

Where did the banana go?

Function composition in F# and C#
using the "piping" approach

int addl(int x) => x + 1;
int times2(int x) => x * 2;
int square(int x) => x * x;

add1(5); // = 6
times2(add1(5)); // = 12
square(times2(addi(5))); // = 144

Nested function calls
can be confu.sinq it 400 deep

add|

times2

—> |2 —>| square

—> |44

“

This is often easier
40 wnderstand

5 == addl

Ui

—> 6 >

times?2

> 12>

Vipe symbol

/

> addl
> addl |> times2
> addl |> times2 |> square //

square

—> 144

7
pive

HF example

6
12
144

//
//

5 =—> addl

> ¢ >

times?2

> 12>

Vipe extension

/
5.Pipe

method

(addl);

square

—> 144

5.Pipe(addl).Pipe(times2);
5.Pipe(addl).Pipe(times2).Pipe(square);

(I example

Building big things from functions
It's compositions all the way up

Low-level operation

string

ToUpper

striné

Low-level operation

Low-level operation

Low-level operation

> —>

> —>

Service

Address
—

AddressValidator

Validation
Result

A “Service” is jwst like a microservice
but withowt the “micro” in front

Service

ChangeProfile
Reques

> —>

Service

$

Use-case

> —>

Service

UpdateProfileData

ChangeProfile
Resué

Use-case

Use-case

Use-case

> —>

> —>

$

Web application

Http
Request

- >
- >
- >

Http
Response

“Composi’cion 1S the same
at all scales”

The Yower of

Composition
- b > >
v
| P PP |
ttp
Request E 5 ¢ I Response

Even for complex applications,
data flows only in one direction

The Yower of

Composition

FP idea #3:
Types are not classes

90, what is a type then?

Set of
valid inputs

A type is a just a name
e for a set of things \u

m o E

Set of
valid outputs

A type is a just a name
for a set of things

Function Set of
valid outputs

o U1 A WDN —

This is ype
“integer”

A type is a just a name
for a set of things

abc
but
"cobol"

"double"

"end"
"float"

Set of Function
valid inputs

This is 4ype

"string”

A type is a just a name
for a set of things

Donna Roy
Javier Mendoza
Nathan Logan Function Set of
Shawna Ingram valid outputs
Abel Ortiz
Lena Robbins
Gordon Wood

T

This is 4ype

"Yerson”

A type is a just a name
for a set of things

Set of Function
valid inputs

A type is a just a name
for a set of things

Set of Function . ‘
valid inputs & i
o [He

|

This is a type of
Frwit-> Frwit functions

FP idea #4:
Types can be composed too

Com\aosab\e

—Adgebraie-type system

Only \mss'\b\e becawse behavior
is separate from datal

Bigger types are built from smaller types by:
Composing with “AND”
Composing with “OR”

Compose with “AND”

FruitSalad =
x AND ° " AND @

—

Compose with “AND”

enum AppleVariety { Red, Green } C# C’XGH\‘)\C
enum BananaVariety { Yellow, Brown }

enum CherryVariety { Tart, Sweet }

struct FruitSalad

{

AppleVariety Apple; App\e AN
BananaVariety Banana; Panana AND

CherryVariety Cherry; Cherrg
}

Compose with “AND”

type AppleVariety = Red | Green Y¥# e'xamp\e
type BananaVariety = Yellow | Brown

type CherryVariety = Tart | Sweet

type FruitSalad = { <« T3k “record” type
Apple: AppleVariety

Banana: BananaVariety
Cherry: CherryVariety

¥

Compose with “OR”
Snack= @ OR' "OR ®

—_—

_ T4 "thoice’ type

type Snack = <«
Apple of AppleVariety

Banana of BananaVariety
Cherry of CherryVariety

|ike an enwm in CH owt with
exdra information for each case

A real world example
of composing types

Some requirements:

We accept three forms of payment:
Cash, Paypal, or CreditCard.

For Cash we don't need any extra information
For Paypal we need an email address
For Cards we need a card type and card number

How wowld yow '\m\a\emev\k his?

In OO design yow wowld probably implement it as an
interface and a set of swbclasses, like this:

interface IPaymentMethod

{..}
class Cash() : IPaymentMethod
{..}

class Paypal(string emailAddress): IPaymentMethod
{..}

class Card(string cardType, string cardNo) : IPaymentMethod
{..}

In T4 yow womld probably implement by composing
types, like this:

type EmailAddress = string /Vrimi&ive types
type CardNumber = string

type EmailAddress = ...
type CardNumber = .. Choice type
— (using OW)
type CardType = Visa | Mastercard
type CreditCardInfo = {
CardType : CardType
CardNumber : CardNumber

} A
Record type (wsing AND)

type EmailAddress = ...
type CardNumber = ...
type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

Cash

PayPal of EmailAddress
Card of CreditCardInfo

= (Choice type

type EmailAddress = ...
type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...
type PaymentMethod =

Cash

PayPal of EmailAddress
Card of CreditCardInfo

Another primitive type
type PaymentAmount = decimal < P Kl

type Currency = EUR | USD | RUB <« .+ or choice tupe

type EmailAddress = ...
type CardNumber = ...
type CardType = ...
type CreditCardInfo = ...
type PaymentMethod =
| Cash
| PayPal of EmailAddress
| Card of CreditCardInfo
type PaymentAmount = decimal
type Currency = EUR | USD | RUB

— Kecord type

type Payment = {
Amount : PaymentAmount
Currency : Currency
Method : PaymentMethod }

type EmailAddress

type CardNumber = : ﬂNl\ ‘\'.l\-n)C b“i\‘h ﬁ‘O\"\ “\(“\9
type CardType = ... SNQ\\er WPC-S:

type CreditCardInfo = ...
type PaymentMethod =

g The Yower of Composition

| PayPal of EmailAddress

| Card of CreditCardInfo
type PaymentAmount = decimal
type Currency = EUR | USD | RUB

type Payment = {
Amount : PaymentAmount
Currency : Currency
Method : PaymentMethod }

The Yower of

Composition

Composable types can be used as
executable documentation

Tuves can be nowns .
Yp / The domain on one screen?

type Suit = Club | Diamond | Spade | Heart

type Rank = Two | Three | Four | Five | Six | Seven | Eight
| Nine | Ten | Jack | Queen | King | Ace

type Card = { Suit:Suit; Rank:Rank }

type Hand = Card list

type Deck = Card list

type Player = {Name:string; Hand:Hand}
type Game = { Deck:Deck; Players:Player list }

type Deal = Deck -> (Deck * Card)
type PickupCard = (Hand * Card) -> Hand

Types can be verbs

type CardType = Visa | Mastercard
type CardNumber = string
type EmailAddress = string

Can yow guess what
pagmev\’c methods are
acce\a’ced?

type PaymentMethod =

Cash —

PayPal of EmailAddress
Card of CreditCardInfo
Bitcoin of BitcoinAddress

A big topic and not enough time ® ®

More on DDD and designing with types at
fsharpforfunandprofit.com/ddd

The
Pra 18
L —

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

| have a book
o\l abowt thist

4 y dy:

o . 5.‘

& H é"«‘ 2 s W

s i S AN
Scott Wlaschin
edited by Brian MacDonald

Composition in practice:

Time for some real examples!

Technique #|

COMPOSITION WITH PIPING
(ROMAN NUMERALS)

To Roman Numerals

Task: How to convert an arabic integer
to roman numerals?

5 => "V"
12 => "XII"
|07 => "CVII"

To Roman Numerals

IO

Koman vw\mbers evolved
from this

To Roman Numerals

* Use the "tally" approach

— Start with N copies of

— Rep
— Rep
— Rep
— Rep

— etc

ace five "I"'s with a "V"
ace two "V'"s with a "X"
ace five "X"s with a "L"

ace two '"L"s with a "C"

To Roman Numerals

number ——> [l Replicate "I" + —

<>- Replace_lllII_V

_—

o e

E—

<> [Replace XXXXX_L

B —> etc

string ToRomanNumerals(int number) C¥# e'xam‘;\e
{
// define a helper function for each step
string replace IIIII V(string s) =>
s.Replace("IIIII", "V");
string replace VW _X(string s) =>
s.Replace("w", "X");
string replace XXXXX_L(string s) =>
s.Replace("XXXXX", "L");
string replace LL C(string s) =>
s.Replace("LL", "C");

// then combine them using piping
return new string('I', number)
.Pipe(replace IIIII V)
.Pipe(replace_VV _X)
.Pipe(replace XXXXX_L)
.Pipe(replace LL C);

}

let toRomanNumerals number = T¥# exam‘,\e
// define a helper function for each step
let replace_IIIII_V str =
replace "IIIII" "V" str
let replace_VV_X str =
replace "vv" "X" str
let replace XXXXX_L str =
replace "XXXXX" "L" str
let replace_LL_C str =
replace "LL" "C" str

// then combine them using piping
String.replicate number "I"

> replace IIIII V

> replace VW X

> replace XXXXX L

> replace LL C

IT'S NOT ALWAYS THIS
EASY...

function A

m— Compose

function B

function A

function B

function A and B

Easy! v/

... But here is a challenge

Input == function A == Output
Input 1
| functionB m==p O
o 99 utput

4ome functions have
more than one inp’c

INPUT m— function A

» Output

>

function B

e OutpUL

Challenge #l: How can

We Compose these?

Technique #2

COMPOSITIONWITH CURRYING
(ROMAN NUMERALS)

The Replace function

We wse this a lot!

INPULSLTING wey [
0ldValue ey | Replace I =3 outputString
newValue 9 |

Uh-oh! Composition problem

E Replacel /V

X
-

E Replace V /X

X
-

E Replace X/ L

Bad news:
Composition patterns
only work for functions that
have one parameter! ®

Good news!
Every function can be turned into

a one parameter function ©

|
Haskell Curry

\

We named this technique after him

What is currying?

Input A .
Uncurried Output C

—>

Input B

—) Function

after cwrrying

Fwnction as output

M} Curried —3| InputB Intermediate | Output
Function =] Function

Input A
Input B

-

What is currying?

Uncurried
Function

Output C

—>

Currginq means that "’everg" fwnction can be converted
10 a series of one inpwt functions

Input A

-

Curried
Function

1

Ore input

p—(INput B Intermediate | Output
é Function
]
One input

Pefore currying

Three \aumme’cers

.s’cring ou’cpu’c
\9 E Replace | /

input.Replace(oldValue, newValue);

After cwrrying

Old i Replace jmump w
New

Func<string,string> replace(string oldVal, string newVal) =>
input => input.Replace(oldVal, newVal);

After cwrrying

Two parameter=

&Old i Replace memp w
New

Func<string,string> replgzzifkring oldval, string newVal)

input => input.Replace(oldVal, newVal);

After cwrrying

one-parame’cer
old i Replace — function

New

Func<string,string> replace(string oldVal, string¥newVal) =>
input => input.Replace(oldVal, newVal);

This lambda (Function) is retwrned

string ToRomanNumerals(int number) (¥ e'xam‘;\e
{
// define a general helper function
Func<string,string> replace(
string oldValue, string newValue) =>
input => input.Replace(oldValue, newValue);

// then use piping
return new string('I', number)
.Pipe(replace("IIIII","V"))
.Pipe(replace("W","X"))
.Pipe(replace("XXXXX","L"))
.Pipe(replace("LL","C"));

}

let toRomanNumerals number =
// no helper function needed.
// currying occurs automatically in

// combine using piping
String.replicate number "I"

>

>
>
>

replace
replace
replace
replace

"ITITI™ "V*"
vt
XXXXXT LT
"LLt tct

FH#

HF example

let toRomanNumerals number =
// no helper function needed.
// currying occurs automatically in F#

// combine using piping
String.replicate number "I"

> replace "IIIII" "V"

> replace "ww" "X"

> " R

>|replace "LL" "C" | € *‘\\

Only 2 of the 5
parameters are passed

Partial Application

< ol
Very '\m\uor’cuv\’c rechnique:

Partial Application

let add xy = X + vy
let multiply xy = x * vy

T s par’cia\ app\ica’cion

> add 2

|> multiply 3<——”’/)
\

Vipinq provides the mls.sing argumen’c

1)\ 2-0‘{ o o o
e Partial Application
\’ Old I8 Replace ﬁi ReplaceOldNew [i
New B2 i Old [New i

—_—_————,e—eee e

String.replicate number "I"

> replace "IIIII" "V"<$____

> replace "w" "X" Only 2 parameters
> replace "XXXXX

L passed i
> replace "LL" "C"

Vipinq provides the mi.s.sinq arqumen’c

Pipelines
are extensible

Compo.sab\e = extensible

let toRomanNumerals number =
String.replicate number "I"

> replace "IIIII"™ "V"

> replace "wv" "X"

> replace "XXXXX" "L"

> replace "LL" "C"

// can easlily add new segments to the pipeline
>|replace "VIIII"™ "IX"
>|replace "IIII" "IV"
>|replace "LXXXX" "XC"

Can add new fwnctionality
withowt fowching existing code!

Challenge ¥k How can we compose these?

INput === function

9 Output

>

function = Output

4olved with cwrrying and
par’cia\ uw\'\cu’c'\on‘.

Here is another challenge

function A == Output

function B g

gutput 1 4ome fwnctions have
utput2 €
P more than one owtpwt

Challenge #2: How can we compose these?

INPUT m— function B g

Output 1

Output 2 >

x(mput%

function A

% Output

Technique #3

COMPOSITIONWITH BIND
(FIZZBUZZ)

FizzBuzz definition

* Write a program that prints the numbers
from | to 100

* But:
— For multip

— For multip

— For multip

es of three print "Fizz" instead
es of five print "Buzz" instead

es of both three and five print

"FizzBuzz" instead.

A simple F# implementation

let fizzBuzz max =
for n in [1..max] do

if (isDivisibleBy n 15) then
printfn "FizzBuzz"

else if (isDivisibleBy n 3) then
printfn "Fizz"

else if (isDivisibleBy n 5) then
printfn "Buzz"

else
printfn "%1i" n

let isDivisibleBy n divisor =
(n % divisor) = @ // helper function

A simple F# implementation

let fizzBuzz max =

printfn "Buzz"
else
printfn "%1

let isDivisib
(n % divi

number

Pipeline implementation

andle 15 case

JH s

>

>

<_

-

andle 3 case

H—F
JH e

>

Handle 5 case

>

Last step

— Answer

number —>

Uncarbonated

-
H

Handle case

=~ (eg.2,7,13)

it
\ Carbonated

(e.g. "Fizz", "Buzz")

Two \uossib\e
ow\,w’cs

Inpu’c =>

Uncarbonated
or

Carbonated

Iv\pu’c => T Uncarbonated
or
Carbonated

type CarbonationResult = < (hoice type

| Uncarbonated of int // unprocessed
| Carbonated of string // "Fizz", Buzz", etc

Idea from http://weblog.raganwald.com/2007/0 | /dont-overthink-fizzbuzz.html

type CarbonationResult =
| Uncarbonated of int // unprocessed
| Carbonated of string // "Fizz", Buzz", etc

let carbonate divisor label n =
if (isDivisibleBy n divisor) then
Carbonated label
else
Uncarbonated n

retwrn one case

retwren the other case

Idea from http://weblog.raganwald.com/2007/0 | /dont-overthink-fizzbuzz.html

type CarbonationResult =
| Uncarbonated of int // unprocessed
| Carbonated of string // "Fizz", Buzz", etc

__Three parameters
let carbonate|divisor label n |-
if (isDivisibleBy n divisor) then
Carbonated label
else
Uncarbonated n

12 |> carbonate 3 "Fizz" // Carbonated "Fizz"

19 |> carbonate 3 "Fizz" // Uncarbonated 16

10 |> [carbonate 5 "Buzz"| // Carbonated "Buzz"

Two pamme’cer.s‘./ \

carbonate 5 "Buzz"

'

i

First implementation attempt

let fizzbuzz n =
let resultl5 = n |> carbonate 15 "FizzBuzz"
match resultl5 with
| Carbonated str -»>
str
| Uncarbonated n ->
let result3 = n |> carbonate 3 "Fizz"
match result3 with
| Carbonated str -> Y\eu\\g \\(5\9 code. ..
str
| Uncarbonated n ->
let result5 = n |> carbonate 5 "Buzz"
match result5 with)
| Carbonated str -> Pwt wait — theres a
str pa’v\,eﬂ\...
| Uncarbonated n ->
string n // convert to string

let fizzbuzz n =
let resultl5 = n |> carbonate 15 "FizzBuzz"
match resultl5 with
| Carbonated str -»>
str
| Uncarbonated n ->
let result3 = n |> carbonate 3 "Fizz"
match result3 with
| Carbonated str -»>
str
| Uncarbonated n ->

let result5 = n |> carbonate 5 "Buzz"

match result5 with
| Carbonated str ->
str

| n ->

// do something with Uncarbonated

value

let fizzbuzz n =
let resultl5 = n |> carbonate 15 "FizzBuzz"
match resultl5 with
| Carbonated str -»>
str
| Uncarbonated n ->
let result3 = n |> carbonate 3 "Fizz"
match result3 with
| Carbonated str -»>
str

| Uncarbonated n ->
// do something with Uncarbonated value

1 ooc
Il ooc

let fizzbuzz n =
let resultl5 = n |> carbonate 15 "FizzBuzz"
match resultl5 with
| Carbonated str -»>
str

| Uncarbonated n ->
// do something with Uncarbonated value

I coc
11 coc

if Carbonated then
// return the string
if Uncarbonated then
// do something with the number

If Uncarbonated

— = i 1 [
iiad
liiig 2
If Carbonated '

Bypass and
return the string

Parameterize all the ’chinqs‘.

let ifUncarbonatedDo| f [result =
match result with
| Carbonated str -»>
Carbonated str

| Uncarbonated n ->
fn

let fizzbuzz n =

n
> carbonate 15 "FizzBuzz"
> ifUncarbonatedDo (carbonate 3 "Fizz")
> ifUncarbonatedDo (carbonate 5 "Buzz")
> lastStep

let fizzbuzz n =

n
> |carbonate 15 "FizzBuzz"
> 1fUncarbonatedDo (carbonate 3 "Fizz™)
> ifUncarbonatedDo (carbonate 5 "Buzz")
> lastStep

let fizzbuzz n =

n
> rbon 15 "FizzBuzz"
>|ifUncarbonatedDo (carbonate 3 "FiZZ"ﬂMWm
> ifUncarbonatedDo (carbonate 5 "Buzz")
> lastStep

let fizzbuzz n =

n
> carbonate 15 "FizzBuzz"
S
> [ifUncarbonatedDo (carbonate 5 "Buzz")|"
> lastStep

let fizzbuzz n =

n
> carbonate 15 "FizzBuzz"
> ifUncarbonatedDo (carbonate 3 "Fizz")
> ifUncarbonatedDo (carbonate 5 "Buzz")
>|lastStep =

let lastStep result =
match result with
| Carbonated str ->
str
| Uncarbonated n ->
string(n) // still not fizzy, so
// convert to string

let fizzbuzz n =

Composab\e => easy {0 extend

n
> carbonate 15 "FizzBuzz"
> ifUncarbonatedDo (carbonate 3 "Fizz")
> ifUncarbonatedDo (carbonate 5 "Buzz")
> lastStep

let fizzbuzz n =

Composab\e => easy {0 extend

n
> carbonate 15 "FizzBuzz"
> ifUncarbonatedDo (carbonate 3 "Fizz")
> ifUncarbonatedDo (carbonate 5 "Buzz")
>|ifUncarbonatedDo (carbonate 7 "Baz")
> lastStep

let fizzbuzz n = Composab\e => easy 10 extend
n

> carbonate 15 "FizzBuzz"

> ifUncarbonatedDo (carbonate 3 "Fizz")

> ifUncarbonatedDo (carbonate 5 "Buzz")

>|ifUncarbonatedDo (carbonate 7 "Baz")

>|ifUncarbonatedDo (carbonate 11 "Pozz")

> lastStep

let fizzbuzz n =

Composab\e => easy {0 extend

n
> carbonate 15 "FizzBuzz"
> ifUncarbonatedDo (carbonate 3 "Fizz")
> ifUncarbonatedDo (carbonate 5 "Buzz")
>|ifUncarbonatedDo (carbonate 7 "Baz")
>|ifUncarbonatedDo (carbonate 11 "Pozz")
>|ifUncarbonatedDo (carbonate 13 "Tazz")
> lastStep

Not towching existing code
means more confidence that

yow haven'’s broken ung’ch‘mq‘.

Another example:
Chaining tasks

When task

—p | N
completes :
\L

ak.a “promise’, “futwre’

let taskExample input =
let taskX = startTask input
taskX.WhenFinished (fun x ->
let taskY = startAnotherTask x
taskY.WhenFinished (fun y ->
let taskZ = startThirdTask y
taskZ.WhenFinished (fun z ->
etc

let taskExample input =
let taskX = startTask input
taskX.WhenFinished (fun x ->
let taskY = startAnotherTask x
taskY.WhenFinished (fun y ->
let taskZ = startThirdTask y

taskZ.WhenFinished (fun z ->
do something

let taskExample input =
let taskX = startTask input
taskX.WhenFinished (fun x ->
let taskY = startAnotherTask x

taskY.WhenFinished (fun y ->
do something

let taskExample input =
let taskX = startTask input

taskX.WhenFinished (fun x ->
do something

— Varameterize the next .s’cep
let whenFinishedDo| f|task =

task.WhenFinished (fun taskResult ->
f [taskResult)

let taskExample input =
startTask input
> whenFinishedDo startAnotherTask

> whenFinishedDo startThirdTask
> whenFinishedDo ...

MONADS!

Is there a general solution to
handling functions like this?

Yes! “Bind” is the answer!
Bind all the things!

i

How do we compose these?

Lk

This is the "two track” model —
ak.a "Nailway Oriented Programming”.
Yee f.sharpforfunandpro‘fi’c.com/ rop

Compo.sing one-track functions is fine..

- Gnd COmposing two-track fwunctions is fine..

X X

~ bWt composing poin’c.s/ switches is not allowed!

X

One-track input LE Two-track output

ijiii
Pefore: Not switable
for composition

v

Two-track input : : Two-track output

L After: Switable for 50 ho? can we convert from
composition the “before” case to the

"after” case?

The "bind" adapter block

Two-track output>

)
-}
o
=
4
O
(L)
| -
v
S
T

4\ot for a function

Two-track output>

+—
-}
o
=
4
O
(L)
| -
v
S
T

A function transfor

Two-track output>

+—
-}
o
=
4
O
(L)
| -
v
S
T

let bind nextFunction result

match result with

| Uncarbonated n ->

nextFunction n
| Carbonated str ->

Carbonated str

Two-track output>

Two-track input >

let bind nextFunction result =

match result with

| Uncarbonated n ->

nextFunction n
| Carbonated str ->

Carbonated str

Two-track output>

i)
>
Q.

=

4
(O]
M
| -

w
3

T

let bind nextFunction result =

match result with

| Uncarbonated n ->

nextFunction n
| Carbonated str -»>

Carbonated str

Two-track input

let bind nextFunction result

match result with

| Uncarbonated n ->

| Carbonated str -»>

nextFunction n

Carbonated str

Two-track output

)

Two-track output

i)
>
Q.

=

=
(O]
©
| -

T
3

T

let bind nextFunction result =

match result with

| Uncarbonated n ->

nextFunction n
| Carbonated str -»>

Carbonated str

"ifUncarbonatedVo

FP terminology

e A monad is "CarbonationKesult”
/ type CarbonationResult =

—_ A data type & | Uncarbonated of int

| Carbonated of string

— With an associated "bind" function
— (and some other stuff) \ "ifUncarbonatedVo"

e A monadic function is

&

— A switch/points function

— "bind" is used to compose them

Challenge #2: How can we compose these?

INPUT m— function B g

Output 1

Output 2 >

\/ (Input—)

function A

% Output

4olved with monadst

Technique #4

KLEISLI COMPOSITION
(WEB SERVICE)

Kleisli Composition

compose

u : — :
— l

with

/

The result is the
same kind of thing

A HttpHandler "WebPart"

HttpContext Async<HttpContext option>
I o I \ ,‘
Might sweceed
|

Contains request,
response, etc

A HttpHandler "WebPart"

HttpContext Async<HttpContext option>

l l 'T‘

~_

Might ¥ ail

Aearch Tor "t Gf\m?‘ie" for more
e

Composition of HttpHandlers

T > = >

/

Kleisli composition symbol

1
24l
<

/

The result is another
H’c’cpﬂand\er SO Yow can
keep adding and adding

T matches path

. doesnt match

path "/hello"

T

Checks request path
(might fail)

i 200 0K

OK "Hello"

T

Sets response

i >=> i —> o

path "/hello” >=> OK "Hello")\
T T A new WebVart
Checks request path Sets response

(might fail)

choose [

Vicks first ttidptandler
that swcceeds

Vick first path

/ that swcceeds
choose [

path "/hello"” >=> OK "Hello"
path "/goodbye” >=> OK "Goodbye"

]

GET

\

Only swcceeds if
request is a GET

GET >=> choose |
path "/hello"” >=> OK "Hello"
path "/goodbye” >=> OK "Goodbye"

]

A complete web app

let app = choose [

GET >=> choose [
path "/hello” >=> OK "Hello"
path "/goodbye"” >=> 0K "Goodbye"

]

POST >=> choose [
path "/hello" >=> OK "Hello POST"
path "/goodbye" >=> OK "Goodbye POST"

| *\’ct‘a’r\and\ers are com\aosab\e,
] xable, exc.
rewnsable, testable,

startWebServer defaultConfig app

The Vower of

Composition
> > >
E) —> > >
)
Request - S I

—_—
Http

Response

No classes, no inheritance, one-directional data flow!

Review

* The philosophy of composition
— Connectable, reusable parts

* FP principles:
— Composable functions

— Composable types

Review

A taste of various composition techniques:
— Piping with "|>"
— Currying/partial application
— Composition using "bind" (monads!)

— Kleisli composition using ">=>"

Von't worry abowt wnderstanding it all,
bwt hopefully it's not so scary now!

Why bother? ()¢

_—

Benefits of composition:

* Reusable — no strings attached

* Understandable — data flows in one direction
* Testable — parts can be tested in isolation

* Maintainable — all dependencies are explicit

* Extendable — can add new parts without touching
old code

 Different way of thinking — it's good for your
brain to learn new things!

Thank you, DotNext!

fsharpforfunandprofit.com/composition ~

5lides and video here

@ScottWilaschin <, ..

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

—— My book Ask me anything

abowt railwayst

[Railway Master

