
The new inter-language interoperability
in .NET 5 and .NET 6

Raffaele Rialdi - Senior Software Architect

@raffaeler

raffaeler@vevy.com

Who am I?

• Raffaele Rialdi, Senior Software Architect in Vevy Europe – Italy
• @raffaeler also known as "Raf"

• Consultant in many industries
• Manufacturing, racing, healthcare, financial, …

• Speaker and Trainer around the globe
• Italy, Romania, Bulgaria, Russia, USA, …

• Proud member of the great Microsoft MVP family since 2003

in·ter·op·er·a·bil·i·ty

« the ability of computer systems or software

to exchange and make use of information »
definition by

Oxford Languages

ability to make a call marshalling data

Variety of OS'es Variety of Languages

WinRT

Three ABIs

COM
component

object model

@raffaeler

Agenda

•Many interoperability mechanisms

•Manged to Native

•Native to managed

•Discuss the marshalling machinery

•Hosting managed code from C++ and Rust

•Code generators

From ABI to Metadata

• The Application Binary Interface is the lower level boundary

• It is the contract defining how two binaries could call each other

• For historical reasons, the "C exports" are popular

• Weak contract, just defining how to pass the parameters on the stack

• This is why PInvokes are difficult to write

• This is why we need metadata: for example IDL (now version 3)

• buffer size, array length, in/out/ref, …

Which metadata should we use?

• None is an option
• You just write the PInvoke declarations by hand

• COM is still an option
• Work-in-progress to use its ABI on Linux/Mac for interoperability purposes
• Uses the older version of IDL (version 1)

• WinRT currently is Windows only
• A new version of IDL (version 3) is compiled into ".winmd"

• Winmd are ECMA-335 metadata which is the official standard defining the .NET CLI
• You can inspect winmd files with ILSpy (no implementation of course)

• Win32 metadata definition (produce winmd)
• https://github.com/microsoft/win32metadata (you won't use this directly)
• Metadata for all the Win32 API (will be announced at #build2021)

https://github.com/microsoft/win32metadata

Metadata to C-Language ABI Projections

• The goal of the projections is generating code
to provide access to the boundary in the most
natural way for each language.

•Projections using the C-Language / PInvoke ABI
• C# (source generator) https://github.com/microsoft/cswin32

• C# (pre-generated) https://github.com/dotnet/pinvoke

• C++ https://github.com/microsoft/cppwin32

• Rust https://github.com/retep998/winapi-rs

• Dart https://github.com/timsneath/win32

Pre-generated
Win32 PInvoke declarations

on NuGet

https://github.com/microsoft/cswin32
https://github.com/dotnet/pinvoke
https://github.com/microsoft/cppwin32
https://github.com/retep998/winapi-rs
https://github.com/timsneath/win32

Calling the Win32 APIs from .NET

•Option 1: Add one of the NuGet packages created by:
https://github.com/dotnet/pinvoke

•Option 2 : Let a C# source generator create the PInvoke for you

http://pinvoke.net/

<PackageReference Include="Microsoft.Windows.CsWin32" Version="0.1.378-beta">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>

</PackageReference>

(many more)

https://github.com/dotnet/pinvoke

.NET projections accessing Windows WinRT API

•We can natively reference a Windows SDK
• All the required interoperability code is automatically available

• This is possible from any Windows application
• Windows Forms, WPF or Console included

• The same technology is used by WinUI and the new
WebView (Edge based on Chromium)

.NET + Windows SDK versions

Minimum OS Version at runtime

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0-windows10.0.19041.0</TargetFramework>
<SupportedOSPlatform>windows7</SupportedOSPlatform>

</PropertyGroup>

WinRT

Demo: WindowsAPI
.NET exe application accessing a Win32 and WinRT APIs on Windows

WinRT

Accessing custom components

•PInvoke
• Currently required for code running cross-platform
• Declarations written by hand or using 3rd party generators

• Microsoft is working to a generate these declarations as well

•WinRT: currently available projection generators:
• C# (producer and consumer) https://github.com/microsoft/cswinrt

• C++ (producer and consumer) https://github.com/microsoft/cppwinrt

• Rust (consumer) https://github.com/microsoft/windows-rs

• Python (very experimental, only official WinRT API)
• https://github.com/microsoft/xlang/tree/master/src/tool/python

https://github.com/microsoft/cswinrt
https://github.com/microsoft/cppwinrt
https://github.com/microsoft/windows-rs
https://github.com/microsoft/xlang/tree/master/src/tool/python

Consuming WinRT C++ components

• The best replacement for C++/CLI

• On the C++ side CppWinRT
• Use only ISO standard C++ language

• VS Extension: https://marketplace.visualstudio.com/items?itemName=CppWinRTTeam.cppwinrt101804264

• Use the C++/WinRT component template

• On the .NET side CsWinRT
• Create a zero-code project and ad a reference to the C++ component

• CsWinRT will generate the projection code for you https://github.com/microsoft/CsWinRT/

• Rich interop: objects, methods, properties, events, async, …

• Performant: leverage the latest .NET "calli" opcode and function pointers

https://marketplace.visualstudio.com/items?itemName=CppWinRTTeam.cppwinrt101804264
https://github.com/microsoft/CsWinRT/

Demo: ManagedWinRT
.NET exe application accessing a C++ custom component using WinRT on Windows

WinRT

Inverting the actors: C++ calling .NET using WinRT

•CsWinRT allows exposing a class library as WinRT component

•C++ starts the process and automatically host the CLR

•Must be packaged as nuget to include three Microsoft libraries

• The C++ client must:

1. Ship a json file with the
.NET runtime version

2. Add a manifest with the
list of activatable classes

{ "runtimeOptions": {
"tfm": "net5.0",
"rollForward": "LatestMinor",
"framework": {
"name": "Microsoft.NETCore.App",
"version": "5.0.0" } } }

<activatableClass
name="ManagedComponent.QueryCatalog"
threadingModel="both"
xmlns="urn:schemas-microsoft-com:winrt.v1" />

Demo: WinRTNativeHosting
C++ exe application accessing a .NET component using WinRT on Windows

WinRT

Demo: WinRTNativeHosting
Rust exe application accessing a .NET component using WinRT on Windows

WinRT

What about going cross-platform?

• The only current solution is PInvoke and Reverse PInvoke

•Marshaling option 1 (less burden)

• A static .NET method is exposed to the native world

• We use Marshal attributes to obtain automatic Marshaling

•Marshaling option 2 (more perf)
• [UnmanagedCallersOnly(CallConvs = new[] { typeof(CallConvCdecl) })]

• Use only blittable types and manually Marshal the parameters

• Span<T>, Memory<T>, MemoryMarshal, Unsafe are your friends

Demo: NativeHosting
C++ exe application accessing .NET methods using Reverse PInvoke cross-platform

Conclusion

• Trivial cases of accessing Win32 and WinRT APIs work great!

•PInvoke generation for custom libraries is coming from MS

•Complex cases should be addressed case by case

• Clang compiler provides a C++ parser library

• You can create your own metadata and use Roslyn to generate the interop code

•Damn complex use-case: NodeJS hosting/calling .NET

• https://github.com/raffaeler/xcore (my own project, presentation only)

https://github.com/raffaeler/xcore

Questions?

@raffaeler

raffaeler@vevy.com

Thank you!

mailto:raffaeler@vevy.com

