
Raspberry PI and .NET Core on Linux:
the fast track to IoT

Raffaele Rialdi - Senior Software Architect

@raffaeler

raffaeler@vevy.com

Who am I?

• Raffaele Rialdi, Senior Software Architect in Vevy Europe – Italy

• @raffaeler also known as "Raf"

• Consultant in many industries

• Manufacturing, racing, healthcare, financial, …

• Speaker and Trainer around the globe (development and security)

• Italy, Romania, Bulgaria, Russia (Moscow, St Petersburg and Novosibirsk), USA, …

• And proud member of the great Microsoft MVP family since 2003

Agenda

• IoT: computers or microcontrollers, that is the question!

• What can we do with the Raspberry PI and .NET Core

• Driving physical sensors/devices from the Raspberry PI

• The new goodies inside .NET Core 3.0 and C# 7.x (very useful on the RPi)

• Publishing the App

• Interoperability with C/C++ code

• Code, code, code!

The "Tiny85" microcontroller (Arduino)

ATMEL SAMD21: the big, "fat" microcontroller (Arduino)

• 48MHz, 256K Flash, 32K RAM

• 12 Channel DMA

• 8 hardware timers + comparators

• RTC, watchdog

• USB2.0 (8 endpoints)

• 6 serial ports (USART, SPI, I2C)

• I2S Sound port

• 10 bit DAC, comparators, 20 channel ADC

• Touch controller

• 52 I/O pins

• Still, no operating system and real-time

Microcontrollers vs Full computers

Microcontrollers

• Single-chip, no operating system

• Very cheap

• Rich of on-board peripherals

• Real-time processing

• Data acquisition on reboot is a good

strategy to avoid bugs

• Secure protocols are hard to

implement (low resources)

Computers / Embedded boards

• Full Operating Systems

• Popular OSes are not real-time

• Data is acquired on polling or

hardware interrupt requests

• Rebooting is slow

• Require frequent security updates

• Secure protocol stacks are tested and

maintained (TLS, crypto, …)

.NET Core on the Raspberry PI, on Linux (Raspbian)

• You can use all the .NET Core power, no exceptions

• Three .NET Core options

• Install the .NET Core SDK

• Install the .NET Core Runtime

• Do not install anything and use xcopy deployment

• With .NET Core 3.0 you can start using C# 8

• You can remote debug the application or going deep with LLDB + SOS.DLL

Getting started with the Raspberry PI

• Device information: https://www.raspberrypi.org/

• Required Hardware: RPi 2 to RPi 3B+

• RPi Zero cannot run .NET Core (yet) because of the ARMv6 CPU

• NetCore for Linux-ARM

• Available as SDK and Runtime

• One repository with all the info you need:

• https://github.com/raffaeler/raspberrypi

• Tutorials, materials, resources, GPIO pin maps and more

https://www.raspberrypi.org/
https://github.com/raffaeler/raspberrypi

Useful tools

• SSH client

• You need to enable SSHD on the device via raspi-config utility

• Get a SSH client for Windows (Putty, Bitvise, …) to use the terminal

• Get an SCP client (WinSCP, Bitvise, …) to copy files from/to the device

• DeployTool by Raf (me)

• A tool to ease deployment to a Linux machine (Continuous Deployment)

• https://github.com/raffaeler/DeployTool

https://github.com/raffaeler/DeployTool

Raspberry Pi Peripherals

• ARM Cortex A53 - 4 Cores – 1.4GHz - 1GB RAM

• GPU Broadcom VideoCore IV

• Ethernet 1GBit – Wifi 2.4/5GHz – BT4.2 / BLE

• GPIO 40 pins – I2C – 3xSPI – UART – 2 x PWM

01

05

09

13

17

21

25

29

33

37

02

06

10

14

18

22

26

30

34

38

3.3V

SCL.1

0V

GPIO.2

3.3V

MISO

0V

GPIO.21

GPIO.23

GPIO.25

5V

0V

RxD

0V

GPIO.5

GPIO.6

CE1

0V

0V

GPIO.28

-

9

-

2

-

13

-

21

23

25

-

-

16

-

5

6

11

-

-

28

-

3

-

27

-

9

-

5

13

26

-

-

15

-

24

25

7

-

-

20

HDMI

Full HD Camera

Ethernet

USB
Power

Introducing the new System.Device namespace

• A new Microsoft library to control physical devices

• System.Device.Gpio

• System.Device.I2c

• System.Device.Pwm

• IoT.Device.Bindings

• Published on GitHub: http://github.com/dotnet/iot (still experimental)

Controlling the peripherals

High-level device management

https://github.com/dotnet/iot/tree/master/src/devices

http://github.com/dotnet/iot
https://github.com/dotnet/iot/tree/master/src/devices

Creating a Console App

• Use the default template for a NetCore 2.1 Console app

• Three local peripherals "netstandard" libraries currently available:
• IoT library: http://github.com/dotnet/iot (currently a pre-release version)

• Unosquare.Raspberry.IO by Unosquare Labs

• Pi.IO by Peter Marcu

• Any ARM specific resource requires RuntimeIdentifier in the csproj
<PropertyGroup>

<OutputType>Exe</OutputType>

<RuntimeIdentifier>linux-arm</RuntimeIdentifier>

<TargetFramework>netcoreapp2.0</TargetFramework>

</PropertyGroup>

http://github.com/dotnet/iot

Deploying the App

• Creating the publishing binaries:
dotnet publish -c Release -r linux-arm --self-contained=false

• --self-contained=true includes everything needed to run (no runtime needed)

• -p:PublishReadyToRun=true compiles into native code (ARM assembler)

• -p:PublishSingleFile=true compiles into a "fat" single file containing all

• ReadyToRun requires the same operating system (Linux)

• Can be run from WSL (Windows Subsystem for Linux) or directly on the RPi

• On the Raspberry PI set the execution attribute: chmod +x myapp

• Run it: ./myapp

Demo

Deploying a basic application

Continuous Deployment (CD)

SSHDeploy is a tool created by me (Raf)

• https://github.com/raffaeler/DeployTool

1. Write the configuration file

2. Run "dotnet-deploy interact"

3. Use the menu to run the config

The new version is currently on a different branch

https://github.com/raffaeler/DeployTool

Going deeper: step 0

Camera: H264

hardware encoder

System.IO.

Pipelines
raspivid

Going deeper: step 0

Camera: H264

hardware encoder

websockets

HTML5

pure JS player
System.IO.

Pipelines
raspivid Frame splitter

System.

Span<T>

Going deeper: step 0

Camera: H264

hardware encoder

websockets

HTML5

pure JS player

Video frames

H264

buffer

System.IO.

Pipelines
raspivid Frame splitter

System.

Span<T>

Going deeper: step 0

Camera: H264

hardware encoder

websockets

HTML5

pure JS player

Full Frame Full Frame Full Frame

H264

buffer

System.IO.

Pipelines
raspivid Frame splitter

System.

Span<T>

Going deeper: step 1

Camera

websockets
HTML5

raspivid

Frame splitter

Going deeper: step 1

Camera

websockets
HTML5

raspivid

Frame splitter

2-axis servo

PWM

PWM = Pulse Width Modulation

used to driver SG90 Servo Motors

Going deeper: step 1

Camera

websockets
HTML5

raspivid

Frame splitter

2-axis servo

PWM

I2C controlled

Microchip

gesture sensor

Going deeper: step 2

raspivid Frame splitter

Going deeper: step 2

raspivid Frame splitter

Full frames only

Going deeper: step 2

raspivid Frame splitter

Full frames only

H264 Single Frame
Decoder (FFmpeg)

Going deeper: step 2

raspivid Frame splitter

Full frames only

A.I. Facial Recognition
(OpenCV)

H264 Single Frame
Decoder (FFmpeg)

Going deeper: step 2

Single

websocket

raspivid Frame splitter

Full frames only

A.I. Facial Recognition
(OpenCV)

H264 Single Frame
Decoder (FFmpeg)

Facial coordinates

{ JS N }

0½ ¼ ⅛ ½¼⅛

Algorithm to move the servo (x axis)

Compiling OpenCV, FFmpeg, H264, Boost, …

• Raspberry PI is not powerful enough

• GCC goes out of memory

• Compile times may take days!

• Docker to the rescue ☺

• Configure a powerful Debian docker container

• Add (if required) the Raspbian repositories

• Add all the required developer tools and packages

• Compile the native library

• Copy all the files on the Raspberry

• The symbolic links must be re-created locally

• Installation

• curl –sSL https://get.docker.com | sh

• sudo usermod -aG docker pi

• VS 2019 and VS Code have the same great integration of Windows

• Of course, you can also use the CLI

• docker build –t myApp:tag –f dockerfile .

• docker run –p 5000:5000 myApp

Docker on the Raspberry PI

Takeaways

• Check out the material on GitHub

• https://github.com/raffaeler/raspberrypi

• All the docs you need to put your hands on the Raspberry PI with .NET Core

• Start using .NET Core on Linux

• Using WSL (WSL 2 is coming very soon!)

• Using Linux Docker containers

• Deploying on the RPi

• Continue the conversation later today, on Github or on Twitter @raffaeler

https://github.com/raffaeler/raspberrypi
https://twitter.com/raffaeler

Questions?

Thank you!

Questions @ booth outside this room
– Interfacing sensors

– Publishing

– Debugging and crash dump analysis

– Running the app as a service

– Interoperability with native code

– …

