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Who am I?

• Raffaele Rialdi, Senior Software Architect in Vevy Europe – Italy

• @raffaeler also known as "Raf"

• Consultant in many industries

• Manufacturing, racing, healthcare, financial, …

• Speaker and Trainer around the globe (development and security)

• Italy, Romania, Bulgaria, Russia (Moscow, St Petersburg and Novosibirsk), USA, …

• And proud member of the great Microsoft MVP family since 2003



Agenda

• IoT: computers or microcontrollers, that is the question!

• What can we do with the Raspberry PI and .NET Core

• Driving physical sensors/devices from the Raspberry PI

• The new goodies inside .NET Core 3.0 and C# 7.x (very useful on the RPi)

• Publishing the App

• Interoperability with C/C++ code

• Code, code, code!



The "Tiny85" microcontroller (Arduino)



ATMEL SAMD21: the big, "fat" microcontroller (Arduino)

• 48MHz, 256K Flash, 32K RAM

• 12 Channel DMA

• 8 hardware timers + comparators

• RTC, watchdog

• USB2.0 (8 endpoints)

• 6 serial ports (USART, SPI, I2C)

• I2S Sound port

• 10 bit DAC, comparators, 20 channel ADC

• Touch controller

• 52 I/O pins

• Still, no operating system and real-time



Microcontrollers vs Full computers

Microcontrollers

• Single-chip, no operating system

• Very cheap

• Rich of on-board peripherals

• Real-time processing

• Data acquisition on reboot is a good 

strategy to avoid bugs

• Secure protocols are hard to 

implement (low resources)

Computers / Embedded boards

• Full Operating Systems

• Popular OSes are not real-time

• Data is acquired on polling or 

hardware interrupt requests

• Rebooting is slow

• Require frequent security updates

• Secure protocol stacks are tested and 

maintained (TLS, crypto, …)



.NET Core on the Raspberry PI, on Linux (Raspbian)

• You can use all the .NET Core power, no exceptions

• Three .NET Core options

• Install the .NET Core SDK 

• Install the .NET Core Runtime

• Do not install anything and use xcopy deployment

• With .NET Core 3.0 you can start using C# 8

• You can remote debug the application or going deep with LLDB + SOS.DLL



Getting started with the Raspberry PI

• Device information: https://www.raspberrypi.org/

• Required Hardware: RPi 2 to RPi 3B+

• RPi Zero cannot run .NET Core (yet) because of the ARMv6 CPU

• NetCore for Linux-ARM

• Available as SDK and Runtime

• One repository with all the info you need:

• https://github.com/raffaeler/raspberrypi

• Tutorials, materials, resources, GPIO pin maps and more

https://www.raspberrypi.org/
https://github.com/raffaeler/raspberrypi


Useful tools

• SSH client

• You need to enable SSHD on the device via raspi-config utility

• Get a SSH client for Windows (Putty, Bitvise, …) to use the terminal

• Get an SCP client (WinSCP, Bitvise, …) to copy files from/to the device

• DeployTool by Raf (me)

• A tool to ease deployment to a Linux machine (Continuous Deployment)

• https://github.com/raffaeler/DeployTool

https://github.com/raffaeler/DeployTool


Raspberry Pi Peripherals

• ARM Cortex A53 - 4 Cores – 1.4GHz  - 1GB RAM

• GPU Broadcom VideoCore IV

• Ethernet 1GBit – Wifi 2.4/5GHz – BT4.2 / BLE

• GPIO 40 pins – I2C – 3xSPI – UART – 2 x PWM
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Introducing the new System.Device namespace

• A new Microsoft library to control physical devices

• System.Device.Gpio

• System.Device.I2c

• System.Device.Pwm

• IoT.Device.Bindings

• Published on GitHub: http://github.com/dotnet/iot (still experimental)

Controlling the peripherals

High-level device management

https://github.com/dotnet/iot/tree/master/src/devices

http://github.com/dotnet/iot
https://github.com/dotnet/iot/tree/master/src/devices


Creating a Console App

• Use the default template for a NetCore 2.1 Console app

• Three local peripherals "netstandard" libraries currently available:
• IoT library: http://github.com/dotnet/iot (currently a pre-release version)

• Unosquare.Raspberry.IO by Unosquare Labs

• Pi.IO by Peter Marcu

• Any ARM specific resource requires RuntimeIdentifier in the csproj
<PropertyGroup>

<OutputType>Exe</OutputType>

<RuntimeIdentifier>linux-arm</RuntimeIdentifier>

<TargetFramework>netcoreapp2.0</TargetFramework>

</PropertyGroup>

http://github.com/dotnet/iot


Deploying the App

• Creating the publishing binaries:
dotnet publish -c Release -r linux-arm --self-contained=false

• --self-contained=true includes everything needed to run (no runtime needed)

• -p:PublishReadyToRun=true compiles into native code (ARM assembler)

• -p:PublishSingleFile=true compiles into a "fat" single file containing all

• ReadyToRun requires the same operating system (Linux)

• Can be run from WSL (Windows Subsystem for Linux) or directly on the RPi

• On the Raspberry PI set the execution attribute:  chmod +x myapp

• Run it:  ./myapp



Demo

Deploying a basic application



Continuous Deployment (CD)

SSHDeploy is a tool created by me (Raf)

• https://github.com/raffaeler/DeployTool

1. Write the configuration file

2. Run "dotnet-deploy interact"

3. Use the menu to run the config

The new version is currently on a different branch

https://github.com/raffaeler/DeployTool


Going deeper: step 0

Camera: H264
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System.IO.

Pipelines
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Going deeper: step 0
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Going deeper: step 0

Camera: H264
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Going deeper: step 1
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Going deeper: step 1

Camera

websockets
HTML5

raspivid

Frame splitter

2-axis servo

PWM

PWM = Pulse Width Modulation

used to driver SG90 Servo Motors



Going deeper: step 1
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Going deeper: step 2

raspivid Frame splitter



Going deeper: step 2

raspivid Frame splitter

Full frames only



Going deeper: step 2
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Going deeper: step 2
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Going deeper: step 2

Single

websocket

raspivid Frame splitter

Full frames only

A.I. Facial Recognition
(OpenCV)

H264 Single Frame
Decoder (FFmpeg)

Facial coordinates
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Algorithm to move the servo (x axis)



Compiling OpenCV, FFmpeg, H264, Boost, …

• Raspberry PI is not powerful enough

• GCC goes out of memory

• Compile times may take days!

• Docker to the rescue ☺

• Configure a powerful Debian docker container

• Add (if required) the Raspbian repositories

• Add all the required developer tools and packages

• Compile the native library

• Copy all the files on the Raspberry

• The symbolic links must be re-created locally



• Installation

• curl –sSL https://get.docker.com | sh

• sudo usermod -aG docker pi

• VS 2019 and VS Code have the same great integration of Windows

• Of course, you can also use the CLI

• docker build –t myApp:tag –f dockerfile .

• docker run –p 5000:5000 myApp

Docker on the Raspberry PI



Takeaways

• Check out the material on GitHub

• https://github.com/raffaeler/raspberrypi

• All the docs you need to put your hands on the Raspberry PI with .NET Core

• Start using .NET Core on Linux

• Using WSL (WSL 2 is coming very soon!)

• Using Linux Docker containers

• Deploying on the RPi

• Continue the conversation later today, on Github or on Twitter @raffaeler

https://github.com/raffaeler/raspberrypi
https://twitter.com/raffaeler


Questions?

Thank you!

Questions @ booth outside this room
– Interfacing sensors

– Publishing

– Debugging and crash dump analysis

– Running the app as a service

– Interoperability with native code

– …


