DOTNEXT

An in-depth look at the new features in
C# 8.0 and .NET Core 3.0

Raffaele Rialdil - Senior Software Architect

@raffaeler
raffaeler@vevy.com

Professional

Who am I? Lve gt

- Raffaele Rialdi, Senior Software Architect in Vevy Europe — Italy
- @raffaeler also known as "Raf"
- Consultant in many industries
- Manufacturing, racing, healthcare, financial, ...
- Speaker and Trainer around the globe (development and security)
- ltaly, Romania, Bulgaria, Russia (Moscow, St Petersburg and Novosibirsk), USA, ...
- And proud member of the great Microsoft MVP family since 2003

Agenda

- A modern approach to application development in .NET Core

- C# 8 interesting features
- readonly members in structs
- static local functions
- default interface members

- New publishing options for .NET Core 3
- Load Contexts
- Diagnostic tools

Not covering any topic that is available in other #dotnext sessions
But we can talk about them in the discussion zone!

NET (Framework) is dead, long live .NET (Core)

- Version 4.8 closes the .NET Framework evolution

- No worries, it will be supported for a very long time
- No C# 8 or netstandard2.1 for .NET Framework

- The future is .NET 5, the next major release of .NET Core

- No more "Core" naming, migration is easier than ever

- The roadmap is predictable, one major every year

Nov '19
.NET Core
3.1

Intr|nS|CS Funchons
StreamsDeclarations

Stglnc_:[l(\.Oca\ =
OC eCKOTup &
3 “ea\b Static$ ‘“7
jé\ % I Nesm%’%bsolete
Dlspose% SCoalescing
Relaxing D

Asynchronous Stackalloc q
GeLtJt%PSRReadonly (\'a@eda
Parenthe%s\)“m Interopolated

C# 8.0 readonly members in structs

~20 nuove features

Readonly struct members

- Ability to mark a member as readonly
- The compiler will enforce immutability on its instance (not on parameters)
- Auto property getters are implicitly marked as readonly

- When should we use it?
- To express the readonly intent ... better usability and maintenance
« To help the compiler apply optimizations

- What happens if | try to modify the instance state from a readonly member?
 Error CS1604, if you try to modify any field

- Warning CS8656 (perf hit), if accessing a non-readonly explicit property getter
- Call to non-readonly member '..." from a 'readonly’ member results in an implicit copy of 'this’

Help the compiler!

public struct Vector

{
public float GetLength() => ...

public readonly float GetlLengthReadonly() => ...

public static float Bad(in Vector vector) public static float Good(in Vector vector)

{ {
return vector.GetLength(); return vector.GetLengthReadonly();

} /\ }
This will cause a local copy of vector "in" means "passed by reference,
but the reference is readonly"

IntrInSICS Funchons
StreamsDeclarations

Str:mglJ(\.Oca\ =
OC eCKOTup &
=2 58 (\Vmea\b tatic¥ ‘”7
jé\ % I I\les'te(zé(’)bsolete
Dlspose% SCoalescing
Relaxing D

Asynchronous Stackalloc q
GeLtJt%PsRReadomy (\3966?»
Parenthe5|s\3“«\ Interopolated

C# 8.0 static local functions

Static local functions

private async Task Scale(Point[] vector, int factor)
{
await Task.Delay(1);
for (int i = @; i < vector.Length; i++)
{
factor;
factor;

GetRef(vector, 1).X *
GetRef(vector, 1).Y *

}

r‘ef Point GetRef(Point[] vector, int index)

var span = vector.AsSpan();
return ref span[index];

Intr|nS|CS Funchons
StreamsDeclarations

Str:mglJ(\.Oca\ =
OC eCKOTup &
=2 58 (‘\Vme&\b Static® ‘”7
jé\ % I Nesm%’%bsolete
Dlspose% SCoalescing
Relaxing D

Asynchronous Stackalloc q
Ge%%PSRReadonly (\39662?1
Parenthe5|s\3“«\ Interopolated

C# 8.0 default interface members

Default interface members

- Interfaces can now contain:
- Bodies on any interface declaration members
- Static members (including constructors and nested types)
- Visibility and 'partial' modifiers

- Can not contain
- Instance constructors, fields or auto-properties (must stay stateless)

- Derived types cannot call base member bodies
- Proposed syntax for C# 9: base(InterfaceType).Method()

Default interface members: why?

1. Versioning
how difficult can be adding an interface member?

2. Interoperability with other languages supporting it

Swift and Java

3. Traits-based programming
Composing behavior of an object reusing units of code
Very popular in C++, used also by Java and Swift

Versioning

ASSEMDBIY 1, VEISION 1 ..oy ASSEMDBIY I, VEISION 2 ..o
Einterface I1 interface I2 : Il E Einterface I1 interface I2 : Il
{ { i {
: int M1() => 1; P int M1() => 1; int I1.M1() => 2;
} } ;i) }
e ASSEMBY 2, version 1 (NOT recompiled) ...
: class X : I2 void Print(I2 i2)
{ {
/] ... WriteLine(i2.M1());
} } _
At runtime ... At runtime ...
var x = new X(); var x = new X();
Print(x); Print(x);

1 2

Interface reabstraction

- Reabstraction is allowed

{
}

public abstr'actY : Il

public abstract void M1();

public interface I1

{
}

protected void M1() { ...

public interface 12 : I1
{

}

abstract void I1.M1();

public class X : I2

{
void I1.M1() { }

}

Introducing 'Traits Composition’

- The "Language Transliteration" case
- Plugging in new language transliterations, version after version
- Defining an interface with all the possible permutations is not realistic

- Using static helper classes?
- Difficult to take decisions at runtime based on their availability

- Defining many separate interfaces?
- Not easy to predict the members shape

* Traits to the rescue!
- Reusable, stateless computational units, made of a set of methods and/or properties
- Each C# 8 interface may define a scope and a set of members
- Members can be overriden (re-defined) by another interface or class

NET Core 3 Publishing

New publishing options

- Framework Dependent Deployment is the new default
- The executable host is now created by default

- Self-contained deployment (SCD) is optional

- option --self-contained = true

Single File Publishing: «PublishSingleFile»

- Compact the entire application in a single file
- Everything but static web files and configurations files

- By default triggers "self-contained" but it can be turned off

dotnet publish -r win-x64 -o folder -p:PublishSingleFile=true
--self-contained=false

- Can be (optionally) specified in the csproj

<PublishSingleFile>true</PublishSingleFile>
<RuntimeIdentifier>win-x64</RuntimeIdentifier>

App type (Release) Simple compile Self contained=false Self contained=true

Console 166Kb 166K 67Mb

MVC Web App 314Kb 4Mb 88MB

IL Trimming: «PublishTrimmed»

- Feature inherited from the Mono Project linker

- Goal: removing all the unused IL code
- Requires --self-contained = true

- Nasty reflection code requires instructing the linker
- TrimmerRootAssembly to include the specified assembly (or type)
- TrimmerRootDescription to use an xml hint file

App type: Release and self-contained m

Console 67Mb 26Mb
MVC Web App 38MB 48MB

AOT Compilation: «PublishReadyToRun»

- Ahead Of Time compilation generates native CPU assembly code
- Similar to NGen, but it is done at compile time, on your (dev) machine

- Some assemblies can be excluded to reduce the deploy size <publishReadyToRunExclude
Include="asm.dll">

- Advantages

- Reduces to almost-zero the bootstrap JIT compilation time
- Extremely useful for Azure Functions, AWS Lambdas and loT devices

 Problem:
- AOT compilation is not able to optimize for a specific CPU

- Produces less efficient code compared to the JIT/NGen
 cross-module dependencies cannot be inlined
* ngen generate absolute addresses that are fragile while AOT computes them

Repeating the JIT compilation: «TieredCompilation»

- When TieredCompilation is off (default is on)
- The JIT Compiles high quality code, but it takes some time
- This is also the behaviour of previous versions of the runtime

A\
-

Slower JIT
high quality
\.
i Dev
<> machine{

<:> steady state

Runtime <

<:> app boot

Repeating the JIT compilation: «TieredCompilation»

- TieredCompilation enables a "Tier 1" compilation level

- In Tier 1, compilation quality and performance are the same we already know

A

<:> steady state

Runtime

<:> app boot

i Dev
<> machine

<

{

Slower JIT

high quality

} Tier 1

> Tier0

Repeating the JIT compilation: «TieredCompilation»

- AOT cannot compile everything (JIT is still needed)

- All the "hot" paths are recompiled to high-quality code

- Only the AOT generated code is a candidate to be recompiled

A

<:> steady state

Runtime

<:> app boot

i Dev
<> machine

<

{

Slower JIT

high quality

HQ
JIT
HQ
JIT

ReadyToRun
AOT *

* AOT is an opt-in feature, disabled by default

} Tier 1

\

> Tier0

Repeating the JIT compilation: «TieredCompilation»

- TieredCompilationQuicklit improves the startup time

- All the "hot" paths are recompiled to high-quality code

A

<:> steady state

Runtime

<:> app boot

i Dev
<> machine

<

{

Slower JIT
high quality

HQ Slower JIT
JIT high quality
HQ Quick JIT

JIT low quality

ReadyToRun
AOT *

* AOT is an opt-in feature, disabled by default

} Tier 1

\

> Tier0

Repeating the JIT compilation: «TieredCompilation»

- Non AOT code will be JITted initially with the Quick JIT
- All the "hot" paths are recompiled to high-quality code

HQ Slower JIT HQ e
JIT high quality JIT

A

<:> steady state

Runtime

<:> app boot

i Dev
<> machine

<

{

Slower JIT

high quality

\
HQ Quick JIT Quick
JIT low quality JIT

> Tier 0

ReadyToRun
AOT *

* AOT is an opt-in feature, disabled by default

ReadyToRun
AOT *
J

Tiered compilation notes

- The compilation is repeated only if the path is 'hot'
- A call is hot when its counter reaches 30 times after the initial app boot
- Re-compilation is queued on a background thread

« AOT: how can | know which code will need the jitter?
- Perfview
- R2ZRDump to analyze the precompiled executable

*In the future it may leverage PGO
- Profile-Guided Optimization

Load Contexts

System.Runtime.Loader.AssemblyLoadContext

- With .NET Core, there is only a single AppDomain
In .NET Core 3, Contexts were introduced to replace AppDomains

- They are not a security boundary
- Load contexts are named, there is no "Current" as it was for AppDomains
- Almost zero-cost in accessing code in a different context

- Main use cases:
- Ability to unload addons/plugins from the AppDomain
- Controlling the resolution (probing) of addons assemblies and native dlls

- Isolating and using different versions of the same addons

Unloading contexts

* Basic usage @

var newContext = new AssemblylLoadContext(name: "MyContext", isCollectible: true);
newContext.LoadFromAssemblyPath(FullAddonFilename);

// ... doing something with the assembly

newContext.Unload();

- Typical usage
- Derive from AssemblyLoadContext

« Use AssemblyDependencyResolver to resolve the paths
1. uses the .deps.json file of the main addon, if available

2. probes subfolders normally used for localization purposes

- Override Load method to return the assembly or null to skip it

Going deeper on contexts

- The main reflection behavior has not changed

- These calls always creates a separate load context:
- Assembly.Load(byte[]), Assembly.LoadFrom(filename)

- Unloading from the AppDomain (from memory) is not deterministic

- The GC can be forced to accelerate unloading, but there is no event advising

« Example: the TypeDescriptor private cache prevents contexts using it to be unloaded
* Newtonsoft.Jsoft is one of the libraries using TypeDescriptor and demonstrating the problem

- The Unloading event fires on Unload request, not when memory is freed

- There is no "current context” concept
- AssemblyLoadContext.GetContext(Assembly) is a good alternative

Making existing code use the desired context

- Code using reflection APIs can be diverted to load the

assemblies into the c
- Assembly.Load(assem

esired LoadContext
olyName), Assembly.LoadWithPartialName(...)

- Createlnstance(assem

olyName, ...)

- Type.GetType and Assembly.GetType using assembly qualified names

using (addonContext.EnterContextualReflection())

{

addonAssembly = Assembly.lLoad(addonAssemblyName);

¥

Managing dependencies and binding isolation

- Contexts isolate the assemblies
- Load the Common assemblies (IAddon type) only in the default context

- Dependencies can be loaded where you want:

Json dependency Json dependency Each context
loaded in the addon context loaded in the default context uses its own version
SN SN
Axe) e LJD 'AW D
/-

M QM N
o m@ o /) s T:aer MNexT,

____———'/ \;

Diagnostic tools:
finding the leaking reference

Diagnosing an unloadable AssemblylLoadContext

- The question is: Who is taking a reference to LoaderAllocator?

- Walk the stack until you get the first instance that lives in the outside
the addon Context.

-dumpheap -type LoaderAllocator
- gcroot -all (hex address of LoaderAllocator)

- Address hold in a register?

* Registers typically hold local variables in the current method
- Pinned handle?

- Static fields are hold by a pinned handle of an object array

rectangles indicate the objects that should have gone away with the context

> gcroot -all 0025822f41b20
Thread 2deS8:
00CF94B7E260 00007FFF920067FC System.ConsolePal.ReadKey(Boolean)
[/_/src/System.Console/src/System/ConsolePal.windows.cs @ 338]
rbx: (interior)
-> 0000025832F31038 System.Object[] » array holding static elements

00CF94B7E380 O0O007FFEFEA41004 NetCore3.Program.Main(System.Stripg[]) [...\NetCorqB\Program.cs @ 57]
rbp+30: 000000cf94b7e3b0 > rbp is the stack Base Pointer
-> 0000025822F3BAD0 NetCore3.DemoAddonsBuggy

I
Vv
o
(@)
(@)
o
o
N
(@]
[o'e}
N
N
T
N
(Ua]
(@)
T
oo
>
o
o
(@)
-
=
—
O
=
oY)
=

<
T
—
—
[0))
5
ks
(@)
<
—
o
()
=

00CF94B7E380 00007FFEFEA41004 NetCore3.Program.Main(System.String[]) [...\NetCore3\Program.cs @ 57]
rbp+48: 000000cf94b7e3c8 » rbp is the stack Base Pointer
-> 0000025822F3BAD0 NetCore3.DemoAddonsBuggy

HandleTable:
00000258212A15F8 (pinned handle)
-> 0000025832F31038 system.Object[] — array holding static elements

Found 4 roots.

Fields investigation

> dumpobj 0000025822F3BADO

Name: NetCore3.DemoAddonsBuggy
MethodTable: 00007ffefeb0lef0 */gumpn?t (adddrgss)
EEClass: 00007 ffefeafd480 «——— dUMPCIASS (a ress)
Size: 24(0x18) bytes
File: H:\...\NetCore3\bin\Debug\netcoreapp3.0\NetCore3.dl1
Fields: property names
MT Field offset Type VT Attr vValue Name
07ffefeb52880 400000e 8 Ccommon.IAddon O instance 0000025822f456f8 <Addon>k__BackingField
07ffefeb52178 400000d 10 NetCore3.AddonInfo 0 static 0000025822f40868 _addonInfo
07ffefeb52880 400000f 18 common.IAddon 0O static 0000025822f456f8 <Addon2>k__BackingField

The nasty case of TypeConverter used by Json.NET

> gcroot -all 0la5a0edeb98
HandleTable:
000001A59F4715D0 (pinned handle)

->
->
->
->
->

Found 1 roots.

000001A5BOED5CD8
000001A5A0EE91DO
000001A5A0EE9730
000001A5A0EDFA68
000001A5A0EDEB98

System

System

.Object[]
System.
System.
System.
.Reflection.LoaderAllocator

The problem is a static reference to an Hashtable
Collections.Hashtable
Collections.Hashtable+bucket[]

RuntimeType dumpobj=>» AddonlLibrary.FileProvider

??? = manual search!

> dumpobj 000001a5a0ee8828

Name:

MT
7ffefd30a010
000000000000
7ffefd30b998
7ffefd0dc620
7ffefd30b998
7ffefd30b998

Field
40000d0
40000d1
400008d
400008e
400008f
4000090

Offset

8 ..
10 ..
18 ..

cO

c8 ..
do ..

System.Typel[]
.ections.Hashtable
.ections.Hashtable

System.ComponentModel.ReflectTypeDescriptionProvider

Type VT Attr value Name
.scriptionProvider instance 0000000000000000 _parent
.tomTypeDescriptor instance 0000000000000000 _emptyDescriptor
.ections.Hashtable instance 000001a5a0ee89f8 _typeData

static 000001a5a0ee8908 s_typeConstructor
static. 0000000000000000 s_editorTables

0
0
0
0
0
0 static 000001a5a0ee91d0 s_intrinsicTypeConverters

dotnet-dump = SOS made easy

- Install dotnet-dump, dump the process and analyze it:
- dotnet tool install -g dotnet-dump
- dotnet-dump collect -p <pid>
- dotnet-dump analyze filename.dmp
- List MT/metadata types for live objects dumpheap -stat
- Search by partial type name dumpheap -type Assem

- Getting more details
- List all the objects of a given MT dumpheap -mt <hex returned from dumpheap -stat>
- Details about the given instance dumpobj <address>
- Details about the given EEClass dumpclass <eeclass>
- Details about the given MT dumpmt <metadata table>

- Assemblies
- List all the assemblies in memory: dumpdomain
- Details about the given assembly dumpassembly <address>

Questions @ booth 1

Thank you!

@raffaeler

raffaeler@vevy.com

mailto:raffaeler@vevy.com

