
An in-depth look at the new features in
C# 8.0 and .NET Core 3.0

Raffaele Rialdi - Senior Software Architect

@raffaeler

raffaeler@vevy.com

Who am I?

• Raffaele Rialdi, Senior Software Architect in Vevy Europe – Italy
• @raffaeler also known as "Raf"

• Consultant in many industries
• Manufacturing, racing, healthcare, financial, …

• Speaker and Trainer around the globe (development and security)
• Italy, Romania, Bulgaria, Russia (Moscow, St Petersburg and Novosibirsk), USA, …

• And proud member of the great Microsoft MVP family since 2003

Agenda

• A modern approach to application development in .NET Core

• C# 8 interesting features
• readonly members in structs

• static local functions

• default interface members

• New publishing options for .NET Core 3

• Load Contexts

• Diagnostic tools

Not covering any topic that is available in other #dotnext sessions

But we can talk about them in the discussion zone!

.NET (Framework) is dead, long live .NET (Core)

•Version 4.8 closes the .NET Framework evolution

• No worries, it will be supported for a very long time

• No C# 8 or netstandard2.1 for .NET Framework

• The future is .NET 5, the next major release of .NET Core

• No more "Core" naming, migration is easier than ever

• The roadmap is predictable, one major every year

Sept '19
.NET Core

3.0

Nov '19
.NET Core

3.1

Nov '20
.NET 5

Nov '21
.NET 6

Nov '22
.NET 7

Nov '23
.NET 8

C# 8.0 readonly members in structs

~20 nuove features

Readonly struct members

• Ability to mark a member as readonly
• The compiler will enforce immutability on its instance (not on parameters)

• Auto property getters are implicitly marked as readonly

• When should we use it?
• To express the readonly intent … better usability and maintenance

• To help the compiler apply optimizations

• What happens if I try to modify the instance state from a readonly member?
• Error CS1604, if you try to modify any field

• Warning CS8656 (perf hit), if accessing a non-readonly explicit property getter
• Call to non-readonly member '…' from a 'readonly' member results in an implicit copy of 'this'

Help the compiler!

public struct Vector
{

public float GetLength() => ...
public readonly float GetLengthReadonly() => ...

}

public static float Bad(in Vector vector)
{

return vector.GetLength();
}

public static float Good(in Vector vector)
{

return vector.GetLengthReadonly();
}

This will cause a local copy of vector "in" means "passed by reference,
but the reference is readonly"

C# 8.0 static local functions

Static local functions

private async Task Scale(Point[] vector, int factor)
{

await Task.Delay(1);
for (int i = 0; i < vector.Length; i++)
{

GetRef(vector, i).X *= factor;
GetRef(vector, i).Y *= factor;

}

static ref Point GetRef(Point[] vector, int index)
{

var span = vector.AsSpan();
return ref span[index];

}
}

C# 8.0 default interface members

Default interface members

• Interfaces can now contain:
• Bodies on any interface declaration members

• Static members (including constructors and nested types)

• Visibility and 'partial' modifiers

•Can not contain
• Instance constructors, fields or auto-properties (must stay stateless)

•Derived types cannot call base member bodies
• Proposed syntax for C# 9: base(InterfaceType).Method()

Default interface members: why?

1. Versioning
how difficult can be adding an interface member?

2. Interoperability with other languages supporting it
Swift and Java

3. Traits-based programming
Composing behavior of an object reusing units of code

Very popular in C++, used also by Java and Swift

Versioning

interface I1
{

int M1() => 1;
}

interface I2 : I1
{

}

class X : I2
{
// ...

}

Assembly 1, version 1

Assembly 2, version 1 (NOT recompiled)

interface I1
{

int M1() => 1;
}

interface I2 : I1
{

int I1.M1() => 2;
}

Assembly 1, version 2

var x = new X();
Print(x);

1

At runtime …
var x = new X();
Print(x);

2

At runtime …

void Print(I2 i2)
{
WriteLine(i2.M1());

}

Interface reabstraction

•Reabstraction is allowed
public interface I1
{

protected void M1() { ... }
}

public interface I2 : I1
{

abstract void I1.M1();
}

public class X : I2
{

void I1.M1() { }
}

public abstract class Y : I1
{

public abstract void M1();
}

Introducing 'Traits Composition'

• The "Language Transliteration" case
• Plugging in new language transliterations, version after version
• Defining an interface with all the possible permutations is not realistic

• Using static helper classes?
• Difficult to take decisions at runtime based on their availability

• Defining many separate interfaces?
• Not easy to predict the members shape

• Traits to the rescue!
• Reusable, stateless computational units, made of a set of methods and/or properties
• Each C# 8 interface may define a scope and a set of members
• Members can be overriden (re-defined) by another interface or class

.NET Core 3 Publishing

New publishing options

• Framework Dependent Deployment is the new default

• The executable host is now created by default

• Self-contained deployment (SCD) is optional

• option --self-contained = true

Single File Publishing: «PublishSingleFile»

•Compact the entire application in a single file

• Everything but static web files and configurations files

•By default triggers "self-contained" but it can be turned off

•Can be (optionally) specified in the csproj

dotnet publish -r win-x64 -o folder -p:PublishSingleFile=true
--self-contained=false

<PublishSingleFile>true</PublishSingleFile>
<RuntimeIdentifier>win-x64</RuntimeIdentifier>

App type (Release) Simple compile Self contained=false Self contained=true

Console 166Kb 166K 67Mb

MVC Web App 314Kb 4Mb 88MB

IL Trimming: «PublishTrimmed»

• Feature inherited from the Mono Project linker

•Goal: removing all the unused IL code

• Requires --self-contained = true

•Nasty reflection code requires instructing the linker

• TrimmerRootAssembly to include the specified assembly (or type)

• TrimmerRootDescription to use an xml hint file

App type: Release and self-contained Not trimmed Trimmed

Console 67Mb 26Mb

MVC Web App 88MB 48MB

AOT Compilation: «PublishReadyToRun»

• Ahead Of Time compilation generates native CPU assembly code
• Similar to NGen, but it is done at compile time, on your (dev) machine
• Some assemblies can be excluded to reduce the deploy size

• Advantages
• Reduces to almost-zero the bootstrap JIT compilation time
• Extremely useful for Azure Functions, AWS Lambdas and IoT devices

• Problem:
• AOT compilation is not able to optimize for a specific CPU
• Produces less efficient code compared to the JIT/NGen

• cross-module dependencies cannot be inlined
• ngen generate absolute addresses that are fragile while AOT computes them

<PublishReadyToRunExclude
Include="asm.dll">

Repeating the JIT compilation: «TieredCompilation»

• When TieredCompilation is off (default is on)

• The JIT Compiles high quality code, but it takes some time

• This is also the behaviour of previous versions of the runtime

Dev
machine

Runtime

app boot

steady state

Repeating the JIT compilation: «TieredCompilation»

• TieredCompilation enables a "Tier 1" compilation level

• In Tier 1, compilation quality and performance are the same we already know

Dev
machine

Runtime

app boot

steady state

Tier 0

Tier 1

Repeating the JIT compilation: «TieredCompilation»

• AOT cannot compile everything (JIT is still needed)

• All the "hot" paths are recompiled to high-quality code

• Only the AOT generated code is a candidate to be recompiled

Tier 0

Dev
machine

Runtime

Tier 1

app boot

steady state

* AOT is an opt-in feature, disabled by default

Repeating the JIT compilation: «TieredCompilation»

• TieredCompilationQuickJit improves the startup time

• All the "hot" paths are recompiled to high-quality code

Tier 0

Dev
machine

Runtime

Tier 1

app boot

steady state

* AOT is an opt-in feature, disabled by default

Repeating the JIT compilation: «TieredCompilation»

• Non AOT code will be JITted initially with the Quick JIT

• All the "hot" paths are recompiled to high-quality code

Tier 0

Dev
machine

Runtime

Tier 1

app boot

steady state

* AOT is an opt-in feature, disabled by default

Tiered compilation notes

• The compilation is repeated only if the path is 'hot'
• A call is hot when its counter reaches 30 times after the initial app boot

• Re-compilation is queued on a background thread

•AOT: how can I know which code will need the jitter?
• Perfview

• R2RDump to analyze the precompiled executable

• In the future it may leverage PGO
• Profile-Guided Optimization

Load Contexts

System.Runtime.Loader.AssemblyLoadContext

• With .NET Core, there is only a single AppDomain

• In .NET Core 3, Contexts were introduced to replace AppDomains

• They are not a security boundary

• Load contexts are named, there is no "Current" as it was for AppDomains

• Almost zero-cost in accessing code in a different context

• Main use cases:

• Ability to unload addons/plugins from the AppDomain

• Controlling the resolution (probing) of addons assemblies and native dlls

• Isolating and using different versions of the same addons

Unloading contexts

•Basic usage

• Typical usage

• Derive from AssemblyLoadContext

• Use AssemblyDependencyResolver to resolve the paths

1. uses the .deps.json file of the main addon, if available

2. probes subfolders normally used for localization purposes

• Override Load method to return the assembly or null to skip it

var newContext = new AssemblyLoadContext(name: "MyContext", isCollectible: true);
newContext.LoadFromAssemblyPath(FullAddonFilename);
// ... doing something with the assembly
newContext.Unload();

Going deeper on contexts

• The main reflection behavior has not changed
• These calls always creates a separate load context:
• Assembly.Load(byte[]), Assembly.LoadFrom(filename)

• Unloading from the AppDomain (from memory) is not deterministic
• The GC can be forced to accelerate unloading, but there is no event advising

• Example: the TypeDescriptor private cache prevents contexts using it to be unloaded
• Newtonsoft.Jsoft is one of the libraries using TypeDescriptor and demonstrating the problem

• The Unloading event fires on Unload request, not when memory is freed

• There is no "current context" concept
• AssemblyLoadContext.GetContext(Assembly) is a good alternative

Making existing code use the desired context

•Code using reflection APIs can be diverted to load the
assemblies into the desired LoadContext

• Assembly.Load(assemblyName), Assembly.LoadWithPartialName(…)

• CreateInstance(assemblyName, …)

• Type.GetType and Assembly.GetType using assembly qualified names

using (addonContext.EnterContextualReflection())
{

addonAssembly = Assembly.Load(addonAssemblyName);
}

Managing dependencies and binding isolation

•Contexts isolate the assemblies

• Load the Common assemblies (IAddon type) only in the default context

•Dependencies can be loaded where you want:

Json dependency
loaded in the addon context

Json dependency
loaded in the default context

Each context
uses its own version

Diagnostic tools:
finding the leaking reference

Diagnosing an unloadable AssemblyLoadContext

• The question is: Who is taking a reference to LoaderAllocator?

• Walk the stack until you get the first instance that lives in the outside
the addon Context.

•dumpheap -type LoaderAllocator

• gcroot -all (hex address of LoaderAllocator)

• Address hold in a register?

• Registers typically hold local variables in the current method

• Pinned handle?

• Static fields are hold by a pinned handle of an object array

> gcroot -all 0025822f41b20
Thread 2de8:

00CF94B7E260 00007FFF920067FC System.ConsolePal.ReadKey(Boolean)
[/_/src/System.Console/src/System/ConsolePal.Windows.cs @ 338]

rbx: (interior)
-> 0000025832F31038 System.Object[]
-> 0000025822F456F8 AddonLibrary.FileProvider
-> 0000025822F41B20 System.Reflection.LoaderAllocator

00CF94B7E380 00007FFEFEA41004 NetCore3.Program.Main(System.String[]) [...\NetCore3\Program.cs @ 57]
rbp+30: 000000cf94b7e3b0

-> 0000025822F3BAD0 NetCore3.DemoAddonsBuggy
-> 0000025822F456F8 AddonLibrary.FileProvider
-> 0000025822F41B20 System.Reflection.LoaderAllocator

00CF94B7E380 00007FFEFEA41004 NetCore3.Program.Main(System.String[]) [...\NetCore3\Program.cs @ 57]
rbp+48: 000000cf94b7e3c8

-> 0000025822F3BAD0 NetCore3.DemoAddonsBuggy
-> 0000025822F456F8 AddonLibrary.FileProvider
-> 0000025822F41B20 System.Reflection.LoaderAllocator

HandleTable:
00000258212A15F8 (pinned handle)
-> 0000025832F31038 System.Object[]
-> 0000025822F456F8 AddonLibrary.FileProvider
-> 0000025822F41B20 System.Reflection.LoaderAllocator

Found 4 roots.

array holding static elements

array holding static elements

rbp is the stack Base Pointer

rbp is the stack Base Pointer

rectangles indicate the objects that should have gone away with the context

Fields investigation

> dumpobj 0000025822F3BAD0
Name: NetCore3.DemoAddonsBuggy
MethodTable: 00007ffefeb01ef0
EEClass: 00007ffefeafd480
Size: 24(0x18) bytes
File: H:\...\NetCore3\bin\Debug\netcoreapp3.0\NetCore3.dll
Fields:

MT Field Offset Type VT Attr Value Name
07ffefeb52880 400000e 8 Common.IAddon 0 instance 0000025822f456f8 <Addon>k__BackingField
07ffefeb52178 400000d 10 NetCore3.AddonInfo 0 static 0000025822f40868 _addonInfo
07ffefeb52880 400000f 18 Common.IAddon 0 static 0000025822f456f8 <Addon2>k__BackingField

dumpmt (address)
dumpclass (address)

property names

The nasty case of TypeConverter used by Json.NET

> gcroot -all 01a5a0edeb98
HandleTable:

000001A59F4715D0 (pinned handle)
-> 000001A5B0ED5CD8 System.Object[]
-> 000001A5A0EE91D0 System.Collections.Hashtable
-> 000001A5A0EE9730 System.Collections.Hashtable+bucket[]
-> 000001A5A0EDFA68 System.RuntimeType
-> 000001A5A0EDEB98 System.Reflection.LoaderAllocator

Found 1 roots.

dumpobj➔ AddonLibrary.FileProvider

> dumpobj 000001a5a0ee8828
Name: System.ComponentModel.ReflectTypeDescriptionProvider
MT Field Offset Type VT Attr Value Name
7ffefd30a010 40000d0 8 ...scriptionProvider 0 instance 0000000000000000 _parent
000000000000 40000d1 10 ...tomTypeDescriptor 0 instance 0000000000000000 _emptyDescriptor
7ffefd30b998 400008d 18 ...ections.Hashtable 0 instance 000001a5a0ee89f8 _typeData
7ffefd0dc620 400008e c0 System.Type[] 0 static 000001a5a0ee8908 s_typeConstructor
7ffefd30b998 400008f c8 ...ections.Hashtable 0 static 0000000000000000 s_editorTables
7ffefd30b998 4000090 d0 ...ections.Hashtable 0 static 000001a5a0ee91d0 s_intrinsicTypeConverters

??? ➔manual search!

The problem is a static reference to an Hashtable

dotnet-dump = SOS made easy

• Install dotnet-dump, dump the process and analyze it:
• dotnet tool install -g dotnet-dump
• dotnet-dump collect -p <pid>
• dotnet-dump analyze filename.dmp

• List MT/metadata types for live objects dumpheap -stat
• Search by partial type name dumpheap -type Assem
• Getting more details

• List all the objects of a given MT dumpheap -mt <hex returned from dumpheap -stat>
• Details about the given instance dumpobj <address>
• Details about the given EEClass dumpclass <eeclass>
• Details about the given MT dumpmt <metadata table>

• Assemblies
• List all the assemblies in memory: dumpdomain
• Details about the given assembly dumpassembly <address>

Questions @ booth 1

Thank you!
@raffaeler

raffaeler@vevy.com

mailto:raffaeler@vevy.com

