
High Optionality Programming 
Software Architectures that Reduce Technical Debt

Aaron Stannard, Founder of 
Akka.NET and Petabridge



Source: https://vincentdnl.com/drawings/



In order to change 
this….

You have to account 
for all of this.



Technical Debt

• Initial technical debt == cost incurred from previous software 
design and implementation choices;

• Interest compounds in the form of layering;
• Full cost of technical debt is not known until a future need to 

modify the system arrives; and
• Cost to make that modification == actual technical debt.



OPTIONALITY
“To have options.”



Options in Technology

Feasible options

Pay a premium here,
when options are abundant…

To avoid having to 
pay a very high cost 
to expand options 
here later.



Technical Debt == Destruction of Options

• Technical debt occurs when you fail to anticipate the evolution 
of software

• i.e. Database-Driven Development
– “Who ever needs to switch databases?”
– “Repositories are unnecessary abstractions”
– “Why bother with an OR/M layer? Just use stored procedures”

• Future technical debt can be reduced by planning for possible 
future changes today



Case Study: MarkedUp (2012)
Low Optionality

• Real-time analytics 
startup

• Used RavenDb + 
MapReduce indices

• Went from 10,000 
events per day to 5-8m 
per day in ~3 days

• RavenDb couldn’t keep 
up and went stale

• Decided not to use 
repositories – Db logic 
was spread out 
everywhere

• Thus: had to change 
everything all at once 
(high risk)

• Highly dependent on 
Db-specific constructs



Case Study: MarkedUp (2013-14)
High Optionality

• Created event-driven 
processing model

• Created middleware 
that could translate 
events into analytic 
deltas

• Separated read & write 
models into discrete 
services

• Added unit tests back to 
suite (had to be 100% 
integration tests before)

• Created DSL that 
allowed dynamic per-
user filtering of events

• Greatly improved 
developer throughput



HIGH OPTIONALITY PROGRAMMING
Architecture models that preserve future choices.



The Shortlist

• Event-Driven Programming
• Event-Sourcing
• Command + Query Responsibility Segregation
• Actors
• Extend-Only Design



Event-Driven Programming



Events: More Options



Events: More Interaction Patterns



Event Sourcing w/ Akka.Persistence

DIAGRAMS







Event Sourcing & Optionality

• Current state is the sum of past events.
• Option: state can always be rebuilt by replaying previous events.
• Option: the way state is built can be changed without changing events themselves.
• Option: events can be replayed for simulations, predictions, and regression tests.
• Option: new event types can be safely introduced without modifying prior types.
• Doesn’t rely on DB-specific features. Can be meaningfully abstracted.



Command and Query Responsibility 
Segregation

Before After

Source: https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs


CQRS

• Separate models for reads and writes
• Often used with Event Sourcing
• Option: read models can be updated independently from each 

other and write models
• Option: performance characteristics for read / write models 

can be managed separately
• Option: read / write models can use totally different DB 

instances or technology



Actors

• Dynamic, partitioned, concurrent 
event processors

• Provides a thread-safe unit-of-
work to process events in real-
time

• Can be distributed over a 
network or run in a single 
process



Basic Akka.NET Actor



Creating Actors



Actors & Optionality

• Actors are a common way to implement 
event-driven programming.

• Option: makes live application state query-
able at run-time.

• Option: makes stateful server-side 
applications viable.

• Option: can make event processing dynamic.
• Option: can be partitioned, parallelized, and 

distributed dynamically with no code changes.



Extend-Only Design

• Schema, wire formats, and APIs are frozen for updates or 
deletes.

• New properties, event types, or schema can always be added, 
but old properties can never be removed or changed.

• Old schema is gradually made obsolete and goes unused.



Example: Protobuf Messages



Extending Protobuf Messages…

New field



Doesn’t Break Wire Compatibility



In Either Direction



Extend-Only Design & Optionality

• Preserves old schema, but allows new modifications to be 
introduced

• Option: no more schema migrations; schema changes can be 
introduced well-ahead of the code that uses it.

• Option: no schema rollbacks. Old schema is still viable.
• Option: zero-downtime deployments. Both versions of schema 

still supported.



High Optionality Programming

• What do these patterns have in common?
– Immutability: don’t destroy or change the meaning of data
– Conservation: errs on the side of preserving the past in perpetuity for 

future reuse
– Dynamism: can dynamically route, process, react, or update state 

with ease
– Separated Concerns: each pattern addresses different facets of 

modern software



Recap

• Technical debt is caused by the destruction of future, viable 
options

• High optionality architectures cost more to develop upfront, 
but pay for themselves quickly when software systems evolve

• High optionality is something you should protect unless you’re 
absolutely certain your requirements won’t change



Thank you!

https://petabridge.com/
@Aaronontheweb 

https://petabridge.com/

