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Technical Debt

* |nitial technical debt == cost incurred from previous software
design and implementation choices;

* |Interest compounds in the form of layering;

e Full cost of technical debt is not known until a future need to
modify the system arrives; and

 Cost to make that modification == actual technical debt.
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“To have options.”

OPTIONALITY
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Options in Technology

Pay a premium here,
when options are abundant...

Greenfield Project

Feasible

Critical Product

To avoid having to
pay a very high cost
to expand options
here later.
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Technical Debt == Destruction of Options

* Technical debt occurs when you fail to anticipate the evolution
of software

* i.e. Database-Driven Development
— “Who ever needs to switch databases?”
— “Repositories are unnecessary abstractions”
— “Why bother with an OR/M layer? Just use stored procedures”

* Future technical debt can be reduced by planning for possible
future changes today
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qc,
N7 Case Study: MarkedUp (2012)
Low Optionality

MARKED [

e Real-time analytics * Decided not to use
startup repositories — Db logic

 Used RavenDb + was spread out
MapReduce indices everywhere

e Went from 10,000 * Thus: had to change
events per day to 5-8m everything all at once
per day in ~3 days (high risk)

* RavenDb couldn’t keep  * Highly dependent on
up and went stale Db-specific constructs
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qc,
@ Case Study: MarkedUp (2013-14)
High Optionality

MARKED [

* Created event-driven e Added unit tests back to
processing model suite (had to be 100%

e Created middleware integration tests before)
that could translate * Created DSL that
events into analytic allowed dynamic per-
deltas user filtering of events

 Separated read & write ¢ Greatly improved
models into discrete developer throughput
services
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Architecture models that preserve future choices.

HIGH OPTIONALITY PROGRAMMING
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The Shortlist

* Event-Driven Programming

* Event-Sourcing

e Command + Query Responsibility Segregation
* Actors

* Extend-Only Design
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RPC / Web HTTP POST ....
Service Call HTTP 201 ....
Front End Application Server
Serialized Message
(=—
Message Passing
—

Front End Application Server
0-N Response Messages
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Events: More Options

Always comprised of] [ Payload (data)
two parts

Reply-to address

Always
asynchronous

Can be serialized and
stored

Properties
of Message

Can be ordered and
re-ordered

Deferrals

Can be forwarded
and delegated

Can be received by
multiple parties
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Events: More Interaction Patterns
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Event Sourcing w/ Akka.Persistence

DIAGRAMS
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Event Sourcing & Optionality

* Current state is the sum of past events.
* Option: state can always be rebuilt by replaying previous events.
* Option: the way state is built can be changed without changing events themselves.

* Option: events can be replayed for simulations, predictions, and regression tests.
* Option: new event types can be safely introduced without modifying prior types.
* Doesn’t rely on DB-specific features. Can be meaningfully abstracted.
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¥ Command and Query Responsibility

Segregation

Before After

Presentation
Validation
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Source: https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
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https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

CQRS

* Separate models for reads and writes
e Often used with Event Sourcing

* Option: read models can be updated independently from each
other and write models

* Option: performance characteristics for read / write models
can be managed separately

* Option: read / write models can use totally different DB
instances or technology
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Actors

* Dynamic, partitioned, concurrent
event processors

* Provides a thread-safe unit-of-
work to process events in real-

time
A e Can be distributed over a

network or run in a single

akka.net
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Basic Akka.NET Actor

public class PingActor : Akka.Actor.ReceiveActor < Actor base type

{
private readonly IlLoggingAdapter _log = Context.GetLogger();

public PingActor() \ Handle to built-in logging system

{

Receive<Ping>(handler:p => (automatically thread-safe)
{
_log.Info(format: "Received {0}", p);
Message handler for messages
// reply back at a random, short interval of type Ping.
var replyTime = TimeSpan.FromSeconds(
ThreadLocalRandom.Current.Next(1, 5));
Context.System.Scheduler.ScheduleTellOnce( Sender = reference to actor who
"eplyTiW sent us the Ping message.
Sender, rget
message: p.Next(), // message
Self); // sender (optional)
1
}
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Creating Actors

// create ActorSystem (allows actors to talk in-memory)
var actorSystem = ActorSystem.Create("PingPong");

// Props == formula used to start an actor.
var pingActorProps = Props.Create(factory: () => new PingActor());

// start pingActor and get actor reference (IActorRef)
IActorRef pingActor = actorSystem.ActorOf(pingActorProps, name:"ping");

// tell pingActor a message Actor will run its

pingActor.Tell(new Ping(count:0)); ¥———m_ Recejve<Pir1g> code When it
receives this message (it’s

asynchronous.)
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Actors & Optionality

e Actors are a common way to implement
event-driven programming.

* Option: makes live application state query-
able at run-time.

* Option: makes stateful server-side
applications viable.

* Option: can make event processing dynamic.
e Option: can be partitioned, parallelized, and

distributed dynamically with no code changes.
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Extend-Only Design

* Schema, wire formats, and APIs are frozen for updates or
deletes.

* New properties, event types, or schema can always be added,
but old properties can never be removed or changed.

* Old schema is gradually made obsolete and goes unused.
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Example: Protobuf Messages

message Ask{
string orderId = 1;
string stockId = 2;
double quantity = 3;
double price = 4; /* normally a decimal in C# - might have loss of precision here */
int64 timeIssued = 5;
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Extending Protobuf Messages...

message Ask{
string orderld = 1;
string stockId = 2;
double quantity = 3;
double price = 4; /* normally a decimal in C# - might have loss of precision here */
int64 timelssued = 5;

bool onMargin = 6;
- 1&.--._---~
New field
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Doesn’t Break Wire Compatibility

Ignores new property if not defined.
Handles 1.2 messages as though they were 1.1

rad

Deploy with
lib v1.2
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In Either Direction

If 1.1 message is missing property 1.2 message has,
provide "null® or default value.

ad Node C

Deploy with lib: v1.1
lib v1.2

Node E
lib: v1.1

Node B Node D
lib: v1.1 lib: v1.1

Node G
lib: v1.1
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Extend-Only Desigh & Optionality

* Preserves old schema, but allows new modifications to be
introduced

* Option: no more schema migrations; schema changes can be
introduced well-ahead of the code that uses it.

* Option: no schema rollbacks. Old schema is still viable.

* Option: zero-downtime deployments. Both versions of schema
still supported.
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High Optionality Programming

 What do these patterns have in common?
— Immutability: don’t destroy or change the meaning of data

— Conservation: errs on the side of preserving the past in perpetuity for
future reuse

— Dynamism: can dynamically route, process, react, or update state
with ease

— Separated Concerns: each pattern addresses different facets of
modern software
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Recap

* Technical debt is caused by the destruction of future, viable
options

* High optionality architectures cost more to develop upfront,
but pay for themselves quickly when software systems evolve

* High optionality is something you should protect unless you’'re
absolutely certain your requirements won’t change
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Thank you!

https://petabridge.com/

@Aaronontheweb
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