High Optionality Programming

Software Architectures that Reduce Technical Debt

Aaron Stannard, Founder of
Akka.NET and Petabridge

Petabridge

T DON‘T
UNDERSTAND
WHY IT TAKES
50 LONG To
ADD A NEW

TECHNICAL DEBT

Source: https://vincentdnl.com/drawings/

Petabridge

Business Processes

Ul

Reporting OR/M

Views, Stored Procedures

E: I | — E:

1 | — ‘ E I | —

You have to account Egd: DU: DOd:
roducts sers raers

for all of this.

In order to change
this....

Petabridae

v

Technical Debt

* |nitial technical debt == cost incurred from previous software
design and implementation choices;

* |Interest compounds in the form of layering;

e Full cost of technical debt is not known until a future need to
modify the system arrives; and

 Cost to make that modification == actual technical debt.

Petabridge

“To have options.”

OPTIONALITY

Petabridge

Options in Technology

Pay a premium here,
when options are abundant...

Greenfield Project

Feasible

Critical Product

To avoid having to
pay a very high cost
to expand options
here later.

Petabridge

Technical Debt == Destruction of Options

* Technical debt occurs when you fail to anticipate the evolution
of software

* i.e. Database-Driven Development
— “Who ever needs to switch databases?”
— “Repositories are unnecessary abstractions”
— “Why bother with an OR/M layer? Just use stored procedures”

* Future technical debt can be reduced by planning for possible
future changes today

Petabridge

qc,
N7 Case Study: MarkedUp (2012)
Low Optionality

MARKED [

e Real-time analytics * Decided not to use
startup repositories — Db logic

 Used RavenDb + was spread out
MapReduce indices everywhere

e Went from 10,000 * Thus: had to change
events per day to 5-8m everything all at once
per day in ~3 days (high risk)

* RavenDb couldn’t keep * Highly dependent on
up and went stale Db-specific constructs

Petabridge

qc,
@ Case Study: MarkedUp (2013-14)
High Optionality

MARKED [

* Created event-driven e Added unit tests back to
processing model suite (had to be 100%

e Created middleware integration tests before)
that could translate * Created DSL that
events into analytic allowed dynamic per-
deltas user filtering of events

 Separated read & write ¢ Greatly improved
models into discrete developer throughput
services

Petabridge

Architecture models that preserve future choices.

HIGH OPTIONALITY PROGRAMMING

Petabridge

The Shortlist

* Event-Driven Programming

* Event-Sourcing

e Command + Query Responsibility Segregation
* Actors

* Extend-Only Design

Petabridge

RPC / Web HTTP POST
Service Call HTTP 201
Front End Application Server
Serialized Message
(=—
Message Passing
—

Front End Application Server
0-N Response Messages

Petabridge

Events: More Options

Always comprised of] [Payload (data)
two parts

Reply-to address

Always
asynchronous

Can be serialized and
stored

Properties
of Message

Can be ordered and
re-ordered

Deferrals

Can be forwarded
and delegated

Can be received by
multiple parties

Petabridge

Events: More Interaction Patterns

v Node

-
-
-
-
-
-
-
-
-
-
-
-

Broadcast Node kzit-—--—======= » Node

~
-~
~
-~
-~
-~
~
-~
-~
S
S

#» Node

Proxy Node F--------mceoaae » Node
~ I

“~~~ 1
~~~~~ Forward
~~~~~~ 4
"~/ Node

- l
.-~ | Node

-
-
- P
s e

- -
22T e »
Pub-sub ‘EE'-':: ---------- Node
(Subs | TSIl e

~~~~~~ Node

One-way Node |--—--------——--- P@
@petabridge Petabria ge Petabridge.com




Event Sourcing w/ Akka.Persistence

DIAGRAMS

Petabridge



Message 3

- y *

- v N 4. Present to user
Message 2 |

o

J

v 2. Request
N -

histo

-
Message 1
o J

SignalR Chat
History for User X

Room History 3. Deliverjhistory
Message - as materialized view
History L 5|1

Actor Message 3

\
1. Build history,

gvpersist to store

SQL Server

Petabridge




Message 3
J
v
N
Message 2
L ) 3. Rebuilds
2. Replays stored _ v . in-memory
messages from Message 1 history

SQL Server J /\
H

/‘* Room Istory
B

1. Starts Message C 1

after appli History {Message 3 2
restart Actor

SQL Server

Petabridge




Event Sourcing & Optionality

* Current state is the sum of past events.
* Option: state can always be rebuilt by replaying previous events.
* Option: the way state is built can be changed without changing events themselves.

* Option: events can be replayed for simulations, predictions, and regression tests.
* Option: new event types can be safely introduced without modifying prior types.
* Doesn’t rely on DB-specific features. Can be meaningfully abstracted.

Petabridge



«<,
¥ Command and Query Responsibility

Segregation

Before After

Presentation
Validation

Domain logic
Updates o Data persistence 4
»| Data s i S
b store wa/

Queries
Data store

Source: https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

Petabridge



https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

CQRS

* Separate models for reads and writes
e Often used with Event Sourcing

* Option: read models can be updated independently from each
other and write models

* Option: performance characteristics for read / write models
can be managed separately

* Option: read / write models can use totally different DB
instances or technology

Petabridge




Actors

* Dynamic, partitioned, concurrent
event processors

* Provides a thread-safe unit-of-
work to process events in real-

time
A e Can be distributed over a

network or run in a single

akka.net

Petabridge



Basic Akka.NET Actor

public class PingActor : Akka.Actor.ReceiveActor < Actor base type

{
private readonly IlLoggingAdapter _log = Context.GetLogger();

public PingActor() \ Handle to built-in logging system

{

Receive<Ping>(handler:p => (automatically thread-safe)
{
_log.Info(format: "Received {0}", p);
Message handler for messages
// reply back at a random, short interval of type Ping.
var replyTime = TimeSpan.FromSeconds(
ThreadLocalRandom.Current.Next(1, 5));
Context.System.Scheduler.ScheduleTellOnce( Sender = reference to actor who
"eplyTiW sent us the Ping message.
Sender, rget
message: p.Next(), // message
Self); // sender (optional)
1
}

Petabridge



Creating Actors

// create ActorSystem (allows actors to talk in-memory)
var actorSystem = ActorSystem.Create("PingPong");

// Props == formula used to start an actor.
var pingActorProps = Props.Create(factory: () => new PingActor());

// start pingActor and get actor reference (IActorRef)
IActorRef pingActor = actorSystem.ActorOf(pingActorProps, name:"ping");

// tell pingActor a message Actor will run its

pingActor.Tell(new Ping(count:0)); ¥———m_ Recejve<Pir1g> code When it
receives this message (it’s

asynchronous.)

Petabridge



Actors & Optionality

e Actors are a common way to implement
event-driven programming.

* Option: makes live application state query-
able at run-time.

* Option: makes stateful server-side
applications viable.

* Option: can make event processing dynamic.
e Option: can be partitioned, parallelized, and

distributed dynamically with no code changes.
Petabridae




Extend-Only Design

* Schema, wire formats, and APIs are frozen for updates or
deletes.

* New properties, event types, or schema can always be added,
but old properties can never be removed or changed.

* Old schema is gradually made obsolete and goes unused.

Petabridge



Example: Protobuf Messages

message Ask{
string orderId = 1;
string stockId = 2;
double quantity = 3;
double price = 4; /* normally a decimal in C# - might have loss of precision here */
int64 timeIssued = 5;

Petabridge



Extending Protobuf Messages...

message Ask{
string orderld = 1;
string stockId = 2;
double quantity = 3;
double price = 4; /* normally a decimal in C# - might have loss of precision here */
int64 timelssued = 5;

bool onMargin = 6;
- 1&.--._---~
New field

Petabridge



Doesn’t Break Wire Compatibility

Ignores new property if not defined.
Handles 1.2 messages as though they were 1.1

rad

Deploy with
lib v1.2

Petabridge



In Either Direction

If 1.1 message is missing property 1.2 message has,
provide "null® or default value.

ad Node C

Deploy with lib: v1.1
lib v1.2

Node E
lib: v1.1

Node B Node D
lib: v1.1 lib: v1.1

Node G
lib: v1.1

Petabridge



Extend-Only Desigh & Optionality

* Preserves old schema, but allows new modifications to be
introduced

* Option: no more schema migrations; schema changes can be
introduced well-ahead of the code that uses it.

* Option: no schema rollbacks. Old schema is still viable.

* Option: zero-downtime deployments. Both versions of schema
still supported.

Petabridge



High Optionality Programming

 What do these patterns have in common?
— Immutability: don’t destroy or change the meaning of data

— Conservation: errs on the side of preserving the past in perpetuity for
future reuse

— Dynamism: can dynamically route, process, react, or update state
with ease

— Separated Concerns: each pattern addresses different facets of
modern software

Petabridge



Recap

* Technical debt is caused by the destruction of future, viable
options

* High optionality architectures cost more to develop upfront,
but pay for themselves quickly when software systems evolve

* High optionality is something you should protect unless you’'re
absolutely certain your requirements won’t change

Petabridge



Thank you!

https://petabridge.com/

@Aaronontheweb

Petabridge


https://petabridge.com/

