
ContentsContents

 Language Reference
 Welcome Back to C++ (Modern C++)

 Type System (Modern C++)
 Value Types (Modern C++)
 Type Conversions and Type Safety (Modern C++)

 Uniform Initialization and Delegating Constructors
 Object Lifetime And Resource Management (Modern C++)
 Objects Own Resources (RAII)
 Smart Pointers (Modern C++)

 How to: Create and Use unique_ptr Instances
 How to: Create and Use shared_ptr Instances
 How to: Create and Use weak_ptr Instances
 How to: Create and Use CComPtr and CComQIPtr Instances

 Pimpl For Compile-Time Encapsulation (Modern C++)
 Containers (Modern C++)
 Algorithms (Modern C++)
 String and I-O Formatting (Modern C++)
 Errors and Exception Handling (Modern C++)

 How to: Design for Exception Safety
 How to: Interface Between Exceptional and Non-Exceptional Code

 Portability At ABI Boundaries (Modern C++)
 Lexical Conventions

 Overview of File Translation
 Character Sets
 Tokens
 Comments
 Identifiers
 Keywords

 auto Keyword

 Punctuators
 Numeric, Boolean and Pointer Literals
 String and Character Literals
 User-Defined Literals

 Basic Concepts
 Declarations and Definitions

 Overview of Declarators
 Specifiers
 extern
 Header files
 Point of declaration in C++
 Initializers
 Aliases and typedefs
 using Declaration
 Resolving ambiguous declarations
 Storage classes
 const
 constexpr
 volatile
 auto
 decltype
 Attributes

 Scope
 Header Files
 Program and Linkage

 extern
 Startup and Termination

 main: Program Startup
 Using wmain Instead of main
 Argument Definitions
 Wildcard Expansion
 Parsing C++ Command-Line Arguments

 Customizing C++ Command-Line Processing
 main Function Restrictions

 Program Termination
 exit Function
 abort Function
 return Statement in Program Termination

 Additional Startup Considerations
 Additional Termination Considerations

 Using exit or return
 Using atexit
 Using abort

 Lvalues and Rvalues
 Temporary Objects
 Alignment (C++ Declarations)
 alignof and alignas
 Trivial, standard-layout, and POD types

 Fundamental Types
 Data Type Ranges
 nullptr
 void
 bool
 false
 true
 char, wchar_t, char16_t, char32_t
 __int8, __int16, __int32, __int64
 __m64
 __m128
 __m128d
 __m128i
 __ptr32, __ptr64
 Numerical Limits

 Integer Limits

 Floating Limits
 Standard Conversions

 Built-in Operators, Precedence and Associativity
 __alignof Operator
 __uuidof Operator
 Additive Operators: + and -
 Address-of Operator: &
 Assignment Operators
 Bitwise AND Operator: &
 Bitwise Exclusive OR Operator: ^
 Bitwise Inclusive OR Operator: |
 Cast Operator: ()
 Comma Operator: ,
 Conditional Operator: ? :
 delete Operator
 Equality Operators: == and !=
 Explicit Type Conversion Operator: ()
 Function Call Operator: ()
 Indirection Operator: *
 Left Shift and Right Shift Operators (>> and <<)
 Logical AND Operator: &&
 Logical Negation Operator: !
 Logical OR Operator: ||
 Member Access Operators: . and ->
 Multiplicative Operators and the Modulus Operator
 new Operator
 One's Complement Operator: ~
 Pointer-to-Member Operators: .* and ->*
 Postfix Increment and Decrement Operators: ++ and --
 Prefix Increment and Decrement Operators: ++ and --
 Relational Operators: <, >, <=, and >=
 Scope Resolution Operator: ::

 sizeof Operator
 Subscript Operator:
 typeid Operator
 Unary Plus and Negation Operators: + and -

 Expressions
 Types of Expressions

 Primary Expressions
 Ellipses and Variadic Templates
 Postfix Expressions
 Expressions with Unary Operators
 Expressions with Binary Operators
 Constant Expressions

 Semantics of Expressions
 Casting

 Casting Operators
 dynamic_cast Operator
 bad_cast Exception
 static_cast Operator
 const_cast Operator
 reinterpret_cast Operator

 Run-Time Type Information
 bad_typeid Exception
 type_info Class

 Statements
 Overview of C++ Statements
 Labeled Statements
 Expression Statement

 Null Statement
 Compound Statements (Blocks)
 Selection Statements

 if-else Statement
 __if_exists Statement

 __if_not_exists Statement
 switch Statement

 Iteration Statements
 while Statement
 do-while Statement
 for Statement
 Range-based for Statement

 Jump Statements
 break Statement
 continue Statement
 return Statement
 goto Statement
 Transfers of Control

 Namespaces
 Enumerations
 Unions
 Functions

 Functions with Variable Argument Lists
 Function Overloading
 Explicitly Defaulted and Deleted Functions
 Argument-Dependent Name (Koenig) Lookup on Functions
 Default Arguments
 Inline Functions

 Operator Overloading
 General Rules for Operator Overloading
 Overloading Unary Operators

 Increment and Decrement Operator Overloading
 Binary Operators
 Assignment
 Function Call
 Subscripting
 Member Access

 Classes and Structs
 class
 struct
 Class Member Overview
 Member Access Control

 friend
 private
 protected
 public

 Initializing classes and structs without constructors
 Constructors

 Copy Constructors and Copy Assignment Operators
 Move Constructors and Move Assignment Operators

 Destructors
 Overview of Member Functions

 virtual Specifier
 override Specifier
 final Specifier

 Inheritance
 Virtual Functions
 Single Inheritance
 Base Classes
 Multiple Base Classes
 Explicit Overrides
 Abstract Classes
 Summary of Scope Rules
 Inheritance Keywords
 virtual
 __super
 __interface

 Special Member Functions
 Static Members

 User-Defined Type Conversions
 Mutable Data Members
 Nested Class Declarations
 Anonymous Class Types
 Pointers to Members
 this Pointer
 Bit Fields

 Lambda Expressions in C++
 Lambda Expression Syntax
 Examples of Lambda Expressions
 constexpr Lambda Expressions

 Arrays
 Using Arrays
 Initializing Arrays
 Arrays in Expressions
 Interpretation of Subscript Operator
 Indirection on Array Types
 Ordering of C++ Arrays

 References
 Lvalue Reference Declarator: &
 Rvalue Reference Declarator: &&
 Reference-Type Function Arguments
 Reference-Type Function Returns
 References to Pointers

 Pointers
 const and volatile Pointers
 new and delete Operators

 Exception Handling in C++
 Exception Handling

 try, throw, and catch Statements
 How Catch Blocks are Evaluated
 Exceptions and Stack Unwinding in C++

 Exception Specifications (throw)
 noexcept
 Unhandled C++ Exceptions
 Mixing C (Structured) and C++ Exceptions

 Using setjmp-longjmp
 Handle structured exceptions in C++

 Structured Exception Handling (C/C++)
 Writing an Exception Handler

 try-except Statement
 Writing an Exception Filter
 Raising Software Exceptions
 Hardware Exceptions
 Restrictions on Exception Handlers

 Writing a Termination Handler
 try-finally Statement
 Cleaning up Resources
 Timing of Exception Handling: A Summary
 Restrictions on Termination Handlers

 Transporting Exceptions Between Threads
 Assertion and User-Supplied Messages

 static_assert
 Templates

 typename
 Class Templates
 Function Templates

 Function Template Instantiation
 Explicit Instantiation
 Explicit Specialization of Function Templates
 Partial Ordering of Function Templates
 Member Function Templates

 Template Specialization
 Templates and Name Resolution

 Name Resolution for Dependent Types
 Name Resolution for Locally Declared Names
 Overload Resolution of Function Template Calls

 Source code organization (C++ Templates)
 Event Handling

 __event
 __hook
 __raise
 __unhook
 Event Handling in Native C++
 Event Handling in COM

 Microsoft-Specific Modifiers
 Based Addressing

 __based Grammar
 Based Pointers

 Calling Conventions
 Argument Passing and Naming Conventions

 __cdecl
 __clrcall
 __stdcall
 __fastcall
 __thiscall
 __vectorcall

 Calling Example: Function Prototype and Call
 Results of Calling Example

 Naked Function Calls
 Rules and Limitations for Naked Functions
 Considerations for Writing Prolog-Epilog Code

 Floating Point Coprocessor and Calling Conventions
 Obsolete Calling Conventions

 restrict (C++ AMP)
 tile_static Keyword

 __declspec
 align
 allocate
 allocator
 appdomain
 code_seg (__declspec)
 deprecated
 dllexport, dllimport

 Definitions and Declarations
 Defining Inline C++ Functions with dllexport and dllimport
 General Rules and Limitations
 Using dllimport and dllexport in C++ Classes

 jitintrinsic
 naked
 noalias
 noinline
 noreturn
 nothrow
 novtable
 process
 property
 restrict
 safebuffers
 selectany
 spectre
 thread
 uuid

 __restrict
 __sptr, __uptr
 __unaligned
 __w64
 __func__

 Compiler COM Support
 Compiler COM Global Functions

 _com_raise_error
 ConvertStringToBSTR
 ConvertBSTRToString
 _set_com_error_handler

 Compiler COM Support Classes
 _bstr_t Class

 _bstr_t Member Functions
 _bstr_t::Assign
 _bstr_t::Attach
 _bstr_t::_bstr_t
 _bstr_t::copy
 _bstr_t::Detach
 _bstr_t::GetAddress
 _bstr_t::GetBSTR
 _bstr_t::length

 _bstr_t Operators
 _bstr_t::operator =
 _bstr_t::operator +=, +
 _bstr_t::operator !
 _bstr_t Relational Operators
 _bstr_t::wchar_t*, _bstr_t::char*

 _com_error Class
 _com_error Member Functions

 _com_error::_com_error
 _com_error::Description
 _com_error::Error
 _com_error::ErrorInfo
 _com_error::ErrorMessage
 _com_error::GUID
 _com_error::HelpContext

 _com_error::HelpFile
 _com_error::HRESULTToWCode
 _com_error::Source
 _com_error::WCode
 _com_error::WCodeToHRESULT

 _com_error Operators
 _com_error::operator =

 _com_ptr_t Class
 _com_ptr_t Member Functions

 _com_ptr_t::_com_ptr_t
 _com_ptr_t::AddRef
 _com_ptr_t::Attach
 _com_ptr_t::CreateInstance
 _com_ptr_t::Detach
 _com_ptr_t::GetActiveObject
 _com_ptr_t::GetInterfacePtr
 _com_ptr_t::QueryInterface
 _com_ptr_t::Release

 _com_ptr_t Operators
 _com_ptr_t::operator =
 _com_ptr_t Relational Operators
 _com_ptr_t Extractors

 Relational Function Templates
 _variant_t Class

 _variant_t Member Functions
 _variant_t::_variant_t
 _variant_t::Attach
 _variant_t::Clear
 _variant_t::ChangeType
 _variant_t::Detach
 _variant_t::SetString

 _variant_t Operators

 _variant_t::operator =
 _variant_t Relational Operators
 _variant_t Extractors

 Microsoft Extensions
 Nonstandard Behavior

 Compiler Limits

C++ Language Reference
5/7/2019 • 2 minutes to read • Edit Online

In This Section

This reference explains the C++ programming language as implemented in the Microsoft C++ compiler. The
organization is based on The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup and
on the ANSI/ISO C++ International Standard (ISO/IEC FDIS 14882). Microsoft-specific implementations of
C++ language features are included.

For an overview of Modern C++ programming practices, see Welcome Back to C++.

See the following tables to quickly find a keyword or operator:

C++ Keywords

C++ Operators

Lexical Conventions
Fundamental lexical elements of a C++ program: tokens, comments, operators, keywords, punctuators, literals.
Also, file translation, operator precedence/associativity.

Basic Concepts
Scope, linkage, program startup and termination, storage classes, and types.

Standard Conversions
Type conversions between built-in, or "fundamental," types. Also, arithmetic conversions and conversions
among pointer, reference, and pointer-to-member types.

Operators, Precedence and Associativity
The operators in C++.

Expressions
Types of expressions, semantics of expressions, reference topics on operators, casting and casting operators,
run-time type information.

Lambda Expressions
A programming technique that implicitly defines a function object class and constructs a function object of that
class type.

Statements
Expression, null, compound, selection, iteration, jump, and declaration statements.

Declarations and Definitions
Storage-class specifiers, function definitions, initializations, enumerations, class, struct, and union declarations,
and typedef declarations. Also, inline functions, const keyword, namespaces.

Classes, Structures, and Unions
Introduction to classes, structures, and unions. Also, member functions, special member functions, data
members, bit fields, this pointer, nested classes.

Derived Classes
Single and multiple inheritance, virtual functions, multiple base classes, abstract classes, scope rules. Also, the
__super and __interface keywords.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-language-reference.md
http://www.stroustrup.com/arm.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/keywords-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-built-in-operators-precedence-and-associativity
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lexical-conventions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/basic-concepts-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/standard-conversions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-built-in-operators-precedence-and-associativity
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/expressions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/statements-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/declarations-and-definitions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/classes-and-structs-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inheritance-cpp

Related Sections

See also

Member-Access Control
Controlling access to class members: public, private, and protected keywords. Friend functions and classes.

Overloading
Overloaded operators, rules for operator overloading.

Exception Handling
C++ exception handling, structured exception handling (SEH), keywords used in writing exception handling
statements.

Assertion and User-Supplied Messages
#error directive, the static_assert keyword, the assert macro.

Templates
Template specifications, function templates, class templates, typename keyword, templates vs. macros,
templates and smart pointers.

Event Handling
Declaring events and event handlers.

Microsoft-Specific Modifiers
Modifiers specific to Microsoft C++. Memory addressing, calling conventions, naked functions, extended
storage-class attributes (__declspec), __w64.

Inline Assembler
Using assembly language and C++ in __asm blocks.

Compiler COM Support
A reference to Microsoft-specific classes and global functions used to support COM types.

Microsoft Extensions
Microsoft extensions to C++.

Nonstandard Behavior
Information about nonstandard behavior of the Microsoft C++ compiler.

Welcome Back to C++
An overview of modern C++ programming practices for writing safe, correct and efficient programs.

Component Extensions for Runtime Platforms
Reference material on using the Microsoft C++ compiler to target .NET.

C/C++ Building Reference
Compiler options, linker options, and other build tools.

C/C++ Preprocessor Reference
Reference material on pragmas, preprocessor directives, predefined macros, and the preprocessor.

Visual C++ Libraries
A list of links to the reference start pages for the various Microsoft C++ libraries.

C Language Reference

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/member-access-control-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/operator-overloading
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/exception-handling-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/assertion-and-user-supplied-messages-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/templates-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/event-handling
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/microsoft-specific-modifiers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/inline/inline-assembler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/compiler-com-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/microsoft-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/nonstandard-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/component-extensions-for-runtime-platforms
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/c-cpp-preprocessor-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-language-reference

Welcome Back to C++ (Modern C++)
4/1/2019 • 5 minutes to read • Edit Online

C++ is one of the most widely used programming languages in the world. Well-written C++ programs are fast
and efficient. The language is more flexible than other languages because you can use it to create a wide range of
apps—from fun and exciting games, to high-performance scientific software, to device drivers, embedded
programs, and Windows client apps. For more than 20 years, C++ has been used to solve problems like these
and many others. What you might not know is that an increasing number of C++ programmers have folded up
the dowdy C-style programming of yesterday and have donned modern C++ instead.

One of the original requirements for C++ was backward compatibility with the C language. Since then, C++ has
evolved through several iterations—C with Classes, then the original C++ language specification, and then the
many subsequent enhancements. Because of this heritage, C++ is often referred to as a multi-paradigm
programming language. In C++, you can do purely procedural C-style programming that involves raw pointers,
arrays, null-terminated character strings, custom data structures, and other features that may enable great
performance but can also spawn bugs and complexity. Because C-style programming is fraught with perils like
these, one of the founding goals for C++ was to make programs both type-safe and easier to write, extend, and
maintain. Early on, C++ embraced programming paradigms such as object-oriented programming. Over the
years, features have been added to the language, together with highly-tested standard libraries of data structures
and algorithms. It's these additions that have made the modern C++ style possible.

Modern C++ emphasizes:

Stack-based scope instead of heap or static global scope.

Auto type inference instead of explicit type names.

Smart pointers instead of raw pointers.

std::string and std::wstring types (see <string>) instead of raw char[] arrays.

C++ Standard Library containers like vector , list , and map instead of raw arrays or custom containers.
See <vector>, <list>, and <map>.

C++ Standard Library algorithms instead of manually coded ones.

Exceptions, to report and handle error conditions.

Lock-free inter-thread communication using C++ Standard Library std::atomic<> (see <atomic>) instead
of other inter-thread communication mechanisms.

Inline lambda functions instead of small functions implemented separately.

Range-based for loops to write more robust loops that work with arrays, C++ Standard Library containers,
and Windows Runtime collections in the form for (for-range-declaration : expression) . This is part of
the Core Language support. For more information, see Range-based for Statement (C++).

The C++ language itself has also evolved. Compare the following code snippets. This one shows how things used
to be in C++:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/welcome-back-to-cpp-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/string
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-header-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/list
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/atomic

#include <vector>

void f()
{
 // Assume circle and shape are user-defined types
 circle* p = new circle(42);
 vector<shape*> v = load_shapes();

 for(vector<circle*>::iterator i = v.begin(); i != v.end(); ++i) {
 if(*i && **i == *p)
 cout << **i << " is a match\n";
 }

 // CAUTION: If v's pointers own the objects, then you
 // must delete them all before v goes out of scope.
 // If v's pointers do not own the objects, and you delete
 // them here, any code that tries to dereference copies
 // of the pointers will cause null pointer exceptions.
 for(vector<circle*>::iterator i = v.begin();
 i != v.end(); ++i) {
 delete *i; // not exception safe
 }

 // Don't forget to delete this, too.
 delete p;
} // end f()

#include <memory>
#include <vector>

void f()
{
 // ...
 auto p = make_shared<circle>(42);
 vector<shared_ptr<shape>> v = load_shapes();

 for(auto& s : v)
 {
 if(s && *s == *p)
 {
 cout << *s << " is a match\n";
 }
 }
}

Here's how the same thing is accomplished in modern C++:

In modern C++, you don't have to use new/delete or explicit exception handling because you can use smart
pointers instead. When you use the auto type deduction and lambda function, you can write code quicker, tighten
it, and understand it better. And a range-based for loop is cleaner, easier to use, and less prone to unintended
errors than a C-style for loop. You can use boilerplate together with minimal lines of code to write your app. And
you can make that code exception-safe and memory-safe, and have no allocation/deallocation or error codes to
deal with.

Modern C++ incorporates two kinds of polymorphism: compile-time, through templates, and run-time, through
inheritance and virtualization. You can mix the two kinds of polymorphism to great effect. The C++ Standard
Library template shared_ptr uses internal virtual methods to accomplish its apparently effortless type erasure.
But don't over-use virtualization for polymorphism when a template is the better choice. Templates can be very
powerful.

If you're coming to C++ from another language, especially from a managed language in which most of the types

See also

are reference types and very few are value types, know that C++ classes are value types by default. But you can
specify them as reference types to enable polymorphic behavior that supports object-oriented programming. A
helpful perspective: value types are more about memory and layout control, reference types are more about base
classes and virtual functions to support polymorphism. By default, value types are copyable—they each have a
copy constructor and a copy assignment operator. When you specify a reference type, make the class non-
copyable—disable the copy constructor and copy assignment operator—and use a virtual destructor, which
supports the polymorphism. Value types are also about the contents, which, when they are copied, give you two
independent values that you can modify separately. But reference types are about identity—what kind of object it
is—and for this reason are sometimes referred to as polymorphic types.

C++ is experiencing a renaissance because power is king again. Languages like Java and C# are good when
programmer productivity is important, but they show their limitations when power and performance are
paramount. For high efficiency and power, especially on devices that have limited hardware, nothing beats
modern C++.

Not only the language is modern, the development tools are, too. Visual Studio makes all parts of the
development cycle robust and efficient. It includes Application Lifecycle Management (ALM) tools, IDE
enhancements like IntelliSense, tool-friendly mechanisms like XAML, and building, debugging, and many other
tools.

The articles in this part of the documentation provide high-level guidelines and best practices for the most
important features and techniques for writing modern C++ programs.

C++ Type System

Uniform Initialization and Delegating Constructors

Object Lifetime And Resource Management

Objects Own Resources (RAII)

Smart Pointers

Pimpl For Compile-Time Encapsulation

Containers

Algorithms

String and I/O Formatting (Modern C++)

Errors and Exception Handling

Portability At ABI Boundaries

For more information, see the Stack Overflow article Which C++ idioms are deprecated in C++11.

C++ Language Reference
Lambda Expressions
C++ Standard Library
Visual C++ language conformance

https://stackoverflow.com/questions/9299101/which-c-idioms-are-deprecated-in-c11
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/overview/visual-cpp-language-conformance

C++ Type System (Modern C++)
5/7/2019 • 12 minutes to read • Edit Online

Terminology

Specifying variable and function types

The concept of type is very important in C++. Every variable, function argument, and function return value must
have a type in order to be compiled. Also, every expression (including literal values) is implicitly given a type by the
compiler before it is evaluated. Some examples of types include int to store integral values, double to store
floating-point values (also known as scalar data types), or the Standard Library class std::basic_string to store text.
You can create your own type by defining a class or struct. The type specifies the amount of memory that will be
allocated for the variable (or expression result), the kinds of values that may be stored in that variable, how those
values (as bit patterns) are interpreted, and the operations that can be performed on it. This article contains an
informal overview of the major features of the C++ type system.

Variable: The symbolic name of a quantity of data so that the name can be used to access the data it refers to
throughout the scope of the code where it is defined. In C++, variable is generally used to refer to instances of
scalar data types, whereas instances of other types are usually called objects.

Object: For simplicity and consistency, this article uses the term object to refer to any instance of a class or
structure, and when it is used in the general sense includes all types, even scalar variables.

POD type (plain old data): This informal category of data types in C++ refers to types that are scalar (see the
Fundamental types section) or are POD classes. A POD class has no static data members that aren’t also PODs,
and has no user-defined constructors, user-defined destructors, or user-defined assignment operators. Also, a
POD class has no virtual functions, no base class, and no private or protected non-static data members. POD types
are often used for external data interchange, for example with a module written in the C language (which has POD
types only).

C++ is a strongly typed language and it is also statically-typed; every object has a type and that type never
changes (not to be confused with static data objects). When you declare a variable in your code, you must either
specify its type explicitly, or use the auto keyword to instruct the compiler to deduce the type from the initializer.
When you declare a function in your code, you must specify the type of each argument and its return value, or
void if no value is returned by the function. The exception is when you are using function templates, which allow
for arguments of arbitrary types.

After you first declare a variable, you cannot change its type at some later point. However, you can copy the
variable’s value or a function’s return value into another variable of a different type. Such operations are called
type conversions, which are sometimes necessary but are also potential sources of data loss or incorrectness.

When you declare a variable of POD type, we strongly recommend you initialize it, which means to give it an initial
value. Until you initialize a variable, it has a "garbage" value that consists of whatever bits happened to be in that
memory location previously. This is an important aspect of C++ to remember, especially if you are coming from
another language that handles initialization for you. When declaring a variable of non-POD class type, the
constructor handles initialization.

The following example shows some simple variable declarations with some descriptions for each. The example
also shows how the compiler uses type information to allow or disallow certain subsequent operations on the
variable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-type-system-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class

int result = 0; // Declare and initialize an integer.
double coefficient = 10.8; // Declare and initialize a floating
 // point value.
auto name = "Lady G."; // Declare a variable and let compiler
 // deduce the type.
auto address; // error. Compiler cannot deduce a type
 // without an intializing value.
age = 12; // error. Variable declaration must
 // specify a type or use auto!
result = "Kenny G."; // error. Can’t assign text to an int.
string result = "zero"; // error. Can’t redefine a variable with
 // new type.
int maxValue; // Not recommended! maxValue contains
 // garbage bits until it is initialized.

Fundamental (built-in) types

TYPE SIZE COMMENT

int 4 bytes The default choice for integral values.

double 8 bytes The default choice for floating point
values.

Unlike some languages, C++ has no universal base type from which all other types are derived. The language
includes many fundamental types, also known as built-in types. This includes numeric types such as int, double,
long, bool, plus the char and wchar_t types for ASCII and UNICODE characters, respectively. Most fundamental
types (except bool, double, wchar_t and related types) all have unsigned versions, which modify the range of
values that the variable can store. For example, an int, which stores a 32-bit signed integer, can represent a value
from -2,147,483,648 to 2,147,483,647. An unsigned int, which is also stored as 32-bits, can store a value from 0
to 4,294,967,295. The total number of possible values in each case is the same; only the range is different.

The fundamental types are recognized by the compiler, which has built-in rules that govern what operations you
can perform on them, and how they can be converted to other fundamental types. For a complete list of built-in
types and their size and numeric limits, see Fundamental Types.

The following illustration shows the relative sizes of the built-in types:

The following table lists the most frequently used fundamental types:

bool 1 byte Represents values that can be either
true or false.

char 1 byte Use for ASCII characters in older C-style
strings or std::string objects that will
never have to be converted to
UNICODE.

wchar_t 2 bytes Represents "wide" character values that
may be encoded in UNICODE format
(UTF-16 on Windows, other operating
systems may differ). This is the
character type that is used in strings of
type std::wstring .

unsigned char 1 byte C++ has no built-in byte type. Use
unsigned char to represent a byte
value.

unsigned int 4 bytes Default choice for bit flags.

long long 8 bytes Represents very large integer values.

TYPE SIZE COMMENT

The void type

const type qualifier

const double PI = 3.1415;
PI = .75 //Error. Cannot modify const variable.

String types

The void type is a special type; you cannot declare a variable of type void, but you can declare a variable of type
void * (pointer to void), which is sometimes necessary when allocating raw (un-typed) memory. However,
pointers to void are not type-safe and generally their use is strongly discouraged in modern C++. In a function
declaration, a void return value means that the function does not return a value; this is a common and acceptable
use of void. While the C language required functions that have zero parameters to declare void in the parameter
list, for example, fou(void) , this practice is discouraged in modern C++ and should be declared fou() . For more
information, see Type Conversions and Type Safety.

Any built-in or user-defined type may be qualified by the const keyword. Additionally, member functions may be
const-qualified and even const-overloaded. The value of a const type cannot be modified after it is initialized.

The const qualifier is used extensively in function and variable declarations and "const correctness" is an
important concept in C++; essentially it means to use const to guarantee, at compile time, that values are not
modified unintentionally. For more information, see const.

A const type is distinct from its non-const version; for example, const int is a distinct type from int. You can use
the C++ const_cast operator on those rare occasions when you must remove const-ness from a variable. For
more information, see Type Conversions and Type Safety.

Strictly speaking, the C++ language has no built-in string type; char and wchar_t store single characters - you

User-defined types

Pointer types

int* pNumber; // Declare a pointer-to-int variable.
*pNumber = 10; // error. Although this may compile, it is
 // a serious error. We are dereferencing an
 // uninitialized pointer variable with no
 // allocated memory to point to.

must declare an array of these types to approximate a string, adding a terminating null value (for example, ASCII
'\0') to the array element one past the last valid character (also called a C-style string). C-style strings required

much more code to be written or the use of external string utility library functions. But in modern C++, we have
the Standard Library types std::string (for 8-bit char-type character strings) or std::wstring (for 16-bit
wchar_t-type character strings). These C++ Standard Library containers can be thought of as native string types
because they are part of the standard libraries that are included in any compliant C++ build environment. Simply
use the #include <string> directive to make these types available in your program. (If you are using MFC or ATL,
the CString class is also available, but is not part of the C++ standard.) The use of null-terminated character arrays
(the C-style strings previously mentioned) is strongly discouraged in modern C++.

When you define a class, struct, union, or enum, that construct is used in the rest of your code as if it were a
fundamental type. It has a known size in memory, and certain rules about how it can be used apply to it for
compile-time checking and, at runtime, for the life of your program. The primary differences between the
fundamental built-in types and user-defined types are as follows:

The compiler has no built-in knowledge of a user-defined type. It learns of the type when it first encounters
the definition during the compilation process.

You specify what operations can be performed on your type, and how it can be converted to other types, by
defining (through overloading) the appropriate operators, either as class members or non-member
functions. For more information, see Function Overloading

Dating back to the earliest versions of the C language, C++ continues to let you declare a variable of a pointer type
by using the special declarator * (asterisk). A pointer type stores the address of the location in memory where the
actual data value is stored. In modern C++, these are referred to as raw pointers, and are accessed in your code
through special operators * (asterisk) or -> (dash with greater-than). This is called dereferencing, and which one
that you use depends on whether you are dereferencing a pointer to a scalar or a pointer to a member in an object.
Working with pointer types has long been one of the most challenging and confusing aspects of C and C++
program development. This section outlines some facts and practices to help use raw pointers if you want to, but
in modern C++ it’s no longer required (or recommended) to use raw pointers for object ownership at all, due to
the evolution of the smart pointer (discussed more at the end of this section). It is still useful and safe to use raw
pointers for observing objects, but if you must use them for object ownership, you should do so with caution and
very careful consideration of how the objects owned by them are created and destroyed.

The first thing that you should know is declaring a raw pointer variable will allocate only the memory that is
required to store an address of the memory location that the pointer will be referring to when it is dereferenced.
Allocation of the memory for the data value itself (also called backing store) is not yet allocated. In other words, by
declaring a raw pointer variable, you are creating a memory address variable, not an actual data variable.
Dereferencing a pointer variable before making sure that it contains a valid address to a backing store will cause
undefined behavior (usually a fatal error) in your program. The following example demonstrates this kind of error:

The example dereferences a pointer type without having any memory allocated to store the actual integer data or
a valid memory address assigned to it. The following code corrects these errors:

 int number = 10; // Declare and initialize a local integer
 // variable for data backing store.
 int* pNumber = &number; // Declare and initialize a local integer
 // pointer variable to a valid memory
 // address to that backing store.
...
 *pNumber = 41; // Dereference and store a new value in
 // the memory pointed to by
 // pNumber, the integer variable called
 // "number". Note "number" was changed, not
 // "pNumber".

void someFunction() {
 unique_ptr<MyClass> pMc(new MyClass);
 pMc->DoSomeWork();
}
 // No memory leak. Out-of-scope automatically calls the destructor
 // for the unique_ptr, freeing the resource.

Windows data types

More Information

The corrected code example uses local stack memory to create the backing store that pNumber points to. We use a
fundamental type for simplicity. In practice, the backing store for pointers are most often user-defined types that
are dynamically-allocated in an area of memory called the heap (or free store) by using a new keyword expression
(in C-style programming, the older malloc() C runtime library function was used). Once allocated, these variables
are usually referred to as objects, especially if they are based on a class definition. Memory that is allocated with
new must be deleted by a corresponding delete statement (or, if you used the malloc() function to allocate it, the
C runtime function free()).

However, it is easy to forget to delete a dynamically-allocated object- especially in complex code, which causes a
resource bug called a memory leak. For this reason, the use of raw pointers is strongly discouraged in modern
C++. It is almost always better to wrap a raw pointer in a smart pointer, which will automatically release the
memory when its destructor is invoked (when the code goes out of scope for the smart pointer); by using smart
pointers you virtually eliminate a whole class of bugs in your C++ programs. In the following example, assume
MyClass is a user-defined type that has a public method DoSomeWork();

For more information about smart pointers, see Smart Pointers.

For more information about pointer conversions, see Type Conversions and Type Safety.

For more information about pointers in general, see Pointers.

In classic Win32 programming for C and C++, most functions use Windows-specific typedefs and #define macros
(defined in windef.h) to specify the types of parameters and return values. These Windows data types are mostly
just special names (aliases) given to C/C++ built-in types. For a complete list of these typedefs and preprocessor
definitions, see Windows Data Types. Some of these typedefs, such as HRESULT and LCID, are useful and
descriptive. Others, such as INT, have no special meaning and are just aliases for fundamental C++ types. Other
Windows data types have names that are retained from the days of C programming and 16-bit processors, and
have no purpose or meaning on modern hardware or operating systems. There are also special data types
associated with the Windows Runtime Library, listed as Windows Runtime base data types. In modern C++, the
general guideline is to prefer the C++ fundamental types unless the Windows type communicates some additional
meaning about how the value is to be interpreted.

For more information about the C++ type system, see the following topics.

https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types
https://docs.microsoft.com/windows/desktop/WinRT/base-data-types

Value Types Describes value types along with issues relating to their use.

Type Conversions and Type Safety Describes common type conversion issues and shows how to
avoid them.

See also
Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Value Types (Modern C++)
5/7/2019 • 3 minutes to read • Edit Online

Value vs. reference types

// cl /EHsc /nologo /W4

class MyRefType {
private:
 MyRefType & operator=(const MyRefType &);
 MyRefType(const MyRefType &);
public:
 MyRefType () {}
};

int main()
{
 MyRefType Data1, Data2;
 // ...
 Data1 = Data2;
}

test.cpp(15) : error C2248: 'MyRefType::operator =' : cannot access private member declared in class
'MyRefType'
 meow.cpp(5) : see declaration of 'MyRefType::operator ='
 meow.cpp(3) : see declaration of 'MyRefType'

Value types and move efficiency

C++ classes are by default value types. This topic provides an introductory overview of value types and issues
relating to their use.

As previously stated, C++ classes are by default value types. They can be specified as reference types, which enable
polymorphic behavior to support object-oriented programming. Value types are sometimes viewed from the
perspective of memory and layout control, whereas reference types are about base classes and virtual functions for
polymorphic purposes. By default, value types are copyable, which means there is always a copy constructor and a
copy assignment operator. For reference types, you make the class non-copyable (disable the copy constructor and
copy assignment operator) and use a virtual destructor, which supports their intended polymorphism. Value types
are also about the contents, which, when they are copied, always give you two independent values that can be
modified separately. Reference types are about identity - what kind of object is it? For this reason, "reference types"
are also referred to as "polymorphic types".

If you really want a reference-like type (base class, virtual functions), you need to explicitly disable copying, as
shown in the MyRefType class in the following code.

Compiling the above code will result in the following error:

Copy allocation overhead is avoided due to new copy optimizations. For example, when you insert a string in the
middle of a vector of strings, there will be no copy re-allocation overhead, only a move- even if it results in a grow
of the vector itself. This also applies to other operations, for instance performing an add operation on two very
large objects. How do you enable these value operation optimizations? In some C++ compilers, the compiler will
enable this for you implicitly, much like copy constructors can be automatically generated by the compiler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/value-types-modern-cpp.md

#include <set>
#include <vector>
#include <string>
using namespace std;

//...
set<widget> LoadHugeData() {
 set<widget> ret;
 // ... load data from disk and populate ret
 return ret;
}
//...
widgets = LoadHugeData(); // efficient, no deep copy

vector<string> v = IfIHadAMillionStrings();
v.insert(begin(v)+v.size()/2, "scott"); // efficient, no deep copy-shuffle
v.insert(begin(v)+v.size()/2, "Andrei"); // (just 1M ptr/len assignments)
//...
HugeMatrix operator+(const HugeMatrix& , const HugeMatrix&);
HugeMatrix operator+(const HugeMatrix& , HugeMatrix&&);
HugeMatrix operator+(HugeMatrix&&, const HugeMatrix&);
HugeMatrix operator+(HugeMatrix&&, HugeMatrix&&);
//...
hm5 = hm1+hm2+hm3+hm4+hm5; // efficient, no extra copies

Enabling move for appropriate value typesEnabling move for appropriate value types

#include <memory>
#include <stdexcept>
using namespace std;
// ...
class my_class {
 unique_ptr<BigHugeData> data;
public:
 my_class(my_class&& other) // move construction
 : data(move(other.data)) { }
 my_class& operator=(my_class&& other) // move assignment
 { data = move(other.data); return *this; }
 // ...
 void method() { // check (if appropriate)
 if(!data)
 throw std::runtime_error("RUNTIME ERROR: Insufficient resources!");
 }
};

However, in C++, your class will need to "opt-in" to move assignment and constructors by declaring it in your class
definition. This is accomplished by using the double ampersand (&&) rvalue reference in the appropriate member
function declarations and defining move constructor and move assignment methods. You also need to insert the
correct code to "steal the guts" out of the source object.

How do you decide if you need move enabled? If you already know you need copy construction enabled, you
probably want move enabled if it can be cheaper than a deep copy. However, if you know you need move support,
it doesn't necessarily mean you want copy enabled. This latter case would be called a "move-only type". An
example already in the standard library is unique_ptr . As a side note, the old auto_ptr is deprecated, and was
replaced by unique_ptr precisely due to the lack of move semantics support in the previous version of C++.

By using move semantics you can return-by-value or insert-in-middle. Move is an optimization of copy. There is
need for heap allocation as a workaround. Consider the following pseudocode:

For a value-like class where move can be cheaper than a deep copy, enable move construction and move
assignment for efficiency. Consider the following pseudocode:

Section

See also

If you enable copy construction/assignment, also enable move construction/assignment if it can be cheaper than a
deep copy.

Some non-value types are move-only, such as when you can’t clone a resource, only transfer ownership. Example:
unique_ptr .

Content

C++ Type System (Modern C++)
Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Type Conversions and Type Safety (Modern C++)
5/7/2019 • 9 minutes to read • Edit Online

Implicit type conversions

Widening conversions (promotion)Widening conversions (promotion)

FROM TO

Any signed or unsigned integral type except long long or
__int64

double

bool or char Any other built-in type

short or wchar_t int, long, long long

int, long long long

float double

This document identifies common type conversion problems and describes how you can avoid them in your C++
code.

When you write a C++ program, it's important to ensure that it's type-safe. This means that every variable,
function argument, and function return value is storing an acceptable kind of data, and that operations that involve
values of different types "make sense" and don't cause data loss, incorrect interpretation of bit patterns, or
memory corruption. A program that never explicitly or implicitly converts values from one type to another is type-
safe by definition. However, type conversions, even unsafe conversions, are sometimes required. For example, you
might have to store the result of a floating point operation in a variable of type int, or you might have to pass the
value in an unsigned int to a function that takes a signed int. Both examples illustrate unsafe conversions because
they may cause data loss or re-interpretation of a value.

When the compiler detects an unsafe conversion, it issues either an error or a warning. An error stops
compilation; a warning allows compilation to continue but indicates a possible error in the code. However, even if
your program compiles without warnings, it still may contain code that leads to implicit type conversions that
produce incorrect results. Type errors can also be introduced by explicit conversions, or casts, in the code.

When an expression contains operands of different built-in types, and no explicit casts are present, the compiler
uses built-in standard conversions to convert one of the operands so that the types match. The compiler tries the
conversions in a well-defined sequence until one succeeds. If the selected conversion is a promotion, the compiler
does not issue a warning. If the conversion is a narrowing, the compiler issues a warning about possible data loss.
Whether actual data loss occurs depends on the actual values involved, but we recommend that you treat this
warning as an error. If a user-defined type is involved, then the compiler tries to use the conversions that you have
specified in the class definition. If it can't find an acceptable conversion, the compiler issues an error and does not
compile the program. For more information about the rules that govern the standard conversions, see Standard
Conversions. For more information about user-defined conversions, see User-Defined Conversions (C++/CLI).

In a widening conversion, a value in a smaller variable is assigned to a larger variable with no loss of data. Because
widening conversions are always safe, the compiler performs them silently and does not issue warnings. The
following conversions are widening conversions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/type-conversions-and-type-safety-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/user-defined-conversions-cpp-cli

Narrowing conversions (coercion)Narrowing conversions (coercion)

int i = INT_MAX + 1; //warning C4307:'+':integral constant overflow
wchar_t wch = 'A'; //OK
char c = wch; // warning C4244:'initializing':conversion from 'wchar_t'
 // to 'char', possible loss of data
unsigned char c2 = 0xfffe; //warning C4305:'initializing':truncation from
 // 'int' to 'unsigned char'
int j = 1.9f; // warning C4244:'initializing':conversion from 'float' to
 // 'int', possible loss of data
int k = 7.7; // warning C4244:'initializing':conversion from 'double' to
 // 'int', possible loss of data

Signed - unsigned conversionsSigned - unsigned conversions

using namespace std;
unsigned short num = numeric_limits<unsigned short>::max(); // #include <limits>
short num2 = num;
cout << "unsigned val = " << num << " signed val = " << num2 << endl;
// Prints: unsigned val = 65535 signed val = -1

// Go the other way.
num2 = -1;
num = num2;
cout << "unsigned val = " << num << " signed val = " << num2 << endl;
// Prints: unsigned val = 65535 signed val = -1

unsigned int u3 = 0 - 1;
cout << u3 << endl; // prints 4294967295

The compiler performs narrowing conversions implicitly, but it warns you about potential data loss. Take these
warnings very seriously. If you are certain that no data loss will occur because the values in the larger variable will
always fit in the smaller variable, then add an explicit cast so that the compiler will no longer issue a warning. If
you are not sure that the conversion is safe, add to your code some kind of runtime check to handle possible data
loss so that it does not cause your program to produce incorrect results.

Any conversion from a floating point type to an integral type is a narrowing conversion because the fractional
portion of the floating point value is discarded and lost.

The following code example shows some implicit narrowing conversions, and the warnings that the compiler
issues for them.

A signed integral type and its unsigned counterpart are always the same size, but they differ in how the bit pattern
is interpreted for value transformation. The following code example demonstrates what happens when the same
bit pattern is interpreted as a signed value and as an unsigned value. The bit pattern stored in both num and num2

never changes from what is shown in the earlier illustration.

Notice that values are reinterpreted in both directions. If your program produces odd results in which the sign of
the value seems inverted from what you expect, look for implicit conversions between signed and unsigned
integral types. In the following example, the result of the expression (0 - 1) is implicitly converted from int to
unsigned int when it's stored in num . This causes the bit pattern to be reinterpreted.

The compiler does not warn about implicit conversions between signed and unsigned integral types. Therefore,
we recommend that you avoid signed-to-unsigned conversions altogether. If you can't avoid them, then add to
your code a runtime check to detect whether the value being converted is greater than or equal to zero and less
than or equal to the maximum value of the signed type. Values in this range will transfer from signed to unsigned
or from unsigned to signed without being reinterpreted.

Pointer conversionsPointer conversions

char* s = "Help" + 3;

Explicit conversions (casts)

(int) x; // old-style cast, old-style syntax
int(x); // old-style cast, functional syntax

In many expressions, a C-style array is implicitly converted to a pointer to the first element in the array, and
constant conversions can happen silently. Although this is convenient, it's also potentially error-prone. For
example, the following badly designed code example seems nonsensical, and yet it will compile and produces a
result of 'p'. First, the "Help" string constant literal is converted to a char* that points to the first element of the
array; that pointer is then incremented by three elements so that it now points to the last element 'p'.

By using a cast operation, you can instruct the compiler to convert a value of one type to another type. The
compiler will raise an error in some cases if the two types are completely unrelated, but in other cases it will not
raise an error even if the operation is not type-safe. Use casts sparingly because any conversion from one type to
another is a potential source of program error. However, casts are sometimes required, and not all casts are
equally dangerous. One effective use of a cast is when your code performs a narrowing conversion and you know
that the conversion is not causing your program to produce incorrect results. In effect, this tells the compiler that
you know what you are doing and to stop bothering you with warnings about it. Another use is to cast from a
pointer-to-derived class to a pointer-to-base class. Another use is to cast away the const-ness of a variable to pass
it to a function that requires a non-const argument. Most of these cast operations involve some risk.

In C-style programming, the same C-style cast operator is used for all kinds of casts.

The C-style cast operator is identical to the call operator () and is therefore inconspicuous in code and easy to
overlook. Both are bad because they're difficult to recognize at a glance or search for, and they're disparate
enough to invoke any combination of static, const, and reinterpret_cast. Figuring out what an old-style cast
actually does can be difficult and error-prone. For all these reasons, when a cast is required, we recommend that
you use one of the following C++ cast operators, which in some cases are significantly more type-safe, and which
express much more explicitly the programming intent:

double d = 1.58947;
int i = d; // warning C4244 possible loss of data
int j = static_cast<int>(d); // No warning.
string s = static_cast<string>(d); // Error C2440:cannot convert from
 // double to std:string

// No error but not necessarily safe.
Base* b = new Base();
Derived* d2 = static_cast<Derived*>(b);

static_cast, for casts that are checked at compile time only. static_cast returns an error if the compiler
detects that you are trying to cast between types that are completely incompatible. You can also use it to
cast between pointer-to-base and pointer-to-derived, but the compiler can't always tell whether such
conversions will be safe at runtime.

For more information, see static_cast.

dynamic_cast, for safe, runtime-checked casts of pointer-to-base to pointer-to-derived. A dynamic_cast
is safer than a static_cast for downcasts, but the runtime check incurs some overhead.

See also

Base* b = new Base();

// Run-time check to determine whether b is actually a Derived*
Derived* d3 = dynamic_cast<Derived*>(b);

// If b was originally a Derived*, then d3 is a valid pointer.
if(d3)
{
 // Safe to call Derived method.
 cout << d3->DoSomethingMore() << endl;
}
else
{
 // Run-time check failed.
 cout << "d3 is null" << endl;
}

//Output: d3 is null;

void Func(double& d) { ... }
void ConstCast()
{
 const double pi = 3.14;
 Func(const_cast<double&>(pi)); //No error.
}

NOTENOTE

const char* str = "hello";
int i = static_cast<int>(str);//error C2440: 'static_cast' : cannot
 // convert from 'const char *' to 'int'
int j = (int)str; // C-style cast. Did the programmer really intend
 // to do this?
int k = reinterpret_cast<int>(str);// Programming intent is clear.
 // However, it is not 64-bit safe.

For more information, see dynamic_cast.

const_cast, for casting away the const-ness of a variable, or converting a non-const variable to be const.
Casting away const-ness by using this operator is just as error-prone as is using a C-style cast, except that
with const-cast you are less likely to perform the cast accidentally. Sometimes you have to cast away the
const-ness of a variable, for example, to pass a const variable to a function that takes a non-const
parameter. The following example shows how to do this.

For more information, see const_cast.

reinterpret_cast, for casts between unrelated types such as pointer to int.

This cast operator is not used as often as the others, and it's not guaranteed to be portable to other compilers.

The following example illustrates how reinterpret_cast differs from static_cast.

For more information, see reinterpret_cast Operator.

C++ Type System (Modern C++)
Welcome Back to C++ (Modern C++)

C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Uniform Initialization and Delegating Constructors
10/31/2018 • 5 minutes to read • Edit Online

Brace Initialization

#include <string>
using namespace std;

class class_a {
public:
 class_a() {}
 class_a(string str) : m_string{ str } {}
 class_a(string str, double dbl) : m_string{ str }, m_double{ dbl } {}
double m_double;
string m_string;
};

int main()
{
 class_a c1{};
 class_a c1_1;

 class_a c2{ "ww" };
 class_a c2_1("xx");

 // order of parameters is the same as the constructor
 class_a c3{ "yy", 4.4 };
 class_a c3_1("zz", 5.5);
}

In modern C++, you can use brace initialization for any type, without the equals sign. Also, you can use delegating
constructors to simplify your code when you have multiple constructors that perform similar work.

You can use brace initialization for any class, struct, or union. If a type has a default constructor, either implicitly or
explicitly declared, you can use default brace initialization (with empty braces). For example, the following class
may be initialized by using both default and non-default brace initialization:

If a class has non-default constructors, the order in which class members appear in the brace initializer is the order
in which the corresponding parameters appear in the constructor, not the order in which the members are declared
(as with class_a in the previous example). Otherwise, if the type has no declared constructor, the order in which
the members appear in the brace initializer is the same as the order in which they are declared; in this case, you can
initialize as many of the public members as you wish, but you cannot skip any member. The following example
shows the order that's used in brace initialization when there is no declared constructor :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/uniform-initialization-and-delegating-constructors.md

class class_d {
public:
 float m_float;
 string m_string;
 wchar_t m_char;
};

int main()
{
 class_d d1{};
 class_d d1{ 4.5 };
 class_d d2{ 4.5, "string" };
 class_d d3{ 4.5, "string", 'c' };

 class_d d4{ "string", 'c' }; // compiler error
 class_d d5("string", 'c', 2.0 }; // compiler error
}

class class_f {
public:
 class_f() = delete;
 class_f(string x): m_string { x } {}
 string m_string;
};
int main()
{
 class_f cf{ "hello" };
 class_f cf1{}; // compiler error C2280: attempting to reference a deleted function
}

class_d* cf = new class_d{4.5};
kr->add_d({ 4.5 });
return { 4.5 };

initializer_list Constructors

initializer_list<int> int_list{5, 6, 7};

IMPORTANTIMPORTANT

If the default constructor is explicitly declared but marked as deleted, default brace initialization cannot be used:

You can use brace initialization anywhere you would typically do initialization—for example, as a function
parameter or a return value, or with the new keyword:

The initializer_list Class represents a list of objects of a specified type that can be used in a constructor, and in other
contexts. You can construct an initializer_list by using brace initialization:

To use this class, you must include the <initializer_list> header.

An initializer_list can be copied. In this case, the members of the new list are references to the members of the
original list:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list

initializer_list<int> ilist1{ 5, 6, 7 };
initializer_list<int> ilist2(ilist1);
if (ilist1.begin() == ilist2.begin())
 cout << "yes" << endl; // expect "yes"

vector<int> v1{ 9, 10, 11 };
map<int, string> m1{ {1, "a"}, {2, "b"} };
string s{ 'a', 'b', 'c' };
regex rgx{'x', 'y', 'z'};

Delegating Constructors

class class_c {
public:
 int max;
 int min;
 int middle;

 class_c() {}
 class_c(int my_max) {
 max = my_max > 0 ? my_max : 10;
 }
 class_c(int my_max, int my_min) {
 max = my_max > 0 ? my_max : 10;
 min = my_min > 0 && my_min < max ? my_min : 1;
 }
 class_c(int my_max, int my_min, int my_middle) {
 max = my_max > 0 ? my_max : 10;
 min = my_min > 0 && my_min < max ? my_min : 1;
 middle = my_middle < max && my_middle > min ? my_middle : 5;
 }
};

The standard library container classes, and also string , wstring , and regex , have initializer_list

constructors. The following examples show how to do brace initialization with these constructors:

Many classes have multiple constructors that do similar things—for example, validate parameters:

You could reduce the repetitive code by adding a function that does all of the validation, but the code for class_c

would be easier to understand and maintain if one constructor could delegate some of the work to another one. To
add delegating constructors, use the constructor (. . .) : constructor (. . .) syntax:

class class_c {
public:
 int max;
 int min;
 int middle;

 class_c(int my_max) {
 max = my_max > 0 ? my_max : 10;
 }
 class_c(int my_max, int my_min) : class_c(my_max) {
 min = my_min > 0 && my_min < max ? my_min : 1;
 }
 class_c(int my_max, int my_min, int my_middle) : class_c (my_max, my_min){
 middle = my_middle < max && my_middle > min ? my_middle : 5;
}
};
int main() {

 class_c c1{ 1, 3, 2 };
}

class class_a {
public:
 class_a() {}
 // member initialization here, no delegate
 class_a(string str) : m_string{ str } {}

 //can’t do member initialization here
 // error C3511: a call to a delegating constructor shall be the only member-initializer
 class_a(string str, double dbl) : class_a(str) , m_double{ dbl } {}

 // only member assignment
 class_a(string str, double dbl) : class_a(str) { m_double = dbl; }
 double m_double{ 1.0 };
 string m_string;
};

class class_a {
public:
 class_a() {}
 class_a(string str) : m_string{ str } {}
 class_a(string str, double dbl) : class_a(str) { m_double = dbl; }
 double m_double{ 1.0 };
 string m_string{ m_double < 10.0 ? "alpha" : "beta" };
};

int main() {
 class_a a{ "hello", 2.0 }; //expect a.m_double == 2.0, a.m_string == "hello"
 int y = 4;
}

As you step through the previous example, notice that the constructor class_c(int, int, int) first calls the
constructor class_c(int, int) , which in turn calls class_c(int) . Each of the constructors performs only the work
that is not performed by the other constructors.

The first constructor that's called initializes the object so that all of its members are initialized at that point. You
can’t do member initialization in a constructor that delegates to another constructor, as shown here:

The next example shows the use of non-static data-member initializers. Notice that if a constructor also initializes a
given data member, the member initializer is overridden:

class class_f{
public:
 int max;
 int min;

 // don't do this
 class_f() : class_f(6, 3){ }
 class_f(int my_max, int my_min) : class_f() { }
};

The constructor delegation syntax doesn't prevent the accidental creation of constructor recursion—Constructor1
calls Constructor2 which calls Constructor1—and no errors are thrown until there is a stack overflow. It's your
responsibility to avoid cycles.

Object Lifetime And Resource Management (Modern
C++)
1/11/2019 • 4 minutes to read • Edit Online

Concepts

Heap-based lifetimeHeap-based lifetime

Unlike managed languages, C++ doesn’t have garbage collection (GC), which automatically releases no-longer-
used memory resources as a program runs. In C++, resource management is directly related to object lifetime.
This document describes the factors that affect object lifetime in C++ and how to manage it.

C++ doesn’t have GC primarily because it doesn't handle non-memory resources. Only deterministic destructors
like those in C++ can handle memory and non-memory resources equally. GC also has other problems, like higher
overhead in memory and CPU consumption, and locality. But universality is a fundamental problem that can't be
mitigated through clever optimizations.

An important thing in object-lifetime management is the encapsulation—whoever's using an object doesn't have
to know what resources that object owns, or how to get rid of them, or even whether it owns any resources at all. It
just has to destroy the object. The C++ core language is designed to ensure that objects are destroyed at the
correct times, that is, as blocks are exited, in reverse order of construction. When an object is destroyed, its bases
and members are destroyed in a particular order. The language automatically destroys objects, unless you do
special things like heap allocation or placement new. For example, smart pointers like unique_ptr and shared_ptr ,
and C++ Standard Library containers like vector , encapsulate new/delete and new[] / delete[] in objects,
which have destructors. That's why it's so important to use smart pointers and C++ Standard Library containers.

Another important concept in lifetime management: destructors. Destructors encapsulate resource release. (The
commonly used mnemonic is RRID, Resource Release Is Destruction.) A resource is something that you get from
"the system" and have to give back later. Memory is the most common resource, but there are also files, sockets,
textures, and other non-memory resources. "Owning" a resource means you can use it when you need it but you
also have to release it when you're finished with it. When an object is destroyed, its destructor releases the
resources that it owned.

The final concept is the DAG (Directed Acyclic Graph). The structure of ownership in a program forms a DAG. No
object can own itself—that's not only impossible but also inherently meaningless. But two objects can share
ownership of a third object. Several kinds of links are possible in a DAG like this: A is a member of B (B owns A), C
stores a vector<D> (C owns each D element), E stores a shared_ptr<F> (E shares ownership of F, possibly with
other objects), and so forth. As long as there are no cycles and every link in the DAG is represented by an object
that has a destructor (instead of a raw pointer, handle, or other mechanism), then resource leaks are impossible
because the language prevents them. Resources are released immediately after they're no longer needed, without a
garbage collector running. The lifetime tracking is overhead-free for stack scope, bases, members, and related
cases, and inexpensive for shared_ptr .

For heap object lifetime, use smart pointers. Use shared_ptr and make_shared as the default pointer and allocator.
Use weak_ptr to break cycles, do caching, and observe objects without affecting or assuming anything about their
lifetimes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/object-lifetime-and-resource-management-modern-cpp.md

void func() {

auto p = make_shared<widget>(); // no leak, and exception safe
...
p->draw();

} // no delete required, out-of-scope triggers smart pointer destructor

unique_ptr<widget> p(new widget());

class node {
 ...
 vector<unique_ptr<node>> children; // node owns children
 node* parent; // node observes parent, which is not a concern
 ...
};
node::node() : parent(...) { children.emplace_back(new node(...)); }

Stack-based lifetimeStack-based lifetime

class widget {
private:
 gadget g; // lifetime automatically tied to enclosing object
public:
 void draw();
};

void functionUsingWidget () {
 widget w; // lifetime automatically tied to enclosing scope
 // constructs w, including the w.g gadget member
 // ...
 w.draw();
 // ...
} // automatic destruction and deallocation for w and w.g
 // automatic exception safety,
 // as if "finally { w.dispose(); w.g.dispose(); }"

Use unique_ptr for unique ownership, for example, in the pimpl idiom. (See Pimpl For Compile-Time
Encapsulation.) Make a unique_ptr the primary target of all explicit new expressions.

You can use raw pointers for non-ownership and observation. A non-owning pointer may dangle, but it can’t leak.

When performance optimization is required, you might have to use well-encapsulated owning pointers and explicit
calls to delete. An example is when you implement your own low-level data structure.

In modern C++, stack-based scope is a powerful way to write robust code because it combines automatic stack
lifetime and data member lifetime with high efficiency—lifetime tracking is essentially free of overhead. Heap
object lifetime requires diligent manual management and can be the source of resource leaks and inefficiencies,
especially when you are working with raw pointers. Consider this code, which demonstrates stack-based scope:

Use static lifetime sparingly (global static, function local static) because problems can arise. What happens when
the constructor of a global object throws an exception? Typically, the app faults in a way that can be difficult to
debug. Construction order is problematic for static lifetime objects, and is not concurrency-safe. Not only is object
construction a problem, destruction order can be complex, especially where polymorphism is involved. Even if your
object or variable isn’t polymorphic and doesn't have complex construction/destruction ordering, there’s still the
issue of thread-safe concurrency. A multithreaded app can’t safely modify the data in static objects without having
thread-local storage, resource locks, and other special precautions.

See also
Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Objects Own Resources (RAII)
1/11/2019 • 2 minutes to read • Edit Online

Example

void f() {
 unique_ptr<widget> p(new widget());
 my_class x(new widget());
 // ...
} // automatic destruction and deallocation for both widget objects
 // automatic exception safety, as if "finally { p->dispose(); x.w.dispose(); }"

void g() {
 other_class y(OpenFile());
 // ...
} // automatic closing and release for file resource
 // automatic exception safety, as if "finally { y.file.dispose(); }"

See also

Make sure that objects own resources. This principle is also known as “resource acquisition is initialization” or
“RAII.”

Pass every “new” object as a constructor argument to another named object that owns it (almost always
unique_ptr).

Always immediately pass any new resource to another object that owns it.

Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/objects-own-resources-raii.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Smart Pointers (Modern C++)
1/11/2019 • 7 minutes to read • Edit Online

Uses for smart pointers

void UseRawPointer()
{
 // Using a raw pointer -- not recommended.
 Song* pSong = new Song(L"Nothing on You", L"Bruno Mars");

 // Use pSong...

 // Don't forget to delete!
 delete pSong;
}

void UseSmartPointer()
{
 // Declare a smart pointer on stack and pass it the raw pointer.
 unique_ptr<Song> song2(new Song(L"Nothing on You", L"Bruno Mars"));

 // Use song2...
 wstring s = song2->duration_;
 //...

} // song2 is deleted automatically here.

In modern C++ programming, the Standard Library includes smart pointers, which are used to help ensure that
programs are free of memory and resource leaks and are exception-safe.

Smart pointers are defined in the std namespace in the <memory> header file. They are crucial to the RAII or
Resource Acquisition Is Initialization programming idiom. The main goal of this idiom is to ensure that resource
acquisition occurs at the same time that the object is initialized, so that all resources for the object are created
and made ready in one line of code. In practical terms, the main principle of RAII is to give ownership of any
heap-allocated resource—for example, dynamically-allocated memory or system object handles—to a stack-
allocated object whose destructor contains the code to delete or free the resource and also any associated
cleanup code.

In most cases, when you initialize a raw pointer or resource handle to point to an actual resource, pass the
pointer to a smart pointer immediately. In modern C++, raw pointers are only used in small code blocks of
limited scope, loops, or helper functions where performance is critical and there is no chance of confusion about
ownership.

The following example compares a raw pointer declaration to a smart pointer declaration.

As shown in the example, a smart pointer is a class template that you declare on the stack, and initialize by using
a raw pointer that points to a heap-allocated object. After the smart pointer is initialized, it owns the raw pointer.
This means that the smart pointer is responsible for deleting the memory that the raw pointer specifies. The
smart pointer destructor contains the call to delete, and because the smart pointer is declared on the stack, its
destructor is invoked when the smart pointer goes out of scope, even if an exception is thrown somewhere
further up the stack.

Access the encapsulated pointer by using the familiar pointer operators, -> and * , which the smart pointer

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/smart-pointers-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory

IMPORTANTIMPORTANT

class LargeObject
{
public:
 void DoSomething(){}
};

void ProcessLargeObject(const LargeObject& lo){}
void SmartPointerDemo()
{
 // Create the object and pass it to a smart pointer
 std::unique_ptr<LargeObject> pLarge(new LargeObject());

 //Call a method on the object
 pLarge->DoSomething();

 // Pass a reference to a method.
 ProcessLargeObject(*pLarge);

} //pLarge is deleted automatically when function block goes out of scope.

class overloads to return the encapsulated raw pointer.

The C++ smart pointer idiom resembles object creation in languages such as C#: you create the object and then
let the system take care of deleting it at the correct time. The difference is that no separate garbage collector runs
in the background; memory is managed through the standard C++ scoping rules so that the runtime
environment is faster and more efficient.

Always create smart pointers on a separate line of code, never in a parameter list, so that a subtle resource leak won't
occur due to certain parameter list allocation rules.

The following example shows how a unique_ptr smart pointer type from the C++ Standard Library could be
used to encapsulate a pointer to a large object.

The example demonstrates the following essential steps for using smart pointers.

1. Declare the smart pointer as an automatic (local) variable. (Do not use the new or malloc expression on
the smart pointer itself.)

2. In the type parameter, specify the pointed-to type of the encapsulated pointer.

3. Pass a raw pointer to a new-ed object in the smart pointer constructor. (Some utility functions or smart
pointer constructors do this for you.)

4. Use the overloaded -> and * operators to access the object.

5. Let the smart pointer delete the object.

Smart pointers are designed to be as efficient as possible both in terms of memory and performance. For
example, the only data member in unique_ptr is the encapsulated pointer. This means that unique_ptr is exactly
the same size as that pointer, either four bytes or eight bytes. Accessing the encapsulated pointer by using the
smart pointer overloaded * and -> operators is not significantly slower than accessing the raw pointers directly.

Smart pointers have their own member functions, which are accessed by using “dot” notation. For example,
some C++ Standard Library smart pointers have a reset member function that releases ownership of the pointer.
This is useful when you want to free the memory owned by the smart pointer before the smart pointer goes out
of scope, as shown in the following example.

void SmartPointerDemo2()
{
 // Create the object and pass it to a smart pointer
 std::unique_ptr<LargeObject> pLarge(new LargeObject());

 //Call a method on the object
 pLarge->DoSomething();

 // Free the memory before we exit function block.
 pLarge.reset();

 // Do some other work...

}

void SmartPointerDemo4()
{
 // Create the object and pass it to a smart pointer
 std::unique_ptr<LargeObject> pLarge(new LargeObject());

 //Call a method on the object
 pLarge->DoSomething();

 // Pass raw pointer to a legacy API
 LegacyLargeObjectFunction(pLarge.get());
}

Kinds of Smart Pointers

C++ Standard Library Smart PointersC++ Standard Library Smart Pointers

Smart pointers usually provide a way to access their raw pointer directly. C++ Standard Library smart pointers
have a get member function for this purpose, and CComPtr has a public p class member. By providing direct
access to the underlying pointer, you can use the smart pointer to manage memory in your own code and still
pass the raw pointer to code that does not support smart pointers.

The following section summarizes the different kinds of smart pointers that are available in the Windows
programming environment and describes when to use them.

Use these smart pointers as a first choice for encapsulating pointers to plain old C++ objects (POCO).

unique_ptr

Allows exactly one owner of the underlying pointer. Use as the default choice for POCO unless you know
for certain that you require a shared_ptr . Can be moved to a new owner, but not copied or shared.
Replaces auto_ptr , which is deprecated. Compare to boost::scoped_ptr . unique_ptr is small and
efficient; the size is one pointer and it supports rvalue references for fast insertion and retrieval from C++
Standard Library collections. Header file: <memory> . For more information, see How to: Create and Use
unique_ptr Instances and unique_ptr Class.

shared_ptr

Reference-counted smart pointer. Use when you want to assign one raw pointer to multiple owners, for
example, when you return a copy of a pointer from a container but want to keep the original. The raw
pointer is not deleted until all shared_ptr owners have gone out of scope or have otherwise given up
ownership. The size is two pointers; one for the object and one for the shared control block that contains
the reference count. Header file: <memory> . For more information, see How to: Create and Use shared_ptr
Instances and shared_ptr Class.

weak_ptr

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unique-ptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/shared-ptr-class

Smart Pointers for COM Objects (Classic Windows Programming)Smart Pointers for COM Objects (Classic Windows Programming)

ATL Smart Pointers for POCO ObjectsATL Smart Pointers for POCO Objects

See also

Special-case smart pointer for use in conjunction with shared_ptr . A weak_ptr provides access to an
object that is owned by one or more shared_ptr instances, but does not participate in reference counting.
Use when you want to observe an object, but do not require it to remain alive. Required in some cases to
break circular references between shared_ptr instances. Header file: <memory> . For more information, see
How to: Create and Use weak_ptr Instances and weak_ptr Class.

When you work with COM objects, wrap the interface pointers in an appropriate smart pointer type. The Active
Template Library (ATL) defines several smart pointers for various purposes. You can also use the _com_ptr_t

smart pointer type, which the compiler uses when it creates wrapper classes from .tlb files. It's the best choice
when you do not want to include the ATL header files.

CComPtr Class
Use this unless you cannot use ATL. Performs reference counting by using the AddRef and Release methods.
For more information, see How to: Create and Use CComPtr and CComQIPtr Instances.

CComQIPtr Class
Resembles CComPtr but also provides simplified syntax for calling QueryInterface on COM objects. For more
information, see How to: Create and Use CComPtr and CComQIPtr Instances.

CComHeapPtr Class
Smart pointer to objects that use CoTaskMemFree to free memory.

CComGITPtr Class
Smart pointer for interfaces that are obtained from the global interface table (GIT).

_com_ptr_t Class
Resembles CComQIPtr in functionality but does not depend on ATL headers.

In addition to smart pointers for COM objects, ATL also defines smart pointers, and collections of smart pointers,
for plain old C++ objects. In classic Windows programming, these types are useful alternatives to the C++
Standard Library collections, especially when code portability is not required or when you do not want to mix the
programming models of the C++ Standard Library and ATL.

CAutoPtr Class
Smart pointer that enforces unique ownership by transferring ownership on copy. Comparable to the deprecated
std::auto_ptr Class.

CHeapPtr Class
Smart pointer for objects that are allocated by using the C malloc function.

CAutoVectorPtr Class
Smart pointer for arrays that are allocated by using new[] .

CAutoPtrArray Class
Class that encapsulates an array of CAutoPtr elements.

CAutoPtrList Class
Class that encapsulates methods for manipulating a list of CAutoPtr nodes.

Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/weak-ptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/ccomptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/ccomqiptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/ccomheapptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/ccomgitptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/cautoptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/cheapptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/cautovectorptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/cautoptrarray-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/reference/cautoptrlist-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

How to: Create and Use unique_ptr Instances
1/11/2019 • 2 minutes to read • Edit Online

Example

unique_ptr<Song> SongFactory(const std::wstring& artist, const std::wstring& title)
{
 // Implicit move operation into the variable that stores the result.
 return make_unique<Song>(artist, title);
}

void MakeSongs()
{
 // Create a new unique_ptr with a new object.
 auto song = make_unique<Song>(L"Mr. Children", L"Namonaki Uta");

 // Use the unique_ptr.
 vector<wstring> titles = { song->title };

 // Move raw pointer from one unique_ptr to another.
 unique_ptr<Song> song2 = std::move(song);

 // Obtain unique_ptr from function that returns by value.
 auto song3 = SongFactory(L"Michael Jackson", L"Beat It");
}

A unique_ptr does not share its pointer. It cannot be copied to another unique_ptr , passed by value to a function,
or used in any C++ Standard Library algorithm that requires copies to be made. A unique_ptr can only be moved.
This means that the ownership of the memory resource is transferred to another unique_ptr and the original
unique_ptr no longer owns it. We recommend that you restrict an object to one owner, because multiple

ownership adds complexity to the program logic. Therefore, when you need a smart pointer for a plain C++ object,
use unique_ptr , and when you construct a unique_ptr , use the make_unique helper function.

The following diagram illustrates the transfer of ownership between two unique_ptr instances.

unique_ptr is defined in the <memory> header in the C++ Standard Library. It is exactly as efficient as a raw
pointer and can be used in C++ Standard Library containers. The addition of unique_ptr instances to C++
Standard Library containers is efficient because the move constructor of the unique_ptr eliminates the need for a
copy operation.

The following example shows how to create unique_ptr instances and pass them between functions.

These examples demonstrate this basic characteristic of unique_ptr : it can be moved, but not copied. "Moving"
transfers ownership to a new unique_ptr and resets the old unique_ptr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-create-and-use-unique-ptr-instances.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unique-ptr-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions

Example

void SongVector()
{
 vector<unique_ptr<Song>> songs;

 // Create a few new unique_ptr<Song> instances
 // and add them to vector using implicit move semantics.
 songs.push_back(make_unique<Song>(L"B'z", L"Juice"));
 songs.push_back(make_unique<Song>(L"Namie Amuro", L"Funky Town"));
 songs.push_back(make_unique<Song>(L"Kome Kome Club", L"Kimi ga Iru Dake de"));
 songs.push_back(make_unique<Song>(L"Ayumi Hamasaki", L"Poker Face"));

 // Pass by const reference when possible to avoid copying.
 for (const auto& song : songs)
 {
 wcout << L"Artist: " << song->artist << L" Title: " << song->title << endl;
 }
}

Example

class MyClass
{
private:
 // MyClass owns the unique_ptr.
 unique_ptr<ClassFactory> factory;
public:

 // Initialize by using make_unique with ClassFactory default constructor.
 MyClass() : factory (make_unique<ClassFactory>())
 {
 }

 void MakeClass()
 {
 factory->DoSomething();
 }
};

Example

The following example shows how to create unique_ptr instances and use them in a vector.

In the range for loop, notice that the unique_ptr is passed by reference. If you try to pass by value here, the
compiler will throw an error because the unique_ptr copy constructor is deleted.

The following example shows how to initialize a unique_ptr that is a class member.

You can use make_unique to create a unique_ptr to an array, but you cannot use make_unique to initialize the
array elements.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions

// Create a unique_ptr to an array of 5 integers.
auto p = make_unique<int[]>(5);

// Initialize the array.
for (int i = 0; i < 5; ++i)
{
 p[i] = i;
 wcout << p[i] << endl;
}

See also

For more examples, see make_unique.

Smart Pointers (Modern C++)
make_unique

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions

How to: Create and Use shared_ptr Instances
5/23/2019 • 6 minutes to read • Edit Online

Example setup

The shared_ptr type is a smart pointer in the C++ standard library that is designed for scenarios in which more
than one owner might have to manage the lifetime of the object in memory. After you initialize a shared_ptr you
can copy it, pass it by value in function arguments, and assign it to other shared_ptr instances. All the instances
point to the same object, and share access to one "control block" that increments and decrements the reference
count whenever a new shared_ptr is added, goes out of scope, or is reset. When the reference count reaches zero,
the control block deletes the memory resource and itself.

The following illustration shows several shared_ptr instances that point to one memory location.

The examples that follow all assume that you've included the required headers and declared the required types, as
shown here:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-create-and-use-shared-ptr-instances.md

// shared_ptr-examples.cpp
// The following examples assume these declarations:
#include <algorithm>
#include <iostream>
#include <memory>
#include <string>
#include <vector>

struct MediaAsset
{
 virtual ~MediaAsset() = default; // make it polymorphic
};

struct Song : public MediaAsset
{
 std::wstring artist;
 std::wstring title;
 Song(const std::wstring& artist_, const std::wstring& title_) :
 artist{ artist_ }, title{ title_ } {}
};

struct Photo : public MediaAsset
{
 std::wstring date;
 std::wstring location;
 std::wstring subject;
 Photo(
 const std::wstring& date_,
 const std::wstring& location_,
 const std::wstring& subject_) :
 date{ date_ }, location{ location_ }, subject{ subject_ } {}
};

using namespace std;

int main()
{
 // The examples go here, in order:
 // Example 1
 // Example 2
 // Example 3
 // Example 4
 // Example 6
}

Example 1
Whenever possible, use the make_shared function to create a shared_ptr when the memory resource is created
for the first time. make_shared is exception-safe. It uses the same call to allocate the memory for the control block
and the resource, which reduces the construction overhead. If you don't use make_shared , then you have to use an
explicit new expression to create the object before you pass it to the shared_ptr constructor. The following
example shows various ways to declare and initialize a shared_ptr together with a new object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions

// Use make_shared function when possible.
auto sp1 = make_shared<Song>(L"The Beatles", L"Im Happy Just to Dance With You");

// Ok, but slightly less efficient.
// Note: Using new expression as constructor argument
// creates no named variable for other code to access.
shared_ptr<Song> sp2(new Song(L"Lady Gaga", L"Just Dance"));

// When initialization must be separate from declaration, e.g. class members,
// initialize with nullptr to make your programming intent explicit.
shared_ptr<Song> sp5(nullptr);
//Equivalent to: shared_ptr<Song> sp5;
//...
sp5 = make_shared<Song>(L"Elton John", L"I'm Still Standing");

Example 2

//Initialize with copy constructor. Increments ref count.
auto sp3(sp2);

//Initialize via assignment. Increments ref count.
auto sp4 = sp2;

//Initialize with nullptr. sp7 is empty.
shared_ptr<Song> sp7(nullptr);

// Initialize with another shared_ptr. sp1 and sp2
// swap pointers as well as ref counts.
sp1.swap(sp2);

Example 3

vector<shared_ptr<Song>> v {
 make_shared<Song>(L"Bob Dylan", L"The Times They Are A Changing"),
 make_shared<Song>(L"Aretha Franklin", L"Bridge Over Troubled Water"),
 make_shared<Song>(L"Thalía", L"Entre El Mar y Una Estrella")
};

vector<shared_ptr<Song>> v2;
remove_copy_if(v.begin(), v.end(), back_inserter(v2), [] (shared_ptr<Song> s)
{
 return s->artist.compare(L"Bob Dylan") == 0;
});

for (const auto& s : v2)
{
 wcout << s->artist << L":" << s->title << endl;
}

The following example shows how to declare and initialize shared_ptr instances that take on shared ownership of
an object that has already been allocated by another shared_ptr . Assume that sp2 is an initialized shared_ptr .

shared_ptr is also helpful in C++ Standard Library containers when you're using algorithms that copy elements.
You can wrap elements in a shared_ptr , and then copy it into other containers with the understanding that the
underlying memory is valid as long as you need it, and no longer. The following example shows how to use the
replace_copy_if algorithm on shared_ptr instances in a vector.

Example 4

vector<shared_ptr<MediaAsset>> assets {
 make_shared<Song>(L"Himesh Reshammiya", L"Tera Surroor"),
 make_shared<Song>(L"Penaz Masani", L"Tu Dil De De"),
 make_shared<Photo>(L"2011-04-06", L"Redmond, WA", L"Soccer field at Microsoft.")
};

vector<shared_ptr<MediaAsset>> photos;

copy_if(assets.begin(), assets.end(), back_inserter(photos), [] (shared_ptr<MediaAsset> p) -> bool
{
 // Use dynamic_pointer_cast to test whether
 // element is a shared_ptr<Photo>.
 shared_ptr<Photo> temp = dynamic_pointer_cast<Photo>(p);
 return temp.get() != nullptr;
});

for (const auto& p : photos)
{
 // We know that the photos vector contains only
 // shared_ptr<Photo> objects, so use static_cast.
 wcout << "Photo location: " << (static_pointer_cast<Photo>(p))->location << endl;
}

Example 5

You can use dynamic_pointer_cast , static_pointer_cast , and const_pointer_cast to cast a shared_ptr . These
functions resemble the dynamic_cast , static_cast , and const_cast operators. The following example shows how
to test the derived type of each element in a vector of shared_ptr of base classes, and then copy the elements and
display information about them.

You can pass a shared_ptr to another function in the following ways:

Pass the shared_ptr by value. This invokes the copy constructor, increments the reference count, and makes
the callee an owner. There's a small amount of overhead in this operation, which may be significant
depending on how many shared_ptr objects you're passing. Use this option when the implied or explicit
code contract between the caller and callee requires that the callee be an owner.

Pass the shared_ptr by reference or const reference. In this case, the reference count isn't incremented, and
the callee can access the pointer as long as the caller doesn't go out of scope. Or, the callee can decide to
create a shared_ptr based on the reference, and become a shared owner. Use this option when the caller
has no knowledge of the callee, or when you must pass a shared_ptr and want to avoid the copy operation
for performance reasons.

Pass the underlying pointer or a reference to the underlying object. This enables the callee to use the object,
but doesn't enable it to share ownership or extend the lifetime. If the callee creates a shared_ptr from the
raw pointer, the new shared_ptr is independent from the original, and doesn't control the underlying
resource. Use this option when the contract between the caller and callee clearly specifies that the caller
retains ownership of the shared_ptr lifetime.

When you're deciding how to pass a shared_ptr , determine whether the callee has to share ownership of
the underlying resource. An "owner" is an object or function that can keep the underlying resource alive for
as long as it needs it. If the caller has to guarantee that the callee can extend the life of the pointer beyond its
(the function's) lifetime, use the first option. If you don't care whether the callee extends the lifetime, then
pass by reference and let the callee copy it or not.

If you have to give a helper function access to the underlying pointer, and you know that the helper function

Example 6

// Initialize two separate raw pointers.
// Note that they contain the same values.
auto song1 = new Song(L"Village People", L"YMCA");
auto song2 = new Song(L"Village People", L"YMCA");

// Create two unrelated shared_ptrs.
shared_ptr<Song> p1(song1);
shared_ptr<Song> p2(song2);

// Unrelated shared_ptrs are never equal.
wcout << "p1 < p2 = " << std::boolalpha << (p1 < p2) << endl;
wcout << "p1 == p2 = " << std::boolalpha <<(p1 == p2) << endl;

// Related shared_ptr instances are always equal.
shared_ptr<Song> p3(p2);
wcout << "p3 == p2 = " << std::boolalpha << (p3 == p2) << endl;

See also

will just use the pointer and return before the calling function returns, then that function doesn't have to
share ownership of the underlying pointer. It just has to access the pointer within the lifetime of the caller's
shared_ptr . In this case, it's safe to pass the shared_ptr by reference, or pass the raw pointer or a reference

to the underlying object. Passing this way provides a small performance benefit, and may also help you
express your programming intent.

Sometimes, for example in a std:vector<shared_ptr<T>> , you may have to pass each shared_ptr to a
lambda expression body or named function object. If the lambda or function doesn't store the pointer, then
pass the shared_ptr by reference to avoid invoking the copy constructor for each element.

The following example shows how shared_ptr overloads various comparison operators to enable pointer
comparisons on the memory that is owned by the shared_ptr instances.

Smart Pointers (Modern C++)

How to: Create and Use weak_ptr Instances
1/11/2019 • 3 minutes to read • Edit Online

Example

#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

class Controller
{
public:
 int Num;
 wstring Status;
 vector<weak_ptr<Controller>> others;
 explicit Controller(int i) : Num(i) , Status(L"On")
 {
 wcout << L"Creating Controller" << Num << endl;
 }

 ~Controller()
 {
 wcout << L"Destroying Controller" << Num << endl;
 }

 // Demonstrates how to test whether the
 // pointed-to memory still exists or not.
 void CheckStatuses() const
 {
 for_each(others.begin(), others.end(), [] (weak_ptr<Controller> wp)

Sometimes an object must store a way to access the underlying object of a shared_ptr without causing the
reference count to be incremented. Typically, this situation occurs when you have cyclic references between
shared_ptr instances.

The best design is to avoid shared ownership of pointers whenever you can. However, if you must have shared
ownership of shared_ptr instances, avoid cyclic references between them. When cyclic references are unavoidable,
or even preferable for some reason, use weak_ptr to give one or more of the owners a weak reference to another
shared_ptr . By using a weak_ptr , you can create a shared_ptr that joins to an existing set of related instances, but

only if the underlying memory resource is still valid. A weak_ptr itself does not participate in the reference
counting, and therefore, it cannot prevent the reference count from going to zero. However, you can use a
weak_ptr to try to obtain a new copy of the shared_ptr with which it was initialized. If the memory has already

been deleted, a bad_weak_ptr exception is thrown. If the memory is still valid, the new shared pointer increments
the reference count and guarantees that the memory will be valid as long as the shared_ptr variable stays in
scope.

The following code example shows a case where weak_ptr is used to ensure proper deletion of objects that have
circular dependencies. As you examine the example, assume that it was created only after alternative solutions
were considered. The Controller objects represent some aspect of a machine process, and they operate
independently. Each controller must be able to query the status of the other controllers at any time, and each one
contains a private vector<weak_ptr<Controller>> for this purpose. Each vector contains a circular reference, and
therefore, weak_ptr instances are used instead of shared_ptr .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-create-and-use-weak-ptr-instances.md

 for_each(others.begin(), others.end(), [] (weak_ptr<Controller> wp)
 {
 try
 {
 auto p = wp.lock();
 wcout << L"Status of " << p->Num << " = " << p->Status << endl;
 }

 catch (bad_weak_ptr b)
 {
 wcout << L"Null object" << endl;
 }
 });
 }
};

void RunTest()
{
 vector<shared_ptr<Controller>> v {
 make_shared<Controller>(0),
 make_shared<Controller>(1),
 make_shared<Controller>(2),
 make_shared<Controller>(3),
 make_shared<Controller>(4),
 };

 // Each controller depends on all others not being deleted.
 // Give each controller a pointer to all the others.
 for (int i = 0 ; i < v.size(); ++i)
 {
 for_each(v.begin(), v.end(), [&v,i] (shared_ptr<Controller> p)
 {
 if(p->Num != i)
 {
 v[i]->others.push_back(weak_ptr<Controller>(p));
 wcout << L"push_back to v[" << i << "]: " << p->Num << endl;
 }
 });
 }

 for_each(v.begin(), v.end(), [](shared_ptr<Controller>& p)
 {
 wcout << L"use_count = " << p.use_count() << endl;
 p->CheckStatuses();
 });
}

int main()
{
 RunTest();
 wcout << L"Press any key" << endl;
 char ch;
 cin.getline(&ch, 1);
}

Creating Controller0
Creating Controller1
Creating Controller2
Creating Controller3
Creating Controller4
push_back to v[0]: 1
push_back to v[0]: 2
push_back to v[0]: 3
push_back to v[0]: 4
push_back to v[1]: 0
push_back to v[1]: 2
push_back to v[1]: 3
push_back to v[1]: 4
push_back to v[2]: 0
push_back to v[2]: 1
push_back to v[2]: 3
push_back to v[2]: 4
push_back to v[3]: 0
push_back to v[3]: 1
push_back to v[3]: 2
push_back to v[3]: 4
push_back to v[4]: 0
push_back to v[4]: 1
push_back to v[4]: 2
push_back to v[4]: 3
use_count = 1
Status of 1 = On
Status of 2 = On
Status of 3 = On
Status of 4 = On
use_count = 1
Status of 0 = On
Status of 2 = On
Status of 3 = On
Status of 4 = On
use_count = 1
Status of 0 = On
Status of 1 = On
Status of 3 = On
Status of 4 = On
use_count = 1
Status of 0 = O
nStatus of 1 = On
Status of 2 = On
Status of 4 = On
use_count = 1
Status of 0 = On
Status of 1 = On
Status of 2 = On
Status of 3 = On
Destroying Controller0
Destroying Controller1
Destroying Controller2
Destroying Controller3
Destroying Controller4
Press any key

See also

As an experiment, modify the vector others to be a vector<shared_ptr<Controller>> , and then in the output, notice
that no destructors are invoked when TestRun returns.

Smart Pointers (Modern C++)

How to: Create and Use CComPtr and CComQIPtr
Instances
1/11/2019 • 3 minutes to read • Edit Online

Example

In classic Windows programming, libraries are often implemented as COM objects (or more precisely, as COM
servers). Many Windows operating system components are implemented as COM servers, and many contributors
provide libraries in this form. For information about the basics of COM, see Component Object Model (COM).

When you instantiate a Component Object Model (COM) object, store the interface pointer in a COM smart
pointer, which performs the reference counting by using calls to AddRef and Release in the destructor. If you are
using the Active Template Library (ATL) or the Microsoft Foundation Class Library (MFC), then use the CComPtr

smart pointer. If you are not using ATL or MFC, then use _com_ptr_t . Because there is no COM equivalent to
std::unique_ptr , use these smart pointers for both single-owner and multiple-owner scenarios. Both CComPtr

and ComQIPtr support move operations that have rvalue references.

The following example shows how to use CComPtr to instantiate a COM object and obtain pointers to its
interfaces. Notice that the CComPtr::CoCreateInstance member function is used to create the COM object, instead
of the Win32 function that has the same name.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-create-and-use-ccomptr-and-ccomqiptr-instances.md
https://docs.microsoft.com/windows/desktop/com/component-object-model--com--portal

void CComPtrDemo()
{

 HRESULT hr = CoInitialize(NULL);

 // Declare the smart pointer.
 CComPtr<IGraphBuilder> pGraph;

 // Use its member function CoCreateInstance to
 // create the COM object and obtain the IGraphBuilder pointer.
 hr = pGraph.CoCreateInstance(CLSID_FilterGraph);
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Use the overloaded -> operator to call the interface methods.
 hr = pGraph->RenderFile(L"C:\\Users\\Public\\Music\\Sample Music\\Sleep Away.mp3", NULL);
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Declare a second smart pointer and use it to
 // obtain another interface from the object.
 CComPtr<IMediaControl> pControl;
 hr = pGraph->QueryInterface(IID_PPV_ARGS(&pControl));
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Obtain a third interface.
 CComPtr<IMediaEvent> pEvent;
 hr = pGraph->QueryInterface(IID_PPV_ARGS(&pEvent));
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Use the second interface.
 hr = pControl->Run();
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Use the third interface.
 long evCode = 0;
 pEvent->WaitForCompletion(INFINITE, &evCode);

 CoUninitialize();

 // Let the smart pointers do all reference counting.
}

Example

CComPtr and its relatives are part of the ATL and are defined in <atlcomcli.h>. _com_ptr_t is declared in
<comip.h>. The compiler creates specializations of _com_ptr_t when it generates wrapper classes for type
libraries.

ATL also provides CComQIPtr , which has a simpler syntax for querying a COM object to retrieve an additional
interface. However, we recommend CComPtr because it does everything that CComQIPtr can do and is
semantically more consistent with raw COM interface pointers. If you use a CComPtr to query for an interface, the
new interface pointer is placed in an out parameter. If the call fails, an HRESULT is returned, which is the typical
COM pattern. With CComQIPtr , the return value is the pointer itself, and if the call fails, the internal HRESULT
return value cannot be accessed. The following two lines show how the error handling mechanisms in CComPtr

and CComQIPtr differ.

// CComPtr with error handling:
CComPtr<IMediaControl> pControl;
hr = pGraph->QueryInterface(IID_PPV_ARGS(&pControl));
if(FAILED(hr)){ /*... handle hr error*/ }

// CComQIPtr with error handling
CComQIPtr<IMediaEvent> pEvent = pControl;
if(!pEvent){ /*... handle NULL pointer error*/ }

// Use the second interface.
hr = pControl->Run();
if(FAILED(hr)){ /*... handle hr error*/ }

Example

void COMAutomationSmartPointerDemo()
{

 CComPtr<IDispatch> pWord;
 CComQIPtr<IDispatch, &IID_IDispatch> pqi = pWord;
 CComDispatchDriver pDriver = pqi;

 HRESULT hr;
 _variant_t pOutVal;

 CoInitialize(NULL);
 hr = pWord.CoCreateInstance(L"Word.Application", NULL, CLSCTX_LOCAL_SERVER);
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Make Word visible.
 hr = pWord.PutPropertyByName(_bstr_t("Visible"), &_variant_t(1));
 if(FAILED(hr)){ /*... handle hr error*/ }

 // Get the Documents collection and store it in new CComPtr
 hr = pWord.GetPropertyByName(_bstr_t("Documents"), &pOutVal);
 if(FAILED(hr)){ /*... handle hr error*/ }

 CComPtr<IDispatch> pDocuments = pOutVal.pdispVal;

 // Use Documents to open a document
 hr = pDocuments.Invoke1 (_bstr_t("Open"),
&_variant_t("c:\\users\\public\\documents\\sometext.txt"),&pOutVal);
 if(FAILED(hr)){ /*... handle hr error*/ }

 CoUninitialize();
}

See also

CComPtr provides a specialization for IDispatch that enables it to store pointers to COM automation components
and invoke the methods on the interface by using late binding. CComDispatchDriver is a typedef for
CComQIPtr<IDispatch, &IIDIDispatch> , which is implicitly convertible to CComPtr<IDispatch> . Therefore, when any

of these three names appears in code, it is equivalent to CComPtr<IDispatch> . The following example shows how to
obtain a pointer to the Microsoft Word object model by using a CComPtr<IDispatch> .

Smart Pointers (Modern C++)

Pimpl For Compile-Time Encapsulation (Modern
C++)
1/11/2019 • 2 minutes to read • Edit Online

Why use pimpl?

Pimpl header
// my_class.h
class my_class {
 // ... all public and protected stuff goes here ...
private:
 class impl; unique_ptr<impl> pimpl; // opaque type here
};

Pimpl implementation

// my_class.cpp
class my_class::impl { // defined privately here
 // ... all private data and functions: all of these
 // can now change without recompiling callers ...
};
my_class::my_class(): pimpl(new impl)
{
 // ... set impl values ...
}

Best practices

See also

The pimpl idiom is a modern C++ technique to hide implementation, to minimize coupling, and to separate
interfaces. Pimpl is short for "pointer to implementation." You may already be familiar with the concept but know it
by other names like Cheshire Cat or Compiler Firewall idiom.

Here's how the pimpl idiom can improve the software development lifecycle:

Minimization of compilation dependencies.

Separation of interface and implementation.

Portability.

The pimpl idiom avoids rebuild cascades and brittle object layouts. It's well suited for (transitively) popular types.

Define the impl class in the .cpp file.

Consider whether to add support for non-throwing swap specialization.

Welcome Back to C++ (Modern C++)
C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/pimpl-for-compile-time-encapsulation-modern-cpp.md

C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Containers (Modern C++)
1/11/2019 • 2 minutes to read • Edit Online

vector<string> apples;
apples.push_back("Granny Smith");

map<string, string> apple_color;
// ...
apple_color["Granny Smith"] = "Green";

See also

By default, use vector as the preferred sequential container in C++. This is equivalent to List<T> in .NET
languages.

Use map (not unordered_map) as the default associative container. Use set, multimap, and multiset for degenerate
& multi cases.

When performance optimization is needed, consider using:

The array type when embedding is important, for example, as a class member.

Unordered associative containers such as unordered_map. These have lower per-element overhead and
constant-time lookup, but they can be harder to use correctly and efficiently.

Sorted vector . For more information, see Algorithms.

Don’t use C-style arrays. For older APIs that need direct access to the data, use accessor methods such as
f(vec.data(), vec.size()); instead.

For more information about containers, see C++ Standard Library Containers.

Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/containers-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/set-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/multimap-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/multiset-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unordered-map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/stl-containers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Algorithms (Modern C++)
1/11/2019 • 2 minutes to read • Edit Online

auto comp = [](const widget& w1, const widget& w2)
 { return w1.weight() < w2.weight(); }

sort(v.begin(), v.end(), comp);

auto i = lower_bound(v.begin(), v.end(), comp);

Loops

for (auto i = strings.begin(); i != strings.end(); ++i) {
 /* ... */
}

auto i = v.begin();

for (; i != v.end(); ++i) {
 if (*i > x && *i < y) break;
}

for_each(begin(strings), end(strings), [](string& s) {
 // ...
});

auto i = find_if(begin(v), end(v), [=](int i) { return i > x && i < y; });

Range-based for loopsRange-based for loops

For modern C++ programming, we recommend that you use the algorithms in the C++ Standard Library. Here
are some important examples:

for_each, which is the default traversal algorithm. (Also transform for not-in-place semantics.)

find_if, which is the default search algorithm.

sort, lower_bound, and the other default sorting and searching algorithms.

To write a comparator, use strict < and use named lambdas when you can.

When possible, use range-based for loops or algorithm calls, or both, instead of hand-written loops. copy,
transform, count_if, remove_if, and others like them are much better than handwritten loops because their
intent is obvious and they make it easier to write bug-free code. Also, many C++ Standard Library algorithms
have implementation optimizations that make them more efficient.

Instead of old C++ like this:

Use modern C++ like this:

The range-based for loop is a C++11 language feature, not a C++ Standard Library algorithm. But it deserves
mention in this discussion about loops. Range-based for loops are an extension of the for keyword and provide a
convenient and efficient way to write loops that iterate over a range of values. C++ Standard Library containers,
strings, and arrays are ready-made for range-based for loops. To enable this new iteration syntax for your user-

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/algorithms-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Random Numbers

See also

defined type, add the following support:

A begin method that returns an iterator to the beginning of the structure and an end method that returns
an iterator to the end of the structure.

Support in the iterator for these methods: operator*, operator!=, and operator++ (prefix version).

These methods can be either members or stand-alone functions.

It's no secret that the old CRT rand() function has many flaws, which have been discussed at length in the C++
community. In modern C++, you don't have to deal with those shortcomings—nor do you have to invent your
own uniformly distributed random number generator—because the tools for quickly and easily creating them are
available in the C++ Standard Library, as shown in <random>.

Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/random
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

String and I/O Formatting (Modern C++)
1/11/2019 • 2 minutes to read • Edit Online

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{
 ios state(nullptr);

 cout << "The answer in decimal is: " << 42 << endl;

 state.copyfmt(cout); // save current formatting
 cout << "In hex: 0x" // now load up a bunch of formatting modifiers
 << hex
 << uppercase
 << setw(8)
 << setfill('0')
 << 42 // the actual value we wanted to print out
 << endl;
 cout.copyfmt(state); // restore previous formatting
}

 string s = str(format("%2% %2% %1%\n") % "world" % "hello");
 // s contains "hello hello world"

 for(auto i = 0; i < names.size(); ++i)
 cout << format("%1% %2% %|40t|%3%\n") % first[i] % last[i] % tel[i];
 // Georges Benjamin Clemenceau +33 (0) 123 456 789
 // Jean de Lattre de Tassigny +33 (0) 987 654 321

C++ iostreams are capable of formatted string I/O. For example, the following code shows how to set cout to
format an integer to output in hexadecimal, first saving off the current state and re-setting afterwards, because
once state formatting is passed to cout, it stays that way until changed, not just for the one line of code.

This can be entirely too cumbersome in many cases. As an alternative, you can use Boost.Format from the Boost
C++ libraries, even though it’s nonstandard. You can download any Boost library from the Boost website.

Some advantages of Boost.Format are:

Safe: Type-safe, and throws an exception for errors—for example, the specification of too few or too many
items.

Extensible: Works for any type that can be streamed.

Convenient: Standard Posix and similar format strings.

Although Boost.Format is built on C++ iostreams, which are safe and extensible, they aren't performance-
optimized. When you require performance optimization, consider C printf and sprintf, which are fast and easy to
use. However, they are not extensible or safe from vulnerabilities. (Safe versions exist, but they incur a slight
performance penalty. For more information, see printf_s, _printf_s_l, wprintf_s, _wprintf_s_l and sprintf_s,
_sprintf_s_l, swprintf_s, _swprintf_s_l).

The following code demonstrates some of the Boost formatting features.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/string-and-i-o-formatting-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iostream
http://www.boost.org/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iostream-programming
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/printf-printf-l-wprintf-wprintf-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sprintf-sprintf-l-swprintf-swprintf-l-swprintf-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/printf-s-printf-s-l-wprintf-s-wprintf-s-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sprintf-s-sprintf-s-l-swprintf-s-swprintf-s-l

See also
Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library
<iostream>
<limits>
<iomanip>

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iostream
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/limits
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iomanip

Errors and Exception Handling (Modern C++)
5/7/2019 • 6 minutes to read • Edit Online

In modern C++, in most scenarios, the preferred way to report and handle both logic errors and runtime errors is
to use exceptions. This is especially true when the stack might contain several function calls between the function
that detects the error and the function that has the context to know how to handle it. Exceptions provide a formal,
well-defined way for code that detects errors to pass the information up the call stack.

Program errors are generally divided into two categories: logic errors that are caused by programming mistakes,
for example, an "index out of range" error, and runtime errors that are beyond the control of programmer, for
example, a "network service unavailable" error. In C-style programming and in COM, error reporting is managed
either by returning a value that represents an error code or a status code for a particular function, or by setting a
global variable that the caller may optionally retrieve after every function call to see whether errors were reported.
For example, COM programming uses the HRESULT return value to communicate errors to the caller, and the
Win32 API has the GetLastError function to retrieve the last error that was reported by the call stack. In both of
these cases, it's up to the caller to recognize the code and respond to it appropriately. If the caller doesn't explicitly
handle the error code, the program might crash without warning, or continue to execute with bad data and
produce incorrect results.

Exceptions are preferred in modern C++ for the following reasons:

An exception forces calling code to recognize an error condition and handle it. Unhandled exceptions stop
program execution.

An exception jumps to the point in the call stack that can handle the error. Intermediate functions can let the
exception propagate. They do not have to coordinate with other layers.

The exception stack-unwinding mechanism destroys all objects in scope according to well-defined rules
after an exception is thrown.

An exception enables a clean separation between the code that detects the error and the code that handles
the error.

The following simplified example shows the necessary syntax for throwing and catching exceptions in C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/errors-and-exception-handling-modern-cpp.md

#include <stdexcept>
#include <limits>
#include <iostream>

using namespace std;

void MyFunc(int c)
{
 if (c > numeric_limits< char> ::max())
 throw invalid_argument("MyFunc argument too large.");
 //...
}

int main()
{
 try
 {
 MyFunc(256); //cause an exception to throw
 }

 catch (invalid_argument& e)
 {
 cerr << e.what() << endl;
 return -1;
 }
 //...
 return 0;
}

Basic guidelines

Exceptions in C++ resemble those in languages such as C# and Java. In the try block, if an exception is thrown it
will be caught by the first associated catch block whose type matches that of the exception. In other words,
execution jumps from the throw statement to the catch statement. If no usable catch block is found,
std::terminate is invoked and the program exits. In C++, any type may be thrown; however, we recommend that

you throw a type that derives directly or indirectly from std::exception . In the previous example, the exception
type, invalid_argument, is defined in the standard library in the <stdexcept> header file. C++ does not provide,
and does not require, a finally block to make sure that all resources are released if an exception is thrown. The
resource acquisition is initialization (RAII) idiom, which uses smart pointers, provides the required functionality for
resource cleanup. For more information, see How to: Design for Exception Safety. For information about the C++
stack-unwinding mechanism, see Exceptions and Stack Unwinding.

Robust error handling is challenging in any programming language. Although exceptions provide several features
that support good error handling, they can't do all the work for you. To realize the benefits of the exception
mechanism, keep exceptions in mind as you design your code.

Use asserts to check for errors that should never occur. Use exceptions to check for errors that might occur,
for example, errors in input validation on parameters of public functions. For more information, see the
section titled Exceptions vs. Assertions.

Use exceptions when the code that handles the error might be separated from the code that detects the
error by one or more intervening function calls. Consider whether to use error codes instead in
performance-critical loops when code that handles the error is tightly-coupled to the code that detects it.

For every function that might throw or propagate an exception, provide one of the three exception
guarantees: the strong guarantee, the basic guarantee, or the nothrow (noexcept) guarantee. For more
information, see How to: Design for Exception Safety.

Throw exceptions by value, catch them by reference. Don’t catch what you can't handle.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/invalid-argument-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/stdexcept

Exceptions and performance

Exceptions vs. assertions

C++ exceptions versus Windows SEH exceptions

Exception specifications and noexcept

See also

Don't use exception specifications, which are deprecated in C++11. For more information, see the section
titled Exception specifications and noexcept.

Use standard library exception types when they apply. Derive custom exception types from the exception
Class hierarchy.

Don't allow exceptions to escape from destructors or memory-deallocation functions.

The exception mechanism has a very minimal performance cost if no exception is thrown. If an exception is
thrown, the cost of the stack traversal and unwinding is roughly comparable to the cost of a function call.
Additional data structures are required to track the call stack after a try block is entered, and additional
instructions are required to unwind the stack if an exception is thrown. However, in most scenarios, the cost in
performance and memory footprint is not significant. The adverse effect of exceptions on performance is likely to
be significant only on very memory-constrained systems, or in performance-critical loops where an error is likely
to occur regularly and the code to handle it is tightly coupled to the code that reports it. In any case, it's impossible
to know the actual cost of exceptions without profiling and measuring. Even in those rare cases when the cost is
significant, you can weigh it against the increased correctness, easier maintainability, and other advantages that are
provided by a well-designed exception policy.

Exceptions and asserts are two distinct mechanisms for detecting run-time errors in a program. Use asserts to test
for conditions during development that should never be true if all your code is correct. There is no point in
handling such an error by using an exception because the error indicates that something in the code has to be
fixed, and doesn't represent a condition that the program has to recover from at run time. An assert stops
execution at the statement so that you can inspect the program state in the debugger; an exception continues
execution from the first appropriate catch handler. Use exceptions to check error conditions that might occur at run
time even if your code is correct, for example, "file not found" or "out of memory." You might want to recover from
these conditions, even if the recovery just outputs a message to a log and ends the program. Always check
arguments to public functions by using exceptions. Even if your function is error-free, you might not have
complete control over arguments that a user might pass to it.

Both C and C++ programs can use the structured exception handling (SEH) mechanism in the Windows operating
system. The concepts in SEH resemble those in C++ exceptions, except that SEH uses the __try, __except, and
__finally constructs instead of try and catch. In the Microsoft C++ compiler (MSVC), C++ exceptions are
implemented for SEH. However, when you write C++ code, use the C++ exception syntax.

For more information about SEH, see Structured Exception Handling (C/C++).

Exception specifications were introduced in C++ as a way to specify the exceptions that a function might throw.
However, exception specifications proved problematic in practice, and are deprecated in the C++11 draft standard.
We recommend that you do not use exception specifications except for throw() , which indicates that the function
allows no exceptions to escape. If you must use exception specifications of the type throw(type) , be aware that
MSVC departs from the standard in certain ways. For more information, see Exception Specifications (throw). The
noexcept specifier is introduced in C++11 as the preferred alternative to throw() .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-class

How to: Interface Between Exceptional and Non-Exceptional Code
Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

How to: Design for Exception Safety
4/8/2019 • 6 minutes to read • Edit Online

Basic Techniques

Keep Resource Classes SimpleKeep Resource Classes Simple

One of the advantages of the exception mechanism is that execution, together with data about the exception,
jumps directly from the statement that throws the exception to the first catch statement that handles it. The
handler may be any number of levels up in the call stack. Functions that are called between the try statement and
the throw statement are not required to know anything about the exception that is thrown. However, they have to
be designed so that they can go out of scope "unexpectedly" at any point where an exception might propagate up
from below, and do so without leaving behind partially created objects, leaked memory, or data structures that are
in unusable states.

A robust exception-handling policy requires careful thought and should be part of the design process. In general,
most exceptions are detected and thrown at the lower layers of a software module, but typically these layers do
not have enough context to handle the error or expose a message to end users. In the middle layers, functions can
catch and rethrow an exception when they have to inspect the exception object, or they have additional useful
information to provide for the upper layer that ultimately catches the exception. A function should catch and
"swallow" an exception only if it is able to completely recover from it. In many cases, the correct behavior in the
middle layers is to let an exception propagate up the call stack. Even at the highest layer, it might be appropriate to
let an unhandled exception terminate a program if the exception leaves the program in a state in which its
correctness cannot be guaranteed.

No matter how a function handles an exception, to help guarantee that it is "exception-safe," it must be designed
according to the following basic rules.

When you encapsulate manual resource management in classes, use a class that does nothing except manage a
single resource. By keeping the class simple, you reduce the risk of introducing resource leaks. Use smart pointers
when possible, as shown in the following example. This example is intentionally artificial and simplistic to highlight
the differences when shared_ptr is used.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-design-for-exception-safety.md

// old-style new/delete version
class NDResourceClass {
private:
 int* m_p;
 float* m_q;
public:
 NDResourceClass() : m_p(0), m_q(0) {
 m_p = new int;
 m_q = new float;
 }

 ~NDResourceClass() {
 delete m_p;
 delete m_q;
 }
 // Potential leak! When a constructor emits an exception,
 // the destructor will not be invoked.
};

// shared_ptr version
#include <memory>

using namespace std;

class SPResourceClass {
private:
 shared_ptr<int> m_p;
 shared_ptr<float> m_q;
public:
 SPResourceClass() : m_p(new int), m_q(new float) { }
 // Implicitly defined dtor is OK for these members,
 // shared_ptr will clean up and avoid leaks regardless.
};

// A more powerful case for shared_ptr

class Shape {
 // ...
};

class Circle : public Shape {
 // ...
};

class Triangle : public Shape {
 // ...
};

class SPShapeResourceClass {
private:
 shared_ptr<Shape> m_p;
 shared_ptr<Shape> m_q;
public:
 SPShapeResourceClass() : m_p(new Circle), m_q(new Triangle) { }
};

Use the RAII Idiom to Manage ResourcesUse the RAII Idiom to Manage Resources
To be exception-safe, a function must ensure that objects that it has allocated by using malloc or new are
destroyed, and all resources such as file handles are closed or released even if an exception is thrown. The
Resource Acquisition Is Initialization (RAII) idiom ties management of such resources to the lifespan of automatic
variables. When a function goes out of scope, either by returning normally or because of an exception, the
destructors for all fully-constructed automatic variables are invoked. An RAII wrapper object such as a smart
pointer calls the appropriate delete or close function in its destructor. In exception-safe code, it is critically
important to pass ownership of each resource immediately to some kind of RAII object. Note that the vector ,

The Three Exception Guarantees

No-fail GuaranteeNo-fail Guarantee

Strong GuaranteeStrong Guarantee

Basic GuaranteeBasic Guarantee

Exception-Safe Classes

string , make_shared , fstream , and similar classes handle acquisition of the resource for you. However,
unique_ptr and traditional shared_ptr constructions are special because resource acquisition is performed by the

user instead of the object; therefore, they count as Resource Release Is Destruction but are questionable as RAII.

Typically, exception safety is discussed in terms of the three exception guarantees that a function can provide: the
no-fail guarantee, the strong guarantee, and the basic guarantee.

The no-fail (or, "no-throw") guarantee is the strongest guarantee that a function can provide. It states that the
function will not throw an exception or allow one to propagate. However, you cannot reliably provide such a
guarantee unless (a) you know that all the functions that this function calls are also no-fail, or (b) you know that
any exceptions that are thrown are caught before they reach this function, or (c) you know how to catch and
correctly handle all exceptions that might reach this function.

Both the strong guarantee and the basic guarantee rely on the assumption that the destructors are no-fail. All
containers and types in the Standard Library guarantee that their destructors do not throw. There is also a
converse requirement: The Standard Library requires that user-defined types that are given to it—for example, as
template arguments—must have non-throwing destructors.

The strong guarantee states that if a function goes out of scope because of an exception, it will not leak memory
and program state will not be modified. A function that provides a strong guarantee is essentially a transaction
that has commit or rollback semantics: either it completely succeeds or it has no effect.

The basic guarantee is the weakest of the three. However, it might be the best choice when a strong guarantee is
too expensive in memory consumption or in performance. The basic guarantee states that if an exception occurs,
no memory is leaked and the object is still in a usable state even though the data might have been modified.

A class can help ensure its own exception safety, even when it is consumed by unsafe functions, by preventing
itself from being partially constructed or partially destroyed. If a class constructor exits before completion, then
the object is never created and its destructor will never be called. Although automatic variables that are initialized
prior to the exception will have their destructors invoked, dynamically allocated memory or resources that are not
managed by a smart pointer or similar automatic variable will be leaked.

The built-in types are all no-fail, and the Standard Library types support the basic guarantee at a minimum. Follow
these guidelines for any user-defined type that must be exception-safe:

Use smart pointers or other RAII-type wrappers to manage all resources. Avoid resource management
functionality in your class destructor, because the destructor will not be invoked if the constructor throws an
exception. However, if the class is a dedicated resource manager that controls just one resource, then it's
acceptable to use the destructor to manage resources.

Understand that an exception thrown in a base class constructor cannot be swallowed in a derived class
constructor. If you want to translate and re-throw the base class exception in a derived constructor, use a
function try block.

Consider whether to store all class state in a data member that is wrapped in a smart pointer, especially if a
class has a concept of "initialization that is permitted to fail." Although C++ allows for uninitialized data
members, it does not support uninitialized or partially initialized class instances. A constructor must either
succeed or fail; no object is created if the constructor does not run to completion.

See also

Do not allow any exceptions to escape from a destructor. A basic axiom of C++ is that destructors should
never allow an exception to propagate up the call stack. If a destructor must perform a potentially
exception-throwing operation, it must do so in a try catch block and swallow the exception. The standard
library provides this guarantee on all destructors it defines.

Errors and Exception Handling (Modern C++)
How to: Interface Between Exceptional and Non-Exceptional Code

How to: Interface Between Exceptional and Non-
Exceptional Code
1/11/2019 • 6 minutes to read • Edit Online

Calling Non-Exceptional Functions from C++

ExampleExample

// compile with: /EHsc
#include <Windows.h>
#include <stdlib.h>
#include <vector>
#include <iostream>
#include <string>
#include <limits>
#include <stdexcept>

using namespace std;

string FormatErrorMessage(DWORD error, const string& msg)
{
 static const int BUFFERLENGTH = 1024;
 vector<char> buf(BUFFERLENGTH);
 FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, 0, error, 0, buf.data(),

This article describes how to implement consistent exception-handling in a C++ module, and also how to translate
those exceptions to and from error codes at the exception boundaries.

Sometimes a C++ module has to interface with code that doesn't use exceptions (non-exceptional code). Such an
interface is known as an exception boundary. For example, you may want to call the Win32 function CreateFile in
your C++ program. CreateFile doesn't throw exceptions; instead it sets error codes that can be retrieved by the
GetLastError function. If your C++ program is non-trivial, then in it you probably prefer to have a consistent

exception-based error-handling policy. And you probably don't want to abandon exceptions just because you
interface with non-exceptional code, and neither do you want to mix exception-based and non-exception-based
error policies in your C++ module.

When you call a non-exceptional function from C++, the idea is to wrap that function in a C++ function that
detects any errors and then possibly throws an exception. When you design such a wrapper function, first decide
which type of exception guarantee to provide: no-throw, strong, or basic. Second, design the function so that all
resources, for example, file handles, are correctly released if an exception is thrown. Typically, this means that you
use smart pointers or similar resource managers to own the resources. For more information about design
considerations, see How to: Design for Exception Safety.

The following example shows C++ functions that use the Win32 CreateFile and ReadFile functions internally to
open and read two files. The File class is a resource acquisition is initialization (RAII) wrapper for the file handles.
Its constructor detects a "file not found" condition and throws an exception to propagate the error up the call stack
of the C++ module (in this example, the main() function). If an exception is thrown after a File object is fully
constructed, the destructor automatically calls CloseHandle to release the file handle. (If you prefer, you can use the
Active Template Library (ATL) CHandle class for this same purpose, or a unique_ptr together with a custom
deleter.) The functions that call Win32 and CRT APIs detect errors and then throw C++ exceptions using the
locally-defined ThrowLastErrorIf function, which in turn uses the Win32Exception class, derived from the
runtime_error class. All functions in this example provide a strong exception guarantee; if an exception is thrown

at any point in these functions, no resources are leaked and no program state is modified.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-to-interface-between-exceptional-and-non-exceptional-code.md

 BUFFERLENGTH - 1, 0);
 return string(buf.data()) + " (" + msg + ")";
}

class Win32Exception : public runtime_error
{
private:
 DWORD m_error;
public:
 Win32Exception(DWORD error, const string& msg)
 : runtime_error(FormatErrorMessage(error, msg)), m_error(error) { }

 DWORD GetErrorCode() const { return m_error; }
};

void ThrowLastErrorIf(bool expression, const string& msg)
{
 if (expression) {
 throw Win32Exception(GetLastError(), msg);
 }
}

class File
{
private:
 HANDLE m_handle;

 // Declared but not defined, to avoid double closing.
 File& operator=(const File&);
 File(const File&);
public:
 explicit File(const string& filename)
 {
 m_handle = CreateFileA(filename.c_str(), GENERIC_READ, FILE_SHARE_READ,
 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, nullptr);
 ThrowLastErrorIf(m_handle == INVALID_HANDLE_VALUE,
 "CreateFile call failed on file named " + filename);
 }

 ~File() { CloseHandle(m_handle); }

 HANDLE GetHandle() { return m_handle; }
};

size_t GetFileSizeSafe(const string& filename)
{
 File fobj(filename);
 LARGE_INTEGER filesize;

 BOOL result = GetFileSizeEx(fobj.GetHandle(), &filesize);
 ThrowLastErrorIf(result == FALSE, "GetFileSizeEx failed: " + filename);

 if (filesize.QuadPart < (numeric_limits<size_t>::max)()) {
 return filesize.QuadPart;
 } else {
 throw;
 }
}

vector<char> ReadFileVector(const string& filename)
{
 File fobj(filename);
 size_t filesize = GetFileSizeSafe(filename);
 DWORD bytesRead = 0;

 vector<char> readbuffer(filesize);

 BOOL result = ReadFile(fobj.GetHandle(), readbuffer.data(), readbuffer.size(),
 &bytesRead, nullptr);

 &bytesRead, nullptr);
 ThrowLastErrorIf(result == FALSE, "ReadFile failed: " + filename);

 cout << filename << " file size: " << filesize << ", bytesRead: "
 << bytesRead << endl;

 return readbuffer;
}

bool IsFileDiff(const string& filename1, const string& filename2)
{
 return ReadFileVector(filename1) != ReadFileVector(filename2);
}

#include <iomanip>

int main (int argc, char* argv[])
{
 string filename1("file1.txt");
 string filename2("file2.txt");

 try
 {
 if(argc > 2) {
 filename1 = argv[1];
 filename2 = argv[2];
 }

 cout << "Using file names " << filename1 << " and " << filename2 << endl;

 if (IsFileDiff(filename1, filename2)) {
 cout << "+++ Files are different." << endl;
 } else {
 cout<< "=== Files match." << endl;
 }
 }
 catch(const Win32Exception& e)
 {
 ios state(nullptr);
 state.copyfmt(cout);
 cout << e.what() << endl;
 cout << "Error code: 0x" << hex << uppercase << setw(8) << setfill('0')
 << e.GetErrorCode() << endl;
 cout.copyfmt(state); // restore previous formatting
 }
}

Calling Exceptional Code from Non-Exceptional Code
C++ functions that are declared as "extern C" can be called by C programs. C++ COM servers can be consumed
by code written in any of a number of different languages. When you implement public exception-aware functions
in C++ to be called by non-exceptional code, the C++ function must not allow any exceptions to propagate back to
the caller. Therefore, the C++ function must specifically catch every exception that it knows how to handle and, if
appropriate, convert the exception to an error code that the caller understands. If not all potential exceptions are
known, the C++ function should have a catch(...) block as the last handler. In such a case, it's best to report a
fatal error to the caller, because your program might be in an unknown state.

The following example shows a function that assumes that any exception that might be thrown is either a
Win32Exception or an exception type derived from std::exception . The function catches any exception of these
types and propagates the error information as a Win32 error code to the caller.

BOOL DiffFiles2(const string& file1, const string& file2)
{
 try
 {
 File f1(file1);
 File f2(file2);
 if (IsTextFileDiff(f1, f2))
 {
 SetLastError(MY_APPLICATION_ERROR_FILE_MISMATCH);
 return FALSE;
 }
 return TRUE;
 }
 catch(Win32Exception& e)
 {
 SetLastError(e.GetErrorCode());
 }

 catch(std::exception& e)
 {
 SetLastError(MY_APPLICATION_GENERAL_ERROR);
 }
 return FALSE;
}

template<typename Func>
bool Win32ExceptionBoundary(Func&& f)
{
 try
 {
 return f();
 }
 catch(Win32Exception& e)
 {
 SetLastError(e.GetErrorCode());
 }
 catch(const std::exception& e)
 {
 SetLastError(MY_APPLICATION_GENERAL_ERROR);
 }
 return false;
}

When you convert from exceptions to error codes, one potential issue is that error codes often don't contain the
richness of information that an exception can store. To address this, you can provide a catch block for each specific
exception type that might be thrown, and perform logging to record the details of the exception before it is
converted to an error code. This approach can create a lot of code repetition if multiple functions all use the same
set of catch blocks. A good way to avoid code repetition is by refactoring those blocks into one private utility
function that implements the try and catch blocks and accepts a function object that is invoked in the try block. In
each public function, pass the code to the utility function as a lambda expression.

The following example shows how to write the lambda expression that defines the functor. When a functor is
defined "inline" by using a lambda expression, it is often easier to read than it would be if it were written as a
named function object.

bool DiffFiles3(const string& file1, const string& file2)
{
 return Win32ExceptionBoundary([&]() -> bool
 {
 File f1(file1);
 File f2(file2);
 if (IsTextFileDiff(f1, f2))
 {
 SetLastError(MY_APPLICATION_ERROR_FILE_MISMATCH);
 return false;
 }
 return true;
 });
}

See also

For more information about lambda expressions, see Lambda Expressions.

Errors and Exception Handling (Modern C++)
How to: Design for Exception Safety

Portability At ABI Boundaries (Modern C++)
1/11/2019 • 2 minutes to read • Edit Online

How to flatten a class for C portability

// class widget {
// widget();
// ~widget();
// double method(int, gadget&);
// };
extern "C" { // functions using explicit "this"
 struct widget; // opaque type (forward declaration only)
 widget* STDCALL widget_create(); // constructor creates new "this"
 void STDCALL widget_destroy(widget*); // destructor consumes "this"
 double STDCALL widget_method(widget*, int, gadget*); // method uses "this"
}

See also

Use sufficiently portable types and conventions at binary interface boundaries. A “portable type” is a C built-in
type or a struct that contains only C built-in types. Class types can only be used when caller and callee agree on
layout, calling convention, etc. This is only possible when both are compiled with the same compiler and compiler
settings.

When callers may be compiled with another compiler/language, then “flatten” to an extern "C" API with a specific
calling convention:

Welcome Back to C++ (Modern C++)
C++ Language Reference
C++ Standard Library

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/portability-at-abi-boundaries-modern-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Lexical Conventions
10/31/2018 • 2 minutes to read • Edit Online

See also

This section introduces the fundamental elements of a C++ program. You use these elements, called "lexical
elements" or "tokens" to construct statements, definitions, declarations, and so on, which are used to construct
complete programs. The following lexical elements are discussed in this section:

Overview of File Translation

Character Sets

Tokens

Comments

Identifiers

Keywords

Punctuators

Numeric, Boolean, and Pointer Literals

String and Character Literals

User-Defined Literals

C++ Language Reference
Program and linkage

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lexical-conventions.md

Overview of File Translation
10/31/2018 • 2 minutes to read • Edit Online

See also

C++ programs, like C programs, consist of one or more files. Each of these files is translated in the following
conceptual order (the actual order follows the "as if" rule: translation must occur as if these steps had been
followed):

#include <iostream> // Include text of iostream in
 // translation unit.
#define NDEBUG // Define NDEBUG (NDEBUG contains empty
 // text string).

1. Lexical tokenizing. Character mapping and trigraph processing, line splicing, and tokenizing are performed
in this translation phase.

2. Preprocessing. This translation phase brings in ancillary source files referenced by #include directives,
handles "stringizing" and "charizing" directives, and performs token pasting and macro expansion (see
Preprocessor Directives in the Preprocessor Reference for more information). The result of the
preprocessing phase is a sequence of tokens that, taken together, define a "translation unit."

Preprocessor directives always begin with the number-sign (#) character (that is, the first nonwhite-space
character on the line must be a number sign). Only one preprocessor directive can appear on a given line.
For example:

3. Code generation. This translation phase uses the tokens generated in the preprocessing phase to generate
object code.

During this phase, syntactic and semantic checking of the source code is performed.

See Phases of Translation in the Preprocessor Reference for more information.

The C++ preprocessor is a strict superset of the ANSI C preprocessor, but the C++ preprocessor differs in a few
instances. The following list describes several differences between the ANSI C and the C++ preprocessors:

Single-line comments are supported. See Comments for more information.

One predefined macro, __cplusplus , is defined only for C++. See Predefined Macros in the Preprocessor
Reference for more information.

The C preprocessor does not recognize the C++ operators: .*, ->*, and ::. See Operators and Expressions,
for more information about operators.

Lexical Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overview-of-file-translation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/preprocessor-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/phases-of-translation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

Character Sets
5/7/2019 • 3 minutes to read • Edit Online

Character sets

Basic source character setBasic source character set

Universal character namesUniversal character names

The text of a C++ program is stored in source files that use a particular character encoding. The C++ standard
specifies a basic source character set for source files and a basic execution character set for compiled files. The
Microsoft C++ compiler (MSVC) allows an additional set of locale-specific characters to be used in source files
and compiled files.

The C++ standard specifies a basic source character set that may be used in source files. To represent characters
outside of this set, additional characters can be specified by using a universal character name. When compiled, the
basic execution character set and basic execution wide-character set represent the characters and strings that can
appear in a program. The MSVC implementation allows additional characters in source code and compiled code.

The basic source character set consists of 96 characters that may be used in source files. This set includes the
space character, horizontal tab, vertical tab, form feed and new-line control characters, and this set of graphical
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '

Microsoft Specific

MSVC includes the $ character as a member of the basic source character set. MSVC also allows an additional
set of characters to be used in source files, based on the file encoding. By default, Visual Studio stores source files
by using the default codepage. When source files are saved by using a locale-specific codepage or a Unicode
codepage, MSVC allows you to use any of the characters of that code page in your source code, except for the
control codes not explicitly allowed in the basic source character set. For example, you can put Japanese characters
in comments, identifiers, or string literals if you save the file using a Japanese codepage. MSVC does not allow
character sequences that cannot be translated into valid multibyte characters or Unicode code points. Depending
on compiler options, not all allowed characters may appear in identifiers. For more information, see Identifiers.

END Microsoft Specific

Because C++ programs can use many more characters than the ones specified in the basic source character set,
you can specify these characters in a portable way by using universal character names. A universal character
name consists of a sequence of characters that represent a Unicode code point. These take two forms. Use
\UNNNNNNNN to represent a Unicode code point of the form U+NNNNNNNN, where NNNNNNNN is the eight-

digit hexadecimal code point number. Use four-digit \uNNNN to represent a Unicode code point of the form
U+0000NNNN.

Universal character names can be used in identifiers and in string and character literals. A universal character
name cannot be used to represent a surrogate code point in the range 0xD800-0xDFFF. Instead, use the desired
code point; the compiler automatically generates any required surrogates. Additional restrictions apply to the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/character-sets.md

auto \u30AD = 42; // \u30AD is 'キ'
if (キ == 42) return true; // \u30AD and キ are the same to the compiler

Basic execution character setBasic execution character set

universal character names that can be used in identifiers. For more information, see Identifiers and String and
Character Literals.

Microsoft Specific

The Microsoft C++ compiler treats a character in universal character name form and literal form interchangeably.
For example, you can declare an identifier using universal character name form, and use it in literal form:

The format of extended characters on the Windows clipboard is specific to application locale settings. Cutting and
pasting these characters into your code from another application may introduce unexpected character encodings.
This can result in parsing errors with no visible cause in your code. We recommend that you set your source file
encoding to a Unicode codepage before pasting extended characters. We also recommend that you use an IME or
the Character Map app to generate extended characters.

END Microsoft Specific

The basic execution character set and the basic execution wide-character set consist of all the characters in the
basic source character set, and the control characters that represent alert, backspace, carriage return, and the null
character. The execution character set and execution wide-character set are supersets of the basic sets. They
include the implementation-defined source characters outside the basic source character set. The execution
character set has a locale-specific representation.

Tokens (C++)
10/31/2018 • 2 minutes to read • Edit Online

a = i+++j;

a = i + (++j)

a = (i++) + j

See also

A token is the smallest element of a C++ program that is meaningful to the compiler. The C++ parser recognizes
these kinds of tokens: identifiers, keywords, literals, operators, punctuators, and other separators. A stream of these
tokens makes up a translation unit.

Tokens are usually separated by white space. White space can be one or more:

Blanks

Horizontal or vertical tabs

New lines

Formfeeds

Comments

The parser recognizes keywords, identifiers, literals, operators, and punctuators. For information on specific token
types, see Keywords, Identifiers, Numeric, Boolean and Pointer Literals, String and Character Literals, User-Defined
Literals, C++ Built-in Operators, Precedence and Associativity, and Punctuators. White space is ignored, except as
required to separate tokens.

Preprocessing tokens are used in the preprocessing phases to generate the token stream passed to the compiler.
The preprocessing token categories are header names, identifiers, preprocessing numbers, character literals, string
literals, preprocessing operators and punctuators, and single non-white-space characters that do not match one of
the other categories. Character and string literals can be user-defined literals. Preprocessing tokens can be
separated by white space or comments.

The parser separates tokens from the input stream by creating the longest token possible using the input
characters in a left-to-right scan. Consider this code fragment:

The programmer who wrote the code might have intended either of these two statements:

Because the parser creates the longest token possible from the input stream, it chooses the second interpretation,
making the tokens i++ , + , and j .

Lexical Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/tokens-cpp.md

Comments (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

A comment is text that the compiler ignores but that is useful for programmers. Comments are normally used to
annotate code for future reference. The compiler treats them as white space. You can use comments in testing to
make certain lines of code inactive; however, #if / #endif preprocessor directives work better for this because
you can surround code that contains comments but you cannot nest comments.

A C++ comment is written in one of the following ways:

The /* (slash, asterisk) characters, followed by any sequence of characters (including new lines), followed
by the */ characters. This syntax is the same as ANSI C.

The // (two slashes) characters, followed by any sequence of characters. A new line not immediately
preceded by a backslash terminates this form of comment. Therefore, it is commonly called a "single-line
comment."

The comment characters (/* , */ , and //) have no special meaning within a character constant, string literal, or
comment. Comments using the first syntax, therefore, cannot be nested.

Lexical Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/comments-cpp.md

Identifiers (C++)
5/7/2019 • 3 minutes to read • Edit Online

_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

An identifier is a sequence of characters used to denote one of the following:

Object or variable name

Class, structure, or union name

Enumerated type name

Member of a class, structure, union, or enumeration

Function or class-member function

typedef name

Label name

Macro name

Macro parameter

The following characters are allowed as any character of an identifier:

Certain ranges of universal character names are also allowed in an identifier. A universal character name in an
identifier cannot designate a control character or a character in the basic source character set. For more
information, see Character Sets. These Unicode code point number ranges are allowed as universal character
names for any character in an identifier :

00A8, 00AA, 00AD, 00AF, 00B2-00B5, 00B7-00BA, 00BC-00BE, 00C0-00D6, 00D8-00F6, 00F8-00FF, 0100-
02FF, 0370-167F, 1681-180D, 180F-1DBF, 1E00-1FFF, 200B-200D, 202A-202E, 203F-2040, 2054, 2060-
206F, 2070-20CF, 2100-218F, 2460-24FF, 2776-2793, 2C00-2DFF, 2E80-2FFF, 3004-3007, 3021-302F,
3031-303F, 3040-D7FF, F900-FD3D, FD40-FDCF, FDF0-FE1F, FE30-FE44, FE47-FFFD, 10000-1FFFD,
20000-2FFFD, 30000-3FFFD, 40000-4FFFD, 50000-5FFFD, 60000-6FFFD, 70000-7FFFD, 80000-8FFFD,
90000-9FFFD, A0000-AFFFD, B0000-BFFFD, C0000-CFFFD, D0000-DFFFD, E0000-EFFFD

The following characters are allowed as any character in an identifier except the first:

These Unicode code point number ranges are also allowed as universal character names for any character in an
identifier except the first:

0300-036F, 1DC0-1DFF, 20D0-20FF, FE20-FE2F

Microsoft Specific

Only the first 2048 characters of Microsoft C++ identifiers are significant. Names for user-defined types are
"decorated" by the compiler to preserve type information. The resultant name, including the type information,

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/identifiers-cpp.md

// extended_identifier.cpp
// In Visual Studio, use File, Advanced Save Options to set
// the file encoding to Unicode codepage 1200
struct テスト // Japanese 'test'
{
 void トスト() {} // Japanese 'toast'
};

int main() {
 テスト \u30D1\u30F3; // Japanese パン 'bread' in UCN form
 パン.トスト(); // compiler recognizes UCN or literal form
}

See also

cannot be longer than 2048 characters. (See Decorated Names for more information.) Factors that can influence
the length of a decorated identifier are:

Whether the identifier denotes an object of user-defined type or a type derived from a user-defined type.

Whether the identifier denotes a function or a type derived from a function.

The number of arguments to a function.

The dollar sign $ is a valid identifier character in the Microsoft C++ compiler (MSVC). MSVC also allows you to
use the actual characters represented by the allowed ranges of universal character names in identifiers. To use
these characters, you must save the file by using a file encoding codepage that includes them. This example shows
how both extended characters and universal character names can be used interchangeably in your code.

The range of characters allowed in an identifier is less restrictive when compiling C++/CLI code. Identifiers in
code compiled by using /clr should follow Standard ECMA-335: Common Language Infrastructure (CLI).

END Microsoft Specific

The first character of an identifier must be an alphabetic character, either uppercase or lowercase, or an
underscore (_). Because C++ identifiers are case sensitive, fileName is different from FileName .

Identifiers cannot be exactly the same spelling and case as keywords. Identifiers that contain keywords are legal.
For example, Pint is a legal identifier, even though it contains int, which is a keyword.

Use of two sequential underscore characters (__) in an identifier, or a single leading underscore followed by a
capital letter, is reserved for C++ implementations in all scopes. You should avoid using one leading underscore
followed by a lowercase letter for names with file scope because of possible conflicts with current or future
reserved identifiers.

Lexical Conventions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/decorated-names
http://www.ecma-international.org/publications/standards/Ecma-335.htm

Keywords (C++)
5/7/2019 • 2 minutes to read • Edit Online

__abstract __alignof Operator __asm __assume

__based __box __cdecl __declspec

__delegate __event __except __fastcall

__finally __forceinline __gc __hook

__identifier __if_exists __if_not_exists __inline

__int16 __int32 __int64 __int8

__interface __leave __m128 __m128d

__m128i __m64 __multiple_inheritance __nogc

__noop __pin __property __ptr32

__ptr64 __raise __restrict __sealed

__single_inheritance __sptr __stdcall __super

__thiscall __try_cast __unaligned __unhook

__uptr __uuidof __value __vectorcall

__virtual_inheritance __w64 __wchar_t abstract(C++/CLI)

alignas array(C++/CLI) auto bool

break case catch char

char16_t char32_t class const

const_cast constexpr continue decltype

default delegate(C++/CLI) delete deprecated

dllexport dllimport do double

Keywords are predefined reserved identifiers that have special meanings. They cannot be used as
identifiers in your program. The following keywords are reserved for Microsoft C++. Names with
leading underscores, and names followed by (C++/CLI) are Microsoft extensions.

2 4 4 4

4 2 4 4

2 4 4

4 4 2 3

4

4 4 4 4

4

4 2

2 2 4

4 4 2

4 4 4

2 4 3

4 4 2 4

4 4

1

1 1

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/keywords-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/declaration-of-a-managed-class-type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/inline/asm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/assume
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/value-type-semantics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/delegates-and-events
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/declaration-of-a-clr-reference-class-object
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/identifier-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/declaration-of-a-clr-reference-class-object
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/noop
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cast-notation-and-introduction-of-safe-cast-angles
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/value-type-semantics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/abstract-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/arrays-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/delegate-cpp-component-extensions

dynamic_cast else enum enum class

enum struct event(C++/CLI) explicit extern

false finally float for

for each in friend friend_as gcnew(C++/CLI)

generic(C++/CLI) goto if initonly

inline int interface class(C++/CLI) interface struct(C++/CLI)

interior_ptr(C++/CLI) literal(C++/CLI) long mutable

naked namespace new(C++/CLI) new

noexcept noinline noreturn nothrow

novtable nullptr operator private

property(C++/CLI) property protected public

ref class ref struct register reinterpret_cast

return safecast sealed(C++/CLI) selectany

short signed sizeof static

static_assert static_cast struct switch

template this thread throw

true try typedef typeid

typeid typename union unsigned

using declaration using directive uuid value class(C++/CLI)

value struct(C++/CLI) virtual void volatile

while

1

1 1 1

1

1

1

1

1

 Extended attributes for the __declspec keyword.1

 Applicable to Managed Extensions for C++ only. This syntax is now deprecated. See Component
Extensions for Runtime Platforms for more information.

2

 Intrinsic function used in event handling.3

 For backward compatibility with previous versions, these keywords are available both with two
leading underscores and a single leading underscore when Microsoft extensions are enabled (the
default).

4

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/enum-class-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/enum-class-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/event-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/finally
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/for-each-in
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-using-directive-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/ref-new-gcnew-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/generics-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/initonly-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/interface-class-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/interface-class-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/interior-ptr-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/literal-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/new-new-slot-in-vtable-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/property-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/safe-cast-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/sealed-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/component-extensions-for-runtime-platforms

See also

Microsoft Specific

In Microsoft C++, identifiers with two leading underscores are reserved for compiler
implementations. Therefore, the Microsoft convention is to precede Microsoft-specific keywords with
double underscores. These words cannot be used as identifier names.

Microsoft extensions are enabled by default. To ensure that your programs are fully portable, you can
disable Microsoft extensions by specifying the /Za (Disable language extensions) option during
compilation. When you do this, some Microsoft-specific keywords are disabled.

When Microsoft extensions are enabled, you can use the Microsoft-specific keywords in your
programs. For ANSI compliance, these keywords are prefaced by a double underscore. For backward
compatibility, single-underscore versions of many of the double-underscored keywords are
supported. In addition, __cdecl is available with no leading underscore.

The __asm keyword replaces C++ asm syntax. asm is reserved for compatibility with other C++
implementations, but not implemented. Use __asm.

The __based keyword has limited uses for 32-bit and 64-bit target compilations.

END Microsoft Specific

Lexical Conventions
C++ Built-in Operators, Precedence and Associativity

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

auto Keyword
5/7/2019 • 2 minutes to read • Edit Online

Syntax
auto declarator ;
auto declarator initializer;

Remarks

See also

The auto keyword is a declaration specifier. However, the C++ standard defines an original and a revised meaning
for this keyword. Before Visual Studio 2010, the auto keyword declares a variable in the automatic storage class;
that is, a variable that has a local lifetime. Starting with Visual Studio 2010, the auto keyword declares a variable
whose type is deduced from the initialization expression in its declaration. The /Zc:auto[-] compiler option controls
the meaning of the auto keyword.

The definition of the auto keyword changes in the C++ programming language, but not in the C programming
language.

The following topics describe the auto keyword and the corresponding compiler option:

auto describes the new definition of the auto keyword.

/Zc:auto (Deduce Variable Type) describes the compiler option that tells the compiler which definition of the
auto keyword to use.

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/auto-keyword.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-auto-deduce-variable-type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-auto-deduce-variable-type

Punctuators (C++)
10/31/2018 • 2 minutes to read • Edit Online

! % ^ & * () - + = { } | ~
[] \ ; ' : " < > ? , . / #

See also

Punctuators in C++ have syntactic and semantic meaning to the compiler but do not, of themselves, specify an
operation that yields a value. Some punctuators, either alone or in combination, can also be C++ operators or be
significant to the preprocessor.

Any of the following characters are considered punctuators:

The punctuators [], (), and { } must appear in pairs after translation phase 4.

Lexical Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/punctuators-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/phases-of-translation

Numeric, Boolean and Pointer Literals (C++)
10/31/2018 • 5 minutes to read • Edit Online

const int answer = 42; // integer literal
double d = sin(108.87); //floating point literal passed to sin function
bool b = true; // boolean literal
MyClass* mc = nullptr; // pointer literal

Syntax

Integer literals

int i = 157; // Decimal literal
int j = 0198; // Not a decimal number; erroneous octal literal
int k = 0365; // Leading zero specifies octal literal, not decimal
int m = 36'000'000 // digit separators make large values more readable
int

int i = 0377; // Octal literal
int j = 0397; // Error: 9 is not an octal digit

A literal is a program element that directly represents a value. This article covers literals of type integer, floating-
point, boolean and pointer. For information about string and character literals, see String and Character Literals
(C++). You can also define your own literals based on any of these categories; for more information see User-
Defined Literals (C++)

. You can use literals in many contexts, but most commonly to initialize named variables and to pass arguments to
functions:

Sometimes it's important to tell the compiler how to interpret a literal, or what specific type to give to it. You do
this by appending prefixes or suffixes to the literal. For example, the prefix 0x tells the compiler to interpret the
number that follows it as a hexadecimal value, for example 0x35. The ULL suffix tells the compiler to treat the
value as an unsigned long long type, as in 5894345ULL. See the following sections for the complete list of
prefixes and suffixes for each literal type.

Integer literals begin with a digit and have no fractional parts or exponents. You can specify integer literals in
decimal, octal, or hexadecimal form. They can specify signed or unsigned types and long or short types.

When no prefix or suffix is present, the compiler will give an integral literal value type int (32 bits), if the value will
fit, otherwise it will give it type long long (64 bits).

To specify a decimal integral literal, begin the specification with a nonzero digit. For example:

To specify an octal integral literal, begin the specification with 0, followed by a sequence of digits in the range 0
through 7. The digits 8 and 9 are errors in specifying an octal literal. For example:

To specify a hexadecimal integral literal, begin the specification with 0x or 0X (the case of the "x" does not
matter), followed by a sequence of digits in the range 0 through 9 and a (or A) through f (or F).
Hexadecimal digits a (or A) through f (or F) represent values in the range 10 through 15. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/numeric-boolean-and-pointer-literals-cpp.md

int i = 0x3fff; // Hexadecimal literal
int j = 0X3FFF; // Equal to i

unsigned val_1 = 328u; // Unsigned value
long val_2 = 0x7FFFFFL; // Long value specified
 // as hex literal
unsigned long val_3 = 0776745ul; // Unsigned long value
auto val_4 = 108LL; // signed long long
auto val_4 = 0x8000000000000000ULL << 16; // unsigned long long

long long i = 24'847'458'121

Floating point literals

18.46
38.

18.46e0 // 18.46
18.46e1 // 184.6

void func(double);

To specify an unsigned type, use either the u or U suffix. To specify a long type, use either the l or L suffix. To
specify a 64-bit integral type, use the LL, or ll suffix. The i64 suffix is still supported but should be avoided because
it is specific to Microsoft and is not portable. For example:

Digit separators: You can use the single-quote character (apostrophe) to separate place values in larger numbers
to make them easier for humans to read. Separators have no effect on compilation.

Floating-point literals specify values that must have a fractional part. These values contain decimal points (.) and
can contain exponents.

Floating-point literals have a "mantissa," which specifies the value of the number, an "exponent," which specifies
the magnitude of the number, and an optional suffix that specifies the literal's type. The mantissa is specified as a
sequence of digits followed by a period, followed by an optional sequence of digits representing the fractional part
of the number. For example:

The exponent, if present, specifies the magnitude of the number as a power of 10, as shown in the following
example:

The exponent may be specified using e or E , which have the same meaning, followed by an optional sign (+ or -
) and a sequence of digits. If an exponent is present, the trailing decimal point is unnecessary in whole numbers
such as 18E0 .

Floating-point literals default to type double. By using the suffixes f or l (or F or L — the suffix is not case
sensitive), the literal can be specified as float or long double, respectively.

Although long double and double have the same representation, they are not the same type. For example, you
can have overloaded functions like

and

void func(long double);

Boolean literals

Pointer literal (C++11)

Binary literals (C++14)

auto x = 0B001101 ; // int
auto y = 0b000001 ; // int

Avoid using literals as "magic constants"

if (num < 100)
 return "Success";

See also

The boolean literals are true and false.

C++ introduces the nullptr literal to specify a zero-initialized pointer. In portable code, nullptr should be used
instead of integral-type zero or macros such as NULL.

A binary literal can be specified by the use of the 0B or 0b prefix, followed by a sequence of 1's and 0's:

You can use literals directly in expressions and statements although it's not always good programming practice:

In the previous example, it might be better to use a named constant that conveys a clear meaning, for example
"MAXIMUM_ERROR_THRESHOLD". And if the return value "Success" is seen by end users, then it might be
better to use a named string constant that can be stored in a single location in a file from where it can be localized
into other languages. Using named constants helps others as well as yourself to understand the intent of the code.

Lexical Conventions
C++ String Literals
C++ User-Defined Literals

String and Character Literals (C++)
5/7/2019 • 17 minutes to read • Edit Online

#include <string>
using namespace std::string_literals; // enables s-suffix for std::string literals

int main()
{
 // Character literals
 auto c0 = 'A'; // char
 auto c1 = u8'A'; // char
 auto c2 = L'A'; // wchar_t
 auto c3 = u'A'; // char16_t
 auto c4 = U'A'; // char32_t

 // String literals
 auto s0 = "hello"; // const char*
 auto s1 = u8"hello"; // const char*, encoded as UTF-8
 auto s2 = L"hello"; // const wchar_t*
 auto s3 = u"hello"; // const char16_t*, encoded as UTF-16
 auto s4 = U"hello"; // const char32_t*, encoded as UTF-32

 // Raw string literals containing unescaped \ and "
 auto R0 = R"("Hello \ world")"; // const char*
 auto R1 = u8R"("Hello \ world")"; // const char*, encoded as UTF-8
 auto R2 = LR"("Hello \ world")"; // const wchar_t*
 auto R3 = uR"("Hello \ world")"; // const char16_t*, encoded as UTF-16
 auto R4 = UR"("Hello \ world")"; // const char32_t*, encoded as UTF-32

 // Combining string literals with standard s-suffix
 auto S0 = "hello"s; // std::string
 auto S1 = u8"hello"s; // std::string
 auto S2 = L"hello"s; // std::wstring
 auto S3 = u"hello"s; // std::u16string
 auto S4 = U"hello"s; // std::u32string

 // Combining raw string literals with standard s-suffix
 auto S5 = R"("Hello \ world")"s; // std::string from a raw const char*
 auto S6 = u8R"("Hello \ world")"s; // std::string from a raw const char*, encoded as UTF-8
 auto S7 = LR"("Hello \ world")"s; // std::wstring from a raw const wchar_t*
 auto S8 = uR"("Hello \ world")"s; // std::u16string from a raw const char16_t*, encoded as UTF-16
 auto S9 = UR"("Hello \ world")"s; // std::u32string from a raw const char32_t*, encoded as UTF-32
}

C++ supports various string and character types, and provides ways to express literal values of each of these
types. In your source code, you express the content of your character and string literals using a character set.
Universal character names and escape characters allow you to express any string using only the basic source
character set. A raw string literal enables you to avoid using escape characters, and can be used to express all
types of string literals. You can also create std::string literals without having to perform extra construction or
conversion steps.

String literals can have no prefix, or u8 , L , u , and U prefixes to denote narrow character (single-byte or multi-
byte), UTF-8, wide character (UCS-2 or UTF-16), UTF-16 and UTF-32 encodings, respectively. A raw string literal
can have R , u8R , LR , uR and UR prefixes for the raw version equivalents of these encodings. To create
temporary or static std::string values, you can use string literals or raw string literals with an s suffix. For more
information, see the String literals section below. For more information on the basic source character set,
universal character names, and using characters from extended codepages in your source code, see Character

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/string-and-character-literals-cpp.md

Character literals

EncodingEncoding

Sets.

A character literal is composed of a constant character. It is represented by the character surrounded by single
quotation marks. There are five kinds of character literals:

Ordinary character literals of type char, for example 'a'

UTF-8 character literals of type char, for example u8'a'

Wide-character literals of type wchar_t , for example L'a'

UTF-16 character literals of type char16_t , for example u'a'

UTF-32 character literals of type char32_t , for example U'a'

The character used for a character literal may be any character, except for the reserved characters backslash ('\'),
single quotation mark ('), or new line. Reserved characters can be specified by using an escape sequence.
Characters may be specified by using universal character names, as long as the type is large enough to hold the
character.

Character literals are encoded differently based their prefix.

A character literal without a prefix is an ordinary character literal. The value of an ordinary character literal
containing a single character, escape sequence, or universal character name that can be represented in the
execution character set has a value equal to the numerical value of its encoding in the execution character
set. An ordinary character literal that contains more than one character, escape sequence, or universal
character name is a multicharacter literal. A multicharacter literal or an ordinary character literal that can't
be represented in the execution character set is conditionally-supported, has type int, and its value is
implementation-defined.

A character literal that begins with the L prefix is a wide-character literal. The value of a wide-character
literal containing a single character, escape sequence, or universal character name has a value equal to the
numerical value of its encoding in the execution wide-character set unless the character literal has no
representation in the execution wide-character set, in which case the value is implementation-defined. The
value of a wide-character literal containing multiple characters, escape sequences, or universal character
names is implementation-defined.

A character literal that begins with the u8 prefix is a UTF-8 character literal. The value of a UTF-8 character
literal containing a single character, escape sequence, or universal character name has a value equal to its
ISO 10646 code point value if it can be represented by a single UTF-8 code unit (corresponding to the C0
Controls and Basic Latin Unicode block). If the value can't be represented by a single UTF-8 code unit, the
program is ill-formed. A UTF-8 character literal containing more than one character, escape sequence, or
universal character name is ill-formed.

A character literal that begins with the u prefix is a UTF-16 character literal. The value of a UTF-16
character literal containing a single character, escape sequence, or universal character name has a value
equal to its ISO 10646 code point value if it can be represented by a single UTF-16 code unit
(corresponding to the basic multi-lingual plane). If the value can't be represented by a single UTF-16 code
unit, the program is ill-formed. A UTF-16 character literal containing more than one character, escape
sequence, or universal character name is ill-formed.

A character literal that begins with the U prefix is a UTF-32 character literal. The value of a UTF-32
character literal containing a single character, escape sequence, or universal character name has a value
equal to its ISO 10646 code point value. A UTF-8 character literal containing more than one character,

Escape SequencesEscape Sequences

VALUE ESCAPE SEQUENCE

newline \n

backslash \\

horizontal tab \t

question mark ? or \?

vertical tab \v

single quote \'

backspace \b

double quote \"

carriage return \r

the null character \0

form feed \f

octal \ooo

alert (bell) \a

hexadecimal \xhhh

#include <iostream>
using namespace std;

int main() {
 char newline = '\n';
 char tab = '\t';
 char backspace = '\b';
 char backslash = '\\';
 char nullChar = '\0';

 cout << "Newline character: " << newline << "ending" << endl; // Newline character:
 // ending
 cout << "Tab character: " << tab << "ending" << endl; // Tab character : ending
 cout << "Backspace character: " << backspace << "ending" << endl; // Backspace character : ending
 cout << "Backslash character: " << backslash << "ending" << endl; // Backslash character : \ending
 cout << "Null character: " << nullChar << "ending" << endl; //Null character: ending
}

escape sequence, or universal character name is ill-formed.

There are three kinds of escape sequences: simple, octal, and hexadecimal. Escape sequences may be any of the
following:

The following code shows some examples of escaped characters using ordinary character literals. The same
escape sequence syntax is valid for the other character literal types.

char c0 = 'abcd'; // C4305, C4309, truncates to 'd'
wchar_t w0 = 'abcd'; // C4305, C4309, truncates to '\x6364'

char c1 = '\100'; // '@'
char c2 = '\1000'; // C4305, C4309, truncates to '0'

char c3 = '\009'; // '9'
char c4 = '\089'; // C4305, C4309, truncates to '9'
char c5 = '\qrs'; // C4129, C4305, C4309, truncates to 's'

char c6 = '\x0050'; // 'P'
char c7 = '\x0pqr'; // C4305, C4309, truncates to 'r'

wchar_t w1 = L'\100'; // L'@'
wchar_t w2 = L'\1000'; // C4066 L'@', 0 ignored
wchar_t w3 = L'\009'; // C4066 L'\0', 9 ignored
wchar_t w4 = L'\089'; // C4066 L'\0', 89 ignored
wchar_t w5 = L'\qrs'; // C4129, C4066 L'q' escape, rs ignored
wchar_t w6 = L'\x0050'; // L'P'
wchar_t w7 = L'\x0pqr'; // C4066 L'\0', pqr ignored

Universal character namesUniversal character names

Microsoft Specific

To create a value from an ordinary character literal (those without a prefix), the compiler converts the character or
character sequence between single quotes into 8-bit values within a 32-bit integer. Multiple characters in the
literal fill corresponding bytes as needed from high-order to low-order. To create a char value, the compiler takes
the low-order byte. To create a wchar_t or char16_t value, the compiler takes the low-order word. The compiler
warns that the result is truncated if any bits are set above the assigned byte or word.

An octal escape sequence is a backslash followed by a sequence of up to 3 octal digits. The behavior of an octal
escape sequence that appears to contain more than three digits is treated as a 3-digit octal sequence followed by
the subsequent digits as characters; this can give surprising results. For example:

Escape sequences that appear to contain non-octal characters are evaluated as an octal sequence up to the last
octal character, followed by the remaining characters. For example:

A hexadecimal escape sequence is a backslash followed by the character x , followed by a sequence of
hexadecimal digits. An escape sequence that contains no hexadecimal digits causes compiler error C2153: "hex
literals must have at least one hex digit". Leading zeroes are ignored. An escape sequence that appears to have
hexadecimal and non-hexadecimal characters is evaluated as a hexadecimal escape sequence up to the last
hexadecimal character, followed by the non-hexadecimal characters. In an ordinary or u8-prefixed character literal,
the highest hexadecimal value is 0xFF. In an L-prefixed or u-prefixed wide character literal, the highest
hexadecimal value is 0xFFFF. In a U-prefixed wide character literal, the highest hexadecimal value is 0xFFFFFFFF.

If a wide character literal prefixed with L contains more than one character, the value is taken from the first
character. Subsequent characters are ignored, unlike the behavior of the equivalent ordinary character literal.

END Microsoft Specific

The backslash character (\) is a line-continuation character when it is placed at the end of a line. If you want a
backslash character to appear as a character literal, you must type two backslashes in a row (\\). For more
information about the line continuation character, see Phases of Translation.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/phases-of-translation

char u1 = 'A'; // 'A'
char u2 = '\101'; // octal, 'A'
char u3 = '\x41'; // hexadecimal, 'A'
char u4 = '\u0041'; // \u UCN 'A'
char u5 = '\U00000041'; // \U UCN 'A'

Surrogate PairsSurrogate Pairs

String literals

Narrow String LiteralsNarrow String Literals

const char *narrow = "abcd";

// represents the string: yes\no
const char *escaped = "yes\\no";

UTF-8 encoded stringsUTF-8 encoded strings

const char* str1 = u8"Hello World";
const char* str2 = u8"\U0001F607 is O:-)";

Wide String LiteralsWide String Literals

In character literals and native (non-raw) string literals, any character may be represented by a universal character
name. Universal character names are formed by a prefix \U followed by an eight-digit Unicode code point, or by a
prefix \u followed by a four digit Unicode code point. All eight or four digits, respectively, must be present to make
a well-formed universal character name.

Universal character names cannot encode values in the surrogate code point range D800-DFFF. For Unicode
surrogate pairs, specify the universal character name by using \UNNNNNNNN , where NNNNNNNN is the eight-digit
code point for the character. The compiler generates a surrogate pair if required.

In C++03, the language only allowed a subset of characters to be represented by their universal character names,
and allowed some universal character names that didn’t actually represent any valid Unicode characters. This was
fixed in the C++11 standard. In C++11, both character and string literals and identifiers can use universal
character names. For more information on universal character names, see Character Sets. For more information
about Unicode, see Unicode. For more information about surrogate pairs, see Surrogate Pairs and Supplementary
Characters.

A string literal represents a sequence of characters that together form a null-terminated string. The characters
must be enclosed between double quotation marks. There are the following kinds of string literals:

A narrow string literal is a non-prefixed, double-quote delimited, null-terminated array of type const char[n] ,
where n is the length of the array in bytes. A narrow string literal may contain any graphic character except the
double quotation mark ("), backslash (\), or newline character. A narrow string literal may also contain the
escape sequences listed above, and universal character names that fit in a byte.

A UTF-8 encoded string is a u8-prefixed, double-quote delimited, null-terminated array of type const char[n] ,
where n is the length of the encoded array in bytes. A u8-prefixed string literal may contain any graphic character
except the double quotation mark ("), backslash (\), or newline character. A u8-prefixed string literal may also
contain the escape sequences listed above, and any universal character name.

A wide string literal is a null-terminated array of constant wchar_t that is prefixed by ' L ' and contains any
graphic character except the double quotation mark ("), backslash (\), or newline character. A wide string literal
may contain the escape sequences listed above and any universal character name.

https://msdn.microsoft.com/library/dd374081
https://docs.microsoft.com/windows/desktop/Intl/surrogates-and-supplementary-characters

const wchar_t* wide = L"zyxw";
const wchar_t* newline = L"hello\ngoodbye";

char16_t and char32_t (C++11)char16_t and char32_t (C++11)

auto s3 = u"hello"; // const char16_t*
auto s4 = U"hello"; // const char32_t*

Raw String Literals (C++11)Raw String Literals (C++11)

// represents the string: An unescaped \ character
const char* raw_narrow = R"(An unescaped \ character)";
const wchar_t* raw_wide = LR"(An unescaped \ character)";
const char* raw_utf8 = u8R"(An unescaped \ character)";
const char16_t* raw_utf16 = uR"(An unescaped \ character)";
const char32_t* raw_utf32 = UR"(An unescaped \ character)";

// meant to represent the string:)"
const char* bad_parens = R"()")"; // error C2059

const char* good_parens = R"xyz()")xyz";

// represents the string: hello
//goodbye
const wchar_t* newline = LR"(hello
goodbye)";

std::string Literals (C++14)std::string Literals (C++14)

C++11 introduces the portable char16_t (16-bit Unicode) and char32_t (32-bit Unicode) character types:

A raw string literal is a null-terminated array—of any character type—that contains any graphic character,
including the double quotation mark ("), backslash (\), or newline character. Raw string literals are often used in
regular expressions that use character classes, and in HTML strings and XML strings. For examples, see the
following article: Bjarne Stroustrup's FAQ on C++11.

A delimiter is a user-defined sequence of up to 16 characters that immediately precedes the opening parenthesis
of a raw string literal and immediately follows its closing parenthesis. For example, in R"abc(Hello"\()abc" the
delimiter sequence is abc and the string content is Hello"\(. You can use a delimiter to disambiguate raw
strings that contain both double quotation marks and parentheses. This causes a compiler error:

But a delimiter resolves it:

You can construct a raw string literal in which there is a newline (not the escaped character) in the source:

std::string literals are Standard Library implementations of user-defined literals (see below) that are represented
as "xyx"s (with a s suffix). This kind of string literal produces a temporary object of type std::string, std::wstring,
std::u32string or std::u16string depending on the prefix that is specified. When no prefix is used, as above, a
std::string is produced. L"xyz"s produces a std::wstring. u"xyz"s produces a std::u16string, and U"xyz"s produces a
std::u32string.

http://www.stroustrup.com/C++11FAQ.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/string-typedefs
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/string-typedefs

//#include <string>
//using namespace std::string_literals;
string str{ "hello"s };
string str2{ u8"Hello World" };
wstring str3{ L"hello"s };
u16string str4{ u"hello"s };
u32string str5{ U"hello"s };

u32string str6{ UR"(She said "hello.")"s };

Size of String LiteralsSize of String Literals

const wchar_t* str = L"Hello!";
const size_t byteSize = (wcslen(str) + 1) * sizeof(wchar_t);

Modifying String LiteralsModifying String Literals

wchar_t* str = L"hello";
str[2] = L'a'; // run-time error: access violation

The s suffix may also be used on raw string literals:

std::string literals are defined in the namespace std::literals::string_literals in the <string> header file.
Because std::literals::string_literals , and std::literals are both declared as inline namespaces,
std::literals::string_literals is automatically treated as if it belonged directly in namespace std .

For ANSI char* strings and other single-byte encodings (not UTF-8), the size (in bytes) of a string literal is the
number of characters plus 1 for the terminating null character. For all other string types, the size is not strictly
related to the number of characters. UTF-8 uses up to four char elements to encode some code units, and
char16_t or wchar_t encoded as UTF-16 may use two elements (for a total of four bytes) to encode a single code
unit. This example shows the size of a wide string literal in bytes:

Notice that strlen() and wcslen() do not include the size of the terminating null character, whose size is equal
to the element size of the string type: one byte on a char* string, two bytes on wchar_t* or char16_t* strings, and
four bytes on char32_t* strings.

The maximum length of a string literal is 65535 bytes. This limit applies to both narrow string literals and wide
string literals.

Because string literals (not including std:string literals) are constants, trying to modify them—for example,
str[2] = 'A' —causes a compiler error.

Microsoft Specific

In Microsoft C++ you can use a string literal to initialize a pointer to non-const char or wchar_t. This is allowed
in C99 code, but is deprecated in C++98 and removed in C++11. An attempt to modify the string causes an
access violation, as in this example:

You can cause the compiler to emit an error when a string literal is converted to a non_const character pointer
when you set the /Zc:strictStrings (Disable string literal type conversion) compiler option. We recommend it for
standards-compliant portable code. It is also a good practice to use the auto keyword to declare string literal-
initialized pointers, because it resolves to the correct (const) type. For example, this code example catches an
attempt to write to a string literal at compile time:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-strictstrings-disable-string-literal-type-conversion

auto str = L"hello";
str[2] = L'a'; // C3892: you cannot assign to a variable that is const.

Concatenating adjacent string literalsConcatenating adjacent string literals

char str[] = "12" "34";

char atr[] = "1234";

char atr[] = "12\
34";

"\x05five"

"\005five" // Use octal literal.
"\x05" "five" // Use string splicing.

auto x1 = "hello" " " " world"; // OK
auto x2 = U"hello" " " L"world"; // C2308: disagree on prefix
auto x3 = u8"hello" " "s u8"world"s; // OK, agree on prefixes and suffixes
auto x4 = u8"hello" " "s u8"world"z; // C3688, disagree on suffixes

String literals with universal character namesString literals with universal character names

In some cases, identical string literals may be pooled to save space in the executable file. In string-literal pooling,
the compiler causes all references to a particular string literal to point to the same location in memory, instead of
having each reference point to a separate instance of the string literal. To enable string pooling, use the /GF
compiler option.

End Microsoft Specific

Adjacent wide or narrow string literals are concatenated. This declaration:

is identical to this declaration:

and to this declaration:

Using embedded hexadecimal escape codes to specify string literals can cause unexpected results. The following
example seeks to create a string literal that contains the ASCII 5 character, followed by the characters f, i, v, and e:

The actual result is a hexadecimal 5F, which is the ASCII code for an underscore, followed by the characters i, v,
and e. To get the correct result, you can use one of these:

std::string literals, because they are std::string types, can be concatenated with the + operator that is defined for
basic_string types. They can also be concatenated in the same way as adjacent string literals. In both cases, the
string encoding and the suffix must match:

Native (non-raw) string literals may use universal character names to represent any character, as long as the
universal character name can be encoded as one or more characters in the string type. For example, a universal
character name representing an extended character cannot be encoded in a narrow string using the ANSI code
page, but it can be encoded in narrow strings in some multi-byte code pages, or in UTF-8 strings, or in a wide
string. In C++11, Unicode support is extended by the char16_t* and char32_t* string types:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gf-eliminate-duplicate-strings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class

// ASCII smiling face
const char* s1 = ":-)";

// UTF-16 (on Windows) encoded WINKING FACE (U+1F609)
const wchar_t* s2 = L"� = \U0001F609 is ;-)";

// UTF-8 encoded SMILING FACE WITH HALO (U+1F607)
const char* s3 = u8"� = \U0001F607 is O:-)";

// UTF-16 encoded SMILING FACE WITH OPEN MOUTH (U+1F603)
const char16_t* s4 = u"� = \U0001F603 is :-D";

// UTF-32 encoded SMILING FACE WITH SUNGLASSES (U+1F60E)
const char32_t* s5 = U"� = \U0001F60E is B-)";

See also
Character Sets
Numeric, Boolean and Pointer Literals
User-Defined Literals

User-Defined Literals (C++)
10/31/2018 • 6 minutes to read • Edit Online

Distance d = 36.0_mi + 42.0_km; // Custom UDL (see below)
 std::string str = "hello"s + "World"s; // Standard Library <string> UDL
 complex<double> num =
 (2.0 + 3.01i) * (5.0 + 4.3i); // Standard Library <complex> UDL
 auto duration = 15ms + 42h; // Standard Library <chrono> UDLs

User-defined literal operator signatures

ReturnType operator "" _a(unsigned long long int); // Literal operator for user-defined INTEGRAL literal
ReturnType operator "" _b(long double); // Literal operator for user-defined FLOATING literal
ReturnType operator "" _c(char); // Literal operator for user-defined CHARACTER literal
ReturnType operator "" _d(wchar_t); // Literal operator for user-defined CHARACTER literal
ReturnType operator "" _e(char16_t); // Literal operator for user-defined CHARACTER literal
ReturnType operator "" _f(char32_t); // Literal operator for user-defined CHARACTER literal
ReturnType operator "" _g(const char*, size_t); // Literal operator for user-defined STRING literal
ReturnType operator "" _h(const wchar_t*, size_t); // Literal operator for user-defined STRING literal
ReturnType operator "" _i(const char16_t*, size_t); // Literal operator for user-defined STRING literal
ReturnType operator "" _g(const char32_t*, size_t); // Literal operator for user-defined STRING literal
ReturnType operator "" _r(const char*); // Raw literal operator
template<char...> ReturnType operator "" _t(); // Literal operator template

Cooked literals

There are five major categories of literals: integer, character, floating-point, string, boolean and pointer. Starting in
C++ 11 you can define your own literals based on these categories to provide syntactic shortcuts for common
idioms and increase type safety. For example, let's say you have a Distance class. You could define a literal for
kilometers and another one for miles, and encourage the user to be explicit about the units of measure by simply
writing: auto d = 42.0_km or auto d = 42.0_mi. There is no performance advantage or disadvantage to user-
defined literals; they are primarily for convenience or for compile-time type deduction. The Standard Library has
user-defined literals for std:string, for std::complex, and for units in time and duration operations in the <chrono>
header :

You implement a user-defined literal by defining an operator"" at namespace scope with one of the following
forms:

The operator names in the previous example are placeholders for whatever name you provide; however, the
leading underscore is required. (Only the Standard Library is allowed to define literals without the underscore.)
The return type is where you customize the conversion or other operation that the literal performs. Also, any of
these operators can be defined as constexpr .

In source code any literal whether user-defined or not is essentially a sequence of alphanumeric characters, such
as 101 , or 54.7 , or "hello" or true . The compiler interprets the sequence as an integer, float, const char*
string, and so on. A user-defined literal that accepts as input whatever type the compiler assigned to the literal
value is informally known as a cooked literal. All the operators above except _r and _t are cooked literals. For
example, a literal 42.0_km would bind to an operator named _km that had a signature similar to _b and the literal
42_km would bind to an operator with a signature similar to _a.

The following example shows how user-defined literals can encourage callers to be explicit about their input. To

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/user-defined-literals-cpp.md

struct Distance
{
private:
 explicit Distance(long double val) : kilometers(val)
 {}

 friend Distance operator"" _km(long double val);
 friend Distance operator"" _mi(long double val);
 long double kilometers{ 0 };
public:
 long double get_kilometers() { return kilometers; }
 Distance operator+(Distance& other)
 {
 return Distance(get_kilometers() + other.get_kilometers());
 }
};

Distance operator"" _km(long double val)
{
 return Distance(val);
}

Distance operator"" _mi(long double val)
{
 return Distance(val * 1.6);
}
int main(int argc, char* argv[])
{
 // Must have a decimal point to bind to the operator we defined!
 Distance d{ 402.0_km }; // construct using kilometers
 cout << "Kilometers in d: " << d.get_kilometers() << endl; // 402

 Distance d2{ 402.0_mi }; // construct using miles
 cout << "Kilometers in d2: " << d2.get_kilometers() << endl; //643.2

 // add distances constructed with different units
 Distance d3 = 36.0_mi + 42.0_km;
 cout << "d3 value = " << d3.get_kilometers() << endl; // 99.6

 // Distance d4(90.0); // error constructor not accessible

 string s;
 getline(cin, s);
 return 0;
}

Raw literals

ReturnType operator "" _r(const char*); // Raw literal operator
template<char...> ReturnType operator "" _t(); // Literal operator template

construct a Distance , the user must explicitly specify kilometers or miles by using the appropriate user-defined
literal. Of course you can also achieve the same result in other ways, but user-defined literals are less verbose
than the alternatives.

Note that the literal number must use a decimal, otherwise the number would be interpreted as an integer and
the type would not be compatible with the operator. Also note that for floating point input, the type must be long
double, and for integral types it must be long long.

In a raw user-defined literal, the operator that you define accepts the literal as a sequence of char values and it is
up to you to interpret that sequence as a number or string or other type. In the list of operators shown earlier in
this page, _r and _t can be used to define raw literals:

Example: Limitations of raw literalsExample: Limitations of raw literals

#include <cstddef>
#include <cstdio>

// Literal operator for user-defined INTEGRAL literal
void operator "" _dump(unsigned long long int lit)
{
 printf("operator \"\" _dump(unsigned long long int) : ===>%llu<===\n", lit);
};

// Literal operator for user-defined FLOATING literal
void operator "" _dump(long double lit)
{
 printf("operator \"\" _dump(long double) : ===>%Lf<===\n", lit);
};

// Literal operator for user-defined CHARACTER literal
void operator "" _dump(char lit)
{
 printf("operator \"\" _dump(char) : ===>%c<===\n", lit);
};

void operator "" _dump(wchar_t lit)
{
 printf("operator \"\" _dump(wchar_t) : ===>%d<===\n", lit);
};

void operator "" _dump(char16_t lit)
{
 printf("operator \"\" _dump(char16_t) : ===>%d<===\n", lit);
};

void operator "" _dump(char32_t lit)
{
 printf("operator \"\" _dump(char32_t) : ===>%d<===\n", lit);
};

// Literal operator for user-defined STRING literal
void operator "" _dump(const char* lit, size_t)
{
 printf("operator \"\" _dump(const char*, size_t): ===>%s<===\n", lit);
};

void operator "" _dump(const wchar_t* lit, size_t)
{
 printf("operator \"\" _dump(const wchar_t*, size_t): ===>%ls<===\n", lit);
};

void operator "" _dump(const char16_t* lit, size_t)
{
 printf("operator \"\" _dump(const char16_t*, size_t):\n");
};

void operator "" _dump(const char32_t* lit, size_t)
{
 printf("operator \"\" _dump(const char32_t*, size_t):\n");
};

You can use raw literals to provide a custom interpretation of an input sequence that is different than what the
compiler would perform. For example, you could define a literal that converts the sequence 4.75987 into a
custom Decimal type instead of an IEEE 754 floating point type. Raw literals, like cooked literals, can also be used
to perform compile-time validation of input sequences.

The raw literal operator and literal operator template only work for integral and floating-point user-defined
literals, as shown by the following example:

// Raw literal operator
void operator "" _dump_raw(const char* lit)
{
 printf("operator \"\" _dump_raw(const char*) : ===>%s<===\n", lit);
};

template<char...> void operator "" _dump_template(); // Literal operator template

int main(int argc, const char* argv[])
{
 42_dump;
 3.1415926_dump;
 3.14e+25_dump;
 'A'_dump;
 L'B'_dump;
 u'C'_dump;
 U'D'_dump;
 "Hello World"_dump;
 L"Wide String"_dump;
 u8"UTF-8 String"_dump;
 u"UTF-16 String"_dump;
 U"UTF-32 String"_dump;
 42_dump_raw;
 3.1415926_dump_raw;
 3.14e+25_dump_raw;

 // There is no raw literal operator or literal operator template support on these types:
 // 'A'_dump_raw;
 // L'B'_dump_raw;
 // u'C'_dump_raw;
 // U'D'_dump_raw;
 // "Hello World"_dump_raw;
 // L"Wide String"_dump_raw;
 // u8"UTF-8 String"_dump_raw;
 // u"UTF-16 String"_dump_raw;
 // U"UTF-32 String"_dump_raw;
}

operator "" _dump(unsigned long long int) : ===>42<===
operator "" _dump(long double) : ===>3.141593<===
operator "" _dump(long double) : ===>31399999999999998506827776.000000<===
operator "" _dump(char) : ===>A<===
operator "" _dump(wchar_t) : ===>66<===
operator "" _dump(char16_t) : ===>67<===
operator "" _dump(char32_t) : ===>68<===
operator "" _dump(const char*, size_t): ===>Hello World<===
operator "" _dump(const wchar_t*, size_t): ===>Wide String<===
operator "" _dump(const char*, size_t): ===>UTF-8 String<===
operator "" _dump(const char16_t*, size_t):
operator "" _dump(const char32_t*, size_t):
operator "" _dump_raw(const char*) : ===>42<===
operator "" _dump_raw(const char*) : ===>3.1415926<===
operator "" _dump_raw(const char*) : ===>3.14e+25<===

Basic Concepts (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

This section explains concepts that are critical to understanding C++. C programmers will be familiar with many
of these concepts, but there are some subtle differences that can cause unexpected program results. The following
topics are included:

Declarations and definitions

Scope of a C++ object or function

Program definition and linkage rules

Startup and termination

L-values and r-values

Temporary Objects

Alignment

alignof and alignas

Trivial, standard-layout and POD types

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/basic-concepts-cpp.md

Declarations and Definitions (C++)
10/31/2018 • 3 minutes to read • Edit Online

Declarations

// Declare and define int variables i and j.
int i;
int j = 10;

// Declare enumeration suits.
enum suits { Spades = 1, Clubs, Hearts, Diamonds };

// Declare class CheckBox.
class CheckBox : public Control
{
public:
 Boolean IsChecked();
 virtual int ChangeState() = 0;
};

Declarations introduce names in a program, for example the names of variables, namespaces, functions and
classes. Declarations also specify type information as well as other characteristics of the object that is being
declared. A name must be declared before it can be used; in C++ the point at which a name is declared
determines whether it is visible to the compiler. You cannot refer to a function or class that is declared at some
later point in the compilation unit; you can use forward declarations to get around this limitation.

Definitions specify what code or data the name describes. The compiler needs the definition in order to allocate
storage space for the thing that is being declared.

A declaration introduces one or more names into a program. Declarations can occur more than once in a
program. Therefore, classes, structures, enumerated types, and other user-defined types can be declared for each
compilation unit. The constraint on this multiple declaration is that all declarations must be identical. Declarations
also serve as definitions, except when the declaration:

1. Is a function prototype (a function declaration with no function body).

2. Contains the extern specifier but no initializer (objects and variables) or function body (functions). This
signifies that the definition is not necessarily in the current translation unit and gives the name external
linkage.

3. Is of a static data member inside a class declaration.

Because static class data members are discrete variables shared by all objects of the class, they must be
defined and initialized outside the class declaration. (For more information about classes and class
members, see Classes.)

4. Is a class name declaration with no following definition, such as class T; .

5. Is a typedef statement.

Examples of declarations that are also definitions are:

Some declarations that are not definitions are:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/declarations-and-definitions-cpp.md

extern int i;
char *strchr(const char *Str, const char Target);

Definitions

See also

A name is considered to be declared immediately after its declarator but before its (optional) initializer. For more
information, see Point of Declaration.

Declarations occur in a scope. The scope controls the visibility of the name declared and the duration of the object
defined, if any. For more information about how scope rules interact with declarations, see Scope.

An object declaration is also a definition unless it contains the extern storage-class specifier described in Storage
classes. A function declaration is also a definition unless it is a prototype. A prototype is a function header without
a defining function body. The definition of an object causes allocation of storage and appropriate initializations
for that object.

A definition is a unique specification of an object or variable, function, class, or enumerator. Because definitions
must be unique, a program can contain only one definition for a given program element. There can be a many-
to-one correspondence between declarations and definitions. There are two cases in which a program element
can be declared and not defined:

// definitions.cpp
class WindowCounter; // Forward declaration; no definition

class Window
{
 // Definition of WindowCounter not required
 static WindowCounter windowCounter;
};

int main()
{
}

1. A function is declared but never referenced with a function call or with an expression that takes the
function's address.

2. A class is used only in a way that does not require its definition be known. However, the class must be
declared. The following code illustrates such a case:

Basic Concepts
Point of Declaration

Overview of Declarators
11/20/2018 • 5 minutes to read • Edit Online

const char *pch, ch;

int *i; // declarator is *i
int **i; // declarator is **i;
int &i = x; // declaratory is &i

Declarators are the components of a declaration that specify names of objects or functions. Declarators also
specify whether or not the named object is an object, pointer, reference or array. While declarators do not specify
the base type, they do modify the type information in the basic type to specify derived types such as pointers,
references, and arrays. Applied to functions, the declarator works with the type specifier to fully specify the return
type of a function to be an object, pointer, or reference. (Specifiers, discussed in Declarations and Definitions,
convey properties such as type and storage class. Modifiers, discussed in this section and in Microsoft-Specific
Modifiers, modify declarators.) The following figure shows a complete declaration of MyFunction , and calls out the
components of the declaration.

Specifiers, modifiers, and declarators

Microsoft Specific

Most Microsoft extended keywords can be used as modifiers to form derived types; they are not specifiers or
declarators. (See Microsoft-Specific Modifiers.)

END Microsoft Specific

Declarators appear in the declaration syntax after an optional list of specifiers. These specifiers are discussed in
Declarations. A declaration can contain more than one declarator, but each declarator declares only one name.

The following sample declaration shows how specifiers and declarators are combined to form a complete
declaration:

In the preceding declaration, the keywords const and char make up the list of specifiers. Two declarators are listed:
*pch and ch . A declaration that declares multiple entities consists of a type specifier followed by a comma-

separated list of declarators, terminated with a semicolon.

Declarators for Simple Objects

The declarator of a simple object such as an int or double is simply its name, with optional parentheses.

int i; // declarator is i

int (i); // declarator is (i)

Declarators for Pointers, References and Arrays

Pointer operators inserted in front of the name cause the object to be a pointer or reference. The * operator
declares the name as a pointer ; the & operator declares it as a reference.

Appending const or volatile give the pointer these special properties. The use of these specifiers in a declarator

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overview-of-declarators.md

char *const cpc; // const pointer to char
const char *pcc; // pointer to const char
const char *const cpcc; // const pointer to const char

int X::* pIntMember;
int ::X::* pIntMember; // the initial :: specifies X is in global scope
char Outer::Inner::* pIntMember; // pointer to char in a nested class

int i[5]; // array with five elements of type int numbered from 0 to 4
int i[]; // array of unknown size
char *s[4]; // array of pointers to char
int i[2][2]; // two dimensional array

int f(int a, int b, int c);

int (*pf)(int); // pointer to function returning int
int *f(int i); // function returning pointer to int
int (&pf)(int); // reference to function

int (X::* pmf)(); // pointer to member function of X returning int
int* (X::* pmf)(); // pointer to member function returning pointer to int

int i, *j, f(int k); // int, pointer to int, function returning int

(as opposed to in the type specifier) modifies the properties of the pointer, not the object pointed to:

Further information may be found in const and volatile Pointers.

A pointer to a member of a class or struct is declared with the appropriate nested name specifier:

Brackets enclosing an optional constant expression after the name cause the object to be an array. Successive
brackets declare additional dimensions to the array.

Declarators for Functions

Parentheses containing the argument list are used after the name to declare a function. The following declares a
function of return type int and three arguments of type int.

Pointers and references to functions are declared by prepending the pointer or reference operator to the function
name as shown below. Parentheses, normally optional, are required to distinguish a pointer to a function from a
function that returns a pointer :

Pointers to member functions are distinguished by nested name specifiers:

See also Pointers to Members.

Functions and objects in the same declaration

Functions and objects may be declared in the same declaration as follows:

The syntax may be misleading in some circumstances. The following declaration

int* i, f(int k); // pointer to int, function returning int (not int*)

// Function returning type int that takes one
// argument of type char *.
typedef int (*PIFN)(char *);
// Declare an array of 7 pointers to functions
// returning int and taking one argument of type
// char *.
PIFN pifnDispatchArray[7];

int (*pifnDispatchArray[7])(char *);

int a, *b, c[5], **d, &e=a;

may look like the declaration of an int pointer and a function returning int* , but it is not. That's because the * is
part of the declarator for i , not part of the declarator for f .

Simplifying declarator syntax with typedef

A better technique, however, is to use a typedef or a combination of parentheses and the typedef keyword.
Consider declaring an array of pointers to functions:

The equivalent declaration can be written without the typedef declaration, but it is so complicated that the
potential for error exceeds any benefits:

For more information on typedef, see Aliases and typedefs.

Pointers, references, arrays of a single base type can be combined in a single declaration (separated by commas) as

More complex declarator syntax

Pointer, reference, array, and function declarators may be combined to specify such objects as arrays of
pointers to functions, pointers to arrays, etc.

The following recursive grammar describes pointer declarator syntax fully.

A declarator is defined as one of:

identifier
qualified-name
declarator (argument-list) [cv-qualfiers] [exception-spec]
declarator [[constant-expression]]
pointer-operator declarator
(declarator)

and pointer-operator is one of:

* [cv-qualifiers]
& [cv-qualifiers] ::nested-name-specifier * [cv-qualifiers]

Because a declarator may contain declarators, it is possible to construct the more complex derived types such as
arrays of pointers, functions returning arrays of function pointers, by using the above rules. To form each step of
the construction, start with the identifier representing the base data type and apply the syntax rule above with the
previous expression as the declarator . The order that you apply the syntax rules should be the reverse of the way
the expression is stated in English. If applying the pointer-operator syntax rule to an array or function expression,

VERBAL EXPRESSION DECLARATOR SYNTAX RULE APPLIED

i 1

pointer(s) to *i 5

array of 10 (*i)[10] 4

pointer to *((*i)[10]) 6 and then 5

use parentheses if you want a pointer to the array or function, as in the last row in the table below.

The following example shows the construction of "pointer to array of 10 pointers to int".

When multiple pointer, reference, array or function modifiers are used, declarators may become quite complicated.
The topic Interpreting More Complex Declarators describes how to read more complex declarator syntax. The
topic is applicable to both C and C++, although in C++, anywhere the * is used to indicate a pointer, a qualified
name such as MyClass::* may be used to specify a pointer to a member of a class.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/interpreting-more-complex-declarators

Specifiers
10/31/2018 • 2 minutes to read • Edit Online

Remarks

DECLARATION DECL-SPECIFIERS DECLARATOR

char *lpszAppName; char *lpszAppName

typedef char * LPSTR; char *LPSTR

const int func1(); const int func1

volatile void *pvvObj; volatile void *pvvObj

NOTENOTE

See also

This topic describes the decl-specifiers (declaration specifiers) component of a declaration.

The following placeholders and language keywords are declaration specifiers:

storage-class-specifier

type-specifier

function-specifier

friend

typedef (extended-decl-modifier-seq)

__declspec (extended-decl-modifier-seq)

The decl-specifiers part of a declaration is the longest sequence of decl-specifiers that can be taken to mean a type
name, not including the pointer or reference modifiers. The remainder of the declaration is the declarator, which
includes the name introduced.

The following table lists four declarations, and then lists each declaration's decl-specifers and declarator component
separately.

Because signed, unsigned, long, and short all imply int, a typedef name following one of these keywords is
taken to be a member of declarator-list, not of decl-specifiers.

Because a name can be redeclared, its interpretation is subject to the most recent declaration in the current scope.
Redeclaration can affect how names are interpreted by the compiler, especially typedef names.

Declarations and Definitions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/specifiers.md

extern (C++)
10/31/2018 • 4 minutes to read • Edit Online

extern linkage for non-const globals

//fileA.cpp
int i = 42; // declaration and definition

//fileB.cpp
extern int i; // declaration only. same as i in FileA

//fileC.cpp
extern int i; // declaration only. same as i in FileA

//fileD.cpp
int i = 43; // LNK2005! 'i' already has a definition.
extern int i = 43; // same error (extern is ignored on definitions)

extern linkage for const globals

//fileA.cpp
extern const int i = 42; // extern const definition

//fileB.cpp
extern const int i; // declaration only. same as i in FileA

extern constexpr linkage

The extern keyword is applied to a global variable, function or template declaration to specify that the name of
that thing has external linkage. For background information on linkage and why the use of global variables is
discouraged, see Program and linkage.

The extern keyword has four meanings depending on the context:

1. in a non-const global variable declaration, extern specifies that the variable or function is defined in another
translation unit. The extern must be applied in all files except the one where the variable is defined.

2. in a const variable declaration, it specifies that the variable has external linkage. The extern must be applied to
all declarations in all files. (Global const variables have internal linkage by default.)

3. extern "C" specifies that the function is defined elsewhere and uses the C-language calling convention. The
extern "C" modifier may also be applied to multiple function declarations in a block.

4. in a template declaration, it specifies that the template has already been instantiated elsewhere. This is an
optimization that tells the compiler that it can re-use the other instantiation rather than creating a new one at
the current location. For more information about this use of extern, see Templates.

When the linker sees extern before a global variable declaration, it looks for the definition in another translation
unit. Declarations of non-const variables at global scope are external by default; only apply extern to the
declarations that don't provide the definition.

A const global variable has internal linkage by default. If you want the variable to have external linkage, apply the
extern keyword to definition as well as to all other declarations in other files:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/extern-cpp.md

extern constexpr int x = 10; //error LNK2005: "int const x" already defined

extern constexpr __declspec(selectany) int x = 10;

extern "C" and extern "C++" function declarations

Example

// Declare printf with C linkage.
extern "C" int printf(const char *fmt, ...);

// Cause everything in the specified
// header files to have C linkage.
extern "C" {
 // add your #include statements here
#include <stdio.h>
}

// Declare the two functions ShowChar
// and GetChar with C linkage.
extern "C" {
 char ShowChar(char ch);
 char GetChar(void);
}

// Define the two functions
// ShowChar and GetChar with C linkage.
extern "C" char ShowChar(char ch) {
 putchar(ch);
 return ch;
}

extern "C" char GetChar(void) {
 char ch;
 ch = getchar();
 return ch;
}

// Declare a global variable, errno, with C linkage.
extern "C" int errno;

In Visual Studio 2017 version 15.3 and earlier, the compiler always gave a constexpr variable internal linkage even
when the variable was marked extern. In Visual Studio 2017 version 15.5, a new compiler switch
(/Zc:externConstexpr) enables correct standards-conforming behavior. Eventually this will become the default.

If a header file contains a variable declared extern constexpr, it needs to be marked __declspec(selectany) in order
to correctly have its duplicate declarations combined:

In C++, when used with a string, extern specifies that the linkage conventions of another language are being used
for the declarator(s). C functions and data can be accessed only if they are previously declared as having C linkage.
However, they must be defined in a separately compiled translation unit.

Microsoft C++ supports the strings "C" and "C++" in the string-literal field. All of the standard include files use
the extern "C" syntax to allow the run-time library functions to be used in C++ programs.

The following example shows how to declare names that have C linkage:

If a function has more than one linkage specification, they must agree; it is an error to declare functions as having

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-externconstexpr

extern "C" int CFunc1();
...
int CFunc1(); // Redeclaration is benign; C linkage is
 // retained.

int CFunc2();
...
extern "C" int CFunc2(); // Error: not the first declaration of
 // CFunc2; cannot contain linkage
 // specifier.

See also

both C and C++ linkage. Furthermore, if two declarations for a function occur in a program — one with a linkage
specification and one without — the declaration with the linkage specification must be first. Any redundant
declarations of functions that already have linkage specification are given the linkage specified in the first
declaration. For example:

Keywords
Program and linkage
extern Storage-Class Specifier in C
Behavior of Identifiers in C
Linkage in C

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/extern-storage-class-specifier
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/behavior-of-identifiers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/linkage

Header files (C++)
10/31/2018 • 4 minutes to read • Edit Online

int x; // declaration
x = 42; // use x

Example

// my_class.h
namespace N
{
 class my_class
 {
 public:
 void do_something();
 };

}

The names of program elements such as variables, functions, classes, and so on must be declared before they can
be used. For example, you can't just write x = 42 without first declaring 'x'.

The declaration tells the compiler whether is an int, a double, a function, a class or some other thing.
Furthermore, each name must be declared (directly or indirectly) in every .cpp file in which it is used. When you
compile a program, each .cpp file is compiled independently into a compilation unit. The compiler has no
knowledge of what names are declared in other compilation units. That means that if you define a class or function
or global variable, you must provide a declaration of that thing in each additional .cpp file that uses it. Each
declaration of that thing must be exactly identical in all files. A slight inconsistency will cause errors, or unintended
behavior, when the linker attempts to merge all the compilation units into a single program.

To minimize the potential for errors, C++ has adopted the convention of using header files to contain declarations.
You make the declarations in a header file, then use the #include directive in every .cpp file or other header file
requires that declaration. The #include directive inserts a copy of the header file directly into the .cpp file prior to
compilation.

The following example shows a common way to declare a class and then use it in a different source file. We'll start
with the header file, my_class.h . It contains a class definition, but note that the definition is incomplete; the
member function do_something is not defined:

Next, create an implementation file (typically with a .cpp or similar extension). We'll call the file my_class.cpp and
provide a definition for the member declaration. We add an #include directive for "my_class.h" file in order to have
the my_class declaration inserted at this point in the .cpp file, and we include <iostream> to pull in the declaration
for std::cout . Note that quotes are used for header files in the same directory as the source file, and angle
brackets are used for standard library headers. Also, many standard library headers do not have .h or any other file
extension.

In the implementation file, we can optionally use a using statement to avoid having to qualify every mention of
"my_class" or "cout" with "N::" or "std::". Don't put using statements in your header files!

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/header-files-cpp.md

// my_class.cpp
#include "my_class.h" // header in local directory
#include <iostream> // header in standard library

using namespace N;
using namespace std;

void my_class::do_something()
{
 cout << "Doing something!" << endl;
}

// my_program.cpp
#include "my_class.h"

using namespace N;

int main()
{
 my_class mc;
 mc.do_something();
 return 0;
}

Include guards

// my_class.h
#ifndef MY_CLASS_H // include guard
#define MY_CLASS_H

namespace N
{
 class my_class
 {
 public:
 void do_something();
 };
}

#endif /* MY_CLASS_H */

What to put in a header file

Now we can use my_class in another .cpp file. We #include the header file so that the compiler pulls in the
declaration. All the compiler needs to know is that my_class is a class that has a public member function called
do_something() .

After the compiler finishes compiling each .cpp file into .obj files, it passes the .obj files to the linker. When the linker
merges the object files it finds exactly one definition for my_class; it is in the .obj file produced for my_class.cpp, and
the build succeeds.

Typically, header files have an include guard or a #pragma once directive to ensure that they are not inserted
multiple times into a single .cpp file.

Because a header file might potentially be included by multiple files, it cannot contain definitions that might
produce multiple definitions of the same name. The following are not allowed, or are considered very bad practice:

built-in type definitions at namespace or global scope

Sample header file

non-inline function definitions
non-const variable definitions
aggregate definitions
unnamed namespaces
using directives

Use of the using directive will not necessarily cause an error, but can potentially cause a problem because it brings
the namespace into scope in every .cpp file that directly or indirectly includes that header.

The following example shows the various kinds of declarations and definitions that are allowed in a header file:

#pragma once
#include <vector> // #include directive
#include <string>

namespace N // namespace declaration
{
 inline namespace P
 {
 //...
 }

 enum class colors : short { red, blue, purple, azure };

 const double PI = 3.14; // const and constexpr definitions
 constexpr int MeaningOfLife{ 42 };
 constexpr int get_meaning()
 {
 static_assert(MeaningOfLife == 42, "unexpected!"); // static_assert
 return MeaningOfLife;
 }
 using vstr = std::vector<int>; // type alias
 extern double d; // extern variable

#define LOG // macro definition

#ifdef LOG // conditional compilation directive
 void print_to_log();
#endif

 class my_class // regular class definition,
 { // but no non-inline function definitions

 friend class other_class;
 public:
 void do_something(); // definition in my_class.cpp
 inline void put_value(int i) { vals.push_back(i); } // inline OK

 private:
 vstr vals;
 int i;
 };

 struct RGB
 {
 short r{ 0 }; // member initialization
 short g{ 0 };
 short b{ 0 };
 };

 template <typename T> // template definition
 class value_store
 {
 public:
 value_store<T>() = default;
 void write_value(T val)
 {
 //... function definition OK in template
 }
 private:
 std::vector<T> vals;
 };

 template <typename T> // template declaration
 class value_widget;
}

Point of declaration in C++
10/31/2018 • 2 minutes to read • Edit Online

// point_of_declaration1.cpp
// compile with: /W1
double dVar = 7.0;
int main()
{
 double dVar = dVar; // C4700
}

See also

A name is considered to be declared immediately after its declarator but before its (optional) initializer. (For more
information on declarators, see Declarations and definitions.)

Consider this example:

If the point of declaration were after the initialization, then the local dVar would be initialized to 7.0, the value of
the global variable dVar . However, since that is not the case, dVar is initialized to an undefined value.

Scope

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/point-of-declaration-in-cpp.md

Initializers
11/20/2018 • 12 minutes to read • Edit Online

Kinds of initialization

An initializer specifies the initial value of a variable. You can initialize variables in these contexts:

int i = 3;
Point p1{ 1, 2 };

set_point(Point{ 5, 6 });

Point get_new_point(int x, int y) { return { x, y }; }
Point get_new_point(int x, int y) { return Point{ x, y }; }

In the definition of a variable:

As one of the parameters of a function:

As the return value of a function:

Initializers may take these forms:

Point p1(1, 2);

string s = "hello";

struct Point{
 int x;
 int y;
};
class PointConsumer{
public:
 void set_point(Point p){};
 void set_points(initializer_list<Point> my_list){};
};
int main() {
 PointConsumer pc{};
 pc.set_point({});
 pc.set_point({ 3, 4 });
 pc.set_points({ { 3, 4 }, { 5, 6 } });
}

An expression (or a comma-separated list of expressions) in parentheses:

An equals sign followed by an expression:

A braced initializer list. The list may be empty or may consist of a set of lists, as in the following example:

There are several kinds of initialization, which may occur at different points in program execution. Different kinds

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/initializers.md

Zero initializationZero initialization

struct my_struct{
 int i;
 char c;
};

int i0; // zero-initialized to 0
int main() {
 static float f1; // zero-initialized to 0.000000000
 double d{}; // zero-initialized to 0.00000000000000000
 int* ptr{}; // initialized to nullptr
 char s_array[3]{'a', 'b'}; // the third char is initialized to '\0'
 int int_array[5] = { 8, 9, 10 }; // the fourth and fifth ints are initialized to 0
 my_struct a_struct{}; // i = 0, c = '\0'
}

Default initializationDefault initialization

MyClass mc1;
MyClass* mc3 = new MyClass;

int i1;
float f;
char c;

of initialization are not mutually exclusive—for example, list initialization can trigger value initialization and in
other circumstances, it can trigger aggregate initialization.

Zero initialization is the setting of a variable to a zero value implicitly converted to the type:

Numeric variables are initialized to 0 (or 0.0, or 0.0000000000, etc.).

Char variables are initialized to '\0' .

Pointers are initialized to nullptr.

Arrays, POD classes, structs, and unions have their members initialized to a zero value.

Zero initialization is performed at different times:

At program startup, for all named variables that have static duration. These variables may later be
initialized again.

During value initialization, for scalar types and POD class types that are initialized by using empty braces.

For arrays that have only a subset of their members initialized.

Here are some examples of zero initialization:

Default initialization for classes, structs, and unions is initialization with a default constructor. The default
constructor can be called with no initialization expression or with the new keyword:

If the class, struct, or union does not have a default constructor, the compiler emits an error.

Scalar variables are default initialized when they are defined with no initialization expression. They have
indeterminate values.

Arrays are default initialized when they are defined with no initialization expression. When an array is default-
initialized, its members are default initialized and have indeterminate values, as in the following example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/is-pod-class

int int_arr[3];

Default initialization of constant variablesDefault initialization of constant variables

class MyClass{};
int main() {
 //const int i2; // compiler error C2734: const object must be initialized if not extern
 //const char c2; // same error
 const MyClass mc1; // compiler error C4269: 'const automatic data initialized with compiler generated
default constructor produces unreliable results
}

Default initialization of static variablesDefault initialization of static variables

class MyClass {
private:
 int m_int;
 char m_char;
};

int main() {
 static int int1; // 0
 static char char1; // '\0'
 static bool bool1; // false
 static MyClass mc1; // {0, '\0'}
}

Value initializationValue initialization

If the array members do not have a default constructor, the compiler emits an error.

Constant variables must be declared together with an initializer. If they are scalar types they cause a compiler error,
and if they are class types that have a default constructor they cause a warning:

Static variables that are declared with no initializer are initialized to 0 (implicitly converted to the type).

For more information about initialization of global static objects, see Additional Startup Considerations.

Value initialization occurs in the following cases:

a named value is initialized using empty brace initialization

an anonymous temporary object is initialized using empty parentheses or braces

an object is initialized with the new keyword plus empty parentheses or braces

Value initialization does the following:

for classes with at least one public constructor, the default constructor is called

for non-union classes with no declared constructors, the object is zero-initialized and the default
constructor is called

for arrays, every element is value-initialized

in all other cases, the variable is zero initialized

class BaseClass {
private:
 int m_int;
};

int main() {
 BaseClass bc{}; // class is initialized
 BaseClass* bc2 = new BaseClass(); // class is initialized, m_int value is 0
 int int_arr[3]{}; // value of all members is 0
 int a{}; // value of a is 0
 double b{}; // value of b is 0.00000000000000000
}

Copy initializationCopy initialization

#include <iostream>
using namespace std;

class MyClass{
public:
 MyClass(int myInt) {}
 void set_int(int myInt) { m_int = myInt; }
 int get_int() const { return m_int; }
private:
 int m_int = 7; // copy initialization of m_int

};
class MyException : public exception{};
int main() {
 int i = 5; // copy initialization of i
 MyClass mc1{ i };
 MyClass mc2 = mc1; // copy initialization of mc2 from mc1
 MyClass mc1.set_int(i); // copy initialization of parameter from i
 int i2 = mc2.get_int(); // copy initialization of i2 from return value of get_int()

 try{
 throw MyException();
 }
 catch (MyException ex){ // copy initialization of ex
 cout << ex.what();
 }
}

Copy initialization is the initialization of one object using a different object. It occurs in the following cases:

a variable is initialized using an equals sign

an argument is passed to a function

an object is returned from a function

an exception is thrown or caught

a non-static data member is initialized using an equals sign

class, struct, and union members are initialized by copy initialization during aggregate initialization. See
Aggregate initialization for examples.

The following code shows several examples of copy initialization:

Copy initialization cannot invoke explicit constructors.

vector<int> v = 10; // the constructor is explicit; compiler error C2440: cannot convert from 'int' to
'std::vector<int,std::allocator<_Ty>>'
regex r = "a.*b"; // the constructor is explicit; same error
shared_ptr<int> sp = new int(1729); // the constructor is explicit; same error

Direct initializationDirect initialization

class BaseClass{
public:
 BaseClass(int n) :m_int(n){} // m_int is direct initialized
private:
 int m_int;
};

class DerivedClass : public BaseClass{
public:
 // BaseClass and m_char are direct initialized
 DerivedClass(int n, char c) : BaseClass(n), m_char(c) {}
private:
 char m_char;
};
int main(){
 BaseClass bc1(5);
 DerivedClass dc1{ 1, 'c' };
 BaseClass* bc2 = new BaseClass(7);
 BaseClass bc3 = static_cast<BaseClass>(dc1);

 int a = 1;
 function<int()> func = [a](){ return a + 1; }; // a is direct initialized
 int n = func();
}

List initializationList initialization

In some cases, if the copy constructor of the class is deleted or inaccessible, copy initialization causes a compiler
error.

Direct initialization is initialization using (non-empty) braces or parentheses. Unlike copy initialization, it can
invoke explicit constructors. It occurs in the following cases:

a variable is initialized with non-empty braces or parentheses

a variable is initialized with the new keyword plus non-empty braces or parentheses

a variable is initialized with static_cast

in a constructor, base classes and non-static members are initialized with an initializer list

in the copy of a captured variable inside a lambda expression

The following code shows some examples of direct initialization:

List initialization occurs when a variable is initialized using a braced initializer list. Braced initializer lists can be
used in the following cases:

a variable is initialized

a class is initialized with the new keyword

an object is returned from a function

an argument passed to a function

one of the arguments in a direct initialization

class MyClass {
public:
 MyClass(int myInt, char myChar) {}
private:
 int m_int[]{ 3 };
 char m_char;
};
class MyClassConsumer{
public:
 void set_class(MyClass c) {}
 MyClass get_class() { return MyClass{ 0, '\0' }; }
};
struct MyStruct{
 int my_int;
 char my_char;
 MyClass my_class;
};
int main() {
 MyClass mc1{ 1, 'a' };
 MyClass* mc2 = new MyClass{ 2, 'b' };
 MyClass mc3 = { 3, 'c' };

 MyClassConsumer mcc;
 mcc.set_class(MyClass{ 3, 'c' });
 mcc.set_class({ 4, 'd' });

 MyStruct ms1{ 1, 'a', { 2, 'b' } };
}

Aggregate initializationAggregate initialization

NOTENOTE
In Visual Studio 2015 and earlier, an aggregate is not allowed to have brace-or-equal initializers for non-static members. This
restriction was removed in the C++14 standard and implemented in Visual Studio 2017.

in a non-static data member initializer

in a constructor initializer list

The following code shows some examples of list initialization:

Aggregate initialization is a form of list initialization for arrays or class types (often structs or unions) that have:

no private or protected members

no user-provided constructors, except for explicitly defaulted or deleted constructors

no base classes

no virtual member functions

Aggregate initializers consist of a braced initialization list, with or without an equals sign, as in the following
example:

#include <iostream>
using namespace std;

struct MyAggregate{
 int myInt;
 char myChar;
};

int main() {
 MyAggregate agg1{ 1, 'c' };

 cout << "agg1: " << agg1.myChar << ": " << agg1.myInt << endl;
 cout << "agg2: " << agg2.myChar << ": " << agg2.myInt << endl;

 int myArr1[]{ 1, 2, 3, 4 };
 int myArr2[3] = { 5, 6, 7 };
 int myArr3[5] = { 8, 9, 10 };

 cout << "myArr1: ";
 for (int i : myArr1){
 cout << i << " ";
 }
 cout << endl;

 cout << "myArr3: ";
 for (auto const &i : myArr3) {
 cout << i << " ";
 }
 cout << endl;
}

agg1: c: 1
agg2: d: 2
myArr1: 1 2 3 4
myArr3: 8 9 10 0 0

IMPORTANTIMPORTANT

Initializing unions and structsInitializing unions and structs

You should see the following output:

Array members that are declared but not explicitly initialized during aggregate initialization are zero-initialized, as in myArr3

above.

If a union does not have a constructor, you can initialize it with a single value (or with another instance of a union).
The value is used to initialize the first non-static field. This is different from struct initialization, in which the first
value in the initializer is used to initialize the first field, the second to initialize the second field, and so on. Compare
the initialization of unions and structs in the following example:

struct MyStruct {
 int myInt;
 char myChar;
};
union MyUnion {
 int my_int;
 char my_char;
 bool my_bool;
 MyStruct my_struct;
};

int main() {
 MyUnion mu1{ 'a' }; // my_int = 97, my_char = 'a', my_bool = true, {myInt = 97, myChar = '\0'}
 MyUnion mu2{ 1 }; // my_int = 1, my_char = 'x1', my_bool = true, {myInt = 1, myChar = '\0'}
 MyUnion mu3{}; // my_int = 0, my_char = '\0', my_bool = false, {myInt = 0, myChar = '\0'}
 MyUnion mu4 = mu3; // my_int = 0, my_char = '\0', my_bool = false, {myInt = 0, myChar = '\0'}
 //MyUnion mu5{ 1, 'a', true }; // compiler error: C2078: too many initializers
 //MyUnion mu6 = 'a'; // compiler error: C2440: cannot convert from 'char' to 'MyUnion'
 //MyUnion mu7 = 1; // compiler error: C2440: cannot convert from 'int' to 'MyUnion'

 MyStruct ms1{ 'a' }; // myInt = 97, myChar = '\0'
 MyStruct ms2{ 1 }; // myInt = 1, myChar = '\0'
 MyStruct ms3{}; // myInt = 0, myChar = '\0'
 MyStruct ms4{1, 'a'}; // myInt = 1, myChar = 'a'
 MyStruct ms5 = { 2, 'b' }; // myInt = 2, myChar = 'b'
}

Initializing aggregates that contain aggregatesInitializing aggregates that contain aggregates

struct MyStruct {
 int myInt;
 char myChar;
};
int main() {
 int intArr1[2][2]{{ 1, 2 }, { 3, 4 }};
 int intArr3[2][2] = {1, 2, 3, 4};
 MyStruct structArr[]{ { 1, 'a' }, { 2, 'b' }, {3, 'c'} };
}

Reference initializationReference initialization

// initializing_references.cpp
int iVar;
long lVar;
int main()
{
 long& LongRef1 = lVar; // No conversion required.
 long& LongRef2 = iVar; // Error C2440
 const long& LongRef3 = iVar; // OK
 LongRef1 = 23L; // Change lVar through a reference.
 LongRef2 = 11L; // Change iVar through a reference.
 LongRef3 = 11L; // Error C3892
}

Aggregate types can contain other aggregate types, for example arrays of arrays, arrays of structs, and so on.
These types are initialized by using nested sets of braces, for example:

Variables of reference type must be initialized with an object of the type from which the reference type is derived,
or with an object of a type that can be converted to the type from which the reference type is derived. For example:

The only way to initialize a reference with a temporary object is to initialize a constant temporary object. Once
initialized, a reference-type variable always points to the same object; it cannot be modified to point to another
object.

Initialization of external variablesInitialization of external variables

Although the syntax can be the same, initialization of reference-type variables and assignment to reference-type
variables are semantically different. In the preceding example, the assignments that change iVar and lVar look
similar to the initializations, but have different effects. The initialization specifies the object to which the reference-
type variable points; the assignment assigns to the referred-to object through the reference.

Because both passing an argument of reference type to a function and returning a value of reference type from a
function are initializations, the formal arguments to a function are initialized correctly, as are the references
returned.

Reference-type variables can be declared without initializers only in the following:

int func(int&);

int& func(int&);

class c {public: int& i;};

extern int& iVal;

Function declarations (prototypes). For example:

Function-return type declarations. For example:

Declaration of a reference-type class member. For example:

Declaration of a variable explicitly specified as extern. For example:

When initializing a reference-type variable, the compiler uses the decision graph shown in the following figure to
select between creating a reference to an object or creating a temporary object to which the reference points.

Decision graph for initialization of reference types

References to volatile types (declared as volatile typename& identifier) can be initialized with volatile objects of
the same type or with objects that have not been declared as volatile. They cannot, however, be initialized with
const objects of that type. Similarly, references to const types (declared as const typename& identifier) can be
initialized with const objects of the same type (or anything that has a conversion to that type or with objects that
have not been declared as const). They cannot, however, be initialized with volatile objects of that type.

References that are not qualified with either the const or volatile keyword can be initialized only with objects
declared as neither const nor volatile.

Declarations of automatic, static, and external variables can contain initializers. However, declarations of external
variables can contain initializers only if the variables are not declared as extern.

Aliases and typedefs (C++)
11/9/2018 • 6 minutes to read • Edit Online

Syntax
using identifier = type;

Remarks

// C++11
using counter = long;

// C++03 equivalent:
// typedef long counter;

// C++11
using fmtfl = std::ios_base::fmtflags;

// C++03 equivalent:
// typedef std::ios_base::fmtflags fmtfl;

fmtfl fl_orig = std::cout.flags();
fmtfl fl_hex = (fl_orig & ~std::cout.basefield) | std::cout.showbase | std::cout.hex;
// ...
std::cout.flags(fl_hex);

You can use an alias declaration to declare a name to use as a synonym for a previously declared type. (This
mechanism is also referred to informally as a type alias). You can also use this mechanism to create an alias
template, which can be particularly useful for custom allocators.

identifier
The name of the alias.

type
The type identifier you are creating an alias for.

An alias does not introduce a new type and cannot change the meaning of an existing type name.

The simplest form of an alias is equivalent to the typedef mechanism from C++03:

Both of these enable the creation of variables of type "counter". Something more useful would be a type alias like
this one for std::ios_base::fmtflags :

Aliases also work with function pointers, but are much more readable than the equivalent typedef:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/aliases-and-typedefs-cpp.md

// C++11
using func = void(*)(int);

// C++03 equivalent:
// typedef void (*func)(int);

// func can be assigned to a function pointer value
void actual_function(int arg) { /* some code */ }
func fptr = &actual_function;

template<typename T> using ptr = T*;

// the name 'ptr<T>' is now an alias for pointer to T
ptr<int> ptr_int;

Example

A limitation of the typedef mechanism is that it doesn't work with templates. However, the type alias syntax in
C++11 enables the creation of alias templates:

The following example demonstrates how to use an alias template with a custom allocator—in this case, an
integer vector type. You can substitute any type for int to create a convenient alias to hide the complex parameter
lists in your main functional code. By using the custom allocator throughout your code you can improve
readability and reduce the risk of introducing bugs caused by typos.

#include <stdlib.h>
#include <new>

template <typename T> struct MyAlloc {
 typedef T value_type;

 MyAlloc() { }
 template <typename U> MyAlloc(const MyAlloc<U>&) { }

 bool operator==(const MyAlloc&) const { return true; }
 bool operator!=(const MyAlloc&) const { return false; }

 T * allocate(const size_t n) const {
 if (n == 0) {
 return nullptr;
 }

 if (n > static_cast<size_t>(-1) / sizeof(T)) {
 throw std::bad_array_new_length();
 }

 void * const pv = malloc(n * sizeof(T));

 if (!pv) {
 throw std::bad_alloc();
 }

 return static_cast<T *>(pv);
 }

 void deallocate(T * const p, size_t) const {
 free(p);
 }
};

#include <vector>
using MyIntVector = std::vector<int, MyAlloc<int>>;

#include <iostream>

int main ()
{
 MyIntVector foov = { 1701, 1764, 1664 };

 for (auto a: foov) std::cout << a << " ";
 std::cout << "\n";

 return 0;
}

1701 1764 1664

Typedefs
A typedef declaration introduces a name that, within its scope, becomes a synonym for the type given by the
type-declaration portion of the declaration.

You can use typedef declarations to construct shorter or more meaningful names for types already defined by the
language or for types that you have declared. Typedef names allow you to encapsulate implementation details that
may change.

In contrast to the class, struct, union, and enum declarations, typedef declarations do not introduce new types

// typedef_names1.cpp
// C2377 expected
typedef unsigned long UL; // Declare a typedef name, UL.
int UL; // C2377: redefined.

// typedef_names2.cpp
typedef unsigned long UL; // Declare a typedef name, UL
int main()
{
 unsigned int UL; // Redeclaration hides typedef name
}

// typedef UL back in scope

// typedef_specifier1.cpp
typedef char FlagType;

int main()
{
}

void myproc(int)
{
 int FlagType;
}

typedef char FlagType;
const FlagType x;

const int FlagType; // Type specifier required

const FlagType; // Incomplete specification

int; // Illegal declaration

— they introduce new names for existing types.

Names declared using typedef occupy the same namespace as other identifiers (except statement labels).
Therefore, they cannot use the same identifier as a previously declared name, except in a class-type declaration.
Consider the following example:

The name-hiding rules that pertain to other identifiers also govern the visibility of names declared using typedef.
Therefore, the following example is legal in C++:

When declaring a local-scope identifier by the same name as a typedef, or when declaring a member of a structure
or union in the same scope or in an inner scope, the type specifier must be specified. For example:

To reuse the FlagType name for an identifier, a structure member, or a union member, the type must be provided:

It is not sufficient to say

because the FlagType is taken to be part of the type, not an identifier that is being redeclared. This declaration is
taken to be an illegal declaration like

ExamplesExamples

typedef char CHAR; // Character type.
typedef CHAR * PSTR; // Pointer to a string (char *).
PSTR strchr(PSTR source, CHAR target);
typedef unsigned long ulong;
ulong ul; // Equivalent to "unsigned long ul;"

typedef char CHAR, *PSTR;

typedef void DRAWF(int, int);

DRAWF box;

void box(int, int);

// typedef_specifier2.cpp
#include <stdio.h>

typedef struct mystructtag
{
 int i;
 double f;
} mystruct;

int main()
{
 mystruct ms;
 ms.i = 10;
 ms.f = 0.99;
 printf_s("%d %f\n", ms.i, ms.f);
}

10 0.990000

Re-declaration of typedefsRe-declaration of typedefs

You can declare any type with typedef, including pointer, function, and array types. You can declare a typedef name
for a pointer to a structure or union type before you define the structure or union type, as long as the definition
has the same visibility as the declaration.

One use of typedef declarations is to make declarations more uniform and compact. For example:

To use typedef to specify fundamental and derived types in the same declaration, you can separate declarators
with commas. For example:

The following example provides the type DRAWF for a function returning no value and taking two int arguments:

After the above typedef statement, the declaration

would be equivalent to the declaration

typedef is often combined with struct to declare and name user-defined types:

The typedef declaration can be used to redeclare the same name to refer to the same type. For example:

// FILE1.H
typedef char CHAR;

// FILE2.H
typedef char CHAR;

// PROG.CPP
#include "file1.h"
#include "file2.h" // OK

// FILE2.H
typedef int CHAR; // Error

typedef char CHAR;
typedef CHAR CHAR; // OK: redeclared as same type

typedef union REGS // OK: name REGS redeclared
{ // by typedef name with the
 struct wordregs x; // same meaning.
 struct byteregs h;
} REGS;

typedefs in C++ vs. Ctypedefs in C++ vs. C

// typedef_with_class_types1.cpp
// compile with: /c
typedef struct { // Declare an unnamed structure and give it the
 // typedef name POINT.
 unsigned x;
 unsigned y;
} POINT;

POINT ptOrigin;

struct point_t ptOrigin;

The program PROG.CPP includes two header files, both of which contain typedef declarations for the name
CHAR . As long as both declarations refer to the same type, such redeclaration is acceptable.

A typedef cannot redefine a name that was previously declared as a different type. Therefore, if FILE2.H contains

the compiler issues an error because of the attempt to redeclare the name CHAR to refer to a different type. This
extends to constructs such as:

Use of the typedef specifier with class types is supported largely because of the ANSI C practice of declaring
unnamed structures in typedef declarations. For example, many C programmers use the following:

The advantage of such a declaration is that it enables declarations like:

instead of:

In C++, the difference between typedef names and real types (declared with the class, struct, union, and enum
keywords) is more distinct. Although the C practice of declaring a nameless structure in a typedef statement still
works, it provides no notational benefits as it does in C.

// typedef_with_class_types2.cpp
// compile with: /c /W1
typedef struct {
 int POINT();
 unsigned x;
 unsigned y;
} POINT;

The preceding example declares a class named POINT using the unnamed class typedef syntax. POINT is treated
as a class name; however, the following restrictions apply to names introduced this way:

The name (the synonym) cannot appear after a class, struct, or union prefix.

The name cannot be used as constructor or destructor names within a class declaration.

In summary, this syntax does not provide any mechanism for inheritance, construction, or destruction.

using Declaration
10/31/2018 • 5 minutes to read • Edit Online

Syntax
using [typename] nested-name-specifier unqualified-id ;
using declarator-list ;

ParametersParameters

Remarks

Example

The using declaration introduces a name into the declarative region in which the using declaration appears.

nested-name-specifier A sequence of namespace, class, or enumeration names and scope resolution operators (::),
terminated by a scope resolution operator. A single scope resolution operator may be used to introduce a name
from the global namespace. The keyword typename is optional and may be used to resolve dependent names
when introduced into a class template from a base class.

unqualified-id An unqualified id-expression, which may be an identifier, an overloaded operator name, a user-
defined literal operator or conversion function name, a class destructor name, or a template name and argument
list.

declarator-list A comma-separated list of [typename] nested-name-specifier unqualified-id declarators, followed
optionally by an ellipsis.

A using declaration introduces an unqualified name as a synonym for an entity declared elsewhere. It allows a
single name from a specific namespace to be used without explicit qualification in the declaration region in which it
appears. This is in contrast to the using directive, which allows all the names in a namespace to be used without
qualification. The using keyword is also used for type aliases.

A using declaration can be used in a class definition.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-declaration.md

// using_declaration1.cpp
#include <stdio.h>
class B {
public:
 void f(char) {
 printf_s("In B::f()\n");
 }

 void g(char) {
 printf_s("In B::g()\n");
 }
};

class D : B {
public:
 using B::f; // B::f(char) is now visible as D::f(char)
 using B::g; // B::g(char) is now visible as D::g(char)
 void f(int) {
 printf_s("In D::f()\n");
 f('c'); // Invokes B::f(char) instead of recursing
 }

 void g(int) {
 printf_s("In D::g()\n");
 g('c'); // Invokes B::g(char) instead of recursing
 }
};

int main() {
 D myD;
 myD.f(1);
 myD.g('a');
}

In D::f()
In B::f()
In B::g()

Example
When used to declare a member, a using declaration must refer to a member of a base class.

// using_declaration2.cpp
#include <stdio.h>

class B {
public:
 void f(char) {
 printf_s("In B::f()\n");
 }

 void g(char) {
 printf_s("In B::g()\n");
 }
};

class C {
public:
 int g();
};

class D2 : public B {
public:
 using B::f; // ok: B is a base of D2
 // using C::g; // error: C isn't a base of D2
};

int main() {
 D2 MyD2;
 MyD2.f('a');
}

In B::f()

Example
Members declared by using a using declaration can be referenced by using explicit qualification. The :: prefix
refers to the global namespace.

// using_declaration3.cpp
#include <stdio.h>

void f() {
 printf_s("In f\n");
}

namespace A {
 void g() {
 printf_s("In A::g\n");
 }
}

namespace X {
 using ::f; // global f is also visible as X::f
 using A::g; // A's g is now visible as X::g
}

void h() {
 printf_s("In h\n");
 X::f(); // calls ::f
 X::g(); // calls A::g
}

int main() {
 h();
}

In h
In f
In A::g

Example

// post_declaration_namespace_additions.cpp
// compile with: /c
namespace A {
 void f(int) {}
}

using A::f; // f is a synonym for A::f(int) only

namespace A {
 void f(char) {}
}

void f() {
 f('a'); // refers to A::f(int), even though A::f(char) exists
}

void b() {
 using A::f; // refers to A::f(int) AND A::f(char)
 f('a'); // calls A::f(char);
}

When a using declaration is made, the synonym created by the declaration refers only to definitions that are valid
at the point of the using declaration. Definitions added to a namespace after the using declaration are not valid
synonyms.

A name defined by a using declaration is an alias for its original name. It does not affect the type, linkage or other
attributes of the original declaration.

Example

// functions_in_namespaces1.cpp
// C2874 expected
namespace B {
 int i;
 void f(int);
 void f(double);
}

void g() {
 int i;
 using B::i; // error: i declared twice
 void f(char);
 using B::f; // ok: each f is a function
}

Example

// functions_in_namespaces2.cpp
// C2668 expected
namespace B {
 void f(int);
 void f(double);
}

namespace C {
 void f(int);
 void f(double);
 void f(char);
}

void h() {
 using B::f; // introduces B::f(int) and B::f(double)
 using C::f; // C::f(int), C::f(double), and C::f(char)
 f('h'); // calls C::f(char)
 f(1); // C2668 ambiguous: B::f(int) or C::f(int)?
 void f(int); // C2883 conflicts with B::f(int) and C::f(int)
}

Example

With respect to functions in namespaces, if a set of local declarations and using declarations for a single name are
given in a declarative region, they must all refer to the same entity, or they must all refer to functions.

In the example above, the using B::i statement causes a second int i to be declared in the g() function. The
using B::f statement does not conflict with the f(char) function because the function names introduced by
B::f have different parameter types.

A local function declaration cannot have the same name and type as a function introduced by using declaration.
For example:

With respect to inheritance, when a using declaration introduces a name from a base class into a derived class
scope, member functions in the derived class override virtual member functions with the same name and
argument types in the base class.

// using_declaration_inheritance1.cpp
#include <stdio.h>
struct B {
 virtual void f(int) {
 printf_s("In B::f(int)\n");
 }

 virtual void f(char) {
 printf_s("In B::f(char)\n");
 }

 void g(int) {
 printf_s("In B::g\n");
 }

 void h(int);
};

struct D : B {
 using B::f;
 void f(int) { // ok: D::f(int) overrides B::f(int)
 printf_s("In D::f(int)\n");
 }

 using B::g;
 void g(char) { // ok: there is no B::g(char)
 printf_s("In D::g(char)\n");
 }

 using B::h;
 void h(int) {} // Note: D::h(int) hides non-virtual B::h(int)
};

void f(D* pd) {
 pd->f(1); // calls D::f(int)
 pd->f('a'); // calls B::f(char)
 pd->g(1); // calls B::g(int)
 pd->g('a'); // calls D::g(char)
}

int main() {
 D * myd = new D();
 f(myd);
}

In D::f(int)
In B::f(char)
In B::g
In D::g(char)

Example
All instances of a name mentioned in a using declaration must be accessible. In particular, if a derived class uses a
using declaration to access a member of a base class, the member name must be accessible. If the name is that of
an overloaded member function, then all functions named must be accessible.

For more information on accessibility of members, see Member-Access Control.

// using_declaration_inheritance2.cpp
// C2876 expected
class A {
private:
 void f(char);
public:
 void f(int);
protected:
 void g();
};

class B : public A {
 using A::f; // C2876: A::f(char) is inaccessible
public:
 using A::g; // B::g is a public synonym for A::g
};

See also
Namespaces
Keywords

Resolving ambiguous declarations (C++)
10/31/2018 • 2 minutes to read • Edit Online

char *aName(String(s));

char *aName((String)s);

char *aName = String(s);

To perform explicit conversions from one type to another, you must use casts, specifying the desired type name.
Some type casts result in syntactic ambiguity. The following function-style type cast is ambiguous:

It is unclear whether it is a function declaration or an object declaration with a function-style cast as the initializer: It
could declare a function returning type char * that takes one argument of type String , or it could declare the
object aName and initialize it with the value of s cast to type String .

If a declaration can be considered a valid function declaration, it is treated as such. Only if it cannot possibly be a
function declaration — that is, if it would be syntactically incorrect — is a statement examined to see if it is a
function-style type cast. Therefore, the compiler considers the statement to be a declaration of a function and
ignores the parentheses around the identifier s . On the other hand, the statements:

and

are clearly declarations of objects, and a user-defined conversion from type String to type char * is invoked to
perform the initialization of aName .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/resolving-ambiguous-declarations-cpp.md

Storage classes (C++)
5/7/2019 • 8 minutes to read • Edit Online

 register int val; // warning C5033: 'register' is no longer a supported storage class

In this section:

static

A storage class in the context of C++ variable declarations is a type specifier that governs the lifetime, linkage, and
memory location of objects. A given object can have only one storage class. Variables defined within a block have
automatic storage unless otherwise specified using the extern, static, or thread_local specifiers. Automatic
objects and variables have no linkage; they are not visible to code outside the block.

Notes

1. The mutable keyword may be considered a storage class specifier. However, it is only available in the
member list of a class definition.

2. Visual Studio 2010 and later: The auto keyword is no longer a C++ storage-class specifier, and the
register keyword is deprecated. Visual Studio 2017 version 15.7 and later: (available with /std:c++17):
The register keyword is removed from the C++ language.

static
extern
thread_local

The static keyword can be used to declare variables and functions at global scope, namespace scope, and class
scope. Static variables can also be declared at local scope.

Static duration means that the object or variable is allocated when the program starts and is deallocated when the
program ends. External linkage means that the name of the variable is visible from outside the file in which the
variable is declared. Conversely, internal linkage means that the name is not visible outside the file in which the
variable is declared. By default, an object or variable that is defined in the global namespace has static duration and
external linkage. The static keyword can be used in the following situations.

1. When you declare a variable or function at file scope (global and/or namespace scope), the static keyword
specifies that the variable or function has internal linkage. When you declare a variable, the variable has
static duration and the compiler initializes it to 0 unless you specify another value.

2. When you declare a variable in a function, the static keyword specifies that the variable retains its state
between calls to that function.

3. When you declare a data member in a class declaration, the static keyword specifies that one copy of the
member is shared by all instances of the class. A static data member must be defined at file scope. An
integral data member that you declare as const static can have an initializer.

4. When you declare a member function in a class declaration, the static keyword specifies that the function is
shared by all instances of the class. A static member function cannot access an instance member because
the function does not have an implicit this pointer. To access an instance member, declare the function with
a parameter that is an instance pointer or reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/storage-classes-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

// static1.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
void showstat(int curr) {
 static int nStatic; // Value of nStatic is retained
 // between each function call
 nStatic += curr;
 cout << "nStatic is " << nStatic << endl;
}

int main() {
 for (int i = 0; i < 5; i++)
 showstat(i);
}

nStatic is 0
nStatic is 1
nStatic is 3
nStatic is 6
nStatic is 10

// static2.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class CMyClass {
public:
 static int m_i;
};

int CMyClass::m_i = 0;
CMyClass myObject1;
CMyClass myObject2;

int main() {
 cout << myObject1.m_i << endl;
 cout << myObject2.m_i << endl;

 myObject1.m_i = 1;
 cout << myObject1.m_i << endl;
 cout << myObject2.m_i << endl;

 myObject2.m_i = 2;
 cout << myObject1.m_i << endl;
 cout << myObject2.m_i << endl;

 CMyClass::m_i = 3;
 cout << myObject1.m_i << endl;
 cout << myObject2.m_i << endl;
}

5. You cannot declare the members of a union as static. However, a globally declared anonymous union must
be explicitly declared static.

This example shows how a variable declared static in a function retains its state between calls to that function.

This example shows the use of static in a class.

0
0
1
1
2
2
3
3

// static3.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
struct C {
 void Test(int value) {
 static int var = 0;
 if (var == value)
 cout << "var == value" << endl;
 else
 cout << "var != value" << endl;

 var = value;
 }
};

int main() {
 C c1;
 C c2;
 c1.Test(100);
 c2.Test(100);
}

var != value
var == value

extern

This example shows a local variable declared static in a member function. The static variable is available to the
whole program; all instances of the type share the same copy of the static variable.

Starting in C++11, a static local variable initialization is guaranteed to be thread-safe. This feature is sometimes
called magic statics. However, in a multithreaded application all subsequent assignments must be synchronized.
The thread-safe static initialization feature can be disabled by using the /Zc:threadSafeInit- flag to avoid taking a
dependency on the CRT.

Objects and variables declared as extern declare an object that is defined in another translation unit or in an
enclosing scope as having external linkage.

Declaration of const variables with the extern storage class forces the variable to have external linkage. An
initialization of an extern const variable is allowed in the defining translation unit. Initializations in translation
units other than the defining translation unit produce undefined results. For more information, see Using extern to
Specify Linkage

The /Zc:externConstexpr compiler option causes the compiler to apply external linkage to variables declared by
using extern constexpr . In earlier versions of Visual Studio, and by default or if /Zc:externConstexpr- is
specified, Visual Studio applies internal linkage to constexpr variables even if the extern keyword is used. The
/Zc:externConstexpr option is available starting in Visual Studio 2017 Update 15.6. and is off by default. The
/permissive- option does not enable /Zc:externConstexpr.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-threadsafeinit-thread-safe-local-static-initialization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-externconstexpr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/external-linkage

// external.cpp
// DefinedElsewhere is defined in another translation unit
extern int DefinedElsewhere;
int main() {
 int DefinedHere;
 {
 // refers to DefinedHere in the enclosing scope
 extern int DefinedHere;
 }
}

thread_local (C++11)

thread_local float f = 42.0; // Global namespace. Not implicitly static.

struct S // cannot be applied to type definition
{
 thread_local int i; // Illegal. The member must be static.
 thread_local static char buf[10]; // OK
};

void DoSomething()
{
 // Apply thread_local to a local variable.
 // Implicitly "thread_local static S my_struct".
 thread_local S my_struct;
}

The following code shows two extern declarations, DefinedElsewhere (which refers to a name defined in a
different translation unit) and DefinedHere (which refers to a name defined in an enclosing scope):

A variable declared with the thread_local specifier is accessible only on the thread on which it is created. The
variable is created when the thread is created, and destroyed when the thread is destroyed. Each thread has its
own copy of the variable. On Windows, thread_local is functionally equivalent to the Microsoft-specific
__declspec(thread) attribute.

Things to note about the thread_local specifier :

Dynamically initialized thread-local variables in DLLs may not be correctly initialized on all calling threads.
For more information, see thread.

The thread_local specifier may be combined with static or extern.

You can apply thread_local only to data declarations and definitions; thread_local cannot be used on
function declarations or definitions.

You can specify thread_local only on data items with static storage duration. This includes global data
objects (both static and extern), local static objects, and static data members of classes. Any local variable
declared thread_local is implicitly static if no other storage class is provided; in other words, at block scope
thread_local is equivalent to thread_local static .

You must specify thread_local for both the declaration and the definition of a thread local object, whether
the declaration and definition occur in the same file or separate files.

On Windows, thread_local is functionally equivalent to __declspec(thread) except that __declspec(thread) can
be applied to a type definition and is valid in C code. Whenever possible, use thread_local because it is part of the
C++ standard and is therefore more portable.

 register

 register int val; // warning C5033: 'register' is no longer a supported storage class

Example: automatic vs. static initialization

Visual Studio 2017 version 15.3 and later (available with /std:c++17): The register keyword is no longer a
supported storage class. The keyword is still reserved in the standard for future use.

A local automatic object or variable is initialized every time the flow of control reaches its definition. A local static
object or variable is initialized the first time the flow of control reaches its definition.

Consider the following example, which defines a class that logs initialization and destruction of objects and then
defines three objects, I1 , I2 , and I3 :

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

// initialization_of_objects.cpp
// compile with: /EHsc
#include <iostream>
#include <string.h>
using namespace std;

// Define a class that logs initializations and destructions.
class InitDemo {
public:
 InitDemo(const char *szWhat);
 ~InitDemo();

private:
 char *szObjName;
 size_t sizeofObjName;
};

// Constructor for class InitDemo
InitDemo::InitDemo(const char *szWhat) :
 szObjName(NULL), sizeofObjName(0) {
 if (szWhat != 0 && strlen(szWhat) > 0) {
 // Allocate storage for szObjName, then copy
 // initializer szWhat into szObjName, using
 // secured CRT functions.
 sizeofObjName = strlen(szWhat) + 1;

 szObjName = new char[sizeofObjName];
 strcpy_s(szObjName, sizeofObjName, szWhat);

 cout << "Initializing: " << szObjName << "\n";
 }
 else {
 szObjName = 0;
 }
}

// Destructor for InitDemo
InitDemo::~InitDemo() {
 if(szObjName != 0) {
 cout << "Destroying: " << szObjName << "\n";
 delete szObjName;
 }
}

// Enter main function
int main() {
 InitDemo I1("Auto I1"); {
 cout << "In block.\n";
 InitDemo I2("Auto I2");
 static InitDemo I3("Static I3");
 }
 cout << "Exited block.\n";
}

Initializing: Auto I1
In block.
Initializing: Auto I2
Initializing: Static I3
Destroying: Auto I2
Exited block.
Destroying: Auto I1
Destroying: Static I3

This example demonstrates how and when the objects I1 , I2 , and I3 are initialized and when they are

See also

destroyed.

There are several points to note about the program:

First, I1 and I2 are automatically destroyed when the flow of control exits the block in which they are
defined.

Second, in C++, it is not necessary to declare objects or variables at the beginning of a block. Furthermore,
these objects are initialized only when the flow of control reaches their definitions. (I2 and I3 are
examples of such definitions.) The output shows exactly when they are initialized.

Finally, static local variables such as I3 retain their values for the duration of the program, but are
destroyed as the program terminates.

Declarations and Definitions

const (C++)
10/31/2018 • 3 minutes to read • Edit Online

Syntax
const declaration ;
member-function const ;

const values

// constant_values1.cpp
int main() {
 const int i = 5;
 i = 10; // C3892
 i++; // C2105
}

// constant_values2.cpp
// compile with: /c
const int maxarray = 255;
char store_char[maxarray]; // allowed in C++; not allowed in C

// constant_values3.cpp
int main() {
 char *mybuf = 0, *yourbuf;
 char *const aptr = mybuf;
 *aptr = 'a'; // OK
 aptr = yourbuf; // C3892
}

When modifying a data declaration, the const keyword specifies that the object or variable is not modifiable.

The const keyword specifies that a variable's value is constant and tells the compiler to prevent the programmer
from modifying it.

In C++, you can use the const keyword instead of the #define preprocessor directive to define constant values.
Values defined with const are subject to type checking, and can be used in place of constant expressions. In C++,
you can specify the size of an array with a const variable as follows:

In C, constant values default to external linkage, so they can appear only in source files. In C++, constant values
default to internal linkage, which allows them to appear in header files.

The const keyword can also be used in pointer declarations.

A pointer to a variable declared as const can be assigned only to a pointer that is also declared as const.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/const-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-define-directive-c-cpp

// constant_values4.cpp
#include <stdio.h>
int main() {
 const char *mybuf = "test";
 char *yourbuf = "test2";
 printf_s("%s\n", mybuf);

 const char *bptr = mybuf; // Pointer to constant data
 printf_s("%s\n", bptr);

 // *bptr = 'a'; // Error
}

birthday.getMonth(); // Okay
birthday.setMonth(4); // Error

const member functions

You can use pointers to constant data as function parameters to prevent the function from modifying a parameter
passed through a pointer.

For objects that are declared as const, you can only call constant member functions. This ensures that the
constant object is never modified.

You can call either constant or nonconstant member functions for a nonconstant object. You can also overload a
member function using the const keyword; this allows a different version of the function to be called for constant
and nonconstant objects.

You cannot declare constructors or destructors with the const keyword.

Declaring a member function with the const keyword specifies that the function is a "read-only" function that
does not modify the object for which it is called. A constant member function cannot modify any non-static data
members or call any member functions that aren't constant.To declare a constant member function, place the
const keyword after the closing parenthesis of the argument list. The const keyword is required in both the
declaration and the definition.

// constant_member_function.cpp
class Date
{
public:
 Date(int mn, int dy, int yr);
 int getMonth() const; // A read-only function
 void setMonth(int mn); // A write function; can't be const
private:
 int month;
};

int Date::getMonth() const
{
 return month; // Doesn't modify anything
}
void Date::setMonth(int mn)
{
 month = mn; // Modifies data member
}
int main()
{
 Date MyDate(7, 4, 1998);
 const Date BirthDate(1, 18, 1953);
 MyDate.setMonth(4); // Okay
 BirthDate.getMonth(); // Okay
 BirthDate.setMonth(4); // C2662 Error
}

C and C++ const differences

const int i = 2;

extern const int i;

extern const int i = 2;

extern "C" const int x=10;

Remarks

When you declare a variable as const in a C source code file, you do so as:

You can then use this variable in another module as follows:

But to get the same behavior in C++, you must declare your const variable as:

If you wish to declare an extern variable in a C++ source code file for use in a C source code file, use:

to prevent name mangling by the C++ compiler.

When following a member function's parameter list, the const keyword specifies that the function does not
modify the object for which it is invoked.

For more information on const, see the following topics:

const and volatile Pointers

See also

Type Qualifiers (C Language Reference)

volatile

#define

Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/type-qualifiers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-define-directive-c-cpp

constexpr (C++)
3/21/2019 • 5 minutes to read • Edit Online

Syntax

Parameters

Return Value

constexpr variables

constexpr float x = 42.0;
constexpr float y{108};
constexpr float z = exp(5, 3);
constexpr int i; // Error! Not initialized
int j = 0;
constexpr int k = j + 1; //Error! j not a constant expression

constexpr functions

The keyword constexpr was introduced in C++11 and improved in C++14. It means constant expression. Like
const, it can be applied to variables so that a compiler error is raised if any code attempts to modify the value.
Unlike const, constexpr can also be applied to functions and class constructors. constexpr indicates that the
value, or return value, is constant and, if possible, is computed at compile time.

A constexpr integral value can be used wherever a const integer is required, such as in template arguments and
array declarations. And when a value can be computed at compile time instead of run time, it can help your
program run faster and use less memory.

To limit the complexity of compile-time constant computations, and their potential impacts on compilation time,
the C++14 standard requires the types in constant expressions to be literal types.

constexpr literal-type identifier = constant-expression ; constexpr literal-type identifier { constant-expression
} ; constexpr literal-type identifier (params) ; constexpr ctor (params) ;

params
One or more parameters, each of which must be a literal type and must itself be a constant expression.

A constexpr variable or function must return a literal type.

The primary difference between const and constexpr variables is that the initialization of a const variable can be
deferred until run time. A constexpr variable must be initialized at compile time. All constexpr variables are const.

A variable can be declared with constexpr, if it has a literal type and is initialized. If the initialization is
performed by a constructor, the constructor must be declared as constexpr.

A reference may be declared as constexpr if the object that it references has been initialized by a constant
expression and any implicit conversions that are invoked during initialization are also constant expressions.

All declarations of a constexpr variable or function must have the constexpr specifier.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/constexpr-cpp.md

constexpr float exp(float x, int n)
{
 return n == 0 ? 1 :
 n % 2 == 0 ? exp(x * x, n / 2) :
 exp(x * x, (n - 1) / 2) * x;
};

TIPTIP

extern constexpr

A constexpr function is one whose return value can be computed at compile time when consuming code requires
it. Consuming code requires the return value at compile time, for example, to initialize a constexpr variable or
provide a non-type template argument. When its arguments are constexpr values, a constexpr function produces
a compile-time constant. When called with non-constexpr arguments, or when its value isn't required at compile-
time, it produces a value at run time like a regular function. (This dual behavior saves you from having to write
constexpr and non-constexpr versions of the same function.)

A constexpr function or constructor is implicitly inline.

The following rules apply to constexpr functions:

A constexpr function must accept and return only literal types.

A constexpr function can be recursive.

It cannot be virtual. A constructor cannot be defined as constexpr if the enclosing class has any virtual base
classes.

The body can be defined as = default or = delete .

The body can contain no goto statements or try blocks.

An explicit specialization of a non-constexpr template can be declared as constexpr:

An explicit specialization of a constexpr template does not have to also be constexpr:

The following rules apply to constexpr functions in Visual Studio 2017 and later:

It may contain if and switch statements, and all looping statements including for, range-based for, while,
and do-while.

It may contain local variable declarations, but the variable must be initialized, must be a literal type, and
cannot be static or thread-local. The locally declared variable isn't required to be const and may mutate.

A constexpr non-static member function is not required to be implicitly const.

In the Visual Studio debugger, when debugging a non-optimised Debug build, you can tell whether a constexpr function is
being evaluated at compile time by putting a breakpoint inside it. If the breakpoint is hit, the function was called at run-time.
If not, then the function was called at compile time.

The /Zc:externConstexpr compiler option causes the compiler to apply external linkage to variables declared by
using extern constexpr. In earlier versions of Visual Studio, and by default or if /Zc:externConstexpr- is
specified, Visual Studio applies internal linkage to constexpr variables even if the extern keyword is used. The
/Zc:externConstexpr option is available starting in Visual Studio 2017 Update 15.6. and is off by default. The
/permissive- option does not enable /Zc:externConstexpr.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-externconstexpr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/external-linkage

Example
The following example shows constexpr variables, functions, and a user-defined type. In the last statement in
main(), the constexpr member function GetValue() is a run-time call because the value isn't required to be known
at compile time.

#include <iostream>

using namespace std;

// Pass by value
constexpr float exp(float x, int n)
{
 return n == 0 ? 1 :
 n % 2 == 0 ? exp(x * x, n / 2) :
 exp(x * x, (n - 1) / 2) * x;
};

// Pass by reference
constexpr float exp2(const float& x, const int& n)
{
 return n == 0 ? 1 :
 n % 2 == 0 ? exp2(x * x, n / 2) :
 exp2(x * x, (n - 1) / 2) * x;
};

// Compile-time computation of array length
template<typename T, int N>
constexpr int length(const T(&ary)[N])
{
 return N;
}

// Recursive constexpr function
constexpr int fac(int n)
{
 return n == 1 ? 1 : n*fac(n - 1);
}

// User-defined type
class Foo
{
public:
 constexpr explicit Foo(int i) : _i(i) {}
 constexpr int GetValue()
 {
 return _i;
 }
private:
 int _i;
};

int main()
{
 // foo is const:
 constexpr Foo foo(5);
 // foo = Foo(6); //Error!

 // Compile time:
 constexpr float x = exp(5, 3);
 constexpr float y { exp(2, 5) };
 constexpr int val = foo.GetValue();
 constexpr int f5 = fac(5);
 const int nums[] { 1, 2, 3, 4 };
 const int nums2[length(nums) * 2] { 1, 2, 3, 4, 5, 6, 7, 8 };

 // Run time:
 cout << "The value of foo is " << foo.GetValue() << endl;

}

Requirements

See also

Visual Studio 2015

Declarations and Definitions
const

volatile (C++)
5/7/2019 • 3 minutes to read • Edit Online

Syntax
volatile declarator ;

Remarks

ISO Compliant

A type qualifier that you can use to declare that an object can be modified in the program by the hardware.

You can use the /volatile compiler switch to modify how the compiler interprets this keyword.

Visual Studio interprets the volatile keyword differently depending on the target architecture. For ARM, if no
/volatile compiler option is specified, the compiler performs as if /volatile:iso were specified. For architectures
other than ARM, if no /volatile compiler option is specified, the compiler performs as if /volatile:ms were
specified; therefore, for architectures other than ARM we strongly recommend that you specify /volatile:iso, and
use explicit synchronization primitives and compiler intrinsics when you are dealing with memory that is shared
across threads.

You can use the volatile qualifier to provide access to memory locations that are used by asynchronous processes
such as interrupt handlers.

When volatile is used on a variable that also has the __restrict keyword, volatile takes precedence.

If a struct member is marked as volatile, then volatile is propagated to the whole structure. If a structure does
not have a length that can be copied on the current architecture by using one instruction, volatile may be
completely lost on that structure.

The volatile keyword may have no effect on a field if one of the following conditions is true:

The length of the volatile field exceeds the maximum size that can be copied on the current architecture by
using one instruction.

The length of the outermost containing struct—or if it's a member of a possibly nested struct—exceeds the
maximum size that can be copied on the current architecture by using one instruction.

Although the processor does not reorder un-cacheable memory accesses, un-cacheable variables must be marked
as volatile to guarantee that the compiler does not reorder the memory accesses.

Objects that are declared as volatile are not used in certain optimizations because their values can change at any
time. The system always reads the current value of a volatile object when it is requested, even if a previous
instruction asked for a value from the same object. Also, the value of the object is written immediately on
assignment.

If you are familiar with the C# volatile keyword, or familiar with the behavior of volatile in earlier versions of the
Microsoft C++ compiler (MSVC), be aware that the C++11 ISO Standard volatile keyword is different and is
supported in MSVC when the /volatile:iso compiler option is specified. (For ARM, it's specified by default). The
volatile keyword in C++11 ISO Standard code is to be used only for hardware access; do not use it for inter-

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/volatile-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/volatile-volatile-keyword-interpretation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/volatile-volatile-keyword-interpretation

End of ISO Compliant

Microsoft Specific

NOTENOTE

See also

thread communication. For inter-thread communication, use mechanisms such as std::atomic<T> from the C++
Standard Library.

When the /volatile:ms compiler option is used—by default when architectures other than ARM are targeted—
the compiler generates extra code to maintain ordering among references to volatile objects in addition to
maintaining ordering to references to other global objects. In particular:

A write to a volatile object (also known as volatile write) has Release semantics; that is, a reference to a
global or static object that occurs before a write to a volatile object in the instruction sequence will occur
before that volatile write in the compiled binary.

A read of a volatile object (also known as volatile read) has Acquire semantics; that is, a reference to a
global or static object that occurs after a read of volatile memory in the instruction sequence will occur after
that volatile read in the compiled binary.

This enables volatile objects to be used for memory locks and releases in multithreaded applications.

When it relies on the enhanced guarantee that's provided when the /volatile:ms compiler option is used, the code is non-
portable.

END Microsoft Specific

Keywords
const
const and volatile Pointers

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/atomic
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

auto (C++)
4/1/2019 • 6 minutes to read • Edit Online

Syntax
auto declarator initializer;

[](auto param1, auto param2) {};

Remarks

Usefulness

Deduces the type of a declared variable from its initialization expression.

The auto keyword directs the compiler to use the initialization expression of a declared variable, or lambda
expression parameter, to deduce its type.

We recommend that you use the auto keyword for most situations—unless you really want a conversion—
because it provides these benefits:

Robustness: If the expression’s type is changed—this includes when a function return type is changed—it
just works.

Performance: You’re guaranteed that there will be no conversion.

Usability: You don't have to worry about type name spelling difficulties and typos.

Efficiency: Your coding can be more efficient.

Conversion cases in which you might not want to use auto:

When you want a specific type and nothing else will do.

Expression template helper types—for example, (valarray+valarray) .

To use the auto keyword, use it instead of a type to declare a variable, and specify an initialization expression. In
addition, you can modify the auto keyword by using specifiers and declarators such as const, volatile, pointer (
*), reference (&), and rvalue reference (&&). The compiler evaluates the initialization expression and then uses

that information to deduce the type of the variable.

The initialization expression can be an assignment (equal-sign syntax), a direct initialization (function-style syntax),
an operator new expression, or the initialization expression can be the for-range-declaration parameter in a
Range-based for Statement (C++) statement. For more information, see Initializers and the code examples later in
this document.

The auto keyword is a placeholder for a type, but it is not itself a type. Therefore, the auto keyword cannot be
used in casts or operators such as sizeof and (for C++/CLI) typeid.

The auto keyword is a simple way to declare a variable that has a complicated type. For example, you can use
auto to declare a variable where the initialization expression involves templates, pointers to functions, or pointers

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/auto-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions

Trailing Return Types

References and cv-qualifiers

// cl.exe /analyze /EHsc /W4
#include <iostream>

using namespace std;

int main()
{
 int count = 10;
 int& countRef = count;
 auto myAuto = countRef;

 countRef = 11;
 cout << count << " ";

 myAuto = 12;
 cout << count << endl;
}

Type deduction with braced initializers (C++14)

to members.

You can also use auto to declare and initialize a variable to a lambda expression. You can't declare the type of the
variable yourself because the type of a lambda expression is known only to the compiler. For more information,
see Examples of Lambda Expressions.

You can use auto, together with the decltype type specifier, to help write template libraries. Use auto and
decltype to declare a template function whose return type depends on the types of its template arguments. Or,
use auto and decltype to declare a template function that wraps a call to another function, and then returns
whatever is the return type of that other function. For more information, see decltype.

Note that using auto drops references, const qualifiers, and volatile qualifiers. Consider the following example:

In the previous example, myAuto is an int, not an int reference, so the output is 11 11 , not 11 12 as would be the
case if the reference qualifier had not been dropped by auto.

The following code example shows how to initialize an auto variable using braces. Note the difference between B
and C and between A and E.

#include <initializer_list>

int main()
{
 // std::initializer_list<int>
 auto A = { 1, 2 };

 // std::initializer_list<int>
 auto B = { 3 };

 // int
 auto C{ 4 };

 // C3535: cannot deduce type for 'auto' from initializer list'
 auto D = { 5, 6.7 };

 // C3518 in a direct-list-initialization context the type for 'auto'
 // can only be deduced from a single initializer expression
 auto E{ 8, 9 };

 return 0;
}

Restrictions and Error Messages

ERROR NUMBER DESCRIPTION

C3530 The auto keyword cannot be combined with any other type-
specifier.

C3531 A symbol that is declared with the auto keyword must have
an initializer.

C3532 You incorrectly used the auto keyword to declare a type. For
example, you declared a method return type or an array.

C3533, C3539 A parameter or template argument cannot be declared with
the auto keyword.

C3535 A method or template parameter cannot be declared with the
auto keyword.

C3536 A symbol cannot be used before it is initialized. In practice,
this means that a variable cannot be used to initialize itself.

C3537 You cannot cast to a type that is declared with the auto
keyword.

C3538 All the symbols in a declarator list that is declared with the
auto keyword must resolve to the same type. For more
information, see Declarations and Definitions.

C3540, C3541 The sizeof and typeid operators cannot be applied to a
symbol that is declared with the auto keyword.

The following table lists the restrictions on the use of the auto keyword, and the corresponding diagnostic error
message that the compiler emits.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3530
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3531
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3532
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3533
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3539
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3535
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3536
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3537
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3538
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3540
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c3541
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions

Examples

int j = 0; // Variable j is explicitly type int.
auto k = 0; // Variable k is implicitly type int because 0 is an integer.

map<int,list<string>>::iterator i = m.begin();
auto i = m.begin();

// cl /EHsc /nologo /W4
#include <deque>
using namespace std;

int main()
{
 deque<double> dqDoubleData(10, 0.1);

 for (auto iter = dqDoubleData.begin(); iter != dqDoubleData.end(); ++iter)
 { /* ... */ }

 // prefer range-for loops with the following information in mind
 // (this applies to any range-for with auto, not just deque)

 for (auto elem : dqDoubleData) // COPIES elements, not much better than the previous examples
 { /* ... */ }

 for (auto& elem : dqDoubleData) // observes and/or modifies elements IN-PLACE
 { /* ... */ }

 for (const auto& elem : dqDoubleData) // observes elements IN-PLACE
 { /* ... */ }
}

double x = 12.34;
auto *y = new auto(x), **z = new auto(&x);

auto x = 1, *y = &x, **z = &y; // Resolves to int.
auto a(2.01), *b (&a); // Resolves to double.
auto c = 'a', *d(&c); // Resolves to char.
auto m = 1, &n = m; // Resolves to int.

These code fragments illustrate some of the ways in which the auto keyword can be used.

The following declarations are equivalent. In the first statement, variable j is declared to be type int. In the
second statement, variable k is deduced to be type int because the initialization expression (0) is an integer.

The following declarations are equivalent, but the second declaration is simpler than the first. One of the most
compelling reasons to use the auto keyword is simplicity.

The following code fragment declares the type of variables iter and elem when the for and range for loops
start.

The following code fragment uses the new operator and pointer declaration to declare pointers.

The next code fragment declares multiple symbols in each declaration statement. Notice that all of the symbols in
each statement resolve to the same type.

This code fragment uses the conditional operator (?:) to declare variable x as an integer that has a value of

int v1 = 100, v2 = 200;
auto x = v1 > v2 ? v1 : v2;

int f(int x) { return x; }
int main()
{
 auto x = f(0);
 const auto & y = f(1);
 int (*p)(int x);
 p = f;
 auto fp = p;
 //...
}

See also

200:

The following code fragment initializes variable x to type int, variable y to a reference to type const int, and
variable fp to a pointer to a function that returns type int.

auto Keyword
Keywords
/Zc:auto (Deduce Variable Type)
sizeof Operator
typeid
operator new
Declarations and Definitions
Examples of Lambda Expressions
Initializers
decltype

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-auto-deduce-variable-type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions

decltype (C++)
5/7/2019 • 5 minutes to read • Edit Online

Syntax
decltype(expression)

ParametersParameters

PARAMETER DESCRIPTION

expression An expression. For more information, see Expressions.

Return Value

Remarks

int var;
const int&& fx();
struct A { double x; }
const A* a = new A();

The decltype type specifier yields the type of a specified expression. The decltype type specifier, together with
the auto keyword, is useful primarily to developers who write template libraries. Use auto and decltype to
declare a template function whose return type depends on the types of its template arguments. Or, use auto and
decltype to declare a template function that wraps a call to another function, and then returns the return type of
the wrapped function.

The type of the expression parameter.

The decltype type specifier is supported in Visual Studio 2010 or later versions, and can be used with native or
managed code. decltype(auto) (C++14) is supported in Visual Studio 2015 and later.

The compiler uses the following rules to determine the type of the expression parameter.

If the expression parameter is an identifier or a class member access, decltype(expression) is the type of
the entity named by expression. If there is no such entity or the expression parameter names a set of
overloaded functions, the compiler yields an error message.

If the expression parameter is a call to a function or an overloaded operator function, decltype(expression)

is the return type of the function. Parentheses around an overloaded operator are ignored.

If the expression parameter is an rvalue, decltype(expression) is the type of expression. If the expression
parameter is an lvalue, decltype(expression) is an lvalue reference to the type of expression.

The following code example demonstrates some uses of the decltype type specifier. First, assume that you have
coded the following statements.

Next, examine the types that are returned by the four decltype statements in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/decltype-cpp.md

STATEMENT TYPE NOTES

decltype(fx()); const int&& An rvalue reference to a const int.

decltype(var); int The type of variable var .

decltype(a->x); double The type of the member access.

decltype((a->x)); const double& The inner parentheses cause the
statement to be evaluated as an
expression instead of a member access.
And because a is declared as a
const pointer, the type is a reference

to const double.

Decltype and Auto

template<typename T, typename U>
UNKNOWN func(T&& t, U&& u){ return t + u; };

In C++14, you can use decltype(auto) with no trailing return type to declare a template function whose return
type depends on the types of its template arguments.

In C++11, you can use the decltype type specifier on a trailing return type, together with the auto keyword, to
declare a template function whose return type depends on the types of its template arguments. For example,
consider the following code example in which the return type of the template function depends on the types of the
template arguments. In the code example, the UNKNOWN placeholder indicates that the return type cannot be
specified.

The introduction of the decltype type specifier enables a developer to obtain the type of the expression that the
template function returns. Use the alternative function declaration syntax that is shown later, the auto keyword,
and the decltype type specifier to declare a late-specified return type. The late-specified return type is determined
when the declaration is compiled, instead of when it is coded.

The following prototype illustrates the syntax of an alternative function declaration. Note that the const and
volatile qualifiers, and the throw exception specification are optional. The function_body placeholder represents a
compound statement that specifies what the function does. As a best coding practice, the expression placeholder in
the decltype statement should match the expression specified by the return statement, if any, in the
function_body.

auto function_name (parameters) const volatile -> decltype(expression) throw { function_body };opt opt opt opt

In the following code example, the late-specified return type of the myFunc template function is determined by the
types of the t and u template arguments. As a best coding practice, the code example also uses rvalue
references and the forward function template, which support perfect forwarding. For more information, see
Rvalue Reference Declarator: &&.

//C++11
template<typename T, typename U>
auto myFunc(T&& t, U&& u) -> decltype (forward<T>(t) + forward<U>(u))
 { return forward<T>(t) + forward<U>(u); };

//C++14
template<typename T, typename U>
decltype(auto) myFunc(T&& t, U&& u)
 { return forward<T>(t) + forward<U>(u); };

Decltype and Forwarding Functions (C++11)

Example

Forwarding functions wrap calls to other functions. Consider a function template that forwards its arguments, or
the results of an expression that involves those arguments, to another function. Furthermore, the forwarding
function returns the result of calling the other function. In this scenario, the return type of the forwarding function
should be the same as the return type of the wrapped function.

In this scenario, you cannot write an appropriate type expression without the decltype type specifier. The
decltype type specifier enables generic forwarding functions because it does not lose required information about
whether a function returns a reference type. For a code example of a forwarding function, see the previous
myFunc template function example.

The following code example declares the late-specified return type of template function Plus() . The Plus

function processes its two operands with the operator+ overload. Consequently, the interpretation of the plus
operator (+) and the return type of the Plus function depends on the types of the function arguments.

// decltype_1.cpp
// compile with: cl /EHsc decltype_1.cpp

#include <iostream>
#include <string>
#include <utility>
#include <iomanip>

using namespace std;

template<typename T1, typename T2>
auto Plus(T1&& t1, T2&& t2) ->
 decltype(forward<T1>(t1) + forward<T2>(t2))
{
 return forward<T1>(t1) + forward<T2>(t2);
}

class X
{
 friend X operator+(const X& x1, const X& x2)
 {
 return X(x1.m_data + x2.m_data);
 }

public:
 X(int data) : m_data(data) {}
 int Dump() const { return m_data;}
private:
 int m_data;
};

int main()
{
 // Integer
 int i = 4;
 cout <<
 "Plus(i, 9) = " <<
 Plus(i, 9) << endl;

 // Floating point
 float dx = 4.0;
 float dy = 9.5;
 cout <<
 setprecision(3) <<
 "Plus(dx, dy) = " <<
 Plus(dx, dy) << endl;

 // String
 string hello = "Hello, ";
 string world = "world!";
 cout << Plus(hello, world) << endl;

 // Custom type
 X x1(20);
 X x2(22);
 X x3 = Plus(x1, x2);
 cout <<
 "x3.Dump() = " <<
 x3.Dump() << endl;
}

Plus(i, 9) = 13
Plus(dx, dy) = 13.5
Hello, world!
x3.Dump() = 42

Example

#include <utility>
template <class T, class ReturnT, class... ArgsT> class IsCallable
{
public:
 struct BadType {};
 template <class U>
 static decltype(std::declval<T>()(std::declval<ArgsT>()...)) Test(int); //C2064. Should be declval<U>
 template <class U>
 static BadType Test(...);
 static constexpr bool value = std::is_convertible<decltype(Test<T>(0)), ReturnT>::value;
};

constexpr bool test1 = IsCallable<int(), int>::value;
static_assert(test1, "PASS1");
constexpr bool test2 = !IsCallable<int*, int>::value;
static_assert(test2, "PASS2");

Requirements

Visual Studio 2017 and later: The compiler parses decltype arguments when the templates are declared rather
than instantiated. Consequently, if a non-dependent specialization is found in the decltype argument, it will not be
deferred to instantiation-time and will be processed immediately and any resulting errors will be diagnosed at that
time.

The following example shows such a compiler error that is raised at the point of declaration:

Visual Studio 2010 or later versions.

decltype(auto) requires Visual Studio 2015 or later.

Attributes in C++
5/7/2019 • 4 minutes to read • Edit Online

void g() {
 [[using rpr: kernel, target(cpu,gpu)]] // equivalent to [[rpr::kernel, rpr::target(cpu,gpu)]]
 do task();
}

C++ Standard Attributes

[[deprecated]]
void Foo(int);

The C++ Standard defines a set of attributes and also allows compiler vendors to define their own attributes
(within a vendor-specific namespace), but compilers are required to recognize only those attributes defined in the
standard.

In some cases, standard attributes overlap with compiler-specific declspec parameters. In Visual C++, you can use
the [[deprecated]] attribute instead of using declspec(deprecated) and the attribute will be recognized by any
conformant compiler. For all other declspec parameters such as dllimport and dllexport, there is as yet no attribute
equivalent so you must continue to use declspec syntax. Attributes do not affect the type system, and they don’t
change the meaning of a program. Compilers ignore attribute values they don't recognize.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): In the scope of an attribute list, you can
specify the namespace for all names with a single using introducer :

In C++11, attributes provide a standardized way to annotate C++ constructs (including but not limited to classes,
functions, variables, and blocks) with additional information that may or may not be vendor-specific. A compiler
can use this information to generate informational messages, or to apply special logic when compiling the
attributed code. The compiler ignores any attributes that it does not recognize, which means that you cannot define
your own custom attributes using this syntax. Attributes are enclosed by double square brackets:

Attributes represent a standardized alternative to vendor-specific extensions such as #pragma directives,
__declspec() (Visual C++), or __attribute__ (GNU). However, you will still need to use the vendor-specific constructs
for most purposes. The standard currently specifies the following attributes that a conforming compiler should
recognize:

[[noreturn]] Specifies that a function never returns; in other words it always throws an exception. The
compiler can adjust its compilation rules for [[noreturn]] entities.

[[carries_dependency]] Specifies that the function propagates data dependency ordering with respect to
thread synchronization. The attribute can be applied to one or more parameters, to specify that the passed-
in argument carries a dependency into the function body. The attribute can be applied to the function itself,
to specify that the return value carries a dependency out of the function. The compiler can use this
information to generate more efficient code.

[[deprecated]] Visual Studio 2015 and later: Specifies that a function is not intended to be used, and
might not exist in future versions of a library interface. The compiler can use this to generate an
informational message when client code attempts to call the function. Can be applied to declaration of a
class, a typedef-name, a variable, a non-static data member, a function, a namespace, an enumeration, an

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

Microsoft-specific attributes

[[nodiscard]]
int foo(int i) { return i * i; }

int main()
{
 foo(42); //warning C4834: discarding return value of function with 'nodiscard' attribute
 return 0;
}

enumerator, or a template specialization.

[[fallthrough]] Visual Studio 2017 and later: (available with /std:c++17) The [[fallthrough]] attribute
can be used in the context of switch statements as a hint to the compiler (or anyone reading the code) that
the fallthrough behavior is intended. The Microsoft C++ compiler currently does not warn on fallthrough
behavior, so this attribute has no effect compiler behavior.

[[nodiscard]] Visual Studio 2017 version 15.3 and later: (available with /std:c++17) Specifies that a
function's return value is not intended to be discarded. Raises warning C4834, as shown in this example:

[[maybe_unused]] Visual Studio 2017 version 15.3 and later: (available with /std:c++17) Specifies that a
variable, function, class, typedef, non-static data member, enum, or template specialization may intentionally
not be used. The compiler does not warn when an entity marked [[maybe_unused]] is not used. An entity
that is declared without the attribute can later be redeclared with the attribute and vice versa. An entity is
considered marked after its first declaration that is marked is analyzed, and for the remainder of translation
of the current translation unit.

void main()
{
 int arr[10]; // GSL warning 26494 will be fired
 int* p = arr; // GSL warning 26485 will be fired
 [[gsl::suppress(bounds.1)]] // This attribute suppresses Bounds rule #1
 {
 int* q = p + 1; // GSL warning 26481 suppressed
 p = q--; // GSL warning 26481 suppressed
 }
}

[[gsl::suppress(rules)]] This Microsoft-specific attribute is used for suppressing warnings from checkers
that enforce Guidelines Support Library (GSL) rules in code. For example, consider this code snippet:

The example raises these warnings:

26494 (Type Rule 5: Always initialize an object.)

26485 (Bounds Rule 3: No array to pointer decay.)

26481 (Bounds Rule 1: Don't use pointer arithmetic. Use span instead.)

The first two warnings fire when you compile this code with the CppCoreCheck code analysis tool installed
and activated. But the third warning doesn't fire because of the attribute. You can suppress the entire bounds
profile by writing [[gsl::suppress(bounds)]] without including a specific rule number. The C++ Core
Guidelines are designed to help you write better and safer code. The suppress attribute makes it easy to turn
off the warnings when they are not wanted.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://github.com/Microsoft/GSL

Scope (C++)
11/20/2018 • 4 minutes to read • Edit Online

Hiding Names

When you declare a program element such as a class, function, or variable, its name can only be "seen" and used
in certain parts of your program. The context in which a name is visible is called its scope. For example, if you
declare a variable x within a function, x is only visible within that function body. It has local scope. You may
have other variables by the same name in your program; as long as they are in different scopes, they do not
violate the One Definition Rule and no error is raised.

For automatic non-static variables, scope also determines when they are created and destroyed in program
memory.

There are six kinds of scope:

Global scope A global name is one that is declared outside of any class, function or namespace. However,
in C++ even these names exist with an implicit global namespace. The scope of global names extends from
the point of declaration to the end of the file in which they are declared. For global names, visibility is also
governed by the rules of linkage which determine whether the name is visible in other files in the program.

Namespace scope A name that is declared within a namespace, outside of any class or enum definition or
function block, is visible from its point of declaration to the end of namespace. A namespace may be
defined in multiple blocks across different files.

Local scope A name declared within a function or lambda, including the parameter names, have local
scope. They are often referred to as "locals". They are only visible from their point of declaration to the end
of the function or lambda body. Local scope is a kind of block scope, which is discussed later in this article.

Class scope Names of class members have class scope, which extends throughout the class definition
regardless of the point of declaration. Class member accessibility is further controlled by the public,
private, and protected keywords. Public or protected members can be accessed only by using the
member-selection operators (. or ->) or pointer-to-member operators (.* or ->*).

Statement scope Names declared in a for, if, while, or switch statement are visible until the end of the
statement block.

Function scope A label has function scope, which means it is visible throughout a function body even
before its point of declaration. Function scope makes it possible to write statements like goto cleanup

before the cleanup label is declared.

You can hide a name by declaring it in an enclosed block. In the following figure, i is redeclared within the inner
block, thereby hiding the variable associated with i in the outer block scope.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/scope-visual-cpp.md

i = 0
i = 7
j = 9
i = 0

NOTENOTE

Hiding class names

// hiding_class_names.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

// Declare class Account at global scope.
class Account
{
public:
 Account(double InitialBalance)
 { balance = InitialBalance; }
 double GetBalance()
 { return balance; }
private:
 double balance;
};

double Account = 15.37; // Hides class name Account

int main()
{
 class Account Checking(Account); // Qualifies Account as
 // class name

 cout << "Opening account with balance of: "
 << Checking.GetBalance() << "\n";
}
//Output: Opening account with balance of: 15.37

Block scope and name hiding

The output from the program shown in the figure is:

The argument szWhat is considered to be in the scope of the function. Therefore, it is treated as if it had been declared in
the outermost block of the function.

You can hide class names by declaring a function, object or variable, or enumerator in the same scope. However,
the class name can still be accessed when prefixed by the keyword class.

NOTENOTE

class Account *Checking = new class Account(Account);

NOTENOTE

Hiding names with global scope

#include <iostream>

int i = 7; // i has global scope, outside all blocks
using namespace std;

int main(int argc, char *argv[]) {
 int i = 5; // i has block scope, hides i at global scope
 cout << "Block-scoped i has the value: " << i << "\n";
 cout << "Global-scoped i has the value: " << ::i << "\n";
}

Block-scoped i has the value: 5
Global-scoped i has the value: 7

See also

Any place the class name (Account) is called for, the keyword class must be used to differentiate it from the global-scoped
variable Account. This rule does not apply when the class name occurs on the left side of the scope-resolution operator (::).
Names on the left side of the scope-resolution operator are always considered class names.

The following example demonstrates how to declare a pointer to an object of type Account using the class
keyword:

The Account in the initializer (in parentheses) in the preceding statement has global scope; it is of type double.

The reuse of identifier names as shown in this example is considered poor programming style.

For information about declaration and initialization of class objects, see Classes, Structures, and Unions. For
information about using the new and delete free-store operators, see new and delete operators.

You can hide names with global scope by explicitly declaring the same name in block scope. However, global-
scope names can be accessed using the scope-resolution operator (::).

Basic Concepts

Header files (C++)
10/31/2018 • 4 minutes to read • Edit Online

int x; // declaration
x = 42; // use x

Example

// my_class.h
namespace N
{
 class my_class
 {
 public:
 void do_something();
 };

}

The names of program elements such as variables, functions, classes, and so on must be declared before they can
be used. For example, you can't just write x = 42 without first declaring 'x'.

The declaration tells the compiler whether is an int, a double, a function, a class or some other thing.
Furthermore, each name must be declared (directly or indirectly) in every .cpp file in which it is used. When you
compile a program, each .cpp file is compiled independently into a compilation unit. The compiler has no
knowledge of what names are declared in other compilation units. That means that if you define a class or function
or global variable, you must provide a declaration of that thing in each additional .cpp file that uses it. Each
declaration of that thing must be exactly identical in all files. A slight inconsistency will cause errors, or unintended
behavior, when the linker attempts to merge all the compilation units into a single program.

To minimize the potential for errors, C++ has adopted the convention of using header files to contain declarations.
You make the declarations in a header file, then use the #include directive in every .cpp file or other header file
requires that declaration. The #include directive inserts a copy of the header file directly into the .cpp file prior to
compilation.

The following example shows a common way to declare a class and then use it in a different source file. We'll start
with the header file, my_class.h . It contains a class definition, but note that the definition is incomplete; the
member function do_something is not defined:

Next, create an implementation file (typically with a .cpp or similar extension). We'll call the file my_class.cpp and
provide a definition for the member declaration. We add an #include directive for "my_class.h" file in order to
have the my_class declaration inserted at this point in the .cpp file, and we include <iostream> to pull in the
declaration for std::cout . Note that quotes are used for header files in the same directory as the source file, and
angle brackets are used for standard library headers. Also, many standard library headers do not have .h or any
other file extension.

In the implementation file, we can optionally use a using statement to avoid having to qualify every mention of
"my_class" or "cout" with "N::" or "std::". Don't put using statements in your header files!

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/header-files-cpp.md

// my_class.cpp
#include "my_class.h" // header in local directory
#include <iostream> // header in standard library

using namespace N;
using namespace std;

void my_class::do_something()
{
 cout << "Doing something!" << endl;
}

// my_program.cpp
#include "my_class.h"

using namespace N;

int main()
{
 my_class mc;
 mc.do_something();
 return 0;
}

Include guards

// my_class.h
#ifndef MY_CLASS_H // include guard
#define MY_CLASS_H

namespace N
{
 class my_class
 {
 public:
 void do_something();
 };
}

#endif /* MY_CLASS_H */

What to put in a header file

Now we can use my_class in another .cpp file. We #include the header file so that the compiler pulls in the
declaration. All the compiler needs to know is that my_class is a class that has a public member function called
do_something() .

After the compiler finishes compiling each .cpp file into .obj files, it passes the .obj files to the linker. When the
linker merges the object files it finds exactly one definition for my_class; it is in the .obj file produced for
my_class.cpp, and the build succeeds.

Typically, header files have an include guard or a #pragma once directive to ensure that they are not inserted
multiple times into a single .cpp file.

Because a header file might potentially be included by multiple files, it cannot contain definitions that might
produce multiple definitions of the same name. The following are not allowed, or are considered very bad practice:

built-in type definitions at namespace or global scope

Sample header file

non-inline function definitions
non-const variable definitions
aggregate definitions
unnamed namespaces
using directives

Use of the using directive will not necessarily cause an error, but can potentially cause a problem because it brings
the namespace into scope in every .cpp file that directly or indirectly includes that header.

The following example shows the various kinds of declarations and definitions that are allowed in a header file:

#pragma once
#include <vector> // #include directive
#include <string>

namespace N // namespace declaration
{
 inline namespace P
 {
 //...
 }

 enum class colors : short { red, blue, purple, azure };

 const double PI = 3.14; // const and constexpr definitions
 constexpr int MeaningOfLife{ 42 };
 constexpr int get_meaning()
 {
 static_assert(MeaningOfLife == 42, "unexpected!"); // static_assert
 return MeaningOfLife;
 }
 using vstr = std::vector<int>; // type alias
 extern double d; // extern variable

#define LOG // macro definition

#ifdef LOG // conditional compilation directive
 void print_to_log();
#endif

 class my_class // regular class definition,
 { // but no non-inline function definitions

 friend class other_class;
 public:
 void do_something(); // definition in my_class.cpp
 inline void put_value(int i) { vals.push_back(i); } // inline OK

 private:
 vstr vals;
 int i;
 };

 struct RGB
 {
 short r{ 0 }; // member initialization
 short g{ 0 };
 short b{ 0 };
 };

 template <typename T> // template definition
 class value_store
 {
 public:
 value_store<T>() = default;
 void write_value(T val)
 {
 //... function definition OK in template
 }
 private:
 std::vector<T> vals;
 };

 template <typename T> // template declaration
 class value_widget;
}

Program and Linkage (C++)
10/31/2018 • 2 minutes to read • Edit Online

int i;
int f(int x);

int i{42};
int f(int x){ return x * i; }

Linkage vs. scope

External vs. internal linkage

In a C++ program, a symbol, for example a variable or function name, can be declared any number of times
within its scope, but it can only be defined once. This is the One Definition Rule (ODR). A declaration introduces
(or re-introduces) a name into the program. A definition introduces a name and, in the case of a variable, explicitly
initializes it. A function definition consists of the signature plus the function body.

These are declarations:

These are definitions:

A program consists of one or more translation units. A translation unit consists of an implementation file (.cpp,
.cxx, etc.) and all the headers (.h, .hpp, etc.) that it includes directly or indirectly. Each translation unit is compiled
independently by the compiler, after which the linker merges the compiled translation units into a single program.
Violations of the ODR rule typically show up as linker errors when the same name has two different definitions in
different translation units.

In general, the best way to make a variable visible across multiple files is to put it in a header file and add an
#include directive in every .cpp file that requires the declaration. By adding include guards around the header
contents, you ensure that the names it declares are only defined once.

However, in some cases it may be necessary to declare a global variable or class in a .cpp file. In those cases, you
need a way to tell the compiler and linker whether the name of the object applies just to the one file, or to all files.

The concept of linkage refers to the visibility of global symbols (such as variables, type names and function
names) within the program as a whole across translation units. The concept of scope refers to symbols that are
declared within a block such as a namespace, class, or function body. Such symbols are visible only within the
scope in which they are defined; the concept of linkage does not apply to them.

A free function is a function that is defined at global or namespace scope. Non-const global variables and free
functions by default have external linkage; they are visible from any translation unit in the program. Therefore, no
other global object (variable, class definition, etc.) can have that name. A symbol with internal linkage or no
linkage is visible only within the translation unit in which it is declared. When a name has internal linkage, the
same name may exist in another translation unit. Variables declared with class definitions or function bodies have
no linkage.

You can force a global name to have internal linkage by explicitly declaring it as static. This limits its visiblity to
the same translation unit in which it is declared. Note that in this context, static means something different than
when applied to local variables.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/program-and-linkage-cpp.md

extern const int value = 42;

See also

The following objects have internal linkage by default:

const objects
constexpr objects
typedefs
static objects in namespace scope

To give a const object external linkage, declare it as extern and assign it a value:

See extern for more information.

Basic Concepts

2 minutes to read

Startup and Termination (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

Program startup and termination are facilitated by using two functions: main and exit. Other startup and
termination code may be executed.

Basic Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/startup-and-termination-cpp.md

main: Program Startup
1/24/2019 • 2 minutes to read • Edit Online

int main();

int main(int argc, char *argv[], char *envp[]);

Microsoft Specific

int wmain();

int wmain(int argc, wchar_t *argv[], wchar_t *envp[]);

See also

A special function named main is the starting point of execution for all C and C++ programs. If you are writing
code that adheres to the Unicode programming model, you can use wmain , which is the wide-character version of
main.

The main function is not predefined by the compiler. It must be supplied in the program text.

The declaration syntax for main is

or, optionally,

The declaration syntax for wmain is as follows:

or, optionally,

You can also use _tmain , which is defined in tchar.h. _tmain resolves to main unless _UNICODE is defined. In
that case, _tmain resolves to wmain .

Alternatively, the main and wmain functions can be declared as returning void (no return value). If you declare
main or wmain as returning void, you cannot return an exit code to the parent process or operating system by
using a return statement. To return an exit code when main or wmain is declared as void, you must use the exit
function.

END Microsoft Specific

The types for argc and argv are defined by the language. The names argc , argv , and envp are traditional, but
are not required by the compiler. For more information and an example, see Argument Definitions.

Keywords
Using wmain Instead of main
main Function Restrictions
Parsing C++ Command-Line Arguments

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/main-program-startup.md

Using wmain Instead of main
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

See also

In the Unicode programming model, you can define a wide-character version of the main function. Use wmain
instead of main if you want to write portable code that adheres to the Unicode specification.

You declare formal parameters to wmain using a similar format to main . You can then pass wide-character
arguments and, optionally, a wide-character environment pointer to the program. The argv and envp parameters
to wmain are of type wchar_t* .

If your program uses a main function, the multibyte-character environment is created by the operating system at
program startup. A wide-character copy of the environment is created only when needed (for example, by a call to
the _wgetenv or _wputenv functions). On the first call to _wputenv , or on the first call to _wgetenv if an MBCS
environment already exists, a corresponding wide-character string environment is created and is then pointed to
by the _wenviron global variable, which is a wide-character version of the _environ global variable. At this point,
two copies of the environment (MBCS and Unicode) exist simultaneously and are maintained by the operating
system throughout the life of the program.

Similarly, if your program uses a wmain function, an MBCS (ASCII) environment is created on the first call to
_putenv or getenv , and is pointed to by the _environ global variable.

For more information on the MBCS environment, see Single-byte and Multibyte Character Sets in the Run-Time
Library Reference.

END Microsoft Specific

main: Program Startup

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-wmain-instead-of-main.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/getenv-wgetenv
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/putenv-wputenv
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/single-byte-and-multibyte-character-sets

Argument Definitions
11/8/2018 • 2 minutes to read • Edit Online

int main(int argc, char* argv[], char* envp[]);
int wmain(int argc, wchar_t* argv[], wchar_t* envp[]);

NOTENOTE

Microsoft Specific

Example

The arguments in the prototype

allow convenient command-line parsing of arguments and, optionally, access to environment variables. The
argument definitions are as follows:

argc
An integer that contains the count of arguments that follow in argv. The argc parameter is always greater than or
equal to 1.

argv
An array of null-terminated strings representing command-line arguments entered by the user of the program. By
convention, argv[0] is the command with which the program is invoked, argv[1] is the first command-line
argument, and so on, until argv[argc] , which is always NULL. See Customizing Command Line Processing for
information on suppressing command-line processing.

The first command-line argument is always argv[1] and the last one is argv[argc - 1] .

By convention, argv[0] is the command with which the program is invoked. However, it is possible to spawn a process
using CreateProcess and if you use both the first and second arguments (lpApplicationName and lpCommandLine),
argv[0] may not be the executable name; use GetModuleFileName to retrieve the executable name, and its fully-qualified

path.

envp
The envp array, which is a common extension in many UNIX systems, is used in Microsoft C++. It is an array of
strings representing the variables set in the user's environment. This array is terminated by a NULL entry. It can be
declared as an array of pointers to char (char *envp[]) or as a pointer to pointers to char (char **envp). If your
program uses wmain instead of main , use the wchar_t data type instead of char. The environment block passed
to main and wmain is a "frozen" copy of the current environment. If you subsequently change the environment via
a call to putenv or _wputenv , the current environment (as returned by getenv or _wgetenv and the _environ or
_wenviron variable) will change, but the block pointed to by envp will not change. See Customizing Command

Line Processing for information on suppressing environment processing. This argument is ANSI compatible in C,
but not in C++.

END Microsoft Specific

The following example shows how to use the argc, argv, and envp arguments to main :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/argument-definitions.md
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-getmodulefilenamea
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-getmodulefilenamea

// argument_definitions.cpp
// compile with: /EHsc
#include <iostream>
#include <string.h>

using namespace std;
int main(int argc, char *argv[], char *envp[]) {
 int iNumberLines = 0; // Default is no line numbers.

 // If /n is passed to the .exe, display numbered listing
 // of environment variables.

 if ((argc == 2) && _stricmp(argv[1], "/n") == 0)
 iNumberLines = 1;

 // Walk through list of strings until a NULL is encountered.
 for(int i = 0; envp[i] != NULL; ++i) {
 if(iNumberLines)
 cout << i << ": " << envp[i] << "\n";
 }
}

See also
main: Program Startup

Wildcard Expansion
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

See also

You can use wildcards — the question mark (?) and asterisk (*) — to specify filename and path arguments on the
command-line.

Command-line arguments are handled by a routine called _setargv (or _wsetargv in the wide-character
environment), which by default does not expand wildcards into separate strings in the argv string array. For more
information on enabling wildcard expansion, refer to Expanding Wildcard Arguments.

END Microsoft Specific

main: Program Startup

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/wildcard-expansion.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/expanding-wildcard-arguments

Parsing C++ Command-Line Arguments
10/31/2018 • 2 minutes to read • Edit Online

Example

// command_line_arguments.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
int main(int argc, // Number of strings in array argv
 char *argv[], // Array of command-line argument strings
 char *envp[]) // Array of environment variable strings
{
 int count;

 // Display each command-line argument.
 cout << "\nCommand-line arguments:\n";
 for(count = 0; count < argc; count++)
 cout << " argv[" << count << "] "
 << argv[count] << "\n";
}

Results of Parsing Command LinesResults of Parsing Command Lines

Microsoft Specific

Microsoft C/C++ startup code uses the following rules when interpreting arguments given on the operating
system command line:

Arguments are delimited by white space, which is either a space or a tab.

The caret character (^) is not recognized as an escape character or delimiter. The character is handled
completely by the command-line parser in the operating system before being passed to the argv array in
the program.

A string surrounded by double quotation marks ("string") is interpreted as a single argument, regardless of
white space contained within. A quoted string can be embedded in an argument.

A double quotation mark preceded by a backslash (\") is interpreted as a literal double quotation mark
character (").

Backslashes are interpreted literally, unless they immediately precede a double quotation mark.

If an even number of backslashes is followed by a double quotation mark, one backslash is placed in the
argv array for every pair of backslashes, and the double quotation mark is interpreted as a string delimiter.

If an odd number of backslashes is followed by a double quotation mark, one backslash is placed in the
argv array for every pair of backslashes, and the double quotation mark is "escaped" by the remaining

backslash, causing a literal double quotation mark (") to be placed in argv .

The following program demonstrates how command-line arguments are passed:

The following table shows example input and expected output, demonstrating the rules in the preceding list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/parsing-cpp-command-line-arguments.md

COMMAND-LINE INPUT ARGV[1] ARGV[2] ARGV[3]

"abc" d e abc d e

a\\b d"e f"g h a\\b de fg h

a\\\"b c d a\"b c d

a\\\\"b c" d e a\\b c d e

See also

END Microsoft Specific

main: Program Startup

Customizing C++ Command-Line Processing
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

See also

If your program does not take command-line arguments, you can save a small amount of space by suppressing
use of the library routine that performs command-line processing. This routine is called _setargv and is described
in Wildcard Expansion. To suppress its use, define a routine that does nothing in the file containing the main

function, and name it _setargv . The call to _setargv is then satisfied by your definition of _setargv , and the
library version is not loaded.

Similarly, if you never access the environment table through the envp argument, you can provide your own
empty routine to be used in place of _setenvp , the environment-processing routine. Just as with the _setargv

function, _setenvp must be declared as extern "C".

Your program might make calls to the spawn or exec family of routines in the C run-time library. If this is the
case, you should not suppress the environment-processing routine, since this routine is used to pass an
environment from the parent process to the child process.

END Microsoft Specific

main: Program Startup

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/customizing-cpp-command-line-processing.md

main Function Restrictions
10/31/2018 • 2 minutes to read • Edit Online

See also

Several restrictions apply to the main function that do not apply to any other C++ functions. The main function:

Cannot be overloaded (see Function Overloading).

Cannot be declared as inline.

Cannot be declared as static.

Cannot have its address taken.

Cannot be called.

main: Program Startup

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/main-function-restrictions.md

Program Termination
10/31/2018 • 2 minutes to read • Edit Online

See also

In C++, there are several ways to exit a program:

Call the exit function.

Call the abort function.

Execute a return statement from main .

main: Program Startup

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/program-termination.md

exit Function
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

See also

The exit function, declared in the standard include file <stdlib.h>, terminates a C++ program.

The value supplied as an argument to exit is returned to the operating system as the program's return code or exit
code. By convention, a return code of zero means that the program completed successfully.

You can use the constants EXIT_FAILURE and EXIT_SUCCESS, defined in <stdlib.h>, to indicate success or failure of your
program.

Issuing a return statement from the main function is equivalent to calling the exit function with the return value
as its argument.

For more information, see exit in the Run-Time Library Reference.

Program Termination

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/exit-function.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/exit-exit-exit

abort Function
10/31/2018 • 2 minutes to read • Edit Online

See also

The abort function, also declared in the standard include file <stdlib.h>, terminates a C++ program. The difference
between exit and abort is that exit allows the C++ run-time termination processing to take place (global
object destructors will be called), whereas abort terminates the program immediately. For more information, see
abort in the Run-Time Library Reference.

Program Termination

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/abort-function.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/abort

return Statement in Program Termination (C++)
10/31/2018 • 2 minutes to read • Edit Online

// return_statement.cpp
#include <stdlib.h>
int main()
{
 exit(3);
 return 3;
}

See also

Issuing a return statement from main is functionally equivalent to calling the exit function. Consider the
following example:

The exit and return statements in the preceding example are functionally identical. However, C++ requires that
functions that have return types other than void return a value. The return statement allows you to return a value
from main .

Program Termination

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/return-statement-in-program-termination-cpp.md

Additional Startup Considerations
10/31/2018 • 2 minutes to read • Edit Online

See also

In C++, object construction and destruction can involve executing user code. Therefore, it is important to
understand which initializations happen before entry to main and which destructors are invoked after exit from
main . (For detailed information about construction and destruction of objects, see Constructors and Destructors.)

The following initializations take place prior to entry to main :

Default initialization of static data to zero. All static data without explicit initializers are set to zero prior to
executing any other code, including run-time initialization. Static data members must still be explicitly
defined.

Initialization of global static objects in a translation unit. This may occur either before entry to main or
before the first use of any function or object in the object's translation unit.

Microsoft Specific

In Microsoft C++, global static objects are initialized before entry to main .

END Microsoft Specific

Global static objects that are mutually interdependent but in different translation units may cause incorrect
behavior.

Startup and Termination

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/additional-startup-considerations.md

Additional Termination Considerations
10/31/2018 • 2 minutes to read • Edit Online

See also

You can terminate a C++ program by using exit , return, or abort . You can add exit processing using the
atexit function. These are discussed in the following sections.

Startup and Termination

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/additional-termination-considerations.md

Using exit or return
10/31/2018 • 2 minutes to read • Edit Online

Example
// using_exit_or_return1.cpp
#include <stdio.h>
class ShowData {
public:
 // Constructor opens a file.
 ShowData(const char *szDev) {
 errno_t err;
 err = fopen_s(&OutputDev, szDev, "w");
 }

 // Destructor closes the file.
 ~ShowData() { fclose(OutputDev); }

 // Disp function shows a string on the output device.
 void Disp(char *szData) {
 fputs(szData, OutputDev);
 }
private:
 FILE *OutputDev;
};

// Define a static object of type ShowData. The output device
// selected is "CON" -- the standard output device.
ShowData sd1 = "CON";

// Define another static object of type ShowData. The output
// is directed to a file called "HELLO.DAT"
ShowData sd2 = "hello.dat";

int main() {
 sd1.Disp("hello to default device\n");
 sd2.Disp("hello to file hello.dat\n");
}

int main() {
 ShowData sd1, sd2("hello.dat");

 sd1.Disp("hello to default device\n");
 sd2.Disp("hello to file hello.dat\n");
}

When you call exit or execute a return statement from main , static objects are destroyed in the reverse order of
their initialization. The following example shows how such initialization and cleanup works.

In the preceding example, the static objects sd1 and sd2 are created and initialized before entry to main . After
this program terminates using the return statement, first sd2 is destroyed and then sd1 . The destructor for the
ShowData class closes the files associated with these static objects.

Another way to write this code is to declare the ShowData objects with block scope, allowing them to be destroyed
when they go out of scope:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-exit-or-return.md

See also
Additional Termination Considerations

Using atexit
10/31/2018 • 2 minutes to read • Edit Online

See also

With the atexit function, you can specify an exit-processing function that executes prior to program termination. No
global static objects initialized prior to the call to atexit are destroyed prior to execution of the exit-processing
function.

Additional Termination Considerations

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-atexit.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/atexit

Using abort
10/31/2018 • 2 minutes to read • Edit Online

See also

Calling the abort function causes immediate termination. It bypasses the normal destruction process for initialized
global static objects. It also bypasses any special processing that was specified using the atexit function.

Additional Termination Considerations

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-abort.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/abort

Lvalues and Rvalues (C++)
5/7/2019 • 2 minutes to read • Edit Online

Example

Every C++ expression has a type, and belongs to a value category. The value categories are the basis for rules that
compilers must follow when creating, copying, and moving temporary objects during expression evaluation.

The C++17 standard defines expression value categories as follows:

A glvalue is an expression whose evaluation determines the identity of an object, bit-field, or function.
A prvalue is an expression whose evaluation initializes an object or a bit-field, or computes the value of the
operand of an operator, as specified by the context in which it appears.
An xvalue is a glvalue that denotes an object or bit-field whose resources can be reused (usually because it is
near the end of its lifetime). Example: Certain kinds of expressions involving rvalue references (8.3.2) yield
xvalues, such as a call to a function whose return type is an rvalue reference or a cast to an rvalue reference
type.
An lvalue is a glvalue that is not an xvalue.
An rvalue is a prvalue or an xvalue.

The following diagram illustrates the relationships between the categories:

An lvalue has an address that your program can access. Examples of lvalue expressions include variable names,
including const variables, array elements, function calls that return an lvalue reference, bit-fields, unions, and class
members.

A prvalue expression has no address that is accessible by your program. Examples of prvalue expressions include
literals, function calls that return a non-reference type, and temporary objects that are created during expression
evalution but accessible only by the compiler.

An xvalue expression has an address that no longer accessible by your program but can be used to initialize an
rvalue reference, which provides access to the expression. Examples include function calls that return an rvalue
reference, and the array subscript, member and pointer to member expressions where the array or object is an
rvalue reference.

The following example demonstrates several correct and incorrect usages of lvalues and rvalues:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lvalues-and-rvalues-visual-cpp.md

// lvalues_and_rvalues2.cpp
int main()
{
 int i, j, *p;

 // Correct usage: the variable i is an lvalue and the literal 7 is a prvalue.
 i = 7;

 // Incorrect usage: The left operand must be an lvalue (C2106).`j * 4` is a prvalue.
 7 = i; // C2106
 j * 4 = 7; // C2106

 // Correct usage: the dereferenced pointer is an lvalue.
 *p = i;

 // Correct usage: the conditional operator returns an lvalue.
 ((i < 3) ? i : j) = 7;

 // Incorrect usage: the constant ci is a non-modifiable lvalue (C3892).
 const int ci = 7;
 ci = 9; // C3892
}

NOTENOTE

See also

The examples in this topic illustrate correct and incorrect usage when operators are not overloaded. By overloading
operators, you can make an expression such as j * 4 an lvalue.

The terms lvalue and rvalue are often used when you refer to object references. For more information about
references, see Lvalue Reference Declarator: & and Rvalue Reference Declarator: &&.

Basic Concepts
Lvalue Reference Declarator: &
Rvalue Reference Declarator: &&

Temporary Objects
10/31/2018 • 2 minutes to read • Edit Online

Destruction Points for Temporary ObjectsDestruction Points for Temporary Objects

REASON TEMPORARY CREATED DESTRUCTION POINT

Result of expression evaluation All temporaries created as a result of expression evaluation are
destroyed at the end of the expression statement (that is, at
the semicolon), or at the end of the controlling expressions for
for, if, while, do, and switch statements.

Initializing const references If an initializer is not an l-value of the same type as the
reference being initialized, a temporary of the underlying
object type is created and initialized with the initialization
expression. This temporary object is destroyed immediately
after the reference object to which it is bound is destroyed.

In some cases, it is necessary for the compiler to create temporary objects. These temporary objects can be
created for the following reasons:

UDT Func1(); // Declare a function that returns a user-defined
 // type.

...

Func1(); // Call Func1, but discard return value.
 // A temporary object is created to store the return
 // value.

To initialize a const reference with an initializer of a type different from that of the underlying type of the
reference being initialized.

To store the return value of a function that returns a user-defined type. These temporaries are created only
if your program does not copy the return value to an object. For example:

Because the return value is not copied to another object, a temporary object is created. A more common
case where temporaries are created is during the evaluation of an expression where overloaded operator
functions must be called. These overloaded operator functions return a user-defined type that often is not
copied to another object.

Consider the expression ComplexResult = Complex1 + Complex2 + Complex3 . The expression
Complex1 + Complex2 is evaluated, and the result is stored in a temporary object. Next, the expression

temporary + Complex3 is evaluated, and the result is copied to ComplexResult (assuming the assignment
operator is not overloaded).

To store the result of a cast to a user-defined type. When an object of a given type is explicitly converted to a
user-defined type, that new object is constructed as a temporary object.

Temporary objects have a lifetime that is defined by their point of creation and the point at which they are
destroyed. Any expression that creates more than one temporary object eventually destroys them in the reverse
order in which they were created. The points at which destruction occurs are shown in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/temporary-objects.md

Alignment (C++ Declarations)
11/9/2018 • 3 minutes to read • Edit Online

About Alignment

struct x_
{
 char a; // 1 byte
 int b; // 4 bytes
 short c; // 2 bytes
 char d; // 1 byte
} MyStruct;

One of the low-level features of C++ is the ability to specify the precise alignment of objects in memory to take
maximum advantage of a specific hardware architecture. By default, the compiler aligns class and struct members
on their size value: bool and char are aligned on one byte boundaries, short on two byte, int on four bytes, long
long, double and long double on eight bytes. In most scenarios you never have to be concerned with alignment
because the default alignment is already optimal. In some cases however, you can achieve significant performance
improvements, or memory savings, by specifying a custom alignment for your data structures. Prior to Visual
Studio 2015 you could use the Microsoft-specific keywords __alignof and declspec(alignas) to specify an alignment
greater than the default. Starting in Visual Studio 2015 you should use the C++11 standard keywords alignof and
alignas for maximum code portability. The new keywords behave in the same way under the hood as the
Microsoft-specific extensions, and the documentation for those extensions also applies to the new keywords. See
__alignof Operator and align for more information. The C++ standard does not specify packing behavior for
aligning on boundaries smaller than the compiler default for the target platform, so you still need to use the
Microsoft #pragma pack in that case.

The C++ standard library provides the aligned_storage Class for allocating memory for data structures with
custom alignments, and the aligned_union Class for specifying alignment for unions with non-trivial constructors
or destructors.

Alignment is a property of a memory address, expressed as the numeric address modulo a power of 2. For
example, the address 0x0001103F modulo 4 is 3; that address is said to be aligned to 4n+3, where 4 indicates the
chosen power of 2. The alignment of an address depends on the chosen power of two. The same address modulo
8 is 7. An address is said to be aligned to X if its alignment is Xn+0.

CPUs execute instructions that operate on data stored in memory, and the data are identified by their addresses in
memory. In addition to its address, a single datum also has a size. A datum is called naturally aligned if its address
is aligned to its size, and misaligned otherwise. For example, an 8-byte floating-point datum is naturally aligned if
the address used to identify it is aligned to 8.

Compiler handling of data alignmentDevice compilers attempt to allocate data in a way that prevents data
misalignment.

For simple data types, the compiler assigns addresses that are multiples of the size in bytes of the data type. Thus,
the compiler assigns addresses to variables of type long that are multiples of four, setting the bottom two bits of
the address to zero.

In addition, the compiler pads structures in a way that naturally aligns each element of the structure. Consider the
structure struct x_ in the following code example:

The compiler pads this structure to enforce alignment naturally.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/alignment-cpp-declarations.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pack
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/aligned-storage-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/aligned-union-class

// Shows the actual memory layout
struct x_
{
 char a; // 1 byte
 char _pad0[3]; // padding to put 'b' on 4-byte boundary
 int b; // 4 bytes
 short c; // 2 bytes
 char d; // 1 byte
 char _pad1[1]; // padding to make sizeof(x_) multiple of 4
}

adr offset element
------ -------
0x0000 char a; // bar[0]
0x0001 char pad0[3];
0x0004 int b;
0x0008 short c;
0x000a char d;
0x000b char _pad1[1];

0x000c char a; // bar[1]
0x000d char _pad0[3];
0x0010 int b;
0x0014 short c;
0x0016 char d;
0x0017 char _pad1[1];

0x0018 char a; // bar[2]
0x0019 char _pad0[3];
0x001c int b;
0x0020 short c;
0x0022 char d;
0x0023 char _pad1[1];

See also

The following code example shows how the compiler places the padded structure in memory:Copy

1. Both declarations return sizeof(struct x_) as 12 bytes.

2. The second declaration includes two padding elements:

3. char _pad0[3] to align the int b member on a four-byte boundary

4. char _pad1[1] to align the array elements of the structure struct _x bar[3];

5. The padding aligns the elements of bar[3] in a way that allows natural access.

The following code example shows the bar[3] array layout:

Data Structure Alignment

http://en.wikipedia.org/wiki/Data_structure_alignment

alignof and alignas (C++)
12/14/2018 • 2 minutes to read • Edit Online

Example

// alignas_alignof.cpp
// compile with: cl /EHsc alignas_alignof.cpp
#include <iostream>

struct alignas(16) Bar
{
 int i; // 4 bytes
 int n; // 4 bytes
 alignas(4) char arr[3];
 short s; // 2 bytes
};

int main()
{
 std::cout << alignof(Bar) << std::endl; // output: 16
}

See also

The alignas type specifier is a portable, C++ standard way to specify custom alignment of variables and user
defined types. The alignof operator is likewise a standard, portable way to obtain the alignment of a specified type
or variable.

You can use alignas on a class, struct or union, or on individual members. When multiple alignas specifiers are
encountered, the compiler will choose the strictest one, (the one with the largest value).

Alignment

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/alignof-and-alignas-cpp.md

Trivial, standard-layout, POD, and literal types
5/20/2019 • 5 minutes to read • Edit Online

Trivial types

The term layout refers to how the members of an object of class, struct or union type are arranged in memory. In
some cases, the layout is well-defined by the language specification. But when a class or struct contains certain
C++ language features such as virtual base classes, virtual functions, members with different access control, then
the compiler is free to choose a layout. That layout may vary depending on what optimizations are being
performed and in many cases the object might not even occupy a contiguous area of memory. For example, if a
class has virtual functions, all the instances of that class might share a single virtual function table. Such types are
very useful, but they also have limitations. Because the layout is undefined they cannot be passed to programs
written in other languages, such as C, and because they might be non-contiguous they cannot be reliably copied
with fast low-level functions such as memcopy , or serialized over a network.

To enable compilers as well as C++ programs and metaprograms to reason about the suitability of any given type
for operations that depend on a particular memory layout, C++14 introduced three categories of simple classes
and structs: trivial, standard-layout, and POD or Plain Old Data. The Standard Library has the function templates
is_trivial<T> , is_standard_layout<T> and is_pod<T> that determine whether a given type belongs to a given

category.

When a class or struct in C++ has compiler-provided or explicitly defaulted special member functions, then it is a
trivial type. It occupies a contiguous memory area. It can have members with different access specifiers. In C++,
the compiler is free to choose how to order members in this situation. Therefore, you can memcopy such objects
but you cannot reliably consume them from a C program. A trivial type T can be copied into an array of char or
unsigned char, and safely copied back into a T variable. Note that because of alignment requirements, there might
be padding bytes between type members.

Trivial types have a trivial default constructor, trivial copy constructor, trivial copy assignment operator and trivial
destructor. In each case, trivial means the constructor/operator/destructor is not user-provided and belongs to a
class that has

no virtual functions or virtual base classes,

no base classes with a corresponding non-trivial constructor/operator/destructor

no data members of class type with a corresponding non-trivial constructor/operator/destructor

The following examples show trivial types. In Trivial2, the presence of the Trivial2(int a, int b) constructor
requires that you provide a default constructor. For the type to qualify as trivial, you must explicitly default that
constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/trivial-standard-layout-and-pod-types.md

struct Trivial
{
 int i;
private:
 int j;
 };

struct Trivial2
{
 int i;
 Trivial2(int a, int b) : i(a), j(b) {}
 Trivial2() = default;
 private:
 int j; // Different access control
};

Standard layout types

struct SL
{
 // All members have same access:
 int i;
 int j;
 SL(int a, int b) : i(a), j(b) {} // User-defined constructor OK
};

When a class or struct does not contain certain C++ language features such as virtual functions which are not
found in the C language, and all members have the same access control, it is a standard-layout type. It is
memcopy-able and the layout is sufficiently defined that it can be consumed by C programs. Standard-layout types
can have user-defined special member functions. In addition, standard layout types have these characteristics:

no virtual functions or virtual base classes

all non-static data members have the same access control

all non-static members of class type are standard-layout

any base classes are standard-layout

has no base classes of the same type as the first non-static data member.

meets one of these conditions:

no non-static data member in the most-derived class and no more than one base class with non-
static data members, or

has no base classes with non-static data members

The following code shows one example of a standard-layout type:

The last two requirements can perhaps be better illustrated with code. In the next example, even though Base is
standard-layout, Derived is not standard layout because both it (the most derived class) and Base have non-static
data members:

struct Base
{
 int i;
 int j;
};

// std::is_standard_layout<<Derived> == false!
struct Derived : public Base
{
 int x;
 int y;
};

struct Base
{
 void Foo() {}
};

// std::is_standard_layout<<Derived> == true
struct Derived : public Base
{
 int x;
 int y;
};

POD types

Example

In this example Derived is standard-layout because Base has no non-static data members:

Derived would also be standard-layout if Base had the data members and Derived had only member functions.

When a class or struct is both trivial and standard-layout, it is a POD (Plain Old Data) type. The memory layout of
POD types is therefore contiguous and each member has a higher address than the member that was declared
before it, so that byte for byte copies and binary I/O can be performed on these types. Scalar types such as int are
also POD types. POD types that are classes can have only POD types as non-static data members.

The following example shows the distinctions between trivial, standard-layout, and POD types:

#include <type_traits>
#include <iostream>

using namespace std;

struct B
{
protected:
 virtual void Foo() {}
};

// Neither trivial nor standard-layout
struct A : B
{
 int a;
 int b;
 void Foo() override {} // Virtual function
};

// Trivial but not standard-layout
struct C
 {
 int a;
private:
 int b; // Different access control
};

// Standard-layout but not trivial
struct D
{
 int a;
 int b;
 D() {} //User-defined constructor
};

struct POD
{
 int a;
 int b;
};

int main()
{
 cout << boolalpha;
 cout << "A is trivial is " << is_trivial<A>() << endl; // false
 cout << "A is standard-layout is " << is_standard_layout<A>() << endl; // false

 cout << "C is trivial is " << is_trivial<C>() << endl; // true
 cout << "C is standard-layout is " << is_standard_layout<C>() << endl; // false

 cout << "D is trivial is " << is_trivial<D>() << endl; // false
 cout << "D is standard-layout is " << is_standard_layout<D>() << endl; // true

 cout << "POD is trivial is " << is_trivial<POD>() << endl; // true
 cout << "POD is standard-layout is " << is_standard_layout<POD>() << endl; // true

 return 0;
}

Literal types
A literal type is one whose layout can be determined at compile time. The following are the literal types:

void
scalar types

See also

references
Arrays of void, scalar types or references
A class that has a trivial destructor, and one or more constexpr constructors that are not move or copy
constructors. Additionally, all its non-static data members and base classes must be literal types and not volatile.

Basic Concepts

Fundamental Types (C++)
10/31/2018 • 3 minutes to read • Edit Online

Fundamental Types of the C++ LanguageFundamental Types of the C++ Language

CATEGORY TYPE CONTENTS

Integral char Type char is an integral type that
usually contains members of the basic
execution character set — By default,
this is ASCII in Microsoft C++.

The C++ compiler treats variables of
type char, signed char, and
unsigned char as having different
types. Variables of type char are
promoted to int as if they are type
signed char by default, unless the /J
compilation option is used. In this case
they are treated as type unsigned
char and are promoted to int without
sign extension.

bool Type bool is an integral type that can
have one of the two values true or
false. Its size is unspecified.

short Type short int (or simply short) is an
integral type that is larger than or
equal to the size of type char, and
shorter than or equal to the size of
type int.

Objects of type short can be declared
as signed short or unsigned short.
Signed short is a synonym for short.

Fundamental types in C++ are divided into three categories: integral, floating point, and void. Integral types
are capable of handling whole numbers. Floating point types are capable of specifying values that may have
fractional parts.

The void type describes an empty set of values. No variable of type void can be specified — it is used primarily
to declare functions that return no values or to declare generic pointers to untyped or arbitrarily typed data.
Any expression can be explicitly converted or cast to type void. However, such expressions are restricted to the
following uses:

An expression statement. (See Expressions, for more information.)

The left operand of the comma operator. (See Comma Operator for more information.)

The second or third operand of the conditional operator (? :). (See Expressions with the Conditional
Operator for more information.)

The following table explains the restrictions on type sizes. These restrictions are independent of the Microsoft
implementation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/fundamental-types-cpp.md

int Type int is an integral type that is
larger than or equal to the size of type
short int, and shorter than or equal to
the size of type long.

Objects of type int can be declared as
signed int or unsigned int. Signed
int is a synonym for int.

__int8, __int16, __int32, __int64 Sized integer __int n , where n is
the size, in bits, of the integer variable.
__int8, __int16, __int32 and __int64
are Microsoft-specific keywords. Not
all types are available on all
architectures. (__int128 is not
supported.)

long Type long (or long int) is an integral
type that is larger than or equal to the
size of type int.

Objects of type long can be declared
as signed long or unsigned long.
Signed long is a synonym for long.

long long Larger than an unsigned long.

Objects of type long long can be
declared as signed long long or
unsigned long long. signed long
long is a synonym for long long.

wchar_t, __wchar_t A variable of type wchar_t designates
a wide-character or multibyte
character type. By default, wchar_t is a
native type, but you can use
/Zc:wchar_t- to make wchar_t a
typedef for unsigned short. The
__wchar_t type is a Microsoft-specific
synonym for the native wchar_t type.

Use the L prefix before a character or
string literal to designate the wide-
character type.

Floating point float Type float is the smallest floating
point type.

double Type double is a floating point type
that is larger than or equal to type
float, but shorter than or equal to the
size of type long double.

Microsoft specific: The representation
of long double and double is
identical. However, long double and
double are separate types.

CATEGORY TYPE CONTENTS

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

long double Type long double is a floating point
type that is larger than or equal to
type double.

CATEGORY TYPE CONTENTS

Sizes of Fundamental TypesSizes of Fundamental Types

TYPE SIZE

bool, char, unsigned char, signed char, __int8 1 byte

__int16, short, unsigned short, wchar_t, __wchar_t 2 bytes

float, __int32, int, unsigned int, long, unsigned long 4 bytes

double, __int64, long double, long long 8 bytes

See also

Microsoft Specific

The following table lists the amount of storage required for fundamental types in Microsoft C++.

END Microsoft Specific

See Data Type Ranges for a summary of the range of values of each type.

For more information about type conversion, see Standard Conversions.

Data Type Ranges

Data Type Ranges
5/7/2019 • 2 minutes to read • Edit Online

TYPE NAME BYTES OTHER NAMES RANGE OF VALUES

int 4 signed -2,147,483,648 to
2,147,483,647

unsigned int 4 unsigned 0 to 4,294,967,295

__int8 1 char -128 to 127

unsigned __int8 1 unsigned char 0 to 255

__int16 2 short, short int, signed
short int

-32,768 to 32,767

unsigned __int16 2 unsigned short, unsigned
short int

0 to 65,535

__int32 4 signed, signed int, int -2,147,483,648 to
2,147,483,647

unsigned __int32 4 unsigned, unsigned int 0 to 4,294,967,295

__int64 8 long long, signed long
long

-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

unsigned __int64 8 unsigned long long 0 to
18,446,744,073,709,551,61
5

The Microsoft C++ 32-bit and 64-bit compilers recognize the types in the table later in this article.

int (unsigned int)

__int8 (unsigned __int8)

__int16 (unsigned __int16)

__int32 (unsigned __int32)

__int64 (unsigned __int64)

short (unsigned short)

long (unsigned long)

long long (unsigned long long)

If its name begins with two underscores (__), a data type is non-standard.

The ranges that are specified in the following table are inclusive-inclusive.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/data-type-ranges.md

bool 1 none false or true

char 1 none -128 to 127 by default

0 to 255 when compiled by
using /J

signed char 1 none -128 to 127

unsigned char 1 none 0 to 255

short 2 short int, signed short int -32,768 to 32,767

unsigned short 2 unsigned short int 0 to 65,535

long 4 long int, signed long int -2,147,483,648 to
2,147,483,647

unsigned long 4 unsigned long int 0 to 4,294,967,295

long long 8 none (but equivalent to
__int64)

-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

unsigned long long 8 none (but equivalent to
unsigned __int64)

0 to
18,446,744,073,709,551,61
5

enum varies none

float 4 none 3.4E +/- 38 (7 digits)

double 8 none 1.7E +/- 308 (15 digits)

long double same as double none Same as double

wchar_t 2 __wchar_t 0 to 65,535

TYPE NAME BYTES OTHER NAMES RANGE OF VALUES

Depending on how it's used, a variable of __wchar_t designates either a wide-character type or multibyte-
character type. Use the L prefix before a character or string constant to designate the wide-character-type
constant.

signed and unsigned are modifiers that you can use with any integral type except bool. Note that char, signed
char, and unsigned char are three distinct types for the purposes of mechanisms like overloading and templates.

The int and unsigned int types have a size of four bytes. However, portable code should not depend on the size
of int because the language standard allows this to be implementation-specific.

C/C++ in Visual Studio also supports sized integer types. For more information, see __int8, __int16, __int32,
__int64 and Integer Limits.

For more information about the restrictions of the sizes of each type, see Fundamental Types.

The range of enumerated types varies depending on the language context and specified compiler flags. For more

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/j-default-char-type-is-unsigned

See also

information, see C Enumeration Declarations and Enumerations.

Keywords
Fundamental Types

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-enumeration-declarations

nullptr
4/1/2019 • 2 minutes to read • Edit Online

NOTENOTE

Remarks

See also

Designates a null pointer constant of type std::nullptr_t , which is convertible to any raw pointer type. Although
you can use the keyword nullptr without including any headers, if your code uses the type std::nullptr_t , then
you must define it by including the header <cstddef> .

The nullptr keyword is also defined in C++/CLI for managed code applications and is not interchangeable with the ISO
Standard C++ keyword. If your code might be compiled by using the /clr compiler option, which targets managed code,
then use __nullptr in any line of code where you must guarantee that the compiler uses the native C++ interpretation.
For more information, see nullptr.

Avoid using NULL or zero (0) as a null pointer constant; nullptr is less vulnerable to misuse and works better in
most situations. For example, given func(std::pair<const char *, double>) , then calling
func(std::make_pair(NULL, 3.14)) causes a compiler error. The macro NULL expands to 0 , so that the call
std::make_pair(0, 3.14) returns std::pair<int, double> , which is not convertible to func()'s
std::pair<const char *, double> parameter type. Calling func(std::make_pair(nullptr, 3.14)) successfully

compiles because std::make_pair(nullptr, 3.14) returns std::pair<std::nullptr_t, double> , which is convertible
to std::pair<const char *, double> .

Keywords
nullptr(C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/nullptr.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/nullptr-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/nullptr-cpp-component-extensions

void (C++)
10/31/2018 • 2 minutes to read • Edit Online

Example
// void.cpp
void vobject; // C2182
void *pv; // okay
int *pint; int i;
int main() {
 pv = &i;
 // Cast optional in C required in C++
 pint = (int *)pv;
}

See also

When used as a function return type, the void keyword specifies that the function does not return a value. When
used for a function's parameter list, void specifies that the function takes no parameters. When used in the
declaration of a pointer, void specifies that the pointer is "universal."

If a pointer's type is void * , the pointer can point to any variable that is not declared with the const or volatile
keyword. A void pointer cannot be dereferenced unless it is cast to another type. A void pointer can be converted
into any other type of data pointer.

A void pointer can point to a function, but not to a class member in C++.

You cannot declare a variable of type void.

Keywords
Fundamental Types

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/void-cpp.md

bool (C++)
10/31/2018 • 2 minutes to read • Edit Online

 b++;
 ++b;
 b--;
 --b;

!false == true
!true == false

if (condexpr1) statement1;

See also

This keyword is a built-in type. A variable of this type can have values true and false. Conditional expressions have
the type bool and so have values of type bool. For example, i!=0 now has TRUE or FALSE depending on the
value of i .

Visual Studio 2017 version 15.3 and later (available with /std:c++17): The operand of a postfix or prefix
increment or decrement operator may not be of type bool. In other words, given a variable b of type bool, these
expressions are no longer allowed:

The values TRUE and FALSE have the following relationship:

In the following statement:

If condexpr1 is TRUE, statement1 is always executed; if condexpr1 is FALSE, statement1 is never executed.

When a postfix or prefix ++ operator is applied to a variable of type bool, the variable is set to TRUE. Visual
Studio 2017 version 15.3 and later: operator++ for bool was removed from the language and is no longer
supported.

The postfix or prefix -- operator cannot be applied to a variable of this type.

The bool type participates in integral promotions. An r-value of type bool can be converted to an r-value of type
int, with FALSE becoming zero and TRUE becoming one. As a distinct type, bool participates in overload
resolution.

Keywords
Fundamental Types

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bool-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

false (C++)
10/31/2018 • 2 minutes to read • Edit Online

Example
// bool_false.cpp
#include <stdio.h>

int main()
{
 bool bb = true;
 printf_s("%d\n", bb);
 bb = false;
 printf_s("%d\n", bb);
}

1
0

See also

The keyword is one of the two values for a variable of type bool or a conditional expression (a conditional
expression is now a true Boolean expression). For example, if i is a variable of type bool, the i = false;

statement assigns false to i .

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/false-cpp.md

true (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
bool-identifier = true ;
bool-expression logical-operator true ;

Remarks

Example
// bool_true.cpp
#include <stdio.h>
int main()
{
 bool bb = true;
 printf_s("%d\n", bb);
 bb = false;
 printf_s("%d\n", bb);
}

1
0

See also

This keyword is one of the two values for a variable of type bool or a conditional expression (a conditional
expression is now a true boolean expression). If i is of type bool, then the statement i = true; assigns true to
i .

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/true-cpp.md

char, wchar_t, char16_t, char32_t
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char ch1{ 'a' }; // or { u8'a' }
wchar_t ch2{ L'a' };
char16_t ch3{ u'a' };
char32_t ch4{ U'a' };

Remarks

The types char, wchar_t, char16_t and char32_t are built-in types that represent alphanumeric characters as well
as non-alphanumeric glyphs and non-printing characters.

The char type was the original character type in C and C++. The type unsigned char is often used to represent a
byte, which is not a built-in type in C++. The char type can be used to store characters from the ASCII character
set or any of the ISO-8859 character sets, and individual bytes of multi-byte characters such as Shift-JIS or the
UTF-8 encoding of the Unicode character set. Strings of char type are referred to as narrow strings, even when
used to encode multi-byte characters. In the Microsoft compiler, char is an 8-bit type.

The wchar_t type is an implementation-defined wide character type. In the Microsoft compiler, it represents a 16-
bit wide character used to store Unicode encoded as UTF-16LE, the native character type on Windows operating
systems. The wide character versions of the Universal C Runtime (UCRT) library functions use wchar_t and its
pointer and array types as parameters and return values, as do the wide character versions of the native Windows
API.

The char16_t and char32_t types represent 16-bit and 32-bit wide characters, respectively. Unicode encoded as
UTF-16 can be stored in the char16_t type, and Unicode encoded as UTF-32 can be stored in the char32_t type.
Strings of these types and wchar_t are all referred to as wide strings, though the term often refers specifically to
strings of wchar_t type.

In the C++ standard library, the basic_string type is specialized for both narrow and wide strings. Use
std::string when the characters are of type char, std::u16string when the characters are of type char16_t,
std::u32string when the characters are of type char32_t, and std::wstring when the characters are of type

wchar_t. Other types that represent text, including std::stringstream and std::cout have specializations for
narrow and wide strings.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/char-wchar-t-char16-t-char32-t.md

__int8, __int16, __int32, __int64
10/31/2018 • 2 minutes to read • Edit Online

__int8 nSmall; // Declares 8-bit integer
__int16 nMedium; // Declares 16-bit integer
__int32 nLarge; // Declares 32-bit integer
__int64 nHuge; // Declares 64-bit integer

Example

// sized_int_types.cpp

#include <stdio.h>

void func(int i) {
 printf_s("%s\n", __FUNCTION__);
}

int main()
{
 __int8 i8 = 100;
 func(i8); // no void func(__int8 i8) function
 // __int8 will be promoted to int
}

func

See also

Microsoft Specific

Microsoft C/C++ features support for sized integer types. You can declare 8-, 16-, 32-, or 64-bit integer variables
by using the __intn type specifier, where n is 8, 16, 32, or 64.

The following example declares one variable for each of these types of sized integers:

The types __int8, __int16, and __int32 are synonyms for the ANSI types that have the same size, and are useful
for writing portable code that behaves identically across multiple platforms. The __int8 data type is synonymous
with type char, __int16 is synonymous with type short, and __int32 is synonymous with type int. The __int64
type is synonymous with type long long.

For compatibility with previous versions, _int8, _int16, _int32, and _int64 are synonyms for __int8, __int16,
__int32, and __int64 unless compiler option /Za (Disable language extensions) is specified.

The following sample shows that an __intxx parameter will be promoted to int:

END Microsoft Specific

Keywords
Fundamental Types
Data Type Ranges

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/int8-int16-int32-int64.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

__m64
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

// data_types__m64.cpp
#include <xmmintrin.h>
int main()
{
 __m64 x;
}

Remarks

See also

The __m64 data type is for use with the MMX and 3DNow! intrinsics, and is defined in <xmmintrin.h>.

You should not access the __m64 fields directly. You can, however, see these types in the debugger. A variable of
type __m64 maps to the MM[0-7] registers.

Variables of type _m64 are automatically aligned on 8-byte boundaries.

The __m64 data type is not supported on x64 processors. Applications that use __m64 as part of MMX intrinsics
must be rewritten to use equivalent SSE and SSE2 intrinsics.

END Microsoft Specific

Keywords
Fundamental Types
Data Type Ranges

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/m64.md

__m128
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

// data_types__m128.cpp
#include <xmmintrin.h>
int main() {
 __m128 x;
}

Remarks

See also

The __m128 data type, for use with the Streaming SIMD Extensions and Streaming SIMD Extensions 2
instructions intrinsics, is defined in <xmmintrin.h>.

You should not access the __m128 fields directly. You can, however, see these types in the debugger. A variable of
type __m128 maps to the XMM[0-7] registers.

Variables of type __m128 are automatically aligned on 16-byte boundaries.

The __m128 data type is not supported on ARM processors.

END Microsoft Specific

Keywords
Fundamental Types
Data Type Ranges

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/m128.md

__m128d
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

// data_types__m128d.cpp
#include <emmintrin.h>
int main() {
 __m128d x;
}

Remarks

See also

The __m128d data type, for use with the Streaming SIMD Extensions 2 instructions intrinsics, is defined in
<emmintrin.h>.

You should not access the __m128d fields directly. You can, however, see these types in the debugger. A variable of
type __m128 maps to the XMM[0-7] registers.

Variables of type _m128d are automatically aligned on 16-byte boundaries.

The __m128d data type is not supported on ARM processors.

END Microsoft Specific

Keywords
Fundamental Types
Data Type Ranges

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/m128d.md

__m128i
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

// data_types__m128i.cpp
#include <emmintrin.h>
int main() {
 __m128i x;
}

Remarks

NOTENOTE

See also

The __m128i data type, for use with the Streaming SIMD Extensions 2 (SSE2) instructions intrinsics, is defined in
<emmintrin.h>.

You should not access the __m128i fields directly. You can, however, see these types in the debugger. A variable of
type __m128i maps to the XMM[0-7] registers.

Variables of type _m128i are automatically aligned on 16-byte boundaries.

Using variables of type __m128i will cause the compiler to generate the SSE2 movdqa instruction. This instruction does not
cause a fault on Pentium III processors but will result in silent failure, with possible side effects caused by whatever
instructions movdqa translates into on Pentium III processors.

The __m128i data type is not supported on ARM processors.

END Microsoft Specific

Keywords
Fundamental Types
Data Type Ranges

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/m128i.md

__ptr32, __ptr64
10/31/2018 • 2 minutes to read • Edit Online

int * __ptr32 p32;
int * __ptr64 p64;

NOTENOTE

Example

#include <cstdlib>
#include <iostream>

int main()
{
 using namespace std;

 int * __ptr32 p32;
 int * __ptr64 p64;

 p32 = (int * __ptr32)malloc(4);
 *p32 = 32;
 cout << *p32 << endl;

 p64 = (int * __ptr64)malloc(4);
 *p64 = 64;
 cout << *p64 << endl;
}

32
64

Microsoft Specific

__ptr32 represents a native pointer on a 32-bit system, while __ptr64 represents a native pointer on a 64-bit
system.

The following example shows how to declare each of these pointer types:

On a 32-bit system, a pointer declared with __ptr64 is truncated to a 32-bit pointer. On a 64-bit system, a pointer
declared with __ptr32 is coerced to a 64-bit pointer.

You cannot use __ptr32 or __ptr64 when compiling with /clr:pure. Otherwise, Compiler Error C2472 will be generated. The
/clr:pure and /clr:safe compiler options are deprecated in Visual Studio 2015 and unsupported in Visual Studio 2017.

For compatibility with previous versions, _ptr32 and _ptr64 are synonyms for __ptr32 and __ptr64 unless
compiler option /Za (Disable language extensions) is specified.

The following example shows how to declare and allocate pointers with the __ptr32 and __ptr64 keywords.

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/ptr32-ptr64.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

See also
Fundamental Types

Numerical Limits (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

The two standard include files, <limits.h> and <float.h>, define the numerical limits, or minimum and maximum
values that a variable of a given type can hold. These minimums and maximums are guaranteed to be portable to
any C++ compiler that uses the same data representation as ANSI C. The <limits.h> include file defines the
numerical limits for integral types, and <float.h> defines the numerical limits for floating types.

Basic Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/numerical-limits-cpp.md

Integer Limits
10/31/2018 • 2 minutes to read • Edit Online

Limits on Integer Constants
CONSTANT MEANING VALUE

CHAR_BIT Number of bits in the smallest variable
that is not a bit field.

8

SCHAR_MIN Minimum value for a variable of type
signed char.

-128

SCHAR_MAX Maximum value for a variable of type
signed char.

127

UCHAR_MAX Maximum value for a variable of type
unsigned char.

255 (0xff)

CHAR_MIN Minimum value for a variable of type
char.

-128; 0 if /J option used

CHAR_MAX Maximum value for a variable of type
char.

127; 255 if /J option used

MB_LEN_MAX Maximum number of bytes in a
multicharacter constant.

5

SHRT_MIN Minimum value for a variable of type
short.

-32768

SHRT_MAX Maximum value for a variable of type
short.

32767

USHRT_MAX Maximum value for a variable of type
unsigned short.

65535 (0xffff)

INT_MIN Minimum value for a variable of type
int.

-2147483648

INT_MAX Maximum value for a variable of type
int.

2147483647

UINT_MAX Maximum value for a variable of type
unsigned int.

4294967295 (0xffffffff)

Microsoft Specific

The limits for integer types are listed in the following table. These limits are also defined in the standard header file
<limits.h>.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/integer-limits.md

LONG_MIN Minimum value for a variable of type
long.

-2147483648

LONG_MAX Maximum value for a variable of type
long.

2147483647

ULONG_MAX Maximum value for a variable of type
unsigned long.

4294967295 (0xffffffff)

LLONG_MIN Minimum value for a variable of type
long long

-9223372036854775808

LLONG_MAX Maximum value for a variable of type
long long

9223372036854775807

ULLONG_MAX Maximum value for a variable of type
unsigned long long

18446744073709551615
(0xffffffffffffffff)

CONSTANT MEANING VALUE

See also

If a value exceeds the largest integer representation, the Microsoft compiler generates an error.

END Microsoft Specific

Floating Limits

Floating Limits
10/31/2018 • 2 minutes to read • Edit Online

Limits on Floating-Point Constants
CONSTANT MEANING VALUE

FLT_DIG

DBL_DIG

LDBL_DIG

Number of digits, q, such that a
floating-point number with q decimal
digits can be rounded into a floating-
point representation and back without
loss of precision.

6
15
15

FLT_EPSILON

DBL_EPSILON

LDBL_EPSILON

Smallest positive number x, such that x
+ 1.0 is not equal to 1.0.

1.192092896e-07F
2.2204460492503131e-016
2.2204460492503131e-016

FLT_GUARD 0

FLT_MANT_DIG

DBL_MANT_DIG

LDBL_MANT_DIG

Number of digits in the radix specified
by FLT_RADIX in the floating-point
significand. The radix is 2; hence these
values specify bits.

24
53
53

FLT_MAX

DBL_MAX

LDBL_MAX

Maximum representable floating-point
number.

3.402823466e+38F
1.7976931348623158e+308
1.7976931348623158e+308

FLT_MAX_10_EXP

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

Maximum integer such that 10 raised
to that number is a representable
floating-point number.

38
308
308

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

Maximum integer such that
FLT_RADIX raised to that number is a

representable floating- point number.

128
1024
1024

FLT_MIN

DBL_MIN

LDBL_MIN

Minimum positive value. 1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

Minimum negative integer such that 10
raised to that number is a
representable floating- point number.

-37
-307
-307

Microsoft Specific

The following table lists the limits on the values of floating-point constants. These limits are also defined in the
standard header file <float.h>.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/floating-limits.md

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

Minimum negative integer such that
FLT_RADIX raised to that number is a

representable floating-point number.

-125
-1021
-1021

FLT_NORMALIZE 0

FLT_RADIX

_DBL_RADIX

_LDBL_RADIX

Radix of exponent representation. 2
2
2

FLT_ROUNDS

_DBL_ROUNDS

_LDBL_ROUNDS

Rounding mode for floating-point
addition.

1 (near)
1 (near)
1 (near)

CONSTANT MEANING VALUE

NOTENOTE

See also

The information in the table may differ in future versions of the product.

END Microsoft Specific

Integer Limits

Standard Conversions
11/20/2018 • 12 minutes to read • Edit Online

long long_num1, long_num2;
int int_num;

// int_num promoted to type long prior to assignment.
long_num1 = int_num;

// int_num promoted to type long prior to multiplication.
long_num2 = int_num * long_num2;

Integral promotions

The C++ language defines conversions between its fundamental types. It also defines conversions for pointer,
reference, and pointer-to-member derived types. These conversions are called standard conversions.

This section discusses the following standard conversions:

NOTENOTE

Integral promotions

Integral conversions

Floating conversions

Floating and integral conversions

Arithmetic conversions

Pointer conversions

Reference conversions

Pointer-to-member conversions

User-defined types can specify their own conversions. Conversion of user-defined types is covered in Constructors
and Conversions.

The following code causes conversions (in this example, integral promotions):

The result of a conversion is an l-value only if it produces a reference type. For example, a user-defined
conversion declared as operator int&() returns a reference and is an l-value. However, a conversion declared
as operator int() returns an object and is not an l-value.

Objects of an integral type can be converted to another wider integral type (that is, a type that can represent a
larger set of values). This widening type of conversion is called "integral promotion." With integral promotion,
you can use the following in an expression wherever another integral type can be used:

Objects, literals, and constants of type char and short int

Enumeration types

int bit fields

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/standard-conversions.md

Integral conversions

#include <iostream>

using namespace std;
int main()
{
 short i = -3;
 unsigned short u;

 cout << (u = i) << "\n";
}
// Output: 65533

Enumerators

C++ promotions are "value-preserving." That is, the value after the promotion is guaranteed to be the same as
the value before the promotion. In value-preserving promotions, objects of shorter integral types (such as bit
fields or objects of type char) are promoted to type int if int can represent the full range of the original type. If
int cannot represent the full range of values, then the object is promoted to type unsigned int. Although this
strategy is the same as that used by ANSI C, value-preserving conversions do not preserve the "signedness" of
the object.

Value-preserving promotions and promotions that preserve signedness normally produce the same results.
However, they can produce different results if the promoted object is one of the following:

An operand of /, % , /= , %= , <, <=, >, or >=

These operators rely on sign for determining the result. Therefore, value-preserving and sign-preserving
promotions produce different results when applied to these operands.

The left operand of >> or >>=

These operators treat signed and unsigned quantities differently when performing a shift operation. For
signed quantities, shifting a quantity right causes the sign bit to be propagated into the vacated bit
positions. For unsigned quantities, the vacated bit positions are zero-filled.

An argument to an overloaded function or operand of an overloaded operator that depends on the
signedness of the type of that operand for argument matching. (See Overloaded Operators for more
about defining overloaded operators.)

Integral conversions are performed between integral types. The integral types are char, int, and long (and the
short, signed, and unsigned versions of these types).

Signed to unsigned

Objects of signed integral types can be converted to corresponding unsigned types. When these conversions
occur, the actual bit pattern does not change; however, the interpretation of the data changes. Consider this code:

In the preceding example, a signed short, i , is defined and initialized to a negative number. The expression
(u = i) causes i to be converted to an unsigned short prior to the assignment to u .

Unsigned to signed

Objects of unsigned integral types can be converted to corresponding signed types. However, such a conversion
can cause misinterpretation of data if the value of the unsigned object is outside the range representable by the
signed type, as demonstrated in the following example:

#include <iostream>

using namespace std;
int main()
{
short i;
unsigned short u = 65533;

cout << (i = u) << "\n";
}
//Output: -3

Floating point conversions

cout << (float)1E300 << endl;

Conversions between integral and floating point types

Arithmetic conversions

Conditions for Type ConversionConditions for Type Conversion

CONDITIONS MET CONVERSION

Either operand is of type long double. Other operand is converted to type long double.

In the preceding example, u is an unsigned short integral object that must be converted to a signed quantity
to evaluate the expression (i = u) . Because its value cannot be properly represented in a signed short, the
data is misinterpreted as shown.

An object of a floating type can be safely converted to a more precise floating type — that is, the conversion
causes no loss of significance. For example, conversions from float to double or from double to long double
are safe, and the value is unchanged.

An object of a floating type can also be converted to a less precise type, if it is in a range representable by that
type. (See Floating Limits for the ranges of floating types.) If the original value cannot be represented precisely,
it can be converted to either the next higher or the next lower representable value. If no such value exists, the
result is undefined. Consider the following example:

The maximum value representable by type float is 3.402823466E38 — a much smaller number than 1E300.
Therefore, the number is converted to infinity, and the result is "inf".

Certain expressions can cause objects of floating type to be converted to integral types, or vice versa. When an
object of integral type is converted to a floating type and the original value cannot be represented exactly, the
result is either the next higher or the next lower representable value.

When an object of floating type is converted to an integral type, the fractional part is truncated. No rounding
takes place in the conversion process. Truncation means that a number like 1.3 is converted to 1, and -1.3 is
converted to -1.

Many binary operators (discussed in Expressions with Binary Operators) cause conversions of operands and
yield results the same way. The way these operators cause conversions is called "usual arithmetic conversions."
Arithmetic conversions of operands of different native types are performed as shown in the following table.
Typedef types behave according to their underlying native types.

Preceding condition not met and either operand is of type
double.

Other operand is converted to type double.

Preceding conditions not met and either operand is of type
float.

Other operand is converted to type float.

Preceding conditions not met (none of the operands are of
floating types).

Integral promotions are performed on the operands as
follows:

- If either operand is of type unsigned long, the other
operand is converted to type unsigned long.
- If preceding condition not met, and if either operand is of
type long and the other of type unsigned int, both
operands are converted to type unsigned long.
- If the preceding two conditions are not met, and if either
operand is of type long, the other operand is converted to
type long.
- If the preceding three conditions are not met, and if either
operand is of type unsigned int, the other operand is
converted to type unsigned int.
- If none of the preceding conditions are met, both operands
are converted to type int.

CONDITIONS MET CONVERSION

double dVal;
float fVal;
int iVal;
unsigned long ulVal;

int main() {
 // iVal converted to unsigned long
 // result of multiplication converted to double
 dVal = iVal * ulVal;

 // ulVal converted to float
 // result of addition converted to double
 dVal = ulVal + fVal;
}

Pointer conversions

Pointer to classesPointer to classes

The following code illustrates the conversion rules described in the table:

The first statement in the preceding example shows multiplication of two integral types, iVal and ulVal . The
condition met is that neither operand is of floating type and one operand is of type unsigned int. Therefore, the
other operand, iVal , is converted to type unsigned int. The result is assigned to dVal . The condition met is
that one operand is of type double; therefore, the unsigned int result of the multiplication is converted to type
double.

The second statement in the preceding example shows addition of a float and an integral type, fVal and
ulVal . The ulVal variable is converted to type float (third condition in the table). The result of the addition is

converted to type double (second condition in the table) and assigned to dVal .

Pointers can be converted during assignment, initialization, comparison, and other expressions.

There are two cases in which a pointer to a class can be converted to a pointer to a base class.

Base-Class AccessibilityBase-Class Accessibility

TYPE OF FUNCTION DERIVATION

CONVERSION FROM

B* TO A* LEGAL?

External (not class-scoped) function Private No

Protected No

Public Yes

B member function (in B scope) Private Yes

Protected Yes

Public Yes

C member function (in C scope) Private No

Protected Yes

Public Yes

The first case is when the specified base class is accessible and the conversion is unambiguous. (See Multiple
Base Classes for more information about ambiguous base-class references.)

Whether a base class is accessible depends on the kind of inheritance used in derivation. Consider the
inheritance illustrated in the following figure.

Inheritance Graph for Illustration of Base-Class Accessibility

The following table shows the base-class accessibility for the situation illustrated in the figure.

The second case in which a pointer to a class can be converted to a pointer to a base class is when you use an
explicit type conversion. (See Explicit Type Conversion Operator for more information about explicit type
conversions.)

The result of such a conversion is a pointer to the "subobject," the portion of the object that is completely
described by the base class.

The following code defines two classes, A and B , where B is derived from A . (For more information on
inheritance, see Derived Classes.) It then defines bObject , an object of type B , and two pointers (pA and pB)
that point to the object.

// C2039 expected
class A
{
public:
 int AComponent;
 int AMemberFunc();
};

class B : public A
{
public:
 int BComponent;
 int BMemberFunc();
};
int main()
{
 B bObject;
 A *pA = &bObject;
 B *pB = &bObject;

 pA->AMemberFunc(); // OK in class A
 pB->AMemberFunc(); // OK: inherited from class A
 pA->BMemberFunc(); // Error: not in class A
}

Pointer to functionPointer to function

Pointer to voidPointer to void

const and volatile pointersconst and volatile pointers

NOTENOTE

null pointer conversionsnull pointer conversions

The pointer pA is of type A * , which can be interpreted as meaning "pointer to an object of type A ." Members
of bObject (such as BComponent and BMemberFunc) are unique to type B and are therefore inaccessible
through pA . The pA pointer allows access only to those characteristics (member functions and data) of the
object that are defined in class A .

A pointer to a function can be converted to type void * , if type void * is large enough to hold that pointer.

Pointers to type void can be converted to pointers to any other type, but only with an explicit type cast (unlike in
C). A pointer to any type can be converted implicitly to a pointer to type void.A pointer to an incomplete object
of a type can be converted to a pointer to void (implicitly) and back (explicitly). The result of such a conversion is
equal to the value of the original pointer. An object is considered incomplete if it is declared, but there is
insufficient information available to determine its size or base class.

A pointer to any object that is not const or volatile can be implicitly converted to a pointer of type void * .

C++ does not supply a standard conversion from a const or volatile type to a type that is not const or
volatile. However, any sort of conversion can be specified using explicit type casts (including conversions that
are unsafe).

C++ pointers to members, except pointers to static members, are different from normal pointers and do not have the
same standard conversions. Pointers to static members are normal pointers and have the same conversions as normal
pointers.

An integral constant expression that evaluates to zero, or such an expression cast to a pointer type, is converted
to a pointer called the "null pointer." This pointer is guaranteed to compare unequal to a pointer to any valid
object or function (except for pointers to based objects, which can have the same offset and still point to

Pointer expression conversionsPointer expression conversions

char szPath[_MAX_PATH]; // Array of type char.
char *pszPath = szPath; // Equals &szPath[0].

Reference conversions

Pointer to member

Pointer to base class member

Integral constant conversions

different objects).

In C++11 the nullptr type should be preferred to the C-style null pointer.

Any expression with an array type can be converted to a pointer of the same type. The result of the conversion is
a pointer to the first array element. The following example demonstrates such a conversion:

An expression that results in a function returning a particular type is converted to a pointer to a function
returning that type, except when:

The expression is used as an operand to the address-of operator (&).

The expression is used as an operand to the function-call operator.

A reference to a class can be converted to a reference to a base class in the following cases:

The specified base class is accessible.

The conversion is unambiguous. (See Multiple Base Classes for more information about ambiguous
base-class references.)

The result of the conversion is a pointer to the subobject that represents the base class.

Pointers to class members can be converted during assignment, initialization, comparison, and other
expressions. This section describes the following pointer-to-member conversions:

A pointer to a member of a base class can be converted to a pointer to a member of a class derived from it,
when the following conditions are met:

The inverse conversion, from pointer to derived class to base-class pointer, is accessible.

The derived class does not inherit virtually from the base class.

When the left operand is a pointer to member, the right operand must be of pointer-to-member type or be a
constant expression that evaluates to 0. This assignment is valid only in the following cases:

The right operand is a pointer to a member of the same class as the left operand.

The left operand is a pointer to a member of a class derived publicly and unambiguously from the class of
the right operand.

An integral constant expression that evaluates to zero is converted to a pointer called the "null pointer." This
pointer is guaranteed to compare unequal to a pointer to any valid object or function (except for pointers to
based objects, which can have the same offset and still point to different objects).

The following code illustrates the definition of a pointer to member i in class A . The pointer, pai , is initialized

class A
{
public:
int i;
};

int A::*pai = 0;

int main()
{
}

See also

to 0, which is the null pointer.

C++ Language Reference

C++ Built-in Operators, Precedence and
Associativity
10/31/2018 • 2 minutes to read • Edit Online

C++ Operator Precedence and AssociativityC++ Operator Precedence and Associativity

OPERATOR DESCRIPTION OPERATOR

Group 1 precedence, no associativity

Scope resolution ::

Group 2 precedence, left to right associativity

Member selection (object or pointer) . or ->

Array subscript []

Function call ()

Postfix increment ++

Postfix decrement --

Type name typeid

Constant type conversion const_cast

Dynamic type conversion dynamic_cast

Reinterpreted type conversion reinterpret_cast

Static type conversion static_cast

Group 3 precedence, right to left associativity

Size of object or type sizeof

Prefix increment ++

The C++ language includes all C operators and adds several new operators. Operators specify an evaluation
to be performed on one or more operands.

Operator precedence specifies the order of operations in expressions that contain more than one operator.
Operator associativity specifies whether, in an expression that contains multiple operators with the same
precedence, an operand is grouped with the one on its left or the one on its right. The following table shows
the precedence and associativity of C++ operators (from highest to lowest precedence). Operators with the
same precedence number have equal precedence unless another relationship is explicitly forced by
parentheses.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-built-in-operators-precedence-and-associativity.md

Prefix decrement --

One's complement ~

Logical not !

Unary negation -

Unary plus +

Address-of &

Indirection *

Create object new

Destroy object delete

Cast ()

Group 4 precedence, left to right associativity

Pointer-to-member (objects or pointers) .* or ->*

Group 5 precedence, left to right associativity

Multiplication *

Division /

Modulus %

Group 6 precedence, left to right associativity

Addition +

Subtraction -

Group 7 precedence, left to right associativity

Left shift <<

Right shift >>

Group 8 precedence, left to right associativity

Less than <

Greater than >

OPERATOR DESCRIPTION OPERATOR

Less than or equal to <=

Greater than or equal to >=

Group 9 precedence, left to right associativity

Equality ==

Inequality !=

Group 10 precedence left to right associativity

Bitwise AND &

Group 11 precedence, left to right associativity

Bitwise exclusive OR ^

Group 12 precedence, left to right associativity

Bitwise inclusive OR |

Group 13 precedence, left to right associativity

Logical AND &&

Group 14 precedence, left to right associativity

Logical OR ||

Group 15 precedence, right to left associativity

Conditional ? :

Group 16 precedence, right to left associativity

Assignment =

Multiplication assignment *=

Division assignment /=

Modulus assignment %=

Addition assignment +=

Subtraction assignment -=

Left-shift assignment <<=

OPERATOR DESCRIPTION OPERATOR

Right-shift assignment >>=

Bitwise AND assignment &=

Bitwise inclusive OR assignment |=

Bitwise exclusive OR assignment ^=

Group 17 precedence, right to left associativity

throw expression throw

Group 18 precedence, left to right associativity

Comma ,

OPERATOR DESCRIPTION OPERATOR

See also
Operator Overloading

__alignof Operator
12/19/2018 • 2 minutes to read • Edit Online

Syntax
 __alignof(type)

Remarks

EXPRESSION VALUE

__alignof(char) 1

__alignof(short) 2

__alignof(int) 4

__alignof(__int64) 8

__alignof(float) 4

__alignof(double) 8

__alignof(char*) 4

typedef struct { int a; double b; } S;
// __alignof(S) == 8

typedef __declspec(align(32)) struct { int a; } S;

C++11 introduces the alignof operator that returns the alignment, in bytes, of the specified type. For maximum
portability, you should use the alignof operator instead of the Microsoft-specific __alignof operator.

Microsoft Specific

Returns a value of type size_t that is the alignment requirement of the type.

For example:

The __alignof value is the same as the value for sizeof for basic types. Consider, however, this example:

In this case, the __alignof value is the alignment requirement of the largest element in the structure.

Similarly, for

__alignof(S) is equal to 32 .

One use for __alignof would be as a parameter to one of your own memory-allocation routines. For example,
given the following defined structure S , you could call a memory-allocation routine named aligned_malloc to

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/alignof-operator.md

typedef __declspec(align(32)) struct { int a; double b; } S;
int n = 50; // array size
S* p = (S*)aligned_malloc(n * sizeof(S), __alignof(S));

See also

allocate memory on a particular alignment boundary.

For compatibility with previous versions, _alignof is a synonym for __alignof unless compiler option /Za (Disable
language extensions) is specified.

For more information on modifying alignment, see:

pack

align

__unaligned

/Zp (Struct Member Alignment)

Examples of Structure Alignment (x64 specific)

For more information on differences in alignment in code for x86 and x64, see:

Conflicts with the x86 Compiler

END Microsoft Specific

Expressions with Unary Operators
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pack
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions

__uuidof Operator
4/1/2019 • 2 minutes to read • Edit Online

Syntax
__uuidof (expression)

Remarks

NOTENOTE

Example

Microsoft Specific

Retrieves the GUID attached to the expression.

The expression can be a type name, pointer, reference, or array of that type, a template specialized on these types,
or a variable of these types. The argument is valid as long as the compiler can use it to find the attached GUID.

A special case of this intrinsic is when either 0 or NULL is supplied as the argument. In this case, __uuidof will
return a GUID made up of zeros.

Use this keyword to extract the GUID attached to:

An object by the uuid extended attribute.

A library block created with the module attribute.

In a debug build, __uuidof always initializes an object dynamically (at runtime). In a release build, __uuidof can statically (at
compile time) initialize an object.

For compatibility with previous versions, _uuidof is a synonym for __uuidof unless compiler option /Za (Disable
language extensions) is specified.

The following code (compiled with ole32.lib) will display the uuid of a library block created with the module
attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/uuidof-operator.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/module-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

// expre_uuidof.cpp
// compile with: ole32.lib
#include "stdio.h"
#include "windows.h"

[emitidl];
[module(name="MyLib")];
[export]
struct stuff {
 int i;
};

int main() {
 LPOLESTR lpolestr;
 StringFromCLSID(__uuidof(MyLib), &lpolestr);
 wprintf_s(L"%s", lpolestr);
 CoTaskMemFree(lpolestr);
}

Comments

StringFromCLSID(__LIBID_, &lpolestr);

See also

In cases where the library name is no longer in scope, you can use __LIBID_ instead of __uuidof. For example:

END Microsoft Specific

Expressions with Unary Operators
Keywords

Additive Operators: + and -
11/8/2018 • 2 minutes to read • Edit Online

Syntax
expression + expression
expression - expression

Remarks

Types Used with Additive OperatorsTypes Used with Additive Operators

TYPE MEANING

arithmetic Integral and floating types are collectively called "arithmetic"
types.

integral Types char and int of all sizes (long, short) and enumerations
are "integral" types.

scalar Scalar operands are operands of either arithmetic or pointer
type.

The additive operators are:

Addition (+)

Subtraction (-)

These binary operators have left-to-right associativity.

The additive operators take operands of arithmetic or pointer types. The result of the addition (+) operator is the
sum of the operands. The result of the subtraction (-) operator is the difference between the operands. If one or
both of the operands are pointers, they must be pointers to objects, not to functions. If both operands are
pointers, the results are not meaningful unless both are pointers to objects in the same array.

Additive operators take operands of arithmetic, integral, and scalar types. These are defined in the following
table.

The legal combinations for these operators are:

arithmetic + arithmetic

scalar + integral

integral + scalar

arithmetic - arithmetic

scalar - scalar

Note that addition and subtraction are not equivalent operations.

If both operands are of arithmetic type, the conversions covered in Standard Conversions are applied to the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/additive-operators-plus-and.md

Example
// expre_Additive_Operators.cpp
// compile with: /EHsc
#include <iostream>
#define SIZE 5
using namespace std;
int main() {
 int i = 5, j = 10;
 int n[SIZE] = { 0, 1, 2, 3, 4 };
 cout << "5 + 10 = " << i + j << endl
 << "5 - 10 = " << i - j << endl;

 // use pointer arithmetic on array

 cout << "n[3] = " << *(n + 3) << endl;
}

Pointer addition

short IntArray[10]; // Objects of type short occupy 2 bytes
short *pIntArray = IntArray;

for(int i = 0; i < 10; ++i)
{
 *pIntArray = i;
 cout << *pIntArray << "\n";
 pIntArray = pIntArray + 1;
}

NOTENOTE

Pointer subtraction

See also

operands, and the result is of the converted type.

If one of the operands in an addition operation is a pointer to an array of objects, the other must be of integral
type. The result is a pointer that is of the same type as the original pointer and that points to another array
element. The following code fragment illustrates this concept:

Although the integral value 1 is added to pIntArray , it does not mean "add 1 to the address"; rather it means
"adjust the pointer to point to the next object in the array" that happens to be 2 bytes (or sizeof(int)) away.

Code of the form pIntArray = pIntArray + 1 is rarely found in C++ programs; to perform an increment, these forms
are preferable: pIntArray++ or pIntArray += 1 .

If both operands are pointers, the result of subtraction is the difference (in array elements) between the operands.
The subtraction expression yields a signed integral result of type ptrdiff_t (defined in the standard include file
<stddef.h>).

One of the operands can be of integral type, as long as it is the second operand. The result of the subtraction is of
the same type as the original pointer. The value of the subtraction is a pointer to the (n - i)th array element, where
n is the element pointed to by the original pointer and i is the integral value of the second operand.

Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
C Additive Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-additive-operators

Address-of Operator: &
10/31/2018 • 2 minutes to read • Edit Online

Syntax
& cast-expression

Remarks

// expre_Address_Of_Operator.cpp
// C2440 expected
class PTM {
public:
 int iValue;
 static float fValue;
};

int main() {
 int PTM::*piValue = &PTM::iValue; // OK: non-static
 float PTM::*pfValue = &PTM::fValue; // C2440 error: static
 float *spfValue = &PTM::fValue; // OK
}

The unary address-of operator (&) takes the address of its operand. The operand of the address-of operator can
be either a function designator or an l-value that designates an object that is not a bit field.

The address-of operator can only be applied to variables with fundamental, structure, class, or union types that are
declared at the file-scope level, or to subscripted array references. In these expressions, a constant expression that
does not include the address-of operator can be added to or subtracted from the address-of expression.

When applied to functions or l-values, the result of the expression is a pointer type (an r-value) derived from the
type of the operand. For example, if the operand is of type char, the result of the expression is of type pointer to
char. The address-of operator, applied to const or volatile objects, evaluates to const type * or
volatile type * , where type is the type of the original object.

When the address-of operator is applied to a qualified name, the result depends on whether the qualified-name
specifies a static member. If so, the result is a pointer to the type specified in the declaration of the member. If the
member is not static, the result is a pointer to the member name of the class indicated by qualified-class-name.
(See Primary Expressions for more about qualified-class-name.) The following code fragment shows how the
result differs, depending on whether the member is static:

In this example, the expression &PTM::fValue yields type float * instead of type float PTM::* because fValue

is a static member.

The address of an overloaded function can be taken only when it is clear which version of the function is being
referenced. See Function Overloading for information about how to obtain the address of a particular overloaded
function.

Applying the address-of operator to a reference type gives the same result as applying the operator to the object
to which the reference is bound. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/address-of-operator-amp.md

Example
// expre_Address_Of_Operator2.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
int main() {
 double d; // Define an object of type double.
 double& rd = d; // Define a reference to the object.

 // Obtain and compare their addresses
 if(&d == &rd)
 cout << "&d equals &rd" << endl;
}

Output
&d equals &rd

// expre_Address_Of_Operator3.cpp
// compile with: /EHsc
// Demonstrate address-of operator &

#include <iostream>
using namespace std;

// Function argument is pointer to type int
int square(int *n) {
 return (*n) * (*n);
}

int main() {
 int mynum = 5;
 cout << square(&mynum) << endl; // pass address of int
}

Output
25

See also

The following example uses the address-of operator to pass a pointer argument to a function:

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Lvalue Reference Declarator: &
Indirection and Address-of Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/indirection-and-address-of-operators

Assignment Operators
3/28/2019 • 5 minutes to read • Edit Online

Syntax

Remarks

Assignment operators tableAssignment operators table

OPERATOR MEANING

= Store the value of the second operand in the object
specified by the first operand (simple assignment).

*= Multiply the value of the first operand by the value of the
second operand; store the result in the object specified by
the first operand.

/= Divide the value of the first operand by the value of the
second operand; store the result in the object specified by
the first operand.

%= Take modulus of the first operand specified by the value of
the second operand; store the result in the object specified
by the first operand.

+= Add the value of the second operand to the value of the
first operand; store the result in the object specified by the
first operand.

-= Subtract the value of the second operand from the value of
the first operand; store the result in the object specified by
the first operand.

<<= Shift the value of the first operand left the number of bits
specified by the value of the second operand; store the
result in the object specified by the first operand.

expression assignment-operator expression

assignment-operator : one of
 = *= /= %= += -= <<= >>= &= ^= |=

Assignment operators store a value in the object designated by the left operand. There are two kinds of
assignment operations:

1. simple assignment, in which the value of the second operand is stored in the object specified by the
first operand.

2. compound assignment, in which an arithmetic, shift, or bitwise operation is performed prior to storing
the result.

All assignment operators in the following table except the = operator are compound assignment operators.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/assignment-operators.md

>>= Shift the value of the first operand right the number of bits
specified by the value of the second operand; store the
result in the object specified by the first operand.

&= Obtain the bitwise AND of the first and second operands;
store the result in the object specified by the first operand.

^= Obtain the bitwise exclusive OR of the first and second
operands; store the result in the object specified by the first
operand.

|= Obtain the bitwise inclusive OR of the first and second
operands; store the result in the object specified by the first
operand.

OPERATOR MEANING

Operator keywordsOperator keywords

OPERATOR EQUIVALENT

&= and_eq

|= or_eq

^= xor_eq

Example
// expre_Assignment_Operators.cpp
// compile with: /EHsc
// Demonstrate assignment operators
#include <iostream>
using namespace std;
int main() {
 int a = 3, b = 6, c = 10, d = 0xAAAA, e = 0x5555;

 a += b; // a is 9
 b %= a; // b is 6
 c >>= 1; // c is 5
 d |= e; // Bitwise--d is 0xFFFF

 cout << "a = 3, b = 6, c = 10, d = 0xAAAA, e = 0x5555" << endl
 << "a += b yields " << a << endl
 << "b %= a yields " << b << endl
 << "c >>= 1 yields " << c << endl
 << "d |= e yields " << hex << d << endl;
}

Simple assignment

Three of the compound assignment operators have text equivalents. They are:

There are two ways to access these operator keywords in your programs: include the header file iso646.h , or
compile with the /Za (Disable language extensions) compiler option.

The simple assignment operator (=) causes the value of the second operand to be stored in the object

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

// expre_SimpleAssignment.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
class ABase
{
public:
 ABase() { cout << "constructing ABase\n"; }
};

class ADerived : public ABase
{
public:
 ADerived() { cout << "constructing ADerived\n"; }
};

int main()
{
 ABase aBase;
 ADerived aDerived;

 aBase = aDerived; // OK
 aDerived = aBase; // C2679
}

UserType1 A;
UserType2 B = A;

UserType1 A;
UserType2 B;

B = A;

specified by the first operand. If both objects are of arithmetic types, the right operand is converted to the
type of the left, prior to storing the value.

Objects of const and volatile types can be assigned to l-values of types that are just volatile or that are
neither const nor volatile.

Assignment to objects of class type (struct, union, and class types) is performed by a function named
operator= . The default behavior of this operator function is to perform a bitwise copy; however, this behavior

can be modified using overloaded operators. See Operator overloading for more information. In addition,
class types can have copy assignment and move assignment operators. For more information, see Copy
constructors and copy assignment operators and Move constructors and move assignment operators.

An object of any unambiguously derived class from a given base class can be assigned to an object of the
base class. The reverse is not true because there is an implicit conversion from derived class to base class but
not from base class to derived class. For example:

Assignments to reference types behave as if the assignment were being made to the object to which the
reference points.

For class-type objects, assignment is different from initialization. To illustrate how different assignment and
initialization can be, consider the code

The preceding code shows an initializer; it calls the constructor for UserType2 that takes an argument of type
UserType1 . Given the code

the assignment statement

B = A;

Compound assignment

Result of assignment operators

See also

can have one of the following effects:

Call the function operator= for UserType2 , provided operator= is provided with a UserType1

argument.

Call the explicit conversion function UserType1::operator UserType2 , if such a function exists.

Call a constructor UserType2::UserType2 , provided such a constructor exists, that takes a UserType1

argument and copies the result.

The compound assignment operators, shown in the Assignment operators table, are specified in the form e1
op= e2, where e1 is a modifiable l-value not of const type and e2 is one of the following:

An arithmetic type

A pointer, if op is + or -

The e1 op= e2 form behaves as e1 = e1 op e2, but e1 is evaluated only once.

Compound assignment to an enumerated type generates an error message. If the left operand is of a pointer
type, the right operand must be of a pointer type or it must be a constant expression that evaluates to 0. If the
left operand is of an integral type, the right operand must not be of a pointer type.

The assignment operators return the value of the object specified by the left operand after the assignment.
The resultant type is the type of the left operand. The result of an assignment expression is always an l-value.
These operators have right-to-left associativity. The left operand must be a modifiable l-value.

In ANSI C, the result of an assignment expression is not an l-value. Therefore, the legal C++ expression
(a += b) += c is illegal in C.

Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
C Assignment Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-assignment-operators

Bitwise AND Operator: &
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression & expression

Remarks

Operator Keyword for &

Example
// expre_Bitwise_AND_Operator.cpp
// compile with: /EHsc
// Demonstrate bitwise AND
#include <iostream>
using namespace std;
int main() {
 unsigned short a = 0xFFFF; // pattern 1111 ...
 unsigned short b = 0xAAAA; // pattern 1010 ...

 cout << hex << (a & b) << endl; // prints "aaaa", pattern 1010 ...
}

See also

The expressions may be other and-expressions, or (subject to the type restrictions mentioned below) equality
expressions, relational expressions, additive expressions, multiplicative expressions, pointer to member
expressions, cast expressions, unary expressions, postfix expressions, or primary expressions.

The bitwise AND operator (&) compares each bit of the first operand to the corresponding bit of the second
operand. If both bits are 1, the corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to
0.

Both operands to the bitwise AND operator must be of integral types. The usual arithmetic conversions covered in
Standard Conversions, are applied to the operands.

The bitand operator is the text equivalent of &. There are two ways to access the bitand operator in your
programs: include the header file iso646.h , or compile with the /Za (Disable language extensions) compiler
option.

C++ Built-in Operators, Precedence and Associativity
C++ Built-in Operators, Precedence and Associativity
C Bitwise Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bitwise-and-operator-amp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-bitwise-operators

Bitwise Exclusive OR Operator: ^
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression ^ expression

Remarks

Operator Keyword for ^

Example
// expre_Bitwise_Exclusive_OR_Operator.cpp
// compile with: /EHsc
// Demonstrate bitwise exclusive OR
#include <iostream>
using namespace std;
int main() {
 unsigned short a = 0x5555; // pattern 0101 ...
 unsigned short b = 0xFFFF; // pattern 1111 ...

 cout << hex << (a ^ b) << endl; // prints "aaaa" pattern 1010 ...
}

See also

The bitwise exclusive OR operator (^) compares each bit of its first operand to the corresponding bit of its second
operand. If one bit is 0 and the other bit is 1, the corresponding result bit is set to 1. Otherwise, the corresponding
result bit is set to 0.

Both operands to the bitwise exclusive OR operator must be of integral types. The usual arithmetic conversions
covered in Standard Conversions are applied to the operands.

The xor operator is the text equivalent of ^. There are two ways to access the xor operator in your programs:
include the header file iso646.h , or compile with the /Za (Disable language extensions) compiler option.

C++ Built-in Operators, Precedence and Associativity

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bitwise-exclusive-or-operator-hat.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

Bitwise inclusive OR operator: |
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

Operator keyword for |

Example
// expre_Bitwise_Inclusive_OR_Operator.cpp
// compile with: /EHsc
// Demonstrate bitwise inclusive OR
#include <iostream>
using namespace std;

int main() {
 unsigned short a = 0x5555; // pattern 0101 ...
 unsigned short b = 0xAAAA; // pattern 1010 ...

 cout << hex << (a | b) << endl; // prints "ffff" pattern 1111 ...
}

See also

expression1 | expression2

The bitwise inclusive OR operator (|) compares each bit of its first operand to the corresponding bit of its second
operand. If either bit is 1, the corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to 0.

Both operands to the bitwise inclusive OR operator must be of integral types. The usual arithmetic conversions
covered in Standard Conversions are applied to the operands.

The bitor operator is the text equivalent of |. There are two ways to access the bitor operator in your programs:
include the header file <iso646.h>, or compile with the /Za (Disable language extensions) compiler option.

C++ Built-in Operators, Precedence and Associativity
C Bitwise Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bitwise-inclusive-or-operator-pipe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-bitwise-operators

Cast Operator: ()
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unary-expression (type-name) cast-expression

Remarks

Example
// expre_CastOperator.cpp
// compile with: /EHsc
// Demonstrate cast operator
#include <iostream>

using namespace std;

int main()
{
 double x = 3.1;
 int i;
 cout << "x = " << x << endl;
 i = (int)x; // assign i the integer part of x
 cout << "i = " << i << endl;
}

Example

A type cast provides a method for explicit conversion of the type of an object in a specific situation.

Any unary expression is considered a cast expression.

The compiler treats cast-expression as type type-name after a type cast has been made. Casts can be used to
convert objects of any scalar type to or from any other scalar type. Explicit type casts are constrained by the same
rules that determine the effects of implicit conversions. Additional restraints on casts may result from the actual
sizes or representation of specific types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cast-operator-parens.md

// expre_CastOperator2.cpp
// The following sample shows how to define and use a cast operator.
#include <string.h>
#include <stdio.h>

class CountedAnsiString
{
public:
 // Assume source is not null terminated
 CountedAnsiString(const char *pStr, size_t nSize) :
 m_nSize(nSize)
 {
 m_pStr = new char[sizeOfBuffer];

 strncpy_s(m_pStr, sizeOfBuffer, pStr, m_nSize);
 memset(&m_pStr[m_nSize], '!', 9); // for demonstration purposes.
 }

 // Various string-like methods...

 const char *GetRawBytes() const
 {
 return(m_pStr);
 }

 //
 // operator to cast to a const char *
 //
 operator const char *()
 {
 m_pStr[m_nSize] = '\0';
 return(m_pStr);
 }

 enum
 {
 sizeOfBuffer = 20
 } size;

private:
 char *m_pStr;
 const size_t m_nSize;
};

int main()
{
 const char *kStr = "Excitinggg";
 CountedAnsiString myStr(kStr, 8);

 const char *pRaw = myStr.GetRawBytes();
 printf_s("RawBytes truncated to 10 chars: %.10s\n", pRaw);

 const char *pCast = myStr; // or (const char *)myStr;
 printf_s("Casted Bytes: %s\n", pCast);

 puts("Note that the cast changed the raw internal string");
 printf_s("Raw Bytes after cast: %s\n", pRaw);
}

RawBytes truncated to 10 chars: Exciting!!
Casted Bytes: Exciting
Note that the cast changed the raw internal string
Raw Bytes after cast: Exciting

See also
Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Explicit Type Conversion Operator: ()
Casting Operators
Cast Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/cast-operators

Comma Operator: ,
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression , expression

Remarks

func_one(x, y + 2, z);
func_two((x--, y + 2), z);

Example
// cpp_comma_operator.cpp
#include <stdio.h>
int main () {
 int i = 10, b = 20, c= 30;
 i = b, c;
 printf("%i\n", i);

 i = (b, c);
 printf("%i\n", i);
}

20
30

Allows grouping two statements where one is expected.

The comma operator has left-to-right associativity. Two expressions separated by a comma are evaluated left to
right. The left operand is always evaluated, and all side effects are completed before the right operand is evaluated.

Commas can be used as separators in some contexts, such as function argument lists. Do not confuse the use of
the comma as a separator with its use as an operator ; the two uses are completely different.

Consider the expression e1, e2 . The type and value of the expression are the type and value of e2; the result of
evaluating e1 is discarded. The result is an l-value if the right operand is an l-value.

Where the comma is normally used as a separator (for example in actual arguments to functions or aggregate
initializers), the comma operator and its operands must be enclosed in parentheses. For example:

In the function call to func_one above, three arguments, separated by commas, are passed: x , y + 2 , and z . In
the function call to func_two , parentheses force the compiler to interpret the first comma as the sequential-
evaluation operator. This function call passes two arguments to func_two . The first argument is the result of the
sequential-evaluation operation (x--, y + 2) , which has the value and type of the expression y + 2 ; the second
argument is z .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/comma-operator.md

See also
Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
Sequential-Evaluation Operator

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/sequential-evaluation-operator

Conditional Operator: ? :
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression ? expression : expression

Remarks

WARNINGWARNING

The conditional operator (? :) is a ternary operator (it takes three operands). The conditional operator works as
follows:

The first operand is implicitly converted to bool. It is evaluated and all side effects are completed before
continuing.

If the first operand evaluates to true (1), the second operand is evaluated.

If the first operand evaluates to false (0), the third operand is evaluated.

The result of the conditional operator is the result of whichever operand is evaluated — the second or the third.
Only one of the last two operands is evaluated in a conditional expression.

Conditional expressions have right-to-left associativity. The first operand must be of integral or pointer type. The
following rules apply to the second and third operands:

If both operands are of the same type, the result is of that type.

If both operands are of arithmetic or enumeration types, the usual arithmetic conversions (covered in
Standard Conversions) are performed to convert them to a common type.

If both operands are of pointer types or if one is a pointer type and the other is a constant expression that
evaluates to 0, pointer conversions are performed to convert them to a common type.

If both operands are of reference types, reference conversions are performed to convert them to a common
type.

If both operands are of type void, the common type is type void.

If both operands are of the same user-defined type, the common type is that type.

If the operands have different types and at least one of the operands has user-defined type then the
language rules are used to determine the common type. (See warning below.)

Any combinations of second and third operands not in the preceding list are illegal. The type of the result is the
common type, and it is an l-value if both the second and third operands are of the same type and both are l-
values.

If the types of the second and third operands are not identical, then complex type conversion rules, as specified in the C++
Standard, are invoked. These conversions may lead to unexpected behavior including construction and destruction of
temporary objects. For this reason, we strongly advise you to either (1) avoid using user-defined types as operands with the
conditional operator or (2) if you do use user-defined types, then explicitly cast each operand to a common type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/conditional-operator-q.md

Example
// expre_Expressions_with_the_Conditional_Operator.cpp
// compile with: /EHsc
// Demonstrate conditional operator
#include <iostream>
using namespace std;
int main() {
 int i = 1, j = 2;
 cout << (i > j ? i : j) << " is greater." << endl;
}

See also
C++ Built-in Operators, Precedence and Associativity
Conditional-Expression Operator

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/conditional-expression-operator

delete Operator (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[::] delete cast-expression
[::] delete [] cast-expression

Remarks

CDialog* MyDialog = new CDialog;
// use MyDialog
delete MyDialog;

int* set = new int[100];
//use set[]
delete [] set;

Using delete

Deallocates a block of memory.

The cast-expression argument must be a pointer to a block of memory previously allocated for an object created
with the new operator. The delete operator has a result of type void and therefore does not return a value. For
example:

Using delete on a pointer to an object not allocated with new gives unpredictable results. You can, however, use
delete on a pointer with the value 0. This provision means that, when new returns 0 on failure, deleting the result
of a failed new operation is harmless. See The new and delete Operators for more information.

The new and delete operators can also be used for built-in types, including arrays. If pointer refers to an array,
place empty brackets before pointer :

Using the delete operator on an object deallocates its memory. A program that dereferences a pointer after the
object is deleted can have unpredictable results or crash.

When delete is used to deallocate memory for a C++ class object, the object's destructor is called before the
object's memory is deallocated (if the object has a destructor).

If the operand to the delete operator is a modifiable l-value, its value is undefined after the object is deleted.

There are two syntactic variants for the delete operator: one for single objects and the other for arrays of objects.
The following code fragment shows how these differ:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/delete-operator-cpp.md

// expre_Using_delete.cpp
struct UDType
{
};

int main()
{
 // Allocate a user-defined object, UDObject, and an object
 // of type double on the free store using the
 // new operator.
 UDType *UDObject = new UDType;
 double *dObject = new double;
 // Delete the two objects.
 delete UDObject;
 delete dObject;
 // Allocate an array of user-defined objects on the
 // free store using the new operator.
 UDType (*UDArr)[7] = new UDType[5][7];
 // Use the array syntax to delete the array of objects.
 delete [] UDArr;
}

Example

How delete works

See also

The following two cases produce undefined results: using the array form of delete (delete []) on an object and
using the nonarray form of delete on an array.

For examples of using delete, see new operator.

The delete operator invokes the function operator delete.

For objects not of class type (class, struct, or union), the global delete operator is invoked. For objects of class
type, the name of the deallocation function is resolved in global scope if the delete expression begins with the
unary scope resolution operator (::). Otherwise, the delete operator invokes the destructor for an object prior to
deallocating memory (if the pointer is not null). The delete operator can be defined on a per-class basis; if there is
no such definition for a given class, the global operator delete is invoked. If the delete expression is used to
deallocate a class object whose static type has a virtual destructor, the deallocation function is resolved through
the virtual destructor of the dynamic type of the object.

Expressions with Unary Operators
Keywords
new and delete Operators

Equality Operators: == and !=
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression == expression
expression != expression

Remarks

Operator Keyword for !=

Example
// expre_Equality_Operators.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;

int main() {
 cout << boolalpha
 << "The true expression 3 != 2 yields: "
 << (3 != 2) << endl
 << "The false expression 20 == 10 yields: "
 << (20 == 10) << endl;
}

See also

The binary equality operators compare their operands for strict equality or inequality.

The equality operators, equal to (==) and not equal to (!=), have lower precedence than the relational operators,
but they behave similarly. The result type for these operators is bool.

The equal-to operator (==) returns true (1) if both operands have the same value; otherwise, it returns false (0).
The not-equal-to operator (!=) returns true if the operands do not have the same value; otherwise, it returns
false.

The not_eq operator is the text equivalent of != . There are two ways to access the not_eq operator in your
programs: include the header file iso646.h , or compile with the /Za (Disable language extensions) compiler
option.

Equality operators can compare pointers to members of the same type. In such a comparison, pointer-to-member
conversions are performed. Pointers to members can also be compared to a constant expression that evaluates to
0.

Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
C Relational and Equality Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/equality-operators-equal-equal-and-exclpt-equal.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-relational-and-equality-operators

Explicit Type Conversion Operator: ()
10/31/2018 • 2 minutes to read • Edit Online

Syntax
simple-type-name (expression-list)

Remarks

int i = int(d);

Example

C++ allows explicit type conversion using syntax similar to the function-call syntax.

A simple-type-name followed by an expression-list enclosed in parentheses constructs an object of the specified
type using the specified expressions. The following example shows an explicit type conversion to type int:

The following example shows a Point class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/explicit-type-conversion-operator-parens.md

// expre_Explicit_Type_Conversion_Operator.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class Point
{
public:
 // Define default constructor.
 Point() { _x = _y = 0; }
 // Define another constructor.
 Point(int X, int Y) { _x = X; _y = Y; }

 // Define "accessor" functions as
 // reference types.
 unsigned& x() { return _x; }
 unsigned& y() { return _y; }
 void Show() { cout << "x = " << _x << ", "
 << "y = " << _y << "\n"; }
private:
 unsigned _x;
 unsigned _y;
};

int main()
{
 Point Point1, Point2;

 // Assign Point1 the explicit conversion
 // of (10, 10).
 Point1 = Point(10, 10);

 // Use x() as an l-value by assigning an explicit
 // conversion of 20 to type unsigned.
 Point1.x() = unsigned(20);
 Point1.Show();

 // Assign Point2 the default Point object.
 Point2 = Point();
 Point2.Show();
}

Output
x = 20, y = 10
x = 0, y = 0

int i = 7;
float d;

d = float(i);

d = (float)i;

Although the preceding example demonstrates explicit type conversion using constants, the same technique works
to perform these conversions on objects. The following code fragment demonstrates this:

Explicit type conversions can also be specified using the "cast" syntax. The previous example, rewritten using the
cast syntax, is:

struct Point
{
 Point(short x, short y) { _x = x; _y = y; }
 ...
 short _x, _y;
};
...
Point pt = Point(3, 10);

C a u t i o nC a u t i o n

See also

Both cast and function-style conversions have the same results when converting from single values. However, in
the function-style syntax, you can specify more than one argument for conversion. This difference is important for
user-defined types. Consider a Point class and its conversions:

The preceding example, which uses function-style conversion, shows how to convert two values (one for x and one
for y) to the user-defined type Point .

Use the explicit type conversions with care, since they override the C++ compiler's built-in type checking.

The cast notation must be used for conversions to types that do not have a simple-type-name (pointer or
reference types, for example). Conversion to types that can be expressed with a simple-type-name can be written
in either form.

Type definition within casts is illegal.

Postfix Expressions
C++ Built-in Operators, Precedence and Associativity

Function Call Operator: ()
10/31/2018 • 2 minutes to read • Edit Online

Syntax
postfix-expression
([argument-expression-list])

Remarks

Example

A postfix-expression followed by the function-call operator, (), specifies a function call.

The arguments to the function-call operator are zero or more expressions separated by commas — the actual
arguments to the function.

The postfix-expression must evaluate to a function address (for example, a function identifier or the value of a
function pointer), and argument-expression-list is a list of expressions (separated by commas) whose values (the
arguments) are passed to the function. The argument-expression-list argument can be empty.

The postfix-expression must be of one of these types:

T func(int i)

T (*func)(int i)

T (&func)(int i)

(pObject->*pmf)();
(Object.*pmf)();

Function returning type T . An example declaration is

Pointer to a function returning type T . An example declaration is

Reference to a function returning type T . An example declaration is

Pointer-to-member function dereference returning type T . Example function calls are

The following example calls the standard library function strcat_s with three arguments:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/function-call-operator-parens.md

// expre_Function_Call_Operator.cpp
// compile with: /EHsc

#include <iostream>
#include <string>

// C++ Standard Library name space
using namespace std;

int main()
{
 enum
 {
 sizeOfBuffer = 20
 };

 char s1[sizeOfBuffer] = "Welcome to ";
 char s2[] = "C++";

 strcat_s(s1, sizeOfBuffer, s2);

 cout << s1 << endl;
}

Welcome to C++

Function call results

// expre_Function_Call_Results.cpp
// compile with: /EHsc
#include <iostream>
class Point
{
public:
 // Define "accessor" functions as
 // reference types.
 unsigned& x() { return _x; }
 unsigned& y() { return _y; }
private:
 unsigned _x;
 unsigned _y;
};

using namespace std;
int main()
{
 Point ThePoint;

 ThePoint.x() = 7; // Use x() as an l-value.
 unsigned y = ThePoint.y(); // Use y() as an r-value.

 // Use x() and y() as r-values.
 cout << "x = " << ThePoint.x() << "\n"
 << "y = " << ThePoint.y() << "\n";
}

A function call evaluates to an r-value unless the function is declared as a reference type. Functions with reference
return type evaluate to l-values, and can be used on the left side of an assignment statement as follows:

The preceding code defines a class called Point , which contains private data objects that represent x and y
coordinates. These data objects must be modified and their values retrieved. This program is only one of several

// expre_Function_Results2.cpp
class A {
public:
 A() {}
 A(int i) {}
 int SetA(int i) {
 return (I = i);
 }

 int GetA() {
 return I;
 }

private:
 int I;
};

A func1() {
 A a = 0;
 return a;
}

A* func2() {
 A *a = new A();
 return a;
}

A& func3() {
 A *a = new A();
 A &b = *a;
 return b;
}

int main() {
 int iResult = func1().GetA();
 func2()->SetA(3);
 func3().SetA(7);
}

See also

designs for such a class; use of the GetX and SetX or GetY and SetY functions is another possible design.

Functions that return class types, pointers to class types, or references to class types can be used as the left
operand to member-selection operators. Therefore, the following code is legal:

Functions can be called recursively. For more information about function declarations, see Functions. Related
material is in Program and Linkage.

Postfix Expressions
C++ Built-in Operators, Precedence and Associativity
Function Call

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/function-call-c

Indirection Operator: *
10/31/2018 • 2 minutes to read • Edit Online

Syntax
* cast-expression

Remarks

// expre_Indirection_Operator.cpp
// compile with: /EHsc
// Demonstrate indirection operator
#include <iostream>
using namespace std;
int main() {
 int n = 5;
 int *pn = &n;
 int **ppn = &pn;

 cout << "Value of n:\n"
 << "direct value: " << n << endl
 << "indirect value: " << *pn << endl
 << "doubly indirect value: " << **ppn << endl
 << "address of n: " << pn << endl
 << "address of n via indirection: " << *ppn << endl;
}

See also

The unary indirection operator (*) dereferences a pointer; that is, it converts a pointer value to an l-value. The
operand of the indirection operator must be a pointer to a type. The result of the indirection expression is the type
from which the pointer type is derived. The use of the * operator in this context is different from its meaning as a
binary operator, which is multiplication.

If the operand points to a function, the result is a function designator. If it points to a storage location, the result is
an l-value designating the storage location.

The indirection operator may be used cumulatively to dereference pointers to pointers. For example:

If the pointer value is invalid, the result is undefined. The following list includes some of the most common
conditions that invalidate a pointer value.

The pointer is a null pointer.

The pointer specifies the address of a local item that is not visible at the time of the reference.

The pointer specifies an address that is inappropriately aligned for the type of the object pointed to.

The pointer specifies an address not used by the executing program.

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Address-of Operator: &
Indirection and Address-of Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/indirection-operator-star.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/indirection-and-address-of-operators

Left Shift and Right Shift Operators (>> and <<)
5/7/2019 • 5 minutes to read • Edit Online

Syntax

Remarks

IMPORTANTIMPORTANT

Left Shifts

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 unsigned short short1 = 4;
 bitset<16> bitset1{short1}; // the bitset representation of 4
 cout << bitset1 << endl; // 0b00000000'00000100

 unsigned short short2 = short1 << 1; // 4 left-shifted by 1 = 8
 bitset<16> bitset2{short2};
 cout << bitset2 << endl; // 0b00000000'00001000

 unsigned short short3 = short1 << 2; // 4 left-shifted by 2 = 16
 bitset<16> bitset3{short3};
 cout << bitset3 << endl; // 0b00000000'00010000
}

The bitwise shift operators are the right-shift operator (>>), which moves the bits of shift-expression to the right,
and the left-shift operator (<<), which moves the bits of shift-expression to the left. 1

shift-expression << additive-expression shift-expression >> additive-expression

The following descriptions and examples are valid on Windows for x86 and x64 architectures. The implementation of left-
shift and right-shift operators is significantly different on Windows for ARM devices. For more information, see the "Shift
Operators" section of the Hello ARM blog post.

The left-shift operator causes the bits in shift-expression to be shifted to the left by the number of positions
specified by additive-expression. The bit positions that have been vacated by the shift operation are zero-filled. A
left shift is a logical shift (the bits that are shifted off the end are discarded, including the sign bit). For more
information about the kinds of bitwise shifts, see Bitwise shifts.

The following example shows left-shift operations using unsigned numbers. The example shows what is
happening to the bits by representing the value as a bitset. For more information, see bitset Class.

If you left-shift a signed number so that the sign bit is affected, the result is undefined. The following example
shows what happens when a 1 bit is left-shifted into the sign bit position.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/left-shift-and-right-shift-operators-input-and-output.md
https://blogs.msdn.com/b/vcblog/archive/2012/10/25/hello-arm-exploring-undefined-unspecified-and-implementation-defined-behavior-in-c.aspx
https://en.wikipedia.org/wiki/Bitwise_shift
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bitset-class

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 short short1 = 16384;
 bitset<16> bitset1(short1);
 cout << bitset1 << endl; // 0b01000000'00000000

 short short3 = short1 << 1;
 bitset<16> bitset3(short3); // 16384 left-shifted by 1 = -32768
 cout << bitset3 << endl; // 0b10000000'00000000

 short short4 = short1 << 14;
 bitset<16> bitset4(short4); // 4 left-shifted by 14 = 0
 cout << bitset4 << endl; // 0b00000000'00000000
}

Right Shifts

IMPORTANTIMPORTANT

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 unsigned short short11 = 1024;
 bitset<16> bitset11{short11};
 cout << bitset11 << endl; // 0b00000100'00000000

 unsigned short short12 = short11 >> 1; // 512
 bitset<16> bitset12{short12};
 cout << bitset12 << endl; // 0b00000010'00000000

 unsigned short short13 = short11 >> 10; // 1
 bitset<16> bitset13{short13};
 cout << bitset13 << endl; // 0b00000000'00000001

 unsigned short short14 = short11 >> 11; // 0
 bitset<16> bitset14{short14};
 cout << bitset14 << endl; // 0b00000000'00000000
}

The right-shift operator causes the bit pattern in shift-expression to be shifted to the right by the number of
positions specified by additive-expression. For unsigned numbers, the bit positions that have been vacated by the
shift operation are zero-filled. For signed numbers, the sign bit is used to fill the vacated bit positions. In other
words, if the number is positive, 0 is used, and if the number is negative, 1 is used.

The result of a right-shift of a signed negative number is implementation-dependent. Although the Microsoft C++ compiler
uses the sign bit to fill vacated bit positions, there is no guarantee that other implementations also do so.

This example shows right-shift operations using unsigned numbers:

The next example shows right-shift operations with positive signed numbers.

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 short short1 = 1024;
 bitset<16> bitset1(short1);
 cout << bitset1 << endl; // 0b00000100'00000000

 short short2 = short1 >> 1; // 512
 bitset<16> bitset2(short2);
 cout << bitset2 << endl; // 0b00000010'00000000

 short short3 = short1 >> 11; // 0
 bitset<16> bitset3(short3);
 cout << bitset3 << endl; // 0b00000000'00000000
}

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 short neg1 = -16;
 bitset<16> bn1(neg1);
 cout << bn1 << endl; // 0b11111111'11110000

 short neg2 = neg1 >> 1; // -8
 bitset<16> bn2(neg2);
 cout << bn2 << endl; // 0b11111111'11111000

 short neg3 = neg1 >> 2; // -4
 bitset<16> bn3(neg3);
 cout << bn3 << endl; // 0b11111111'11111100

 short neg4 = neg1 >> 4; // -1
 bitset<16> bn4(neg4);
 cout << bn4 << endl; // 0b11111111'11111111

 short neg5 = neg1 >> 5; // -1
 bitset<16> bn5(neg5);
 cout << bn5 << endl; // 0b11111111'11111111
}

Shifts and Promotions

The next example shows right-shift operations with negative signed integers.

The expressions on both sides of a shift operator must be integral types. Integral promotions are performed
according to the rules described in Standard Conversions. The type of the result is the same as the type of the
promoted shift-expression.

In the following example, a variable of type char is promoted to an int.

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
 char char1 = 'a';

 auto promoted1 = char1 << 1; // 194
 cout << typeid(promoted1).name() << endl; // int

 auto promoted2 = char1 << 10; // 99328
 cout << typeid(promoted2).name() << endl; // int
}

Additional Details

#include <iostream>
#include <bitset>

using namespace std;

int main() {
 unsigned int int1 = 4;
 bitset<32> b1{int1};
 cout << b1 << endl; // 0b00000000'00000000'00000000'00000100

 unsigned int int2 = int1 << -3; // C4293: '<<' : shift count negative or too big, undefined behavior
 unsigned int int3 = int1 >> -3; // C4293: '>>' : shift count negative or too big, undefined behavior
 unsigned int int4 = int1 << 32; // C4293: '<<' : shift count negative or too big, undefined behavior
 unsigned int int5 = int1 >> 32; // C4293: '>>' : shift count negative or too big, undefined behavior
 unsigned int int6 = int1 << 0;
 bitset<32> b6{int6};
 cout << b6 << endl; // 0b00000000'00000000'00000000'00000100 (no change)
}

Footnotes

See also

The result of a shift operation is undefined if additive-expression is negative or if additive-expression is greater
than or equal to the number of bits in the (promoted) shift-expression. No shift operation is performed if additive-
expression is 0.

 The following is the description of the shift operators in the C++11 ISO specification (INCITS/ISO/IEC 14882-
2011[2012]), sections 5.8.2 and 5.8.3.

1

The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned
type, the value of the result is E1 × 2 , reduced modulo one more than the maximum value representable in the
result type. Otherwise, if E1 has a signed type and non-negative value, and E1 × 2 is representable in the
corresponding unsigned type of the result type, then that value, converted to the result type, is the resulting value;
otherwise, the behavior is undefined.

E2

E2

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a non-negative value, the value of the result is the integral part of the quotient of E1/2 . If E1 has a
signed type and a negative value, the resulting value is implementation-defined.

E2

Expressions with Binary Operators

C++ Built-in Operators, Precedence and Associativity

Logical AND Operator: &&
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression && expression

Remarks

char *pch = 0;
...
(pch) && (*pch = 'a');

Operator Keyword for &&

Example

The logical AND operator (&&) returns the boolean value TRUE if both operands are TRUE and returns FALSE
otherwise. The operands are implicitly converted to type bool prior to evaluation, and the result is of type bool.
Logical AND has left-to-right associativity.

The operands to the logical AND operator need not be of the same type, but they must be of integral or pointer
type. The operands are commonly relational or equality expressions.

The first operand is completely evaluated and all side effects are completed before continuing evaluation of the
logical AND expression.

The second operand is evaluated only if the first operand evaluates to true (nonzero). This evaluation eliminates
needless evaluation of the second operand when the logical AND expression is false. You can use this short-circuit
evaluation to prevent null-pointer dereferencing, as shown in the following example:

If pch is null (0), the right side of the expression is never evaluated. Therefore, the assignment through a null
pointer is impossible.

The and operator is the text equivalent of &&. There are two ways to access the and operator in your programs:
include the header file iso646.h , or compile with the /Za (Disable language extensions) compiler option.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/logical-and-operator-amp-amp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

// expre_Logical_AND_Operator.cpp
// compile with: /EHsc
// Demonstrate logical AND
#include <iostream>

using namespace std;

int main() {
 int a = 5, b = 10, c = 15;
 cout << boolalpha
 << "The true expression "
 << "a < b && b < c yields "
 << (a < b && b < c) << endl
 << "The false expression "
 << "a > b && b < c yields "
 << (a > b && b < c) << endl;
}

See also
C++ Built-in Operators Precedence and Associativity
C++ Built-in Operators, Precedence and Associativity
C Logical Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-logical-operators

Logical Negation Operator: !
10/31/2018 • 2 minutes to read • Edit Online

Syntax
! cast-expression

Remarks

Operator Keyword for !

Example
// expre_Logical_NOT_Operator.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

int main() {
 int i = 0;
 if (!i)
 cout << "i is zero" << endl;
}

See also

The logical negation operator (!) reverses the meaning of its operand. The operand must be of arithmetic or
pointer type (or an expression that evaluates to arithmetic or pointer type). The operand is implicitly converted to
type bool. The result is TRUE if the converted operand is FALSE; the result is FALSE if the converted operand is
TRUE. The result is of type bool.

For an expression e, the unary expression !e is equivalent to the expression (e == 0) , except where overloaded
operators are involved.

The not operator is an alternative spelling of !. There are two ways to access the not operator in your programs:
include the header file <iso646.h>, or compile with the /Za (Disable language extensions) compiler option.

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Unary Arithmetic Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/logical-negation-operator-exclpt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/unary-arithmetic-operators

Logical OR operator: ||
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

printf("%d" , (x == w || x == y || x == z));

Operator Keyword for ||

Example
// expre_Logical_OR_Operator.cpp
// compile with: /EHsc
// Demonstrate logical OR
#include <iostream>
using namespace std;
int main() {
 int a = 5, b = 10, c = 15;
 cout << boolalpha
 << "The true expression "
 << "a < b || b > c yields "
 << (a < b || b > c) << endl
 << "The false expression "
 << "a > b || b > c yields "
 << (a > b || b > c) << endl;
}

logical-or-expression || logical-and-expression

The logical OR operator (||) returns the boolean value TRUE if either or both operands is TRUE and returns
FALSE otherwise. The operands are implicitly converted to type bool prior to evaluation, and the result is of type
bool. Logical OR has left-to-right associativity.

The operands to the logical OR operator need not be of the same type, but they must be of integral or pointer
type. The operands are commonly relational or equality expressions.

The first operand is completely evaluated and all side effects are completed before continuing evaluation of the
logical OR expression.

The second operand is evaluated only if the first operand evaluates to false (0). This eliminates needless evaluation
of the second operand when the logical OR expression is true.

In the above example, if x is equal to either w , y , or z , the second argument to the printf function evaluates
to true and the value 1 is printed. Otherwise, it evaluates to false and the value 0 is printed. As soon as one of the
conditions evaluates to true, evaluation ceases.

The or operator is the text equivalent of ||. There are two ways to access the or operator in your programs: include
the header file <iso646.h>, or compile with the /Za (Disable language extensions) compiler option.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/logical-or-operator-pipe-pipe.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

See also
C++ Built-in Operators Precedence and Associativity
C++ Built-in Operators, Precedence and Associativity
C Logical Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-logical-operators

Member Access Operators: . and ->
10/31/2018 • 2 minutes to read • Edit Online

Syntax
postfix-expression . name
postfix-expression -> name

Remarks

Example

// expre_Selection_Operator.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

struct Date {
 Date(int i, int j, int k) : day(i), month(j), year(k){}
 int month;
 int day;
 int year;
};

int main() {
 Date mydate(1,1,1900);
 mydate.month = 2;
 cout << mydate.month << "/" << mydate.day
 << "/" << mydate.year << endl;

 Date *mydate2 = new Date(1,1,2000);
 mydate2->month = 2;
 cout << mydate2->month << "/" << mydate2->day
 << "/" << mydate2->year << endl;
 delete mydate2;
}

The member access operators . and -> are used to refer to members of structures, unions, and classes. Member
access expressions have the value and type of the selected member.

There are two forms of member access expressions:

1. In the first form, postfix-expression represents a value of struct, class, or union type, and name names a
member of the specified structure, union, or class. The value of the operation is that of name and is an l-
value if postfix-expression is an l-value.

2. In the second form, postfix-expression represents a pointer to a structure, union, or class, and name names
a member of the specified structure, union, or class. The value is that of name and is an l-value. The ->
operator dereferences the pointer. Therefore, the expressions e->member and (*e).member (where e
represents a pointer) yield identical results (except when the operators -> or * are overloaded).

The following example demonstrates both forms of the member access operator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/member-access-operators-dot-and.md

2/1/1900
2/1/2000

See also
Postfix Expressions
C++ Built-in Operators, Precedence and Associativity
Classes and Structs
Structure and Union Members

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/structure-and-union-members

Multiplicative Operators and the Modulus Operator
11/8/2018 • 2 minutes to read • Edit Online

Syntax
expression * expression
expression / expression
expression % expression

Remarks

i % 0
f / 0.0

NOTENOTE

The multiplicative operators are:

Multiplication (*)

Division (/)

Modulus (remainder from division) (%)

These binary operators have left-to-right associativity.

The multiplicative operators take operands of arithmetic types. The modulus operator (%) has a stricter
requirement in that its operands must be of integral type. (To get the remainder of a floating-point division, use
the run-time function, fmod.) The conversions covered in Standard Conversions are applied to the operands, and
the result is of the converted type.

The multiplication operator yields the result of multiplying the first operand by the second.

The division operator yields the result of dividing the first operand by the second.

The modulus operator yields the remainder given by the following expression, where e1 is the first operand and
e2 is the second: e1 - (e1 / e2) * e2, where both operands are of integral types.

Division by 0 in either a division or a modulus expression is undefined and causes a run-time error. Therefore, the
following expressions generate undefined, erroneous results:

If both operands to a multiplication, division, or modulus expression have the same sign, the result is positive.
Otherwise, the result is negative. The result of a modulus operation's sign is implementation-defined.

Since the conversions performed by the multiplicative operators do not provide for overflow or underflow conditions,
information may be lost if the result of a multiplicative operation cannot be represented in the type of the operands after
conversion.

Microsoft Specific

In Microsoft C++, the result of a modulus expression is always the same as the sign of the first operand.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/multiplicative-operators-and-the-modulus-operator.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fmod-fmodf

Example

// expre_Multiplicative_Operators.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
int main() {
 int x = 3, y = 6, z = 10;
 cout << "3 * 6 is " << x * y << endl
 << "6 / 3 is " << y / x << endl
 << "10 % 3 is " << z % x << endl
 << "10 / 3 is " << (float) z / x << endl;
}

See also

END Microsoft Specific

If the computed division of two integers is inexact and only one operand is negative, the result is the largest
integer (in magnitude, disregarding the sign) that is less than the exact value the division operation would yield.
For example, the computed value of -11 / 3 is -3.666666666. The result of that integral division is -3.

The relationship between the multiplicative operators is given by the identity (e1 / e2) * e2 + e1 % e2 == e1.

The following program demonstrates the multiplicative operators. Note that either operand of 10 / 3 must be
explicitly cast to type float to avoid truncation so that both operands are of type float before division.

Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
C Multiplicative Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-multiplicative-operators

new Operator (C++)
4/1/2019 • 7 minutes to read • Edit Online

NOTENOTE

Syntax
[::] new [placement] new-type-name [new-initializer]
[::] new [placement] (type-name) [new-initializer]

Remarks

char (*pchar)[10] = new char[dim][10];
delete [] pchar;

volatile char *vch = new volatile char[20];

Allocates memory for an object or array of objects of type-name from the free store and returns a suitably
typed, nonzero pointer to the object.

Microsoft C++ Component Extensions provides support for the new keyword to add vtable slot entries. For more
information, see new (new slot in vtable)

If unsuccessful, new returns zero or throws an exception; see The new and delete Operators for more
information. You can change this default behavior by writing a custom exception-handling routine and calling
the _set_new_handler run-time library function with your function name as its argument.

For information on how to create an object on the managed heap, see gcnew.

When new is used to allocate memory for a C++ class object, the object's constructor is called after the memory
is allocated.

Use the delete operator to deallocate the memory allocated with the new operator.

The following example allocates and then frees a two-dimensional array of characters of size dim by 10. When
allocating a multidimensional array, all dimensions except the first must be constant expressions that evaluate to
positive values; the leftmost array dimension can be any expression that evaluates to a positive value. When
allocating an array using the new operator, the first dimension can be zero — the new operator returns a unique
pointer.

The type-name cannot contain const, volatile, class declarations, or enumeration declarations. Therefore, the
following expression is illegal:

The new operator does not allocate reference types because they are not objects.

The new operator cannot be used to allocate a function, but it can be used to allocate pointers to functions. The
following example allocates and then frees an array of seven pointers to functions that return integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/new-operator-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/new-new-slot-in-vtable-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-new-handler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/ref-new-gcnew-cpp-component-extensions

int (**p) () = new (int (*[7]) ());
delete *p;

Example

// expre_new_Operator.cpp
// compile with: /EHsc
#include <string.h>

class CName {
public:
 enum {
 sizeOfBuffer = 256
 };

 char m_szFirst[sizeOfBuffer];
 char m_szLast[sizeOfBuffer];

public:
 void SetName(char* pszFirst, char* pszLast) {
 strcpy_s(m_szFirst, sizeOfBuffer, pszFirst);
 strcpy_s(m_szLast, sizeOfBuffer, pszLast);
 }

};

int main() {
 // Allocate memory for the array
 char* pCharArray = new char[CName::sizeOfBuffer];
 strcpy_s(pCharArray, CName::sizeOfBuffer, "Array of characters");

 // Deallocate memory for the array
 delete [] pCharArray;
 pCharArray = NULL;

 // Allocate memory for the object
 CName* pName = new CName;
 pName->SetName("Firstname", "Lastname");

 // Deallocate memory for the object
 delete pName;
 pName = NULL;
}

If you use the operator new without any extra arguments, and compile with the /GX, /EHa, or /EHs option, the
compiler will generate code to call operator delete if the constructor throws an exception.

The following list describes the grammar elements of new:

placement
Provides a way of passing additional arguments if you overload new.

type-name
Specifies type to be allocated; it can be either a built-in or user-defined type. If the type specification is
complicated, it can be surrounded by parentheses to force the order of binding.

initializer
Provides a value for the initialized object. Initializers cannot be specified for arrays. The new operator will create
arrays of objects only if the class has a default constructor.

The following code example allocates a character array and an object of class CName and then frees them.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gx-enable-exception-handling
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

Example

// expre_new_Operator2.cpp
// C2660 expected
class A {
public:
 A(int) { throw "Fail!"; }
};
void F(void) {
 try {
 // heap memory pointed to by pa1 will be deallocated
 // by calling ::operator delete(void*).
 A* pa1 = new A(10);
 } catch (...) {
 }
 try {
 // This will call ::operator new(size_t, char*, int).
 // When A::A(int) does a throw, we should call
 // ::operator delete(void*, char*, int) to deallocate
 // the memory pointed to by pa2. Since
 // ::operator delete(void*, char*, int) has not been implemented,
 // memory will be leaked when the deallocation cannot occur.

 A* pa2 = new(__FILE__, __LINE__) A(20);
 } catch (...) {
 }
}

int main() {
 A a;
}

Initializing object allocated with new

// expre_Initializing_Objects_Allocated_with_new.cpp
class Acct
{
public:
 // Define default constructor and a constructor that accepts
 // an initial balance.
 Acct() { balance = 0.0; }
 Acct(double init_balance) { balance = init_balance; }
private:
 double balance;
};

int main()
{
 Acct *CheckingAcct = new Acct;
 Acct *SavingsAcct = new Acct (34.98);
 double *HowMuch = new double (43.0);
 // ...
}

If you use the placement new form of the new operator, the form with arguments in addition to the size of the
allocation, the compiler does not support a placement form of the delete operator if the constructor throws an
exception. For example:

An optional initializer field is included in the grammar for the new operator. This allows new objects to be
initialized with user-defined constructors. For more information about how initialization is done, see Initializers.
The following example illustrates how to use an initialization expression with the new operator :

Lifetime of objects allocated with new

// expre_Lifetime_of_Objects_Allocated_with_new.cpp
// C2541 expected
int main()
{
 // Use new operator to allocate an array of 20 characters.
 char *AnArray = new char[20];

 for(int i = 0; i < 20; ++i)
 {
 // On the first iteration of the loop, allocate
 // another array of 20 characters.
 if(i == 0)
 {
 char *AnotherArray = new char[20];
 }
 }

 delete [] AnotherArray; // Error: pointer out of scope.
 delete [] AnArray; // OK: pointer still in scope.
}

How new works

In this example, the object CheckingAcct is allocated using the new operator, but no default initialization is
specified. Therefore, the default constructor for the class, Acct() , is called. Then the object SavingsAcct is
allocated the same way, except that it is explicitly initialized to 34.98. Because 34.98 is of type double, the
constructor that takes an argument of that type is called to handle the initialization. Finally, the nonclass type
HowMuch is initialized to 43.0.

If an object is of a class type and that class has constructors (as in the preceding example), the object can be
initialized by the new operator only if one of these conditions is met:

The arguments provided in the initializer agree with those of a constructor.

The class has a default constructor (a constructor that can be called with no arguments).

No explicit per-element initialization can be done when allocating arrays using the new operator ; only the
default constructor, if present, is called. See Default Arguments for more information.

If the memory allocation fails (operator new returns a value of 0), no initialization is performed. This protects
against attempts to initialize data that does not exist.

As with function calls, the order in which initialized expressions are evaluated is not defined. Furthermore, you
should not rely on these expressions being completely evaluated before the memory allocation is performed. If
the memory allocation fails and the new operator returns zero, some expressions in the initializer may not be
completely evaluated.

Objects allocated with the new operator are not destroyed when the scope in which they are defined is exited.
Because the new operator returns a pointer to the objects it allocates, the program must define a pointer with
suitable scope to access those objects. For example:

Once the pointer AnotherArray goes out of scope in the example, the object can no longer be deleted.

The allocation-expression — the expression containing the new operator — does three things:

Locates and reserves storage for the object or objects to be allocated. When this stage is complete, the
correct amount of storage is allocated, but it is not yet an object.

NOTENOTE

NOTENOTE

T *TObject =::new TObject;

See also

Initializes the object(s). Once initialization is complete, enough information is present for the allocated
storage to be an object.

Returns a pointer to the object(s) of a pointer type derived from new-type-name or type-name. The
program uses this pointer to access the newly allocated object.

The new operator invokes the function operator new. For arrays of any type, and for objects that are not of
class, struct, or union types, a global function, ::operator new, is called to allocate storage. Class-type objects
can define their own operator new static member function on a per-class basis.

When the compiler encounters the new operator to allocate an object of type type, it issues a call to type

::operator new(sizeof(type)) or, if no user-defined operator new is defined, ::operator new(sizeof(
type)). Therefore, the new operator can allocate the correct amount of memory for the object.

The argument to operator new is of type size_t . This type is defined in <direct.h>, <malloc.h>, <memory.h>,
<search.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, and <time.h>.

An option in the grammar allows specification of placement (see the Grammar for new Operator). The
placement parameter can be used only for user-defined implementations of operator new; it allows extra
information to be passed to operator new. An expression with a placement field such as
T *TObject = new (0x0040) T; is translated to T *TObject = T::operator new(sizeof(T), 0x0040); if class T

has member operator new, otherwise to T *TObject = ::operator new(sizeof(T), 0x0040); .

The original intention of the placement field was to allow hardware-dependent objects to be allocated at user-
specified addresses.

Although the preceding example shows only one argument in the placement field, there is no restriction on how many
extra arguments can be passed to operator new this way.

Even when operator new has been defined for a class type, the global operator can be used by using the form
of this example:

The scope-resolution operator (::) forces use of the global new operator.

Expressions with Unary Operators
Keywords
new and delete operators

One's Complement Operator: ~
10/31/2018 • 2 minutes to read • Edit Online

Syntax
~ cast-expression

Remarks

Operator Keyword for ~

Example
// expre_One_Complement_Operator.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;

int main () {
 unsigned short y = 0xFFFF;
 cout << hex << y << endl;
 y = ~y; // Take one's complement
 cout << hex << y << endl;
}

See also

The one's complement operator (~), sometimes called the "bitwise complement" operator, yields a bitwise one's
complement of its operand. That is, every bit that is 1 in the operand is 0 in the result. Conversely, every bit that is
0 in the operand is 1 in the result. The operand to the one's complement operator must be an integral type.

The compl operator is the text equivalent of ~ . There are two ways to access the compl operator in your
programs: include the header file iso646.h , or compile with /Za.

In this example, the new value assigned to y is the one's complement of the unsigned value 0xFFFF, or 0x0000.

Integral promotion is performed on integral operands, and the resultant type is the type to which the operand is
promoted. See Standard Conversions for more information on how the promotion is done.

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Unary Arithmetic Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/one-s-complement-operator-tilde.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/unary-arithmetic-operators

Pointer-to-Member Operators: .* and ->*
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression .* expression
expression ->* expression

Remarks

// expre_Expressions_with_Pointer_Member_Operators.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;

class Testpm {
public:
 void m_func1() { cout << "m_func1\n"; }
 int m_num;
};

// Define derived types pmfn and pmd.
// These types are pointers to members m_func1() and
// m_num, respectively.
void (Testpm::*pmfn)() = &Testpm::m_func1;
int Testpm::*pmd = &Testpm::m_num;

int main() {
 Testpm ATestpm;
 Testpm *pTestpm = new Testpm;

// Access the member function
 (ATestpm.*pmfn)();
 (pTestpm->*pmfn)(); // Parentheses required since * binds
 // less tightly than the function call.

// Access the member data
 ATestpm.*pmd = 1;
 pTestpm->*pmd = 2;

 cout << ATestpm.*pmd << endl
 << pTestpm->*pmd << endl;
 delete pTestpm;
}

Output

The pointer-to-member operators, .* and ->*, return the value of a specific class member for the object specified
on the left side of the expression. The right side must specify a member of the class. The following example shows
how to use these operators:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/pointer-to-member-operators-dot-star-and-star.md

m_func1
m_func1
1
2

Example

// expre_Expressions_with_Pointer_Member_Operators2.cpp
// C2440 expected
class BaseClass {
public:
 BaseClass(); // Base class constructor.
 void Func1();
};

// Declare a pointer to member function Func1.
void (BaseClass::*pmfnFunc1)() = &BaseClass::Func1;

class Derived : public BaseClass {
public:
 Derived(); // Derived class constructor.
 void Func2();
};

// Declare a pointer to member function Func2.
void (Derived::*pmfnFunc2)() = &Derived::Func2;

int main() {
 BaseClass ABase;
 Derived ADerived;

 (ABase.*pmfnFunc1)(); // OK: defined for BaseClass.
 (ABase.*pmfnFunc2)(); // Error: cannot use base class to
 // access pointers to members of
 // derived classes.

 (ADerived.*pmfnFunc1)(); // OK: Derived is unambiguously
 // derived from BaseClass.
 (ADerived.*pmfnFunc2)(); // OK: defined for Derived.
}

In the preceding example, a pointer to a member, pmfn , is used to invoke the member function m_func1 . Another
pointer to a member, pmd , is used to access the m_num member.

The binary operator .* combines its first operand, which must be an object of class type, with its second operand,
which must be a pointer-to-member type.

The binary operator ->* combines its first operand, which must be a pointer to an object of class type, with its
second operand, which must be a pointer-to-member type.

In an expression containing the .* operator, the first operand must be of the class type of, and be accessible to, the
pointer to member specified in the second operand or of an accessible type unambiguously derived from and
accessible to that class.

In an expression containing the ->* operator, the first operand must be of the type "pointer to the class type" of the
type specified in the second operand, or it must be of a type unambiguously derived from that class.

Consider the following classes and program fragment:

The result of the .* or ->* pointer-to-member operators is an object or function of the type specified in the
declaration of the pointer to member. So, in the preceding example, the result of the expression

NOTENOTE

See also

ADerived.*pmfnFunc1() is a pointer to a function that returns void. This result is an l-value if the second operand is
an l-value.

If the result of one of the pointer-to-member operators is a function, then the result can be used only as an operand to the
function call operator.

C++ Built-in Operators, Precedence and Associativity

Postfix Increment and Decrement Operators: ++ and
--
10/31/2018 • 2 minutes to read • Edit Online

Syntax
postfix-expression ++
postfix-expression --

Remarks

i++;

C++ provides prefix and postfix increment and decrement operators; this section describes only the postfix
increment and decrement operators. (For more information, see Prefix Increment and Decrement Operators.) The
difference between the two is that in the postfix notation, the operator appears after postfix-expression, whereas in
the prefix notation, the operator appears before expression. The following example shows a postfix-increment
operator :

The effect of applying the postfix increment operator (++) is that the operand's value is increased by one unit of
the appropriate type. Similarly, the effect of applying the postfix decrement operator (--) is that the operand's
value is decreased by one unit of the appropriate type.

It is important to note that a postfix increment or decrement expression evaluates to the value of the expression
prior to application of the respective operator. The increment or decrement operation occurs after the operand is
evaluated. This issue arises only when the postfix increment or decrement operation occurs in the context of a
larger expression.

When a postfix operator is applied to a function argument, the value of the argument is not guaranteed to be
incremented or decremented before it is passed to the function. See section 1.9.17 in the C++ standard for more
information.

Applying the postfix increment operator to a pointer to an array of objects of type long actually adds four to the
internal representation of the pointer. This behavior causes the pointer, which previously referred to the nth
element of the array, to refer to the (n+1)th element.

The operands to postfix increment and postfix decrement operators must be modifiable (not const) l-values of
arithmetic or pointer type. The type of the result is the same as that of the postfix-expression, but it is no longer an
l-value.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): The operand of a postfix increment or
decrement operator may not be of type bool.

The following code illustrates the postfix increment operator:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/postfix-increment-and-decrement-operators-increment-and-decrement.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

// expre_Postfix_Increment_and_Decrement_Operators.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

int main() {
 int i = 10;
 cout << i++ << endl;
 cout << i << endl;
}

enum Compass { North, South, East, West);
Compass myCompass;
for(myCompass = North; myCompass != West; myCompass++) // Error

See also

Postincrement and postdecrement operations on enumerated types are not supported:

Postfix Expressions
C++ Built-in Operators, Precedence and Associativity
C Postfix Increment and Decrement Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-postfix-increment-and-decrement-operators

Prefix Increment and Decrement Operators: ++ and
--
10/31/2018 • 2 minutes to read • Edit Online

Syntax
++ unary-expression
-- unary-expression

Remarks

// expre_Increment_and_Decrement_Operators.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;

int main() {
 int i = 5;
 cout << "++i = " << ++i << endl;
}

The prefix increment operator (++) adds one to its operand; this incremented value is the result of the expression.
The operand must be an l-value not of type const. The result is an l-value of the same type as the operand.

The prefix decrement operator (--) is analogous to the prefix increment operator, except that the operand is
decremented by one and the result is this decremented value.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): The operand of an increment or
decrement operator may not be of type bool.

Both the prefix and postfix increment and decrement operators affect their operands. The key difference between
them is the order in which the increment or decrement takes place in the evaluation of an expression. (For more
information, see Postfix Increment and Decrement Operators.) In the prefix form, the increment or decrement
takes place before the value is used in expression evaluation, so the value of the expression is different from the
value of the operand. In the postfix form, the increment or decrement takes place after the value is used in
expression evaluation, so the value of the expression is the same as the value of the operand. For example, the
following program prints " ++i = 6 ":

An operand of integral or floating type is incremented or decremented by the integer value 1. The type of the
result is the same as the operand type. An operand of pointer type is incremented or decremented by the size of
the object it addresses. An incremented pointer points to the next object; a decremented pointer points to the
previous object.

Because increment and decrement operators have side effects, using expressions with increment or decrement
operators in a preprocessor macro can have undesirable results. Consider this example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/prefix-increment-and-decrement-operators-increment-and-decrement.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/macros-c-cpp

// expre_Increment_and_Decrement_Operators2.cpp
#define max(a,b) ((a)<(b))?(b):(a)

int main()
{
 int i = 0, j = 0, k;
 k = max(++i, j);
}

k = ((++i)<(j))?(j):(++i);

NOTENOTE

See also

The macro expands to:

If i is greater than or equal to j or less than j by 1, it will be incremented twice.

C++ inline functions are preferable to macros in many cases because they eliminate side effects such as those described
here, and allow the language to perform more complete type checking.

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity
Prefix Increment and Decrement Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/prefix-increment-and-decrement-operators

Relational Operators: <, >, <=, and >=
10/31/2018 • 2 minutes to read • Edit Online

Syntax
expression < expression
expression > expression
expression <= expression
expression >= expression

Remarks

Example
// expre_Relational_Operators.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;

int main() {
 cout << "The true expression 3 > 2 yields: "
 << (3 > 2) << endl
 << "The false expression 20 < 10 yields: "
 << (20 < 10) << endl;
}

(cout << "The true expression 3 > 2 yields: " << 3) < (2 << "\n");

Comparing pointers

The binary relational operators determine the following relationships:

Less than (<)

Greater than (>)

Less than or equal to (<=)

Greater than or equal to (>=)

The relational operators have left-to-right associativity. Both operands of relational operators must be of
arithmetic or pointer type. They yield values of type bool. The value returned is false (0) if the relationship in the
expression is false; otherwise, the value returned is true (1).

The expressions in the preceding example must be enclosed in parentheses because the stream insertion
operator (<<) has higher precedence than the relational operators. Therefore, the first expression without the
parentheses would be evaluated as:

The usual arithmetic conversions covered in Standard Conversions are applied to operands of arithmetic types.

When two pointers to objects of the same type are compared, the result is determined by the location of the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/relational-operators-equal-and-equal.md

See also

objects pointed to in the program's address space. Pointers can also be compared to a constant expression that
evaluates to 0 or to a pointer of type void * . If a pointer comparison is made against a pointer of type void * ,
the other pointer is implicitly converted to type void * . Then the comparison is made.

Two pointers of different types cannot be compared unless:

One type is a class type derived from the other type.

At least one of the pointers is explicitly converted (cast) to type void * . (The other pointer is implicitly
converted to type void * for the conversion.)

Two pointers of the same type that point to the same object are guaranteed to compare equal. If two pointers to
nonstatic members of an object are compared, the following rules apply:

If the class type is not a union, and if the two members are not separated by an access-specifier, such as
public, protected, or private, the pointer to the member declared last will compare greater than the
pointer to the member declared earlier.

If the two members are separated by an access-specifier, the results are undefined.

If the class type is a union, pointers to different data members in that union compare equal.

If two pointers point to elements of the same array or to the element one beyond the end of the array, the
pointer to the object with the higher subscript compares higher. Comparison of pointers is guaranteed valid only
when the pointers refer to objects in the same array or to the location one past the end of the array.

Expressions with Binary Operators
C++ Built-in Operators, Precedence and Associativity
C Relational and Equality Operators

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-relational-and-equality-operators

Scope Resolution Operator: ::
10/31/2018 • 2 minutes to read • Edit Online

Syntax
:: identifier
class-name :: identifier
namespace :: identifier
enum class :: identifier
enum struct :: identifier

Remarks

With Classes and Namespaces

namespace NamespaceA{
 int x;
 class ClassA {
 public:
 int x;
 };
}

int main() {

 // A namespace name used to disambiguate
 NamespaceA::x = 1;

 // A class name used to disambiguate
 NamespaceA::ClassA a1;
 a1.x = 2;
}

The scope resolution operator :: is used to identify and disambiguate identifiers used in different scopes. For more
information about scope, see Scope.

The identifier can be a variable, a function, or an enumeration value.

The following example shows how the scope resolution operator is used with namespaces and classes:

A scope resolution operator without a scope qualifier refers to the global namespace.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/scope-resolution-operator.md

namespace NamespaceA{
 int x;
}

int x;

int main() {
 int x;

 // the x in main()
 x = 0;
 // The x in the global namespace
 ::x = 1;

 // The x in the A namespace
 NamespaceA::x = 2;
}

namespace NamespaceB {
 class ClassB {
 public:
 int x;
 };
}

namespace NamespaceC{
 using namespace B;
}
int main() {
 NamespaceB::ClassB c_b;
 NamespaceC::ClassB c_c;

 c_b.x = 3;
 c_c.x = 4;
}

You can use the scope resolution operator to identify a member of a namespace, or to identify a namespace that
nominates the member’s namespace in a using-directive. In the example below, you can use NamespaceC to qualify
ClassB , even though ClassB was declared in namespace NamespaceB , because NamespaceB was nominated in
NamespaceC by a using directive.

You can use chains of scope resolution operators. In the following example, NamespaceD::NamespaceD1 identifies the
nested namespace NamespaceD1 , and NamespaceE::ClassE::ClassE1 identifies the nested class ClassE1 .

namespace NamespaceD{
 namespace NamespaceD1{
 int x;
 }
}

namespace NamespaceE{
 class ClassE{
 public:
 class ClassE1{
 public:
 int x;
 };
 };
}

int main() {
 NamespaceD:: NamespaceD1::x = 6;
 NamespaceE::ClassE::ClassE1 e1;
 e1.x = 7 ;
}

With Static Members

class ClassG {
public:
 static int get_x() { return x;}
 static int x;
};

int ClassG::x = 6;

int main() {

 int gx1 = ClassG::x;
 int gx2 = ClassG::get_x();
}

With Scoped Enumerations

enum class EnumA{
 First,
 Second,
 Third
};

int main() {
 EnumA enum_value = EnumA::First;
}

See also

You must use the scope resolution operator to call static members of classes.

The scoped resolution operator is also used with the values of a scoped enumeration Enumeration Declarations, as
in the following example:

C++ Built-in Operators, Precedence and Associativity
Namespaces

sizeof Operator
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
sizeof unary-expression
sizeof (type-name)

Remarks

Example
#include <iostream>
using namespace std;

size_t getPtrSize(char *ptr)
{
 return sizeof(ptr);
}

int main()
{
 char szHello[] = "Hello, world!";

 cout << "The size of a char is: "
 << sizeof(char)
 << "\nThe length of " << szHello << " is: "
 << sizeof szHello
 << "\nThe size of the pointer is "
 << getPtrSize(szHello) << endl;
}

Yields the size of its operand with respect to the size of type char.

For information about the sizeof ... operator, see Ellipses and Variadic Templates.

The result of the sizeof operator is of type size_t , an integral type defined in the include file <stddef.h>. This
operator allows you to avoid specifying machine-dependent data sizes in your programs.

The operand to sizeof can be one of the following:

A type name. To use sizeof with a type name, the name must be enclosed in parentheses.

An expression. When used with an expression, sizeof can be specified with or without the parentheses.
The expression is not evaluated.

When the sizeof operator is applied to an object of type char, it yields 1. When the sizeof operator is applied to
an array, it yields the total number of bytes in that array, not the size of the pointer represented by the array
identifier. To obtain the size of the pointer represented by the array identifier, pass it as a parameter to a function
that uses sizeof. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/sizeof-operator.md

Sample Output
The size of a char is: 1
The length of Hello, world! is: 14
The size of the pointer is 4

sizeof array / sizeof array[0]

See also

When the sizeof operator is applied to a class, struct, or union type, the result is the number of bytes in an
object of that type, plus any padding added to align members on word boundaries. The result does not
necessarily correspond to the size calculated by adding the storage requirements of the individual members. The
/Zp compiler option and the pack pragma affect alignment boundaries for members.

The sizeof operator never yields 0, even for an empty class.

The sizeof operator cannot be used with the following operands:

Functions. (However, sizeof can be applied to pointers to functions.)

Bit fields.

Undefined classes.

The type void.

Dynamically allocated arrays.

External arrays.

Incomplete types.

Parenthesized names of incomplete types.

When the sizeof operator is applied to a reference, the result is the same as if sizeof had been applied to the
object itself.

If an unsized array is the last element of a structure, the sizeof operator returns the size of the structure without
the array.

The sizeof operator is often used to calculate the number of elements in an array using an expression of the
form:

Expressions with Unary Operators
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pack

Subscript Operator []
4/1/2019 • 3 minutes to read • Edit Online

Syntax
postfix-expression [expression]

Remarks

int nArray[5] = { 0, 1, 2, 3, 4 };
cout << nArray[2] << endl; // prints "2"
cout << 2[nArray] << endl; // prints "2"

double aDbl[2];

A postfix expression (which can also be a primary expression) followed by the subscript operator, [], specifies
array indexing.

For information about managed arrays in C++/CLI, see Arrays.

Usually, the value represented by postfix-expression is a pointer value, such as an array identifier, and expression is
an integral value (including enumerated types). However, all that is required syntactically is that one of the
expressions be of pointer type and the other be of integral type. Thus the integral value could be in the postfix-
expression position and the pointer value could be in the brackets in the expression or subscript position. Consider
the following code fragment:

In the preceding example, the expression nArray[2] is identical to 2[nArray] . The reason is that the result of a
subscript expression e1[e2] is given by:

*((e2) + (e1))

The address yielded by the expression is not e2 bytes from the address e1. Rather, the address is scaled to yield
the next object in the array e2. For example:

The addresses of aDb[0] and aDb[1] are 8 bytes apart — the size of an object of type double. This scaling
according to object type is done automatically by the C++ language and is defined in Additive Operators where
addition and subtraction of operands of pointer type is discussed.

A subscript expression can also have multiple subscripts, as follows:

expression1 [expression2] [expression3] ...

Subscript expressions associate from left to right. The leftmost subscript expression, expression1 [expression2], is
evaluated first. The address that results from adding expression1 and expression2 forms a pointer expression; then
expression3 is added to this pointer expression to form a new pointer expression, and so on until the last subscript
expression has been added. The indirection operator (*) is applied after the last subscripted expression is
evaluated, unless the final pointer value addresses an array type.

Expressions with multiple subscripts refer to elements of multidimensional arrays. A multidimensional array is an
array whose elements are arrays. For example, the first element of a three-dimensional array is an array with two

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/subscript-operator.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/arrays-cpp-component-extensions

// expre_Subscript_Operator.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
#define MAX_ROWS 2
#define MAX_COLS 2

int main() {
 char c[MAX_ROWS][MAX_COLS] = { { 'a', 'b' }, { 'c', 'd' } };
 for (int i = 0; i < MAX_ROWS; i++)
 for (int j = 0; j < MAX_COLS; j++)
 cout << c[i][j] << endl;
}

Positive and negative subscripts

#include <iostream>
using namespace std;

int main() {
 int intArray[1024];
 for (int i = 0, j = 0; i < 1024; i++)
 {
 intArray[i] = j++;
 }

 cout << intArray[512] << endl; // 512

 cout << 257[intArray] << endl; // 257

 int *midArray = &intArray[512]; // pointer to the middle of the array

 cout << midArray[-256] << endl; // 256

 cout << intArray[-256] << endl; // unpredictable, may crash
}

See also

dimensions. The following example declares and initializes a simple two-dimensional array of characters:

The first element of an array is element 0. The range of a C++ array is from array[0] to array[size - 1]. However,
C++ supports positive and negative subscripts. Negative subscripts must fall within array boundaries; if they do
not, the results are unpredictable. The following code shows positive and negative array subscripts:

The negative subscript in the last line can produce a run-time error because it points to an address 256 int
positions lower in memory than the origin of the array. The pointer midArray is initialized to the middle of
intArray ; it is therefore possible (but dangerous) to use both positive and negative array indices on it. Array

subscript errors do not generate compile-time errors, but they yield unpredictable results.

The subscript operator is commutative. Therefore, the expressions array[index] and index[array] are guaranteed to
be equivalent as long as the subscript operator is not overloaded (see Overloaded Operators). The first form is the
most common coding practice, but either works.

Postfix Expressions
C++ Built-in Operators, Precedence and Associativity
Arrays
One-Dimensional Arrays

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/one-dimensional-arrays

Multidimensional Arrays

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/multidimensional-arrays-c

typeid Operator
4/1/2019 • 2 minutes to read • Edit Online

Syntax
typeid(type-id)
typeid(expression)

Remarks
The typeid operator allows the type of an object to be determined at run time.

The result of typeid is a const type_info& . The value is a reference to a type_info object that represents either
the type-id or the type of the expression, depending on which form of typeid is used. See type_info Class for
more information.

The typeid operator does not work with managed types (abstract declarators or instances), see typeid for
information on getting the Type of a specified type.

The typeid operator does a run-time check when applied to an l-value of a polymorphic class type, where the true
type of the object cannot be determined by the static information provided. Such cases are:

A reference to a class

A pointer, dereferenced with *

A subscripted pointer (i.e. []). (Note that it is generally not safe to use a subscript with a pointer to a
polymorphic type.)

If the expression points to a base class type, yet the object is actually of a type derived from that base class, a
type_info reference for the derived class is the result. The expression must point to a polymorphic type (a class

with virtual functions). Otherwise, the result is the type_info for the static class referred to in the expression.
Further, the pointer must be dereferenced so that the object it points to is used. Without dereferencing the pointer,
the result will be the type_info for the pointer, not what it points to. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/typeid-operator.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions
https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx

// expre_typeid_Operator.cpp
// compile with: /GR /EHsc
#include <iostream>
#include <typeinfo.h>

class Base {
public:
 virtual void vvfunc() {}
};

class Derived : public Base {};

using namespace std;
int main() {
 Derived* pd = new Derived;
 Base* pb = pd;
 cout << typeid(pb).name() << endl; //prints "class Base *"
 cout << typeid(*pb).name() << endl; //prints "class Derived"
 cout << typeid(pd).name() << endl; //prints "class Derived *"
 cout << typeid(*pd).name() << endl; //prints "class Derived"
 delete pd;
}

// expre_typeid_Operator_2.cpp
#include <typeinfo>

int main()
{
 typeid(int) == typeid(int&); // evaluates to true
}

// expre_typeid_Operator_3.cpp
// compile with: /c
#include <typeinfo>
template < typename T >
T max(T arg1, T arg2) {
 cout << typeid(T).name() << "s compared." << endl;
 return (arg1 > arg2 ? arg1 : arg2);
}

See also

If the expression is dereferencing a pointer, and that pointer's value is zero, typeid throws a bad_typeid exception.
If the pointer does not point to a valid object, a __non_rtti_object exception is thrown, indicating an attempt to
analyze the RTTI that triggered a fault (like access violation), because the object is somehow invalid (bad pointer
or the code wasn't compiled with /GR).

If the expression is neither a pointer nor a reference to a base class of the object, the result is a type_info

reference representing the static type of the expression. The static type of an expression refers to the type of an
expression as it is known at compile time. Execution semantics are ignored when evaluating the static type of an
expression. Furthermore, references are ignored when possible when determining the static type of an expression:

typeid can also be used in templates to determine the type of a template parameter :

Run-Time Type Information
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gr-enable-run-time-type-information

Unary Plus and Negation Operators: + and -
10/31/2018 • 2 minutes to read • Edit Online

Syntax
+ cast-expression
- cast-expression

+ operator

- operator

Microsoft specific

See also

The result of the unary plus operator (+) is the value of its operand. The operand to the unary plus operator must
be of an arithmetic type.

Integral promotion is performed on integral operands. The resultant type is the type to which the operand is
promoted. Thus, the expression +ch , where ch is of type char, results in type int; the value is unmodified. See
Standard Conversions for more information about how the promotion is done.

The unary negation operator (-) produces the negative of its operand. The operand to the unary negation
operator must be an arithmetic type.

Integral promotion is performed on integral operands, and the resultant type is the type to which the operand is
promoted. See Standard Conversions for more information about how the promotion is performed.

Unary negation of unsigned quantities is performed by subtracting the value of the operand from 2^n, where n is
the number of bits in an object of the given unsigned type.

Expressions with Unary Operators
C++ Built-in Operators, Precedence and Associativity

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/unary-plus-and-negation-operators-plus-and.md

Expressions (C++)
4/1/2019 • 2 minutes to read • Edit Online

See also

This section describes C++ expressions. Expressions are sequences of operators and operands that are used for
one or more of these purposes:

Computing a value from the operands.

Designating objects or functions.

Generating "side effects." (Side effects are any actions other than the evaluation of the expression — for
example, modifying the value of an object.)

In C++, operators can be overloaded and their meanings can be user-defined. However, their precedence and the
number of operands they take cannot be modified. This section describes the syntax and semantics of operators
as they are supplied with the language, not overloaded. In addition to types of expressions and semantics of
expressions, the following topics are covered:

Primary expressions

Scope resolution operator

Postfix expressions

Expressions with unary operators

Expressions with binary operators

Conditional operator

Constant expressions

Casting operators

Run-time type information

Topics on operators in other sections:

NOTENOTE

C++ Built-in Operators, Precedence and Associativity

Overloaded operators

typeid (C++/CLI)

Operators for built-in types cannot be overloaded; their behavior is predefined.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/expressions-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/typeid-cpp-component-extensions

Types of Expressions
10/31/2018 • 2 minutes to read • Edit Online

See also

C++ expressions are divided into several categories:

Primary expressions. These are the building blocks from which all other expressions are formed.

Postfix expressions. These are primary expressions followed by an operator — for example, the array
subscript or postfix increment operator.

Expressions formed with unary operators. Unary operators act on only one operand in an expression.

Expressions formed with binary operators. Binary operators act on two operands in an expression.

Expressions with the conditional operator. The conditional operator is a ternary operator — the only such
operator in the C++ language — and takes three operands.

Constant expressions. Constant expressions are formed entirely of constant data.

Expressions with explicit type conversions. Explicit type conversions, or "casts," can be used in expressions.

Expressions with pointer-to-member operators.

Casting. Type-safe "casts" can be used in expressions.

Run-Time Type Information. Determine the type of an object during program execution.

Expressions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/types-of-expressions.md

Primary Expressions
10/31/2018 • 2 minutes to read • Edit Online

literal
this
name
::name (expression)

// expre_Primary_Expressions.cpp
// compile with: /LD
class Example
{
public:
 void Func(); // * const this
 void Func() const; // const * const this
 void Func() volatile; // volatile * const this
};

100 // literal
'c' // literal
this // in a member function, a pointer to the class instance
::func // a global function
::operator + // a global operator function
::A::B // a global qualified name
(i + 1) // a parenthesized expression

Primary expressions are the building blocks of more complex expressions. They are literals, names, and names
qualified by the scope-resolution operator (::). A primary expression may have any of the following forms:

A literal is a constant primary expression. Its type depends on the form of its specification. See Literals for
complete information about specifying literals.

The this keyword is a pointer to a class object. It is available within nonstatic member functions and points to the
instance of the class for which the function was invoked. The this keyword cannot be used outside the body of a
class-member function.

The type of the this pointer is type *const (where type is the class name) within functions not specifically
modifying the this pointer. The following example shows member function declarations and the types of this:

See this Pointer for more information about modifying the type of the this pointer.

The scope-resolution operator (::) followed by a name constitutes a primary expression. Such names must be
names at global scope, not member names. The type of this expression is determined by the declaration of the
name. It is an l-value (that is, it can appear on the left hand side of an assignment operator expression) if the
declaring name is an l-value. The scope-resolution operator allows a global name to be referred to, even if that
name is hidden in the current scope. See Scope for an example of how to use the scope-resolution operator.

An expression enclosed in parentheses is a primary expression whose type and value are identical to those of the
unparenthesized expression. It is an l-value if the unparenthesized expression is an l-value.

Examples of primary expressions include:

The examples below are all considered names, and hence primary expressions, in various forms:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/primary-expressions.md

MyClass // a identifier
MyClass::f // a qualified name
operator = // an operator function name
operator char* // a conversion operator function name
~MyClass // a destructor name
A::B // a qualified name
A<int> // a template id

See also
Types of Expressions

Ellipses and Variadic Templates
10/31/2018 • 3 minutes to read • Edit Online

Syntax

template<typename... Arguments> class classname;

template<typename ...Arguments> class classname;

template<typename ... Arguments> class classname;

template<typename... Arguments> class vtclass;

vtclass< > vtinstance1;
vtclass<int> vtinstance2;
vtclass<float, bool> vtinstance3;
vtclass<long, std::vector<int>, std::string> vtinstance4;

template <typename First, typename... Rest> class classname;

template <typename... Arguments> returntype functionname(Arguments... args);

This article shows how to use the ellipsis (...) with C++ variadic templates. The ellipsis has had many uses in C
and C++. These include variable argument lists for functions. The printf() function from the C Runtime Library
is one of the most well-known examples.

A variadic template is a class or function template that supports an arbitrary number of arguments. This
mechanism is especially useful to C++ library developers because you can apply it to both class templates and
function templates, and thereby provide a wide range of type-safe and non-trivial functionality and flexibility.

An ellipsis is used in two ways by variadic templates. To the left of the parameter name, it signifies a parameter
pack, and to the right of the parameter name, it expands the parameter packs into separate names.

Here's a basic example of variadic template class definition syntax:

For both parameter packs and expansions, you can add whitespace around the ellipsis, based on your preference,
as shown in these examples:

Or this:

Notice that this article uses the convention that's shown in the first example (the ellipsis is attached to typename).

In the preceding examples, Arguments is a parameter pack. The class classname can accept a variable number of
arguments, as in these examples:

By using a variadic template class definition, you can also require at least one parameter:

Here's a basic example of variadic template function syntax:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/ellipses-and-variadic-templates.md

template <typename... Arguments> returntype functionname(Arguments&... args);
template <typename... Arguments> returntype functionname(Arguments&&... args);
template <typename... Arguments> returntype functionname(Arguments*... args);

template <typename... Arguments> returntype functionname(const Arguments&... args);

template <typename First, typename... Rest> returntype functionname(const First& first, const Rest&... args);

template<typename... Arguments>
void tfunc(const Arguments&... args)
{
 constexpr auto numargs{ sizeof...(Arguments) };

 X xobj[numargs]; // array of some previously defined type X

 helper_func(xobj, args...);
}

More about ellipsis placement

Example

The Arguments parameter pack is then expanded for use, as shown in the next section, Understanding variadic
templates.

Other forms of variadic template function syntax are possible—including, but not limited to, these examples:

Specifiers like const are also allowed:

As with variadic template class definitions, you can make functions that require at least one parameter:

Variadic templates use the sizeof...() operator (unrelated to the older sizeof() operator):

Previously, this article described ellipsis placement that defines parameter packs and expansions as "to the left of
the parameter name, it signifies a parameter pack, and to the right of the parameter name, it expands the
parameter packs into separate names". This is technically true but can be confusing in translation to code.
Consider:

// v1 is NOT a function parameter pack:
template <typename... Types> void func1(std::vector<Types...> v1);

// v2 IS a function parameter pack:
template <typename... Types> void func2(std::vector<Types>... v2);

In a template-parameter-list (template <parameter-list>), typename... introduces a template parameter
pack.

In a parameter-declaration-clause (func(parameter-list)), a "top-level" ellipsis introduces a function
parameter pack, and the ellipsis positioning is important:

Where the ellipsis appears immediately after a parameter name, you have a parameter pack expansion.

A good way to illustrate the variadic template function mechanism is to use it in a re-write of some of the
functionality of printf :

#include <iostream>

using namespace std;

void print() {
 cout << endl;
}

template <typename T> void print(const T& t) {
 cout << t << endl;
}

template <typename First, typename... Rest> void print(const First& first, const Rest&... rest) {
 cout << first << ", ";
 print(rest...); // recursive call using pack expansion syntax
}

int main()
{
 print(); // calls first overload, outputting only a newline
 print(1); // calls second overload

 // these call the third overload, the variadic template,
 // which uses recursion as needed.
 print(10, 20);
 print(100, 200, 300);
 print("first", 2, "third", 3.14159);
}

Output
1
10, 20
100, 200, 300
first, 2, third, 3.14159

NOTENOTE
Most implementations that incorporate variadic template functions use recursion of some form, but it's slightly different from
traditional recursion. Traditional recursion involves a function calling itself by using the same signature. (It may be overloaded
or templated, but the same signature is chosen each time.) Variadic recursion involves calling a variadic function template by
using differing (almost always decreasing) numbers of arguments, and thereby stamping out a different signature every time.
A "base case" is still required, but the nature of the recursion is different.

Postfix Expressions
4/1/2019 • 6 minutes to read • Edit Online

Postfix OperatorsPostfix Operators

OPERATOR NAME OPERATOR NOTATION

Subscript operator []

Function call operator ()

Explicit type conversion operator type-name ()

Member access operator . or ->

Postfix increment operator ++

Postfix decrement operator --

primary-expression
postfix-expression[expression]postfix-expression(expression-list)simple-type-name(expression-list)postfix-
expression.namepostfix-expression->namepostfix-expression++postfix-expression--cast-keyword < typename >
(expression)typeid (typename)

func(1)->GetValue()++

simple-type-name (expression-list)

Postfix expressions consist of primary expressions or expressions in which postfix operators follow a primary
expression. The postfix operators are listed in the following table.

The following syntax describes possible postfix expressions:

The postfix-expression above may be a primary expression or another postfix expression. See primary
expressions. Postfix expressions group left to right, thus allowing the expressions to be chained together as
follows:

In the above expression, func is a primary expression, func(1) is a function postfix expression,
func(1)->GetValue is a postfix expression specifying a member of the class, func(1)->GetValue() is another

function postfix expression, and the entire expression is a postfix expression incrementing the return value of
GetValue. The meaning of the expression as a whole is "call func passing 1 as an argument and get a pointer to a
class as a return value. Then call GetValue() on that class, then increment the value returned.

The expressions listed above are assignment expressions, meaning that the result of these expressions must be
an r-value.

The postfix expression form

indicates the invocation of the constructor. If the simple-type-name is a fundamental type, the expression list
must be a single expression, and this expression indicates a cast of the expression's value to the fundamental

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/postfix-expressions.md

Formal and actual arguments

type. This type of cast expression mimics a constructor. Because this form allows fundamental types and classes
to be constructed using the same syntax, this form is especially useful when defining template classes.

The cast-keyword is one of dynamic_cast, static_cast or reinterpret_cast. More information may be found in
dynamic_cast, static_cast and reinterpet_cast.

The typeid operator is considered a postfix expression. See typeid operator.

Calling programs pass information to called functions in "actual arguments." The called functions access the
information using corresponding "formal arguments."

When a function is called, the following tasks are performed:

void Func(int i); // Function prototype
...
Func(7); // Execute function call

int Temp_i = 7;
Func(Temp_i);

All actual arguments (those supplied by the caller) are evaluated. There is no implied order in which these
arguments are evaluated, but all arguments are evaluated and all side effects completed prior to entry to
the function.

Each formal argument is initialized with its corresponding actual argument in the expression list. (A formal
argument is an argument that is declared in the function header and used in the body of a function.)
Conversions are done as if by initialization — both standard and user-defined conversions are performed
in converting an actual argument to the correct type. The initialization performed is illustrated
conceptually by the following code:

The conceptual initializations prior to the call are:

Note that the initialization is performed as if using the equal-sign syntax instead of the parentheses syntax.
A copy of i is made prior to passing the value to the function. (For more information, see Initializers and
Conversions).

Therefore, if the function prototype (declaration) calls for an argument of type long, and if the calling
program supplies an actual argument of type int, the actual argument is promoted using a standard type
conversion to type long (see Standard Conversions).

It is an error to supply an actual argument for which there is no standard or user-defined conversion to
the type of the formal argument.

For actual arguments of class type, the formal argument is initialized by calling the class's constructor. (See
Constructors for more about these special class member functions.)

The function call is executed.

The following program fragment demonstrates a function call:

// expre_Formal_and_Actual_Arguments.cpp
void func(long param1, double param2);

int main()
{
 long i = 1;
 double j = 2;

 // Call func with actual arguments i and j.
 func(i, j);
}

// Define func with formal parameters param1 and param2.
void func(long param1, double param2)
{
}

Treatment of argument types

// expre_Treatment_of_Argument_Types.cpp
int func1(const int i, int j, char *c) {
 i = 7; // C3892 i is const.
 j = i; // value of j is lost at return
 *c = 'a' + j; // changes value of c in calling function
 return i;
}

double& func2(double& d, const char *c) {
 d = 14.387; // changes value of d in calling function.
 *c = 'a'; // C3892 c is a pointer to a const object.
 return d;
}

Ellipses and default arguments

When func is called from main, the formal parameter param1 is initialized with the value of i (i is converted
to type long to correspond to the correct type using a standard conversion), and the formal parameter param2 is
initialized with the value of j (j is converted to type double using a standard conversion).

Formal arguments declared as const types cannot be changed within the body of a function. Functions can
change any argument that is not of type const. However, the change is local to the function and does not affect
the actual argument's value unless the actual argument was a reference to an object not of type const.

The following functions illustrate some of these concepts:

Functions can be declared to accept fewer arguments than specified in the function definition, using one of two
methods: ellipsis (...) or default arguments.

Ellipses denote that arguments may be required but that the number and types are not specified in the
declaration. This is normally poor C++ programming practice because it defeats one of the benefits of C++: type
safety. Different conversions are applied to functions declared with ellipses than to those functions for which the
formal and actual argument types are known:

If the actual argument is of type float, it is promoted to type double prior to the function call.

Any signed or unsigned char, short, enumerated type, or bit field is converted to either a signed or an
unsigned int using integral promotion.

Any argument of class type is passed by value as a data structure; the copy is created by binary copying

// expre_Ellipses_and_Default_Arguments.cpp
// compile with: /EHsc
#include <iostream>

// Declare the function print that prints a string,
// then a terminator.
void print(const char *string,
 const char *terminator = "\n");

int main()
{
 print("hello,");
 print("world!");

 print("good morning", ", ");
 print("sunshine.");
}

using namespace std;
// Define print.
void print(const char *string, const char *terminator)
{
 if(string != NULL)
 cout << string;

 if(terminator != NULL)
 cout << terminator;
}

hello,
world!
good morning, sunshine.

See also

instead of by invoking the class's copy constructor (if one exists).

Ellipses, if used, must be declared last in the argument list. For more information about passing a variable
number of arguments, see the discussion of va_arg, va_start, and va_list in the Run-Time Library Reference.

For information on default arguments in CLR programming, see Variable Argument Lists (...) (C++/CLI).

Default arguments enable you to specify the value an argument should assume if none is supplied in the function
call. The following code fragment shows how default arguments work. For more information about restrictions
on specifying default arguments, see Default Arguments.

The preceding program declares a function, print , that takes two arguments. However, the second argument,
terminator, has a default value, "\n" . In main , the first two calls to print allow the default second argument to
supply a new line to terminate the printed string. The third call specifies an explicit value for the second
argument. The output from the program is

Types of Expressions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/va-arg-va-copy-va-end-va-start
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/variable-argument-lists-dot-dot-dot-cpp-cli

Expressions with Unary Operators
10/31/2018 • 2 minutes to read • Edit Online

Unary operators act on only one operand in an expression. The unary operators are as follows:

Indirection operator (*)

Address-of operator (&)

Unary plus operator (+)

Unary negation operator (-)

Logical negation operator (!)

One's complement operator (~)

Prefix increment operator (++)

Prefix decrement operator (--)

Cast operator ()

sizeof operator

__uuidof operator

__alignof operator

new operator

delete operator

These operators have right-to-left associativity. Unary expressions generally involve syntax that precedes a
postfix or primary expression.

The following are the possible forms of unary expressions.

postfix-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof(type-name)

decltype(expression)

allocation-expression

deallocation-expression

Any postfix-expression is considered a unary-expression, and because any primary expression is considered a
postfix-expression, any primary expressions is considered a unary-expression also. For more information, see
Postfix Expressions and Primary Expressions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/expressions-with-unary-operators.md

See also

A unary-operator consists of one or more of the following symbols: * & + - ! ~

The cast-expression is a unary expression with an optional cast to change the type. For more information see
Cast Operator: ().

An expression can be any expression. For more information, see Expressions.

The allocation-expression refers to the new operator. The deallocation-expression refers to the delete operator.
For more information, see the links earlier in this topic.

Types of Expressions

Expressions with Binary Operators
10/31/2018 • 2 minutes to read • Edit Online

Binary operators act on two operands in an expression. The binary operators are:

Multiplicative operators

Multiplication (*)

Division (/)

Modulus (%)

Additive operators

Addition (+)

Subtraction (-)

Shift operators

Right shift (>>)

Left shift (<<)

Relational and equality operators

Less than (<)

Greater than (>)

Less than or equal to (<=)

Greater than or equal to (>=)

Equal to (==)

Not equal to (!=)

Bitwise operators

Bitwise AND (&)

Bitwise exclusive OR (^)

Bitwise inclusive OR (|)

Logical operators

Logical AND (&&)

Logical OR (||)

Assignment operators

Assignment (=)

Addition assignment (+=)

Subtraction assignment (-=)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/expressions-with-binary-operators.md

See also

Multiplication assignment (*=)

Division assignment (/=)

Modulus assignment (%=)

Left shift assignment (<<=)

Right shift assignment (>>=)

Bitwise AND assignment (&=)

Bitwise exclusive OR assignment (^=)

Bitwise inclusive OR assignment (|=)

Comma Operator (,)

Types of Expressions

C++ Constant Expressions
10/31/2018 • 2 minutes to read • Edit Online

const double Size = 11.0;
char chArray[(int)Size];

See also

A constant value is one that doesn't change. C++ provides two keywords to enable you to express the intent that
an object is not intended to be modified, and to enforce that intent.

C++ requires constant expressions — expressions that evaluate to a constant — for declarations of:

Array bounds

Selectors in case statements

Bit-field length specification

Enumeration initializers

The only operands that are legal in constant expressions are:

Literals

Enumeration constants

Values declared as const that are initialized with constant expressions

sizeof expressions

Nonintegral constants must be converted (either explicitly or implicitly) to integral types to be legal in a constant
expression. Therefore, the following code is legal:

Explicit conversions to integral types are legal in constant expressions; all other types and derived types are illegal
except when used as operands to the sizeof operator.

The comma operator and assignment operators cannot be used in constant expressions.

Types of Expressions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-constant-expressions.md

Semantics of Expressions
11/20/2018 • 4 minutes to read • Edit Online

Order of evaluation

// Order_of_Evaluation.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
int main()
{
 int a = 2, b = 4, c = 9;

 cout << a + b * c << "\n";
 cout << a + (b * c) << "\n";
 cout << (a + b) * c << "\n";
}

38
38
54

Expressions are evaluated according to the precedence and grouping of their operators. (Operator Precedence and
Associativity in Lexical Conventions, shows the relationships the C++ operators impose on expressions.)

Consider this example:

Expression-evaluation order

The order in which the expression shown in the above figure is evaluated is determined by the precedence and
associativity of the operators:

1. Multiplication (*) has the highest precedence in this expression; hence the subexpression b * c is evaluated
first.

2. Addition (+) has the next highest precedence, so a is added to the product of b and c .

3. Left shift (<<) has the lowest precedence in the expression, but there are two occurrences. Because the left-
shift operator groups left-to-right, the left subexpression is evaluated first and then the right one.

When parentheses are used to group the subexpressions, they alter the precedence and also the order in which the
expression is evaluated, as shown in the following figure.

Expression-evaluation order with parentheses

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/semantics-of-expressions.md

Notation in expressions

Operand Types Acceptable to OperatorsOperand Types Acceptable to Operators

TYPE EXPECTED TYPES ALLOWED

type const type
volatile type

type&
const type&
volatile type&
volatile const type
volatile const type&

type * type *
const type *
volatile type *
volatile const type *

const type type
const type
const type&

volatile type type
volatile type
volatile type&

Ambiguous expressions

int i = 7;

func(i, ++i);

C++ sequence points (Microsoft Specific)

Expressions such as those in the above figure are evaluated purely for their side effects — in this case, to transfer
information to the standard output device.

The C++ language specifies certain compatibilities when specifying operands. The following table shows the types
of operands acceptable to operators that require operands of type type.

Because the preceding rules can always be used in combination, a const pointer to a volatile object can be supplied
where a pointer is expected.

Certain expressions are ambiguous in their meaning. These expressions occur most frequently when an object's
value is modified more than once in the same expression. These expressions rely on a particular order of
evaluation where the language does not define one. Consider the following example:

The C++ language does not guarantee the order in which arguments to a function call are evaluated. Therefore, in
the preceding example, func could receive the values 7 and 8, or 8 and 8 for its parameters, depending on
whether the parameters are evaluated from left to right or from right to left.

An expression can modify an object's value only once between consecutive "sequence points."

The C++ language definition does not currently specify sequence points. Microsoft C++ uses the same sequence
points as ANSI C for any expression involving C operators and not involving overloaded operators. When

See also

operators are overloaded, the semantics change from operator sequencing to function-call sequencing. Microsoft
C++ uses the following sequence points:

Left operand of the logical AND operator (&&). The left operand of the logical AND operator is completely
evaluated and all side effects completed before continuing. There is no guarantee that the right operand of
the logical AND operator will be evaluated.

Left operand of the logical OR operator (||). The left operand of the logical OR operator is completely
evaluated and all side effects completed before continuing. There is no guarantee that the right operand of
the logical OR operator will be evaluated.

Left operand of the comma operator. The left operand of the comma operator is completely evaluated and
all side effects completed before continuing. Both operands of the comma operator are always evaluated.

Function-call operator. The function-call expression and all arguments to a function, including default
arguments, are evaluated and all side effects completed prior to entry to the function. There is no specified
order of evaluation among the arguments or the function-call expression.

First operand of the conditional operator. The first operand of the conditional operator is completely
evaluated and all side effects completed before continuing.

The end of a full initialization expression, such as the end of an initialization in a declaration statement.

The expression in an expression statement. Expression statements consist of an optional expression
followed by a semicolon (;). The expression is completely evaluated for its side effects.

The controlling expression in a selection (if or switch) statement. The expression is completely evaluated and
all side effects completed before the code dependent on the selection is executed.

The controlling expression of a while or do statement. The expression is completely evaluated and all side
effects completed before any statements in the next iteration of the while or do loop are executed.

Each of the three expressions of a for statement. Each expression is completely evaluated and all side effects
completed before moving to the next expression.

The expression in a return statement. The expression is completely evaluated and all side effects completed
before control returns to the calling function.

Expressions

Casting
11/20/2018 • 2 minutes to read • Edit Online

See also

The C++ language provides that if a class is derived from a base class containing virtual functions, a pointer to
that base class type can be used to call the implementations of the virtual functions residing in the derived class
object. A class containing virtual functions is sometimes called a "polymorphic class."

Since a derived class completely contains the definitions of all the base classes from which it is derived, it is safe to
cast a pointer up the class hierarchy to any of these base classes. Given a pointer to a base class, it might be safe to
cast the pointer down the hierarchy. It is safe if the object being pointed to is actually of a type derived from the
base class. In this case, the actual object is said to be the "complete object." The pointer to the base class is said to
point to a "subobject" of the complete object. For example, consider the class hierarchy shown in the following
figure.

Class hierarchy

An object of type C could be visualized as shown in the following figure.

Class C with sub-objects B and A

Given an instance of class C , there is a B subobject and an A subobject. The instance of C , including the A

and B subobjects, is the "complete object."

Using run-time type information, it is possible to check whether a pointer actually points to a complete object and
can be safely cast to point to another object in its hierarchy. The dynamic_cast operator can be used to make these
types of casts. It also performs the run-time check necessary to make the operation safe.

For conversion of nonpolymorphic types, you can use the static_cast operator (this topic explains the difference
between static and dynamic casting conversions, and when it is appropriate to use each).

This section covers the following topics:

Casting operators

Run-time type information

Expressions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/casting.md

Casting Operators
4/1/2019 • 2 minutes to read • Edit Online

See also

There are several casting operators specific to the C++ language. These operators are intended to remove some
of the ambiguity and danger inherent in old style C language casts. These operators are:

dynamic_cast Used for conversion of polymorphic types.

static_cast Used for conversion of nonpolymorphic types.

const_cast Used to remove the const, volatile, and __unaligned attributes.

reinterpret_cast Used for simple reinterpretation of bits.

safe_cast Used in C++/CLI to produce verifiable MSIL.

Use const_cast and reinterpret_cast as a last resort, since these operators present the same dangers as old style
casts. However, they are still necessary in order to completely replace old style casts.

Casting

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/casting-operators.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/safe-cast-cpp-component-extensions

dynamic_cast Operator
11/20/2018 • 7 minutes to read • Edit Online

Syntax
dynamic_cast < type-id > (expression)

Remarks

// dynamic_cast_1.cpp
// compile with: /c
class B { };
class C : public B { };
class D : public C { };

void f(D* pd) {
 C* pc = dynamic_cast<C*>(pd); // ok: C is a direct base class
 // pc points to C subobject of pd
 B* pb = dynamic_cast<B*>(pd); // ok: B is an indirect base class
 // pb points to B subobject of pd
}

Converts the operand expression to an object of type type-id .

The type-id must be a pointer or a reference to a previously defined class type or a "pointer to void". The type
of expression must be a pointer if type-id is a pointer, or an l-value if type-id is a reference.

See static_cast for an explanation of the difference between static and dynamic casting conversions, and when it
is appropriate to use each.

There are two breaking changes in the behavior of dynamic_cast in managed code:

dynamic_cast to a pointer to the underlying type of a boxed enum will fail at runtime, returning 0 instead
of the converted pointer.

dynamic_cast will no longer throw an exception when type-id is an interior pointer to a value type, with
the cast failing at runtime. The cast will now return the 0 pointer value instead of throwing.

If type-id is a pointer to an unambiguous accessible direct or indirect base class of expression , a pointer to the
unique subobject of type type-id is the result. For example:

This type of conversion is called an "upcast" because it moves a pointer up a class hierarchy, from a derived class
to a class it is derived from. An upcast is an implicit conversion.

If type-id is void*, a run-time check is made to determine the actual type of expression . The result is a pointer
to the complete object pointed to by expression . For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/dynamic-cast-operator.md

// dynamic_cast_2.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};

void f() {
 A* pa = new A;
 B* pb = new B;
 void* pv = dynamic_cast<void*>(pa);
 // pv now points to an object of type A

 pv = dynamic_cast<void*>(pb);
 // pv now points to an object of type B
}

// dynamic_cast_3.cpp
// compile with: /c /GR
class B {virtual void f();};
class D : public B {virtual void f();};

void f() {
 B* pb = new D; // unclear but ok
 B* pb2 = new B;

 D* pd = dynamic_cast<D*>(pb); // ok: pb actually points to a D
 D* pd2 = dynamic_cast<D*>(pb2); // pb2 points to a B not a D
}

If type-id is not void*, a run-time check is made to see if the object pointed to by expression can be converted
to the type pointed to by type-id .

If the type of expression is a base class of the type of type-id , a run-time check is made to see if expression

actually points to a complete object of the type of type-id . If this is true, the result is a pointer to a complete
object of the type of type-id . For example:

This type of conversion is called a "downcast" because it moves a pointer down a class hierarchy, from a given
class to a class derived from it.

In cases of multiple inheritance, possibilities for ambiguity are introduced. Consider the class hierarchy shown in
the following figure.

For CLR types, dynamic_cast results in either a no-op if the conversion can be performed implicitly, or an MSIL
isinst instruction, which performs a dynamic check and returns nullptr if the conversion fails.

The following sample uses dynamic_cast to determine if a class is an instance of particular type:

// dynamic_cast_clr.cpp
// compile with: /clr
using namespace System;

void PrintObjectType(Object^o) {
 if(dynamic_cast<String^>(o))
 Console::WriteLine("Object is a String");
 else if(dynamic_cast<int^>(o))
 Console::WriteLine("Object is an int");
}

int main() {
 Object^o1 = "hello";
 Object^o2 = 10;

 PrintObjectType(o1);
 PrintObjectType(o2);
}

// dynamic_cast_4.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};
class D : public B {virtual void f();};

void f() {
 D* pd = new D;
 B* pb = dynamic_cast<B*>(pd); // first cast to B
 A* pa2 = dynamic_cast<A*>(pb); // ok: unambiguous
}

Class hierarchy that shows multiple inheritance

A pointer to an object of type D can be safely cast to B or C . However, if D is cast to point to an A object,
which instance of A would result? This would result in an ambiguous casting error. To get around this problem,
you can perform two unambiguous casts. For example:

Further ambiguities can be introduced when you use virtual base classes. Consider the class hierarchy shown in
the following figure.

Class hierarchy that shows virtual base classes

In this hierarchy, A is a virtual base class. Given an instance of class E and a pointer to the A subobject, a
dynamic_cast to a pointer to B will fail due to ambiguity. You must first cast back to the complete E object,
then work your way back up the hierarchy, in an unambiguous manner, to reach the correct B object.

Consider the class hierarchy shown in the following figure.

Class hierarchy that shows duplicate base classes

Given an object of type E and a pointer to the D subobject, to navigate from the D subobject to the left-most

// dynamic_cast_5.cpp
// compile with: /c /GR
class A {virtual void f();};
class B : public A {virtual void f();};
class C : public A { };
class D {virtual void f();};
class E : public B, public C, public D {virtual void f();};

void f(D* pd) {
 E* pe = dynamic_cast<E*>(pd);
 B* pb = pe; // upcast, implicit conversion
 A* pa = pb; // upcast, implicit conversion
}

// dynamic_cast_6.cpp
// compile with: /c /GR
class A {virtual void f();};
class B : public A {virtual void f();};
class C : public A { };
class D {virtual void f();};
class E : public B, public C, public D {virtual void f();};

void f(D* pd) {
 B* pb = dynamic_cast<B*>(pd); // cross cast
 A* pa = pb; // upcast, implicit conversion
}

// dynamic_cast_7.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};

void f() {
 A* pa = new A;
 B* pb = dynamic_cast<B*>(pa); // fails at runtime, not safe;
 // B not derived from A
}

A subobject, three conversions can be made. You can perform a dynamic_cast conversion from the D pointer
to an E pointer, then a conversion (either dynamic_cast or an implicit conversion) from E to B , and finally an
implicit conversion from B to A . For example:

The dynamic_cast operator can also be used to perform a "cross cast." Using the same class hierarchy, it is
possible to cast a pointer, for example, from the B subobject to the D subobject, as long as the complete object
is of type E .

Considering cross casts, it is actually possible to do the conversion from a pointer to D to a pointer to the left-
most A subobject in just two steps. You can perform a cross cast from D to B , then an implicit conversion
from B to A . For example:

A null pointer value is converted to the null pointer value of the destination type by dynamic_cast.

When you use dynamic_cast < type-id > (expression) , if expression cannot be safely converted to type
type-id , the run-time check causes the cast to fail. For example:

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws a bad_cast
Exception. If expression does not point to or reference a valid object, a __non_rtti_object exception is thrown.

See typeid for an explanation of the __non_rtti_object exception.

Example
The following sample creates the base class (struct A) pointer, to an object (struct C). This, plus the fact there are
virtual functions, enables runtime polymorphism.

The sample also calls a non-virtual function in the hierarchy.

// dynamic_cast_8.cpp
// compile with: /GR /EHsc
#include <stdio.h>
#include <iostream>

struct A {
 virtual void test() {
 printf_s("in A\n");
 }
};

struct B : A {
 virtual void test() {
 printf_s("in B\n");
 }

 void test2() {
 printf_s("test2 in B\n");
 }
};

struct C : B {
 virtual void test() {
 printf_s("in C\n");
 }

 void test2() {
 printf_s("test2 in C\n");
 }
};

void Globaltest(A& a) {
 try {
 C &c = dynamic_cast<C&>(a);
 printf_s("in GlobalTest\n");
 }
 catch(std::bad_cast) {
 printf_s("Can't cast to C\n");
 }
}

int main() {
 A *pa = new C;
 A *pa2 = new B;

 pa->test();

 B * pb = dynamic_cast<B *>(pa);
 if (pb)
 pb->test2();

 C * pc = dynamic_cast<C *>(pa2);
 if (pc)
 pc->test2();

 C ConStack;
 Globaltest(ConStack);

 // will fail because B knows nothing about C
 B BonStack;
 Globaltest(BonStack);
}

in C
test2 in B
in GlobalTest
Can't cast to C

See also
Casting Operators
Keywords

bad_cast Exception
10/31/2018 • 2 minutes to read • Edit Online

Syntax
catch (bad_cast)
 statement

Remarks

class bad_cast : public exception {
public:
 bad_cast(const char * _Message = "bad cast");
 bad_cast(const bad_cast &);
 virtual ~bad_cast();
};

// expre_bad_cast_Exception.cpp
// compile with: /EHsc /GR
#include <typeinfo.h>
#include <iostream>

class Shape {
public:
 virtual void virtualfunc() const {}
};

class Circle: public Shape {
public:
 virtual void virtualfunc() const {}
};

using namespace std;
int main() {
 Shape shape_instance;
 Shape& ref_shape = shape_instance;
 try {
 Circle& ref_circle = dynamic_cast<Circle&>(ref_shape);
 }
 catch (bad_cast b) {
 cout << "Caught: " << b.what();
 }
}

The bad_cast exception is thrown by the dynamic_cast operator as the result of a failed cast to a reference type.

The interface for bad_cast is:

The following code contains an example of a failed dynamic_cast that throws the bad_cast exception.

The exception is thrown because the object being cast (a Shape) is not derived from the specified cast type (Circle).
To avoid the exception, add these declarations to main :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bad-cast-exception.md

Circle circle_instance;
Circle& ref_circle = circle_instance;

Shape& ref_shape = dynamic_cast<Shape&>(ref_circle);

See also

Then reverse the sense of the cast in the try block as follows:

dynamic_cast Operator
Keywords
C++ Exception Handling

static_cast Operator
4/1/2019 • 4 minutes to read • Edit Online

Syntax
static_cast <type-id> (expression)

Remarks

// static_cast_Operator.cpp
// compile with: /LD
class B {};

class D : public B {};

void f(B* pb, D* pd) {
 D* pd2 = static_cast<D*>(pb); // Not safe, D can have fields
 // and methods that are not in B.

 B* pb2 = static_cast<B*>(pd); // Safe conversion, D always
 // contains all of B.
}

Converts an expression to the type of type-id, based only on the types that are present in the expression.

In standard C++, no run-time type check is made to help ensure the safety of the conversion. In C++/CX, a
compile time and runtime check are performed. For more information, see Casting.

The static_cast operator can be used for operations such as converting a pointer to a base class to a pointer to a
derived class. Such conversions are not always safe.

In general you use static_cast when you want to convert numeric data types such as enums to ints or ints to
floats, and you are certain of the data types involved in the conversion. static_cast conversions are not as safe as
dynamic_cast conversions, because static_cast does no run-time type check, while dynamic_cast does. A
dynamic_cast to an ambiguous pointer will fail, while a static_cast returns as if nothing were wrong; this can be
dangerous. Although dynamic_cast conversions are safer, dynamic_cast only works on pointers or references,
and the run-time type check is an overhead. For more information, see dynamic_cast Operator.

In the example that follows, the line D* pd2 = static_cast<D*>(pb); is not safe because D can have fields and
methods that are not in B . However, the line B* pb2 = static_cast<B*>(pd); is a safe conversion because D

always contains all of B .

In contrast to dynamic_cast, no run-time check is made on the static_cast conversion of pb . The object pointed
to by pb may not be an object of type D , in which case the use of *pd2 could be disastrous. For instance,
calling a function that is a member of the D class, but not the B class, could result in an access violation.

The dynamic_cast and static_cast operators move a pointer throughout a class hierarchy. However, static_cast
relies exclusively on the information provided in the cast statement and can therefore be unsafe. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/static-cast-operator.md

// static_cast_Operator_2.cpp
// compile with: /LD /GR
class B {
public:
 virtual void Test(){}
};
class D : public B {};

void f(B* pb) {
 D* pd1 = dynamic_cast<D*>(pb);
 D* pd2 = static_cast<D*>(pb);
}

// static_cast_Operator_3.cpp
// compile with: /LD /GR
typedef unsigned char BYTE;

void f() {
 char ch;
 int i = 65;
 float f = 2.5;
 double dbl;

 ch = static_cast<char>(i); // int to char
 dbl = static_cast<double>(f); // float to double
 i = static_cast<BYTE>(ch);
}

If pb really points to an object of type D , then pd1 and pd2 will get the same value. They will also get the
same value if pb == 0 .

If pb points to an object of type B and not to the complete D class, then dynamic_cast will know enough to
return zero. However, static_cast relies on the programmer's assertion that pb points to an object of type D

and simply returns a pointer to that supposed D object.

Consequently, static_cast can do the inverse of implicit conversions, in which case the results are undefined. It is
left to the programmer to verify that the results of a static_cast conversion are safe.

This behavior also applies to types other than class types. For instance, static_cast can be used to convert from
an int to a char. However, the resulting char may not have enough bits to hold the entire int value. Again, it is
left to the programmer to verify that the results of a static_cast conversion are safe.

The static_cast operator can also be used to perform any implicit conversion, including standard conversions
and user-defined conversions. For example:

The static_cast operator can explicitly convert an integral value to an enumeration type. If the value of the
integral type does not fall within the range of enumeration values, the resulting enumeration value is undefined.

The static_cast operator converts a null pointer value to the null pointer value of the destination type.

Any expression can be explicitly converted to type void by the static_cast operator. The destination void type can
optionally include the const, volatile, or __unaligned attribute.

The static_cast operator cannot cast away the const, volatile, or __unaligned attributes. See const_cast
Operator for information on removing these attributes.

C++/CLI: Due to the danger of performing unchecked casts on top of a relocating garbage collector, the use of
static_cast should only be in performance-critical code when you are certain it will work correctly. If you must
use static_cast in release mode, substitute it with safe_cast in your debug builds to ensure success.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/safe-cast-cpp-component-extensions

See also
Casting Operators
Keywords

const_cast Operator
10/31/2018 • 2 minutes to read • Edit Online

Syntax
const_cast <type-id> (expression)

Remarks

Example
// expre_const_cast_Operator.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class CCTest {
public:
 void setNumber(int);
 void printNumber() const;
private:
 int number;
};

void CCTest::setNumber(int num) { number = num; }

void CCTest::printNumber() const {
 cout << "\nBefore: " << number;
 const_cast< CCTest * >(this)->number--;
 cout << "\nAfter: " << number;
}

int main() {
 CCTest X;
 X.setNumber(8);
 X.printNumber();
}

Removes the const, volatile, and __unaligned attribute(s) from a class.

A pointer to any object type or a pointer to a data member can be explicitly converted to a type that is identical
except for the const, volatile, and __unaligned qualifiers. For pointers and references, the result will refer to the
original object. For pointers to data members, the result will refer to the same member as the original (uncast)
pointer to data member. Depending on the type of the referenced object, a write operation through the resulting
pointer, reference, or pointer to data member might produce undefined behavior.

You cannot use the const_cast operator to directly override a constant variable's constant status.

The const_cast operator converts a null pointer value to the null pointer value of the destination type.

On the line containing the const_cast, the data type of the this pointer is const CCTest * . The const_cast
operator changes the data type of the this pointer to CCTest * , allowing the member number to be modified.
The cast lasts only for the remainder of the statement in which it appears.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/const-cast-operator.md

See also
Casting Operators
Keywords

reinterpret_cast Operator
10/31/2018 • 2 minutes to read • Edit Online

Syntax
reinterpret_cast < type-id > (expression)

Remarks

Allows any pointer to be converted into any other pointer type. Also allows any integral type to be converted into
any pointer type and vice versa.

Misuse of the reinterpret_cast operator can easily be unsafe. Unless the desired conversion is inherently low-
level, you should use one of the other cast operators.

The reinterpret_cast operator can be used for conversions such as char* to int* , or One_class* to
Unrelated_class* , which are inherently unsafe.

The result of a reinterpret_cast cannot safely be used for anything other than being cast back to its original type.
Other uses are, at best, nonportable.

The reinterpret_cast operator cannot cast away the const, volatile, or __unaligned attributes. See const_cast
Operator for information on removing these attributes.

The reinterpret_cast operator converts a null pointer value to the null pointer value of the destination type.

One practical use of reinterpret_cast is in a hash function, which maps a value to an index in such a way that two
distinct values rarely end up with the same index.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/reinterpret-cast-operator.md

#include <iostream>
using namespace std;

// Returns a hash code based on an address
unsigned short Hash(void *p) {
 unsigned int val = reinterpret_cast<unsigned int>(p);
 return (unsigned short)(val ^ (val >> 16));
}

using namespace std;
int main() {
 int a[20];
 for (int i = 0; i < 20; i++)
 cout << Hash(a + i) << endl;
}

Output:
64641
64645
64889
64893
64881
64885
64873
64877
64865
64869
64857
64861
64849
64853
64841
64845
64833
64837
64825
64829

See also

The reinterpret_cast allows the pointer to be treated as an integral type. The result is then bit-shifted and XORed
with itself to produce a unique index (unique to a high degree of probability). The index is then truncated by a
standard C-style cast to the return type of the function.

Casting Operators
Keywords

Run-Time Type Information
10/31/2018 • 2 minutes to read • Edit Online

See also

Run-time type information (RTTI) is a mechanism that allows the type of an object to be determined during
program execution. RTTI was added to the C++ language because many vendors of class libraries were
implementing this functionality themselves. This caused incompatibilities between libraries. Thus, it became
obvious that support for run-time type information was needed at the language level.

For the sake of clarity, this discussion of RTTI is almost completely restricted to pointers. However, the concepts
discussed also apply to references.

There are three main C++ language elements to run-time type information:

The dynamic_cast operator.

Used for conversion of polymorphic types.

The typeid operator.

Used for identifying the exact type of an object.

The type_info class.

Used to hold the type information returned by the typeid operator.

Casting

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/run-time-type-information.md

bad_typeid Exception
11/8/2018 • 2 minutes to read • Edit Online

Syntax
catch (bad_typeid)
 statement

Remarks

class bad_typeid : public exception
{
public:
 bad_typeid(const char * _Message = "bad typeid");
 bad_typeid(const bad_typeid &);
 virtual ~bad_typeid();
};

// expre_bad_typeid.cpp
// compile with: /EHsc /GR
#include <typeinfo.h>
#include <iostream>

class A{
public:
 // object for class needs vtable
 // for RTTI
 virtual ~A();
};

using namespace std;
int main() {
A* a = NULL;

try {
 cout << typeid(*a).name() << endl; // Error condition
 }
catch (bad_typeid){
 cout << "Object is NULL" << endl;
 }
}

Output
Object is NULL

The bad_typeid exception is thrown by the typeid operator when the operand for typeid is a NULL pointer.

The interface for bad_typeid is:

The following example shows the typeid operator throwing a bad_typeid exception.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bad-typeid-exception.md

See also
Run-Time Type Information
Keywords

type_info Class
10/31/2018 • 2 minutes to read • Edit Online

class type_info {
public:
 virtual ~type_info();
 size_t hash_code() const
 _CRTIMP_PURE bool operator==(const type_info& rhs) const;
 _CRTIMP_PURE bool operator!=(const type_info& rhs) const;
 _CRTIMP_PURE int before(const type_info& rhs) const;
 _CRTIMP_PURE const char* name() const;
 _CRTIMP_PURE const char* raw_name() const;
};

See also

The type_info class describes type information generated within the program by the compiler. Objects of this
class effectively store a pointer to a name for the type. The type_info class also stores an encoded value suitable
for comparing two types for equality or collating order. The encoding rules and collating sequence for types are
unspecified and may differ between programs.

The <typeinfo> header file must be included in order to use the type_info class. The interface for the type_info
class is:

You cannot instantiate objects of the type_info class directly, because the class has only a private copy constructor.
The only way to construct a (temporary) type_info object is to use the typeid operator. Since the assignment
operator is also private, you cannot copy or assign objects of class type_info.

type_info::hash_code defines a hash function suitable for mapping values of type typeinfo to a distribution of
index values.

The operators == and != can be used to compare for equality and inequality with other type_info objects,
respectively.

There is no link between the collating order of types and inheritance relationships. Use the type_info::before

member function to determine the collating sequence of types. There is no guarantee that type_info::before will
yield the same result in different programs or even different runs of the same program. In this manner,
type_info::before is similar to the address-of (&) operator.

The type_info::name member function returns a const char* to a null-terminated string representing the human-
readable name of the type. The memory pointed to is cached and should never be directly deallocated.

The type_info::raw_name member function returns a const char* to a null-terminated string representing the
decorated name of the object type. The name is actually stored in its decorated form to save space. Consequently,
this function is faster than type_info::name because it doesn't need to undecorate the name. The string returned
by the type_info::raw_name function is useful in comparison operations but is not readable. If you need a human-
readable string, use the type_info::name function instead.

Type information is generated for polymorphic classes only if the /GR (Enable Run-Time Type Information)
compiler option is specified.

Run-Time Type Information

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/type-info-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gr-enable-run-time-type-information

Statements (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

C++ statements are the program elements that control how and in what order objects are manipulated. This
section includes:

Overview

Labeled Statements

Categories of Statements

Expression statements. These statements evaluate an expression for its side effects or for its return
value.

Null statements. These statements can be provided where a statement is required by the C++ syntax
but where no action is to be taken.

Compound statements. These statements are groups of statements enclosed in curly braces ({ }). They
can be used wherever a single statement may be used.

Selection statements. These statements perform a test; they then execute one section of code if the
test evaluates to true (nonzero). They may execute another section of code if the test evaluates to
false.

Iteration statements. These statements provide for repeated execution of a block of code until a
specified termination criterion is met.

Jump statements. These statements either transfer control immediately to another location in the
function or return control from the function.

Declaration statements. Declarations introduce a name into a program.

For information on exception handling statements see Exception Handling.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/statements-cpp.md

Overview of C++ Statements
10/31/2018 • 2 minutes to read • Edit Online

labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-throw-catch

break else __if_exists __try

case __except __if_not_exists try

catch for __leave while

continue goto return

default __finally switch

do if throw

See also

C++ statements are executed sequentially, except when an expression statement, a selection statement, an
iteration statement, or a jump statement specifically modifies that sequence.

Statements may be of the following types:

In most cases, the C++ statement syntax is identical to that of ANSI C. The primary difference between the two is
that in C, declarations are allowed only at the start of a block; C++ adds the declaration-statement, which
effectively removes this restriction. This enables you to introduce variables at a point in the program where a
precomputed initialization value can be calculated.

Declaring variables inside blocks also allows you to exercise precise control over the scope and lifetime of those
variables.

The topics on statements describe the following C++ keywords:

Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overview-of-cpp-statements.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/try-finally-statement-c

Labeled Statements
10/31/2018 • 3 minutes to read • Edit Online

identifier : statement
case constant-expression : statement
default : statement

Remarks

#include <iostream>
using namespace std;

void test_label(int x) {

 if (x == 1){
 goto label1;
 }
 goto label2;

label1:
 cout << "in label1" << endl;
 return;

label2:
 cout << "in label2" << endl;
 return;
}

int main() {
 test_label(1); // in label1
 test_label(2); // in label2
}

Labels are used to transfer program control directly to the specified statement.

The scope of a label is the entire function in which it is declared.

There are three types of labeled statements. All use a colon to separate some type of label from the statement. The
case and default labels are specific to case statements.

The goto statement

The appearance of an identifier label in the source program declares a label. Only a goto statement can transfer
control to an identifier label. The following code fragment illustrates use of the goto statement and an identifier
label:

A label cannot appear by itself but must always be attached to a statement. If a label is needed by itself, place a null
statement after the label.

The label has function scope and cannot be redeclared within the function. However, the same name can be used
as a label in different functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/labeled-statements.md

// labels_with_goto.cpp
// compile with: /EHsc
#include <iostream>
int main() {
 using namespace std;
 goto Test2;

 cout << "testing" << endl;

 Test2:
 cerr << "At Test2 label." << endl;
}

//Output: At Test2 label.

// Sample Microsoft Windows message processing loop.
switch(msg)
{
 case WM_TIMER: // Process timer event.
 SetClassWord(hWnd, GCW_HICON, ahIcon[nIcon++]);
 ShowWindow(hWnd, SW_SHOWNA);
 nIcon %= 14;
 Yield();
 break;

 case WM_PAINT:
 memset(&ps, 0x00, sizeof(PAINTSTRUCT));
 hDC = BeginPaint(hWnd, &ps);
 EndPaint(hWnd, &ps);
 break;

 default:
 // This choice is taken for all messages not specifically
 // covered by a case statement.

 return DefWindowProc(hWnd, Message, wParam, lParam);
 break;
}

Labels in the case statement

The case statement

Labels that appear after the case keyword cannot also appear outside a switch statement. (This restriction also
applies to the default keyword.) The following code fragment shows the correct use of case labels:

Labels that appear after the case keyword cannot also appear outside a switch statement. (This restriction also
applies to the default keyword.) The following code fragment shows the correct use of case labels:

// Sample Microsoft Windows message processing loop.
switch(msg)
{
 case WM_TIMER: // Process timer event.
 SetClassWord(hWnd, GCW_HICON, ahIcon[nIcon++]);
 ShowWindow(hWnd, SW_SHOWNA);
 nIcon %= 14;
 Yield();
 break;

 case WM_PAINT:
 // Obtain a handle to the device context.
 // BeginPaint will send WM_ERASEBKGND if appropriate.

 memset(&ps, 0x00, sizeof(PAINTSTRUCT));
 hDC = BeginPaint(hWnd, &ps);

 // Inform Windows that painting is complete.

 EndPaint(hWnd, &ps);
 break;

 case WM_CLOSE:
 // Close this window and all child windows.

 KillTimer(hWnd, TIMER1);
 DestroyWindow(hWnd);
 if (hWnd == hWndMain)
 PostQuitMessage(0); // Quit the application.
 break;

 default:
 // This choice is taken for all messages not specifically
 // covered by a case statement.

 return DefWindowProc(hWnd, Message, wParam, lParam);
 break;
}

Labels in the goto statement
The appearance of an identifier label in the source program declares a label. Only a goto statement can transfer
control to an identifier label. The following code fragment illustrates use of the goto statement and an identifier
label:

A label cannot appear by itself but must always be attached to a statement. If a label is needed by itself, place a null
statement after the label.

The label has function scope and cannot be redeclared within the function. However, the same name can be used
as a label in different functions.

// labels_with_goto.cpp
// compile with: /EHsc
#include <iostream>
int main() {
 using namespace std;
 goto Test2;

 cout << "testing" << endl;

 Test2:
 cerr << "At Test2 label." << endl;
// At Test2 label.
}

See also
Overview of C++ Statements
switch Statement (C++)

Expression Statement
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[expression] ;

Remarks

See also

Expression statements cause expressions to be evaluated. No transfer of control or iteration takes place as a result
of an expression statement.

The syntax for the expression statement is simply

All expressions in an expression statement are evaluated and all side effects are completed before the next
statement is executed. The most common expression statements are assignments and function calls. Since the
expression is optional, a semicolon alone is considered an empty expression statement, referred to as the null
statement.

Overview of C++ Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/expression-statement.md

Null Statement
10/31/2018 • 2 minutes to read • Edit Online

// null_statement.cpp
char *myStrCpy(char *Dest, const char *Source)
{
 char *DestStart = Dest;

 // Assign value pointed to by Source to
 // Dest until the end-of-string 0 is
 // encountered.
 while(*Dest++ = *Source++)
 ; // Null statement.

 return DestStart;
}

int main()
{
}

See also

The "null statement" is an expression statement with the expression missing. It is useful when the syntax of the
language calls for a statement but no expression evaluation. It consists of a semicolon.

Null statements are commonly used as placeholders in iteration statements or as statements on which to place
labels at the end of compound statements or functions.

The following code fragment shows how to copy one string to another and incorporates the null statement:

Expression Statement

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/null-statement.md

Compound Statements (Blocks)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
{ [statement-list] }

Remarks

if(Amount > 100)
{
 cout << "Amount was too large to handle\n";
 Alert();
}
else
{
 Balance -= Amount;
}

NOTENOTE

See also

A compound statement consists of zero or more statements enclosed in curly braces ({ }). A compound statement
can be used anywhere a statement is expected. Compound statements are commonly called "blocks."

The following example uses a compound statement as the statement part of the if statement (see The if Statement
for details about the syntax):

Because a declaration is a statement, a declaration can be one of the statements in the statement-list. As a result, names
declared inside a compound statement, but not explicitly declared as static, have local scope and (for objects) lifetime. See
Scope for details about treatment of names with local scope.

Overview of C++ Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/compound-statements-blocks.md

Selection Statements (C++)
10/31/2018 • 2 minutes to read • Edit Online

See also

The C++ selection statements, if and switch, provide a means to conditionally execute sections of code.

The __if_exists and __if_not_exists statements allow you to conditionally include code depending on the existence
of a symbol.

See the individual topics for the syntax for each statement.

Overview of C++ Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/selection-statements-cpp.md

if-else Statement (C++)
11/8/2018 • 2 minutes to read • Edit Online

Syntax
if (expression)
{
 statement1;
 ...
}
else // optional
{
 statement2;
 ...
}

// Visual Studio 2017 version 15.3 and later:
if (initialization; expression)
{
 statement1;
 ...
}
else // optional
{
 statement2;
 ...
}

// Visual Studio 2017 version 15.3 and later:
if constexpr (expression)
{
 statement1;
 ...
}
else // optional
{
 statement2;
 ...
}

Example

Controls conditional branching. Statements in the if-block are executed only if the if-expression evaluates to a
non-zero value (or TRUE). If the value of expression is nonzero, statement1 and any other statements in the block
are executed and the else-block, if present, is skipped. If the value of expression is zero, then the if-block is skipped
and the else-block, if present, is executed. Expressions that evaluate to non-zero are

TRUE
a non-null pointer,
any non-zero arithmetic value, or
a class type that defines an unambiguous conversion to an arithmetic, boolean or pointer type. (For
information about conversions, see Standard Conversions.)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/if-else-statement-cpp.md

// if_else_statement.cpp
#include <iostream>

using namespace std;

class C
{
 public:
 void do_something(){}
};
void init(C){}
bool is_true() { return true; }
int x = 10;

int main()
{
 if (is_true())
 {
 cout << "b is true!\n"; // executed
 }
 else
 {
 cout << "b is false!\n";
 }

 // no else statement
 if (x == 10)
 {
 x = 0;
 }

 C* c;
 init(c);
 if (c)
 {
 c->do_something();
 }
 else
 {
 cout << "c is null!\n";
 }
}

if statement with an initializer

Example

Visual Studio 2017 version 15.3 and later (available with /std:c++17): An if statement may also contain an
expression that declares and initializes a named variable. Use this form of the if-statement when the variable is
only needed within the scope of the if-block.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

 if constexpr statements

#include <iostream>
#include <mutex>
#include <map>
#include <string>
#include <algorithm>

using namespace std;

map<int, string> m;
mutex mx;
bool shared_flag; // guarded by mx
void unsafe_operation() {}

int main()
{

 if (auto it = m.find(10); it != m.end())
 {
 cout << it->second;
 return 0;
 }

 if (char buf[10]; fgets(buf, 10, stdin))
 {
 m[0] += buf;
 }

 if (lock_guard<mutex> lock(mx); shared_flag)
 {
 unsafe_operation();
 shared_flag = false;
 }

 string s{ "if" };
 if (auto keywords = { "if", "for", "while" }; any_of(keywords.begin(), keywords.end(), [&s](const char*
kw) { return s == kw; }))
 {
 cout << "Error! Token must not be a keyword\n";
 }
}

In all forms of the if statement, expression, which can have any value except a structure, is evaluated, including all
side effects. Control passes from the if statement to the next statement in the program unless one of the
statements contains a break, continue, or goto.

The else clause of an if...else statement is associated with the closest previous if statement in the same scope
that does not have a corresponding else statement.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): In function templates, you can use an if
constexpr statement to make compile-time branching decisions without having to resort to multiple function
overloads. For example, you can write a single function that handles parameter unpacking (no zero-parameter
overload is needed):

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

template <class T, class... Rest>
void f(T&& t, Rest&&... r)
{
 // handle t
 do_something(t);

 // handle r conditionally
 if constexpr (sizeof...(r))
 {
 f(r...);
 }
 else
 {
 g(r...);
 }
}

See also
Selection Statements
Keywords
switch Statement (C++)

__if_exists Statement
11/8/2018 • 2 minutes to read • Edit Online

Syntax
__if_exists (identifier) {
statements
};

ParametersParameters

PARAMETER DESCRIPTION

identifier The identifier whose existence you want to test.

statements One or more statements to execute if identifier exists.

Remarks
C a u t i o nC a u t i o n

Example

The __if_exists statement tests whether the specified identifier exists. If the identifier exists, the specified
statement block is executed.

To achieve the most reliable results, use the __if_exists statement under the following constraints.

Apply the __if_exists statement to only simple types, not templates.

Apply the __if_exists statement to identifiers both inside or outside a class. Do not apply the __if_exists
statement to local variables.

Use the __if_exists statement only in the body of a function. Outside of the body of a function, the
__if_exists statement can test only fully defined types.

When you test for overloaded functions, you cannot test for a specific form of the overload.

The complement to the __if_exists statement is the __if_not_exists statement.

Notice that this example uses templates, which is not advised.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/if-exists-statement.md

// the__if_exists_statement.cpp
// compile with: /EHsc
#include <iostream>

template<typename T>
class X : public T {
public:
 void Dump() {
 std::cout << "In X<T>::Dump()" << std::endl;

 __if_exists(T::Dump) {
 T::Dump();
 }

 __if_not_exists(T::Dump) {
 std::cout << "T::Dump does not exist" << std::endl;
 }
 }
};

class A {
public:
 void Dump() {
 std::cout << "In A::Dump()" << std::endl;
 }
};

class B {};

bool g_bFlag = true;

class C {
public:
 void f(int);
 void f(double);
};

int main() {
 X<A> x1;
 X x2;

 x1.Dump();
 x2.Dump();

 __if_exists(::g_bFlag) {
 std::cout << "g_bFlag = " << g_bFlag << std::endl;
 }

 __if_exists(C::f) {
 std::cout << "C::f exists" << std::endl;
 }

 return 0;
}

Output
In X<T>::Dump()
In A::Dump()
In X<T>::Dump()
T::Dump does not exist
g_bFlag = 1
C::f exists

See also
Selection Statements
Keywords
__if_not_exists Statement

__if_not_exists Statement
11/8/2018 • 2 minutes to read • Edit Online

Syntax
__if_not_exists (identifier) {
statements
};

ParametersParameters

PARAMETER DESCRIPTION

identifier The identifier whose existence you want to test.

statements One or more statements to execute if identifier does not
exist.

Remarks
C a u t i o nC a u t i o n

Example

See also

The __if_not_exists statement tests whether the specified identifier exists. If the identifier does not exist, the
specified statement block is executed.

To achieve the most reliable results, use the __if_not_exists statement under the following constraints.

Apply the __if_not_exists statement to only simple types, not templates.

Apply the __if_not_exists statement to identifiers both inside or outside a class. Do not apply the
__if_not_exists statement to local variables.

Use the __if_not_exists statement only in the body of a function. Outside of the body of a function, the
__if_not_exists statement can test only fully defined types.

When you test for overloaded functions, you cannot test for a specific form of the overload.

The complement to the __if_not_exists statement is the __if_exists statement.

For an example about how to use __if_not_exists, see __if_exists Statement.

Selection Statements
Keywords
__if_exists Statement

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/if-not-exists-statement.md

switch Statement (C++)
5/7/2019 • 4 minutes to read • Edit Online

Syntax
 switch (init; expression)
 case constant-expression : statement
 [default : statement]

Remarks

Switch Statement BehaviorSwitch Statement Behavior

CONDITION ACTION

Converted value matches that of the promoted controlling
expression.

Control is transferred to the statement following that label.

None of the constants match the constants in the case
labels; a default label is present.

Control is transferred to the default label.

None of the constants match the constants in the case
labels; default label is not present.

Control is transferred to the statement after the switch
statement.

Allows selection among multiple sections of code, depending on the value of an integral expression.

The expression must be of an integral type or of a class type for which there is an unambiguous conversion to
integral type. Integral promotion is performed as described in Standard Conversions.

The switch statement body consists of a series of case labels and an optional default label. No two constant
expressions in case statements can evaluate to the same value. The default label can appear only once. The
labeled statements are not syntactic requirements, but the switch statement is meaningless without them. The
default statement need not come at the end; it can appear anywhere in the body of the switch statement. A case
or default label can only appear inside a switch statement.

The constant-expression in each case label is converted to the type of expression and compared with expression
for equality. Control passes to the statement whose case constant-expression matches the value of expression.
The resulting behavior is shown in the following table.

If a matching expression is found, control is not impeded by subsequent case or default labels. The break
statement is used to stop execution and transfer control to the statement after the switch statement. Without a
break statement, every statement from the matched case label to the end of the switch, including the default,
is executed. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/switch-statement-cpp.md

// switch_statement1.cpp
#include <stdio.h>

int main() {
 char *buffer = "Any character stream";
 int capa, lettera, nota;
 char c;
 capa = lettera = nota = 0;

 while (c = *buffer++) // Walks buffer until NULL
 {
 switch (c)
 {
 case 'A':
 capa++;
 break;
 case 'a':
 lettera++;
 break;
 default:
 nota++;
 }
 }
 printf_s("\nUppercase a: %d\nLowercase a: %d\nTotal: %d\n",
 capa, lettera, (capa + lettera + nota));
}

In the above example, capa is incremented if c is an uppercase A . The break statement after capa++

terminates execution of the switch statement body and control passes to the while loop. Without the break
statement, execution would "fall through" to the next labeled statement, so that lettera and nota would also
be incremented. A similar purpose is served by the break statement for case 'a' . If c is a lowercase a ,
lettera is incremented and the break statement terminates the switch statement body. If c is not an a or
A , the default statement is executed.

Visual Studio 2017 and later: (available with /std:c++17) The [[fallthrough]] attribute is specified in the
C++17 standard. It can be used in a switch statement as a hint to the compiler (or to anyone reading the code)
that fall-through behavior is intended. The Microsoft C++ compiler currently does not warn on fallthrough
behavior, so this attribute has no effect on compiler behavior. Note that the attribute is applied to an empty
statement within the labeled statement; in other words the semicolon is necessary.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

int main()
{
 int n = 5;
 switch (n)
 {

 case 1:
 a();
 break;
 case 2:
 b();
 d();
 [[fallthrough]]; // I meant to do this!
 case 3:
 c();
 break;
 default:
 d();
 break;
 }

 return 0;
}

 switch (Gadget gadget(args); auto s = gadget.get_status())
 {
 case status::good:
 gadget.zip();
 break;
 case status::bad:
 throw BadGadget();
 };

Visual Studio 2017 version 15.3 and later (available with /std:c++17): A switch statement may introduce and
initialize a variable whose scope is limited to the block of the switch statement:

An inner block of a switch statement can contain definitions with initializations as long as they are reachable —
that is, not bypassed by all possible execution paths. Names introduced using these declarations have local
scope. For example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

// switch_statement2.cpp
// C2360 expected
#include <iostream>
using namespace std;
int main(int argc, char *argv[])
{
 switch(tolower(*argv[1]))
 {
 // Error. Unreachable declaration.
 char szChEntered[] = "Character entered was: ";

 case 'a' :
 {
 // Declaration of szChEntered OK. Local scope.
 char szChEntered[] = "Character entered was: ";
 cout << szChEntered << "a\n";
 }
 break;

 case 'b' :
 // Value of szChEntered undefined.
 cout << szChEntered << "b\n";
 break;

 default:
 // Value of szChEntered undefined.
 cout << szChEntered << "neither a nor b\n";
 break;
 }
}

See also

A switch statement can be nested. In such cases, case or default labels associate with the closest switch
statement that encloses them.

Microsoft Specific

Microsoft C does not limit the number of case values in a switch statement. The number is limited only by the
available memory. ANSI C requires at least 257 case labels be allowed in a switch statement.

The default for Microsoft C is that the Microsoft extensions are enabled. Use the /Za compiler option to disable
these extensions.

END Microsoft Specific

Selection Statements
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

Iteration Statements (C++)
10/31/2018 • 2 minutes to read • Edit Online

Iteration StatementsIteration Statements

STATEMENT EVALUATED AT INITIALIZATION INCREMENT

while Top of loop No No

do Bottom of loop No No

for Top of loop Yes Yes

range-based for Top of loop Yes Yes

See also

Iteration statements cause statements (or compound statements) to be executed zero or more times, subject to
some loop-termination criteria. When these statements are compound statements, they are executed in order,
except when either the break statement or the continue statement is encountered.

C++ provides four iteration statements — while, do, for, and range-based for. Each of these iterates until its
termination expression evaluates to zero (false), or until loop termination is forced with a break statement. The
following table summarizes these statements and their actions; each is discussed in detail in the sections that
follow.

The statement part of an iteration statement cannot be a declaration. However, it can be a compound statement
containing a declaration.

Overview of C++ Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/iteration-statements-cpp.md

while Statement (C++)
11/8/2018 • 2 minutes to read • Edit Online

Syntax
while (expression)
 statement

Remarks

// while_statement.cpp

#include <string.h>
#include <stdio.h>
char *trim(char *szSource)
{
 char *pszEOS = 0;

 // Set pointer to character before terminating NULL
 pszEOS = szSource + strlen(szSource) - 1;

 // iterate backwards until non '_' is found
 while((pszEOS >= szSource) && (*pszEOS == '_'))
 *pszEOS-- = '\0';

 return szSource;
}
int main()
{
 char szbuf[] = "12345_____";

 printf_s("\nBefore trim: %s", szbuf);
 printf_s("\nAfter trim: %s\n", trim(szbuf));
}

See also

Executes statement repeatedly until expression evaluates to zero.

The test of expression takes place before each execution of the loop; therefore, a while loop executes zero or more
times. expression must be of an integral type, a pointer type, or a class type with an unambiguous conversion to
an integral or pointer type.

A while loop can also terminate when a break, goto, or return within the statement body is executed. Use
continue to terminate the current iteration without exiting the while loop. continue passes control to the next
iteration of the while loop.

The following code uses a while loop to trim trailing underscores from a string:

The termination condition is evaluated at the top of the loop. If there are no trailing underscores, the loop never
executes.

Iteration Statements
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/while-statement-cpp.md

do-while Statement (C++)
for Statement (C++)
Range-based for Statement (C++)

do-while Statement (C++)
11/8/2018 • 2 minutes to read • Edit Online

Syntax
do
 statement
while (expression) ;

Remarks

Example

// do_while_statement.cpp
#include <stdio.h>
int main()
{
 int i = 0;
 do
 {
 printf_s("\n%d",i++);
 } while (i < 3);
}

See also

Executes a statement repeatedly until the specified termination condition (the expression) evaluates to zero.

The test of the termination condition is made after each execution of the loop; therefore, a do-while loop
executes one or more times, depending on the value of the termination expression. The do-while statement can
also terminate when a break, goto, or return statement is executed within the statement body.

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The statement body is executed.

2. Next, expression is evaluated. If expression is false, the do-while statement terminates and control passes
to the next statement in the program. If expression is true (nonzero), the process is repeated, beginning
with step 1.

The following sample demonstrates the do-while statement:

Iteration Statements
Keywords
while Statement (C++)
for Statement (C++)
Range-based for Statement (C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/do-while-statement-cpp.md

for Statement (C++)
10/31/2018 • 3 minutes to read • Edit Online

Syntax
for (init-expression ; cond-expression ; loop-expression)
 statement;

Remarks

for Loop Elementsfor Loop Elements

SYNTAX NAME WHEN EXECUTED DESCRIPTION

init-expression Before any other element of the for
statement, init-expression is
executed only once. Control then
passes to cond-expression .

Often used to initialize loop indices. It
can contain expressions or declarations.

cond-expression Before execution of each iteration of
statement , including the first

iteration. statement is executed only
if cond-expression evaluates to true
(nonzero).

An expression that evaluates to an
integral type or a class type that has an
unambiguous conversion to an integral
type. Normally used to test for loop-
termination criteria.

loop-expression At the end of each iteration of
statement . After loop-expression

is executed, cond-expression is
evaluated.

Normally used to increment loop
indices.

Executes a statement repeatedly until the condition becomes false. For information on the range-based for
statement, see Range-based for Statement (C++).

Use the for statement to construct loops that must execute a specified number of times.

The for statement consists of three optional parts, as shown in the following table.

The following examples show different ways to use the for statement.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/for-statement-cpp.md

#include <iostream>
using namespace std;

int main() {
 // The counter variable can be declared in the init-expression.
 for (int i = 0; i < 2; i++){
 cout << i;
 }
 // Output: 01
 // The counter variable can be declared outside the for loop.
 int i;
 for (i = 0; i < 2; i++){
 cout << i;
 }
 // Output: 01
 // These for loops are the equivalent of a while loop.
 i = 0;
 while (i < 2){
 cout << i++;
 }
}
 // Output: 012

#include <iostream>
using namespace std;

int main(){
 int i, j;
 for (i = 5, j = 10 ; i + j < 20; i++, j++) {
 cout << "i + j = " << (i + j) << '\n';
 }
}
 // Output:
 i + j = 15
 i + j = 17
 i + j = 19

#include <iostream>
using namespace std;

int main(){
for (int i = 10; i > 0; i--) {
 cout << i << ' ';
 }
 // Output: 10 9 8 7 6 5 4 3 2 1
 for (int i = 10; i < 20; i = i+2) {
 cout << i << ' ';
 }
 // Output: 10 12 14 16 18

init-expression and loop-expression can contain multiple statements separated by commas. For example:

loop-expression can be incremented or decremented, or modified in other ways.

A for loop terminates when a break, return, or goto (to a labeled statement outside the for loop) within
statement is executed. A continue statement in a for loop terminates only the current iteration.

If cond-expression is omitted, it is considered true and the for loop will not terminate without a break, return, or
goto within statement .

Although the three fields of the for statement are normally used for initialization, testing for termination, and
incrementing, they are not restricted to these uses. For example, the following code prints the numbers 0 through

#include <iostream>
using namespace std;

int main()
{
 int i;
 for(i = 0; i < 5; cout << i << '\n', i++){
 ;
 }
}

for Loops and the C++ Standard

for (int i = 0 ; i < 5 ; i++) {
 // do something
}
// i is now out of scope under /Za or /Zc:forScope

// for_statement5.cpp
int main(){
 int i = 0; // hidden by var with same name declared in for loop
 for (int i = 0 ; i < 3; i++) {}

 for (int i = 0 ; i < 3; i++) {}
}

See also

4. In this case, statement is the null statement:

The C++ standard says that a variable declared in a for loop shall go out of scope after the for loop ends. For
example:

By default, under /Ze, a variable declared in a for loop remains in scope until the for loop's enclosing scope ends.

/Zc:forScope enables standard behavior of variables declared in for loops without needing to specify /Za .

It is also possible to use the scoping differences of the for loop to redeclare variables under /Ze as follows:

This more closely mimics the standard behavior of a variable declared in a for loop, which requires variables
declared in a for loop to go out of scope after the loop is done. When a variable is declared in a for loop, the
compiler internally promotes it to a local variable in the for loop's enclosing scope even if there is already a local
variable with the same name.

Iteration Statements
Keywords
while Statement (C++)
do-while Statement (C++)
Range-based for Statement (C++)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-forscope-force-conformance-in-for-loop-scope

Range-based for Statement (C++)
11/8/2018 • 2 minutes to read • Edit Online

Syntax
for (for-range-declaration : expression)
 statement

Remarks

Executes statement repeatedly and sequentially for each element in expression .

Use the range-based for statement to construct loops that must execute through a "range", which is defined as
anything that you can iterate through—for example, std::vector , or any other C++ Standard Library sequence
whose range is defined by a begin() and end() . The name that is declared in the for-range-declaration

portion is local to the for statement and cannot be re-declared in expression or statement . Note that the auto
keyword is preferred in the for-range-declaration portion of the statement.

New in Visual Studio 2017: Range-based for loops no longer require that begin() and end() return objects of
the same type. This enables end() to return a sentinel object such as used by ranges as defined in the Ranges-V3
proposal. For more information, see Generalizing the Range-Based For Loop and the range-v3 library on
GitHub.

This code shows how to use range-based for loops to iterate through an array and a vector :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/range-based-for-statement-cpp.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html
https://github.com/ericniebler/range-v3

// range-based-for.cpp
// compile by using: cl /EHsc /nologo /W4
#include <iostream>
#include <vector>
using namespace std;

int main()
{
 // Basic 10-element integer array.
 int x[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // Range-based for loop to iterate through the array.
 for(int y : x) { // Access by value using a copy declared as a specific type.
 // Not preferred.
 cout << y << " ";
 }
 cout << endl;

 // The auto keyword causes type inference to be used. Preferred.

 for(auto y : x) { // Copy of 'x', almost always undesirable
 cout << y << " ";
 }
 cout << endl;

 for(auto &y : x) { // Type inference by reference.
 // Observes and/or modifies in-place. Preferred when modify is needed.
 cout << y << " ";
 }
 cout << endl;

 for(const auto &y : x) { // Type inference by const reference.
 // Observes in-place. Preferred when no modify is needed.
 cout << y << " ";
 }
 cout << endl;
 cout << "end of integer array test" << endl;
 cout << endl;

 // Create a vector object that contains 10 elements.
 vector<double> v;
 for (int i = 0; i < 10; ++i) {
 v.push_back(i + 0.14159);
 }

 // Range-based for loop to iterate through the vector, observing in-place.
 for(const auto &j : v) {
 cout << j << " ";
 }
 cout << endl;
 cout << "end of vector test" << endl;
}

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
end of integer array test

0.14159 1.14159 2.14159 3.14159 4.14159 5.14159 6.14159 7.14159 8.14159 9.14159
end of vector test

Here is the output:

See also

A range-based for loop terminates when one of these in statement is executed: a break, return, or goto to a
labeled statement outside the range-based for loop. A continue statement in a range-based for loop terminates
only the current iteration.

Keep in mind these facts about range-based for:

Automatically recognizes arrays.

Recognizes containers that have .begin() and .end() .

Uses argument-dependent lookup begin() and end() for anything else.

auto
Iteration Statements
Keywords
while Statement (C++)
do-while Statement (C++)
for Statement (C++)

Jump Statements (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
break;
continue;
return [expression];
goto identifier;

Remarks

See also

A C++ jump statement performs an immediate local transfer of control.

See the following topics for a description of the C++ jump statements.

break Statement

continue Statement

return Statement

goto Statement

Overview of C++ Statements

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/jump-statements-cpp.md

break Statement (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
break;

Remarks

Example

The break statement ends execution of the nearest enclosing loop or conditional statement in which it appears.
Control passes to the statement that follows the end of the statement, if any.

The break statement is used with the conditional switch statement and with the do, for, and while loop
statements.

In a switch statement, the break statement causes the program to execute the next statement outside the
switch statement. Without a break statement, every statement from the matched case label to the end of the
switch statement, including the default clause, is executed.

In loops, the break statement ends execution of the nearest enclosing do, for, or while statement. Control
passes to the statement that follows the ended statement, if any.

Within nested statements, the break statement ends only the do, for, switch, or while statement that
immediately encloses it. You can use a return or goto statement to transfer control from more deeply nested
structures.

The following code shows how to use the break statement in a for loop.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/break-statement-cpp.md

#include <iostream>
using namespace std;

int main()
{
 // An example of a standard for loop
 for (int i = 1; i < 10; i++)
 {
 if (i == 4) {
 break;
 }
 cout << i << '\n';
 }

 // An example of a range-based for loop
int nums []{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 for (int i : nums) {
 if (i == 4) {
 break;
 }
 cout << i << '\n';
 }
}

In each case:
1
2
3

#include <iostream>
using namespace std;

int main() {
 int i = 0;

 while (i < 10) {
 if (i == 4) {
 break;
 }
 cout << i << '\n';
 i++;
 }

 i = 0;
 do {
 if (i == 4) {
 break;
 }
 cout << i << '\n';
 i++;
 } while (i < 10);
}

In each case:
0123

The following code shows how to use break in a while loop and a do loop.

The following code shows how to use break in a switch statement. You must use break in every case if you want
to handle each case separately; if you do not use break, the code execution falls through to the next case.

#include <iostream>
using namespace std;

enum Suit{ Diamonds, Hearts, Clubs, Spades };

int main() {

 Suit hand;
 . . .
 // Assume that some enum value is set for hand
 // In this example, each case is handled separately
 switch (hand)
 {
 case Diamonds:
 cout << "got Diamonds \n";
 break;
 case Hearts:
 cout << "got Hearts \n";
 break;
 case Clubs:
 cout << "got Clubs \n";
 break;
 case Spades:
 cout << "got Spades \n";
 break;
 default:
 cout << "didn't get card \n";
 }
 // In this example, Diamonds and Hearts are handled one way, and
 // Clubs, Spades, and the default value are handled another way
 switch (hand)
 {
 case Diamonds:
 case Hearts:
 cout << "got a red card \n";
 break;
 case Clubs:
 case Spades:
 default:
 cout << "didn't get a red card \n";
 }
}

See also
Jump Statements
Keywords
continue Statement

continue Statement (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
continue;

Remarks

Example
// continue_statement.cpp
#include <stdio.h>
int main()
{
 int i = 0;
 do
 {
 i++;
 printf_s("before the continue\n");
 continue;
 printf("after the continue, should never print\n");
 } while (i < 3);

 printf_s("after the do loop\n");
}

before the continue
before the continue
before the continue
after the do loop

See also

Forces transfer of control to the controlling expression of the smallest enclosing do, for, or while loop.

Any remaining statements in the current iteration are not executed. The next iteration of the loop is determined
as follows:

In a do or while loop, the next iteration starts by reevaluating the controlling expression of the do or
while statement.

In a for loop (using the syntax for (init-expr ; cond-expr ; loop-expr)), the loop-expr clause is
executed. Then the cond-expr clause is reevaluated and, depending on the result, the loop either ends or
another iteration occurs.

The following example shows how the continue statement can be used to bypass sections of code and begin the
next iteration of a loop.

Jump Statements
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/continue-statement-cpp.md

return Statement (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
return [expression];

Remarks

Example
// return_statement2.cpp
#include <stdio.h>

int max (int a, int b)
{
 return (a > b ? a : b);
}

int main()
{
 int nOne = 5;
 int nTwo = 7;

 printf_s("\n%d is bigger\n", max(nOne, nTwo));
}

See also

Terminates the execution of a function and returns control to the calling function (or to the operating system if
you transfer control from the main function). Execution resumes in the calling function at the point immediately
following the call.

The expression clause, if present, is converted to the type specified in the function declaration, as if an
initialization were being performed. Conversion from the type of the expression to the return type of the function
can create temporary objects. For more information about how and when temporaries are created, see
Temporary Objects.

The value of the expression clause is returned to the calling function. If the expression is omitted, the return
value of the function is undefined. Constructors and destructors, and functions of type void,cannot specify an
expression in the return statement. Functions of all other types must specify an expression in the return
statement.

When the flow of control exits the block enclosing the function definition, the result is the same as it would be if a
return statement without an expression had been executed. This is invalid for functions that are declared as
returning a value.

A function can have any number of return statements.

The following example uses an expression with a return statement to obtain the largest of two integers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/return-statement-cpp.md

Jump Statements
Keywords

goto Statement (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
goto identifier;

Remarks

int goto_fn(bool b)
{
 if (!b)
 {
 goto exit; // C2362
 }
 else
 { /*...*/ }

 int error_code = 42;

exit:
 return error_code;
}

Example

The goto statement unconditionally transfers control to the statement labeled by the specified identifier.

The labeled statement designated by identifier must be in the current function. All identifier names are
members of an internal namespace and therefore do not interfere with other identifiers.

A statement label is meaningful only to a goto statement; otherwise, statement labels are ignored. Labels cannot
be redeclared.

A goto statement is not allowed to transfer control to a location that skips over the initialization of any variable
that is in scope in that location. The following example raises C2362:

It is good programming style to use the break, continue, and return statements instead of the goto statement
whenever possible. However, because the break statement exits from only one level of a loop, you might have to
use a goto statement to exit a deeply nested loop.

For more information about labels and the goto statement, see Labeled Statements.

In this example, a goto statement transfers control to the point labeled stop when i equals 3.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/goto-statement-cpp.md

// goto_statement.cpp
#include <stdio.h>
int main()
{
 int i, j;

 for (i = 0; i < 10; i++)
 {
 printf_s("Outer loop executing. i = %d\n", i);
 for (j = 0; j < 2; j++)
 {
 printf_s(" Inner loop executing. j = %d\n", j);
 if (i == 3)
 goto stop;
 }
 }

 // This message does not print:
 printf_s("Loop exited. i = %d\n", i);

 stop:
 printf_s("Jumped to stop. i = %d\n", i);
}

Outer loop executing. i = 0
Inner loop executing. j = 0
Inner loop executing. j = 1
Outer loop executing. i = 1
Inner loop executing. j = 0
Inner loop executing. j = 1
Outer loop executing. i = 2
Inner loop executing. j = 0
Inner loop executing. j = 1
Outer loop executing. i = 3
Inner loop executing. j = 0
Jumped to stop. i = 3

See also
Jump Statements
Keywords

Transfers of Control
10/31/2018 • 2 minutes to read • Edit Online

// transfers_of_control.cpp
// compile with: /W1
// Read input until a nonnumeric character is entered.
int main()
{
 char MyArray[5] = {'2','2','a','c'};
 int i = 0;
 while(1)
 {
 int total = 0;

 char ch = MyArray[i++];

 if (ch >= '0' && ch <= '9')
 {
 goto Label1;

 int i = ch - '0';
 Label1:
 total += i; // C4700: transfers past initialization of i.
 } // i would be destroyed here if goto error were not present
 else
 // Break statement transfers control out of loop,
 // destroying total and ch.
 break;
 }
}

You can use the goto statement or a case label in a switch statement to specify a program that branches past an
initializer. Such code is illegal unless the declaration that contains the initializer is in a block enclosed by the block in
which the jump statement occurs.

The following example shows a loop that declares and initializes the objects total , ch , and i . There is also an
erroneous goto statement that transfers control past an initializer.

In the preceding example, the goto statement tries to transfer control past the initialization of i . However, if i

were declared but not initialized, the transfer would be legal.

The objects total and ch , declared in the block that serves as the statement of the while statement, are
destroyed when that block is exited using the break statement.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/transfers-of-control.md

Namespaces (C++)
5/7/2019 • 7 minutes to read • Edit Online

namespace ContosoData
{
 class ObjectManager
 {
 public:
 void DoSomething() {}
 };
 void Func(ObjectManager) {}
}

ContosoData::ObjectManager mgr;
mgr.DoSomething();
ContosoData::Func(mgr);

using ContosoData::ObjectManager;
ObjectManager mgr;
mgr.DoSomething();

using namespace ContosoData;

ObjectManager mgr;
mgr.DoSomething();
Func(mgr);

using directives

A namespace is a declarative region that provides a scope to the identifiers (the names of types, functions,
variables, etc) inside it. Namespaces are used to organize code into logical groups and to prevent name collisions
that can occur especially when your code base includes multiple libraries. All identifiers at namespace scope are
visible to one another without qualification. Identifiers outside the namespace can access the members by using
the fully qualified name for each identifier, for example std::vector<std::string> vec; , or else by a using
Declaration for a single identifier (using std::string), or a using Directive for all the identifiers in the namespace
(using namespace std;). Code in header files should always use the fully qualified namespace name.

The following example shows a namespace declaration and three ways that code outside the namespace can
accesses their members.

Use the fully qualified name:

Use a using declaration to bring one identifier into scope:

Use a using directive to bring everything in the namespace into scope:

The using directive allows all the names in a namespace to be used without the namespace-name as an explicit
qualifier. Use a using directive in an implementation file (i.e. *.cpp) if you are using several different identifiers in a
namespace; if you are just using one or two identifiers, then consider a using declaration to only bring those
identifiers into scope and not all the identifiers in the namespace. If a local variable has the same name as a
namespace variable, the namespace variable is hidden. It is an error to have a namespace variable with the same

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/namespaces-cpp.md

NOTENOTE

Declaring namespaces and namespace members

//contosoData.h
#pragma once
namespace ContosoDataServer
{
 void Foo();
 int Bar();
}

#include "contosodata.h"
using namespace ContosoDataServer;

void ContosoDataServer::Foo() // use fully-qualified name here
{
 // no qualification needed for Bar()
 Bar();
}

int ContosoDataServer::Bar(){return 0;}

name as a global variable.

A using directive can be placed at the top of a .cpp file (at file scope), or inside a class or function definition.

In general, avoid putting using directives in header files (*.h) because any file that includes that header will bring everything
in the namespace into scope, which can cause name hiding and name collision problems that are very difficult to debug.
Always use fully qualified names in a header file. If those names get too long, you can use a namespace alias to shorten
them. (See below.)

Typically, you declare a namespace in a header file. If your function implementations are in a separate file, then
qualify the function names, as in this example.

Function implementations in contosodata.cpp should use the fully qualified name, even if you place a using
directive at the top of the file:

A namespace can be declared in multiple blocks in a single file, and in multiple files. The compiler joins the parts
together during preprocessing and the resulting namespace contains all the members declared in all the parts. An
example of this is the std namespace which is declared in each of the header files in the standard library.

Members of a named namespace can be defined outside the namespace in which they are declared by explicit
qualification of the name being defined. However, the definition must appear after the point of declaration in a
namespace that encloses the declaration's namespace. For example:

// defining_namespace_members.cpp
// C2039 expected
namespace V {
 void f();
 }

 void V::f() { } // ok
 void V::g() { } // C2039, g() is not yet a member of V

 namespace V {
 void g();
 }
}

The global namespace

The std namespace

Nested namespaces

namespace ContosoDataServer
{
 void Foo();

 namespace Details
 {
 int CountImpl;
 void Ban() { return Foo(); }
 }

 int Bar(){...};
 int Baz(int i) { return Details::CountImpl; }
}

Inline namespaces (C++ 11)

This error can occur when namespace members are declared across multiple header files, and you have not
included those headers in the correct order.

If an identifier is not declared in an explicit namespace, it is part of the implicit global namespace. In general, try to
avoid making declarations at global scope when possible, except for the entry point main Function, which is
required to be in the global namespace. To explicitly qualify a global identifier, use the scope resolution operator
with no name, as in ::SomeFunction(x); . This will differentiate the identifier from anything with the same name in
any other namespace, and it will also help to make your code easier for others to understand.

All C++ standard library types and functions are declared in the std namespace or namespaces nested inside
std .

Namespaces may be nested. An ordinary nested namespace has unqualified access to its parent’s members, but
the parent members do not have unqualified access to the nested namespace (unless it is declared as inline), as
shown in the following example:

Ordinary nested namespaces can be used to encapsulate internal implementation details that are not part of the
public interface of the parent namespace.

In contrast to an ordinary nested namespace, members of an inline namespace are treated as members of the
parent namespace. This characteristic enables argument dependent lookup on overloaded functions to work on

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/main-function-and-program-execution

//Header.h
#include <string>

namespace Test
{
 namespace old_ns
 {
 std::string Func() { return std::string("Hello from old"); }
 }

 inline namespace new_ns
 {
 std::string Func() { return std::string("Hello from new"); }
 }
}

#include "header.h"
#include <string>
#include <iostream>

int main()
{
 using namespace Test;
 using namespace std;

 string s = Func();
 std::cout << s << std::endl; // "Hello from new"
 return 0;
}

namespace Parent
{
 inline namespace new_ns
 {
 template <typename T>
 struct C
 {
 T member;
 };
 }
 template<>
 class C<int> {};
}

functions that have overloads in a parent and a nested inline namespace. It also enables you to declare a
specialization in a parent namespace for a template that is declared in the inline namespace. The following
example shows how external code binds to the inline namespace by default:

The following example shows how you can declare a specialization in a parent of a template that is declared in an
inline namespace:

You can use inline namespaces as a versioning mechanism to manage changes to the public interface of a library.
For example, you can create a single parent namespace, and encapsulate each version of the interface in its own
namespace nested inside the parent. The namespace that holds the most recent or preferred version is qualified
as inline, and is therefore exposed as if it were a direct member of the parent namespace. Client code that invokes
the Parent::Class will automatically bind to the new code. Clients that prefer to use the older version can still
access it by using the fully qualified path to the nested namespace that has that code.

The inline keyword must be applied to the first declaration of the namespace in a compilation unit.

The following example shows two versions of an interface, each in a nested namespace. The v_20 namespace has
some modification from the v_10 interface and is marked as inline. Client code that uses the new library and calls

namespace Contoso
{
 namespace v_10
 {
 template <typename T>
 class Funcs
 {
 public:
 Funcs(void);
 T Add(T a, T b);
 T Subtract(T a, T b);
 T Multiply(T a, T b);
 T Divide(T a, T b);
 };
 }

 inline namespace v_20
 {
 template <typename T>
 class Funcs
 {
 public:
 Funcs(void);
 T Add(T a, T b);
 T Subtract(T a, T b);
 T Multiply(T a, T b);
 std::vector<double> Log(double);
 T Accumulate(std::vector<T> nums);
 };
 }
}

Namespace aliases

namespace a_very_long_namespace_name { class Foo {}; }
namespace AVLNN = a_very_long_namespace_name;
void Bar(AVLNN::Foo foo){ }

anonymous or unnamed namespaces

namespace
{
 int MyFunc(){}
}

Contoso::Funcs::Add will invoke the v_20 version. Code that attempts to call Contoso::Funcs::Divide will now get
a compile time error. If they really need that function, they can still access the v_10 version by explicitly calling
Contoso::v_10::Funcs::Divide .

Namespace names need to be unique, which means that often they should not be too short. If the length of a
name makes code difficult to read, or is tedious to type in a header file where using directives can’t be used, then
you can make a namespace alias which serves as an abbreviation for the actual name. For example:

You can create an explicit namespace but not give it a name:

This is called an unnamed or anonymous namespace and it is useful when you want to make variable declarations
invisible to code in other files (i.e. give them internal linkage) without having to create a named namespace. All
code in the same file can see the identifiers in an unnamed namespace but the identifiers, along with the

See also

namespace itself, are not visible outside that file—or more precisely outside the translation unit.

Declarations and Definitions

Enumerations (C++)
4/1/2019 • 5 minutes to read • Edit Online

NOTENOTE

Syntax
// unscoped enum:
enum [identifier] [: type]
{enum-list};

// scoped enum:
enum [class|struct]
[identifier] [: type]
{enum-list};

// Forward declaration of enumerations (C++11):
enum A : int; // non-scoped enum must have type specified
enum class B; // scoped enum defaults to int but ...
enum class C : short; // ... may have any integral underlying type

Parameters

Enumerator scope

An enumeration is a user-defined type that consists of a set of named integral constants that are known as
enumerators.

This article covers the ISO Standard C++ Language enum type and the scoped (or strongly-typed) enum class type which
is introduced in C++11. For information about the public enum class or private enum class types in C++/CLI and
C++/CX, see enum class.

identifier
The type name given to the enumeration.

type
The underlying type of the enumerators; all enumerators have the same underlying type. May be any integral
type.

enum-list
Comma-separated list of the enumerators in the enumeration. Every enumerator or variable name in the scope
must be unique. However, the values can be duplicated. In a unscoped enum, the scope is the surrounding scope;
in a scoped enum, the scope is the enum-list itself. In a scoped enum, the list may be empty which in effect defines
a new integral type.

class
By using this keyword in the declaration, you specify the enum is scoped, and an identifier must be provided. You
can also use the struct keyword in place of class, as they are semantically equivalent in this context.

An enumeration provides context to describe a range of values which are represented as named constants and are

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/enumerations-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/enum-class-cpp-component-extensions

namespace CardGame_Scoped
{
 enum class Suit { Diamonds, Hearts, Clubs, Spades };

 void PlayCard(Suit suit)
 {
 if (suit == Suit::Clubs) // Enumerator must be qualified by enum type
 { /*...*/}
 }
}

namespace CardGame_NonScoped
{
 enum Suit { Diamonds, Hearts, Clubs, Spades };

 void PlayCard(Suit suit)
 {
 if (suit == Clubs) // Enumerator is visible without qualification
 { /*...*/
 }
 }
}

enum Suit { Diamonds = 1, Hearts, Clubs, Spades };

enum Suit { Diamonds = 5, Hearts, Clubs = 4, Spades };

Casting rules

int account_num = 135692;
Suit hand;
hand = account_num; // error C2440: '=' : cannot convert from 'int' to 'Suit'

also called enumerators. In the original C and C++ enum types, the unqualified enumerators are visible
throughout the scope in which the enum is declared. In scoped enums, the enumerator name must be qualified by
the enum type name. The following example demonstrates this basic difference between the two kinds of enums:

Every name in an enumeration is assigned an integral value that corresponds to its place in the order of the values
in the enumeration. By default, the first value is assigned 0, the next one is assigned 1, and so on, but you can
explicitly set the value of an enumerator, as shown here:

The enumerator Diamonds is assigned the value 1 . Subsequent enumerators, if they are not given an explicit
value, receive the value of the previous enumerator plus one. In the previous example, Hearts would have the
value 2, Clubs would have 3, and so on.

Every enumerator is treated as a constant and must have a unique name within the scope where the enum is
defined (for unscoped enums) or within the enum itself (for scoped enums). The values given to the names do not
have to be unique. For example, if the declaration of a unscoped enum Suit is this:

Then the values of Diamonds , Hearts , Clubs , and Spades are 5, 6, 4, and 5, respectively. Notice that 5 is used
more than once; this is allowed even though it may not be intended. These rules are the same for scoped enums.

Unscoped enum constants can be implicitly converted to int, but an int is never implicitly convertible to an enum
value. The following example shows what happens if you try to assign hand a value that is not a Suit :

A cast is required to convert an int to a scoped or unscoped enumerator. However, you can promote a unscoped

int account_num = Hearts; //OK if Hearts is in a unscoped enum

namespace ScopedEnumConversions
{
 enum class Suit { Diamonds, Hearts, Clubs, Spades };

 void AttemptConversions()
 {
 Suit hand;
 hand = Clubs; // error C2065: 'Clubs' : undeclared identifier
 hand = Suit::Clubs; //Correct.
 int account_num = 135692;
 hand = account_num; // error C2440: '=' : cannot convert from 'int' to 'Suit'
 hand = static_cast<Suit>(account_num); // OK, but probably a bug!!!

 account_num = Suit::Hearts; // error C2440: '=' : cannot convert from 'Suit' to 'int'
 account_num = static_cast<int>(Suit::Hearts); // OK
 }
}

Enums with no enumerators

enum class byte : unsigned char { };

enumerator to an integer value without a cast.

Using implicit conversions in this way can lead to unintended side-effects. To help eliminate programming errors
associated with unscoped enums, scoped enum values are strongly typed. Scoped enumerators must be qualified
by the enum type name (identifier) and cannot be implicitly converted, as shown in the following example:

Notice that the line hand = account_num; still causes the error that occurs with unscoped enums, as shown earlier.
It is allowed with an explicit cast. However, with scoped enums, the attempted conversion in the next statement,
account_num = Suit::Hearts; , is no longer allowed without an explicit cast.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): By defining an enum (regular or scoped)
with an explicit underlying type and no enumerators, you can in effect introduce a new integral type that has no
implicit conversion to any other type. By using this type instead of its built-in underlying type, you can eliminate
the potential for subtle errors caused by inadvertent implicit conversions.

The new type is an exact copy of the underlying type, and therefore has the same calling convention, which means
it can be used across ABIs without any performance penalty. No cast is required when variables of the type are
initialized by using direct-list initialization. The following example shows how to initialize enums with no
enumerators in various contexts:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

enum class byte : unsigned char { };

enum class E : int { };
E e1{ 0 };
E e2 = E{ 0 };

struct X
{
 E e{ 0 };
 X() : e{ 0 } { }
};

E* p = new E{ 0 };

void f(E e) {};

int main()
{
 f(E{ 0 });
 byte i{ 42 };
 byte j = byte{ 42 };

 // unsigned char c = j; // C2440: 'initializing': cannot convert from 'byte' to 'unsigned char'
 return 0;
}

See also
C Enumeration Declarations
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-enumeration-declarations

Unions
5/7/2019 • 9 minutes to read • Edit Online

Syntax
union [name] { member-list };

ParametersParameters

Remarks

Declaring a Union

// declaring_a_union.cpp
union RecordType // Declare a simple union type
{
 char ch;
 int i;
 long l;
 float f;
 double d;
 int *int_ptr;
};
int main()
{
 RecordType t;
 t.i = 5; // t holds an int
 t.f = 7.25 // t now holds a float
}

Using unions

A union is a user-defined type in which all members share the same memory location. This means that at any
given time a union can contain no more than one object from its list of members. It also means that no matter
how many members a union has, it always uses only enough memory to store the largest member.

Unions can be useful for conserving memory when you have lots of objects and/or limited memory. However
they require extra care to use correctly because you are responsible for ensuring that you always access the last
member that was written to. If any member types have a non-trivial constructor, then you must write additional
code to explicitly construct and destroy that member. Before using a union, consider whether the problem you are
trying to solve could be better expressed by using a base class and derived classes.

name
The type name given to the union.

member-list
Members that the union can contain. See Remarks.

Begin the declaration of a union with the union keyword, and enclose the member list in curly braces:

In the previous example, any code that accesses the union needs to know which member is holding the data. The
most common solution to this problem is to enclose the union in a struct along with an additional enum member

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/unions.md

#include <queue>

using namespace std;

enum class WeatherDataType
{
 Temperature, Wind
};

struct TempData
{
 int StationId;
 time_t time;
 double current;
 double max;
 double min;
};

struct WindData
{
 int StationId;
 time_t time;
 int speed;
 short direction;
};

struct Input
{
 WeatherDataType type;
 union
 {
 TempData temp;
 WindData wind;
 };
};

// Functions that are specific to data types
void Process_Temp(TempData t) {}
void Process_Wind(WindData w) {}

// Container for all the data records
queue<Input> inputs;
void Initialize();

int main(int argc, char* argv[])
{
 Initialize();
 while (!inputs.empty())
 {
 Input i = inputs.front();
 switch (i.type)
 {
 case WeatherDataType::Temperature:
 Process_Temp(i.temp);
 break;
 case WeatherDataType::Wind:
 Process_Wind(i.wind);
 break;
 default:
 break;
 }
 inputs.pop();

 }
 return 0;

that indicates the type of the data currently being stored in the union. This is called a discriminated union and the
following example shows the basic pattern.

 return 0;
}

void Initialize()
{
 Input first, second;
 first.type = WeatherDataType::Temperature;
 first.temp = { 101, 1418855664, 91.8, 108.5, 67.2 };
 inputs.push(first);

 second.type = WeatherDataType::Wind;
 second.wind = { 204,1418859354, 14, 27 };
 inputs.push(second);
}

Unrestricted Unions (C++11)

// for MyVariant
#include <crtdbg.h>
#include <new>
#include <utility>

// for sample objects and output
#include <string>
#include <vector>
#include <iostream>

using namespace std;

struct A
{
 A() = default;
 A(int i, const string& str) : num(i), name(str) {}

 int num;
 string name;
 //...
};

In the previous example, note that the union in the Input struct has no name. This is an anonymous union and its
members can be accessed as if they were direct members of the struct. For more information about anonymous
unions, see the section below.

Of course, the previous example shows a problem that could also be solved by using classes that derive from a
common base class, and branching your code based on the runtime type of each object in the container. This may
result in code that easier to maintain and understand, but it might also be slower than using unions. Also, with a
union, you can store completely unrelated types, and dynamically change the type of the value that is stored
without changing the type of the union variable itself. Thus you can create a heterogeneous array of
MyUnionType whose elements store different values of different types.

Note that the Input struct in the preceding example can be easily misused. It is completely up to the user to use
the discriminator correctly to access the member that holds the data. You can protect against misuse by making
the union private and providing special access functions, as shown in the next example.

In C++03 and earlier a union can contain non-static data members with class type as long as the type has no user
provided constructors, destructors or assignment operators. In C++11, these restrictions are removed. If you
include such a member in your union then the compiler will automatically mark any special member functions
that are not user provided as deleted. If the union is an anonymous union inside a class or struct, then any special
member functions of the class or struct that are not user provided are marked as deleted. The following example
shows how to handle the case where one of the members of the union has a member that requires this special
treatment:

struct B
{
 B() = default;
 B(int i, const string& str) : num(i), name(str) {}

 int num;
 string name;
 vector<int> vec;
 // ...
};

enum class Kind { None, A, B, Integer };

#pragma warning (push)
#pragma warning(disable:4624)
class MyVariant
{
public:
 MyVariant()
 : kind_(Kind::None)
 {
 }

 MyVariant(Kind kind)
 : kind_(kind)
 {
 switch (kind_)
 {
 case Kind::None:
 break;
 case Kind::A:
 new (&a_) A();
 break;
 case Kind::B:
 new (&b_) B();
 break;
 case Kind::Integer:
 i_ = 0;
 break;
 default:
 _ASSERT(false);
 break;
 }
 }

 ~MyVariant()
 {
 switch (kind_)
 {
 case Kind::None:
 break;
 case Kind::A:
 a_.~A();
 break;
 case Kind::B:
 b_.~B();
 break;
 case Kind::Integer:
 break;
 default:
 _ASSERT(false);
 break;
 }
 kind_ = Kind::None;
 }

 MyVariant(const MyVariant& other)
 : kind_(other.kind_)
 {

 {
 switch (kind_)
 {
 case Kind::None:
 break;
 case Kind::A:
 new (&a_) A(other.a_);
 break;
 case Kind::B:
 new (&b_) B(other.b_);
 break;
 case Kind::Integer:
 i_ = other.i_;
 break;
 default:
 _ASSERT(false);
 break;
 }
 }

 MyVariant(MyVariant&& other)
 : kind_(other.kind_)
 {
 switch (kind_)
 {
 case Kind::None:
 break;
 case Kind::A:
 new (&a_) A(move(other.a_));
 break;
 case Kind::B:
 new (&b_) B(move(other.b_));
 break;
 case Kind::Integer:
 i_ = other.i_;
 break;
 default:
 _ASSERT(false);
 break;
 }
 other.kind_ = Kind::None;
 }

 MyVariant& operator=(const MyVariant& other)
 {
 if (&other != this)
 {
 switch (other.kind_)
 {
 case Kind::None:
 this->~MyVariant();
 break;
 case Kind::A:
 *this = other.a_;
 break;
 case Kind::B:
 *this = other.b_;
 break;
 case Kind::Integer:
 *this = other.i_;
 break;
 default:
 _ASSERT(false);
 break;
 }
 }
 return *this;
 }

 MyVariant& operator=(MyVariant&& other)

 MyVariant& operator=(MyVariant&& other)
 {
 _ASSERT(this != &other);
 switch (other.kind_)
 {
 case Kind::None:
 this->~MyVariant();
 break;
 case Kind::A:
 *this = move(other.a_);
 break;
 case Kind::B:
 *this = move(other.b_);
 break;
 case Kind::Integer:
 *this = other.i_;
 break;
 default:
 _ASSERT(false);
 break;
 }
 other.kind_ = Kind::None;
 return *this;
 }

 MyVariant(const A& a)
 : kind_(Kind::A), a_(a)
 {
 }

 MyVariant(A&& a)
 : kind_(Kind::A), a_(move(a))
 {
 }

 MyVariant& operator=(const A& a)
 {
 if (kind_ != Kind::A)
 {
 this->~MyVariant();
 new (this) MyVariant(a);
 }
 else
 {
 a_ = a;
 }
 return *this;
 }

 MyVariant& operator=(A&& a)
 {
 if (kind_ != Kind::A)
 {
 this->~MyVariant();
 new (this) MyVariant(move(a));
 }
 else
 {
 a_ = move(a);
 }
 return *this;
 }

 MyVariant(const B& b)
 : kind_(Kind::B), b_(b)
 {
 }

 MyVariant(B&& b)
 : kind_(Kind::B), b_(move(b))

 : kind_(Kind::B), b_(move(b))
 {
 }

 MyVariant& operator=(const B& b)
 {
 if (kind_ != Kind::B)
 {
 this->~MyVariant();
 new (this) MyVariant(b);
 }
 else
 {
 b_ = b;
 }
 return *this;
 }

 MyVariant& operator=(B&& b)
 {
 if (kind_ != Kind::B)
 {
 this->~MyVariant();
 new (this) MyVariant(move(b));
 }
 else
 {
 b_ = move(b);
 }
 return *this;
 }

 MyVariant(int i)
 : kind_(Kind::Integer), i_(i)
 {
 }

 MyVariant& operator=(int i)
 {
 if (kind_ != Kind::Integer)
 {
 this->~MyVariant();
 new (this) MyVariant(i);
 }
 else
 {
 i_ = i;
 }
 return *this;
 }

 Kind GetKind() const
 {
 return kind_;
 }

 A& GetA()
 {
 ASSERT(kind == Kind::A);
 return a_;
 }

 const A& GetA() const
 {
 ASSERT(kind == Kind::A);
 return a_;
 }

 B& GetB()

 {
 ASSERT(kind == Kind::B);
 return b_;
 }

 const B& GetB() const
 {
 ASSERT(kind == Kind::B);
 return b_;
 }

 int& GetInteger()
 {
 ASSERT(kind == Kind::Integer);
 return i_;
 }

 const int& GetInteger() const
 {
 ASSERT(kind == Kind::Integer);
 return i_;
 }

private:
 Kind kind_;
 union
 {
 A a_;
 B b_;
 int i_;
 };
};
#pragma warning (pop)

int main()
{
 A a(1, "Hello from A");
 B b(2, "Hello from B");

 MyVariant mv_1 = a;

 cout << "mv_1 = a: " << mv_1.GetA().name << endl;
 mv_1 = b;
 cout << "mv_1 = b: " << mv_1.GetB().name << endl;
 mv_1 = A(3, "hello again from A");
 cout << R"aaa(mv_1 = A(3, "hello again from A"):)aaa" << mv_1.GetA().name << endl;
 mv_1 = 42;
 cout << "mv_1 = 42: " << mv_1.GetInteger() << endl;

 b.vec = { 10,20,30,40,50 };

 mv_1 = move(b);
 cout << "After move, mv_1 = b: vec.size = " << mv_1.GetB().vec.size() << endl;

 cout << endl << "Press a letter" << endl;
 char c;
 cin >> c;
}
#include <queue>
#include <iostream>
using namespace std;

enum class WeatherDataType
{
 Temperature, Wind
};

struct TempData
{

 TempData() : StationId(""), time(0), current(0), maxTemp(0), minTemp(0) {}
 TempData(string id, time_t t, double cur, double max, double min)
 : StationId(id), time(t), current(cur), maxTemp(max), minTemp(0) {}
 string StationId;
 time_t time = 0;
 double current;
 double maxTemp;
 double minTemp;
};

struct WindData
{
 int StationId;
 time_t time;
 int speed;
 short direction;
};

struct Input
{
 Input() {}
 Input(const Input&) {}

 ~Input()
 {
 if (type == WeatherDataType::Temperature)
 {
 temp.StationId.~string();
 }
 }

 WeatherDataType type;
 void SetTemp(const TempData& td)
 {
 type = WeatherDataType::Temperature;

 // must use placement new because of string member!
 new(&temp) TempData(td);
 }

 TempData GetTemp()
 {
 if (type == WeatherDataType::Temperature)
 return temp;
 else
 throw logic_error("Can't return TempData when Input holds a WindData");
 }
 void SetWind(WindData wd)
 {
 // Explicitly delete struct member that has a
 // non-trivial constructor
 if (type == WeatherDataType::Temperature)
 {
 temp.StationId.~string();
 }
 wind = wd; //placement new not required.
 }
 WindData GetWind()
 {
 if (type == WeatherDataType::Wind)
 {
 return wind;
 }
 else
 throw logic_error("Can't return WindData when Input holds a TempData");
 }

private:

 union
 {
 TempData temp;
 WindData wind;
 };
};

Initializing unions

#include <iostream>
using namespace std;

union NumericType
{
 short iValue;
 long lValue;
 double dValue;
};

int main()
{
 union NumericType Values = { 10 }; // iValue = 10
 cout << Values.iValue << endl;
 Values.dValue = 3.1416;
 cout << Values.dValue) << endl;
}
/* Output:
10
3.141600
*/

Anonymous unions

union { member-list }

Unions cannot store references. Unions don’t support inheritance, therefore a union itself cannot be used as a
base class, or inherit from another class, or have virtual functions.

You can declare and initialize a union in the same statement by assigning an expression enclosed in braces. The
expression is evaluated and assigned to the first field of the union.

The NumericType union is arranged in memory (conceptually) as shown in the following figure.

Storage of Data in NumericType Union

Anonymous unions are unions that are declared without a class-name or declarator-list.

Names declared in an anonymous union are used directly, like nonmember variables. Therefore, the names
declared in an anonymous union must be unique in the surrounding scope.

In addition to the restrictions for named unions, anonymous unions are subject to these additional restrictions:

See also

They must also be declared as static if declared in file or namespace scope.

They can have only public members; private and protected members in anonymous unions generate
errors.

They cannot have member functions.

Classes and Structs
Keywords
class
struct

Functions (C++)
11/20/2018 • 13 minutes to read • Edit Online

int sum(int a, int b)
{
 return a + b;
}

int main()
{
 int i = sum(10, 32);
 int j = sum(i, 66);
 cout << "The value of j is" << j << endl; // 108
}

Parts of a function declaration

int sum(int a, int b);

int sum(int a, int b)
{
 return a + b;
}

A function is a block of code that performs some operation. A function can optionally define input parameters that
enable callers to pass arguments into the function. A function can optionally return a value as output. Functions are
useful for encapsulating common operations in a single reusable block, ideally with a name that clearly describes
what the function does. The following function accepts two integers from a caller and returns their sum; a and b
are parameters of type int.

The function can be invoked, or called, from any number of places in the program. The values that are passed to
the function are the arguments, whose types must be compatible with the parameter types in the function
definition.

There is no practical limit to function length, but good design aims for functions that perform a single well-defined
task. Complex algorithms should be broken up into easy-to-understand simpler functions whenever possible.

Functions that are defined at class scope are called member functions. In C++, unlike other languages, a function
can also be defined at namespace scope (including the implicit global namespace). Such functions are called free
functions or non-member functions; they are used extensively in the Standard Library.

Functions may be overloaded, which means different versions of a function may share the same name if they differ
by the number and/or type of formal parameters. For more information, see Function Overloading.

A minimal function declaration consists of the return type, function name, and parameter list (which may be
empty), along with optional keywords that provide additional instructions to the compiler. The following example is
a function declaration:

A function definition consists of a declaration, plus the body, which is all the code between the curly braces:

A function declaration followed by a semicolon may appear in multiple places in a program. It must appear prior to

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/functions-cpp.md

any calls to that function in each translation unit. The function definition must appear only once in the program,
according to the One Definition Rule (ODR).

The required parts of a function declaration are:

1. The return type, which specifies the type of the value that the function returns, or void if no value is
returned. In C++11, auto is a valid return type that instructs the compiler to infer the type from the return
statement. In C++14, decltype(auto) is also allowed. For more information, see Type Deduction in Return
Types below.

2. The function name, which must begin with a letter or underscore and cannot contain spaces. In general,
leading underscores in the Standard Library function names indicate private member functions, or non-
member functions that are not intended for use by your code.

3. The parameter list, a brace delimited, comma-separated set of zero or more parameters that specify the type
and optionally a local name by which the values may be accessed inside the function body.

Optional parts of a function declaration are:

constexpr float exp(float x, int n)
{
 return n == 0 ? 1 :
 n % 2 == 0 ? exp(x * x, n / 2) :
 exp(x * x, (n - 1) / 2) * x;
};

//Declare printf with C linkage.
extern "C" int printf(const char *fmt, ...);

inline double Account::GetBalance()
{
 return balance;
}

#include <type_traits>

template <typename T>
T copy_object(T& obj) noexcept(std::is_pod<T>) {...}

1. constexpr , which indicates that the return value of the function is a constant value can be computed at
compile time.

2. Its linkage specification, extern or static.

For more information, see Program and Linkage.

3. inline, which instructs the compiler to replace every call to the function with the function code itself. inlining
can help performance in scenarios where a function executes quickly and is invoked repeatedly in a
performance-critical section of code.

For more information, see Inline Functions.

4. A noexcept expression, which specifies whether or not the function can throw an exception. In the following
example, the function does not throw an exception if the is_pod expression evaluates to true.

For more information, see noexcept.

Function definitions

 int foo(int i, std::string s)
 {
 int value {i};
 MyClass mc;
 if(strcmp(s, "default") != 0)
 {
 value = mc.do_something(i);
 }
 return value;
 }

 MyClass& boom(int i, std::string s)
 {
 int value {i};
 MyClass mc;
 mc.Initialize(i,s);
 return mc;
 }

const and constexpr functions

5. (Member functions only) The cv-qualifiers, which specify whether the function is const or volatile.

6. (Member functions only) virtual, override , or final . virtual specifies that a function can be overridden in
a derived class. override means that a function in a derived class is overriding a virtual function. final

means a function cannot be overridden in any further derived class. For more information, see Virtual
Functions.

7. (member functions only) static applied to a member function means that the function is not associated with
any object instances of the class.

8. (Non-static member functions only) The ref-qualifier, which specifies to the compiler which overload of a
function to choose when the implicit object parameter (*this) is an rvalue reference vs. an lvalue reference.
For more information, see Function Overloading.

The following figure shows the parts of a function definition. The shaded area is the function body.

Parts of a function definition

A function definition consists of the declaration and the function body, enclosed in curly braces, which contains
variable declarations, statements and expressions. The following example shows a complete function definition:

Variables declared inside the body are called local variables or locals. They go out of scope when the function exits;
therefore, a function should never return a reference to a local!

You can declare a member function as const to specify that the function is not allowed to change the values of any
data members in the class. By declaring a member function as const, you help the compiler to enforce const-
correctness. If someone mistakenly tries to modify the object by using a function declared as const, a compiler
error is raised. For more information, see const.

Function Templates

template<typename Lhs, typename Rhs>
auto Add2(const Lhs& lhs, const Rhs& rhs)
{
 return lhs + rhs;
}

auto a = Add2(3.13, 2.895); // a is a double
auto b = Add2(string{ "Hello" }, string{ " World" }); // b is a std::string

Function parameters and arguments

void DoSomething(std::string& input){...}

void DoSomething(const std::string& input){...}

void DoSomething(const std::string&& input){...}

// OK same as GetTickCount()
long GetTickCount(void);

Declare a function as constexpr when the value it produces can possibly be determined at compile time. A
constexpr function generally executes faster than a regular function. For more information, see constexpr.

A function template is similar to a class template; it generates concrete functions based on the template arguments.
In many cases, the template is able to infer the type arguments and therefore it isn't necessary to explicitly specify
them.

For more information, see Function Templates

A function has a comma-separated parameter list of zero or more types, each of which has a name by which it can
be accessed inside the function body. A function template may specify additional type or value parameters. The
caller passes arguments, which are concrete values whose types are compatible with the parameter list.

By default, arguments are passed to the function by value, which means the function receives a copy of the object
being passed. For large objects, making a copy can be expensive and is not always necessary. To cause arguments
to be passed by reference (specifically lvalue reference), add a reference quantifier to the parameter:

When a function modifies an argument that is passed by reference, it modifies the original object, not a local copy.
To prevent a function from modifying such an argument, qualify the parameter as const&:

C++ 11: To explicitly handle arguments that are passed by rvalue-reference or lvalue-reference, use a double-
ampersand on the parameter to indicate a universal reference:

A function declared with the single keyword void in the parameter declaration list takes no arguments, as long as
the keyword void is the first and only member of the argument declaration list. Arguments of type void elsewhere
in the list produce errors. For example:

Note that, while it is illegal to specify a void argument except as outlined here, types derived from type void (such
as pointers to void and arrays of void) can appear anywhere the argument declaration list.

Default ArgumentsDefault Arguments

int DoSomething(int num,
 string str,
 Allocator& alloc = defaultAllocator)
{ ... }

// OK both parameters are at end
int DoSomethingElse(int num,
 string str = string{ "Working" },
 Allocator& alloc = defaultAllocator)
{ ... }

// C2548: 'DoMore': missing default parameter for parameter 2
int DoMore(int num = 5, // Not a trailing parameter!
 string str,
 Allocator& = defaultAllocator)
{...}

Function return types

Trailing return typesTrailing return types

template<typename Lhs, typename Rhs>
auto Add(const Lhs& lhs, const Rhs& rhs) -> decltype(lhs + rhs)
{
 return lhs + rhs;
}

Function local variables

The last parameter or parameters in a function signature may be assigned a default argument, which means that
the caller may leave out the argument when calling the function unless they want to specify some other value.

For more information, see Default Arguments.

A function may not return another function, or a built-in array; however it can return pointers to these types, or a
lambda, which produces a function object. Except for these cases, a function may return a value of any type that is
in scope, or it may return no value, in which case the return type is void.

An "ordinary" return type is located on the left side of the function signature. A trailing return type is located on
the right most side of the signature and is preceded by the -> operator. Trailing return types are especially useful in
function templates when the type of the return value depends on template parameters.

When auto is used in conjunction with a trailing return type, it just serves as a placeholder for whatever the
decltype expression produces, and does not itself perform type deduction.

A variable that is declared inside a function body is called a local variable or simply a local. Non-static locals are
only visible inside the function body and, if they are declared on the stack go out of scope when the function exits.
When you construct a local variable and return it by value, the compiler can usually perform the return value
optimization to avoid unnecessary copy operations. If you return a local variable by reference, the compiler will
issue a warning because any attempt by the caller to use that reference will occur after the local has been
destroyed.

In C++ a local variable may be declared as static. The variable is only visible inside the function body, but a single
copy of the variable exists for all instances of the function. Local static objects are destroyed during termination
specified by atexit . If a static object was not constructed because the program's flow of control bypassed its
declaration, no attempt is made to destroy that object.

Type deduction in return types (C++14)

template<typename Lhs, typename Rhs>
auto Add2(const Lhs& lhs, const Rhs& rhs)
{
 return lhs + rhs; //returns a non-const object by value
}

template<typename F, typename Tuple = tuple<T...>, int... I>
decltype(auto) apply_(F&& f, Tuple&& args, index_sequence<I...>)
{
 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(args))...);
}

template<typename F, typename Tuple = tuple<T...>,
 typename Indices = make_index_sequence<tuple_size<Tuple>::value >>
 decltype(auto)
 apply(F&& f, Tuple&& args)
{
 return apply_(std::forward<F>(f), std::forward<Tuple>(args), Indices());
}
}

Returning multiple values from a function

In C++14, you can use auto to instruct the compiler to infer the return type from the function body without
having to provide a trailing return type. Note that auto always deduces to a return-by-value. Use auto&& to
instruct the compiler to deduce a reference.

In this example, auto will be deduced as a non-const value copy of the sum of lhs and rhs.

Note that auto does not preserve the const-ness of the type it deduces. For forwarding functions whose return
value needs to preserve the const-ness or ref-ness of its arguments, you can use the decltype(auto) keyword,
which uses the decltype type inference rules and preserves all the type information. decltype(auto) may be used
as an ordinary return value on the left side, or as a trailing return value.

The following example (based on code from N3493), shows decltype(auto) being used to enable perfect
forwarding of function arguments in a return type that isn't known until the template is instantiated.

There are various ways to return more than one value from a function:

1. Encapsulate the values in a named class or struct object. Requires the class or struct definition to be visible
to the caller :

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3493.html

#include <string>
#include <iostream>

using namespace std;

struct S
{
 string name;
 int num;
};

S g()
{
 string t{ "hello" };
 int u{ 42 };
 return { t, u };
}

int main()
{
 S s = g();
 cout << s.name << " " << s.num << endl;
 return 0;
}

#include <tuple>
#include <string>
#include <iostream>

using namespace std;

tuple<int, string, double> f()
{
 int i{ 108 };
 string s{ "Some text" };
 double d{ .01 };
 return { i,s,d };
}

int main()
{
 auto t = f();
 cout << get<0>(t) << " " << get<1>(t) << " " << get<2>(t) << endl;

 // --or--

 int myval;
 string myname;
 double mydecimal;
 tie(myval, myname, mydecimal) = f();
 cout << myval << " " << myname << " " << mydecimal << endl;

 return 0;
}

2. Return a std::tuple or std::pair object:

3. Visual Studio 2017 version 15.3 and later (available with /std:c++17): Use structured bindings. The
advantage of structured bindings is that the variables that store the return values are initialized at the same
time they are declared, which in some cases can be significantly more efficient. In this statement --
auto[x, y, z] = f(); -- the brackets introduce and intialize names that are in scope for the entire function

block.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

Function pointers

typedef int (*fp)(int);
fp myFunction(char* s); // function returning function pointer

int (*myFunction(char* s))(int);

#include <tuple>
#include <string>
#include <iostream>

using namespace std;

tuple<int, string, double> f()
{
 int i{ 108 };
 string s{ "Some text" };
 double d{ .01 };
 return { i,s,d };
}
struct S
{
 string name;
 int num;
};

S g()
{
 string t{ "hello" };
 int u{ 42 };
 return { t, u };
}

int main()
{
 auto[x, y, z] = f(); // init from tuple
 cout << x << " " << y << " " << z << endl;

 auto[a, b] = g(); // init from POD struct
 cout << a << " " << b << endl;
 return 0;
}

4. In addition to using the return value itself, you can "return" values by defining any number of parameters to
use pass-by-reference so that the function can modify or initialize the values of objects that the caller
provides. For more information, see Reference-Type Function Arguments.

C++ supports function pointers in the same manner as the C language. However a more type-safe alternative is
usually to use a function object.

It is recommended that typedef be used to declare an alias for the function pointer type if declaring a function that
returns a function pointer type. For example

If this is not done, the proper syntax for the function declaration may be deduced from the declarator syntax for the
function pointer by replacing the identifier (fp in the above example) with the functions name and argument list,
as follows:

The preceding declaration is equivalent to the declaration using typedef above.

See also
Function Overloading
Functions with Variable Argument Lists
Explicitly Defaulted and Deleted Functions
Argument-Dependent Name (Koenig) Lookup on Functions
Default Arguments
Inline Functions

Functions with Variable Argument Lists (C++)
10/31/2018 • 3 minutes to read • Edit Online

Functions with variable arguments

// variable_argument_lists.cpp
#include <stdio.h>
#include <stdarg.h>

// Declaration, but not definition, of ShowVar.
void ShowVar(char *szTypes, ...);
int main() {
 ShowVar("fcsi", 32.4f, 'a', "Test string", 4);
}

// ShowVar takes a format string of the form
// "ifcs", where each character specifies the
// type of the argument in that position.
//
// i = int
// f = float
// c = char
// s = string (char *)
//
// Following the format specification is a variable

Function declarations in which the last member of is the ellipsis (...) can take a variable number of arguments. In
these cases, C++ provides type checking only for the explicitly declared arguments. You can use variable argument
lists when you need to make a function so general that even the number and types of arguments can vary. The
family of functions is an example of functions that use variable argument lists. printf argument-declaration-list

To access arguments after those declared, use the macros contained in the standard include file <stdarg.h> as
described below.

Microsoft Specific

Microsoft C++ allows the ellipsis to be specified as an argument if the ellipsis is the last argument and the ellipsis
is preceded by a comma. Therefore, the declaration int Func(int i, ...); is legal, but int Func(int i ...);

is not.

END Microsoft Specific

Declaration of a function that takes a variable number of arguments requires at least one placeholder argument,
even if it is not used. If this placeholder argument is not supplied, there is no way to access the remaining
arguments.

When arguments of type char are passed as variable arguments, they are converted to type int. Similarly, when
arguments of type float are passed as variable arguments, they are converted to type double. Arguments of other
types are subject to the usual integral and floating-point promotions. See Standard Conversions for more
information.

Functions that require variable lists are declared by using the ellipsis (...) in the argument list. Use the types and
macros that are described in the <stdarg.h> include file to access arguments that are passed by a variable list. For
more information about these macros, see va_arg, va_copy, va_end, va_start. in the documentation for the C Run-
Time Library.

The following example shows how the macros work together with the type (declared in <stdarg.h>):

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/functions-with-variable-argument-lists-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/va-arg-va-copy-va-end-va-start

// Following the format specification is a variable
// list of arguments. Each argument corresponds to
// a format character in the format string to which
// the szTypes parameter points
void ShowVar(char *szTypes, ...) {
 va_list vl;
 int i;

 // szTypes is the last argument specified; you must access
 // all others using the variable-argument macros.
 va_start(vl, szTypes);

 // Step through the list.
 for(i = 0; szTypes[i] != '\0'; ++i) {
 union Printable_t {
 int i;
 float f;
 char c;
 char *s;
 } Printable;

 switch(szTypes[i]) { // Type to expect.
 case 'i':
 Printable.i = va_arg(vl, int);
 printf_s("%i\n", Printable.i);
 break;

 case 'f':
 Printable.f = va_arg(vl, double);
 printf_s("%f\n", Printable.f);
 break;

 case 'c':
 Printable.c = va_arg(vl, char);
 printf_s("%c\n", Printable.c);
 break;

 case 's':
 Printable.s = va_arg(vl, char *);
 printf_s("%s\n", Printable.s);
 break;

 default:
 break;
 }
 }
 va_end(vl);
}
//Output:
// 32.400002
// a
// Test string

The previous example illustrates these important concepts:

1. You must establish a list marker as a variable of type va_list before any variable arguments are accessed.
In the previous example, the marker is called vl .

2. The individual arguments are accessed by using the va_arg macro. You must tell the va_arg macro the
type of argument to retrieve so that it can transfer the correct number of bytes from the stack. If you specify
an incorrect type of a size different from that supplied by the calling program to va_arg , the results are
unpredictable.

3. You should explicitly cast the result obtained by using the va_arg macro to the type that you want.

You must call the macro to terminate variable-argument processing. va_end

Function Overloading
3/28/2019 • 18 minutes to read • Edit Online

Overloading ConsiderationsOverloading Considerations

FUNCTION DECLARATION ELEMENT USED FOR OVERLOADING?

Function return type No

Number of arguments Yes

Type of arguments Yes

Presence or absence of ellipsis Yes

Use of typedef names No

Unspecified array bounds No

const or volatile Yes, when applied to entire function

Ref-qualifiers Yes

Example

// function_overloading.cpp
// compile with: /EHsc
#include <iostream>
#include <math.h>
#include <string>

// Prototype three print functions.
int print(std::string s); // Print a string.
int print(double dvalue); // Print a double.
int print(double dvalue, int prec); // Print a double with a
 // given precision.
using namespace std;

C++ allows specification of more than one function of the same name in the same scope. These functions are
called overloaded functions. Overloaded functions enable you to supply different semantics for a function,
depending on the types and number of arguments.

For example, a print function that takes a std::string argument might perform very different tasks than one
that takes an argument of type double. Overloading saves you from having to use names such as print_string

or print_double . At compile time, the compiler chooses which overload to use based on the type of arguments
passed in by the caller. If you call print(42.0) , then the void print(double d) function will be invoked. If you call
print("hello world") , then the void print(std::string) overload will be invoked.

You can overload both member functions and non-member functions. The following table shows what parts of a
function declaration C++ uses to differentiate between groups of functions with the same name in the same
scope.

The following example illustrates how overloading can be used.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/function-overloading.md

using namespace std;
int main(int argc, char *argv[])
{
 const double d = 893094.2987;
 if (argc < 2)
 {
 // These calls to print invoke print(char *s).
 print("This program requires one argument.");
 print("The argument specifies the number of");
 print("digits precision for the second number");
 print("printed.");
 exit(0);
 }

 // Invoke print(double dvalue).
 print(d);

 // Invoke print(double dvalue, int prec).
 print(d, atoi(argv[1]));
}

// Print a string.
int print(string s)
{
 cout << s << endl;
 return cout.good();
}

// Print a double in default precision.
int print(double dvalue)
{
 cout << dvalue << endl;
 return cout.good();
}

// Print a double in specified precision.
// Positive numbers for precision indicate how many digits
// precision after the decimal point to show. Negative
// numbers for precision indicate where to round the number
// to the left of the decimal point.
int print(double dvalue, int prec)
{
 // Use table-lookup for rounding/truncation.
 static const double rgPow10[] = {
 10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1,
 10E0, 10E1, 10E2, 10E3, 10E4, 10E5, 10E6 };
 const int iPowZero = 6;

 // If precision out of range, just print the number.
 if (prec < -6 || prec > 7)
 {
 return print(dvalue);
 }
 // Scale, truncate, then rescale.
 dvalue = floor(dvalue / rgPow10[iPowZero - prec]) *
 rgPow10[iPowZero - prec];
 cout << dvalue << endl;
 return cout.good();
}

The preceding code shows overloading of the print function in file scope.

The default argument isn't considered part of the function type. Therefore, it's not used in selecting overloaded
functions. Two functions that differ only in their default arguments are considered multiple definitions rather than
overloaded functions.

Default arguments can't be supplied for overloaded operators.

Argument Matching

Fraction &Add(Fraction &f, long l); // Variant 1
Fraction &Add(long l, Fraction &f); // Variant 2
Fraction &Add(Fraction &f, Fraction &f); // Variant 3

Fraction F1, F2;

F1 = Add(F2, 23);

SET 1: CANDIDATE FUNCTIONS THAT HAVE FIRST ARGUMENT OF
TYPE FRACTION

SET 2: CANDIDATE FUNCTIONS WHOSE SECOND ARGUMENT CAN
BE CONVERTED TO TYPE INT

Variant 1 Variant 1 (int can be converted to long using a standard
conversion)

Variant 3

F1 = Add(3, 6);

Overloaded functions are selected for the best match of function declarations in the current scope to the
arguments supplied in the function call. If a suitable function is found, that function is called. "Suitable" in this
context means either :

An exact match was found.

A trivial conversion was performed.

An integral promotion was performed.

A standard conversion to the desired argument type exists.

A user-defined conversion (either conversion operator or constructor) to the desired argument type exists.

Arguments represented by an ellipsis were found.

The compiler creates a set of candidate functions for each argument. Candidate functions are functions in which
the actual argument in that position can be converted to the type of the formal argument.

A set of "best matching functions" is built for each argument, and the selected function is the intersection of all
the sets. If the intersection contains more than one function, the overloading is ambiguous and generates an error.
The function that is eventually selected is always a better match than every other function in the group for at least
one argument. If there's no clear winner, the function call generates an error.

Consider the following declarations (the functions are marked Variant 1 , Variant 2 , and Variant 3 , for
identification in the following discussion):

Consider the following statement:

The preceding statement builds two sets:

Functions in Set 2 are functions for which there are implicit conversions from actual parameter type to formal
parameter type, and among such functions there's a function for which the "cost" of converting the actual
parameter type to its formal parameter type is the smallest.

The intersection of these two sets is Variant 1. An example of an ambiguous function call is:

SET 1: CANDIDATE FUNCTIONS THAT HAVE FIRST ARGUMENT OF
TYPE INT

SET 2: CANDIDATE FUNCTIONS THAT HAVE SECOND ARGUMENT
OF TYPE INT

Variant 2 (int can be converted to long using a standard
conversion)

Variant 1 (int can be converted to long using a standard
conversion)

NOTENOTE

Argument Type Differences

// argument_type_differences.cpp
// compile with: /EHsc /W3
// C4521 expected
#include <iostream>

using namespace std;
class Over {
public:
 Over() { cout << "Over default constructor\n"; }
 Over(Over &o) { cout << "Over&\n"; }
 Over(const Over &co) { cout << "const Over&\n"; }
 Over(volatile Over &vo) { cout << "volatile Over&\n"; }
};

int main() {
 Over o1; // Calls default constructor.
 Over o2(o1); // Calls Over(Over&).
 const Over o3; // Calls default constructor.
 Over o4(o3); // Calls Over(const Over&).
 volatile Over o5; // Calls default constructor.
 Over o6(o5); // Calls Over(volatile Over&).
}

OutputOutput

The preceding function call builds the following sets:

Because the intersection of these two sets is empty, the compiler generates an error message.

For argument matching, a function with n default arguments is treated as n+1 separate functions, each with a
different number of arguments.

The ellipsis (...) acts as a wildcard; it matches any actual argument. It can lead to many ambiguous sets, if you don't
design your overloaded function sets with extreme care.

Ambiguity of overloaded functions can't be determined until a function call is encountered. At that point, the sets are built
for each argument in the function call, and you can determine whether an unambiguous overload exists. This means that
ambiguities can remain in your code until they are evoked by a particular function call.

Overloaded functions differentiate between argument types that take different initializers. Therefore, an argument
of a given type and a reference to that type are considered the same for the purposes of overloading. They are
considered the same because they take the same initializers. For example, max(double, double) is considered
the same as max(double &, double &) . Declaring two such functions causes an error.

For the same reason, function arguments of a type modified by const or volatile are not treated differently than
the base type for the purposes of overloading.

However, the function overloading mechanism can distinguish between references that are qualified by const
and volatile and references to the base type. It makes code such as the following possible:

Over default constructor
Over&
Over default constructor
const Over&
Over default constructor
volatile Over&

Argument matching and conversions

Trivial ConversionsTrivial Conversions

CONVERT FROM TYPE CONVERT TO TYPE

type-name type-name &

type-name & type-name

type-name [] type-name *

type-name (argument-list) (* type-name) (argument-list)

type-name const type-name

type-name volatile type-name

type-name * const type-name *

type-name * volatile type-name *

Pointers to const and volatile objects are also considered different from pointers to the base type for the
purposes of overloading.

When the compiler tries to match actual arguments against the arguments in function declarations, it can supply
standard or user-defined conversions to obtain the correct type if no exact match can be found. The application of
conversions is subject to these rules:

Sequences of conversions that contain more than one user-defined conversion are not considered.

Sequences of conversions that can be shortened by removing intermediate conversions are not
considered.

The resultant sequence of conversions, if any, is called the best matching sequence. There are several ways to
convert an object of type int to type unsigned long using standard conversions (described in Standard
Conversions):

Convert from int to long and then from long to unsigned long.

Convert from int to unsigned long.

The first sequence, although it achieves the desired goal, isn't the best matching sequence — a shorter sequence
exists.

The following table shows a group of conversions, called trivial conversions, that have a limited effect on
determining which sequence is the best matching. The instances in which trivial conversions affect choice of
sequence are discussed in the list following the table.

The sequence in which conversions are attempted is as follows:

1. Exact match. An exact match between the types with which the function is called and the types declared in
the function prototype is always the best match. Sequences of trivial conversions are classified as exact
matches. However, sequences that don't make any of these conversions are considered better than
sequences that convert:

From pointer, to pointer to const (type * to const type *).

From pointer, to pointer to volatile (type * to volatile type *).

From reference, to reference to const (type & to const type &).

From reference, to reference to volatile (type & to volatile type &).

2. Match using promotions. Any sequence not classified as an exact match that contains only integral
promotions, conversions from float to double, and trivial conversions is classified as a match using
promotions. Although not as good a match as any exact match, a match using promotions is better than a
match using standard conversions.

3. Match using standard conversions. Any sequence not classified as an exact match or a match using
promotions that contains only standard conversions and trivial conversions is classified as a match using
standard conversions. Within this category, the following rules are applied:

Conversion from a pointer to a derived class, to a pointer to a direct or indirect base class is
preferable to converting to void * or const void * .

Conversion from a pointer to a derived class, to a pointer to a base class produces a better match
the closer the base class is to a direct base class. Suppose the class hierarchy is as shown in the
following figure.

Graph showing preferred conversions

Conversion from type D* to type C* is preferable to conversion from type D* to type B* . Similarly,
conversion from type D* to type B* is preferable to conversion from type D* to type A* .

This same rule applies to reference conversions. Conversion from type D& to type C& is preferable to
conversion from type D& to type B& , and so on.

This same rule applies to pointer-to-member conversions. Conversion from type T D::* to type T C::* is
preferable to conversion from type T D::* to type T B::* , and so on (where T is the type of the member).

The preceding rule applies only along a given path of derivation. Consider the graph shown in the following
figure.

Multiple-inheritance graph that shows preferred conversions

Conversion from type C* to type B* is preferable to conversion from type C* to type A* . The reason is that
they are on the same path, and B* is closer. However, conversion from type C* to type D* isn't preferable to
conversion to type A* ; there's no preference because the conversions follow different paths.

// argument_matching1.cpp
class UDC
{
public:
 operator int()
 {
 return 0;
 }
 operator long();
};

void Print(int i)
{
};

UDC udc;

int main()
{
 Print(udc);
}

void LogToFile(long l);
...
UDC udc;
LogToFile(udc);

1. Match with user-defined conversions. This sequence can't be classified as an exact match, a match using
promotions, or a match using standard conversions. The sequence must contain only user-defined
conversions, standard conversions, or trivial conversions to be classified as a match with user-defined
conversions. A match with user-defined conversions is considered a better match than a match with an
ellipsis but not as good a match as a match with standard conversions.

2. Match with an ellipsis. Any sequence that matches an ellipsis in the declaration is classified as a match with
an ellipsis. It's considered the weakest match.

User-defined conversions are applied if no built-in promotion or conversion exists. These conversions are
selected on the basis of the type of the argument being matched. Consider the following code:

The available user-defined conversions for class UDC are from type int and type long. Therefore, the compiler
considers conversions for the type of the object being matched: UDC . A conversion to int exists, and it is selected.

During the process of matching arguments, standard conversions can be applied to both the argument and the
result of a user-defined conversion. Therefore, the following code works:

In the preceding example, the user-defined conversion, operator long, is invoked to convert udc to type long. If
no user-defined conversion to type long had been defined, the conversion would have proceeded as follows:
Type UDC would have been converted to type int using the user-defined conversion. Then the standard
conversion from type int to type long would have been applied to match the argument in the declaration.

If any user-defined conversions are required to match an argument, the standard conversions aren't used when
evaluating the best match. Even if more than one candidate function requires a user-defined conversion, the
functions are considered equal. For example:

// argument_matching2.cpp
// C2668 expected
class UDC1
{
public:
 UDC1(int); // User-defined conversion from int.
};

class UDC2
{
public:
 UDC2(long); // User-defined conversion from long.
};

void Func(UDC1);
void Func(UDC2);

int main()
{
 Func(1);
}

NOTENOTE

Argument matching and the this pointer

Both versions of Func require a user-defined conversion to convert type int to the class type argument. The
possible conversions are:

Convert from type int to type UDC1 (a user-defined conversion).

Convert from type int to type long; then convert to type UDC2 (a two-step conversion).

Even though the second one requires both a standard conversion and the user-defined conversion, the two
conversions are still considered equal.

User-defined conversions are considered conversion by construction or conversion by initialization (conversion function).
Both methods are considered equal when considering the best match.

Class member functions are treated differently, depending on whether they are declared as static. Because
nonstatic functions have an implicit argument that supplies the this pointer, nonstatic functions are considered to
have one more argument than static functions; otherwise, they are declared identically.

These nonstatic member functions require that the implied this pointer match the object type through which the
function is being called, or, for overloaded operators, they require that the first argument match the object on
which the operator is being applied. (For more information about overloaded operators, see Overloaded
Operators.)

Unlike other arguments in overloaded functions, no temporary objects are introduced and no conversions are
attempted when trying to match the this pointer argument.

When the -> member-selection operator is used to access a member function of class class_name , the this
pointer argument has a type of class_name * const . If the members are declared as const or volatile, the types
are const class_name * const and volatile class_name * const , respectively.

The . member-selection operator works exactly the same way, except that an implicit & (address-of) operator is
prefixed to the object name. The following example shows how this works:

// Expression encountered in code
obj.name

// How the compiler treats it
(&obj)->name

Ref-qualifiers on member functions

#include <iostream>
#include <vector>

using namespace std;

class C
{

public:
 C() {/*expensive initialization*/}
 vector<unsigned> get_data() &
 {
 cout << "lvalue\n";
 return _data;
 }
 vector<unsigned> get_data() &&
 {
 cout << "rvalue\n";
 return std::move(_data);
 }

private:
 vector<unsigned> _data;
};

int main()
{
 C c;
 auto v = c.get_data(); // get a copy. prints "lvalue".
 auto v2 = C().get_data(); // get the original. prints "rvalue"
 return 0;
}

Restrictions on overloading

The left operand of the ->* and .* (pointer to member) operators are treated the same way as the . and ->

(member-selection) operators with respect to argument matching.

Ref qualifiers make it possible to overload a member function on the basis of whether the object pointed to by
this is an rvalue or an lvalue. This feature can be used to avoid unnecessary copy operations in scenarios where
you choose not to provide pointer access to the data. For example, assume class C initializes some data in its
constructor, and returns a copy of that data in member function get_data() . If an object of type C is an rvalue
that is about to be destroyed, then the compiler will choose the get_data() && overload, which moves the data
rather than copy it.

Several restrictions govern an acceptable set of overloaded functions:

Any two functions in a set of overloaded functions must have different argument lists.

Overloading functions with argument lists of the same types, based on return type alone, is an error.

Microsoft Specific

Overloading, overriding, and hiding

You can overload operator new solely on the basis of return type — specifically, on the basis of the memory-
model modifier specified.

END Microsoft Specific

typedef char * PSTR;

void Print(char *szToPrint);
void Print(PSTR szToPrint);

void Print(char *szToPrint);
void Print(char szToPrint[]);

void Print(char szToPrint[]);
void Print(char szToPrint[][7]);
void Print(char szToPrint[][9][42]);

Member functions can't be overloaded solely on the basis of one being static and the other nonstatic.

typedef declarations do not define new types; they introduce synonyms for existing types. They don't
affect the overloading mechanism. Consider the following code:

The preceding two functions have identical argument lists. PSTR is a synonym for type char * . In
member scope, this code generates an error.

Enumerated types are distinct types and can be used to distinguish between overloaded functions.

The types "array of " and "pointer to" are considered identical for the purposes of distinguishing between
overloaded functions, but only for singly dimensioned arrays. That's why these overloaded functions
conflict and generate an error message:

For multiply dimensioned arrays, the second and all succeeding dimensions are considered part of the
type. Therefore, they are used in distinguishing between overloaded functions:

Any two function declarations of the same name in the same scope can refer to the same function, or to two
discrete functions that are overloaded. If the argument lists of the declarations contain arguments of equivalent
types (as described in the previous section), the function declarations refer to the same function. Otherwise, they
refer to two different functions that are selected using overloading.

Class scope is strictly observed; therefore, a function declared in a base class isn't in the same scope as a function
declared in a derived class. If a function in a derived class is declared with the same name as a virtual function in
the base class, the derived-class function overrides the base-class function. For more information, see Virtual
Functions.

If the base class function isn't declared as 'virtual', then the derived class function is said to hide it. Both
overriding and hiding are distinct from overloading.

Block scope is strictly observed; therefore, a function declared in file scope isn't in the same scope as a function
declared locally. If a locally declared function has the same name as a function declared in file scope, the locally
declared function hides the file-scoped function instead of causing overloading. For example:

// declaration_matching1.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
void func(int i)
{
 cout << "Called file-scoped func : " << i << endl;
}

void func(char *sz)
{
 cout << "Called locally declared func : " << sz << endl;
}

int main()
{
 // Declare func local to main.
 extern void func(char *sz);

 func(3); // C2664 Error. func(int) is hidden.
 func("s");
}

The preceding code shows two definitions from the function func . The definition that takes an argument of type
char * is local to main because of the extern statement. Therefore, the definition that takes an argument of

type int is hidden, and the first call to func is in error.

For overloaded member functions, different versions of the function can be given different access privileges. They
are still considered to be in the scope of the enclosing class and thus are overloaded functions. Consider the
following code, in which the member function Deposit is overloaded; one version is public, the other, private.

The intent of this sample is to provide an Account class in which a correct password is required to perform
deposits. It's done by using overloading.

The call to Deposit in Account::Deposit calls the private member function. This call is correct because
Account::Deposit is a member function, and has access to the private members of the class.

// declaration_matching2.cpp
class Account
{
public:
 Account()
 {
 }
 double Deposit(double dAmount, char *szPassword);

private:
 double Deposit(double dAmount)
 {
 return 0.0;
 }
 int Validate(char *szPassword)
 {
 return 0;
 }

};

int main()
{
 // Allocate a new object of type Account.
 Account *pAcct = new Account;

 // Deposit $57.22. Error: calls a private function.
 // pAcct->Deposit(57.22);

 // Deposit $57.22 and supply a password. OK: calls a
 // public function.
 pAcct->Deposit(52.77, "pswd");
}

double Account::Deposit(double dAmount, char *szPassword)
{
 if (Validate(szPassword))
 return Deposit(dAmount);
 else
 return 0.0;
}

See also
Functions (C++)

Explicitly Defaulted and Deleted Functions
11/8/2018 • 6 minutes to read • Edit Online

Benefits of explicitly defaulted and deleted functions

NOTENOTE

In C++11, defaulted and deleted functions give you explicit control over whether the special member functions are
automatically generated. Deleted functions also give you simple language to prevent problematic type promotions
from occurring in arguments to functions of all types—special member functions, as well as normal member
functions and non-member functions—which would otherwise cause an unwanted function call.

In C++, the compiler automatically generates the default constructor, copy constructor, copy-assignment operator,
and destructor for a type if it does not declare its own. These functions are known as the special member functions,
and they are what make simple user-defined types in C++ behave like structures do in C. That is, you can create,
copy, and destroy them without any additional coding effort. C++11 brings move semantics to the language and
adds the move constructor and move-assignment operator to the list of special member functions that the
compiler can automatically generate.

This is convenient for simple types, but complex types often define one or more of the special member functions
themselves, and this can prevent other special member functions from being automatically generated. In practice:

If any constructor is explicitly declared, then no default constructor is automatically generated.

If a virtual destructor is explicitly declared, then no default destructor is automatically generated.

If a move constructor or move-assignment operator is explicitly declared, then:

No copy constructor is automatically generated.

No copy-assignment operator is automatically generated.

If a copy constructor, copy-assignment operator, move constructor, move-assignment operator, or destructor
is explicitly declared, then:

No move constructor is automatically generated.

No move-assignment operator is automatically generated.

Additionally, the C++11 standard specifies the following additional rules:

If a copy constructor or destructor is explicitly declared, then automatic generation of the copy-assignment operator is
deprecated.
If a copy-assignment operator or destructor is explicitly declared, then automatic generation of the copy constructor is
deprecated.

In both cases, Visual Studio continues to automatically generate the necessary functions implicitly, and does not emit a
warning.

The consequences of these rules can also leak into object hierarchies. For example, if for any reason a base class
fails to have a default constructor that's callable from a deriving class—that is, a public or protected constructor
that takes no parameters—then a class that derives from it cannot automatically generate its own default
constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/explicitly-defaulted-and-deleted-functions.md

struct noncopyable
{
 noncopyable() {};

private:
 noncopyable(const noncopyable&);
 noncopyable& operator=(const noncopyable&);
};

struct noncopyable
{
 noncopyable() =default;
 noncopyable(const noncopyable&) =delete;
 noncopyable& operator=(const noncopyable&) =delete;
};

These rules can complicate the implementation of what should be straight-forward, user-defined types and
common C++ idioms—for example, making a user-defined type non-copyable by declaring the copy constructor
and copy-assignment operator privately and not defining them.

Before C++11, this code snippet was the idiomatic form of non-copyable types. However, it has several problems:

The copy constructor has to be declared privately to hide it, but because it’s declared at all, automatic
generation of the default constructor is prevented. You have to explicitly define the default constructor if you
want one, even if it does nothing.

Even if the explicitly-defined default constructor does nothing, it's considered non-trivial by the compiler. It's
less efficient than an automatically generated default constructor and prevents noncopyable from being a
true POD type.

Even though the copy constructor and copy-assignment operator are hidden from outside code, the
member functions and friends of noncopyable can still see and call them. If they are declared but not
defined, calling them causes a linker error.

Although this is a commonly accepted idiom, the intent is not clear unless you understand all of the rules for
automatic generation of the special member functions.

In C++11, the non-copyable idiom can be implemented in a way that is more straightforward.

Notice how the problems with the pre-C++11 idiom are resolved:

Generation of the default constructor is still prevented by declaring the copy constructor, but you can bring
it back by explicitly defaulting it.

Explicitly defaulted special member functions are still considered trivial, so there is no performance penalty,
and noncopyable is not prevented from being a true POD type.

The copy constructor and copy-assignment operator are public but deleted. It is a compile-time error to
define or call a deleted function.

The intent is clear to anyone who understands =default and =delete . You don't have to understand the
rules for automatic generation of special member functions.

Similar idioms exist for making user-defined types that are non-movable, that can only be dynamically allocated,
or that cannot be dynamically allocated. Each of these idioms have pre-C++11 implementations that suffer similar
problems, and that are similarly resolved in C++11 by implementing them in terms of defaulted and deleted
special member functions.

Explicitly defaulted functions

struct widget
{
 widget()=default;

 inline widget& operator=(const widget&);
};

inline widget& widget::operator=(const widget&) =default;

Deleted functions

struct widget
{
 // deleted operator new prevents widget from being dynamically allocated.
 void* operator new(std::size_t) = delete;
};

// deleted overload prevents call through type promotion of float to double from succeeding.
void call_with_true_double_only(float) =delete;
void call_with_true_double_only(double param) { return; }

You can default any of the special member functions—to explicitly state that the special member function uses the
default implementation, to define the special member function with a non-public access qualifier, or to reinstate a
special member function whose automatic generation was prevented by other circumstances.

You default a special member function by declaring it as in this example:

Notice that you can default a special member function outside the body of a class as long as it’s inlinable.

Because of the performance benefits of trivial special member functions, we recommend that you prefer
automatically generated special member functions over empty function bodies when you want the default
behavior. You can do this either by explicitly defaulting the special member function, or by not declaring it (and also
not declaring other special member functions that would prevent it from being automatically generated.)

You can delete special member functions as well as normal member functions and non-member functions to
prevent them from being defined or called. Deleting of special member functions provides a cleaner way of
preventing the compiler from generating special member functions that you don’t want. The function must be
deleted as it is declared; it cannot be deleted afterwards in the way that a function can be declared and then later
defaulted.

Deleting of normal member function or non-member functions prevents problematic type promotions from
causing an unintended function to be called. This works because deleted functions still participate in overload
resolution and provide a better match than the function that could be called after the types are promoted. The
function call resolves to the more-specific—but deleted—function and causes a compiler error.

Notice in the preceding sample that calling call_with_true_double_only by using a float argument would cause a
compiler error, but calling call_with_true_double_only by using an int argument would not; in the int case, the
argument will be promoted from int to double and successfully call the double version of the function, even
though that might not be what’s intended. To ensure that any call to this function by using a non-double argument
causes a compiler error, you can declare a template version of the function that’s deleted.

template < typename T >
void call_with_true_double_only(T) =delete; //prevent call through type promotion of any T to double from
succeeding.

void call_with_true_double_only(double param) { return; } // also define for const double, double&, etc. as
needed.

Argument-Dependent Name (Koenig) Lookup on
Functions
10/31/2018 • 2 minutes to read • Edit Online

Example

// argument_dependent_name_koenig_lookup_on_functions.cpp
namespace A
{
 struct X
 {
 };
 void f(const X&)
 {
 }
}
int main()
{
// The compiler finds A::f() in namespace A, which is where
// the type of argument x is defined. The type of x is A::X.
 A::X x;
 f(x);
}

The compiler can use argument-dependent name lookup to find the definition of an unqualified function call.
Argument-dependent name lookup is also called Koenig lookup. The type of every argument in a function call is
defined within a hierarchy of namespaces, classes, structures, unions, or templates. When you specify an
unqualified postfix function call, the compiler searches for the function definition in the hierarchy associated with
each argument type.

In the sample, the compiler notes that function f() takes an argument x . Argument x is of type A::X , which is
defined in namespace A . The compiler searches namespace A and finds a definition for function f() that takes
an argument of type A::X .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/argument-dependent-name-koenig-lookup-on-functions.md

Default Arguments
10/31/2018 • 2 minutes to read • Edit Online

// Prototype three print functions.
int print(char *s); // Print a string.
int print(double dvalue); // Print a double.
int print(double dvalue, int prec); // Print a double with a
// given precision.

// Prototype two print functions.
int print(char *s); // Print a string.
int print(double dvalue, int prec=2); // Print a double with a
// given precision.

// default_arguments.cpp
// compile with: /EHsc /c

// Print a double in specified precision.
// Positive numbers for precision indicate how many digits
// precision after the decimal point to show. Negative
// numbers for precision indicate where to round the number
// to the left of the decimal point.

#include <iostream>
#include <math.h>
using namespace std;

int print(double dvalue, int prec) {
 // Use table-lookup for rounding/truncation.
 static const double rgPow10[] = {
 10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,
 10E1, 10E2, 10E3, 10E4, 10E5, 10E6
 };
 const int iPowZero = 6;
 // If precision out of range, just print the number.
 if(prec >= -6 && prec <= 7)
 // Scale, truncate, then rescale.
 dvalue = floor(dvalue / rgPow10[iPowZero - prec]) *
 rgPow10[iPowZero - prec];
 cout << dvalue << endl;
 return cout.good();
}

In many cases, functions have arguments that are used so infrequently that a default value would suffice. To
address this, the default-argument facility allows for specifying only those arguments to a function that are
meaningful in a given call. To illustrate this concept, consider the example presented in Function Overloading.

In many applications, a reasonable default can be supplied for prec , eliminating the need for two functions:

The implementation of the print function is changed slightly to reflect the fact that only one such function exists
for type double:

To invoke the new print function, use code such as the following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/default-arguments.md

print(d); // Precision of 2 supplied by default argument.
print(d, 0); // Override default argument to achieve other
// results.

Note these points when using default arguments:

int print(double dvalue = 0.0, int prec);

// Prototype for print function.
int print(double dvalue, int prec = 2);

...

// Definition for print function.
int print(double dvalue, int prec = 2)
{
...
}

int (*pShowIntVal)(int i = 0);

Default arguments are used only in function calls where trailing arguments are omitted — they must be the
last argument(s). Therefore, the following code is illegal:

A default argument cannot be redefined in later declarations even if the redefinition is identical to the
original. Therefore, the following code produces an error:

The problem with this code is that the function declaration in the definition redefines the default argument
for prec .

Additional default arguments can be added by later declarations.

Default arguments can be provided for pointers to functions. For example:

Inline Functions (C++)
10/31/2018 • 7 minutes to read • Edit Online

Example

// Inline_Member_Functions.cpp
class Account
{
public:
 Account(double initial_balance) { balance = initial_balance; }
 double GetBalance();
 double Deposit(double Amount);
 double Withdraw(double Amount);
private:
 double balance;
};

inline double Account::GetBalance()
{
 return balance;
}

inline double Account::Deposit(double Amount)
{
 return (balance += Amount);
}

inline double Account::Withdraw(double Amount)
{
 return (balance -= Amount);
}
int main()
{
}

NOTENOTE

A function defined in the body of a class declaration is an inline function.

In the following class declaration, the Account constructor is an inline function. The member functions
GetBalance , Deposit , and Withdraw are not specified as inline but can be implemented as inline functions.

In the class declaration, the functions were declared without the inline keyword. The inline keyword can be specified in the
class declaration; the result is the same.

A given inline member function must be declared the same way in every compilation unit. This constraint causes
inline functions to behave as if they were instantiated functions. Additionally, there must be exactly one definition
of an inline function.

A class member function defaults to external linkage unless a definition for that function contains the inline
specifier. The preceding example shows that these functions need not be explicitly declared with the inline
specifier ; using inline in the function definition causes it to be an inline function. However, it is illegal to
redeclare a function as inline after a call to that function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/inline-functions-cpp.md

Inline, __inline, and __forceinline

Example 1Example 1

// inline_keyword1.cpp
// compile with: /c
inline int max(int a , int b) {
 if(a > b)
 return a;
 return b;
}

Example 2Example 2

The inline and __inline specifiers instruct the compiler to insert a copy of the function body into each place the
function is called.

The insertion (called inline expansion or inlining) occurs only if the compiler's cost/benefit analysis show it to be
profitable. Inline expansion alleviates the function-call overhead at the potential cost of larger code size.

The __forceinline keyword overrides the cost/benefit analysis and relies on the judgment of the programmer
instead. Exercise caution when using __forceinline. Indiscriminate use of __forceinline can result in larger code
with only marginal performance gains or, in some cases, even performance losses (due to increased paging of a
larger executable, for example).

Using inline functions can make your program faster because they eliminate the overhead associated with
function calls. Functions expanded inline are subject to code optimizations not available to normal functions.

The compiler treats the inline expansion options and keywords as suggestions. There is no guarantee that
functions will be inlined. You cannot force the compiler to inline a particular function, even with the
__forceinline keyword. When compiling with /clr, the compiler will not inline a function if there are security
attributes applied to the function.

The inline keyword is available only in C++. The __inline and __forceinline keywords are available in both C
and C++. For compatibility with previous versions, _inline and _forceinline are synonyms for __inline, and
__forceinline unless compiler option /Za (Disable language extensions) is specified.

The inline keyword tells the compiler that inline expansion is preferred. However, the compiler can create a
separate instance of the function (instantiate) and create standard calling linkages instead of inserting the code
inline. Two cases where this can happen are:

Recursive functions.

Functions that are referred to through a pointer elsewhere in the translation unit.

These reasons may interfere with inlining, as may others, at the discretion of the compiler ; you should not
depend on the inline specifier to cause a function to be inlined.

As with normal functions, there is no defined order of evaluation of the arguments to an inline function. In fact, it
could be different from the order in which the arguments are evaluated when passed using normal function call
protocol.

The /Ob compiler optimization option helps to determine whether inline function expansion actually occurs.

/LTCG performs cross-module inlining regardless of whether it was requested in source code.

A class's member functions can be declared inline either by using the inline keyword or by placing the function
definition within the class definition.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ob-inline-function-expansion
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ltcg-link-time-code-generation

// inline_keyword2.cpp
// compile with: /EHsc /c
#include <iostream>
using namespace std;

class MyClass {
public:
 void print() { cout << i << ' '; } // Implicitly inline
private:
 int i;
};

Microsoft SpecificMicrosoft Specific
The __inline keyword is equivalent to inline.

Even with __forceinline, the compiler cannot inline code in all circumstances. The compiler cannot inline a
function if:

The function or its caller is compiled with /Ob0 (the default option for debug builds).

The function and the caller use different types of exception handling (C++ exception handling in one,
structured exception handling in the other).

The function has a variable argument list.

The function uses inline assembly, unless compiled with /Og, /Ox, /O1, or /O2.

The function is recursive and not accompanied by #pragma inline_recursion(on). With the pragma,
recursive functions are inlined to a default depth of 16 calls. To reduce the inlining depth, use inline_depth
pragma.

The function is virtual and is called virtually. Direct calls to virtual functions can be inlined.

The program takes the address of the function and the call is made via the pointer to the function. Direct
calls to functions that have had their address taken can be inlined.

The function is also marked with the naked __declspec modifier.

If the compiler cannot inline a function declared with __forceinline, it generates a level 1 warning, except when:

The function is compiled by using /Od or /Ob0. No inlining is expected in these cases.

The function is defined externally, in an included library or another translation unit, or is a virtual call
target or indirect call target. The compiler can't identify non-inlined code that it can't find in the current
translation unit.

Recursive functions can be substituted inline to a depth specified by the inline_depth pragma, up to a maximum
of 16 calls. After that depth, recursive function calls are treated as calls to an instance of the function. The depth
to which recursive functions are examined by the inline heuristic cannot exceed 16. The inline_recursion pragma
controls the inline expansion of a function currently under expansion. See the Inline-Function Expansion (/Ob)
compiler option for related information.

END Microsoft Specific

For more information on using the inline specifier, see:

Inline Class Member Functions

Defining Inline C++ Functions with dllexport and dllimport

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/inline-depth
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/inline-depth
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/inline-recursion
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ob-inline-function-expansion

When to use inline functions

// when_to_use_inline_functions.cpp
class Point
{
public:
 // Define "accessor" functions as
 // reference types.
 unsigned& x();
 unsigned& y();
private:
 unsigned _x;
 unsigned _y;
};

inline unsigned& Point::x()
{
 return _x;
}
inline unsigned& Point::y()
{
 return _y;
}
int main()
{
}

Inline functions vs. macros

Inline functions are best used for small functions such as accessing private data members. The main purpose of
these one- or two-line "accessor" functions is to return state information about objects; short functions are
sensitive to the overhead of function calls. Longer functions spend proportionately less time in the
calling/returning sequence and benefit less from inlining.

A Point class can be defined as follows:

Assuming coordinate manipulation is a relatively common operation in a client of such a class, specifying the two
accessor functions (x and y in the preceding example) as inline typically saves the overhead on:

Function calls (including parameter passing and placing the object's address on the stack)

Preservation of caller's stack frame

New stack-frame setup

Return-value communication

Old stack-frame restore

Return

Although inline functions are similar to macros (because the function code is expanded at the point of the call at
compile time), inline functions are parsed by the compiler, whereas macros are expanded by the preprocessor. As
a result, there are several important differences:

Inline functions follow all the protocols of type safety enforced on normal functions.

Inline functions are specified using the same syntax as any other function except that they include the
inline keyword in the function declaration.

Expressions passed as arguments to inline functions are evaluated once. In some cases, expressions
passed as arguments to macros can be evaluated more than once.

// inline_functions_macro.c
#include <stdio.h>
#include <conio.h>

#define toupper(a) ((a) >= 'a' && ((a) <= 'z') ? ((a)-('a'-'A')):(a))

int main() {
 char ch;
 printf_s("Enter a character: ");
 ch = toupper(getc(stdin));
 printf_s("%c", ch);
}
// Sample Input: xyz
// Sample Output: Z

// inline_functions_inline.cpp
#include <stdio.h>
#include <conio.h>

inline char toupper(char a) {
 return ((a >= 'a' && a <= 'z') ? a-('a'-'A') : a);
}

int main() {
 printf_s("Enter a character: ");
 char ch = toupper(getc(stdin));
 printf_s("%c", ch);
}

Sample Input: a
Sample Output: A

See also

The following example shows a macro that converts lowercase letters to uppercase:

The intent of the expression toupper(getc(stdin)) is that a character should be read from the console device (
stdin) and, if necessary, converted to uppercase.

Because of the implementation of the macro, getc is executed once to determine whether the character is
greater than or equal to "a," and once to determine whether it is less than or equal to "z." If it is in that range,
getc is executed again to convert the character to uppercase. This means the program waits for two or three

characters when, ideally, it should wait for only one.

Inline functions remedy the problem previously described:

noinline
auto_inline

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/auto-inline

Operator overloading
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

Redefinable OperatorsRedefinable Operators

OPERATOR NAME TYPE

, Comma Binary

! Logical NOT Unary

!= Inequality Binary

% Modulus Binary

%= Modulus assignment Binary

& Bitwise AND Binary

& Address-of Unary

&& Logical AND Binary

&= Bitwise AND assignment Binary

() Function call —

() Cast Operator Unary

* Multiplication Binary

* Pointer dereference Unary

The operator keyword declares a function specifying what operator-symbol means when applied to instances
of a class. This gives the operator more than one meaning, or "overloads" it. The compiler distinguishes between
the different meanings of an operator by examining the types of its operands.

type operator operator-symbol (parameter-list)

You can redefine the function of most built-in operators globally or on a class-by-class basis. Overloaded
operators are implemented as functions.

The name of an overloaded operator is operator x, where x is the operator as it appears in the following table.
For example, to overload the addition operator, you define a function called operator+. Similarly, to overload
the addition/assignment operator, +=, define a function called operator+=.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/operator-overloading.md

*= Multiplication assignment Binary

+ Addition Binary

+ Unary Plus Unary

++ Increment Unary

+= Addition assignment Binary

- Subtraction Binary

- Unary negation Unary

-- Decrement Unary

-= Subtraction assignment Binary

-> Member selection Binary

->* Pointer-to-member selection Binary

/ Division Binary

/= Division assignment Binary

< Less than Binary

<< Left shift Binary

<<= Left shift assignment Binary

<= Less than or equal to Binary

= Assignment Binary

== Equality Binary

> Greater than Binary

>= Greater than or equal to Binary

>> Right shift Binary

>>= Right shift assignment Binary

[] Array subscript —

^ Exclusive OR Binary

OPERATOR NAME TYPE

1

1

^= Exclusive OR assignment Binary

| Bitwise inclusive OR Binary

|= Bitwise inclusive OR assignment Binary

|| Logical OR Binary

~ One's complement Unary

delete Delete —

new New —

conversion operators conversion operators Unary

OPERATOR NAME TYPE

Nonredefinable OperatorsNonredefinable Operators

OPERATOR NAME

. Member selection

.* Pointer-to-member selection

:: Scope resolution

? : Conditional

Preprocessor convert to string

Preprocessor concatenate

 Two versions of the unary increment and decrement operators exist: preincrement and postincrement.1

See General Rules for Operator Overloading for more information. The constraints on the various categories of
overloaded operators are described in the following topics:

Unary Operators

Binary Operators

Assignment

Function Call

Subscripting

Class-Member Access

Increment and Decrement.

User-Defined Type Conversions

The operators shown in the following table cannot be overloaded. The table includes the preprocessor symbols
and ##.

Point pt;
pt.operator+(3); // Call addition operator to add 3 to pt.

Example

// operator_overloading.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

struct Complex {
 Complex(double r, double i) : re(r), im(i) {}
 Complex operator+(Complex &other);
 void Display() { cout << re << ", " << im << endl; }
private:
 double re, im;
};

// Operator overloaded using a member function
Complex Complex::operator+(Complex &other) {
 return Complex(re + other.re, im + other.im);
}

int main() {
 Complex a = Complex(1.2, 3.4);
 Complex b = Complex(5.6, 7.8);
 Complex c = Complex(0.0, 0.0);

 c = a + b;
 c.Display();
}

6.8, 11.2

In this section

See also

Although overloaded operators are usually called implicitly by the compiler when they are encountered in code,
they can be invoked explicitly the same way as any member or nonmember function is called:

The following example overloads the + operator to add two complex numbers and returns the result.

General Rules for Operator Overloading

Overloading Unary Operators

Binary Operators

Assignment

Function Call

Subscripting

Member Access

C++ Built-in Operators, Precedence and Associativity
Keywords

General Rules for Operator Overloading
10/31/2018 • 2 minutes to read • Edit Online

The following rules constrain how overloaded operators are implemented. However, they do not apply to the new
and delete operators, which are covered separately.

// rules_for_operator_overloading.cpp
class Point
{
public:
 Point operator<(Point &); // Declare a member operator
 // overload.
 // Declare addition operators.
 friend Point operator+(Point&, int);
 friend Point operator+(int, Point&);
};

int main()
{
}

You cannot define new operators, such as ..

You cannot redefine the meaning of operators when applied to built-in data types.

Overloaded operators must either be a nonstatic class member function or a global function. A global
function that needs access to private or protected class members must be declared as a friend of that class.
A global function must take at least one argument that is of class or enumerated type or that is a reference
to a class or enumerated type. For example:

The preceding code sample declares the less-than operator as a member function; however, the addition
operators are declared as global functions that have friend access. Note that more than one implementation
can be provided for a given operator. In the case of the preceding addition operator, the two
implementations are provided to facilitate commutativity. It is just as likely that operators that add a Point

to a Point , int to a Point , and so on, might be implemented.

Operators obey the precedence, grouping, and number of operands dictated by their typical use with built-
in types. Therefore, there is no way to express the concept "add 2 and 3 to an object of type Point ,"
expecting 2 to be added to the x coordinate and 3 to be added to the y coordinate.

Unary operators declared as member functions take no arguments; if declared as global functions, they take
one argument.

Binary operators declared as member functions take one argument; if declared as global functions, they
take two arguments.

If an operator can be used as either a unary or a binary operator (&, *, +, and -), you can overload each use
separately.

Overloaded operators cannot have default arguments.

All overloaded operators except assignment (operator=) are inherited by derived classes.

The first argument for member-function overloaded operators is always of the class type of the object for
which the operator is invoked (the class in which the operator is declared, or a class derived from that class).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/general-rules-for-operator-overloading.md

var = var + 1;
var += 1;
var++;
++var;

NOTENOTE

See also

No conversions are supplied for the first argument.

Note that the meaning of any of the operators can be changed completely. That includes the meaning of the
address-of (&), assignment (=), and function-call operators. Also, identities that can be relied upon for built-in
types can be changed using operator overloading. For example, the following four statements are usually
equivalent when completely evaluated:

This identity cannot be relied upon for class types that overload operators. Moreover, some of the requirements
implicit in the use of these operators for basic types are relaxed for overloaded operators. For example, the
addition/assignment operator, +=, requires the left operand to be an l-value when applied to basic types; there is
no such requirement when the operator is overloaded.

For consistency, it is often best to follow the model of the built-in types when defining overloaded operators. If the semantics
of an overloaded operator differ significantly from its meaning in other contexts, it can be more confusing than useful.

Operator Overloading

Overloading Unary Operators
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

See also

The unary operators that can be overloaded are the following:

1. ! (logical NOT)

2. & (address-of)

3. ~ (one's complement)

4. * (pointer dereference)

5. + (unary plus)

6. - (unary negation)

7. ++ (increment)

8. -- (decrement)

9. conversion operators

The postfix increment and decrement operators (++ and --) are treated separately in Increment and Decrement.

Conversion operators are also discussed in a separate topic; see User-Defined Type Conversions.

The following rules are true of all other unary operators. To declare a unary operator function as a nonstatic
member, you must declare it in the form:

ret-type operator op ()

where ret-type is the return type and op is one of the operators listed in the preceding table.

To declare a unary operator function as a global function, you must declare it in the form:

ret-type operator op (arg)

where ret-type and op are as described for member operator functions and the arg is an argument of class type on
which to operate.

There is no restriction on the return types of the unary operators. For example, it makes sense for logical NOT (!) to return
an integral value, but this is not enforced.

Operator Overloading

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overloading-unary-operators.md

Increment and Decrement Operator Overloading
(C++)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

The increment and decrement operators fall into a special category because there are two variants of each:

Preincrement and postincrement

Predecrement and postdecrement

When you write overloaded operator functions, it can be useful to implement separate versions for the prefix and
postfix versions of these operators. To distinguish between the two, the following rule is observed: The prefix form
of the operator is declared exactly the same way as any other unary operator ; the postfix form accepts an
additional argument of type int.

When specifying an overloaded operator for the postfix form of the increment or decrement operator, the additional
argument must be of type int; specifying any other type generates an error.

The following example shows how to define prefix and postfix increment and decrement operators for the Point

class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/increment-and-decrement-operator-overloading-cpp.md

// increment_and_decrement1.cpp
class Point
{
public:
 // Declare prefix and postfix increment operators.
 Point& operator++(); // Prefix increment operator.
 Point operator++(int); // Postfix increment operator.

 // Declare prefix and postfix decrement operators.
 Point& operator--(); // Prefix decrement operator.
 Point operator--(int); // Postfix decrement operator.

 // Define default constructor.
 Point() { _x = _y = 0; }

 // Define accessor functions.
 int x() { return _x; }
 int y() { return _y; }
private:
 int _x, _y;
};

// Define prefix increment operator.
Point& Point::operator++()
{
 _x++;
 _y++;
 return *this;
}

// Define postfix increment operator.
Point Point::operator++(int)
{
 Point temp = *this;
 ++*this;
 return temp;
}

// Define prefix decrement operator.
Point& Point::operator--()
{
 _x--;
 _y--;
 return *this;
}

// Define postfix decrement operator.
Point Point::operator--(int)
{
 Point temp = *this;
 --*this;
 return temp;
}
int main()
{
}

friend Point& operator++(Point&) // Prefix increment
friend Point& operator++(Point&, int) // Postfix increment
friend Point& operator--(Point&) // Prefix decrement
friend Point& operator--(Point&, int) // Postfix decrement

The same operators can be defined in file scope (globally) using the following function heads:

The argument of type int that denotes the postfix form of the increment or decrement operator is not commonly

// increment_and_decrement2.cpp
class Int
{
public:
 Int &operator++(int n);
private:
 int _i;
};

Int& Int::operator++(int n)
{
 if(n != 0) // Handle case where an argument is passed.
 _i += n;
 else
 _i++; // Handle case where no argument is passed.
 return *this;
}
int main()
{
 Int i;
 i.operator++(25); // Increment by 25.
}

See also

used to pass arguments. It usually contains the value 0. However, it can be used as follows:

There is no syntax for using the increment or decrement operators to pass these values other than explicit
invocation, as shown in the preceding code. A more straightforward way to implement this functionality is to
overload the addition/assignment operator (+=).

Operator Overloading

Binary Operators
10/31/2018 • 2 minutes to read • Edit Online

Redefinable Binary Operators
OPERATOR NAME

, Comma

!= Inequality

% Modulus

%= Modulus/assignment

& Bitwise AND

&& Logical AND

&= Bitwise AND/assignment

* Multiplication

*= Multiplication/assignment

+ Addition

+= Addition/assignment

- Subtraction

-= Subtraction/assignment

-> Member selection

->* Pointer-to-member selection

/ Division

/= Division/assignment

< Less than

<< Left shift

<<= Left shift/assignment

The following table shows a list of operators that can be overloaded.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/binary-operators.md

<= Less than or equal to

= Assignment

== Equality

> Greater than

>= Greater than or equal to

>> Right shift

>>= Right shift/assignment

^ Exclusive OR

^= Exclusive OR/assignment

| Bitwise inclusive OR

|= Bitwise inclusive OR/assignment

|| Logical OR

OPERATOR NAME

NOTENOTE

See also

To declare a binary operator function as a nonstatic member, you must declare it in the form:

ret-type operator op (arg)

where ret-type is the return type, op is one of the operators listed in the preceding table, and arg is an argument of
any type.

To declare a binary operator function as a global function, you must declare it in the form:

ret-type operator op (arg1, arg2)

where ret-type and op are as described for member operator functions and arg1 and arg2 are arguments. At least
one of the arguments must be of class type.

There is no restriction on the return types of the binary operators; however, most user-defined binary operators return
either a class type or a reference to a class type.

Operator Overloading

Assignment
10/31/2018 • 2 minutes to read • Edit Online

class Point
{
public:
 int _x, _y;

 // Right side of copy assignment is the argument.
 Point& operator=(const Point&);
};

// Define copy assignment operator.
Point& Point::operator=(const Point& otherPoint)
{
 _x = otherPoint._x;
 _y = otherPoint._y;

 // Assignment operator returns left side of assignment.
 return *this;
}

int main()
{
 Point pt1, pt2;
 pt1 = pt2;
}

pt1 = pt2 = pt3;

// Copy constructor is called--not overloaded copy assignment operator!
Point pt3 = pt1;

// The previous initialization is similar to the following:
Point pt4(pt1); // Copy constructor call.

The assignment operator (=) is, strictly speaking, a binary operator. Its declaration is identical to any other binary
operator, with the following exceptions:

It must be a nonstatic member function. No operator= can be declared as a nonmember function.
It is not inherited by derived classes.
A default operator= function can be generated by the compiler for class types, if none exists.

The following example illustrates how to declare an assignment operator:

The supplied argument is the right side of the expression. The operator returns the object to preserve the behavior
of the assignment operator, which returns the value of the left side after the assignment is complete. This allows
chaining of assignments, such as:

The copy assignment operator is not to be confused with the copy constructor. The latter is called during the
construction of a new object from an existing one:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/assignment.md

NOTENOTE

See also

It is advisable to follow the rule of three that a class which defines a copy assignment operator should also explicitly define
copy constructor, destructor, and, starting with C++11, move constructor and move assignment operator.

Operator Overloading
Copy Constructors and Copy Assignment Operators (C++)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

Function Call (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
primary-expression (expression-list)

Remarks

Point pt;
pt(3, 2);

// function_call.cpp
class Point
{
public:
 Point() { _x = _y = 0; }
 Point &operator()(int dx, int dy)
 { _x += dx; _y += dy; return *this; }
private:
 int _x, _y;
};

int main()
{
 Point pt;
 pt(3, 2);
}

The function-call operator, invoked using parentheses, is a binary operator.

In this context, primary-expression is the first operand, and expression-list , a possibly empty list of arguments,
is the second operand. The function-call operator is used for operations that require a number of parameters. This
works because expression-list is a list instead of a single operand. The function-call operator must be a
nonstatic member function.

The function-call operator, when overloaded, does not modify how functions are called; rather, it modifies how the
operator is to be interpreted when applied to objects of a given class type. For example, the following code would
usually be meaningless:

Given an appropriate overloaded function-call operator, however, this syntax can be used to offset the x
coordinate 3 units and the y coordinate 2 units. The following code shows such a definition:

Note that the function-call operator is applied to the name of an object, not the name of a function.

You can also overload the function call operator using a pointer to a function (rather than the function itself).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/function-call-cpp.md

typedef void(*ptf)();
void func()
{
}
struct S
{
 operator ptf()
 {
 return func;
 }
};

int main()
{
 S s;
 s();//operates as s.operator ptf()()
}

See also
Operator Overloading

Subscripting
10/31/2018 • 2 minutes to read • Edit Online

Example

// subscripting.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class IntVector {
public:
 IntVector(int cElements);
 ~IntVector() { delete [] _iElements; }
 int& operator[](int nSubscript);
private:
 int *_iElements;
 int _iUpperBound;
};

// Construct an IntVector.
IntVector::IntVector(int cElements) {
 _iElements = new int[cElements];
 _iUpperBound = cElements;
}

// Subscript operator for IntVector.
int& IntVector::operator[](int nSubscript) {
 static int iErr = -1;

 if(nSubscript >= 0 && nSubscript < _iUpperBound)
 return _iElements[nSubscript];
 else {
 clog << "Array bounds violation." << endl;
 return iErr;
 }
}

// Test the IntVector class.
int main() {
 IntVector v(10);
 int i;

 for(i = 0; i <= 10; ++i)
 v[i] = i;

 v[3] = v[9];

 for (i = 0; i <= 10; ++i)
 cout << "Element: [" << i << "] = " << v[i] << endl;
}

The subscript operator ([]), like the function-call operator, is considered a binary operator. The subscript operator
must be a nonstatic member function that takes a single argument. This argument can be of any type and
designates the desired array subscript.

The following example demonstrates how to create a vector of type int that implements bounds checking:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/subscripting.md

Array bounds violation.
Element: [0] = 0
Element: [1] = 1
Element: [2] = 2
Element: [3] = 9
Element: [4] = 4
Element: [5] = 5
Element: [6] = 6
Element: [7] = 7
Element: [8] = 8
Element: [9] = 9
Array bounds violation.
Element: [10] = 10

Comments

See also

When i reaches 10 in the preceding program, operator[] detects that an out-of-bounds subscript is being used
and issues an error message.

Note that the function operator[] returns a reference type. This causes it to be an l-value, allowing you to use
subscripted expressions on either side of assignment operators.

Operator Overloading

Member Access
10/31/2018 • 2 minutes to read • Edit Online

Syntax
class-type *operator->()

Remarks

See also

Class member access can be controlled by overloading the member access operator (->). This operator is
considered a unary operator in this usage, and the overloaded operator function must be a class member function.
Therefore, the declaration for such a function is:

where class-type is the name of the class to which this operator belongs. The member access operator function
must be a nonstatic member function.

This operator is used (often in conjunction with the pointer-dereference operator) to implement "smart pointers"
that validate pointers prior to dereference or count usage.

The . member access operator cannot be overloaded.

Operator Overloading

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/member-access.md

Classes and Structs (C++)
5/7/2019 • 2 minutes to read • Edit Online

Access Control and Constraints of Structures, Classes and UnionsAccess Control and Constraints of Structures, Classes and Unions

STRUCTURES CLASSES UNIONS

class key is struct class key is class class key is union

Default access is public Default access is private Default access is public

No usage constraints No usage constraints Use only one member at a time

See also

This section introduces C++ classes and structs. The two constructs are identical in C++ except that in structs the
default accessibility is public, whereas in classes the default is private.

Classes and structs are the constructs whereby you define your own types. Classes and structs can both contain
data members and member functions, which enable you to describe the type's state and behavior.

The following topics are included:

class

struct

Class Member Overview

Member Access Control

Inheritance

Static Members

User-Defined Type Conversions

Mutable Data Members (mutable specifier)

Nested Class Declarations

Anonymous Class Types

Pointers to Members

this Pointer

C++ Bit Fields

The three class types are structure, class, and union. They are declared using the struct, class, and union
keywords. The following table shows the differences among the three class types.

For more information on unions, see Unions. For information on classes and structs in C++/CLI and C++/CX,
see Classes and Structs.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/classes-and-structs-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions

class (C++)
4/1/2019 • 2 minutes to read • Edit Online

Syntax
[template-spec]
class [ms-decl-spec] [tag [: base-list]]
{
 member-list
} [declarators];
[class] tag declarators;

ParametersParameters

Remarks

The class keyword declares a class type or defines an object of a class type.

template-spec
Optional template specifications. For more information, refer to Templates.

class
The class keyword.

ms-decl-spec
Optional storage-class specification. For more information, refer to the __declspec keyword.

tag
The type name given to the class. The tag becomes a reserved word within the scope of the class. The tag is
optional. If omitted, an anonymous class is defined. For more information, see Anonymous Class Types.

base-list
Optional list of classes or structures this class will derive its members from. See Base Classes for more
information. Each base class or structure name can be preceded by an access specifier (public, private, protected)
and the virtual keyword. See the member-access table in Controlling Access to Class Members for more
information.

member-list
List of class members. Refer to Class Member Overview for more information.

declarators
Declarator list specifying the names of one or more instances of the class type. Declarators may include initializer
lists if all data members of the class are public. This is more common in structures, whose data members are
public by default, than in classes. See Overview of Declarators for more information.

For more information on classes in general, refer to one of the following topics:

struct

union

__multiple_inheritance

__single_inheritance

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/class-cpp.md

Example
// class.cpp
// compile with: /EHsc
// Example of the class keyword
// Exhibits polymorphism/virtual functions.

#include <iostream>
#include <string>
#define TRUE = 1
using namespace std;

class dog
{
public:
 dog()
 {
 _legs = 4;
 _bark = true;
 }

 void setDogSize(string dogSize)
 {
 _dogSize = dogSize;
 }
 virtual void setEars(string type) // virtual function
 {
 _earType = type;
 }

private:
 string _dogSize, _earType;
 int _legs;
 bool _bark;

};

class breed : public dog
{
public:
 breed(string color, string size)
 {
 _color = color;
 setDogSize(size);
 }

 string getColor()
 {
 return _color;
 }

 // virtual function redefined
 void setEars(string length, string type)
 {
 _earLength = length;
 _earType = type;
 }

protected:
 string _color, _earLength, _earType;
};

int main()

__virtual_inheritance

For information on managed classes and structs in C++/CLI and C++/CX, see Classes and Structs

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions

int main()
{
 dog mongrel;
 breed labrador("yellow", "large");
 mongrel.setEars("pointy");
 labrador.setEars("long", "floppy");
 cout << "Cody is a " << labrador.getColor() << " labrador" << endl;
}

See also
Keywords
Classes and Structs

struct (C++)
4/1/2019 • 2 minutes to read • Edit Online

Syntax
[template-spec] struct [ms-decl-spec] [tag [: base-list]]
{
 member-list
} [declarators];
[struct] tag declarators;

ParametersParameters

Remarks

The struct keyword defines a structure type and/or a variable of a structure type.

template-spec
Optional template specifications. For more information, refer to Template Specifications.

struct
The struct keyword.

ms-decl-spec
Optional storage-class specification. For more information, refer to the __declspec keyword.

tag
The type name given to the structure. The tag becomes a reserved word within the scope of the structure. The tag
is optional. If omitted, an anonymous structure is defined. For more information, see Anonymous Class Types.

base-list
Optional list of classes or structures this structure will derive its members from. See Base Classes for more
information. Each base class or structure name can be preceded by an access specifier (public, private, protected)
and the virtual keyword. See the member-access table in Controlling Access to Class Members for more
information.

member-list
List of structure members. Refer to Class Member Overview for more information. The only difference here is
that struct is used in place of class.

declarators
Declarator list specifying the names of the structure. Declarator lists declare one or more instances of the
structure type. Declarators may include initializer lists if all data members of the structure are public. Initializer
lists are common in structures because data members are public by default. See Overview of Declarators for
more information.

A structure type is a user-defined composite type. It is composed of fields or members that can have different
types.

In C++, a structure is the same as a class except that its members are public by default.

For information on managed classes and structs in C++/CLI, see Classes and Structs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/struct-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions

Using a Structure

Example
#include <iostream>
using namespace std;

struct PERSON { // Declare PERSON struct type
 int age; // Declare member types
 long ss;
 float weight;
 char name[25];
} family_member; // Define object of type PERSON

struct CELL { // Declare CELL bit field
 unsigned short character : 8; // 00000000 ????????
 unsigned short foreground : 3; // 00000??? 00000000
 unsigned short intensity : 1; // 0000?000 00000000
 unsigned short background : 3; // 0???0000 00000000
 unsigned short blink : 1; // ?0000000 00000000
} screen[25][80]; // Array of bit fields

int main() {
 struct PERSON sister; // C style structure declaration
 PERSON brother; // C++ style structure declaration
 sister.age = 13; // assign values to members
 brother.age = 7;
 cout << "sister.age = " << sister.age << '\n';
 cout << "brother.age = " << brother.age << '\n';

 CELL my_cell;
 my_cell.character = 1;
 cout << "my_cell.character = " << my_cell.character;
}
// Output:
// sister.age = 13
// brother.age = 7
// my_cell.character = 1

In C, you must explicitly use the struct keyword to declare a structure. In C++, you do not need to use the struct
keyword after the type has been defined.

You have the option of declaring variables when the structure type is defined by placing one or more comma-
separated variable names between the closing brace and the semicolon.

Structure variables can be initialized. The initialization for each variable must be enclosed in braces.

For related information, see class, union, and enum.

Class Member Overview
10/31/2018 • 3 minutes to read • Edit Online

Kinds of class members

Example class declaration

A class or struct consists of its members. The work that a class does is performed by its member functions. The
state that it maintains is stored in its data members. Initialization of members is done by constructors, and cleanup
work such as freeing of memory and releasing of resources is done by destructors. In C++11 and later, data
members can (and usually should) be initialized at the point of declaration.

The full list of member categories is as follows:

NOTENOTE

Special Member Functions.

Overview of Member Functions.

Data members including built-in types and other user defined types.

Operators

Nested Class Declarations and.)

Unions

Enumerations.

Bit fields.

Friends.

Aliases and typedefs.

Friends are included in the preceding list because they are contained in the class declaration. However, they are not
true class members, because they are not in the scope of the class.

The following example shows a simple class declaration:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/class-member-overview.md

// TestRun.h

class TestRun
{
 // Start member list.

 //The class interface accessible to all callers.
public:
 // Use compiler-generated default constructor:
 TestRun() = default;
 // Don't generate a copy constructor:
 TestRun(const TestRun&) = delete;
 TestRun(std::string name);
 void DoSomething();
 int Calculate(int a, double d);
 virtual ~TestRun();
 enum class State { Active, Suspended };

 // Accessible to this class and derived classes only.
protected:
 virtual void Initialize();
 virtual void Suspend();
 State GetState();

 // Accessible to this class only.
private:
 // Default brace-initialization of instance members:
 State _state{ State::Suspended };
 std::string _testName{ "" };
 int _index{ 0 };

 // Non-const static member:
 static int _instances;
 // End member list.
};

// Define and initialize static member.
int TestRun::_instances{ 0 };

Member accessibility

Static members

Special member functions

The members of a class are declared in the member list. The member list of a class may be divided into any
number of private, protected and public sections using keywords known as access specifiers. A colon : must
follow the access specifier. These sections need not be contiguous, that is, any of these keywords may appear
several times in the member list. The keyword designates the access of all members up until the next access
specifier or the closing brace. For more information, see Member Access Control (C++).

A data member may be declared as static, which means all objects of the class have access to the same copy of it.
A member function may be declared as static, in which case it can only access static data members of the class
(and has no this pointer). For more information, see Static Data Members.

Special member functions are functions that are automatically provided by the compiler if you do not specify them
in your source code.

1. Default constructor

2. Copy constructor

Memberwise initialization

class CanInit
{
public:
 long num {7}; // OK in C++11
 int k = 9; // OK in C++11
 static int i = 9; // Error: must be defined and initialized
 // outside of class declaration.

 // initializes num to 7 and k to 9
 CanInit(){}

 // overwrites original initialized value of num:
 CanInit(int val) : num(val) {}
};
int main()
{
}

// class_members2.cpp
class CanInit2
{
public:
 CanInit2() {} // Initializes num to 7 when new objects of type
 // CanInit are created.
 long num {7};
 static int i;
 static int j;
};

// At file scope:

// i is defined at file scope and initialized to 15.
// The initializer is evaluated in the scope of CanInit.
int CanInit2::i = 15;

// The right side of the initializer is in the scope
// of the object being initialized
int CanInit2::j = i;

3. (C++11) Move constructor

4. Copy assignment operator

5. (C++11) Move assignment operator

6. Destructor

For more information, see Special Member Functions.

In C++11 and later, non-static member declarators can contain initializers.

If a member is assigned a value in a constructor, that value overwrites the value with which the member was
initialized at the point of declaration.

There is only one shared copy of static data members for all objects of a given class type. Static data members
must be defined and can be initialized at file scope. (For more information about static data members, see Static
Data Members.) The following example shows how to perform these initializations:

NOTENOTE

See also

The class name, CanInit2 , must precede i to specify that the i being defined is a member of class CanInit2 .

Classes and Structs

Member Access Control (C++)
3/11/2019 • 6 minutes to read • Edit Online

class Point
{
public:
 Point(int, int) // Declare public constructor.;
 Point();// Declare public default constructor.
 int &x(int); // Declare public accessor.
 int &y(int); // Declare public accessor.

private: // Declare private state variables.
 int _x;
 int _y;

protected: // Declare protected function for derived classes only.
 Point ToWindowCoords();
};

Member-Access Control
TYPE OF ACCESS MEANING

private Class members declared as private can be used only by
member functions and friends (classes or functions) of the
class.

protected Class members declared as protected can be used by
member functions and friends (classes or functions) of the
class. Additionally, they can be used by classes derived from
the class.

public Class members declared as public can be used by any
function.

NOTENOTE

Access Control in Derived Classes

Access controls enable you to separate the public interface of a class from the private implementation details
and the protected members that are only for use by derived classes. The access specifier applies to all members
declared after it until the next access specifier is encountered.

The default access is private in a class, and public in a struct or union. Access specifiers in a class can be used
any number of times in any order. The allocation of storage for objects of class types is implementation
dependent, but members are guaranteed to be assigned successively higher memory addresses between access
specifiers.

Access control helps prevent you from using objects in ways they were not intended to be used. This protection
is lost when explicit type conversions (casts) are performed.

Access control is equally applicable to all names: member functions, member data, nested classes, and enumerators.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/member-access-control-cpp.md

Member Access in Base ClassMember Access in Base Class

PRIVATE PROTECTED PUBLIC

Always inaccessible regardless of
derivation access

Private in derived class if you use
private derivation

Private in derived class if you use
private derivation

Protected in derived class if you use
protected derivation

Protected in derived class if you use
protected derivation

Protected in derived class if you use
public derivation

Public in derived class if you use public
derivation

Two factors control which members of a base class are accessible in a derived class; these same factors control
access to the inherited members in the derived class:

Whether the derived class declares the base class using the public access specifier.

What the access to the member is in the base class.

The following table shows the interaction between these factors and how to determine base-class member
access.

The following example illustrates this:

// access_specifiers_for_base_classes.cpp
class BaseClass
{
public:
 int PublicFunc(); // Declare a public member.
protected:
 int ProtectedFunc(); // Declare a protected member.
private:
 int PrivateFunc(); // Declare a private member.
};

// Declare two classes derived from BaseClass.
class DerivedClass1 : public BaseClass
{
 void foo()
 {
 PublicFunc();
 ProtectedFunc();
 PrivateFunc(); // function is inaccessible
 }
};

class DerivedClass2 : private BaseClass
{
 void foo()
 {
 PublicFunc();
 ProtectedFunc();
 PrivateFunc(); // function is inaccessible
 }
};

int main()
{
 DerivedClass1 derived_class1;
 DerivedClass2 derived_class2;
 derived_class1.PublicFunc();
 derived_class2.PublicFunc(); // function is inaccessible
}

class Derived : Base
...

class Derived : private Base
...

In DerivedClass1 , the member function PublicFunc is a public member and ProtectedFunc is a protected
member because BaseClass is a public base class. PrivateFunc is private to BaseClass , and it is inaccessible to
any derived classes.

In DerivedClass2 , the functions PublicFunc and ProtectedFunc are considered private members because
BaseClass is a private base class. Again, PrivateFunc is private to BaseClass , and it is inaccessible to any

derived classes.

You can declare a derived class without a base-class access specifier. In such a case, the derivation is considered
private if the derived class declaration uses the class keyword. The derivation is considered public if the derived
class declaration uses the struct keyword. For example, the following code:

is equivalent to:

Similarly, the following code:

struct Derived : Base
...

struct Derived : public Base
...

NOTENOTE

Access control and static members

// access_control.cpp
class Base
{
public:
 int Print(); // Nonstatic member.
 static int CountOf(); // Static member.
};

// Derived1 declares Base as a private base class.
class Derived1 : private Base
{
};
// Derived2 declares Derived1 as a public base class.
class Derived2 : public Derived1
{
 int ShowCount(); // Nonstatic member.
};
// Define ShowCount function for Derived2.
int Derived2::ShowCount()
{
 // Call static member function CountOf explicitly.
 int cCount = Base::CountOf(); // OK.

 // Call static member function CountOf using pointer.
 cCount = this->CountOf(); // C2247. Conversion of
 // Derived2 * to Base * not
 // permitted.
 return cCount;
}

is equivalent to:

Note that members declared as having private access are not accessible to functions or derived classes unless
those functions or classes are declared using the friend declaration in the base class.

A union type cannot have a base class.

When specifying a private base class, it is advisable to explicitly use the private keyword so users of the derived class
understand the member access.

When you specify a base class as private, it affects only nonstatic members. Public static members are still
accessible in the derived classes. However, accessing members of the base class using pointers, references, or
objects can require a conversion, at which time access control is again applied. Consider the following example:

In the preceding code, access control prohibits conversion from a pointer to Derived2 to a pointer to Base . The
this pointer is implicitly of type Derived2 * . To select the CountOf function, this must be converted to type
Base * . Such a conversion is not permitted because Base is a private indirect base class to Derived2 .

Conversion to a private base class type is acceptable only for pointers to immediate derived classes. Therefore,

Access to virtual functions

// access_to_virtual_functions.cpp
class VFuncBase
{
public:
 virtual int GetState() { return _state; }
protected:
 int _state;
};

class VFuncDerived : public VFuncBase
{
private:
 int GetState() { return _state; }
};

int main()
{
 VFuncDerived vfd; // Object of derived type.
 VFuncBase *pvfb = &vfd; // Pointer to base type.
 VFuncDerived *pvfd = &vfd; // Pointer to derived type.
 int State;

 State = pvfb->GetState(); // GetState is public.
 State = pvfd->GetState(); // C2248 error expected; GetState is private;
}

C a u t i o nC a u t i o n

Access control with multiple inheritance

pointers of type Derived1 * can be converted to type Base * .

Note that calling the CountOf function explicitly, without using a pointer, reference, or object to select it, implies
no conversion. Therefore, the call is allowed.

Members and friends of a derived class, T , can convert a pointer to T to a pointer to a private direct base
class of T .

The access control applied to virtual functions is determined by the type used to make the function call.
Overriding declarations of the function do not affect the access control for a given type. For example:

In the preceding example, calling the virtual function GetState using a pointer to type VFuncBase calls
VFuncDerived::GetState , and GetState is treated as public. However, calling GetState using a pointer to type
VFuncDerived is an access-control violation because GetState is declared private in class VFuncDerived .

The virtual function GetState can be called using a pointer to the base class VFuncBase . This does not mean
that the function called is the base-class version of that function.

In multiple-inheritance lattices involving virtual base classes, a given name can be reached through more than
one path. Because different access control can be applied along these different paths, the compiler chooses the
path that gives the most access. See the following figure.

See also

Access along paths of an inheritance graph

In the figure, a name declared in class VBase is always reached through class RightPath . The right path is more
accessible because RightPath declares VBase as a public base class, whereas LeftPath declares VBase as
private.

C++ Language Reference

friend (C++)
11/20/2018 • 5 minutes to read • Edit Online

Syntax
class friend F
friend F;

Friend declarations

class ForwardDeclared; // Class name is known.
class HasFriends
{
 friend int ForwardDeclared::IsAFriend(); // C2039 error expected
};

friend class F;
friend F;

In some circumstances, it is more convenient to grant member-level access to functions that are not members of a
class or to all members in a separate class. Only the class implementer can declare who its friends are. A function
or class cannot declare itself as a friend of any class. In a class definition, use the friend keyword and the name of
a non-member function or other class to grant it access to the private and protected members of your class. In a
template definition, a type parameter can be declared as a friend.

If you declare a friend function that was not previously declared, that function is exported to the enclosing
nonclass scope.

Functions declared in a friend declaration are treated as if they had been declared using the extern keyword. For
more information, see extern.

Although functions with global scope can be declared as friends prior to their prototypes, member functions
cannot be declared as friends before the appearance of their complete class declaration. The following code shows
why this fails:

The preceding example enters the class name ForwardDeclared into scope, but the complete declaration —
specifically, the portion that declares the function IsAFriend — is not known. Therefore, the friend declaration in
class HasFriends generates an error.

Starting in C++11, there are two forms of friend declarations for a class:

The first form introduces a new class F if no existing class by that name was found in the innermost namespace.
C++11: The second form does not introduce a new class; it can be used when the class has already been declared,
and it must be used when declaring a template type parameter or a typedef as a friend.

Use class friend F when the referenced type has not yet been declared:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/friend-cpp.md

namespace NS
{
 class M
 {
 class friend F; // Introduces F but doesn't define it
 };
}

namespace NS
{
 class M
 {
 friend F; // error C2433: 'NS::F': 'friend' not permitted on data declarations
 };
}

class F {};
namespace NS
{
 class M
 {
 friend F; // OK
 };
}

template <typename T>
class my_class
{
 friend T;
 //...
};

class Foo {};
typedef Foo F;

class G
{
 friend F; // OK
 friend class F // Error C2371 -- redefinition
};

NOTENOTE

In the following example, friend F refers to the F class that is declared outside the scope of NS.

Use friend F to declare a template parameter as a friend:

Use friend F to declare a typedef as friend:

To declare two classes that are friends of one another, the entire second class must be specified as a friend of the
first class. The reason for this restriction is that the compiler has enough information to declare individual friend
functions only at the point where the second class is declared.

Although the entire second class must be a friend to the first class, you can select which functions in the first class will be
friends of the second class.

friend functions

// friend_functions.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class Point
{
 friend void ChangePrivate(Point &);
public:
 Point(void) : m_i(0) {}
 void PrintPrivate(void){cout << m_i << endl; }

private:
 int m_i;
};

void ChangePrivate (Point &i) { i.m_i++; }

int main()
{
 Point sPoint;
 sPoint.PrintPrivate();
 ChangePrivate(sPoint);
 sPoint.PrintPrivate();
// Output: 0
 1
}

Class members as friends

A friend function is a function that is not a member of a class but has access to the class's private and protected
members. Friend functions are not considered class members; they are normal external functions that are given
special access privileges. Friends are not in the class's scope, and they are not called using the member-selection
operators (. and ->) unless they are members of another class. A friend function is declared by the class that is
granting access. The friend declaration can be placed anywhere in the class declaration. It is not affected by the
access control keywords.

The following example shows a Point class and a friend function, ChangePrivate . The friend function has access
to the private data member of the Point object it receives as a parameter.

Class member functions can be declared as friends in other classes. Consider the following example:

// classes_as_friends1.cpp
// compile with: /c
class B;

class A {
public:
 int Func1(B& b);

private:
 int Func2(B& b);
};

class B {
private:
 int _b;

 // A::Func1 is a friend function to class B
 // so A::Func1 has access to all members of B
 friend int A::Func1(B&);
};

int A::Func1(B& b) { return b._b; } // OK
int A::Func2(B& b) { return b._b; } // C2248

friend class A;

In the preceding example, only the function A::Func1(B&) is granted friend access to class B . Therefore, access
to the private member _b is correct in Func1 of class A but not in Func2 .

A friend class is a class all of whose member functions are friend functions of a class, that is, whose member
functions have access to the other class's private and protected members. Suppose the friend declaration in
class B had been:

In that case, all member functions in class A would have been granted friend access to class B . The following
code is an example of a friend class:

// classes_as_friends2.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class YourClass {
friend class YourOtherClass; // Declare a friend class
public:
 YourClass() : topSecret(0){}
 void printMember() { cout << topSecret << endl; }
private:
 int topSecret;
};

class YourOtherClass {
public:
 void change(YourClass& yc, int x){yc.topSecret = x;}
};

int main() {
 YourClass yc1;
 YourOtherClass yoc1;
 yc1.printMember();
 yoc1.change(yc1, 5);
 yc1.printMember();
}

Inline friend definitions

See also

Friendship is not mutual unless explicitly specified as such. In the above example, member functions of YourClass

cannot access the private members of YourOtherClass .

A managed type cannot have any friend functions, friend classes, or friend interfaces.

Friendship is not inherited, meaning that classes derived from YourOtherClass cannot access YourClass 's private
members. Friendship is not transitive, so classes that are friends of YourOtherClass cannot access YourClass 's
private members.

The following figure shows four class declarations: Base , Derived , aFriend , and anotherFriend . Only class
aFriend has direct access to the private members of Base (and to any members Base might have inherited).

Implications of friend relationship

Friend functions can be defined inside class declarations. These functions are inline functions, and like member
inline functions they behave as though they were defined immediately after all class members have been seen but
before the class scope is closed (the end of the class declaration).

Friend functions defined inside class declarations are not considered in the scope of the enclosing class; they are
in file scope.

Keywords

private (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
private:
 [member-list]
private base-class

Remarks

/clr Specific

NOTENOTE

END /clr Specific

Example

When preceding a list of class members, the private keyword specifies that those members are accessible only
from member functions and friends of the class. This applies to all members declared up to the next access
specifier or the end of the class.

When preceding the name of a base class, the private keyword specifies that the public and protected members
of the base class are private members of the derived class.

Default access of members in a class is private. Default access of members in a structure or union is public.

Default access of a base class is private for classes and public for structures. Unions cannot have base classes.

For related information, see friend, public, protected, and the member-access table in Controlling Access to Class
Members.

In CLR types, the C++ access specifier keywords (public, private, and protected) can affect the visibility of
types and methods with regard to assemblies. For more information, see Member Access Control.

Files compiled with /LN are not affected by this behavior. In this case, all managed classes (either public or private) will be
visible.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/private-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ln-create-msil-module

// keyword_private.cpp
class BaseClass {
public:
 // privMem accessible from member function
 int pubFunc() { return privMem; }
private:
 void privMem;
};

class DerivedClass : public BaseClass {
public:
 void usePrivate(int i)
 { privMem = i; } // C2248: privMem not accessible
 // from derived class
};

class DerivedClass2 : private BaseClass {
public:
 // pubFunc() accessible from derived class
 int usePublic() { return pubFunc(); }
};

int main() {
 BaseClass aBase;
 DerivedClass aDerived;
 DerivedClass2 aDerived2;
 aBase.privMem = 1; // C2248: privMem not accessible
 aDerived.privMem = 1; // C2248: privMem not accessible
 // in derived class
 aDerived2.pubFunc(); // C2247: pubFunc() is private in
 // derived class
}

See also
Controlling Access to Class Members
Keywords

protected (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
protected:
 [member-list]
protected base-class

Remarks

/clr Specific

NOTENOTE

END /clr Specific

Example

The protected keyword specifies access to class members in the member-list up to the next access specifier
(public or private) or the end of the class definition. Class members declared as protected can be used only by
the following:

Member functions of the class that originally declared these members.

Friends of the class that originally declared these members.

Classes derived with public or protected access from the class that originally declared these members.

Direct privately derived classes that also have private access to protected members.

When preceding the name of a base class, the protected keyword specifies that the public and protected
members of the base class are protected members of its derived classes.

Protected members are not as private as private members, which are accessible only to members of the class in
which they are declared, but they are not as public as public members, which are accessible in any function.

Protected members that are also declared as static are accessible to any friend or member function of a derived
class. Protected members that are not declared as static are accessible to friends and member functions in a
derived class only through a pointer to, reference to, or object of the derived class.

For related information, see friend, public, private, and the member-access table in Controlling Access to Class
Members.

In CLR types, the C++ access specifier keywords (public, private, and protected) can affect the visibility of
types and methods with regard to assemblies. For more information, see Member Access Control.

Files compiled with /LN are not affected by this behavior. In this case, all managed classes (either public or private) will be
visible.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/protected-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ln-create-msil-module

// keyword_protected.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
class X {
public:
 void setProtMemb(int i) { m_protMemb = i; }
 void Display() { cout << m_protMemb << endl; }
protected:
 int m_protMemb;
 void Protfunc() { cout << "\nAccess allowed\n"; }
} x;

class Y : public X {
public:
 void useProtfunc() { Protfunc(); }
} y;

int main() {
 // x.m_protMemb; error, m_protMemb is protected
 x.setProtMemb(0); // OK, uses public access function
 x.Display();
 y.setProtMemb(5); // OK, uses public access function
 y.Display();
 // x.Protfunc(); error, Protfunc() is protected
 y.useProtfunc(); // OK, uses public access function
 // in derived class
}

See also
Controlling Access to Class Members
Keywords

public (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public:
 [member-list]
public base-class

Remarks

/clr Specific

NOTENOTE

END /clr Specific

Example

When preceding a list of class members, the public keyword specifies that those members are accessible from
any function. This applies to all members declared up to the next access specifier or the end of the class.

When preceding the name of a base class, the public keyword specifies that the public and protected members
of the base class are public and protected members, respectively, of the derived class.

Default access of members in a class is private. Default access of members in a structure or union is public.

Default access of a base class is private for classes and public for structures. Unions cannot have base classes.

For more information, see private, protected, friend, and the member-access table in Controlling Access to Class
Members.

In CLR types, the C++ access specifier keywords (public, private, and protected) can affect the visibility of
types and methods with regard to assemblies. For more information, see Member Access Control.

Files compiled with /LN are not affected by this behavior. In this case, all managed classes (either public or private) will be
visible.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/public-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ln-create-msil-module

// keyword_public.cpp
class BaseClass {
public:
 int pubFunc() { return 0; }
};

class DerivedClass : public BaseClass {};

int main() {
 BaseClass aBase;
 DerivedClass aDerived;
 aBase.pubFunc(); // pubFunc() is accessible
 // from any function
 aDerived.pubFunc(); // pubFunc() is still public in
 // derived class
}

See also
Controlling Access to Class Members
Keywords

Initializing classes and structs without constructors
(C++)
10/31/2018 • 2 minutes to read • Edit Online

// no_constructor.cpp
// Compile with: cl /EHsc no_constructor.cpp
#include <time.h>

// No constructor
struct TempData
{
 int StationId;
 time_t timeSet;
 double current;
 double maxTemp;
 double minTemp;
};

// Has a constructor
struct TempData2
{
 TempData2(double minimum, double maximum, double cur, int id, time_t t) :
 stationId{id}, timeSet{t}, current{cur}, maxTemp{maximum}, minTemp{minimum} {}
 int stationId;
 time_t timeSet;
 double current;
 double maxTemp;
 double minTemp;
};

int main()
{
 time_t time_to_set;

 // Member initialization (in order of declaration):
 TempData td{ 45978, time(&time_to_set), 28.9, 37.0, 16.7 };

 // Default initialization = {0,0,0,0,0}
 TempData td_default{};

 // Uninitialized = if used, emits warning C4700 uninitialized local variable
 TempData td_noInit;

 // Member declaration (in order of ctor parameters)
 TempData2 td2{ 16.7, 37.0, 28.9, 45978, time(&time_to_set) };

 return 0;
}

See also

It is not always necessary to define a constructor for a class, especially ones that are relatively simple. Users can
initialize objects of a class or struct by using uniform initialization, as shown in the following example:

Note that when a class or struct has no constructor, you provide the list elements in the order that the members are
declared in the class. If the class has a constructor, provide the elements in the order of the parameters.

Classes and Structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/initializing-classes-and-structs-without-constructors-cpp.md

Constructors

Constructors (C++)
4/3/2019 • 17 minutes to read • Edit Online

class Box {
public:
 // Default constructor
 Box() {}

 // Initialize a Box with equal dimensions (i.e. a cube)
 explicit Box(int i) : m_width(i), m_length(i), m_height(i) // member init list
 {}

 // Initialize a Box with custom dimensions
 Box(int width, int length, int height)
 : m_width(width), m_length(length), m_height(height)
 {}

 int Volume() { return m_width * m_length * m_height; }

private:
 // Will have value of 0 when default constructor is called.
 // If we didn't zero-init here, default constructor would
 // leave them uninitialized with garbage values.
 int m_width{ 0 };
 int m_length{ 0 };
 int m_height{ 0 };
};

int main()
{
 Box b; // Calls Box()

 // Using uniform initialization (preferred):
 Box b2 {5}; // Calls Box(int)
 Box b3 {5, 8, 12}; // Calls Box(int, int, int)

 // Using function-style notation:
 Box b4(2, 4, 6); // Calls Box(int, int, int)
}

To customize how class members are initialized, or to invoke functions when an object of your class is created,
define a constructor. A constructor has the same name as the class and no return value. You can define as many
overloaded constructors as needed to customize initialization in various ways. Typically, constructors have public
accessibility so that code outside the class definition or inheritance hierarchy can create objects of the class. But
you can also declare a constructor as protected or private.

Constructors can optionally take a member init list. This is a more efficient way to initialize class members than
assigning values in the constructor body. The following example shows a class Box with three overloaded
constructors. The last two use member init lists:

When you declare an instance of a class, the compiler chooses which constructor to invoke based on the rules of
overload resolution:

Constructors may be declared as inline, explicit, friend or constexpr.
A constructor can initialize an object that has been declared as const, volatile or const volatile. The object
becomes const after the constructor completes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/constructors-cpp.md

Member initializer lists

 Box(int width, int length, int height)
 : m_width(width), m_length(length), m_height(height)
 {}

Default constructors

class Box {
public:
 Box() { /*perform any required default initialization steps*/}

 // All params have default values
 Box (int w = 1, int l = 1, int h = 1): m_width(w), m_height(h), m_length(l){}
...
}

#include <iostream>
using namespace std;

class Box {
public:
 int Volume() {return m_width * m_height * m_length;}
private:
 int m_width { 0 };
 int m_height { 0 };
 int m_length { 0 };
};

int main() {
 Box box1; // Invoke compiler-generated constructor
 cout << "box1.Volume: " << box1.Volume() << endl; // Outputs 0
}

To define a constructor in an implementation file, give it a qualified name as with any other member function:
Box::Box(){...} .

A constructor can optionally have a member initializer list, which initializes class members prior to execution of
the constructor body. (Note that a member initializer list is not the same thing as an initializer list of type
std::initializer_list<T>.)

Using a member initializer list is preferred over assigning values in the body of the constructor because it directly
initializes the member. In the following example shows the member initializer list consists of all the
identifier(argument) expressions after the colon:

The identifier must refer to a class member; it is initialized with the value of the argument. The argument can be
one of the constructor parameters, a function call or a std::initializer_list<T>.

const members and members of reference type must be initialized in the member initializer list.

Calls to parameterized base class constructors should be made in the initializer list to ensure the base class is fully
initialized prior to execution of the derived constructor.

Default constructors typically have no parameters, but they can have parameters with default values.

Default constructors are one of the special member functions. If no constructors are declared in a class, the
compiler provides an implicit inline default constructor.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class

 // Default constructor
 Box() = delete;

class myclass{};
int main(){
myclass mc(); // warning C4930: prototyped function not called (was a variable definition intended?)
}

class Box {
public:
 Box(int width, int length, int height)
 : m_width(width), m_length(length), m_height(height){}
private:
 int m_width;
 int m_length;
 int m_height;

};

int main(){

 Box box1(1, 2, 3);
 Box box2{ 2, 3, 4 };
 Box box3; // C2512: no appropriate default constructor available
}

Box boxes[3]; // C2512: no appropriate default constructor available

Box boxes[3]{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };

If you rely on an implicit default constructor, be sure to initialize members in the class definition, as shown in the
previous example. Without those initializers, the members would be uninitialized and the Volume() call would
produce a garbage value. In general, it is good practice to initialize members in this way even when not relying on
an implicit default constructor.

You can prevent the compiler from generating an implicit default constructor by defining it as deleted:

A compiler-generated default constructor will be defined as deleted if any class members are not default-
constructible. For example, all members of class type, and their class-type members, must have a default
constructor and destructors that are accessible. All data members of reference type, as well as const members
must have a default member initializer.

When you call a compiler-generated default constructor and try to use parentheses, a warning is issued:

This is an example of the Most Vexing Parse problem. Because the example expression can be interpreted either as
the declaration of a function or as the invocation of a default constructor, and because C++ parsers favor
declarations over other things, the expression is treated as a function declaration. For more information, see Most
Vexing Parse.

If any non-default constructors are declared, the compiler does not provide a default constructor:

If a class has no default constructor, an array of objects of that class cannot be constructed by using square-
bracket syntax alone. For example, given the previous code block, an array of Boxes cannot be declared like this:

However, you can use a set of initializer lists to initialize an array of Box objects:

http://en.wikipedia.org/wiki/Most_vexing_parse

Copy constructors

 Box(Box& other); // Avoid if possible--allows modification of other.
 Box(const Box& other);
 Box(volatile Box& other);
 Box(volatile const Box& other);

 // Additional parameters OK if they have default values
 Box(Box& other, int i = 42, string label = "Box");

 Box (const Box& other) = delete;

Move constructors

Box(Box&& other);

For more information, see Initializers.

A copy constructor initializes an object by copying the member values from an object of the same type. If your
class members are all simple types such as scalar values, the compiler-generated copy constructor is sufficient and
you do not need to define your own. If your class requires more complex initialization, then you need to
implement a custom copy constructor. For example, if a class member is a pointer then you need to define a copy
constructor to allocate new memory and copy the values from the other's pointed-to object. The compiler-
generated copy constructor simply copies the pointer, so that the new pointer still points to the other's memory
location.

A copy constructor may have one of these signatures:

When you define a copy constructor, you should also define a copy assignment operator (=). For more
information, see Assignment and Copy constructors and copy assignment operators.

You can prevent your object from being copied by defining the copy constructor as deleted:

Attempting to copy the object produces error C2280: attempting to reference a deleted function.

A move constructor is a special member function that moves ownership of an existing object's data to a new
variable without copying the original data. It takes an rvalue reference as its first parameter, and any additional
parameters must have default values. Move constructors can significantly increase your program's efficiency when
passing around large objects. A move constructor takes an rvalue reference as its first parameter. Any other
parameters must have default values.

The compiler chooses a move constructor in certain situations where the object is being initialized by another
object of the same type that is about to be destroyed and no longer needs it resources. The following example
shows one case when a move constructor is selected by overload resolution. The variable box returned by
get_Box() is an xvalue (eXpiring value) which is about to go out of scope. To provide motivation for this example,
let's give Box a large vector of strings that represent its contents. Rather than copying the vector and its strings,
the move constructor "steals" it from the expiring value "box" so that the vector now belongs to the new object.
The call to std::move is all that's needed because both vector and string classes implement their own move
constructors.

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;

class Box {
public:
 Box() { std::cout << "default" << std::endl; }
 Box(int width, int height, int length)
 : m_width(width), m_height(height), m_length(length)
 {
 std::cout << "int,int,int" << std::endl;
 }
 Box(Box& other)
 : m_width(other.m_width), m_height(other.m_height), m_length(other.m_length)
 {
 std::cout << "copy" << std::endl;
 }
 Box(Box&& other) : m_width(other.m_width), m_height(other.m_height), m_length(other.m_length)
 {
 m_contents = std::move(other.m_contents);
 std::cout << "move" << std::endl;
 }
 int Volume() { return m_width * m_height * m_length; }
 void Add_Item(string item) { m_contents.push_back(item); }
 void Get_Contents()
 {
 for (const auto& item : m_contents)
 {
 cout << item << " ";
 }
 }
private:
 int m_width{ 0 };
 int m_height{ 0 };
 int m_length{ 0 };
 vector<string> m_contents;
};

Box get_Box()
{
 Box b(5, 10, 18); // "int,int,int"
 b.Add_Item("Toupee");
 b.Add_Item("Megaphone");
 b.Add_Item("Suit");

 return b;
}

int main()
{
 Box b; // "default"
 Box b1(b); // "copy"
 Box b2(get_Box()); // "move"
 cout << "b2 contents: ";
 b2.Get_Contents(); // Prove that we have all the values

 char ch;
 cin >> ch; // keep window open
 return 0;
}

If a class does not define a move constructor, the compiler generates an implicit one if there is no user-declared
copy constructor, copy assignment operator, move assignment operator, or destructor. If no explicit or implicit
move constructor is defined, operations that would otherwise use a move constructor use the copy constructor

Explicitly defaulted and deleted constructors

class Box
{
public:
 Box2() = delete;
 Box2(const Box2& other) = default;
 Box2& operator=(const Box2& other) = default;
 Box2(Box2&& other) = default;
 Box2& operator=(Box2&& other) = default;
 //...
};

constexpr constructors

Initializer list constructors

 Box(initializer_list<string> list, int w = 0, int h = 0, int l = 0)
 : m_contents(list), m_width(w), m_height(h), m_length(l)
{}

instead. If a class declares a move constructor or move assignment operator, the implicitly declared copy
constructor is defined as deleted.

An implicitly declared move constructor is defined as deleted if any members that are class types lack a destructor
or the compiler cannot determine which constructor to use for the move operation.

For more information about how to write a non-trivial move constructor, see Move Constructors and Move
Assignment Operators (C++).

You can explicitly default copy constructors, default constructors, move constructors, copy assignment operators,
move assignment operators, and destructors. You can explicitly delete all of the special member functions.

For more information, see Explicitly Defaulted and Deleted Functions.

A constructor may be declared as constexpr if

it is either declared as defaulted or else it satisfies all the conditions for constexpr functions in general;
the class has no virtual base classes;
each of the parameters is a literal type;
the body is not a function try-block;
all non-static data members and base class sub-objects are initialized;
if the class is (a) a union having variant members, or (b) has anonymous unions, only one of the union
members is initialized;
every non-static data member of class type, and all base-class sub-objects have a constexpr constructor

If a constructor takes a std::initializer_list<T> as its parameter, and any other parameters have default arguments,
that constructor will be selected in overload resolution when the class is instantiated through direct initialization.
You can use the initializer_list to initialize any member that can accept it. For example, assume the Box class
(shown previously) has a std::vector<string> member m_contents . You can provide a constructor like this:

And then create Box objects like this:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class

 Box b{ "apples", "oranges", "pears" }; // or ...
 Box b2(initializer_list<string> { "bread", "cheese", "wine" }, 2, 4, 6);

Explicit constructors

Box(int size): m_width(size), m_length(size), m_height(size){}

Box b = 42;

class ShippingOrder
{
public:
 ShippingOrder(Box b, double postage) : m_box(b), m_postage(postage){}

private:
 Box m_box;
 double m_postage;
}
//elsewhere...
 ShippingOrder so(42, 10.8);

explicit Box(int size): m_width(size), m_length(size), m_height(size){}

Order of construction

If a class has a constructor with a single parameter, or if all parameters except one have a default value, the
parameter type can be implicitly converted to the class type. For example, if the Box class has a constructor like
this:

It is possible to initialize a Box like this:

Or pass an int to a function that takes a Box:

Such conversions can be useful in some cases, but more often they can lead to subtle but serious errors in your
code. As a general rule, you should use the explicit keyword on a constructor (and user-defined operators) to
prevent this kind of implicit type conversion:

When the constructor is explicit, this line causes a compiler error: ShippingOrder so(42, 10.8); . For more
information, see User-Defined Type Conversions.

A constructor performs its work in this order:

1. It calls base class and member constructors in the order of declaration.

2. If the class is derived from virtual base classes, it initializes the object's virtual base pointers.

3. If the class has or inherits virtual functions, it initializes the object's virtual function pointers. Virtual
function pointers point to the class's virtual function table to enable correct binding of virtual function calls
to code.

4. It executes any code in its function body.

The following example shows the order in which base class and member constructors are called in the constructor
for a derived class. First, the base constructor is called, then the base-class members are initialized in the order in

#include <iostream>

using namespace std;

class Contained1 {
public:
 Contained1() { cout << "Contained1 ctor\n"; }
};

class Contained2 {
public:
 Contained2() { cout << "Contained2 ctor\n"; }
};

class Contained3 {
public:
 Contained3() { cout << "Contained3 ctor\n"; }
};

class BaseContainer {
public:
 BaseContainer() { cout << "BaseContainer ctor\n"; }
private:
 Contained1 c1;
 Contained2 c2;
};

class DerivedContainer : public BaseContainer {
public:
 DerivedContainer() : BaseContainer() { cout << "DerivedContainer ctor\n"; }
private:
 Contained3 c3;
};

int main() {
 DerivedContainer dc;
}

Contained1 ctor
Contained2 ctor
BaseContainer ctor
Contained3 ctor
DerivedContainer ctor

which they appear in the class declaration, and then the derived constructor is called.

Here's the output:

A derived class constructor always calls a base class constructor, so that it can rely on completely constructed base
classes before any extra work is done. The base class constructors are called in order of derivation—for example, if
ClassA is derived from ClassB , which is derived from ClassC , the ClassC constructor is called first, then the
ClassB constructor, then the ClassA constructor.

If a base class does not have a default constructor, you must supply the base class constructor parameters in the
derived class constructor :

class Box {
public:
 Box(int width, int length, int height){
 m_width = width;
 m_length = length;
 m_height = height;
 }

private:
 int m_width;
 int m_length;
 int m_height;
};

class StorageBox : public Box {
public:
 StorageBox(int width, int length, int height, const string label&) : Box(width, length, height){
 m_label = label;
 }
private:
 string m_label;
};

int main(){

 const string aLabel = "aLabel";
 StorageBox sb(1, 2, 3, aLabel);
}

Constructors for classes that have multiple inheritanceConstructors for classes that have multiple inheritance

If a constructor throws an exception, the order of destruction is the reverse of the order of construction:

1. The code in the body of the constructor function is unwound.

2. Base class and member objects are destroyed, in the reverse order of declaration.

3. If the constructor is non-delegating, all fully-constructed base class objects and members are destroyed.
However, because the object itself is not fully constructed, the destructor is not run.

If a class is derived from multiple base classes, the base class constructors are invoked in the order in which they
are listed in the declaration of the derived class:

#include <iostream>
using namespace std;

class BaseClass1 {
public:
 BaseClass1() { cout << "BaseClass1 ctor\n"; }
};
class BaseClass2 {
public:
 BaseClass2() { cout << "BaseClass2 ctor\n"; }
};
class BaseClass3 {
public:
 BaseClass3() { cout << "BaseClass3 ctor\n"; }
};
class DerivedClass : public BaseClass1,
 public BaseClass2,
 public BaseClass3
 {
public:
 DerivedClass() { cout << "DerivedClass ctor\n"; }
};

int main() {
 DerivedClass dc;
}

BaseClass1 ctor
BaseClass2 ctor
BaseClass3 ctor
DerivedClass ctor

Virtual functions in constructors

You should expect the following output:

We recommend that you be careful when you call virtual functions in constructors. Because the base class
constructor is always invoked before the derived class constructor, the function that's called in the base constructor
is the base class version, not the derived class version. In the following example, constructing a DerivedClass

causes the BaseClass implementation of print_it() to execute before the DerivedClass constructor causes the
DerivedClass implementation of print_it() to execute:

#include <iostream>
using namespace std;

class BaseClass{
public:
 BaseClass(){
 print_it();
 }
 virtual void print_it() {
 cout << "BaseClass print_it" << endl;
 }
};

class DerivedClass : public BaseClass {
public:
 DerivedClass() {
 print_it();
 }
 virtual void print_it(){
 cout << "Derived Class print_it" << endl;
 }
};

int main() {

 DerivedClass dc;
}

BaseClass print_it
Derived Class print_it

Delegating constructors

class Box {
public:
 // Default constructor
 Box() {}

 // Initialize a Box with equal dimensions (i.e. a cube)
 Box(int i) : Box(i, i, i); // delegating constructor
 {}

 // Initialize a Box with custom dimensions
 Box(int width, int length, int height)
 : m_width(width), m_length(length), m_height(height)
 {}
 //... rest of class as before
};

Here's the output:

A delegating constructor calls a different constructor in the same class to do some of the work of initialization.
This is useful when you have multiple constructors that all have to perform similar work. You can write the main
logic in one constructor and invoke it from others. In the following trivial example, Box(int) delegates its work to
Box(int,int,int):

The object created by the constructors is fully initialized as soon as any constructor is finished. For more
information, see Uniform Initialization and Delegating Constructors.

Inheriting constructors (C++11)

#include <iostream>
using namespace std;

class Base
{
public:
 Base() { cout << "Base()" << endl; }
 Base(const Base& other) { cout << "Base(Base&)" << endl; }
 explicit Base(int i) : num(i) { cout << "Base(int)" << endl; }
 explicit Base(char c) : letter(c) { cout << "Base(char)" << endl; }

private:
 int num;
 char letter;
};

class Derived : Base
{
public:
 // Inherit all constructors from Base
 using Base::Base;

private:
 // Can't initialize newMember from Base constructors.
 int newMember{ 0 };
};

int main()
{
 cout << "Derived d1(5) calls: ";
 Derived d1(5);
 cout << "Derived d1('c') calls: ";
 Derived d2('c');
 cout << "Derived d3 = d2 calls: " ;
 Derived d3 = d2;
 cout << "Derived d4 calls: ";
 Derived d4;
}

/* Output:
Derived d1(5) calls: Base(int)
Derived d1('c') calls: Base(char)
Derived d3 = d2 calls: Base(Base&)
Derived d4 calls: Base()*/

template< typename T >
class Derived : T {
 using T::T; // declare the constructors from T
 // ...
};

A derived class can inherit the constructors from a direct base class by using a using declaration as shown in the
following example:

Visual Studio 2017 version 15.7 and later: The using statement in /std:C++17 mode brings into scope all
constructors from the base class except those that have an identical signature to constructors in the derived class.
In general, it is best to use inheriting constructors when the derived class declares no new data members or
constructors. See also Improvements in Visual Studio 2017 version 15.7.

A class template can inherit all the constructors from a type argument if that type specifies a base class:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/overview/cpp-conformance-improvements

Constructors and composite classes

class Label {
public:
 Label(const string& name, const string& address) { m_name = name; m_address = address; }
 string m_name;
 string m_address;
};

class StorageBox : public Box {
public:
 StorageBox(int width, int length, int height, Label label)
 : Box(width, length, height), m_label(label){}
private:
 Label m_label;
};

int main(){
// passing a named Label
 Label label1{ "some_name", "some_address" };
 StorageBox sb1(1, 2, 3, label1);

 // passing a temporary label
 StorageBox sb2(3, 4, 5, Label{ "another name", "another address" });

 // passing a temporary label as an initializer list
 StorageBox sb3(1, 2, 3, {"myname", "myaddress"});
}

A deriving class cannot inherit from multiple base classes if those base classes have constructors that have an
identical signature.

Classes that contain class-type members are known as composite classes. When a class-type member of a
composite class is created, the constructor is called before the class's own constructor. When a contained class
lacks a default constructor, you must use an initialization list in the constructor of the composite class. In the earlier
StorageBox example, if you change the type of the m_label member variable to a new Label class, you must call

both the base class constructor and initialize the m_label variable in the StorageBox constructor :

Copy Constructors and Copy Assignment Operators
(C++)
10/31/2018 • 3 minutes to read • Edit Online

NOTENOTE

TextFile a, b;
a.Open("FILE1.DAT");
b.Open("FILE2.DAT");
b = a;

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment. In this
article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see
Move Constructors and Move Assignment Operators (C++).

Both the assignment operation and the initialization operation cause objects to be copied.

Point a, b;
...
a = b;

Assignment: When one object's value is assigned to another object, the first object is copied to the second
object. Therefore,

causes the value of b to be copied to a .

Initialization: Initialization occurs when a new object is declared, when arguments are passed to functions
by value, or when values are returned from functions by value.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore
FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each
class, as follows.

By using the assignment operator operator= together with a reference to the class type as the return type
and the parameter that is passed by const reference—for example
ClassName& operator=(const ClassName& x); .

By using the copy constructor.

If you do not declare a copy constructor, the compiler generates a member-wise copy constructor for you. If you
do not declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for
you. Declaring a copy constructor does not suppress the compiler-generated copy assignment operator, nor vice
versa. If you implement either one, we recommend that you also implement the other one so that the meaning of
the code is clear.

The copy constructor takes an argument of type class-name&, where class-name is the name of the class for
which the constructor is defined. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/copy-constructors-and-copy-assignment-operators-cpp.md

// spec1_copying_class_objects.cpp
class Window
{
public:
 Window(const Window&); // Declare copy constructor.
 // ...
};

int main()
{
}

NOTENOTE

Compiler generated copy constructors

NOTENOTE

Make the type of the copy constructor's argument const class-name& whenever possible. This prevents the copy
constructor from accidentally changing the object from which it is copying. It also enables copying from const objects.

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type
"reference to class-name." An exception is when all base classes and member classes have copy constructors
declared as taking a single argument of type const class-name&. In such a case, the compiler-generated copy
constructor's argument is also const.

When the argument type to the copy constructor is not const, initialization by copying a const object generates
an error. The reverse is not true: If the argument is const, you can initialize by copying an object that is not const.

Compiler-generated assignment operators follow the same pattern with regard to const. They take a single
argument of type class-name& unless the assignment operators in all base and member classes take arguments
of type const class-name&. In this case, the class's generated assignment operator takes a const argument.

When virtual base classes are initialized by copy constructors, compiler-generated or user-defined, they are initialized only
once: at the point when they are constructed.

The implications are similar to those of the copy constructor. When the argument type is not const, assignment
from a const object generates an error. The reverse is not true: If a const value is assigned to a value that is not
const, the assignment succeeds.

For more information about overloaded assignment operators, see Assignment.

Move Constructors and Move Assignment Operators
(C++)
10/31/2018 • 6 minutes to read • Edit Online

// MemoryBlock.h
#pragma once
#include <iostream>
#include <algorithm>

class MemoryBlock
{
public:

 // Simple constructor that initializes the resource.
 explicit MemoryBlock(size_t length)
 : _length(length)
 , _data(new int[length])
 {
 std::cout << "In MemoryBlock(size_t). length = "
 << _length << "." << std::endl;
 }

 // Destructor.
 ~MemoryBlock()
 {
 std::cout << "In ~MemoryBlock(). length = "
 << _length << ".";

 if (_data != nullptr)
 {
 std::cout << " Deleting resource.";
 // Delete the resource.
 delete[] _data;
 }

 std::cout << std::endl;
 }

 // Copy constructor.
 MemoryBlock(const MemoryBlock& other)
 : _length(other._length)
 , _data(new int[other._length])
 {
 std::cout << "In MemoryBlock(const MemoryBlock&). length = "
 << other._length << ". Copying resource." << std::endl;

 std::copy(other._data, other._data + _length, _data);
 }

 // Copy assignment operator.
 MemoryBlock& operator=(const MemoryBlock& other)
 {
 std::cout << "In operator=(const MemoryBlock&). length = "
 << other._length << ". Copying resource." << std::endl;

This topic describes how to write a move constructor and a move assignment operator for a C++ class. A move
constructor enables the resources owned by an rvalue object to be moved into an lvalue without copying. For
more information about move semantics, see Rvalue Reference Declarator: &&.

This topic builds upon the following C++ class, MemoryBlock , which manages a memory buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/move-constructors-and-move-assignment-operators-cpp.md

 if (this != &other)
 {
 // Free the existing resource.
 delete[] _data;

 _length = other._length;
 _data = new int[_length];
 std::copy(other._data, other._data + _length, _data);
 }
 return *this;
 }

 // Retrieves the length of the data resource.
 size_t Length() const
 {
 return _length;
 }

private:
 size_t _length; // The length of the resource.
 int* _data; // The resource.
};

To create a move constructor for a C++ classTo create a move constructor for a C++ class

To create a move assignment operator for a C++ classTo create a move assignment operator for a C++ class

The following procedures describe how to write a move constructor and a move assignment operator for the
example C++ class.

MemoryBlock(MemoryBlock&& other)
 : _data(nullptr)
 , _length(0)
{
}

_data = other._data;
_length = other._length;

other._data = nullptr;
other._length = 0;

1. Define an empty constructor method that takes an rvalue reference to the class type as its parameter, as
demonstrated in the following example:

2. In the move constructor, assign the class data members from the source object to the object that is being
constructed:

3. Assign the data members of the source object to default values. This prevents the destructor from freeing
resources (such as memory) multiple times:

MemoryBlock& operator=(MemoryBlock&& other)
{
}

1. Define an empty assignment operator that takes an rvalue reference to the class type as its parameter and
returns a reference to the class type, as demonstrated in the following example:

Example

if (this != &other)
{
}

// Free the existing resource.
delete[] _data;

// Copy the data pointer and its length from the
// source object.
_data = other._data;
_length = other._length;

// Release the data pointer from the source object so that
// the destructor does not free the memory multiple times.
other._data = nullptr;
other._length = 0;

return *this;

2. In the move assignment operator, add a conditional statement that performs no operation if you try to
assign the object to itself.

3. In the conditional statement, free any resources (such as memory) from the object that is being assigned to.

The following example frees the _data member from the object that is being assigned to:

Follow steps 2 and 3 in the first procedure to transfer the data members from the source object to the
object that is being constructed:

4. Return a reference to the current object, as shown in the following example:

The following example shows the complete move constructor and move assignment operator for the MemoryBlock

class:

// Move constructor.
MemoryBlock(MemoryBlock&& other)
 : _data(nullptr)
 , _length(0)
{
 std::cout << "In MemoryBlock(MemoryBlock&&). length = "
 << other._length << ". Moving resource." << std::endl;

 // Copy the data pointer and its length from the
 // source object.
 _data = other._data;
 _length = other._length;

 // Release the data pointer from the source object so that
 // the destructor does not free the memory multiple times.
 other._data = nullptr;
 other._length = 0;
}

// Move assignment operator.
MemoryBlock& operator=(MemoryBlock&& other)
{
 std::cout << "In operator=(MemoryBlock&&). length = "
 << other._length << "." << std::endl;

 if (this != &other)
 {
 // Free the existing resource.
 delete[] _data;

 // Copy the data pointer and its length from the
 // source object.
 _data = other._data;
 _length = other._length;

 // Release the data pointer from the source object so that
 // the destructor does not free the memory multiple times.
 other._data = nullptr;
 other._length = 0;
 }
 return *this;
}

Example
The following example shows how move semantics can improve the performance of your applications. The
example adds two elements to a vector object and then inserts a new element between the two existing elements.
The vector class uses move semantics to perform the insertion operation efficiently by moving the elements of
the vector instead of copying them.

// rvalue-references-move-semantics.cpp
// compile with: /EHsc
#include "MemoryBlock.h"
#include <vector>

using namespace std;

int main()
{
 // Create a vector object and add a few elements to it.
 vector<MemoryBlock> v;
 v.push_back(MemoryBlock(25));
 v.push_back(MemoryBlock(75));

 // Insert a new element into the second position of the vector.
 v.insert(v.begin() + 1, MemoryBlock(50));
}

In MemoryBlock(size_t). length = 25.
In MemoryBlock(MemoryBlock&&). length = 25. Moving resource.
In ~MemoryBlock(). length = 0.
In MemoryBlock(size_t). length = 75.
In MemoryBlock(MemoryBlock&&). length = 25. Moving resource.
In ~MemoryBlock(). length = 0.
In MemoryBlock(MemoryBlock&&). length = 75. Moving resource.
In ~MemoryBlock(). length = 0.
In MemoryBlock(size_t). length = 50.
In MemoryBlock(MemoryBlock&&). length = 50. Moving resource.
In MemoryBlock(MemoryBlock&&). length = 50. Moving resource.
In operator=(MemoryBlock&&). length = 75.
In operator=(MemoryBlock&&). length = 50.
In ~MemoryBlock(). length = 0.
In ~MemoryBlock(). length = 0.
In ~MemoryBlock(). length = 25. Deleting resource.
In ~MemoryBlock(). length = 50. Deleting resource.
In ~MemoryBlock(). length = 75. Deleting resource.

In MemoryBlock(size_t). length = 25.
In MemoryBlock(const MemoryBlock&). length = 25. Copying resource.
In ~MemoryBlock(). length = 25. Deleting resource.
In MemoryBlock(size_t). length = 75.
In MemoryBlock(const MemoryBlock&). length = 25. Copying resource.
In ~MemoryBlock(). length = 25. Deleting resource.
In MemoryBlock(const MemoryBlock&). length = 75. Copying resource.
In ~MemoryBlock(). length = 75. Deleting resource.
In MemoryBlock(size_t). length = 50.
In MemoryBlock(const MemoryBlock&). length = 50. Copying resource.
In MemoryBlock(const MemoryBlock&). length = 50. Copying resource.
In operator=(const MemoryBlock&). length = 75. Copying resource.
In operator=(const MemoryBlock&). length = 50. Copying resource.
In ~MemoryBlock(). length = 50. Deleting resource.
In ~MemoryBlock(). length = 50. Deleting resource.
In ~MemoryBlock(). length = 25. Deleting resource.
In ~MemoryBlock(). length = 50. Deleting resource.
In ~MemoryBlock(). length = 75. Deleting resource.

This example produces the following output:

Before Visual Studio 2010, this example produced the following output:

The version of this example that uses move semantics is more efficient than the version that does not use move
semantics because it performs fewer copy, memory allocation, and memory deallocation operations.

Robust Programming

// Move constructor.
MemoryBlock(MemoryBlock&& other)
 : _data(nullptr)
 , _length(0)
{
 *this = std::move(other);
}

See also

To prevent resource leaks, always free resources (such as memory, file handles, and sockets) in the move
assignment operator.

To prevent the unrecoverable destruction of resources, properly handle self-assignment in the move assignment
operator.

If you provide both a move constructor and a move assignment operator for your class, you can eliminate
redundant code by writing the move constructor to call the move assignment operator. The following example
shows a revised version of the move constructor that calls the move assignment operator :

The std::move function preserves the rvalue property of the other parameter.

Rvalue Reference Declarator: &&
std::move

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/utility-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/utility-functions

Destructors (C++)
5/7/2019 • 6 minutes to read • Edit Online

// spec1_destructors.cpp
#include <string>

class String {
public:
 String(char *ch); // Declare constructor
 ~String(); // and destructor.
private:
 char *_text;
 size_t sizeOfText;
};

// Define the constructor.
String::String(char *ch) {
 sizeOfText = strlen(ch) + 1;

 // Dynamically allocate the correct amount of memory.
 _text = new char[sizeOfText];

 // If the allocation succeeds, copy the initialization string.
 if(_text)
 strcpy_s(_text, sizeOfText, ch);
}

// Define the destructor.
String::~String() {
 // Deallocate the memory that was previously reserved
 // for this string.
 delete[] _text;
}

int main() {
 String str("The piper in the glen...");
}

Declaring destructors

A destructor is a member function that is invoked automatically when the object goes out of scope or is explicitly
destroyed by a call to delete. A destructor has the same name as the class, preceded by a tilde (~). For example,
the destructor for class String is declared: ~String() .

If you do not define a destructor, the compiler will provide a default one; for many classes this is sufficient. You only
need to define a custom destructor when the class stores handles to system resources that need to be released, or
pointers that own the memory they point to.

Consider the following declaration of a String class:

In the preceding example, the destructor String::~String uses the delete operator to deallocate the space
dynamically allocated for text storage.

Destructors are functions with the same name as the class but preceded by a tilde (~)

Several rules govern the declaration of destructors. Destructors:

Do not accept arguments.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/destructors-cpp.md

Using destructors

Order of destruction

Do not return a value (or void).

Cannot be declared as const, volatile, or static. However, they can be invoked for the destruction of
objects declared as const, volatile, or static.

Can be declared as virtual. Using virtual destructors, you can destroy objects without knowing their type —
the correct destructor for the object is invoked using the virtual function mechanism. Note that destructors
can also be declared as pure virtual functions for abstract classes.

Destructors are called when one of the following events occurs:

A local (automatic) object with block scope goes out of scope.

An object allocated using the new operator is explicitly deallocated using delete.

The lifetime of a temporary object ends.

A program ends and global or static objects exist.

The destructor is explicitly called using the destructor function's fully qualified name.

Destructors can freely call class member functions and access class member data.

There are two restrictions on the use of destructors:

You cannot take its address.

Derived classes do not inherit the destructor of their base class.

When an object goes out of scope or is deleted, the sequence of events in its complete destruction is as follows:

1. The class's destructor is called, and the body of the destructor function is executed.

2. Destructors for nonstatic member objects are called in the reverse order in which they appear in the class
declaration. The optional member initialization list used in construction of these members does not affect
the order of construction or destruction.

3. Destructors for non-virtual base classes are called in the reverse order of declaration.

4. Destructors for virtual base classes are called in the reverse order of declaration.

// order_of_destruction.cpp
#include <cstdio>

struct A1 { virtual ~A1() { printf("A1 dtor\n"); } };
struct A2 : A1 { virtual ~A2() { printf("A2 dtor\n"); } };
struct A3 : A2 { virtual ~A3() { printf("A3 dtor\n"); } };

struct B1 { ~B1() { printf("B1 dtor\n"); } };
struct B2 : B1 { ~B2() { printf("B2 dtor\n"); } };
struct B3 : B2 { ~B3() { printf("B3 dtor\n"); } };

int main() {
 A1 * a = new A3;
 delete a;
 printf("\n");

 B1 * b = new B3;
 delete b;
 printf("\n");

 B3 * b2 = new B3;
 delete b2;
}

Output: A3 dtor
A2 dtor
A1 dtor

B1 dtor

B3 dtor
B2 dtor
B1 dtor

Virtual base classesVirtual base classes

class A
class B
class C : virtual public A, virtual public B
class D : virtual public A, virtual public B
class E : public C, public D, virtual public B

Destructors for virtual base classes are called in the reverse order of their appearance in a directed acyclic graph
(depth-first, left-to-right, postorder traversal). the following figure depicts an inheritance graph.

Inheritance graph that shows virtual base classes

The following lists the class heads for the classes shown in the figure.

To determine the order of destruction of the virtual base classes of an object of type E , the compiler builds a list
by applying the following algorithm:

1. Traverse the graph left, starting at the deepest point in the graph (in this case, E).

2. Perform leftward traversals until all nodes have been visited. Note the name of the current node.

3. Revisit the previous node (down and to the right) to find out whether the node being remembered is a

Non-virtual base classesNon-virtual base classes

class MultInherit : public Base1, public Base2
...

Explicit destructor calls

virtual base class.

4. If the remembered node is a virtual base class, scan the list to see whether it has already been entered. If it
is not a virtual base class, ignore it.

5. If the remembered node is not yet in the list, add it to the bottom of the list.

6. Traverse the graph up and along the next path to the right.

7. Go to step 2.

8. When the last upward path is exhausted, note the name of the current node.

9. Go to step 3.

10. Continue this process until the bottom node is again the current node.

Therefore, for class E , the order of destruction is:

1. The non-virtual base class E .

2. The non-virtual base class D .

3. The non-virtual base class C .

4. The virtual base class B .

5. The virtual base class A .

This process produces an ordered list of unique entries. No class name appears twice. Once the list is constructed,
it is walked in reverse order, and the destructor for each of the classes in the list from the last to the first is called.

The order of construction or destruction is primarily important when constructors or destructors in one class rely
on the other component being created first or persisting longer — for example, if the destructor for A (in the
figure shown above) relied on B still being present when its code executed, or vice versa.

Such interdependencies between classes in an inheritance graph are inherently dangerous because classes derived
later can alter which is the leftmost path, thereby changing the order of construction and destruction.

The destructors for non-virtual base classes are called in the reverse order in which the base class names are
declared. Consider the following class declaration:

In the preceding example, the destructor for Base2 is called before the destructor for Base1 .

Calling a destructor explicitly is seldom necessary. However, it can be useful to perform cleanup of objects placed
at absolute addresses. These objects are commonly allocated using a user-defined new operator that takes a
placement argument. The delete operator cannot deallocate this memory because it is not allocated from the free
store (for more information, see The new and delete Operators). A call to the destructor, however, can perform
appropriate cleanup. To explicitly call the destructor for an object, s , of class String , use one of the following
statements:

s.String::~String(); // non-virtual call
ps->String::~String(); // non-virtual call

s.~String(); // Virtual call
ps->~String(); // Virtual call

The notation for explicit calls to destructors, shown in the preceding, can be used regardless of whether the type
defines a destructor. This allows you to make such explicit calls without knowing if a destructor is defined for the
type. An explicit call to a destructor where none is defined has no effect.

Overview of Member Functions
10/31/2018 • 2 minutes to read • Edit Online

// overview_of_member_functions1.cpp
class Account
{
public:
 // Declare the member function Deposit within the declaration
 // of class Account.
 double Deposit(double HowMuch)
 {
 balance += HowMuch;
 return balance;
 }
private:
 double balance;
};

int main()
{
}

Member functions are either static or nonstatic. The behavior of static member functions differs from other
member functions because static member functions have no implicit this argument. Nonstatic member functions
have a this pointer. Member functions, whether static or nonstatic, can be defined either in or outside the class
declaration.

If a member function is defined inside a class declaration, it is treated as an inline function, and there is no need to
qualify the function name with its class name. Although functions defined inside class declarations are already
treated as inline functions, you can use the inline keyword to document code.

An example of declaring a function within a class declaration follows:

If a member function's definition is outside the class declaration, it is treated as an inline function only if it is
explicitly declared as inline. In addition, the function name in the definition must be qualified with its class name
using the scope-resolution operator (::).

The following example is identical to the previous declaration of class Account , except that the Deposit function is
defined outside the class declaration:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overview-of-member-functions.md

// overview_of_member_functions2.cpp
class Account
{
public:
 // Declare the member function Deposit but do not define it.
 double Deposit(double HowMuch);
private:
 double balance;
};

inline double Account::Deposit(double HowMuch)
{
 balance += HowMuch;
 return balance;
}

int main()
{
}

NOTENOTE
Although member functions can be defined either inside a class declaration or separately, no member functions can be added
to a class after the class is defined.

Classes containing member functions can have many declarations, but the member functions themselves must
have only one definition in a program. Multiple definitions cause an error message at link time. If a class contains
inline function definitions, the function definitions must be identical to observe this "one definition" rule.

virtual Specifier
10/31/2018 • 2 minutes to read • Edit Online

The virtual keyword can be applied only to nonstatic class member functions. It signifies that binding of calls to the
function is deferred until run time. For more information, see Virtual Functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/virtual-specifier.md

override Specifier
10/31/2018 • 2 minutes to read • Edit Online

Syntax
function-declaration override;

Remarks

Example

class BaseClass
{
 virtual void funcA();
 virtual void funcB() const;
 virtual void funcC(int = 0);
 void funcD();
};

class DerivedClass: public BaseClass
{
 virtual void funcA(); // ok, works as intended

 virtual void funcB(); // DerivedClass::funcB() is non-const, so it does not
 // override BaseClass::funcB() const and it is a new member function

 virtual void funcC(double = 0.0); // DerivedClass::funcC(double) has a different
 // parameter type than BaseClass::funcC(int), so
 // DerivedClass::funcC(double) is a new member function
};

You can use the override keyword to designate member functions that override a virtual function in a base class.

override is context-sensitive and has special meaning only when it's used after a member function declaration;
otherwise, it's not a reserved keyword.

Use override to help prevent inadvertent inheritance behavior in your code. The following example shows where,
without using override, the member function behavior of the derived class may not have been intended. The
compiler doesn't emit any errors for this code.

When you use override, the compiler generates errors instead of silently creating new member functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/override-specifier.md

class BaseClass
{
 virtual void funcA();
 virtual void funcB() const;
 virtual void funcC(int = 0);
 void funcD();
};

class DerivedClass: public BaseClass
{
 virtual void funcA() override; // ok

 virtual void funcB() override; // compiler error: DerivedClass::funcB() does not
 // override BaseClass::funcB() const

 virtual void funcC(double = 0.0) override; // compiler error:
 // DerivedClass::funcC(double) does not
 // override BaseClass::funcC(int)

 void funcD() override; // compiler error: DerivedClass::funcD() does not
 // override the non-virtual BaseClass::funcD()
};

See also

To specify that functions cannot be overridden and that classes cannot be inherited, use the final keyword.

final Specifier
Keywords

final Specifier
10/31/2018 • 2 minutes to read • Edit Online

Syntax
function-declaration final;
class class-name final base-classes

Remarks

Example

class BaseClass
{
 virtual void func() final;
};

class DerivedClass: public BaseClass
{
 virtual void func(); // compiler error: attempting to
 // override a final function
};

class BaseClass final
{
};

class DerivedClass: public BaseClass // compiler error: BaseClass is
 // marked as non-inheritable
{
};

See also

You can use the final keyword to designate virtual functions that cannot be overridden in a derived class. You can
also use it to designate classes that cannot be inherited.

final is context-sensitive and has special meaning only when it's used after a function declaration or class name;
otherwise, it's not a reserved keyword.

When final is used in class declarations, base-classes is an optional part of the declaration.

The following example uses the final keyword to specify that a virtual function cannot be overridden.

For information about how to specify that member functions can be overridden, see override Specifier.

The next example uses the final keyword to specify that a class cannot be inherited.

Keywords
override Specifier

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/final-specifier.md

Inheritance (C++)
10/31/2018 • 2 minutes to read • Edit Online

Overview

class Derived : [virtual] [access-specifier] Base
{
 // member list
};
class Derived : [virtual] [access-specifier] Base1,
 [virtual] [access-specifier] Base2, . . .
{
 // member list
};

See also

This section explains how to use derived classes to produce extensible programs.

New classes can be derived from existing classes using a mechanism called "inheritance" (see the information
beginning in Single Inheritance). Classes that are used for derivation are called "base classes" of a particular
derived class. A derived class is declared using the following syntax:

After the tag (name) for the class, a colon appears followed by a list of base specifications. The base classes so
named must have been declared previously. The base specifications may contain an access specifier, which is one
of the keywords public, protected or private. These access specifiers appear before the base class name and
apply only to that base class. These specifiers control the derived class's permission to use to members of the base
class. See Member-Access Control for information on access to base class members. If the access specifier is
omitted, the access to that base is considered private. The base specifications may contain the keyword virtual to
indicate virtual inheritance. This keyword may appear before or after the access specifier, if any. If virtual
inheritance is used, the base class is referred to as a virtual base class.

Multiple base classes can be specified, separated by commas. If a single base class is specified, the inheritance
model is Single inheritance.If more than one base class is specified, the inheritance model is called Multiple
inheritance.

The following topics are included:

Single inheritance

Multiple base classes

Virtual functions

Explicit overrides

Abstract classes

Summary of scope rules

The __super and __interface keywords are documented in this section.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/inheritance-cpp.md

Virtual Functions
10/31/2018 • 4 minutes to read • Edit Online

// deriv_VirtualFunctions.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

class Account {
public:
 Account(double d) { _balance = d; }
 virtual double GetBalance() { return _balance; }
 virtual void PrintBalance() { cerr << "Error. Balance not available for base type." << endl; }
private:
 double _balance;
};

class CheckingAccount : public Account {
public:
 CheckingAccount(double d) : Account(d) {}
 void PrintBalance() { cout << "Checking account balance: " << GetBalance() << endl; }
};

class SavingsAccount : public Account {
public:
 SavingsAccount(double d) : Account(d) {}
 void PrintBalance() { cout << "Savings account balance: " << GetBalance(); }
};

int main() {
 // Create objects of type CheckingAccount and SavingsAccount.
 CheckingAccount *pChecking = new CheckingAccount(100.00) ;
 SavingsAccount *pSavings = new SavingsAccount(1000.00);

 // Call PrintBalance using a pointer to Account.
 Account *pAccount = pChecking;
 pAccount->PrintBalance();

 // Call PrintBalance using a pointer to Account.
 pAccount = pSavings;
 pAccount->PrintBalance();
}

A virtual function is a member function that you expect to be redefined in derived classes. When you refer to a
derived class object using a pointer or a reference to the base class, you can call a virtual function for that object
and execute the derived class's version of the function.

Virtual functions ensure that the correct function is called for an object, regardless of the expression used to make
the function call.

Suppose a base class contains a function declared as virtual and a derived class defines the same function. The
function from the derived class is invoked for objects of the derived class, even if it is called using a pointer or
reference to the base class. The following example shows a base class that provides an implementation of the
PrintBalance function and two derived classes

In the preceding code, the calls to PrintBalance are identical, except for the object pAccount points to. Because
PrintBalance is virtual, the version of the function defined for each object is called. The PrintBalance function in

the derived classes CheckingAccount and SavingsAccount "override" the function in the base class Account .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/virtual-functions.md

// deriv_VirtualFunctions2.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

class Base {
public:
 virtual void NameOf(); // Virtual function.
 void InvokingClass(); // Nonvirtual function.
};

// Implement the two functions.
void Base::NameOf() {
 cout << "Base::NameOf\n";
}

void Base::InvokingClass() {
 cout << "Invoked by Base\n";
}

class Derived : public Base {
public:
 void NameOf(); // Virtual function.
 void InvokingClass(); // Nonvirtual function.
};

// Implement the two functions.
void Derived::NameOf() {
 cout << "Derived::NameOf\n";
}

void Derived::InvokingClass() {
 cout << "Invoked by Derived\n";
}

int main() {
 // Declare an object of type Derived.
 Derived aDerived;

 // Declare two pointers, one of type Derived * and the other
 // of type Base *, and initialize them to point to aDerived.
 Derived *pDerived = &aDerived;
 Base *pBase = &aDerived;

 // Call the functions.
 pBase->NameOf(); // Call virtual function.
 pBase->InvokingClass(); // Call nonvirtual function.
 pDerived->NameOf(); // Call virtual function.
 pDerived->InvokingClass(); // Call nonvirtual function.
}

If a class is declared that does not provide an overriding implementation of the PrintBalance function, the default
implementation from the base class Account is used.

Functions in derived classes override virtual functions in base classes only if their type is the same. A function in a
derived class cannot differ from a virtual function in a base class in its return type only; the argument list must
differ as well.

When calling a function using pointers or references, the following rules apply:

A call to a virtual function is resolved according to the underlying type of object for which it is called.

A call to a nonvirtual function is resolved according to the type of the pointer or reference.

The following example shows how virtual and nonvirtual functions behave when called through pointers:

OutputOutput

Derived::NameOf
Invoked by Base
Derived::NameOf
Invoked by Derived

CheckingAccount *pChecking = new CheckingAccount(100.00);

pChecking->Account::PrintBalance(); // Explicit qualification.

Account *pAccount = pChecking; // Call Account::PrintBalance

pAccount->Account::PrintBalance(); // Explicit qualification.

Note that regardless of whether the NameOf function is invoked through a pointer to Base or a pointer to
Derived , it calls the function for Derived . It calls the function for Derived because NameOf is a virtual function,

and both pBase and pDerived point to an object of type Derived .

Because virtual functions are called only for objects of class types, you cannot declare global or static functions as
virtual.

The virtual keyword can be used when declaring overriding functions in a derived class, but it is unnecessary;
overrides of virtual functions are always virtual.

Virtual functions in a base class must be defined unless they are declared using the pure-specifier. (For more
information about pure virtual functions, see Abstract Classes.)

The virtual function-call mechanism can be suppressed by explicitly qualifying the function name using the
scope-resolution operator (::). Consider the earlier example involving the Account class. To call PrintBalance

in the base class, use code such as the following:

Both calls to PrintBalance in the preceding example suppress the virtual function-call mechanism.

Single Inheritance
11/20/2018 • 4 minutes to read • Edit Online

// deriv_SingleInheritance.cpp
// compile with: /LD
class PrintedDocument {};

// Book is derived from PrintedDocument.
class Book : public PrintedDocument {};

// PaperbackBook is derived from Book.
class PaperbackBook : public Book {};

In "single inheritance," a common form of inheritance, classes have only one base class. Consider the relationship
illustrated in the following figure.

Simple Single-Inheritance Graph

Note the progression from general to specific in the figure. Another common attribute found in the design of most
class hierarchies is that the derived class has a "kind of" relationship with the base class. In the figure, a Book is a
kind of a PrintedDocument , and a PaperbackBook is a kind of a book .

One other item of note in the figure: Book is both a derived class (from PrintedDocument) and a base class (
PaperbackBook is derived from Book). A skeletal declaration of such a class hierarchy is shown in the following

example:

PrintedDocument is considered a "direct base" class to Book ; it is an "indirect base" class to PaperbackBook . The
difference is that a direct base class appears in the base list of a class declaration and an indirect base does not.

The base class from which each class is derived is declared before the declaration of the derived class. It is not
sufficient to provide a forward-referencing declaration for a base class; it must be a complete declaration.

In the preceding example, the access specifier public is used. The meaning of public, protected, and private
inheritance is described in Member-Access Control.

A class can serve as the base class for many specific classes, as illustrated in the following figure.

Sample of Directed Acyclic Graph

In the diagram shown above, called a "directed acyclic graph" (or "DAG"), some of the classes are base classes for
more than one derived class. However, the reverse is not true: there is only one direct base class for any given
derived class. The graph in the figure depicts a "single inheritance" structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/single-inheritance.md

NOTENOTE

// deriv_SingleInheritance2.cpp
// compile with: /EHsc /c
#include <iostream>
using namespace std;
class Document {
public:
 char *Name; // Document name.
 void PrintNameOf(); // Print name.
};

// Implementation of PrintNameOf function from class Document.
void Document::PrintNameOf() {
 cout << Name << endl;
}

class Book : public Document {
public:
 Book(char *name, long pagecount);
private:
 long PageCount;
};

// Constructor from class Book.
Book::Book(char *name, long pagecount) {
 Name = new char[strlen(name) + 1];
 strcpy_s(Name, strlen(Name), name);
 PageCount = pagecount;
};

// Create a new object of type Book. This invokes the
// constructor Book::Book.
Book LibraryBook("Programming Windows, 2nd Ed", 944);

...

// Use PrintNameOf function inherited from class Document.
LibraryBook.PrintNameOf();

Directed acyclic graphs are not unique to single inheritance. They are also used to depict multiple-inheritance graphs.

In inheritance, the derived class contains the members of the base class plus any new members you add. As a
result, a derived class can refer to members of the base class (unless those members are redefined in the derived
class). The scope-resolution operator (::) can be used to refer to members of direct or indirect base classes when
those members have been redefined in the derived class. Consider this example:

Note that the constructor for Book , (Book::Book), has access to the data member, Name . In a program, an object
of type Book can be created and used as follows:

As the preceding example demonstrates, class-member and inherited data and functions are used identically. If the
implementation for class Book calls for a reimplementation of the PrintNameOf function, the function that belongs
to the Document class can be called only by using the scope-resolution (::) operator:

// deriv_SingleInheritance3.cpp
// compile with: /EHsc /LD
#include <iostream>
using namespace std;

class Document {
public:
 char *Name; // Document name.
 void PrintNameOf() {} // Print name.
};

class Book : public Document {
 Book(char *name, long pagecount);
 void PrintNameOf();
 long PageCount;
};

void Book::PrintNameOf() {
 cout << "Name of book: ";
 Document::PrintNameOf();
}

// deriv_SingleInheritance4.cpp
// compile with: /W3
struct Document {
 char *Name;
 void PrintNameOf() {}
};

class PaperbackBook : public Document {};

int main() {
 Document * DocLib[10]; // Library of ten documents.
 for (int i = 0 ; i < 5 ; i++)
 DocLib[i] = new Document;
 for (int i = 5 ; i < 10 ; i++)
 DocLib[i] = new PaperbackBook;
}

NOTENOTE

Pointers and references to derived classes can be implicitly converted to pointers and references to their base
classes if there is an accessible, unambiguous base class. The following code demonstrates this concept using
pointers (the same principle applies to references):

In the preceding example, different types are created. However, because these types are all derived from the
Document class, there is an implicit conversion to Document * . As a result, DocLib is a "heterogeneous list" (a list

in which not all objects are of the same type) containing different kinds of objects.

Because the Document class has a PrintNameOf function, it can print the name of each book in the library, although
it may omit some of the information specific to the type of document (page count for Book , number of bytes for
HelpFile , and so on).

Forcing the base class to implement a function such as PrintNameOf is often not the best design. Virtual Functions offers
other design alternatives.

Base Classes
11/20/2018 • 2 minutes to read • Edit Online

The inheritance process creates a new derived class that is made up of the members of the base class(es) plus any
new members added by the derived class. In a multiple-inheritance, it is possible to construct an inheritance graph
where the same base class is part of more than one of the derived classes. The following figure shows such a
graph.

Multiple instances of a single base class

In the figure, pictorial representations of the components of CollectibleString and CollectibleSortable are
shown. However, the base class, Collectible , is in CollectibleSortableString through the CollectibleString

path and the CollectibleSortable path. To eliminate this redundancy, such classes can be declared as virtual base
classes when they are inherited.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/base-classes.md

Multiple Base Classes
11/20/2018 • 7 minutes to read • Edit Online

// deriv_MultipleBaseClasses.cpp
// compile with: /LD
class Collection {
};
class Book {};
class CollectionOfBook : public Book, public Collection {
 // New members
};

Virtual base classes

A class can be derived from more than one base class. In a multiple-inheritance model (where classes are derived
from more than one base class), the base classes are specified using the base-list grammar element. For example,
the class declaration for CollectionOfBook , derived from Collection and Book , can be specified:

The order in which base classes are specified is not significant except in certain cases where constructors and
destructors are invoked. In these cases, the order in which base classes are specified affects the following:

NOTENOTE

The order in which initialization by constructor takes place. If your code relies on the Book portion of
CollectionOfBook to be initialized before the Collection part, the order of specification is significant.

Initialization takes place in the order the classes are specified in the base-list.

The order in which destructors are invoked to clean up. Again, if a particular "part" of the class must be
present when the other part is being destroyed, the order is significant. Destructors are called in the reverse
order of the classes specified in the base-list.

The order of specification of base classes can affect the memory layout of the class. Do not make any programming
decisions based on the order of base members in memory.

When specifying the base-list, you cannot specify the same class name more than once. However, it is possible for
a class to be an indirect base to a derived class more than once.

Because a class can be an indirect base class to a derived class more than once, C++ provides a way to optimize
the way such base classes work. Virtual base classes offer a way to save space and avoid ambiguities in class
hierarchies that use multiple inheritance.

Each nonvirtual object contains a copy of the data members defined in the base class. This duplication wastes
space and requires you to specify which copy of the base class members you want whenever you access them.

When a base class is specified as a virtual base, it can act as an indirect base more than once without duplication
of its data members. A single copy of its data members is shared by all the base classes that use it as a virtual
base.

When declaring a virtual base class, the virtual keyword appears in the base lists of the derived classes.

Consider the class hierarchy in the following figure, which illustrates a simulated lunch line.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/multiple-base-classes.md

// deriv_VirtualBaseClasses.cpp
// compile with: /LD
class Queue {};
class CashierQueue : virtual public Queue {};
class LunchQueue : virtual public Queue {};
class LunchCashierQueue : public LunchQueue, public CashierQueue {};

Simulated lunch-line graph

In the figure, Queue is the base class for both CashierQueue and LunchQueue . However, when both classes are
combined to form LunchCashierQueue , the following problem arises: the new class contains two subobjects of type
Queue , one from CashierQueue and the other from LunchQueue . The following figure shows the conceptual

memory layout (the actual memory layout might be optimized).

Simulated lunch-line object

Note that there are two Queue subobjects in the LunchCashierQueue object. The following code declares Queue to
be a virtual base class:

The virtual keyword ensures that only one copy of the subobject Queue is included (see the following figure).

Simulated lunch-line object with virtual base classes

A class can have both a virtual component and a nonvirtual component of a given type. This happens in the
conditions illustrated in the following figure.

Virtual and non-virtual components of the same class

In the figure, CashierQueue and LunchQueue use Queue as a virtual base class. However, TakeoutQueue specifies
Queue as a base class, not a virtual base class. Therefore, LunchTakeoutCashierQueue has two subobjects of type
Queue : one from the inheritance path that includes LunchCashierQueue and one from the path that includes
TakeoutQueue . This is illustrated in the following figure.

NOTENOTE

#pragma vtordisp(off)
class GetReal : virtual public { ... };
\#pragma vtordisp(on)

Name ambiguities

// deriv_NameAmbiguities.cpp
// compile with: /LD
// Declare two base classes, A and B.
class A {
public:
 unsigned a;
 unsigned b();
};

class B {
public:
 unsigned a(); // Note that class A also has a member "a"
 int b(); // and a member "b".
 char c;
};

// Define class C as derived from A and B.
class C : public A, public B {};

Object layout with virtual and non-virtual inheritance

Virtual inheritance provides significant size benefits when compared with nonvirtual inheritance. However, it can introduce
extra processing overhead.

If a derived class overrides a virtual function that it inherits from a virtual base class, and if a constructor or a
destructor for the derived base class calls that function using a pointer to the virtual base class, the compiler may
introduce additional hidden "vtordisp" fields into the classes with virtual bases. The /vd0 compiler option
suppresses the addition of the hidden vtordisp constructor/destructor displacement member. The /vd1 compiler
option, the default, enables them where they are necessary. Turn off vtordisps only if you are sure that all class
constructors and destructors call virtual functions virtually.

The /vd compiler option affects an entire compilation module. Use the vtordisp pragma to suppress and then
reenable vtordisp fields on a class-by-class basis:

Multiple inheritance introduces the possibility for names to be inherited along more than one path. The class-
member names along these paths are not necessarily unique. These name conflicts are called "ambiguities."

Any expression that refers to a class member must make an unambiguous reference. The following example
shows how ambiguities develop:

Given the preceding class declarations, code such as the following is ambiguous because it is unclear whether b

refers to the b in A or in B :

C *pc = new C;

pc->b();

C *pc = new C;

pc->B::a();

NOTENOTE

DominanceDominance

Consider the preceding example. Because the name a is a member of both class A and class B , the compiler
cannot discern which a designates the function to be called. Access to a member is ambiguous if it can refer to
more than one function, object, type, or enumerator.

The compiler detects ambiguities by performing tests in this order:

1. If access to the name is ambiguous (as just described), an error message is generated.

2. If overloaded functions are unambiguous, they are resolved.

3. If access to the name violates member-access permission, an error message is generated. (For more
information, see Member-Access Control.)

When an expression produces an ambiguity through inheritance, you can manually resolve it by qualifying the
name in question with its class name. To make the preceding example compile properly with no ambiguities, use
code such as:

When C is declared, it has the potential to cause errors when B is referenced in the scope of C . No error is issued,
however, until an unqualified reference to B is actually made in C 's scope.

It is possible for more than one name (function, object, or enumerator) to be reached through an inheritance
graph. Such cases are considered ambiguous with nonvirtual base classes. They are also ambiguous with virtual
base classes, unless one of the names "dominates" the others.

A name dominates another name if it is defined in both classes and one class is derived from the other. The
dominant name is the name in the derived class; this name is used when an ambiguity would otherwise have
arisen, as shown in the following example:

// deriv_Dominance.cpp
// compile with: /LD
class A {
public:
 int a;
};

class B : public virtual A {
public:
 int a();
};

class C : public virtual A {};

class D : public B, public C {
public:
 D() { a(); } // Not ambiguous. B::a() dominates A::a.
};

Ambiguous conversionsAmbiguous conversions

(A *)(B *)&d // Use B subobject.
(A *)(C *)&d // Use C subobject.

Ambiguities and virtual base classesAmbiguities and virtual base classes

Explicit and implicit conversions from pointers or references to class types can cause ambiguities. The next figure,
Ambiguous Conversion of Pointers to Base Classes, shows the following:

The declaration of an object of type D .

The effect of applying the address-of operator (&) to that object. Note that the address-of operator always
supplies the base address of the object.

The effect of explicitly converting the pointer obtained using the address-of operator to the base-class type
A . Note that coercing the address of the object to type A* does not always provide the compiler with

enough information as to which subobject of type A to select; in this case, two subobjects exist.

Ambiguous conversion of pointers to base classes

The conversion to type A* (pointer to A) is ambiguous because there is no way to discern which subobject of
type A is the correct one. Note that you can avoid the ambiguity by explicitly specifying which subobject you
mean to use, as follows:

If virtual base classes are used, functions, objects, types, and enumerators can be reached through multiple-
inheritance paths. Because there is only one instance of the base class, there is no ambiguity when accessing these
names.

The following figure shows how objects are composed using virtual and nonvirtual inheritance.

See also

Virtual vs. non-virtual derivation

In the figure, accessing any member of class A through nonvirtual base classes causes an ambiguity; the
compiler has no information that explains whether to use the subobject associated with B or the subobject
associated with C . However, when A is specified as a virtual base class, there is no question which subobject is
being accessed.

Inheritance

Explicit Overrides (C++)
4/1/2019 • 2 minutes to read • Edit Online

Example

// deriv_ExplicitOverrides.cpp
// compile with: /GR
extern "C" int printf_s(const char *, ...);

__interface IMyInt1 {
 void mf1();
 void mf1(int);
 void mf2();
 void mf2(int);
};

__interface IMyInt2 {
 void mf1();
 void mf1(int);
 void mf2();
 void mf2(int);
};

class CMyClass : public IMyInt1, public IMyInt2 {
public:
 void IMyInt1::mf1() {
 printf_s("In CMyClass::IMyInt1::mf1()\n");
 }

 void IMyInt1::mf1(int) {
 printf_s("In CMyClass::IMyInt1::mf1(int)\n");
 }

 void IMyInt1::mf2();
 void IMyInt1::mf2(int);

 void IMyInt2::mf1() {
 printf_s("In CMyClass::IMyInt2::mf1()\n");
 }

 void IMyInt2::mf1(int) {
 printf_s("In CMyClass::IMyInt2::mf1(int)\n");
 }

 void IMyInt2::mf2();
 void IMyInt2::mf2(int);
};

void CMyClass::IMyInt1::mf2() {
 printf_s("In CMyClass::IMyInt1::mf2()\n");

Microsoft Specific

If the same virtual function is declared in two or more interfaces and if a class is derived from these interfaces, you
can explicitly override each virtual function.

For information on explicit overrides in managed code using C++/CLI, see Explicit Overrides.

END Microsoft Specific

The following code example illustrates how to use explicit overrides:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/explicit-overrides-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/explicit-overrides-cpp-component-extensions

 printf_s("In CMyClass::IMyInt1::mf2()\n");
}

void CMyClass::IMyInt1::mf2(int) {
 printf_s("In CMyClass::IMyInt1::mf2(int)\n");
}

void CMyClass::IMyInt2::mf2() {
 printf_s("In CMyClass::IMyInt2::mf2()\n");
}

void CMyClass::IMyInt2::mf2(int) {
 printf_s("In CMyClass::IMyInt2::mf2(int)\n");
}

int main() {
 IMyInt1 *pIMyInt1 = new CMyClass();
 IMyInt2 *pIMyInt2 = dynamic_cast<IMyInt2 *>(pIMyInt1);

 pIMyInt1->mf1();
 pIMyInt1->mf1(1);
 pIMyInt1->mf2();
 pIMyInt1->mf2(2);
 pIMyInt2->mf1();
 pIMyInt2->mf1(3);
 pIMyInt2->mf2();
 pIMyInt2->mf2(4);

 // Cast to a CMyClass pointer so that the destructor gets called
 CMyClass *p = dynamic_cast<CMyClass *>(pIMyInt1);
 delete p;
}

In CMyClass::IMyInt1::mf1()
In CMyClass::IMyInt1::mf1(int)
In CMyClass::IMyInt1::mf2()
In CMyClass::IMyInt1::mf2(int)
In CMyClass::IMyInt2::mf1()
In CMyClass::IMyInt2::mf1(int)
In CMyClass::IMyInt2::mf2()
In CMyClass::IMyInt2::mf2(int)

See also
Inheritance

Abstract Classes (C++)
10/31/2018 • 2 minutes to read • Edit Online

// deriv_AbstractClasses.cpp
// compile with: /LD
class Account {
public:
 Account(double d); // Constructor.
 virtual double GetBalance(); // Obtain balance.
 virtual void PrintBalance() = 0; // Pure virtual function.
private:
 double _balance;
};

Restrictions on abstract classes

Abstract classes act as expressions of general concepts from which more specific classes can be derived. You
cannot create an object of an abstract class type; however, you can use pointers and references to abstract class
types.

A class that contains at least one pure virtual function is considered an abstract class. Classes derived from the
abstract class must implement the pure virtual function or they, too, are abstract classes.

Consider the example presented in Virtual Functions. The intent of class Account is to provide general
functionality, but objects of type Account are too general to be useful. Therefore, Account is a good candidate for
an abstract class:

The only difference between this declaration and the previous one is that PrintBalance is declared with the pure
specifier (= 0).

Abstract classes cannot be used for:

Variables or member data

Argument types

Function return types

Types of explicit conversions

Another restriction is that if the constructor for an abstract class calls a pure virtual function, either directly or
indirectly, the result is undefined. However, constructors and destructors for abstract classes can call other member
functions.

Pure virtual functions can be defined for abstract classes, but they can be called directly only by using the syntax:

abstract-class-name::function-name()

This helps when designing class hierarchies whose base class(es) include pure virtual destructors, because base
class destructors are always called in the process of destroying an object. Consider the following example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/abstract-classes-cpp.md

// Declare an abstract base class with a pure virtual destructor.
// deriv_RestrictionsonUsingAbstractClasses.cpp
class base {
public:
 base() {}
 virtual ~base()=0;
};

// Provide a definition for destructor.
base::~base() {}

class derived:public base {
public:
 derived() {}
 ~derived(){}
};

int main() {
 derived *pDerived = new derived;
 delete pDerived;
}

NOTENOTE

See also

When the object pointed to by pDerived is deleted, the destructor for class derived is called and then the
destructor for class base is called. The empty implementation for the pure virtual function ensures that at least
some implementation exists for the function.

In the preceding example, the pure virtual function base::~base is called implicitly from derived::~derived . It is also
possible to call pure virtual functions explicitly using a fully qualified member-function name.

Inheritance

Summary of Scope Rules
10/31/2018 • 2 minutes to read • Edit Online

Constructor initializers

Global names

Qualified names

The use of a name must be unambiguous within its scope (up to the point where overloading is determined). If the
name denotes a function, the function must be unambiguous with respect to number and type of parameters. If the
name remains unambiguous, member-access rules are applied.

Constructor initializers are evaluated in the scope of the outermost block of the constructor for which they are
specified. Therefore, they can use the constructor's parameter names.

A name of an object, function, or enumerator is global if it is introduced outside any function or class or prefixed by
the global unary scope operator (::), and if it is not used in conjunction with any of these binary operators:

Scope-resolution (::)

Member-selection for objects and references (.)

Member-selection for pointers (->)

Names used with the binary scope-resolution operator (::) are called "qualified names." The name specified after
the binary scope-resolution operator must be a member of the class specified on the left of the operator or a
member of its base class(es).

Names specified after the member-selection operator (. or ->) must be members of the class type of the object
specified on the left of the operator or members of its base class(es). Names specified on the right of the member-
selection operator (->) can also be objects of another class type, provided that the left-hand side of -> is a class
object and that the class defines an overloaded member-selection operator (->) that evaluates to a pointer to some
other class type. (This provision is discussed in more detail in Class Member Access.)

The compiler searches for names in the following order, stopping when the name is found:

1. Current block scope if name is used inside a function; otherwise, global scope.

2. Outward through each enclosing block scope, including the outermost function scope (which includes
function parameters).

3. If the name is used inside a member function, the class's scope is searched for the name.

4. The class's base classes are searched for the name.

5. The enclosing nested class scope (if any) and its bases are searched. The search continues until the
outermost enclosing class scope is searched.

6. Global scope is searched.

However, you can make modifications to this search order as follows:

1. Names preceded by :: force the search to begin at global scope.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/summary-of-scope-rules.md

Function parameter names

See also

2. Names preceded by the class, struct, and union keywords force the compiler to search only for class,
struct, or union names.

3. Names on the left side of the scope-resolution operator (::) can be only class, struct, namespace, or
union names.

If the name refers to a nonstatic member but is used in a static member function, an error message is generated.
Similarly, if the name refers to any nonstatic member in an enclosing class, an error message is generated because
enclosed classes do not have enclosing-class this pointers.

Function parameter names in function definitions are considered to be in the scope of the outermost block of the
function. Therefore, they are local names and go out of scope when the function is exited.

Function parameter names in function declarations (prototypes) are in local scope of the declaration and go out of
scope at the end of the declaration.

Default parameters are in the scope of the parameter for which they are the default, as described in the preceding
two paragraphs. However, they cannot access local variables or nonstatic class members. Default parameters are
evaluated at the point of the function call, but they are evaluated in the function declaration's original scope.
Therefore, the default parameters for member functions are always evaluated in class scope.

Inheritance

Inheritance Keywords
10/31/2018 • 2 minutes to read • Edit Online

class [__single_inheritance] class-name;
class [__multiple_inheritance] class-name;
class [__virtual_inheritance] class-name;

class S;
int S::*p;

class __single_inheritance S;
int S::*p;

Microsoft Specific

where:

class-name
The name of the class being declared.

C++ allows you to declare a pointer to a class member prior to the definition of the class. For example:

In the code above, p is declared to be a pointer to integer member of class S. However, class S has not yet
been defined in this code; it has only been declared. When the compiler encounters such a pointer, it must make a
generalized representation of the pointer. The size of the representation is dependent on the inheritance model
specified. There are four ways to specify an inheritance model to the compiler:

NOTENOTE

In the IDE under Pointer-to-member representation

At the command line using the /vmg switch

Using the pointers_to_members pragma

Using the inheritance keywords __single_inheritance, __multiple_inheritance, and
__virtual_inheritance. This technique controls the inheritance model on a per-class basis.

If you always declare a pointer to a member of a class after defining the class, you don't need to use any of these
options.

Declaring a pointer to a member of a class prior to the class definition affects the size and speed of the resulting
executable file. The more complex the inheritance used by a class, the greater the number of bytes required to
represent a pointer to a member of the class and the larger the code required to interpret the pointer. Single
inheritance is least complex, and virtual inheritance is most complex.

If the example above is changed to:

regardless of command-line options or pragmas, pointers to members of class S will use the smallest possible
representation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/inheritance-keywords.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/vmb-vmg-representation-method
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pointers-to-members

NOTENOTE

See also

The same forward declaration of a class pointer-to-member representation should occur in every translation unit that
declares pointers to members of that class, and the declaration should occur before the pointers to members are declared.

For compatibility with previous versions, _single_inheritance, _multiple_inheritance, and
_virtual_inheritance are synonyms for __single_inheritance, __multiple_inheritance, and
__virtual_inheritance unless compiler option /Za (Disable language extensions) is specified.

END Microsoft Specific

Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

virtual (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
virtual [type-specifiers] member-function-declarator
virtual [access-specifier] base-class-name

ParametersParameters

Remarks

See also

The virtual keyword declares a virtual function or a virtual base class.

type-specifiers
Specifies the return type of the virtual member function.

member-function-declarator
Declares a member function.

access-specifier
Defines the level of access to the base class, public, protected or private. Can appear before or after the virtual
keyword.

base-class-name
Identifies a previously declared class type.

See Virtual Functions for more information.

Also see the following keywords: class, private, public, and protected.

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/virtual-cpp.md

__super
4/1/2019 • 2 minutes to read • Edit Online

Syntax
__super::member_function();

Remarks

Example
// deriv_super.cpp
// compile with: /c
struct B1 {
 void mf(int) {}
};

struct B2 {
 void mf(short) {}

 void mf(char) {}
};

struct D : B1, B2 {
 void mf(short) {
 __super::mf(1); // Calls B1::mf(int)
 __super::mf('s'); // Calls B2::mf(char)
 }
};

See also

Microsoft Specific

Allows you to explicitly state that you are calling a base-class implementation for a function that you are
overriding.

All accessible base-class methods are considered during the overload resolution phase, and the function that
provides the best match is the one that is called.

__super can only appear within the body of a member function.

__super cannot be used with a using declaration. See using Declaration for more information.

With the introduction of attributes that inject code, your code might contain one or more base classes whose
names you may not know but that contain methods that you wish to call.

END Microsoft Specific

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/super.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attributes-alphabetical-reference

__interface
5/7/2019 • 2 minutes to read • Edit Online

Syntax
modifier __interface interface-name {interface-definition};

Remarks

__interface IMyInterface {
 HRESULT CommitX();
 HRESULT get_X(BSTR* pbstrName);
};

virtual HRESULT CommitX() = 0;

Example

// deriv_interface.cpp
#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>
#include <string.h>
#include <comdef.h>

Microsoft Specific

A Microsoft C++ interface can be defined as follows:

Can inherit from zero or more base interfaces.

Cannot inherit from a base class.

Can only contain public, pure virtual methods.

Cannot contain constructors, destructors, or operators.

Cannot contain static methods.

Cannot contain data members; properties are allowed.

A C++ class or struct could be implemented with these rules, but __interface enforces them.

For example, the following is a sample interface definition:

For information on managed interfaces, see interface class.

Notice that you do not have to explicitly indicate that the CommitX and get_X functions are pure virtual. An
equivalent declaration for the first function would be:

__interface implies the novtable __declspec modifier.

The following sample shows how to use properties declared in an interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/interface-class-cpp-component-extensions

#include <stdio.h>

[module(name="test")];

[object, uuid("00000000-0000-0000-0000-000000000001"), library_block]
__interface IFace {
 [id(0)] int int_data;
 [id(5)] BSTR bstr_data;
};

[coclass, uuid("00000000-0000-0000-0000-000000000002")]
class MyClass : public IFace {
private:
 int m_i;
 BSTR m_bstr;

public:
 MyClass()
 {
 m_i = 0;
 m_bstr = 0;
 }

 ~MyClass()
 {
 if (m_bstr)
 ::SysFreeString(m_bstr);
 }

 int get_int_data()
 {
 return m_i;
 }

 void put_int_data(int _i)
 {
 m_i = _i;
 }

 BSTR get_bstr_data()
 {
 BSTR bstr = ::SysAllocString(m_bstr);
 return bstr;
 }

 void put_bstr_data(BSTR bstr)
 {
 if (m_bstr)
 ::SysFreeString(m_bstr);
 m_bstr = ::SysAllocString(bstr);
 }
};

int main()
{
 _bstr_t bstr("Testing");
 CoInitialize(NULL);
 CComObject<MyClass>* p;
 CComObject<MyClass>::CreateInstance(&p);
 p->int_data = 100;
 printf_s("p->int_data = %d\n", p->int_data);
 p->bstr_data = bstr;
 printf_s("bstr_data = %S\n", p->bstr_data);
}

p->int_data = 100
bstr_data = Testing

See also

END Microsoft Specific

Keywords
Interface Attributes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/interface-attributes

Special member functions
10/31/2018 • 2 minutes to read • Edit Online

See also

The special member functions are class (or struct) member functions that, in certain cases, the compiler
automatically generates for you. These functions are the default constructor, the destructor, the copy constructor
and copy assignment operator, and the move constructor and move assignment operator. If your class does not
define one or more of the special member functions, then the compiler may implicitly declare and define the
functions that are used. The compiler-generated implementations are called the default special member functions.
The compiler does not generate functions if they are not needed.

You can explicitly declare a default special member function by using the = default keyword. This causes the
compiler to define the function only if needed, in the same way as if the function was not declared at all.

In some cases, the compiler may generate deleted special member functions, which are not defined and therefore
not callable. This can happen in cases where a call to a particular special member function on a class doesn't make
sense, given other properties of the class. To explicitly prevent automatic generation of a special member function,
you can declare it as deleted by using the = delete keyword.

The compiler generates a default constructor, a constructor that takes no arguments, only when you have not
declared any other constructor. If you have declared only a constructor that takes parameters, code that attempts
to call a default constructor causes the compiler to produce an error message. The compiler-generated default
constructor performs simple member-wise default initialization of the object. Default initialization leaves all
member variables in an indeterminate state.

The default destructor performs member-wise destruction of the object. It is virtual only if a base class destructor
is virtual.

The default copy and move construction and assignment operations perform member-wise bit-pattern copies or
moves of non-static data members. Move operations are only generated when no destructor or move or copy
operations are declared. A default copy constructor is only generated when no copy constructor is declared. It is
implicitly deleted if a move operation is declared. A default copy assignment operator is generated only when no
copy assignment operator is explicitly declared. It is implicitly deleted if a move operation is declared.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/special-member-functions.md

Static Members (C++)
10/31/2018 • 2 minutes to read • Edit Online

// static_data_members.cpp
class BufferedOutput
{
public:
 // Return number of bytes written by any object of this class.
 short BytesWritten()
 {
 return bytecount;
 }

 // Reset the counter.
 static void ResetCount()
 {
 bytecount = 0;
 }

 // Static member declaration.
 static long bytecount;
};

// Define bytecount in file scope.
long BufferedOutput::bytecount;

int main()
{
}

long nBytes = BufferedOutput::bytecount;

BufferedOutput Console;

long nBytes = Console.bytecount;

Classes can contain static member data and member functions. When a data member is declared as static, only
one copy of the data is maintained for all objects of the class.

Static data members are not part of objects of a given class type. As a result, the declaration of a static data
member is not considered a definition. The data member is declared in class scope, but definition is performed at
file scope. These static members have external linkage. The following example illustrates this:

In the preceding code, the member bytecount is declared in class BufferedOutput , but it must be defined outside
the class declaration.

Static data members can be referred to without referring to an object of class type. The number of bytes written
using BufferedOutput objects can be obtained as follows:

For the static member to exist, it is not necessary that any objects of the class type exist. Static members can also
be accessed using the member-selection (. and ->) operators. For example:

In the preceding case, the reference to the object (Console) is not evaluated; the value returned is that of the static
object bytecount .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/static-members-cpp.md

See also

Static data members are subject to class-member access rules, so private access to static data members is allowed
only for class-member functions and friends. These rules are described in Member-Access Control. The exception
is that static data members must be defined in file scope regardless of their access restrictions. If the data member
is to be explicitly initialized, an initializer must be provided with the definition.

The type of a static member is not qualified by its class name. Therefore, the type of BufferedOutput::bytecount is
long.

Classes and Structs

User-Defined Type Conversions (C++)
10/31/2018 • 10 minutes to read • Edit Online

A conversion produces a new value of some type from a value of a different type. Standard conversions are built
into the C++ language and support its built-in types, and you can create user-defined conversions to perform
conversions to, from, or between user-defined types.

The standard conversions perform conversions between built-in types, between pointers or references to types
related by inheritance, to and from void pointers, and to the null pointer. For more information, see Standard
Conversions. User-defined conversions perform conversions between user-defined types, or between user-
defined types and built-in types. You can implement them as Conversion constructors or as Conversion functions.

Conversions can either be explicit—when the programmer calls for one type to be converted to another, as in a
cast or direct initialization—or implicit—when the language or program calls for a different type than the one
given by the programmer.

Implicit conversions are attempted when:

An argument supplied to a function does not have the same type as the matching parameter.

The value returned from a function does not have the same type as the function return type.

An initializer expression does not have the same type as the object it is initializing.

An expression that controls a conditional statement, looping construct, or switch does not have the result
type that's required to control it.

An operand supplied to an operator does not have the same type as the matching operand-parameter. For
built-in operators, both operands must have the same type, and are converted to a common type that can
represent both. For more information, see Standard Conversions. For user-defined operators, each
operand must have the same type as the matching operand-parameter.

When one standard conversion can't complete an implicit conversion, the compiler can use a user-defined
conversion, followed optionally by an additional standard conversion, to complete it.

When two or more user-defined conversions that perform the same conversion are available at a conversion site,
the conversion is said to be ambiguous. Such ambiguities are an error because the compiler can't determine
which one of the available conversions it should choose. However, it's not an error just to define multiple ways of
performing the same conversion because the set of available conversions can be different at different locations in
the source code—for example, depending on which header files are included in a source file. As long as only one
conversion is available at the conversion site, there is no ambiguity. There are several ways that ambiguous
conversions can arise, but the most common ones are:

Multiple inheritance. The conversion is defined in more than one base class.

Ambiguous function call. The conversion is defined as a conversion constructor of the target type and as a
conversion function of the source type. For more information, see Conversion functions.

You can usually resolve an ambiguity just by qualifying the name of the involved type more fully or by
performing an explicit cast to clarify your intent.

Both conversion constructors and conversion functions obey member-access control rules, but the accessibility of
the conversions is only considered if and when an unambiguous conversion can be determined. This means that
a conversion can be ambiguous even if the access level of a competing conversion would prevent it from being

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/user-defined-type-conversions-cpp.md

The explicit keyword and problems with implicit conversion

Conversion constructors

#include <iostream>

class Money
{
public:
 Money() : amount{ 0.0 } {};
 Money(double _amount) : amount{ _amount } {};

 double amount;
};

void display_balance(const Money balance)
{
 std::cout << "The balance is: " << balance.amount << std::endl;
}

int main(int argc, char* argv[])
{
 Money payable{ 79.99 };

 display_balance(payable);
 display_balance(49.95);
 display_balance(9.99f);

 return 0;
}

used. For more information about member accessibility, see Member Access Control.

By default when you create a user-defined conversion, the compiler can use it to perform implicit conversions.
Sometimes this is what you want, but other times the simple rules that guide the compiler in making implicit
conversions can lead it to accept code that you don't want it to.

One well-known example of an implicit conversion that can cause problems is the conversion to bool. There are
many reasons that you might want to create a class type that can be used in a Boolean context—for example, so
that it can be used to control an if statement or loop—but when the compiler performs a user-defined conversion
to a built-in type, the compiler is allowed to apply an additional standard conversion afterwards. The intent of this
additional standard conversion is to allow for things like promotion from short to int, but it also opens the door
for less-obvious conversions—for example, from bool to int, which allows your class type to be used in integer
contexts you never intended. This particular problem is known as the Safe Bool Problem. This kind of problem is
where the explicit keyword can help.

The explicit keyword tells the compiler that the specified conversion can't be used to perform implicit
conversions. If you wanted the syntactic convenience of implicit conversions before the explicit keyword was
introduced, you had to either accept the unintended consequences that implicit conversion sometimes created or
use less-convenient, named conversion functions as a workaround. Now, by using the explicit keyword, you can
create convenient conversions that can only be used to perform explicit casts or direct initialization, and that
won't lead to the kind of problems exemplified by the Safe Bool Problem.

The explicit keyword can be applied to conversion constructors since C++98, and to conversion functions since
C++11. The following sections contain more information about how to use the explicit keyword.

Conversion constructors define conversions from user-defined or built-in types to a user-defined type. The
following example demonstrates a conversion constructor that converts from the built-in type double to a user-
defined type Money .

Declaring conversion constructorsDeclaring conversion constructors

Explicit conversion constructorsExplicit conversion constructors

#include <iostream>

class Money
{
public:
 Money() : amount{ 0.0 } {};
 explicit Money(double _amount) : amount{ _amount } {};

 double amount;
};

void display_balance(const Money balance)
{
 std::cout << "The balance is: " << balance.amount << std::endl;
}

int main(int argc, char* argv[])
{
 Money payable{ 79.99 }; // Legal: direct initialization is explicit.

 display_balance(payable); // Legal: no conversion required
 display_balance(49.95); // Error: no suitable conversion exists to convert from double to Money.
 display_balance((Money)9.99f); // Legal: explicit cast to Money

 return 0;
}

Notice that the first call to the function display_balance , which takes an argument of type Money , doesn't require
a conversion because its argument is the correct type. However, on the second call to display_balance , a
conversion is needed because the type of the argument, a double with a value of 49.95 , is not what the function
expects. The function can't use this value directly, but because there's a conversion from the type of the argument
—double—to the type of the matching parameter— Money —a temporary value of type Money is constructed
from the argument and used to complete the function call. In the third call to display_balance , notice that the
argument is not a double, but is instead a float with a value of 9.99 —and yet the function call can still be
completed because the compiler can perform a standard conversion—in this case, from float to double—and
then perform the user-defined conversion from double to Money to complete the necessary conversion.

The following rules apply to declaring a conversion constructor:

The target type of the conversion is the user-defined type that's being constructed.

Conversion constructors typically take exactly one argument, which is of the source type. However, a
conversion constructor can specify additional parameters if each additional parameter has a default value.
The source type remains the type of the first parameter.

Conversion constructors, like all constructors, do not specify a return type. Specifying a return type in the
declaration is an error.

Conversion constructors can be explicit.

By declaring a conversion constructor to be explicit, it can only be used to perform direct initialization of an
object or to perform an explicit cast. This prevents functions that accept an argument of the class type from also
implicitly accepting arguments of the conversion constructor's source type, and prevents the class type from
being copy-initialized from a value of the source type. The following example demonstrates how to define an
explicit conversion constructor, and the effect it has on what code is well-formed.

In this example, notice that you can still use the explicit conversion constructor to perform direct initialization of

 Conversion functions

#include <iostream>

class Money
{
public:
 Money() : amount{ 0.0 } {};
 Money(double _amount) : amount{ _amount } {};

 operator double() const { return amount; }
private:
 double amount;
};

void display_balance(const Money balance)
{
 std::cout << "The balance is: " << balance << std::endl;
}

Declaring conversion functionsDeclaring conversion functions

payable . If instead you were to copy-initialize Money payable = 79.99; , it would be an error. The first call to
display_balance is unaffected because the argument is the correct type. The second call to display_balance is an

error, because the conversion constructor can't be used to perform implicit conversions. The third call to
display_balance is legal because of the explicit cast to Money , but notice that the compiler still helped complete

the cast by inserting an implicit cast from float to double.

Although the convenience of allowing implicit conversions can be tempting, doing so can introduce hard-to-find
bugs. The rule of thumb is to make all conversion constructors explicit except when you're sure that you want a
specific conversion to occur implicitly.

Conversion functions define conversions from a user-defined type to other types. These functions are sometimes
referred to as "cast operators" because they, along with conversion constructors, are called when a value is cast to
a different type. The following example demonstrates a conversion function that converts from the user-defined
type, Money , to a built-in type, double:

Notice that the member variable amount is made private and that a public conversion function to type double is
introduced just to return the value of amount . In the function display_balance , an implicit conversion occurs
when the value of balance is streamed to standard output by using the stream insertion operator << . Because
no stream-insertion operator is defined for the user-defined type Money , but there is one for built-in type
double, the compiler can use the conversion function from Money to double to satisfy the stream-insertion
operator.

Conversion functions are inherited by derived classes. Conversion functions in a derived class only override an
inherited conversion function when they convert to exactly the same type. For example, a user-defined
conversion function of the derived class operator int does not override—or even influence—a user-defined
conversion function of the base class operator short, even though the standard conversions define a conversion
relationship between int and short.

The following rules apply to declaring a conversion function:

operator struct String { char string_storage; }() // illegal

The target type of the conversion must be declared prior to the declaration of the conversion function.
Classes, structures, enumerations, and typedefs cannot be declared within the declaration of the
conversion function.

Explicit conversion functionsExplicit conversion functions

#include <iostream>

class Money
{
public:
 Money() : amount{ 0.0 } {};
 Money(double _amount) : amount{ _amount } {};

 explicit operator double() const { return amount; }
private:
 double amount;
};

void display_balance(const Money balance)
{
 std::cout << "The balance is: " << (double)balance << std::endl;
}

Conversion functions take no arguments. Specifying any parameters in the declaration is an error.

Conversion functions have a return type that is specified by the name of the conversion function, which is
also the name of the conversion's target type. Specifying a return type in the declaration is an error.

Conversion functions can be virtual.

Conversion functions can be explicit.

When a conversion function is declared to be explicit, it can only be used to perform an explicit cast. This prevents
functions that accept an argument of the conversion function's target type from also implicitly accepting
arguments of the class type, and prevents instances of the target type from being copy-initialized from a value of
the class type. The following example demonstrates how to define an explicit conversion function and the effect it
has on what code is well-formed.

Here the conversion function operator double has been made explicit, and an explicit cast to type double has
been introduced in the function display_balance to perform the conversion. If this cast were omitted, the
compiler would be unable to locate a suitable stream-insertion operator << for type Money and an error would
occur.

Mutable Data Members (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
mutable member-variable-declaration;

Remarks

// mutable.cpp
class X
{
public:
 bool GetFlag() const
 {
 m_accessCount++;
 return m_flag;
 }
private:
 bool m_flag;
 mutable int m_accessCount;
};

int main()
{
}

See also

This keyword can only be applied to non-static and non-const data members of a class. If a data member is
declared mutable, then it is legal to assign a value to this data member from a const member function.

For example, the following code will compile without error because m_accessCount has been declared to be
mutable, and therefore can be modified by GetFlag even though GetFlag is a const member function.

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/mutable-data-members-cpp.md

Nested Class Declarations
10/31/2018 • 4 minutes to read • Edit Online

// nested_class_declarations.cpp
class BufferedIO
{
public:
 enum IOError { None, Access, General };

 // Declare nested class BufferedInput.
 class BufferedInput
 {
 public:
 int read();
 int good()
 {
 return _inputerror == None;
 }
 private:
 IOError _inputerror;
 };

 // Declare nested class BufferedOutput.
 class BufferedOutput
 {
 // Member list
 };
};

int main()
{
}

NOTENOTE

A class can be declared within the scope of another class. Such a class is called a "nested class." Nested classes are
considered to be within the scope of the enclosing class and are available for use within that scope. To refer to a
nested class from a scope other than its immediate enclosing scope, you must use a fully qualified name.

The following example shows how to declare nested classes:

BufferedIO::BufferedInput and BufferedIO::BufferedOutput are declared within BufferedIO . These class names
are not visible outside the scope of class BufferedIO . However, an object of type BufferedIO does not contain any
objects of types BufferedInput or BufferedOutput .

Nested classes can directly use names, type names, names of static members, and enumerators only from the
enclosing class. To use names of other class members, you must use pointers, references, or object names.

In the preceding BufferedIO example, the enumeration IOError can be accessed directly by member functions in
the nested classes, BufferedIO::BufferedInput or BufferedIO::BufferedOutput , as shown in function good .

Nested classes declare only types within class scope. They do not cause contained objects of the nested class to be created.
The preceding example declares two nested classes but does not declare any objects of these class types.

An exception to the scope visibility of a nested class declaration is when a type name is declared together with a
forward declaration. In this case, the class name declared by the forward declaration is visible outside the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/nested-class-declarations.md

// nested_class_declarations_2.cpp
class C
{
public:
 typedef class U u_t; // class U visible outside class C scope
 typedef class V {} v_t; // class V not visible outside class C
};

int main()
{
 // okay, forward declaration used above so file scope is used
 U* pu;

 // error, type name only exists in class C scope
 u_t* pu2; // C2065

 // error, class defined above so class C scope
 V* pv; // C2065

 // okay, fully qualified name
 C::V* pv2;
}

Access privilege in nested classes

Member functions in nested classes

enclosing class, with its scope defined to be the smallest enclosing non-class scope. For example:

Nesting a class within another class does not give special access privileges to member functions of the nested
class. Similarly, member functions of the enclosing class have no special access to members of the nested class.

Member functions declared in nested classes can be defined in file scope. The preceding example could have been
written:

// member_functions_in_nested_classes.cpp
class BufferedIO
{
public:
 enum IOError { None, Access, General };
 class BufferedInput
 {
 public:
 int read(); // Declare but do not define member
 int good(); // functions read and good.
 private:
 IOError _inputerror;
 };

 class BufferedOutput
 {
 // Member list.
 };
};
// Define member functions read and good in
// file scope.
int BufferedIO::BufferedInput::read()
{
 return(1);
}

int BufferedIO::BufferedInput::good()
{
 return _inputerror == None;
}
int main()
{
}

BufferedIO::BufferedInput::read()

typedef BufferedIO::BufferedInput BIO_INPUT;

int BIO_INPUT::read()

Friend functions in nested classes

In the preceding example, the qualified-type-name syntax is used to declare the function name. The declaration:

means "the read function that is a member of the BufferedInput class that is in the scope of the BufferedIO

class." Because this declaration uses the qualified-type-name syntax, constructs of the following form are possible:

The preceding declaration is equivalent to the previous one, but it uses a typedef name in place of the class
names.

Friend functions declared in a nested class are considered to be in the scope of the nested class, not the enclosing
class. Therefore, the friend functions gain no special access privileges to members or member functions of the
enclosing class. If you want to use a name that is declared in a nested class in a friend function and the friend
function is defined in file scope, use qualified type names as follows:

// friend_functions_and_nested_classes.cpp

#include <string.h>

enum
{
 sizeOfMessage = 255
};

char *rgszMessage[sizeOfMessage];

class BufferedIO
{
public:
 class BufferedInput
 {
 public:
 friend int GetExtendedErrorStatus();
 static char *message;
 static int messageSize;
 int iMsgNo;
 };
};

char *BufferedIO::BufferedInput::message;
int BufferedIO::BufferedInput::messageSize;

int GetExtendedErrorStatus()
{
 int iMsgNo = 1; // assign arbitrary value as message number

 strcpy_s(BufferedIO::BufferedInput::message,
 BufferedIO::BufferedInput::messageSize,
 rgszMessage[iMsgNo]);

 return iMsgNo;
}

int main()
{
}

int GetExtendedErrorStatus(char *message)

See also

The following code shows the function GetExtendedErrorStatus declared as a friend function. In the function, which
is defined in file scope, a message is copied from a static array into a class member. Note that a better
implementation of GetExtendedErrorStatus is to declare it as:

With the preceding interface, several classes can use the services of this function by passing a memory location
where they want the error message copied.

Classes and Structs

Anonymous Class Types
10/31/2018 • 2 minutes to read • Edit Online

typedef struct
{
 unsigned x;
 unsigned y;
} POINT;

NOTENOTE

struct PTValue
{
 POINT ptLoc;
 union
 {
 int iValue;
 long lValue;
 };
};

PTValue ptv;

int i = ptv.iValue;

Anonymous structs
Microsoft SpecificMicrosoft Specific

Classes can be anonymous — that is, they can be declared without an identifier. This is useful when you replace a
class name with a typedef name, as in the following:

The use of anonymous classes shown in the previous example is useful for preserving compatibility with existing C code. In
some C code, the use of typedef in conjunction with anonymous structures is prevalent.

Anonymous classes are also useful when you want a reference to a class member to appear as though it were not
contained in a separate class, as in the following:

In the preceding code, iValue can be accessed using the object member-selection operator (.) as follows:

Anonymous classes are subject to certain restrictions. (For more information about anonymous unions, see
Unions.) Anonymous classes:

Cannot have a constructor or destructor.

Cannot be passed as arguments to functions (unless type checking is defeated using ellipses).

Cannot be returned as return values from functions.

A Microsoft C extension allows you to declare a structure variable within another structure without giving it a
name. These nested structures are called anonymous structures. C++ does not allow anonymous structures.

You can access the members of an anonymous structure as if they were members in the containing structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/anonymous-class-types.md

// anonymous_structures.c
#include <stdio.h>

struct phone
{
 int areacode;
 long number;
};

struct person
{
 char name[30];
 char gender;
 int age;
 int weight;
 struct phone; // Anonymous structure; no name needed
} Jim;

int main()
{
 Jim.number = 1234567;
 printf_s("%d\n", Jim.number);
}
//Output: 1234567

END Microsoft Specific

Pointers to Members
11/8/2018 • 3 minutes to read • Edit Online

[storage-class-specifiers] [cv-qualifiers] type-specifiers [ms-modifier]qualified-name ::* [cv-qualifiers]
identifier
[= & qualified-name :: member-name];

Declarations of pointers to members are special cases of pointer declarations. They are declared using the
following sequence:

1. The declaration specifier:

An optional storage class specifier.

Optional const and/or volatile specifiers.

The type specifier: the name of a type. This is the type of the member to be pointed to, not the class.

2. The declarator:

An optional Microsoft specific modifier. For more information, see Microsoft-Specific Modifiers.

The qualified name of the class containing the members to be pointed to.

The :: operator.

The * operator.

Optional const and/or volatile specifiers.

The identifier naming the pointer to member.

3. An optional initializer:

The = operator.

The & operator.

The qualified name of the class.

The :: operator.

The name of a nonstatic member of the class of the appropriate type.

As always, multiple declarators (and any associated initializers) are allowed in a single declaration.

A pointer to a member of a class differs from a normal pointer because it has type information for the type of the
member and for the class to which the member belongs. A normal pointer identifies (has the address of) only a
single object in memory. A pointer to a member of a class identifies that member in any instance of the class. The
following example declares a class, Window , and some pointers to member data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/pointers-to-members.md

// pointers_to_members1.cpp
class Window
{
public:
 Window(); // Default constructor.
 Window(int x1, int y1, // Constructor specifying
 int x2, int y2); // window size.
bool SetCaption(const char *szTitle); // Set window caption.
 const char *GetCaption(); // Get window caption.
 char *szWinCaption; // Window caption.
};

// Declare a pointer to the data member szWinCaption.
char * Window::* pwCaption = &Window::szWinCaption;
int main()
{
}

const char * (Window::*pfnwGC)() = &Window::GetCaption;
bool (Window::*pfnwSC)(const char *) = &Window::SetCaption;

Window wMainWindow;
Window *pwChildWindow = new Window;
char *szUntitled = "Untitled - ";
int cUntitledLen = strlen(szUntitled);

strcpy_s(wMainWindow.*pwCaption, cUntitledLen, szUntitled);
(wMainWindow.*pwCaption)[cUntitledLen - 1] = '1'; //same as
//wMainWindow.SzWinCaption [cUntitledLen - 1] = '1';
strcpy_s(pwChildWindow->*pwCaption, cUntitledLen, szUntitled);
(pwChildWindow->*pwCaption)[cUntitledLen - 1] = '2'; //same as //pwChildWindow->szWinCaption[cUntitledLen - 1]
= '2';

In the preceding example, pwCaption is a pointer to any member of class Window that has type char* . The type of
pwCaption is char * Window::* . The next code fragment declares pointers to the SetCaption and GetCaption

member functions.

The pointers pfnwGC and pfnwSC point to GetCaption and SetCaption of the Window class, respectively. The code
copies information to the window caption directly using the pointer to member pwCaption :

The difference between the .* and ->* operators (the pointer-to-member operators) is that the .* operator selects
members given an object or object reference, while the ->* operator selects members through a pointer. (For more
about these operators, see Expressions with Pointer-to-Member Operators.)

The result of the pointer-to-member operators is the type of the member — in this case, char * .

The following code fragment invokes the member functions GetCaption and SetCaption using pointers to
members:

// Allocate a buffer.
enum {
 sizeOfBuffer = 100
};
char szCaptionBase[sizeOfBuffer];

// Copy the main window caption into the buffer
// and append " [View 1]".
strcpy_s(szCaptionBase, sizeOfBuffer, (wMainWindow.*pfnwGC)());
strcat_s(szCaptionBase, sizeOfBuffer, " [View 1]");
// Set the child window's caption.
(pwChildWindow->*pfnwSC)(szCaptionBase);

Restrictions on Pointers to Members

Pointers to Members and Virtual Functions

The address of a static member is not a pointer to a member. It is a regular pointer to the one instance of the static
member. Because only one instance of a static member exists for all objects of a given class, the ordinary address-
of (&) and dereference (*) operators can be used.

Invoking a virtual function through a pointer-to-member function works as if the function had been called directly;
the correct function is looked up in the v-table and invoked.

The key to virtual functions working, as always, is invoking them through a pointer to a base class. (For more
information about virtual functions, see Virtual Functions.)

The following code shows how to invoke a virtual function through a pointer-to-member function:

// virtual_functions.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

class Base
{
 public:
 virtual void Print();
};
void (Base ::* bfnPrint)() = &Base :: Print;
void Base :: Print()
{
 cout << "Print function for class Base\n";
}

class Derived : public Base
{
 public:
 void Print(); // Print is still a virtual function.
};

void Derived :: Print()
{
 cout << "Print function for class Derived\n";
}

int main()
{
 Base *bPtr;
 Base bObject;
 Derived dObject;
 bPtr = &bObject; // Set pointer to address of bObject.
 (bPtr->*bfnPrint)();
 bPtr = &dObject; // Set pointer to address of dObject.
 (bPtr->*bfnPrint)();
}

//Output: Print function for class Base
Print function for class Derived

this Pointer
11/14/2018 • 3 minutes to read • Edit Online

Syntax
this
this->member-identifier

Remarks

myDate.setMonth(3);

setMonth(&myDate, 3);

void Date::setMonth(int mn)
{
 month = mn; // These three statements
 this->month = mn; // are equivalent
 (*this).month = mn;
}

return *this;

if (&Object != this) {
// do not execute in cases of self-reference

The this pointer is a pointer accessible only within the nonstatic member functions of a class, struct, or union
type. It points to the object for which the member function is called. Static member functions do not have a this
pointer.

An object's this pointer is not part of the object itself; it is not reflected in the result of a sizeof statement on the
object. Instead, when a nonstatic member function is called for an object, the address of the object is passed by the
compiler as a hidden argument to the function. For example, the following function call:

can be interpreted this way:

The object's address is available from within the member function as the this pointer. Most uses of this are
implicit. It is legal, though unnecessary, to explicitly use this when referring to members of the class. For example:

The expression *this is commonly used to return the current object from a member function:

The this pointer is also used to guard against self-reference:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/this-pointer.md

NOTENOTE

Example

Because the this pointer is nonmodifiable, assignments to this are not allowed. Earlier implementations of C++ allowed
assignments to this.

Occasionally, the this pointer is used directly — for example, to manipulate self-referential data structures, where
the address of the current object is required.

// this_pointer.cpp
// compile with: /EHsc

#include <iostream>
#include <string.h>

using namespace std;

class Buf
{
public:
 Buf(char* szBuffer, size_t sizeOfBuffer);
 Buf& operator=(const Buf &);
 void Display() { cout << buffer << endl; }

private:
 char* buffer;
 size_t sizeOfBuffer;
};

Buf::Buf(char* szBuffer, size_t sizeOfBuffer)
{
 sizeOfBuffer++; // account for a NULL terminator

 buffer = new char[sizeOfBuffer];
 if (buffer)
 {
 strcpy_s(buffer, sizeOfBuffer, szBuffer);
 sizeOfBuffer = sizeOfBuffer;
 }
}

Buf& Buf::operator=(const Buf &otherbuf)
{
 if(&otherbuf != this)
 {
 if (buffer)
 delete [] buffer;

 sizeOfBuffer = strlen(otherbuf.buffer) + 1;
 buffer = new char[sizeOfBuffer];
 strcpy_s(buffer, sizeOfBuffer, otherbuf.buffer);
 }
 return *this;
}

int main()
{
 Buf myBuf("my buffer", 10);
 Buf yourBuf("your buffer", 12);

 // Display 'my buffer'
 myBuf.Display();

 // assignment operator
 myBuf = yourBuf;

 // Display 'your buffer'
 myBuf.Display();
}

my buffer
your buffer

Type of the this pointer

// type_of_this_pointer1.cpp
class Point
{
 unsigned X() const;
};
int main()
{
}

// type_of_this_pointer2.cpp
class Point
{
 unsigned X() const;
};
int main()
{
}

Semantics of this ModifiersSemantics of this Modifiers

MODIFIER MEANING

const Cannot change member data; cannot invoke member
functions that are not const.

volatile Member data is loaded from memory each time it is accessed;
disables certain optimizations.

The this pointer's type can be modified in the function declaration by the const and volatile keywords. To declare
a function as having the attributes of one or more of these keywords, add the keyword(s) after the function
argument list.

Consider this example:

The preceding code declares a member function, X , in which the this pointer is treated as a const pointer to a
const object. Combinations of cv-mod-list options can be used, but they always modify the object pointed to by
this, not the this pointer itself. Therefore, the following declaration declares function X ; the this pointer is a
const pointer to a const object:

The type of this in a member function is described by the following syntax, where cv-qualifier-list is determined
from the member functions declarator and can be const or volatile (or both), and class-type is the name of the
class:

[cv-qualifier-list] class-type * const this

In other words, this is always a const pointer ; it cannot be reassigned. The const or volatile qualifiers used in the
member function declaration apply to the class instance pointed to by this in the scope of that function.

The following table explains more about how these modifiers work.

It is an error to pass a const object to a member function that is not const. Similarly, it is an error to pass a
volatile object to a member function that is not volatile.

Member functions declared as const cannot change member data — in such functions, the this pointer is a
pointer to a const object.

NOTENOTE

See also

Constructors and destructors cannot be declared as const or volatile. They can, however, be invoked on const or volatile
objects.

Keywords

C++ Bit Fields
11/20/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

NOTENOTE

// bit_fields1.cpp
// compile with: /LD
struct Date {
 unsigned short nWeekDay : 3; // 0..7 (3 bits)
 unsigned short nMonthDay : 6; // 0..31 (6 bits)
 unsigned short nMonth : 5; // 0..12 (5 bits)
 unsigned short nYear : 8; // 0..100 (8 bits)
};

Classes and structures can contain members that occupy less storage than an integral type. These members are
specified as bit fields. The syntax for bit-field member-declarator specification follows:

declarator : constant-expression

The (optional) declarator is the name by which the member is accessed in the program. It must be an integral type
(including enumerated types). The constant-expression specifies the number of bits the member occupies in the
structure. Anonymous bit fields — that is, bit-field members with no identifier — can be used for padding.

An unnamed bit field of width 0 forces alignment of the next bit field to the next type boundary, where type is the type of
the member.

The following example declares a structure that contains bit fields:

The conceptual memory layout of an object of type Date is shown in the following figure.

Memory Layout of Date Object

Note that nYear is 8 bits long and would overflow the word boundary of the declared type, unsigned short.
Therefore, it is begun at the beginning of a new unsigned short. It is not necessary that all bit fields fit in one
object of the underlying type; new units of storage are allocated, according to the number of bits requested in the
declaration.

Microsoft Specific

The ordering of data declared as bit fields is from low to high bit, as shown in the figure above.

END Microsoft Specific

If the declaration of a structure includes an unnamed field of length 0, as shown in the following example,

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-bit-fields.md

// bit_fields2.cpp
// compile with: /LD
struct Date {
 unsigned nWeekDay : 3; // 0..7 (3 bits)
 unsigned nMonthDay : 6; // 0..31 (6 bits)
 unsigned : 0; // Force alignment to next boundary.
 unsigned nMonth : 5; // 0..12 (5 bits)
 unsigned nYear : 8; // 0..100 (8 bits)
};

Restrictions on bit fields

See also

then the memory layout is as shown in the following figure:

Layout of Date Object with Zero-Length Bit Field

The underlying type of a bit field must be an integral type, as described in Fundamental Types.

If the initializer for a reference of type const T& is an lvalue that refers to a bit field of type T , the reference is not
bound to the bit field directly. Instead, the reference is bound to a temporary initialized to hold the value of the bit
field.

The following list details erroneous operations on bit fields:

Taking the address of a bit field.

Initializing a non-const reference with a bit field.

Classes and Structs

Lambda Expressions in C++
5/7/2019 • 12 minutes to read • Edit Online

Related Topics

Parts of a Lambda Expression

#include <algorithm>
#include <cmath>

void abssort(float* x, unsigned n) {
 std::sort(x, x + n,
 // Lambda expression begins
 [](float a, float b) {
 return (std::abs(a) < std::abs(b));
 } // end of lambda expression
);
}

In C++11 and later, a lambda expression—often called a lambda—is a convenient way of defining an anonymous
function object (a closure) right at the location where it is invoked or passed as an argument to a function.
Typically lambdas are used to encapsulate a few lines of code that are passed to algorithms or asynchronous
methods. This article defines what lambdas are, compares them to other programming techniques, describes
their advantages, and provides a basic example.

Lambda expressions vs. function objects
Working with lambda expressions
constexpr lambda expressions

The ISO C++ Standard shows a simple lambda that is passed as the third argument to the std::sort() function:

This illustration shows the parts of a lambda:

1. capture clause (Also known as the lambda-introducer in the C++ specification.)

2. parameter list Optional. (Also known as the lambda declarator)

3. mutable specification Optional.

4. exception-specification Optional.

5. trailing-return-type Optional.

6. lambda body.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lambda-expressions-in-cpp.md

Capture ClauseCapture Clause

[&total, factor]
[factor, &total]
[&, factor]
[factor, &]
[=, &total]
[&total, =]

struct S { void f(int i); };

void S::f(int i) {
 [&, i]{}; // OK
 [&, &i]{}; // ERROR: i preceded by & when & is the default
 [=, this]{}; // ERROR: this when = is the default
 [=, *this]{ }; // OK: captures this by value. See below.
 [i, i]{}; // ERROR: i repeated
}

template<class... Args>
void f(Args... args) {
 auto x = [args...] { return g(args...); };
 x();
}

A lambda can introduce new variables in its body (in C++14), and it can also access, or capture, variables from
the surrounding scope. A lambda begins with the capture clause (lambda-introducer in the Standard syntax),
which specifies which variables are captured, and whether the capture is by value or by reference. Variables that
have the ampersand (&) prefix are accessed by reference and variables that do not have it are accessed by value.

An empty capture clause, [] , indicates that the body of the lambda expression accesses no variables in the
enclosing scope.

You can use the default capture mode (capture-default in the Standard syntax) to indicate how to capture any
outside variables that are referenced in the lambda: [&] means all variables that you refer to are captured by
reference, and [=] means they are captured by value. You can use a default capture mode, and then specify the
opposite mode explicitly for specific variables. For example, if a lambda body accesses the external variable
total by reference and the external variable factor by value, then the following capture clauses are equivalent:

Only variables that are mentioned in the lambda are captured when a capture-default is used.

If a capture clause includes a capture-default & , then no identifier in a capture of that capture clause can
have the form & identifier . Likewise, if the capture clause includes a capture-default = , then no capture of
that capture clause can have the form = identifier . An identifier or this cannot appear more than once in a
capture clause. The following code snippet illustrates some examples.

A capture followed by an ellipsis is a pack expansion, as shown in this variadic template example:

To use lambda expressions in the body of a class method, pass the this pointer to the capture clause to provide
access to the methods and data members of the enclosing class.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): The this pointer may be captured by
value by specifying *this in the capture clause. Capture by value means that the entire closure, which is the
anonymous function object that encapulates the lambda expression, is copied to every call site where the lambda
is invoked. Capture by value is useful when the lambda will execute in parallel or asynchronous operations,
especially on certain hardware architectures such as NUMA.

For an example that shows how to use lambda expressions with class methods, see "Example: Using a Lambda

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

Generalized capture (C++ 14)Generalized capture (C++ 14)

pNums = make_unique<vector<int>>(nums);
//...
 auto a = [ptr = move(pNums)]()
 {
 // use ptr
 };

Parameter ListParameter List

auto y = [] (int first, int second)
{
 return first + second;
};

auto y = [] (auto first, auto second)
{
 return first + second;
};

Mutable SpecificationMutable Specification

Expression in a Method" in Examples of Lambda Expressions.

When you use the capture clause, we recommend that you keep these points in mind, particularly when you use
lambdas with multithreading:

Reference captures can be used to modify variables outside, but value captures cannot. (mutable allows
copies to be modified, but not originals.)

Reference captures reflect updates to variables outside, but value captures do not.

Reference captures introduce a lifetime dependency, but value captures have no lifetime dependencies.
This is especially important when the lambda runs asynchronously. If you capture a local by reference in an
async lambda, that local will very possibly be gone by the time the lambda runs, resulting in an access
violation at run time.

In C++14, you can introduce and initialize new variables in the capture clause, without the need to have those
variables exist in the lambda function’s enclosing scope. The initialization can be expressed as any arbitrary
expression; the type of the new variable is deduced from the type produced by the expression. One benefit of this
feature is that in C++14 you can capture move-only variables (such as std::unique_ptr) from the surrounding
scope and use them in a lambda.

In addition to capturing variables, a lambda can accept input parameters. A parameter list (lambda declarator in
the Standard syntax) is optional and in most aspects resembles the parameter list for a function.

In C++ 14, if the parameter type is generic, you can use the auto keyword as the type specifier. This tells the
compiler to create the function call operator as a template. Each instance of auto in a parameter list is equivalent
to a distinct type parameter.

A lambda expression can take another lambda expression as its argument. For more information, see "Higher-
Order Lambda Expressions" in the topic Examples of Lambda Expressions.

Because a parameter list is optional, you can omit the empty parentheses if you do not pass arguments to the
lambda expression and its lambda-declarator does not contain exception-specification, trailing-return-type, or
mutable.

Typically, a lambda's function call operator is const-by-value, but use of the mutable keyword cancels this out. It

Exception SpecificationException Specification

// throw_lambda_expression.cpp
// compile with: /W4 /EHsc
int main() // C4297 expected
{
 []() noexcept { throw 5; }();
}

Return TypeReturn Type

auto x1 = [](int i){ return i; }; // OK: return type is int
auto x2 = []{ return{ 1, 2 }; }; // ERROR: return type is void, deducing
 // return type from braced-init-list is not valid

Lambda BodyLambda Body

does not produce mutable data members. The mutable specification enables the body of a lambda expression to
modify variables that are captured by value. Some of the examples later in this article show how to use mutable.

You can use the noexcept exception specification to indicate that the lambda expression does not throw any
exceptions. As with ordinary functions, the Microsoft C++ compiler generates warning C4297 if a lambda
expression declares the noexcept exception specification and the lambda body throws an exception, as shown
here:

For more information, see Exception Specifications (throw).

The return type of a lambda expression is automatically deduced. You don't have to use the auto keyword unless
you specify a trailing-return-type. The trailing-return-type resembles the return-type part of an ordinary method
or function. However, the return type must follow the parameter list, and you must include the trailing-return-
type keyword -> before the return type.

You can omit the return-type part of a lambda expression if the lambda body contains just one return statement
or the expression does not return a value. If the lambda body contains one return statement, the compiler
deduces the return type from the type of the return expression. Otherwise, the compiler deduces the return type
to be void. Consider the following example code snippets that illustrate this principle.

A lambda expression can produce another lambda expression as its return value. For more information, see
"Higher-Order Lambda Expressions" in Examples of Lambda Expressions.

The lambda body (compound-statement in the Standard syntax) of a lambda expression can contain anything that
the body of an ordinary method or function can contain. The body of both an ordinary function and a lambda
expression can access these kinds of variables:

Captured variables from the enclosing scope, as described previously.

Parameters

Locally-declared variables

Class data members, when declared inside a class and this is captured

Any variable that has static storage duration—for example, global variables

The following example contains a lambda expression that explicitly captures the variable n by value and
implicitly captures the variable m by reference:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4297

// captures_lambda_expression.cpp
// compile with: /W4 /EHsc
#include <iostream>
using namespace std;

int main()
{
 int m = 0;
 int n = 0;
 [&, n] (int a) mutable { m = ++n + a; }(4);
 cout << m << endl << n << endl;
}

5
0

void fillVector(vector<int>& v)
{
 // A local static variable.
 static int nextValue = 1;

 // The lambda expression that appears in the following call to
 // the generate function modifies and uses the local static
 // variable nextValue.
 generate(v.begin(), v.end(), [] { return nextValue++; });
 //WARNING: this is not thread-safe and is shown for illustration only
}

// compile with: /W4 /EHsc
#include <algorithm>
#include <iostream>
#include <vector>
#include <string>

using namespace std;

template <typename C> void print(const string& s, const C& c) {
 cout << s;

 for (const auto& e : c) {
 cout << e << " ";
 }

Because the variable n is captured by value, its value remains 0 after the call to the lambda expression. The
mutable specification allows n to be modified within the lambda.

Although a lambda expression can only capture variables that have automatic storage duration, you can use
variables that have static storage duration in the body of a lambda expression. The following example uses the
generate function and a lambda expression to assign a value to each element in a vector object. The lambda

expression modifies the static variable to generate the value of the next element.

For more information, see generate.

The following code example uses the function from the previous example, and adds an example of a lambda
expression that uses the C++ Standard Library algorithm generate_n . This lambda expression assigns an
element of a vector object to the sum of the previous two elements. The mutable keyword is used so that the
body of the lambda expression can modify its copies of the external variables x and y , which the lambda
expression captures by value. Because the lambda expression captures the original variables x and y by value,
their values remain 1 after the lambda executes.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

 cout << endl;
}

void fillVector(vector<int>& v)
{
 // A local static variable.
 static int nextValue = 1;

 // The lambda expression that appears in the following call to
 // the generate function modifies and uses the local static
 // variable nextValue.
 generate(v.begin(), v.end(), [] { return nextValue++; });
 //WARNING: this is not thread-safe and is shown for illustration only
}

int main()
{
 // The number of elements in the vector.
 const int elementCount = 9;

 // Create a vector object with each element set to 1.
 vector<int> v(elementCount, 1);

 // These variables hold the previous two elements of the vector.
 int x = 1;
 int y = 1;

 // Sets each element in the vector to the sum of the
 // previous two elements.
 generate_n(v.begin() + 2,
 elementCount - 2,
 [=]() mutable throw() -> int { // lambda is the 3rd parameter
 // Generate current value.
 int n = x + y;
 // Update previous two values.
 x = y;
 y = n;
 return n;
 });
 print("vector v after call to generate_n() with lambda: ", v);

 // Print the local variables x and y.
 // The values of x and y hold their initial values because
 // they are captured by value.
 cout << "x: " << x << " y: " << y << endl;

 // Fill the vector with a sequence of numbers
 fillVector(v);
 print("vector v after 1st call to fillVector(): ", v);
 // Fill the vector with the next sequence of numbers
 fillVector(v);
 print("vector v after 2nd call to fillVector(): ", v);
}

vector v after call to generate_n() with lambda: 1 1 2 3 5 8 13 21 34
x: 1 y: 1
vector v after 1st call to fillVector(): 1 2 3 4 5 6 7 8 9
vector v after 2nd call to fillVector(): 10 11 12 13 14 15 16 17 18

constexpr lambda expressions

For more information, see generate_n.

Visual Studio 2017 version 15.3 and later (available with /std:c++17): A lambda expression may be declared

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

 int y = 32;
 auto answer = [y]() constexpr
 {
 int x = 10;
 return y + x;
 };

 constexpr int Increment(int n)
 {
 return [n] { return n + 1; }();
 }

 auto answer = [](int n)
 {
 return 32 + n;
 };

 constexpr int response = answer(10);

 auto Increment = [](int n)
 {
 return n + 1;
 };

 constexpr int(*inc)(int) = Increment;

Microsoft-Specific

auto Sqr = [](int t) __declspec(code_seg("PagedMem")) -> int { return t*t; };

See also

as constexpr or used in a constant expression when the initialization of each data member that it captures or
introduces is allowed within a constant expression.

A lambda is implicitly constexpr if its result satisfies the requirements of a constexpr function:

If a lambda is implicitly or explicitly constexpr , conversion to a function pointer produces a constexpr function:

Lambdas are not supported in the following common language runtime (CLR) managed entities: ref class, ref
struct, value class, or value struct.

If you are using a Microsoft-specific modifier such as __declspec, you can insert it into a lambda expression
immediately after the parameter-declaration-clause —for example:

To determine whether a modifier is supported by lambdas, see the article about it in the Microsoft-Specific
Modifiers section of the documentation.

In addition to C++11 Standard lambda functionality, Visual Studio supports stateless lambdas, which are omni-
convertible to function pointers that use arbitrary calling conventions.

C++ Language Reference
Function Objects in the C++ Standard Library
Function Call
for_each

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-objects-in-the-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

Lambda Expression Syntax
5/7/2019 • 4 minutes to read • Edit Online

Function Objects vs. Lambdas

Example 1: Using a Lambda

CodeCode

This article demonstrates the syntax and structural elements of lambda expressions. For a description of lambda
expressions, see Lambda Expressions.

When you write code, you probably use function pointers and function objects to solve problems and perform
calculations, especially when you use C++ Standard Library algorithms. Function pointers and function objects
each have advantages and disadvantages—for example, function pointers have minimal syntactic overhead but do
not retain state within a scope, and function objects can maintain state but require the syntactic overhead of a class
definition.

A lambda combines the benefits of function pointers and function objects and avoids their disadvantages. Like a
function objects, a lambda is flexible and can maintain state, but unlike a function object, its compact syntax doesn't
require an explicit class definition. By using lambdas, you can write code that's less cumbersome and less prone to
errors than the code for an equivalent function object.

The following examples compare the use of a lambda to the use of a function object. The first example uses a
lambda to print to the console whether each element in a vector object is even or odd. The second example uses
a function object to accomplish the same task.

This example passes a lambda to the for_each function. The lambda prints a result that states whether each
element in a vector object is even or odd.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lambda-expression-syntax.md

// even_lambda.cpp
// compile with: cl /EHsc /nologo /W4 /MTd
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

int main()
{
 // Create a vector object that contains 9 elements.
 vector<int> v;
 for (int i = 1; i < 10; ++i) {
 v.push_back(i);
 }

 // Count the number of even numbers in the vector by
 // using the for_each function and a lambda.
 int evenCount = 0;
 for_each(v.begin(), v.end(), [&evenCount] (int n) {
 cout << n;
 if (n % 2 == 0) {
 cout << " is even " << endl;
 ++evenCount;
 } else {
 cout << " is odd " << endl;
 }
 });

 // Print the count of even numbers to the console.
 cout << "There are " << evenCount
 << " even numbers in the vector." << endl;
}

1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
There are 4 even numbers in the vector.

CommentsComments

Example 2: Using a Function Object

In the example, the third argument to the for_each function is a lambda. The [&evenCount] part specifies the
capture clause of the expression, (int n) specifies the parameter list, and remaining part specifies the body of the
expression.

Sometimes a lambda would be too unwieldy to extend much further than the previous example. The next example
uses a function object instead of a lambda, together with the for_each function, to produce the same results as
Example 1. Both examples store the count of even numbers in a vector object. To maintain the state of the
operation, the FunctorClass class stores the m_evenCount variable by reference as a member variable. To perform
the operation, FunctorClass implements the function-call operator, operator(). The Microsoft C++ compiler
generates code that is comparable in size and performance to the lambda code in Example 1. For a basic problem
like the one in this article, the simpler lambda design is probably better than the function-object design. However,
if you think that the functionality might require significant expansion in the future, then use a function object
design so that code maintenance will be easier.

CodeCode

// even_functor.cpp
// compile with: /EHsc
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

class FunctorClass
{
public:
 // The required constructor for this example.
 explicit FunctorClass(int& evenCount)
 : m_evenCount(evenCount) { }

 // The function-call operator prints whether the number is
 // even or odd. If the number is even, this method updates
 // the counter.
 void operator()(int n) const {
 cout << n;

 if (n % 2 == 0) {
 cout << " is even " << endl;
 ++m_evenCount;
 } else {
 cout << " is odd " << endl;
 }
 }

private:
 // Default assignment operator to silence warning C4512.
 FunctorClass& operator=(const FunctorClass&);

 int& m_evenCount; // the number of even variables in the vector.
};

int main()
{
 // Create a vector object that contains 9 elements.
 vector<int> v;
 for (int i = 1; i < 10; ++i) {
 v.push_back(i);
 }

 // Count the number of even numbers in the vector by
 // using the for_each function and a function object.
 int evenCount = 0;
 for_each(v.begin(), v.end(), FunctorClass(evenCount));

 // Print the count of even numbers to the console.
 cout << "There are " << evenCount
 << " even numbers in the vector." << endl;
}

For more information about the operator(), see Function Call. For more information about the for_each function,
see for_each.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
There are 4 even numbers in the vector.

See also
Lambda Expressions
Examples of Lambda Expressions
generate
generate_n
for_each
Exception Specifications (throw)
Compiler Warning (level 1) C4297
Microsoft-Specific Modifiers

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4297

Examples of Lambda Expressions
5/7/2019 • 9 minutes to read • Edit Online

Declaring Lambda Expressions
Example 1Example 1

CodeCode

// declaring_lambda_expressions1.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{

 using namespace std;

 // Assign the lambda expression that adds two numbers to an auto variable.
 auto f1 = [](int x, int y) { return x + y; };

 cout << f1(2, 3) << endl;

 // Assign the same lambda expression to a function object.
 function<int(int, int)> f2 = [](int x, int y) { return x + y; };

 cout << f2(3, 4) << endl;
}

OutputOutput

5
7

RemarksRemarks

Example 2Example 2

This article shows how to use lambda expressions in your programs. For an overview of lambda expressions, see
Lambda Expressions. For more information about the structure of a lambda expression, see Lambda Expression
Syntax.

Because a lambda expression is typed, you can assign it to an auto variable or to a function object, as shown
here:

For more information, see auto, function Class, and Function Call.

Although lambda expressions are most often declared in the body of a function, you can declare them anywhere
that you can initialize a variable.

The Microsoft C++ compiler binds a lambda expression to its captured variables when the expression is declared
instead of when the expression is called. The following example shows a lambda expression that captures the
local variable i by value and the local variable j by reference. Because the lambda expression captures i by
value, the reassignment of i later in the program does not affect the result of the expression. However, because
the lambda expression captures j by reference, the reassignment of j does affect the result of the expression.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/examples-of-lambda-expressions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class

CodeCode

// declaring_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{
 using namespace std;

 int i = 3;
 int j = 5;

 // The following lambda expression captures i by value and
 // j by reference.
 function<int (void)> f = [i, &j] { return i + j; };

 // Change the values of i and j.
 i = 22;
 j = 44;

 // Call f and print its result.
 cout << f() << endl;
}

OutputOutput

47

Calling Lambda Expressions

Example 1Example 1

CodeCode

// calling_lambda_expressions1.cpp
// compile with: /EHsc
#include <iostream>

int main()
{
 using namespace std;
 int n = [] (int x, int y) { return x + y; }(5, 4);
 cout << n << endl;
}

OutputOutput

9

Example 2Example 2

[In This Article]

You can call a lambda expression immediately, as shown in the next code snippet. The second snippet shows how
to pass a lambda as an argument to C++ Standard Library algorithms such as find_if .

This example declares a lambda expression that returns the sum of two integers and calls the expression
immediately with the arguments 5 and 4 :

CodeCode

// calling_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <list>
#include <algorithm>
#include <iostream>

int main()
{
 using namespace std;

 // Create a list of integers with a few initial elements.
 list<int> numbers;
 numbers.push_back(13);
 numbers.push_back(17);
 numbers.push_back(42);
 numbers.push_back(46);
 numbers.push_back(99);

 // Use the find_if function and a lambda expression to find the
 // first even number in the list.
 const list<int>::const_iterator result =
 find_if(numbers.begin(), numbers.end(),[](int n) { return (n % 2) == 0; });

 // Print the result.
 if (result != numbers.end()) {
 cout << "The first even number in the list is " << *result << "." << endl;
 } else {
 cout << "The list contains no even numbers." << endl;
 }
}

OutputOutput

The first even number in the list is 42.

RemarksRemarks

Nesting Lambda Expressions
ExampleExample

CodeCode

This example passes a lambda expression as an argument to the find_if function. The lambda expression
returns true if its parameter is an even number.

For more information about the find_if function, see find_if. For more information about the C++ Standard
Library functions that perform common algorithms, see <algorithm>.

[In This Article]

You can nest a lambda expression inside another one, as shown in this example. The inner lambda expression
multiplies its argument by 2 and returns the result. The outer lambda expression calls the inner lambda
expression with its argument and adds 3 to the result.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm

// nesting_lambda_expressions.cpp
// compile with: /EHsc /W4
#include <iostream>

int main()
{
 using namespace std;

 // The following lambda expression contains a nested lambda
 // expression.
 int timestwoplusthree = [](int x) { return [](int y) { return y * 2; }(x) + 3; }(5);

 // Print the result.
 cout << timestwoplusthree << endl;
}

OutputOutput

13

RemarksRemarks

Higher-Order Lambda Functions
ExampleExample

CodeCode

In this example, [](int y) { return y * 2; } is the nested lambda expression.

[In This Article]

Many programming languages support the concept of a higher-order function. A higher-order function is a
lambda expression that takes another lambda expression as its argument or returns a lambda expression. You can
use the function class to enable a C++ lambda expression to behave like a higher-order function. The following
example shows a lambda expression that returns a function object and a lambda expression that takes a
function object as its argument.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class

// higher_order_lambda_expression.cpp
// compile with: /EHsc /W4
#include <iostream>
#include <functional>

int main()
{
 using namespace std;

 // The following code declares a lambda expression that returns
 // another lambda expression that adds two numbers.
 // The returned lambda expression captures parameter x by value.
 auto addtwointegers = [](int x) -> function<int(int)> {
 return [=](int y) { return x + y; };
 };

 // The following code declares a lambda expression that takes another
 // lambda expression as its argument.
 // The lambda expression applies the argument z to the function f
 // and multiplies by 2.
 auto higherorder = [](const function<int(int)>& f, int z) {
 return f(z) * 2;
 };

 // Call the lambda expression that is bound to higherorder.
 auto answer = higherorder(addtwointegers(7), 8);

 // Print the result, which is (7+8)*2.
 cout << answer << endl;
}

OutputOutput

30

Using a Lambda Expression in a Function
ExampleExample

[In This Article]

You can use lambda expressions in the body of a function. The lambda expression can access any function or data
member that the enclosing function can access. You can explicitly or implicitly capture the this pointer to provide
access to functions and data members of the enclosing class. Visual Studio 2017 version 15.3 and later
(available with /std:c++17): Capture this by value ([*this]) when the lambda will be used in asynchronous or
parallel operations where the code might execute after the original object goes out of scope.

You can use the this pointer explicitly in a function, as shown here:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

// capture "this" by reference
void ApplyScale(const vector<int>& v) const
{
 for_each(v.begin(), v.end(),
 [this](int n) { cout << n * _scale << endl; });
}

// capture "this" by value (Visual Studio 2017 version 15.3 and later)
void ApplyScale2(const vector<int>& v) const
{
 for_each(v.begin(), v.end(),
 [*this](int n) { cout << n * _scale << endl; });
}

void ApplyScale(const vector<int>& v) const
{
 for_each(v.begin(), v.end(),
 [=](int n) { cout << n * _scale << endl; });
}

// function_lambda_expression.cpp
// compile with: /EHsc /W4
#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class Scale
{
public:
 // The constructor.
 explicit Scale(int scale) : _scale(scale) {}

 // Prints the product of each element in a vector object
 // and the scale value to the console.
 void ApplyScale(const vector<int>& v) const
 {
 for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; });
 }

private:
 int _scale;
};

int main()
{
 vector<int> values;
 values.push_back(1);
 values.push_back(2);
 values.push_back(3);
 values.push_back(4);

 // Create a Scale object that scales elements by 3 and apply
 // it to the vector object. Does not modify the vector.
 Scale s(3);
 s.ApplyScale(values);
}

You can also capture the this pointer implicitly:

The following example shows the Scale class, which encapsulates a scale value.

OutputOutput

3
6
9
12

RemarksRemarks

Using Lambda Expressions with Templates
ExampleExample

CodeCode

// template_lambda_expression.cpp
// compile with: /EHsc
#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

// Negates each element in the vector object. Assumes signed data type.
template <typename T>
void negate_all(vector<T>& v)
{
 for_each(v.begin(), v.end(), [](T& n) { n = -n; });
}

// Prints to the console each element in the vector object.
template <typename T>
void print_all(const vector<T>& v)
{
 for_each(v.begin(), v.end(), [](const T& n) { cout << n << endl; });
}

int main()
{
 // Create a vector of signed integers with a few elements.
 vector<int> v;
 v.push_back(34);
 v.push_back(-43);
 v.push_back(56);

 print_all(v);
 negate_all(v);
 cout << "After negate_all():" << endl;
 print_all(v);
}

OutputOutput

The ApplyScale function uses a lambda expression to print the product of the scale value and each element in a
vector object. The lambda expression implicitly captures this so that it can access the _scale member.

[In This Article]

Because lambda expressions are typed, you can use them with C++ templates. The following example shows the
negate_all and print_all functions. The negate_all function applies the unary operator- to each element in

the vector object. The print_all function prints each element in the vector object to the console.

34
-43
56
After negate_all():
-34
43
-56

RemarksRemarks

Handling Exceptions
ExampleExample

CodeCode

// eh_lambda_expression.cpp
// compile with: /EHsc /W4
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
 // Create a vector that contains 3 elements.
 vector<int> elements(3);

 // Create another vector that contains index values.
 vector<int> indices(3);
 indices[0] = 0;
 indices[1] = -1; // This is not a valid subscript. It will trigger an exception.
 indices[2] = 2;

 // Use the values from the vector of index values to
 // fill the elements vector. This example uses a
 // try/catch block to handle invalid access to the
 // elements vector.
 try
 {
 for_each(indices.begin(), indices.end(), [&](int index) {
 elements.at(index) = index;
 });
 }
 catch (const out_of_range& e)
 {
 cerr << "Caught '" << e.what() << "'." << endl;
 };
}

OutputOutput

For more information about C++ templates, see Templates.

[In This Article]

The body of a lambda expression follows the rules for both structured exception handling (SEH) and C++
exception handling. You can handle a raised exception in the body of a lambda expression or defer exception
handling to the enclosing scope. The following example uses the for_each function and a lambda expression to
fill a vector object with the values of another one. It uses a try/catch block to handle invalid access to the first
vector.

Caught 'invalid vector<T> subscript'.

RemarksRemarks

Using Lambda Expressions with Managed Types (C++/CLI)
ExampleExample

CodeCode

// managed_lambda_expression.cpp
// compile with: /clr
using namespace System;

int main()
{
 char ch = '!'; // a local unmanaged variable

 // The following lambda expression captures local variables
 // by value and takes a managed String object as its parameter.
 [=](String ^s) {
 Console::WriteLine(s + Convert::ToChar(ch));
 }("Hello");
}

OutputOutput

Hello!

RemarksRemarks

IMPORTANTIMPORTANT

See also

For more information about exception handling, see Exception Handling.

[In This Article]

The capture clause of a lambda expression cannot contain a variable that has a managed type. However, you can
pass an argument that has a managed type to the parameter list of a lambda expression. The following example
contains a lambda expression that captures the local unmanaged variable ch by value and takes a System.String
object as its parameter.

You can also use lambda expressions with the STL/CLR library. For more information, see STL/CLR Library
Reference.

Lambdas are not supported in these common language runtime (CLR) managed entities: ref class, ref struct, value class,
and value struct.

[In This Article]

Lambda Expressions
Lambda Expression Syntax
auto
function Class
find_if

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/stl-clr-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

<algorithm>
Function Call
Templates
Exception Handling
STL/CLR Library Reference

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/stl-clr-library-reference

constexpr lambda expressions in C++
4/9/2019 • 2 minutes to read • Edit Online

 int y = 32;
 auto answer = [y]() constexpr
 {
 int x = 10;
 return y + x;
 };

 constexpr int Increment(int n)
 {
 return [n] { return n + 1; }();
 }

 auto answer = [](int n)
 {
 return 32 + n;
 };

 constexpr int response = answer(10);

 auto Increment = [](int n)
 {
 return n + 1;
 };

 constexpr int(*inc)(int) = Increment;

See also

Visual Studio 2017 version 15.3 and later (available with /std:c++17): A lambda expression may be declared as
constexpr or used in a constant expression when the initialization of each data member that it captures or
introduces is allowed within a constant expression.

A lambda is implicitly constexpr if its result satisfies the requirements of a constexpr function:

If a lambda is implicitly or explicitly constexpr, and you convert it to a function pointer, the resulting function is
also constexpr:

C++ Language Reference
Function Objects in the C++ Standard Library
Function Call
for_each

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lambda-expressions-constexpr.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-objects-in-the-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions

Arrays (C++)
11/20/2018 • 3 minutes to read • Edit Online

// arrays.cpp
// compile with: /EHsc
#include <iostream>

int main() {
 using namespace std;
 int size = 3, i = 0;

 int* myarr = new int[size];

 for (i = 0 ; i < size ; i++)
 myarr[i] = 10;

 for (i = 0 ; i < size ; i++)
 printf_s("myarr[%d] = %d\n", i, myarr[i]);

 delete [] myarr;
}

An array is a collection of like objects. The simplest case of an array is a vector, which may be declared by the
following sequence:

decl-specifier identifier [constant-expression]
decl-specifier identifier []
decl-specifier identifer [][constant-expression] . . .
decl-specifier identifier [constant-expression] [constant-expression] . . .

1. The declaration specifier:

An optional storage class specifier.

Optional const and/or volatile specifiers.

The type name of the elements of the array.

2. The declarator:

The identifier.

A constant expression of integral type enclosed in brackets, []. If multiple dimensions are declared
using additional brackets, the constant expression may be omitted on the first set of brackets.

Optional additional brackets enclosing constant expressions.

3. An optional initializer. For more information, see Initializers.

The number of elements in the array is given by the constant-expression. The first element in the array is the 0th
element, and the last element is the (n-1) element, where n is the number of elements the array can contain. The
constant-expression must be of an integral type and must be greater than 0. A zero-sized array is legal only when
the array is the last field in a struct or union and when the Microsoft extensions (/Ze) are enabled.

The following example shows how to define an array at run time:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/arrays-cpp.md

int i2[5][7];

// arrays2.cpp
// compile with: /c
const int cMarkets = 4;
// Declare a float that represents the transportation costs.
double TransportCosts[][cMarkets] = {
 { 32.19, 47.29, 31.99, 19.11 },
 { 11.29, 22.49, 33.47, 17.29 },
 { 41.97, 22.09, 9.76, 22.55 }
};

Example

Arrays are derived types and can therefore be constructed from any other derived or fundamental type except
functions, references, and void.

Arrays constructed from other arrays are multidimensional arrays. These multidimensional arrays are specified by
placing multiple bracketed constant expressions in sequence. For example, consider this declaration:

It specifies an array of type int, conceptually arranged in a two-dimensional matrix of five rows and seven
columns, as shown in the following figure:

Conceptual layout of a multi-dimensional array

In declarations of multidimensioned arrays that have an initializer list (as described in Initializers), the constant
expression that specifies the bounds for the first dimension can be omitted. For example:

The preceding declaration defines an array that is three rows by four columns. The rows represent factories and
the columns represent markets to which the factories ship. The values are the transportation costs from the
factories to the markets. The first dimension of the array is left out, but the compiler fills it in by examining the
initializer.

Topics in this section:

Using Arrays

Arrays in Expressions

Interpretation of Subscript Operator

Indirection on Array Types

Ordering of C++ Arrays

The technique of omitting the bounds specification for the first dimension of a multidimensional array can also be
used in function declarations as follows:

// multidimensional_arrays.cpp
// compile with: /EHsc
// arguments: 3
#include <limits> // Includes DBL_MAX
#include <iostream>

const int cMkts = 4, cFacts = 2;

// Declare a float that represents the transportation costs
double TransportCosts[][cMkts] = {
 { 32.19, 47.29, 31.99, 19.11 },
 { 11.29, 22.49, 33.47, 17.29 },
 { 41.97, 22.09, 9.76, 22.55 }
};

// Calculate size of unspecified dimension
const int cFactories = sizeof TransportCosts /
 sizeof(double[cMkts]);

double FindMinToMkt(int Mkt, double myTransportCosts[][cMkts], int mycFacts);

using namespace std;

int main(int argc, char *argv[]) {
 double MinCost;

 if (argv[1] == 0) {
 cout << "You must specify the number of markets." << endl;
 exit(0);
 }
 MinCost = FindMinToMkt(*argv[1] - '0', TransportCosts, cFacts);
 cout << "The minimum cost to Market " << argv[1] << " is: "
 << MinCost << "\n";
}

double FindMinToMkt(int Mkt, double myTransportCosts[][cMkts], int mycFacts) {
 double MinCost = DBL_MAX;

 for(int i = 0; i < cFacts; ++i)
 MinCost = (MinCost < TransportCosts[i][Mkt]) ?
 MinCost : TransportCosts[i][Mkt];

 return MinCost;
}

The minimum cost to Market 3 is: 17.29

Comments
The function FindMinToMkt is written such that adding new factories does not require any code changes, just a
recompilation.

Using Arrays (C++)
10/31/2018 • 2 minutes to read • Edit Online

// using_arrays.cpp
int main() {
 char chArray[10];
 char *pch = chArray; // Evaluates to a pointer to the first element.
 char ch = chArray[0]; // Evaluates to the value of the first element.
 ch = chArray[3]; // Evaluates to the value of the fourth element.
}

// using_arrays_2.cpp
// compile with: /EHsc /W1
#include <iostream>
using namespace std;
int main() {
 double multi[4][4][3]; // Declare the array.
 double (*p2multi)[3];
 double (*p1multi);

 cout << multi[3][2][2] << "\n"; // C4700 Use three subscripts.
 p2multi = multi[3]; // Make p2multi point to
 // fourth "plane" of multi.
 p1multi = multi[3][2]; // Make p1multi point to
 // fourth plane, third row
 // of multi.
}

See also

You can access individual elements of an array by using the array subscript operator ([]). If a one-dimensional
array is used in an expression that has no subscript, the array name evaluates to a pointer to the first element in the
array.

When you use multidimensional arrays, you can use various combinations in expressions.

In the preceding code, multi is a three-dimensional array of type double. The p2multi pointer points to an array
of type double of size three. In this example, the array is used with one, two, and three subscripts. Although it is
more common to specify all subscripts, as in the cout statement, it is sometimes useful to select a specific subset
of array elements, as shown in the statements that follow cout .

Arrays

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-arrays-cpp.md

Initializing Arrays
10/31/2018 • 2 minutes to read • Edit Online

// initializing_arrays1.cpp
class Point
{
public:
 Point() // Default constructor.
 {
 }
 Point(int, int) // Construct from two ints
 {
 }
};

// An array of Point objects can be declared as follows:
Point aPoint[3] = {
 Point(3, 3) // Use int, int constructor.
};

int main()
{
}

// initializing_arrays2.cpp
class WindowColors
{
public:
 static const char *rgszWindowPartList[7];
};

const char *WindowColors::rgszWindowPartList[7] = {
 "Active Title Bar", "Inactive Title Bar", "Title Bar Text",
 "Menu Bar", "Menu Bar Text", "Window Background", "Frame" };
int main()
{
}

If a class has a constructor, arrays of that class are initialized by a constructor. If there are fewer items in the
initializer list than elements in the array, the default constructor is used for the remaining elements. If no default
constructor is defined for the class, the initializer list must be complete — that is, there must be one initializer for
each element in the array.

Consider the Point class that defines two constructors:

The first element of aPoint is constructed using the constructor Point(int, int) ; the remaining two elements
are constructed using the default constructor.

Static member arrays (whether const or not) can be initialized in their definitions (outside the class declaration).
For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/initializing-arrays.md

Arrays in Expressions
10/31/2018 • 2 minutes to read • Edit Online

char szError1[] = "Error: Disk drive not ready.";
char *psz = szError1;

szError1 = psz;

See also

When an identifier of an array type appears in an expression other than sizeof , address-of (&), or initialization of
a reference, it is converted to a pointer to the first array element. For example:

The pointer psz points to the first element of the array szError1 . Note that arrays, unlike pointers, are not
modifiable l-values. Therefore, the following assignment is illegal:

Arrays

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/arrays-in-expressions.md

Interpretation of Subscript Operator
10/31/2018 • 2 minutes to read • Edit Online

See also

Like other operators, the subscript operator ([]) can be redefined by the user. The default behavior of the subscript
operator, if not overloaded, is to combine the array name and the subscript using the following method:

*((array-name) + (subscript))

As in all addition that involves pointer types, scaling is performed automatically to adjust for the size of the type.
Therefore, the resultant value is not subscript bytes from the origin of array-name; rather, it is the subscriptth
element of the array. (For more information about this conversion, see Additive Operators.)

Similarly, for multidimensional arrays, the address is derived using the following method:

((array-name) + (subscript1 * max2 * max3 * ... * maxn) + (subscript2 * max3 * ... * maxn) + ... + subscriptn))

Arrays

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/interpretation-of-subscript-operator.md

Indirection on Array Types
10/31/2018 • 2 minutes to read • Edit Online

See also

Use of the indirection operator (*) on an n-dimensional array type yields an n-1 dimensional array. If n is 1, a scalar
(or array element) is yielded.

Arrays

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/indirection-on-array-types.md

Ordering of C++ Arrays
10/31/2018 • 2 minutes to read • Edit Online

See also

C++ arrays are stored in row-major order. Row-major order means the last subscript varies the fastest.

Arrays

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/ordering-of-cpp-arrays.md

References (C++)
10/31/2018 • 2 minutes to read • Edit Online

int &i;
int &i, &j;

int &ref, *ptr, k;

A reference, like a pointer, stores the address of an object that is located elsewhere in memory. Unlike a pointer, a
reference after it is initialized cannot be made to refer to a different object or set to null. There are two kinds of
references: lvalue references which refer to a named variable and rvalue references which refer to a temporary
object. The & operator signifies an lvalue reference and the && operator signifies either an rvalue reference, or a
universal reference (either rvalue or lvalue) depending on the context.

References may be declared using the following syntax:

[storage-class-specifiers] [cv-qualifiers] type-specifiers [ms-modifier] declarator [= expression];

Any valid declarator specifying a reference may be used. Unless the reference is a reference to function or array
type, the following simplified syntax applies:

[storage-class-specifiers] [cv-qualifiers] type-specifiers [& or &&] [cv-qualifiers] identifier [= expression];

References are declared using the following sequence:

1. The declaration specifiers:

An optional storage class specifier.

Optional const and/or volatile qualifiers.

The type specifier: the name of a type.

2. The declarator:

An optional Microsoft specific modifier. For more information, see Microsoft-Specific Modifiers.

The & operator or && operator.

Optional const and/or volatile qualifers.

The identifier.

3. An optional initializer.

The more complex declarator forms for pointers to arrays and functions also apply to references to arrays and
functions. For more information, see pointers.

Multiple declarators and initializers may appear in a comma-separated list following a single declaration specifier.
For example:

References, pointers and objects may be declared together:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/references-cpp.md

Example
// references.cpp
#include <stdio.h>
struct S {
 short i;
};

int main() {
 S s; // Declare the object.
 S& SRef = s; // Declare the reference.
 s.i = 3;

 printf_s("%d\n", s.i);
 printf_s("%d\n", SRef.i);

 SRef.i = 4;
 printf_s("%d\n", s.i);
 printf_s("%d\n", SRef.i);
}

3
3
4
4

See also

A reference holds the address of an object, but behaves syntactically like an object.

In the following program, notice that the name of the object, s , and the reference to the object, SRef , can be used
identically in programs:

Reference-Type Function Arguments
Reference-Type Function Returns
References to Pointers

Lvalue Reference Declarator: &
10/31/2018 • 2 minutes to read • Edit Online

Syntax
type-id & cast-expression

Remarks

Example

Holds the address of an object but behaves syntactically like an object.

You can think of an lvalue reference as another name for an object. An lvalue reference declaration consists of an
optional list of specifiers followed by a reference declarator. A reference must be initialized and cannot be
changed.

Any object whose address can be converted to a given pointer type can also be converted to the similar reference
type. For example, any object whose address can be converted to type char * can also be converted to type
char & .

Do not confuse reference declarations with use of the address-of operator. When the & identifier is preceded by a
type, such as int or char, identifier is declared as a reference to the type. When & identifier is not preceded by a
type, the usage is that of the address-of operator.

The following example demonstrates the reference declarator by declaring a Person object and a reference to
that object. Because rFriend is a reference to myFriend , updating either variable changes the same object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/lvalue-reference-declarator-amp.md

// reference_declarator.cpp
// compile with: /EHsc
// Demonstrates the reference declarator.
#include <iostream>
using namespace std;

struct Person
{
 char* Name;
 short Age;
};

int main()
{
 // Declare a Person object.
 Person myFriend;

 // Declare a reference to the Person object.
 Person& rFriend = myFriend;

 // Set the fields of the Person object.
 // Updating either variable changes the same object.
 myFriend.Name = "Bill";
 rFriend.Age = 40;

 // Print the fields of the Person object to the console.
 cout << rFriend.Name << " is " << myFriend.Age << endl;
}

Bill is 40

See also
References
Reference-Type Function Arguments
Reference-Type Function Returns
References to Pointers

Rvalue Reference Declarator: &&
5/7/2019 • 12 minutes to read • Edit Online

Syntax
type-id && cast-expression

Remarks

Move Semantics

// string_concatenation.cpp
// compile with: /EHsc
#include <iostream>
#include <string>
using namespace std;

int main()
{
 string s = string("h") + "e" + "ll" + "o";
 cout << s << endl;
}

Holds a reference to an rvalue expression.

Rvalue references enable you to distinguish an lvalue from an rvalue. Lvalue references and rvalue references are
syntactically and semantically similar, but they follow somewhat different rules. For more information about
lvalues and rvalues, see Lvalues and Rvalues. For more information about lvalue references, see Lvalue Reference
Declarator: &.

The following sections describe how rvalue references support the implementation of move semantics and
perfect forwarding.

Rvalue references support the implementation of move semantics, which can significantly increase the
performance of your applications. Move semantics enables you to write code that transfers resources (such as
dynamically allocated memory) from one object to another. Move semantics works because it enables resources
to be transferred from temporary objects that cannot be referenced elsewhere in the program.

To implement move semantics, you typically provide a move constructor, and optionally a move assignment
operator (operator=), to your class. Copy and assignment operations whose sources are rvalues then
automatically take advantage of move semantics. Unlike the default copy constructor, the compiler does not
provide a default move constructor. For more information about how to write a move constructor and how to use
it in your application, see Move Constructors and Move Assignment Operators (C++).

You can also overload ordinary functions and operators to take advantage of move semantics. Visual Studio 2010
introduces move semantics into the C++ Standard Library. For example, the string class implements operations
that perform move semantics. Consider the following example that concatenates several strings and prints the
result:

Before Visual Studio 2010, each call to operator+ allocates and returns a new temporary string object (an
rvalue). operator+ cannot append one string to the other because it does not know whether the source strings

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/rvalue-reference-declarator-amp-amp.md

Perfect Forwarding

are lvalues or rvalues. If the source strings are both lvalues, they might be referenced elsewhere in the program
and therefore must not be modified. By using rvalue references, operator+ can be modified to take rvalues,
which cannot be referenced elsewhere in the program. Therefore, operator+ can now append one string to
another. This can significantly reduce the number of dynamic memory allocations that the string class must
perform. For more information about the string class, see basic_string Class.

Move semantics also helps when the compiler cannot use Return Value Optimization (RVO) or Named Return
Value Optimization (NRVO). In these cases, the compiler calls the move constructor if the type defines it. For
more information about Named Return Value Optimization, see Named Return Value Optimization in Visual
Studio 2005.

To better understand move semantics, consider the example of inserting an element into a vector object. If the
capacity of the vector object is exceeded, the vector object must reallocate memory for its elements and then
copy each element to another memory location to make room for the inserted element. When an insertion
operation copies an element, it creates a new element, calls the copy constructor to copy the data from the
previous element to the new element, and then destroys the previous element. Move semantics enables you to
move objects directly without having to perform expensive memory allocation and copy operations.

To take advantage of move semantics in the vector example, you can write a move constructor to move data
from one object to another.

For more information about the introduction of move semantics into the C++ Standard Library in Visual Studio
2010, see C++ Standard Library.

Perfect forwarding reduces the need for overloaded functions and helps avoid the forwarding problem. The
forwarding problem can occur when you write a generic function that takes references as its parameters and it
passes (or forwards) these parameters to another function. For example, if the generic function takes a parameter
of type const T& , then the called function cannot modify the value of that parameter. If the generic function takes
a parameter of type T& , then the function cannot be called by using an rvalue (such as a temporary object or
integer literal).

Ordinarily, to solve this problem, you must provide overloaded versions of the generic function that take both
T& and const T& for each of its parameters. As a result, the number of overloaded functions increases

exponentially with the number of parameters. Rvalue references enable you to write one version of a function
that accepts arbitrary arguments and forwards them to another function as if the other function had been called
directly.

Consider the following example that declares four types, W , X , Y , and Z . The constructor for each type takes a
different combination of const and non-const lvalue references as its parameters.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class
https://msdn.microsoft.com/library/ms364057.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

struct W
{
 W(int&, int&) {}
};

struct X
{
 X(const int&, int&) {}
};

struct Y
{
 Y(int&, const int&) {}
};

struct Z
{
 Z(const int&, const int&) {}
};

template <typename T, typename A1, typename A2>
T* factory(A1& a1, A2& a2)
{
 return new T(a1, a2);
}

int a = 4, b = 5;
W* pw = factory<W>(a, b);

Z* pz = factory<Z>(2, 2);

template <typename T, typename A1, typename A2>
T* factory(A1&& a1, A2&& a2)
{
 return new T(std::forward<A1>(a1), std::forward<A2>(a2));
}

Suppose you want to write a generic function that generates objects. The following example shows one way to
write this function:

The following example shows a valid call to the factory function:

However, the following example does not contain a valid call to the factory function because factory takes
lvalue references that are modifiable as its parameters, but it is called by using rvalues:

Ordinarily, to solve this problem, you must create an overloaded version of the factory function for every
combination of A& and const A& parameters. Rvalue references enable you to write one version of the factory

function, as shown in the following example:

This example uses rvalue references as the parameters to the factory function. The purpose of the std::forward
function is to forward the parameters of the factory function to the constructor of the template class.

The following example shows the main function that uses the revised factory function to create instances of the
W , X , Y , and Z classes. The revised factory function forwards its parameters (either lvalues or rvalues) to the

appropriate class constructor.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/utility-functions

int main()
{
 int a = 4, b = 5;
 W* pw = factory<W>(a, b);
 X* px = factory<X>(2, b);
 Y* py = factory<Y>(a, 2);
 Z* pz = factory<Z>(2, 2);

 delete pw;
 delete px;
 delete py;
 delete pz;
}

Additional Properties of Rvalue References

// reference-overload.cpp
// Compile with: /EHsc
#include <iostream>
using namespace std;

// A class that contains a memory resource.
class MemoryBlock
{
 // TODO: Add resources for the class here.
};

void f(const MemoryBlock&)
{
 cout << "In f(const MemoryBlock&). This version cannot modify the parameter." << endl;
}

void f(MemoryBlock&&)
{
 cout << "In f(MemoryBlock&&). This version can modify the parameter." << endl;
}

int main()
{
 MemoryBlock block;
 f(block);
 f(MemoryBlock());
}

In f(const MemoryBlock&). This version cannot modify the parameter.
In f(MemoryBlock&&). This version can modify the parameter.

You can overload a function to take an lvalue reference and an rvalue reference.

By overloading a function to take a const lvalue reference or an rvalue reference, you can write code that
distinguishes between non-modifiable objects (lvalues) and modifiable temporary values (rvalues). You can pass
an object to a function that takes an rvalue reference unless the object is marked as const. The following example
shows the function f , which is overloaded to take an lvalue reference and an rvalue reference. The main

function calls f with both lvalues and an rvalue.

This example produces the following output:

In this example, the first call to f passes a local variable (an lvalue) as its argument. The second call to f passes
a temporary object as its argument. Because the temporary object cannot be referenced elsewhere in the
program, the call binds to the overloaded version of f that takes an rvalue reference, which is free to modify the

// named-reference.cpp
// Compile with: /EHsc
#include <iostream>
using namespace std;

// A class that contains a memory resource.
class MemoryBlock
{
 // TODO: Add resources for the class here.
};

void g(const MemoryBlock&)
{
 cout << "In g(const MemoryBlock&)." << endl;
}

void g(MemoryBlock&&)
{
 cout << "In g(MemoryBlock&&)." << endl;
}

MemoryBlock&& f(MemoryBlock&& block)
{
 g(block);
 return move(block);
}

int main()
{
 g(f(MemoryBlock()));
}

In g(const MemoryBlock&).
In g(MemoryBlock&&).

object.

The compiler treats a named rvalue reference as an lvalue and an unnamed rvalue reference as an
rvalue.

When you write a function that takes an rvalue reference as its parameter, that parameter is treated as an lvalue in
the body of the function. The compiler treats a named rvalue reference as an lvalue because a named object can
be referenced by several parts of a program; it would be dangerous to allow multiple parts of a program to
modify or remove resources from that object. For example, if multiple parts of a program try to transfer
resources from the same object, only the first part will successfully transfer the resource.

The following example shows the function g , which is overloaded to take an lvalue reference and an rvalue
reference. The function f takes an rvalue reference as its parameter (a named rvalue reference) and returns an
rvalue reference (an unnamed rvalue reference). In the call to g from f , overload resolution selects the version
of g that takes an lvalue reference because the body of f treats its parameter as an lvalue. In the call to g from
main , overload resolution selects the version of g that takes an rvalue reference because f returns an rvalue

reference.

This example produces the following output:

In this example, the main function passes an rvalue to f . The body of f treats its named parameter as an
lvalue. The call from f to g binds the parameter to an lvalue reference (the first overloaded version of g).

You can cast an lvalue to an rvalue reference.

// cast-reference.cpp
// Compile with: /EHsc
#include <iostream>
using namespace std;

// A class that contains a memory resource.
class MemoryBlock
{
 // TODO: Add resources for the class here.
};

void g(const MemoryBlock&)
{
 cout << "In g(const MemoryBlock&)." << endl;
}

void g(MemoryBlock&&)
{
 cout << "In g(MemoryBlock&&)." << endl;
}

int main()
{
 MemoryBlock block;
 g(block);
 g(static_cast<MemoryBlock&&>(block));
}

In g(const MemoryBlock&).
In g(MemoryBlock&&).

// template-type-deduction.cpp
// Compile with: /EHsc
#include <iostream>
#include <string>
using namespace std;

template<typename T> struct S;

The C++ Standard Library std::move function enables you to convert an object to an rvalue reference to that
object. Alternatively, you can use the static_cast keyword to cast an lvalue to an rvalue reference, as shown in the
following example:

This example produces the following output:

Function templates deduce their template argument types and then use reference collapsing rules.

It is common to write a function template that passes (or forwards) its parameters to another function. It is
important to understand how template type deduction works for function templates that take rvalue references.

If the function argument is an rvalue, the compiler deduces the argument to be an rvalue reference. For example,
if you pass an rvalue reference to an object of type X to a template function that takes type T&& as its parameter,
template argument deduction deduces T to be X . Therefore, the parameter has type X&& . If the function
argument is an lvalue or const lvalue, the compiler deduces its type to be an lvalue reference or const lvalue
reference of that type.

The following example declares one structure template and then specializes it for various reference types. The
print_type_and_value function takes an rvalue reference as its parameter and forwards it to the appropriate

specialized version of the S::print method. The main function demonstrates the various ways to call the
S::print method.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/utility-functions

// The following structures specialize S by
// lvalue reference (T&), const lvalue reference (const T&),
// rvalue reference (T&&), and const rvalue reference (const T&&).
// Each structure provides a print method that prints the type of
// the structure and its parameter.

template<typename T> struct S<T&> {
 static void print(T& t)
 {
 cout << "print<T&>: " << t << endl;
 }
};

template<typename T> struct S<const T&> {
 static void print(const T& t)
 {
 cout << "print<const T&>: " << t << endl;
 }
};

template<typename T> struct S<T&&> {
 static void print(T&& t)
 {
 cout << "print<T&&>: " << t << endl;
 }
};

template<typename T> struct S<const T&&> {
 static void print(const T&& t)
 {
 cout << "print<const T&&>: " << t << endl;
 }
};

// This function forwards its parameter to a specialized
// version of the S type.
template <typename T> void print_type_and_value(T&& t)
{
 S<T&&>::print(std::forward<T>(t));
}

// This function returns the constant string "fourth".
const string fourth() { return string("fourth"); }

int main()
{
 // The following call resolves to:
 // print_type_and_value<string&>(string& && t)
 // Which collapses to:
 // print_type_and_value<string&>(string& t)
 string s1("first");
 print_type_and_value(s1);

 // The following call resolves to:
 // print_type_and_value<const string&>(const string& && t)
 // Which collapses to:
 // print_type_and_value<const string&>(const string& t)
 const string s2("second");
 print_type_and_value(s2);

 // The following call resolves to:
 // print_type_and_value<string&&>(string&& t)
 print_type_and_value(string("third"));

 // The following call resolves to:
 // print_type_and_value<const string&&>(const string&& t)
 print_type_and_value(fourth());
}

print<T&>: first
print<const T&>: second
print<T&&>: third
print<const T&&>: fourth

print_type_and_value<string&>(string& && t)

print_type_and_value<string&>(string& t)

Expanded type Collapsed type

T& & T&

T& && T&

T&& & T&

T&& && T&&

Summary

See also

This example produces the following output:

To resolve each call to the print_type_and_value function, the compiler first performs template argument
deduction. The compiler then applies reference collapsing rules when it substitutes the deduced template
arguments for the parameter types. For example, passing the local variable s1 to the print_type_and_value

function causes the compiler to produce the following function signature:

The compiler uses reference collapsing rules to reduce the signature to the following:

This version of the print_type_and_value function then forwards its parameter to the correct specialized version
of the S::print method.

The following table summarizes the reference collapsing rules for template argument type deduction:

Template argument deduction is an important element of implementing perfect forwarding. The section Perfect
Forwarding, which is presented earlier in this topic, describes perfect forwarding in more detail.

Rvalue references distinguish lvalues from rvalues. They can help you improve the performance of your
applications by eliminating the need for unnecessary memory allocations and copy operations. They also enable
you to write one version of a function that accepts arbitrary arguments and forwards them to another function as
if the other function had been called directly.

Expressions with Unary Operators
Lvalue Reference Declarator: &
Lvalues and Rvalues
Move Constructors and Move Assignment Operators (C++)
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Reference-Type Function Arguments
11/13/2018 • 2 minutes to read • Edit Online

// reference_type_function_arguments.cpp
#include <iostream>

struct Date
{
 short Month;
 short Day;
 short Year;
};

// Create a date of the form DDDYYYY (day of year, year)
// from a Date.
long DateOfYear(Date& date)
{
 static int cDaysInMonth[] = {
 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 };
 long dateOfYear = 0;

 // Add in days for months already elapsed.
 for (int i = 0; i < date.Month - 1; ++i)
 dateOfYear += cDaysInMonth[i];

 // Add in days for this month.
 dateOfYear += date.Day;

 // Check for leap year.
 if (date.Month > 2 &&
 ((date.Year % 100 != 0 || date.Year % 400 == 0) &&
 date.Year % 4 == 0))
 dateOfYear++;

 // Add in year.
 dateOfYear *= 10000;
 dateOfYear += date.Year;

 return dateOfYear;
}

int main()
{
 Date date{ 8, 27, 2018 };
 long dateOfYear = DateOfYear(date);
 std::cout << dateOfYear << std::endl;
}

It is often more efficient to pass references, rather than large objects, to functions. This allows the compiler to pass
the address of the object while maintaining the syntax that would have been used to access the object. Consider
the following example that uses the Date structure:

The preceding code shows that members of a structure passed by reference are accessed using the member-
selection operator (.) instead of the pointer member-selection operator (->).

Although arguments passed as reference types observe the syntax of non-pointer types, they retain one important
characteristic of pointer types: they are modifiable unless declared as const. Because the intent of the preceding
code is not to modify the object date , a more appropriate function prototype is:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/reference-type-function-arguments.md

long DateOfYear(const Date& date);

See also

This prototype guarantees that the function DateOfYear will not change its argument.

Any function prototyped as taking a reference type can accept an object of the same type in its place because there
is a standard conversion from typename to typename&.

References

Reference-Type Function Returns
10/31/2018 • 2 minutes to read • Edit Online

Example

Functions can be declared to return a reference type. There are two reasons to make such a declaration:

The information being returned is a large enough object that returning a reference is more efficient than
returning a copy.

The type of the function must be an l-value.

The referred-to object will not go out of scope when the function returns.

Just as it can be more efficient to pass large objects to functions by reference, it also can be more efficient to return
large objects from functions by reference. Reference-return protocol eliminates the necessity of copying the object
to a temporary location prior to returning.

Reference-return types can also be useful when the function must evaluate to an l-value. Most overloaded
operators fall into this category, particularly the assignment operator. Overloaded operators are covered in
Overloaded Operators.

Consider the Point example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/reference-type-function-returns.md

// refType_function_returns.cpp
// compile with: /EHsc

#include <iostream>
using namespace std;

class Point
{
public:
// Define "accessor" functions as
// reference types.
unsigned& x();
unsigned& y();
private:
// Note that these are declared at class scope:
unsigned obj_x;
unsigned obj_y;
};

unsigned& Point :: x()
{
return obj_x;
}
unsigned& Point :: y()
{
return obj_y;
}

int main()
{
Point ThePoint;
// Use x() and y() as l-values.
ThePoint.x() = 7;
ThePoint.y() = 9;

// Use x() and y() as r-values.
cout << "x = " << ThePoint.x() << "\n"
<< "y = " << ThePoint.y() << "\n";
}

Output
x = 7
y = 9

Notice that the functions x and y are declared as returning reference types. These functions can be used on
either side of an assignment statement.

Note also that in main, ThePoint object remains in scope, and therefore its reference members are still alive and
can be safely accessed.

Declarations of reference types must contain initializers except in the following cases:

Explicit extern declaration

Declaration of a class member

Declaration within a class

Declaration of an argument to a function or the return type for a function

Caution returning address of local

// C4172 means Don’t do this!!!
Foo& GetFoo()
{
 Foo f;
 ...
 return f;
} // f is destroyed here

See also

If you declare an object at local scope, that object will be destroyed when the function returns. If the function
returns a reference to that object, that reference will probably cause an access violation at runtime if the caller
attempts to use the null reference.

The compiler issues a warning in this case: warning C4172: returning address of local variable or temporary . In
simple programs it is possible that occasionally no access violation will occur if the reference is accessed by the
caller before the memory location is overwritten. This is due to sheer luck. Heed the warning.

References

References to Pointers
10/31/2018 • 2 minutes to read • Edit Online

Example

// references_to_pointers.cpp
// compile with: /EHsc

#include <iostream>
#include <string>

// C++ Standard Library namespace
using namespace std;

enum {
 sizeOfBuffer = 132
};

// Define a binary tree structure.
struct BTree {
 char *szText;
 BTree *Left;
 BTree *Right;
};

// Define a pointer to the root of the tree.
BTree *btRoot = 0;

int Add1(BTree **Root, char *szToAdd);
int Add2(BTree*& Root, char *szToAdd);
void PrintTree(BTree* btRoot);

int main(int argc, char *argv[]) {
 // Usage message
 if(argc < 2) {
 cerr << "Usage: Refptr [1 | 2]" << "\n";
 cerr << "\nwhere:\n";
 cerr << "1 uses double indirection\n";
 cerr << "2 uses a reference to a pointer.\n";
 cerr << "\nInput is from stdin.\n";
 return 1;
 }

 char *szBuf = new char[sizeOfBuffer];
 if (szBuf == NULL) {
 cerr << "Out of memory!\n";
 return -1;
 }

 // Read a text file from the standard input device and
 // build a binary tree.

References to pointers can be declared in much the same way as references to objects. Declaring a reference to a
pointer yields a modifiable value that is used like a normal pointer.

The following code samples illustrate the difference between using a pointer to a pointer and a reference to a
pointer.

Functions Add1 and Add2 are functionally equivalent (although they are not called the same way). The difference
is that Add1 uses double indirection whereas Add2 uses the convenience of a reference to a pointer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/references-to-pointers.md

 while(!cin.eof())
 {
 cin.get(szBuf, sizeOfBuffer, '\n');
 cin.get();

 if (strlen(szBuf)) {
 switch (*argv[1]) {
 // Method 1: Use double indirection.
 case '1':
 Add1(&btRoot, szBuf);
 break;
 // Method 2: Use reference to a pointer.
 case '2':
 Add2(btRoot, szBuf);
 break;
 default:
 cerr << "Illegal value '"
 << *argv[1]
 << "' supplied for add method.\n"
 << "Choose 1 or 2.\n";
 return -1;
 }
 }
 }
 // Display the sorted list.
 PrintTree(btRoot);
}

// PrintTree: Display the binary tree in order.
void PrintTree(BTree* MybtRoot) {
 // Traverse the left branch of the tree recursively.
 if (btRoot->Left)
 PrintTree(btRoot->Left);

 // Print the current node.
 cout << btRoot->szText << "\n";

 // Traverse the right branch of the tree recursively.
 if (btRoot->Right)
 PrintTree(btRoot->Right);
}

// Add1: Add a node to the binary tree.
// Uses double indirection.
int Add1(BTree **Root, char *szToAdd) {
 if ((*Root) == 0) {
 (*Root) = new BTree;
 (*Root)->Left = 0;
 (*Root)->Right = 0;
 (*Root)->szText = new char[strlen(szToAdd) + 1];
 strcpy_s((*Root)->szText, (strlen(szToAdd) + 1), szToAdd);
 return 1;
 }
 else {
 if (strcmp((*Root)->szText, szToAdd) > 0)
 return Add1(&((*Root)->Left), szToAdd);
 else
 return Add1(&((*Root)->Right), szToAdd);
 }
}

// Add2: Add a node to the binary tree.
// Uses reference to pointer
int Add2(BTree*& Root, char *szToAdd) {
 if (Root == 0) {
 Root = new BTree;
 Root->Left = 0;
 Root->Right = 0;
 Root->szText = new char[strlen(szToAdd) + 1];

 strcpy_s(Root->szText, (strlen(szToAdd) + 1), szToAdd);
 return 1;
 }
 else {
 if (strcmp(Root->szText, szToAdd) > 0)
 return Add2(Root->Left, szToAdd);
 else
 return Add2(Root->Right, szToAdd);
 }
}

Usage: Refptr [1 | 2]

where:
1 uses double indirection
2 uses a reference to a pointer.

Input is from stdin.

See also
References

Pointers (C++)
10/31/2018 • 4 minutes to read • Edit Online

char *pch;

static unsigned int * const ptr;

Pointers are declared using the following sequence.

[storage-class-specifiers] [cv-qualifiers] type-specifiers [ms-modifier] declarator ;

where any valid pointer declarator may be used for declarator. The syntax for a simple pointer declarator is as
follows:

* [cv-qualifiers] identifier [= expression]

1. The declaration specifiers:

An optional storage class specifier. For more information, see Specifiers.

An optional const or volatile keyword applying to the type of the object to be pointed to.

The type specifier: the name of a type representing the type of the object to be pointed to.

2. The declarator:

An optional Microsoft-specific modifier. For more information, see Microsoft-Specific Modifiers.

The * operator.

An optional const or volatile keyword applying to the pointer itself.

The identifier.

An optional initializer.

The declarator for a pointer to function looks like this:

(* [cv-qualifiers] identifier)(argument-list) [cv-qualifers] [exception-specification] [= expression] ;

For an array of pointers, the syntax looks like this:

* identifier [[constant-expression]]

Multiple declarators and their initializers may appear together in a single declaration in a comma separated list
following the declaration specifier.

A simple example of a pointer declaration is:

The preceding declaration specifies that pch points to an object of type char.

A more complex example is

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/pointers-cpp.md

static int *p = &i, *q = &j;

Example
// pointer.cpp
// compile with: /EHsc
#include <iostream>
int main() {
 int i = 1, j = 2; // local variables on the stack
 int *p;

 // a pointer may be assigned to "point to" the value of
 // another variable using the & (address of) operator
 p = & j;

 // since j was on the stack, this address will be somewhere
 // on the stack. Pointers are printed in hex format using
 // %p and conventionally marked with 0x.
 printf_s("0x%p\n", p);

 // The * (indirection operator) can be read as "the value
 // pointed to by".
 // Since p is pointing to j, this should print "2"
 printf_s("0x%p %d\n", p, *p);

 // changing j will change the result of the indirection
 // operator on p.
 j = 7;
 printf_s("0x%p %d\n", p, *p);

 // The value of j can also be changed through the pointer
 // by making an assignment to the dereferenced pointer
 *p = 10;
 printf_s("j is %d\n", j); // j is now 10

 // allocate memory on the heap for an integer,
 // initialize to 5
 p = new int(5);

 // print the pointer and the object pointed to
 // the address will be somewhere on the heap
 printf_s("0x%p %d\n", p, *p);

 // free the memory pointed to by p
 delete p;

 // At this point, dereferencing p with *p would trigger
 // a runtime access violation.

 // Pointer arithmetic may be done with an array declared
 // on the stack or allocated on the heap with new.
 // The increment operator takes into account the size
 // of the objects pointed to.
 p = new int[5];
 for (i = 0; i < 5; i++, p++) {
 *p = i * 10;
 printf_s("0x%p %d\n", p, *p);

The preceding declaration specifies that ptr is a constant pointer to an object of type unsigned int with static
storage duration.

The next example shows how multiple pointers are declared and initialized:

In the preceding example, pointers p and q both point to objects of type int and are initialized to the addresses of i
and j respectively. The storage class specifier static applies to both pointers.

 printf_s("0x%p %d\n", p, *p);
 }

 // A common expression seen is dereferencing in combination
 // with increment or decrement operators, as shown here.
 // The indirection operator * takes precedence over the
 // increment operator ++.
 // These are particularly useful in manipulating char arrays.
 char s1[4] = "cat";
 char s2[4] = "dog";
 char* p1 = s1;
 char* p2 = s2;

 // the following is a string copy operation
 while (*p1++ = *p2++);

 // s2 was copied into s1, so now they are both equal to "dog"
 printf_s("%s %s", s1, s2);
}

0x0012FEC8
0x0012FEC8 2
0x0012FEC8 7
j is 10
0x00320850 5
0x00320850 0
0x00320854 10
0x00320858 20
0x0032085C 30
0x00320860 40
dog dog

Example
Another example illustrates the use of pointers in data structures; in this case, a linked list.

// pointer_linkedlist.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

struct NewNode {
 NewNode() : node(0){}
 int i;
 NewNode * node;
};

void WalkList(NewNode * ptr) {
 if (ptr != 0) {
 int i = 1;
 while (ptr->node != 0) {
 cout << "node " << i++ << " = " << ptr->i << endl;
 ptr = ptr->node;
 }
 cout << "node " << i++ << " = " << ptr->i << endl;
 }
}

void AddNode(NewNode ** ptr) {
 NewNode * walker = 0;
 NewNode * MyNewNode = new NewNode;
 cout << "enter a number: " << endl;
 cin >> MyNewNode->i;

 if (*ptr == 0)
 *ptr = MyNewNode;
 else {
 walker = *ptr;
 while (walker->node != 0)
 walker = walker->node;

 walker->node = MyNewNode;
 }
}

int main() {
 char ans = ' ';
 NewNode * ptr = 0;
 do {
 cout << "a (add node) d (display list) q (quit)" << endl;
 cin >> ans;
 switch (ans) {
 case 'a':
 AddNode(&ptr);
 break;
 case 'd':
 WalkList(ptr);
 break;
 }
 } while (ans != 'q');
}

a
45
d
a
789
d
qa (add node) d (display list) q (quit)
enter a number:
a (add node) d (display list) q (quit)
node 1 = 45
a (add node) d (display list) q (quit)
enter a number:
a (add node) d (display list) q (quit)
node 1 = 45
node 2 = 789
a (add node) d (display list) q (quit)

See also
Indirection Operator: *
Address-of Operator: &

const and volatile Pointers
10/31/2018 • 3 minutes to read • Edit Online

const char *cpch;
volatile char *vpch;

char * const pchc;
char * volatile pchv;

const char cch = 'A';
char ch = 'B';

const char *pch1 = &cch;
const char *const pch4 = &cch;
const char *pch5 = &ch;
char *pch6 = &ch;
char *const pch7 = &ch;
const char *const pch8 = &ch;

char *pch2 = &cch; // Error
char *const pch3 = &cch; // Error

The const and volatile keywords change how pointers are treated. The const keyword specifies that the pointer
cannot be modified after initialization; the pointer is protected from modification thereafter.

The volatile keyword specifies that the value associated with the name that follows can be modified by actions
other than those in the user application. Therefore, the volatile keyword is useful for declaring objects in shared
memory that can be accessed by multiple processes or global data areas used for communication with interrupt
service routines.

When a name is declared as volatile, the compiler reloads the value from memory each time it is accessed by the
program. This dramatically reduces the possible optimizations. However, when the state of an object can change
unexpectedly, it is the only way to ensure predictable program performance.

To declare the object pointed to by the pointer as const or volatile, use a declaration of the form:

To declare the value of the pointer — that is, the actual address stored in the pointer — as const or volatile, use a
declaration of the form:

The C++ language prevents assignments that would allow modification of an object or pointer declared as const.
Such assignments would remove the information that the object or pointer was declared with, thereby violating
the intent of the original declaration. Consider the following declarations:

Given the preceding declarations of two objects (cch , of type const char, and ch , of type char), the following
declaration/initializations are valid:

The following declaration/initializations are erroneous.

The declaration of pch2 declares a pointer through which a constant object might be modified and is therefore
disallowed. The declaration of pch3 specifies that the pointer is constant, not the object; the declaration is

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/const-and-volatile-pointers.md

*pch1 = 'A'; // Error: object declared const
pch1 = &ch; // OK: pointer not declared const
*pch2 = 'A'; // OK: normal pointer
pch2 = &ch; // OK: normal pointer
*pch3 = 'A'; // OK: object not declared const
pch3 = &ch; // Error: pointer declared const
*pch4 = 'A'; // Error: object declared const
pch4 = &ch; // Error: pointer declared const

errno_t strcpy_s(char *strDestination, size_t numberOfElements, const char *strSource);

NOTENOTE

// const_pointer.cpp
int *const cpObject = 0;
int *pObject;

int main() {
pObject = cpObject;
cpObject = pObject; // C3892
}

disallowed for the same reason the pch2 declaration is disallowed.

The following eight assignments show assigning through pointer and changing of pointer value for the preceding
declarations; for now, assume that the initialization was correct for pch1 through pch8 .

Pointers declared as volatile, or as a mixture of const and volatile, obey the same rules.

Pointers to const objects are often used in function declarations as follows:

The preceding statement declares a function, strcpy_s, where two of the three arguments are of type pointer to
char. Because the arguments are passed by reference and not by value, the function would be free to modify both
strDestination and strSource if strSource were not declared as const. The declaration of strSource as const

assures the caller that strSource cannot be changed by the called function.

Because there is a standard conversion from typename * to const typename *, it is legal to pass an argument of type
char * to strcpy_s. However, the reverse is not true; no implicit conversion exists to remove the const attribute from an

object or pointer.

A const pointer of a given type can be assigned to a pointer of the same type. However, a pointer that is not const
cannot be assigned to a const pointer. The following code shows correct and incorrect assignments:

The following sample shows how to declare an object as const if you have a pointer to a pointer to an object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s

// const_pointer2.cpp
struct X {
 X(int i) : m_i(i) { }
 int m_i;
};

int main() {
 // correct
 const X cx(10);
 const X * pcx = &cx;
 const X ** ppcx = &pcx;

 // also correct
 X const cx2(20);
 X const * pcx2 = &cx2;
 X const ** ppcx2 = &pcx2;
}

See also
Pointers

new and delete Operators
5/7/2019 • 6 minutes to read • Edit Online

The new operator

char *pch = new char[BUFFER_SIZE];

Scope for operator new FunctionsScope for operator new Functions

OPERATOR SCOPE

::operator new Global

class-name ::operator new Class

C++ supports dynamic allocation and deallocation of objects using the new and delete operators. These
operators allocate memory for objects from a pool called the free store. The new operator calls the special
function operator new, and the delete operator calls the special function operator delete.

The new function in the C++ Standard Library supports the behavior specified in the C++ standard, which is to
throw a std::bad_alloc exception if the memory allocation fails. If you still want the non-throwing version of new,
link your program with nothrownew.obj. However, when you link with nothrownew.obj, the default operator
new in the C++ Standard Library no longer functions.

For a list of the library files that comprise the C Runtime Library and the C++ Standard Library, see CRT Library
Features.

When a statement such as the following is encountered in a program, it translates into a call to the function
operator new:

If the request is for zero bytes of storage, operator new returns a pointer to a distinct object (that is, repeated
calls to operator new return different pointers). If there is insufficient memory for the allocation request,
operator new throws a std::bad_alloc exception, or returns nullptr if you have linked in non-throwing operator
new support.

You can write a routine that attempts to free memory and retry the allocation; see _set_new_handler for more
information. For more details on the recovery scheme, see the Handling insufficient memory section of this topic.

The two scopes for operator new functions are described in the following table.

The first argument to operator new must be of type size_t (a type defined in <stddef.h>), and the return type
is always void *.

The global operator new function is called when the new operator is used to allocate objects of built-in types,
objects of class type that do not contain user-defined operator new functions, and arrays of any type. When the
new operator is used to allocate objects of a class type where an operator new is defined, that class's operator
new is called.

An operator new function defined for a class is a static member function (which cannot, therefore, be virtual)
that hides the global operator new function for objects of that class type. Consider the case where new is used
to allocate and set memory to a given value:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/new-and-delete-operators.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-new-handler

// spec1_the_operator_new_function1.cpp
#include <malloc.h>
#include <memory.h>

class Blanks
{
public:
 Blanks(){}
 void *operator new(size_t stAllocateBlock, char chInit);
};
void *Blanks::operator new(size_t stAllocateBlock, char chInit)
{
 void *pvTemp = malloc(stAllocateBlock);
 if(pvTemp != 0)
 memset(pvTemp, chInit, stAllocateBlock);
 return pvTemp;
}
// For discrete objects of type Blanks, the global operator new function
// is hidden. Therefore, the following code allocates an object of type
// Blanks and initializes it to 0xa5
int main()
{
 Blanks *a5 = new(0xa5) Blanks;
 return a5 != 0;
}

Blanks *SomeBlanks = new Blanks;

// spec1_the_operator_new_function2.cpp
class MyClass
{
public:
 void * operator new[] (size_t)
 {
 return 0;
 }
 void operator delete[] (void*)
 {
 }
};

int main()
{
 MyClass *pMyClass = new MyClass[5];
 delete [] pMyClass;
}

Handling insufficient memoryHandling insufficient memory

The argument supplied in parentheses to new is passed to Blanks::operator new as the chInit argument.
However, the global operator new function is hidden, causing code such as the following to generate an error :

The compiler supports member array new and delete operators in a class declaration. For example:

Testing for failed memory allocation can be done with code such as the following:

// insufficient_memory_conditions.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
#define BIG_NUMBER 100000000
int main() {
 int *pI = new int[BIG_NUMBER];
 if(pI == 0x0) {
 cout << "Insufficient memory" << endl;
 return -1;
 }
}

The delete operator

void operator delete(void *);
void operator delete(void *, size_t);

There is another ways to handle failed memory allocation requests: write a custom recovery routine to handle
such a failure, then register your function by calling the _set_new_handler run-time function.

Memory that is dynamically allocated using the new operator can be freed using the delete operator. The delete
operator calls the operator delete function, which frees memory back to the available pool. Using the delete
operator also causes the class destructor (if there is one) to be called.

There are global and class-scoped operator delete functions. Only one operator delete function can be defined
for a given class; if defined, it hides the global operator delete function. The global operator delete function is
always called for arrays of any type.

The global operator delete function. Two forms exist for the global operator delete and class-member
operator delete functions:

Only one of the preceding two forms can be present for a given class. The first form takes a single argument of
type void * , which contains a pointer to the object to deallocate. The second form—sized deallocation—takes
two arguments, the first of which is a pointer to the memory block to deallocate and the second of which is the
number of bytes to deallocate. The return type of both forms is void (operator delete cannot return a value).

The intent of the second form is to speed up searching for the correct size category of the object to be deleted,
which is often not stored near the allocation itself and likely uncached; the second form is particularly useful when
an operator delete function from a base class is used to delete an object of a derived class.

The operator delete function is static; therefore, it cannot be virtual. The operator delete function obeys access
control, as described in Member-Access Control.

The following example shows user-defined operator new and operator delete functions designed to log
allocations and deallocations of memory:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-new-handler

// spec1_the_operator_delete_function1.cpp
// compile with: /EHsc
// arguments: 3
#include <iostream>
using namespace std;

int fLogMemory = 0; // Perform logging (0=no; nonzero=yes)?
int cBlocksAllocated = 0; // Count of blocks allocated.

// User-defined operator new.
void *operator new(size_t stAllocateBlock) {
 static int fInOpNew = 0; // Guard flag.

 if (fLogMemory && !fInOpNew) {
 fInOpNew = 1;
 clog << "Memory block " << ++cBlocksAllocated
 << " allocated for " << stAllocateBlock
 << " bytes\n";
 fInOpNew = 0;
 }
 return malloc(stAllocateBlock);
}

// User-defined operator delete.
void operator delete(void *pvMem) {
 static int fInOpDelete = 0; // Guard flag.
 if (fLogMemory && !fInOpDelete) {
 fInOpDelete = 1;
 clog << "Memory block " << cBlocksAllocated--
 << " deallocated\n";
 fInOpDelete = 0;
 }

 free(pvMem);
}

int main(int argc, char *argv[]) {
 fLogMemory = 1; // Turn logging on
 if(argc > 1)
 for(int i = 0; i < atoi(argv[1]); ++i) {
 char *pMem = new char[10];
 delete[] pMem;
 }
 fLogMemory = 0; // Turn logging off.
 return cBlocksAllocated;
}

The preceding code can be used to detect "memory leakage" — that is, memory that is allocated on the free store
but never freed. To perform this detection, the global new and delete operators are redefined to count allocation
and deallocation of memory.

The compiler supports member array new and delete operators in a class declaration. For example:

// spec1_the_operator_delete_function2.cpp
// compile with: /c
class X {
public:
 void * operator new[] (size_t) {
 return 0;
 }
 void operator delete[] (void*) {}
};

void f() {
 X *pX = new X[5];
 delete [] pX;
}

Exception Handling in MSVC
5/7/2019 • 2 minutes to read • Edit Online

See also

An exception is an error condition, possibly outside the program's control, that prevents the program from
continuing along its regular execution path. Certain operations, including object creation, file input/output, and
function calls made from other modules, are all potential sources of exceptions even when your program is
running correctly. Robust code anticipates and handles exceptions.

To detect logic errors within a single program or module, use assertions rather than exceptions (see Using
Assertions).

The Microsoft C++ compiler (MSVC) supports three kinds of exception handling:

C++ exception handling

For most C++ programs, you should use C++ exception handling, which is type-safe and ensures that
object destructors are invoked during stack unwinding.

Structured exception handling

Windows supplies its own exception mechanism, called SEH. It is not recommended for C++ or MFC
programming. Use SEH only in non-MFC C programs.

MFC exceptions

Since version 3.0, MFC has used C++ exceptions but still supports its older exception handling macros,
which are similar to C++ exceptions in form. Although these macros are not recommended for new
programming, they are still supported for backward compatibility. In programs that already use the
macros, you can freely use C++ exceptions as well. During preprocessing, the macros evaluate to the
exception handling keywords defined in the MSVC implementation of the C++ language as of Visual C++
version 2.0. You can leave existing exception macros in place while you begin to use C++ exceptions.

Use the /EH compiler option to specify the type of exception handling to use in a project; C++ exception handling
is the default. Do not mix the error handling mechanisms; for example, do not use C++ exceptions with structured
exception handling. Using C++ exception handling makes your code more portable, and it allows you to handle
exceptions of any type. For more information about the drawbacks of structured exception handling, see
Structured Exception Handling. For advice about mixing MFC macros and C++ exceptions, see Exceptions: Using
MFC Macros and C++ Exceptions.

For information on handling exceptions in CLR applications, see Exception Handling (C++/CLI and C++/CX).

For information about exception handling on x64 processors, see x64 exception handling.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/exception-handling-in-visual-cpp.md
https://docs.microsoft.com/visualstudio/debugger/c-cpp-assertions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/exception-handling-in-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/exceptions-using-mfc-macros-and-cpp-exceptions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/exception-handling-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/exception-handling-x64

C++ Exception Handling
5/7/2019 • 2 minutes to read • Edit Online

In This Section

Support for Earlier MFC Exceptions

See also

The C++ language provides built-in support for throwing and catching exceptions. When programming in C++,
you should almost always use the built-in C++ exception support as described in this section.

To enable C++ exception handling in your code, use /EHsc.

This discussion on C++ exception handling includes:

The try, catch, and throw Statements

How Catch Blocks are Evaluated

Exceptions and Stack Unwinding

Exception Specifications

noexcept

Unhandled C++ Exceptions

Mixing C (Structured) and C++ Exceptions

As of version 4.0, MFC began using the C++ exception handling mechanism. Although you are encouraged to
use C++ exception handling in new code, MFC version 4.0 and later retains the macros from previous versions of
MFC so that old code will not be broken. The macros and the new mechanism can be combined as well. For
information on mixing macros and C++ exception handling and on converting old code to use the new
mechanism, see the articles Exceptions: Using MFC Macros and C++ Exceptions and Exceptions: Converting from
MFC Exception Macros. The older MFC exception macros, if you still use them, evaluate to C++ exception
keywords. See Exceptions: Changes to Exception Macros in Version 3.0.

Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-exception-handling.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/exceptions-using-mfc-macros-and-cpp-exceptions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/exceptions-converting-from-mfc-exception-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/exceptions-changes-to-exception-macros-in-version-3-0

try, throw, and catch Statements (C++)
11/8/2018 • 2 minutes to read • Edit Online

Example
MyData md;
try {
 // Code that could throw an exception
 md = GetNetworkResource();
}
catch (const networkIOException& e) {
 // Code that executes when an exception of type
 // networkIOException is thrown in the try block
 // ...
 // Log error message in the exception object
 cerr << e.what();
}
catch (const myDataFormatException& e) {
 // Code that handles another exception type
 // ...
 cerr << e.what();
}

// The following syntax shows a throw expression
MyData GetNetworkResource()
{
 // ...
 if (IOSuccess == false)
 throw networkIOException("Unable to connect");
 // ...
 if (readError)
 throw myDataFormatException("Format error");
 // ...
}

Remarks

To implement exception handling in C++, you use try, throw, and catch expressions.

First, use a try block to enclose one or more statements that might throw an exception.

A throw expression signals that an exceptional condition—often, an error—has occurred in a try block. You can
use an object of any type as the operand of a throw expression. Typically, this object is used to communicate
information about the error. In most cases, we recommend that you use the std::exception class or one of the
derived classes that are defined in the standard library. If one of those is not appropriate, we recommend that
you derive your own exception class from std::exception .

To handle exceptions that may be thrown, implement one or more catch blocks immediately following a try
block. Each catch block specifies the type of exception it can handle.

This example shows a try block and its handlers. Assume that GetNetworkResource() acquires data over a
network connection and that the two exception types are user-defined classes that derive from std::exception .
Notice that the exceptions are caught by const reference in the catch statement. We recommend that you
throw exceptions by value and catch them by const reference.

The code after the try clause is the guarded section of code. The throw expression throws—that is, raises—an

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/try-throw-and-catch-statements-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-class

try {
 throw CSomeOtherException();
}
catch(...) {
 // Catch all exceptions - dangerous!!!
 // Respond (perhaps only partially) to the exception, then
 // re-throw to pass the exception to some other handler
 // ...
 throw;
}

See also

exception. The code block after the catch clause is the exception handler. This is the handler that catches the
exception that's thrown if the types in the throw and catch expressions are compatible. For a list of rules that
govern type-matching in catch blocks, see How Catch Blocks are Evaluated. If the catch statement specifies an
ellipsis (...) instead of a type, the catch block handles every type of exception. When you compile with the /EHa
option, these can include C structured exceptions and system-generated or application-generated asynchronous
exceptions such as memory protection, divide-by-zero, and floating-point violations. Because catch blocks are
processed in program order to find a matching type, an ellipsis handler must be the last handler for the
associated try block. Use catch(...) with caution; do not allow a program to continue unless the catch block
knows how to handle the specific exception that is caught. Typically, a catch(...) block is used to log errors
and perform special cleanup before program execution is stopped.

A throw expression that has no operand re-throws the exception currently being handled. We recommend this
form when re-throwing the exception, because this preserves the original exception’s polymorphic type
information. Such an expression should only be used in a catch handler or in a function that's called from a
catch handler. The re-thrown exception object is the original exception object, not a copy.

C++ Exception Handling
Keywords
Unhandled C++ Exceptions
__uncaught_exception

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/uncaught-exception

How Catch Blocks are Evaluated (C++)
10/31/2018 • 2 minutes to read • Edit Online

C++ enables you to throw exceptions of any type, although in general it is recommended to throw types that are
derived from std::exception. A C++ exception can be caught by a catch handler that specifies the same type as the
thrown exception, or by a handler that can catch any type of exception.

If the type of thrown exception is a class, which also has a base class (or classes), it can be caught by handlers that
accept base classes of the exception's type, as well as references to bases of the exception's type. Note that when an
exception is caught by a reference, it is bound to the actual thrown exception object; otherwise, it is a copy (much
the same as an argument to a function).

When an exception is thrown, it may be caught by the following types of catch handlers:

A handler that can accept any type (using the ellipsis syntax).

A handler that accepts the same type as the exception object; because it is a copy, const and volatile
modifiers are ignored.

A handler that accepts a reference to the same type as the exception object.

A handler that accepts a reference to a const or volatile form of the same type as the exception object.

A handler that accepts a base class of the same type as the exception object; since it is a copy, const and
volatile modifiers are ignored. The catch handler for a base class must not precede the catch handler for
the derived class.

A handler that accepts a reference to a base class of the same type as the exception object.

A handler that accepts a reference to a const or volatile form of a base class of the same type as the
exception object.

A handler that accepts a pointer to which a thrown pointer object can be converted via standard pointer
conversion rules.

The order in which catch handlers appear is significant, because handlers for a given try block are examined in
order of their appearance. For example, it is an error to place the handler for a base class before the handler for a
derived class. After a matching catch handler is found, subsequent handlers are not examined. As a result, an
ellipsis catch handler must be the last handler for its try block. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/how-catch-blocks-are-evaluated-cpp.md

// ...
try
{
 // ...
}
catch(...)
{
 // Handle exception here.
}
// Error: the next two handlers are never examined.
catch(const char * str)
{
 cout << "Caught exception: " << str << endl;
}
catch(CExcptClass E)
{
 // Handle CExcptClass exception here.
}

See also

In this example, the ellipsis catch handler is the only handler that is examined.

C++ Exception Handling

Exceptions and Stack Unwinding in C++
11/8/2018 • 4 minutes to read • Edit Online

Stack Unwinding Example

#include <string>
#include <iostream>

In the C++ exception mechanism, control moves from the throw statement to the first catch statement that can
handle the thrown type. When the catch statement is reached, all of the automatic variables that are in scope
between the throw and catch statements are destroyed in a process that is known as stack unwinding. In stack
unwinding, execution proceeds as follows:

1. Control reaches the try statement by normal sequential execution. The guarded section in the try block is
executed.

2. If no exception is thrown during execution of the guarded section, the catch clauses that follow the try
block are not executed. Execution continues at the statement after the last catch clause that follows the
associated try block.

3. If an exception is thrown during execution of the guarded section or in any routine that the guarded section
calls either directly or indirectly, an exception object is created from the object that is created by the throw
operand. (This implies that a copy constructor may be involved.) At this point, the compiler looks for a
catch clause in a higher execution context that can handle an exception of the type that is thrown, or for a
catch handler that can handle any type of exception. The catch handlers are examined in order of their
appearance after the try block. If no appropriate handler is found, the next dynamically enclosing try block
is examined. This process continues until the outermost enclosing try block is examined.

4. If a matching handler is still not found, or if an exception occurs during the unwinding process but before
the handler gets control, the predefined run-time function terminate is called. If an exception occurs after
the exception is thrown but before the unwind begins, terminate is called.

5. If a matching catch handler is found, and it catches by value, its formal parameter is initialized by copying
the exception object. If it catches by reference, the parameter is initialized to refer to the exception object.
After the formal parameter is initialized, the process of unwinding the stack begins. This involves the
destruction of all automatic objects that were fully constructed—but not yet destructed—between the
beginning of the try block that is associated with the catch handler and the throw site of the exception.
Destruction occurs in reverse order of construction. The catch handler is executed and the program
resumes execution after the last handler—that is, at the first statement or construct that is not a catch
handler. Control can only enter a catch handler through a thrown exception, never through a goto
statement or a case label in a switch statement.

The following example demonstrates how the stack is unwound when an exception is thrown. Execution on the
thread jumps from the throw statement in C to the catch statement in main , and unwinds each function along
the way. Notice the order in which the Dummy objects are created and then destroyed as they go out of scope. Also
notice that no function completes except main , which contains the catch statement. Function A never returns
from its call to B() , and B never returns from its call to C() . If you uncomment the definition of the Dummy

pointer and the corresponding delete statement, and then run the program, notice that the pointer is never deleted.
This shows what can happen when functions do not provide an exception guarantee. For more information, see
How to: Design for Exceptions. If you comment out the catch statement, you can observe what happens when a
program terminates because of an unhandled exception.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/exceptions-and-stack-unwinding-in-cpp.md

using namespace std;

class MyException{};
class Dummy
{
 public:
 Dummy(string s) : MyName(s) { PrintMsg("Created Dummy:"); }
 Dummy(const Dummy& other) : MyName(other.MyName){ PrintMsg("Copy created Dummy:"); }
 ~Dummy(){ PrintMsg("Destroyed Dummy:"); }
 void PrintMsg(string s) { cout << s << MyName << endl; }
 string MyName;
 int level;
};

void C(Dummy d, int i)
{
 cout << "Entering FunctionC" << endl;
 d.MyName = " C";
 throw MyException();

 cout << "Exiting FunctionC" << endl;
}

void B(Dummy d, int i)
{
 cout << "Entering FunctionB" << endl;
 d.MyName = "B";
 C(d, i + 1);
 cout << "Exiting FunctionB" << endl;
}

void A(Dummy d, int i)
{
 cout << "Entering FunctionA" << endl;
 d.MyName = " A" ;
 // Dummy* pd = new Dummy("new Dummy"); //Not exception safe!!!
 B(d, i + 1);
 // delete pd;
 cout << "Exiting FunctionA" << endl;
}

int main()
{
 cout << "Entering main" << endl;
 try
 {
 Dummy d(" M");
 A(d,1);
 }
 catch (MyException& e)
 {
 cout << "Caught an exception of type: " << typeid(e).name() << endl;
 }

 cout << "Exiting main." << endl;
 char c;
 cin >> c;
}

/* Output:
 Entering main
 Created Dummy: M
 Copy created Dummy: M
 Entering FunctionA
 Copy created Dummy: A
 Entering FunctionB
 Copy created Dummy: B
 Entering FunctionC
 Destroyed Dummy: C

 Destroyed Dummy: B
 Destroyed Dummy: A
 Destroyed Dummy: M
 Caught an exception of type: class MyException
 Exiting main.

*/

Exception Specifications (throw, noexcept) (C++)
5/7/2019 • 3 minutes to read • Edit Online

void MyFunction(int i) throw();

void MyFunction(int i) noexcept;

EXCEPTION SPECIFICATION MEANING

noexcept

noexcept(true)

throw()

The function does not throw an exception. In /std:c++14
mode (which is the default), noexcept and
noexcept(true) are equivalent. When an exception is

thrown from a function that is declared noexcept or
noexcept(true) , std::terminate is invoked. When an

exception is thrown from a function declared as throw() in
/std:c++14 mode, the result is undefined behavior. No
specific function is invoked. This is a divergence from the
C++14 standard, which required the compiler to invoke
std::unexpected.
Visual Studio 2017 version 15.5 and later: In /std:c++17
mode , noexcept , noexcept(true) , and throw() are all
equivalent. In /std:c++17 mode, throw() is an alias for
noexcept(true) . In /std:c++17 mode, when an exception

is thrown from a function declared with any of these
specifications, std::terminate is invoked as required by the
C++17 standard.

noexcept(false)

throw(...)

No specification

The function can throw an exception of any type.

Exception specifications are a C++ language feature that indicate the programmer's intent about the exception
types that can be propagated by a function. You can specify that a function may or may not exit by an exception
by using an exception specification. The compiler can use this information to optimize calls to the function, and to
terminate the program if an unexpected exception escapes the function.

Prior to C++17 there were two kinds of exception specification. The noexcept specification was new in C++11. It
specifies whether the set of potential exceptions that can escape the function is empty. The dynamic exception
specification, or throw(optional_type_list) specification, was deprecated in C++11 and removed in C++17,
except for throw() , which is an alias for noexcept(true) . This exception specification was designed to provide
summary information about what exceptions can be thrown out of a function, but in practice it was found to be
problematic. The one dynamic exception specification that did prove to be somewhat useful was the
unconditional throw() specification. For example, the function declaration:

tells the compiler that the function does not throw any exceptions. However, in /std:c++14 mode this could lead
to undefined behavior if the function does throw an exception. Therefore we recommend using the noexcept
operator instead of the one above:

The following table summarizes the Microsoft C++ implementation of exception specifications:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/exception-specifications-throw-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions

throw(type) (C++14 and earlier) The function can throw an exception of
type type . The compiler accepts the syntax, but interprets it
as noexcept(false) . In /std:c++17 mode the compiler
issues warning C5040.

EXCEPTION SPECIFICATION MEANING

FUNCTION /EHSC /EHS /EHA /EHAC

C++ function with no
exception
specification

Yes Yes Yes Yes

C++ function with
noexcept ,
noexcept(true) , or
throw() exception

specification

No No Yes Yes

C++ function with
noexcept(false) ,
throw(...) , or
throw(type)

exception
specification

Yes Yes Yes Yes

Example

If exception handling is used in an application, there must be a function in the call stack that handles thrown
exceptions before they exit the outer scope of a function marked noexcept , noexcept(true) , or throw() . If any
functions called between the one that throws an exception and the one that handles the exception are specified as
noexcept , noexcept(true) (or throw() in /std:c++17 mode), the program is terminated when the noexcept

function propagates the exception.

The exception behavior of a function depends on the following factors:

Which language standard compilation mode is set.

Whether you are compiling the function under C or C++.

Which /EH compiler option you use.

Whether you explicitly specify the exception specification.

Explicit exception specifications are not allowed on C functions. A C function is assumed not to throw exceptions
under /EHsc, and may throw structured exceptions under /EHs, /EHa, or /EHac.

The following table summarizes whether a C++ function may potentially throw under various compiler exception
handling options:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

// exception_specification.cpp
// compile with: /EHs
#include <stdio.h>

void handler() {
 printf_s("in handler\n");
}

void f1(void) throw(int) {
 printf_s("About to throw 1\n");
 if (1)
 throw 1;
}

void f5(void) throw() {
 try {
 f1();
 }
 catch(...) {
 handler();
 }
}

// invalid, doesn't handle the int exception thrown from f1()
// void f3(void) throw() {
// f1();
// }

void __declspec(nothrow) f2(void) {
 try {
 f1();
 }
 catch(int) {
 handler();
 }
}

// only valid if compiled without /EHc
// /EHc means assume extern "C" functions don't throw exceptions
extern "C" void f4(void);
void f4(void) {
 f1();
}

int main() {
 f2();

 try {
 f4();
 }
 catch(...) {
 printf_s("Caught exception from f4\n");
 }
 f5();
}

About to throw 1
in handler
About to throw 1
Caught exception from f4
About to throw 1
in handler

See also
try, throw, and catch Statements (C++)
C++ Exception Handling

noexcept (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax

ParametersParameters

Remarks

Example

#include <type_traits>

template <typename T>
T copy_object(const T& obj) noexcept(std::is_pod<T>)
{
 // ...
}

See also

C++11: Specifies whether a function might throw exceptions.

noexcept-expression: noexcept noexcept(constant-expression)

constant-expression
A constant expression of type bool that represents whether the set of potential exception types is empty. The
unconditional version is equivalent to noexcept(true) .

A noexcept expression is a kind of exception specification, a suffix to a function declaration that represents a set of
types that might be matched by an exception handler for any exception that exits a function. Unary conditional
operator noexcept(constant_expression) where constant_expression yeilds true, and its unconditional synonym
noexcept, specify that the set of potential exception types that can exit a function is empty. That is, the function
never throws an exception and never allows an exception to be propagated outside its scope. The operator
noexcept(constant_expression) where constant_expression yeilds false, or the absence of an exception

specification (other than for a destructor or deallocation function), indicates that the set of potential exceptions
that can exit the function is the set of all types.

Mark a function as noexcept only if all the functions that it calls, either directly or indirectly, are also noexcept or
const. The compiler does not necessarily check every code path for exceptions that might bubble up to a
noexcept function. If an exception does exit the outer scope of a function marked noexcept , std::terminate is
invoked immediately, and there is no guarantee that destructors of any in-scope objects will be invoked. Use
noexcept instead of the dynamic exception specifier throw() , which is now deprecated in the standard. We
recommended you apply noexcept to any function that never allows an exception to propagate up the call stack.
When a function is declared noexcept, it enables the compiler to generate more efficient code in several different
contexts. For more information, see Exception specifications.

A template function that copies its argument might be declared noexcept on the condition that the object being
copied is a plain old data type (POD). Such a function could be declared like this:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/noexcept-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions

C++ Exception Handling
Exception Specifications (throw, noexcept)

Unhandled C++ Exceptions
10/31/2018 • 2 minutes to read • Edit Online

Example

// exceptions_Unhandled_Exceptions.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;
void term_func() {
 cout << "term_func was called by terminate." << endl;
 exit(-1);
}
int main() {
 try
 {
 set_terminate(term_func);
 throw "Out of memory!"; // No catch handler for this exception
 }
 catch(int)
 {
 cout << "Integer exception raised." << endl;
 }
 return 0;
}

Output
term_func was called by terminate.

See also

If a matching handler (or ellipsis catch handler) cannot be found for the current exception, the predefined
terminate run-time function is called. (You can also explicitly call terminate in any of your handlers.) The default

action of terminate is to call abort . If you want terminate to call some other function in your program before
exiting the application, call the set_terminate function with the name of the function to be called as its single
argument. You can call set_terminate at any point in your program. The terminate routine always calls the last
function given as an argument to set_terminate .

The following example throws a char * exception, but does not contain a handler designated to catch exceptions
of type char * . The call to set_terminate instructs terminate to call term_func .

The term_func function should terminate the program or current thread, ideally by calling exit . If it doesn't, and
instead returns to its caller, abort is called.

C++ Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/unhandled-cpp-exceptions.md

Mixing C (Structured) and C++ exceptions
10/31/2018 • 2 minutes to read • Edit Online

Next steps

See also

If you want to write portable code, the use of structured exception handling (SEH) in a C++ program isn't
recommended. However, you may sometimes want to compile using /EHa and mix structured exceptions and C++
source code, and need some facility for handling both kinds of exceptions. Because a structured exception handler
has no concept of objects or typed exceptions, it can't handle exceptions thrown by C++ code. However, C++
catch handlers can handle structured exceptions. C++ exception handling syntax (try, throw, catch) isn't accepted
by the C compiler, but structured exception handling syntax (__try, __except, __finally) is supported by the C++
compiler.

See _set_se_translator for information on how to handle structured exceptions as C++ exceptions.

If you mix structured and C++ exceptions, be aware of these potential issues:

C++ exceptions and structured exceptions cannot be mixed within the same function.

Termination handlers (__finally blocks) are always executed, even during unwinding after an exception is
thrown.

C++ exception handling can catch and preserve unwind semantics in all modules compiled with the /EH
compiler options, which enable unwind semantics.

There may be some situations in which destructor functions are not called for all objects. For example, if a
structured exception occurs while attempting to make a function call through an uninitialized function
pointer, and that function takes as parameters objects that were constructed before the call, the destructors
of those objects are not called during stack unwind.

Using setjmp or longjmp in C++ programs

See more information on the use of setjmp and longjmp in C++ programs.

Handle structured exceptions in C++

See examples of the ways you can use C++ to handle structured exceptions.

C++ Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/mixing-c-structured-and-cpp-exceptions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-se-translator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

Using setjmp and longjmp
10/31/2018 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

See also

When setjmp and longjmp are used together, they provide a way to execute a non-local goto. They are typically
used in C code to pass execution control to error-handling or recovery code in a previously called routine without
using the standard calling or return conventions.

Because setjmp and longjmp don't support correct destruction of stack frame objects portably between C++
compilers, and because they might degrade performance by preventing optimization on local variables, we don't
recommend their use in C++ programs. We recommend you use try and catch constructs instead.

If you decide to use setjmp and longjmp in a C++ program, also include <setjmp.h> or <setjmpex.h> to assure
correct interaction between the functions and Structured Exception Handling (SEH) or C++ exception handling.

Microsoft Specific

If you use an /EH option to compile C++ code, destructors for local objects are called during the stack unwind.
However, if you use /EHs or /EHsc to compile, and one of your functions that uses noexcept calls longjmp , then
the destructor unwind for that function might not occur, depending on the optimizer state.

In portable code, when a longjmp call is executed, correct destruction of frame-based objects is explicitly not
guaranteed by the standard, and may not be supported by other compilers. To let you know, at warning level 4, a
call to setjmp causes warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable.

END Microsoft Specific

Mixing C (Structured) and C++ Exceptions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-setjmp-longjmp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/setjmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/longjmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

Handle structured exceptions in C++
10/31/2018 • 4 minutes to read • Edit Online

Example - Catch a C exception in a C++ catch block
// exceptions_Exception_Handling_Differences.cpp
// compile with: /EHa
#include <iostream>

using namespace std;
void SEHFunc(void);

int main() {
 try {
 SEHFunc();
 }
 catch(...) {
 cout << "Caught a C exception."<< endl;
 }
}

void SEHFunc() {
 __try {
 int x, y = 0;
 x = 5 / y;
 }
 __finally {
 cout << "In finally." << endl;
 }
}

In finally.
Caught a C exception.

The major difference between C structured exception handling (SEH) and C++ exception handling is that the C++
exception handling model deals in types, while the C structured exception handling model deals with exceptions of
one type; specifically, unsigned int. That is, C exceptions are identified by an unsigned integer value, whereas C++
exceptions are identified by data type. When a structured exception is raised in C, each possible handler executes a
filter that examines the C exception context and determines whether to accept the exception, pass it to some other
handler, or ignore it. When an exception is thrown in C++, it may be of any type.

A second difference is that the C structured exception handling model is referred to as asynchronous, because
exceptions occur secondary to the normal flow of control. The C++ exception handling mechanism is fully
synchronous, which means that exceptions occur only when they are thrown.

When you use the /EHs or /EHsc compiler option, no C++ exception handlers handle structured exceptions. These
exceptions are handled only by __catch structured exception handlers or __finally structured termination
handlers. For information, see Structured Exception Handling (C/C++).

Under the /EHa compiler option, if a C exception is raised in a C++ program, it can be handled by a structured
exception handler with its associated filter or by a C++ catch handler, whichever is dynamically nearer to the
exception context. For example, the following C++ program raises a C exception inside a C++ try context:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/exception-handling-differences.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

C exception wrapper classes

// exceptions_Exception_Handling_Differences2.cpp
// compile with: /c
class SE_Exception {
private:
 SE_Exception() {}
 SE_Exception(SE_Exception&) {}
 unsigned int nSE;
public:
 SE_Exception(unsigned int n) : nSE(n) {}
 ~SE_Exception() {}
 unsigned int getSeNumber() {
 return nSE;
 }
};

Example - Use a custom translation function

In a simple example like the above, the C exception can be caught only by an ellipsis (...) catch handler. No
information about the type or nature of the exception is communicated to the handler. While this method works, in
some cases you may want to define a transformation between the two exception handling models so that each C
exception is associated with a specific class. To do this, you can define a C exception "wrapper" class, which can be
used or derived from in order to attribute a specific class type to a C exception. By doing so, each C exception can
be handled separately by a specific C++ catch handler, instead of all of them in a single handler.

Your wrapper class might have an interface consisting of some member functions that determine the value of the
exception, and that access the extended exception context information provided by the C exception model. You
might also want to define a default constructor and a constructor that accepts an unsigned int argument (to
provide for the underlying C exception representation), and a bitwise copy constructor. Here is a possible
implementation of a C exception wrapper class:

To use this class, install a custom C exception translation function that is called by the internal exception handling
mechanism each time a C exception is thrown. Within your translation function, you can throw any typed
exception (perhaps an SE_Exception type, or a class type derived from SE_Exception) that can be caught by an
appropriate matching C++ catch handler. The translation function can simply return, which indicates that it did
not handle the exception. If the translation function itself raises a C exception, terminate is called.

To specify a custom translation function, call the _set_se_translator function with the name of your translation
function as its single argument. The translation function that you write is called once for each function invocation
on the stack that has try blocks. There is no default translation function; if you do not specify one by calling
_set_se_translator, the C exception can only be caught by an ellipsis catch handler.

For example, the following code installs a custom translation function, and then raises a C exception that is
wrapped by the SE_Exception class:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/terminate-crt
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-se-translator

// exceptions_Exception_Handling_Differences3.cpp
// compile with: /EHa
#include <stdio.h>
#include <eh.h>
#include <windows.h>

class SE_Exception {
private:
 SE_Exception() {}
 unsigned int nSE;
public:
 SE_Exception(SE_Exception& e) : nSE(e.nSE) {}
 SE_Exception(unsigned int n) : nSE(n) {}
 ~SE_Exception() {}
 unsigned int getSeNumber() { return nSE; }
};

void SEFunc() {
 __try {
 int x, y = 0;
 x = 5 / y;
 }
 __finally {
 printf_s("In finally\n");
 }
}

void trans_func(unsigned int u, _EXCEPTION_POINTERS* pExp) {
 printf_s("In trans_func.\n");
 throw SE_Exception(u);
}

int main() {
 _set_se_translator(trans_func);
 try {
 SEFunc();
 }
 catch(SE_Exception e) {
 printf_s("Caught a __try exception with SE_Exception.\n");
 printf_s("nSE = 0x%x\n", e.getSeNumber());
 }
}

In trans_func.
In finally
Caught a __try exception with SE_Exception.
nSE = 0xc0000094

See also
Mixing C (Structured) and C++ exceptions

Structured Exception Handling (C/C++)
5/7/2019 • 4 minutes to read • Edit Online

Grammar

Remarks

Structured exception handling (SEH) is a Microsoft extension to C to handle certain exceptional code situations,
such as hardware faults, gracefully. Although Windows and Microsoft C++ support SEH, we recommend that
you use ISO-standard C++ exception handling because it makes your code more portable and flexible.
Nevertheless, to maintain existing code or for particular kinds of programs, you still might have to use SEH.

Microsoft specific:

try-except-statement :
 __try compound-statement __except (expression) compound-statement

try-finally-statement :
 __try compound-statement __finally compound-statement

With SEH, you can ensure that resources such as memory blocks and files are released correctly if execution
unexpectedly terminates. You can also handle specific problems—for example, insufficient memory—by using
concise structured code that does not rely on goto statements or elaborate testing of return codes.

The try-except and try-finally statements referred to in this article are Microsoft extensions to the C language.
They support SEH by enabling applications to gain control of a program after events that would otherwise
terminate execution. Although SEH works with C++ source files, it's not specifically designed for C++. If you
use SEH in a C++ program that you compile by using the /EHa or /EHsc option, destructors for local objects
are called but other execution behavior might not be what you expect. For an illustration, see the example later
in this article. In most cases, instead of SEH we recommend that you use ISO-standard C++ exception
handling, which the Microsoft C++ compiler also supports. By using C++ exception handling, you can ensure
that your code is more portable, and you can handle exceptions of any type.

If you have C code that uses SEH, you can mix it with C++ code that uses C++ exception handling. For
information, see Handle structured exceptions in C++.

There are two SEH mechanisms:

Exception handlers, or __except blocks, which can respond to or dismiss the exception.

Termination handlers, or __finally blocks, which are always called, whether an exception causes
termination or not.

These two kinds of handlers are distinct, but are closely related through a process known as "unwinding the
stack." When a structured exception occurs, Windows looks for the most recently installed exception handler
that is currently active. The handler can do one of three things:

Fail to recognize the exception and pass control to other handlers.

Recognize the exception but dismiss it.

Recognize the exception and handle it.

The exception handler that recognizes the exception may not be in the function that was running when the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/structured-exception-handling-c-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

Next steps

Example

exception occurred. In some cases, it may be in a function much higher on the stack. The currently running
function and all other functions on the stack frame are terminated. During this process, the stack is "unwound;"
that is, local non-static variables of terminated functions are cleared from the stack.

As it unwinds the stack, the operating system calls any termination handlers that you've written for each
function. By using a termination handler, you can clean up resources that otherwise would remain open because
of an abnormal termination. If you've entered a critical section, you can exit it in the termination handler. If the
program is going to shut down, you can perform other housekeeping tasks such as closing and removing
temporary files.

Writing an Exception Handler

Writing a Termination Handler

Handle structured exceptions in C++

As stated earlier, destructors for local objects are called if you use SEH in a C++ program and compile it by
using the /EHa or /EHsc option. However, the behavior during execution may not be what you expect if you
are also using C++ exceptions. This example demonstrates these behavioral differences.

#include <stdio.h>
#include <Windows.h>
#include <exception>

class TestClass
{
public:
 ~TestClass()
 {
 printf("Destroying TestClass!\r\n");
 }
};

__declspec(noinline) void TestCPPEX()
{
#ifdef CPPEX
 printf("Throwing C++ exception\r\n");
 throw std::exception("");
#else
 printf("Triggering SEH exception\r\n");
 volatile int *pInt = 0x00000000;
 *pInt = 20;
#endif
}

__declspec(noinline) void TestExceptions()
{
 TestClass d;
 TestCPPEX();
}

int main()
{
 __try
 {
 TestExceptions();
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 printf("Executing SEH __except block\r\n");
 }

 return 0;
}

Triggering SEH exception
Executing SEH __except block

Throwing C++ exception
Destroying TestClass!
Executing SEH __except block

If you use /EHsc to compile this code but the local test control macro CPPEX is undefined, there is no execution
of the TestClass destructor and the output looks like this:

If you use /EHsc to compile the code and CPPEX is defined by using /DCPPEX (so that a C++ exception is
thrown), the TestClass destructor executes and the output looks like this:

If you use /EHa to compile the code, the TestClass destructor executes regardless of whether the exception
was thrown by using std::throw or by using SEH to trigger the exception, that is, whether CPPEX defined or
not. The output looks like this:

Throwing C++ exception
Destroying TestClass!
Executing SEH __except block

See also

For more information, see /EH (Exception Handling Model).

END Microsoft Specific

Exception Handling
Keywords
<exception>
Errors and Exception Handling
Structured Exception Handling (Windows)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception
https://msdn.microsoft.com/library/windows/desktop/ms680657.aspx

Writing an Exception Handler
10/31/2018 • 2 minutes to read • Edit Online

What do you want to know more about?

See also

Exception handlers are typically used to respond to specific errors. You can use the exception-handling syntax to
filter out all exceptions other than those you know how to handle. Other exceptions should be passed to other
handlers (possibly in the run-time library or the operating system) written to look for those specific exceptions.

Exception handlers use the try-except statement.

The try-except statement

Writing an exception filter

Raising software exceptions

Hardware exceptions

Restrictions on exception handlers

Structured Exception Handling (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/writing-an-exception-handler.md

try-except Statement
11/8/2018 • 4 minutes to read • Edit Online

Syntax

Remarks

NOTENOTE

Microsoft Specific

The try-except statement is a Microsoft extension to the C and C++ languages that supports structured
exception handling.

__try
{
 // guarded code
}
__except (expression)
{
 // exception handler code
}

The try-except statement is a Microsoft extension to the C and C++ languages that enables target applications to
gain control when events that normally terminate program execution occur. Such events are called exceptions, and
the mechanism that deals with exceptions is called structured exception handling (SEH).

For related information, see the try-finally statement.

Exceptions can be either hardware-based or software-based. Even when applications cannot completely recover
from hardware or software exceptions, structured exception handling makes it possible to display error
information and trap the internal state of the application to help diagnose the problem. This is especially useful for
intermittent problems that cannot be reproduced easily.

Structured exception handling works with Win32 for both C and C++ source files. However, it is not specifically designed for
C++. You can ensure that your code is more portable by using C++ exception handling. Also, C++ exception handling is
more flexible, in that it can handle exceptions of any type. For C++ programs, it is recommended that you use the C++
exception-handling mechanism (try, catch, and throw statements).

The compound statement after the __try clause is the body or guarded section. The compound statement after the
__except clause is the exception handler. The handler specifies a set of actions to be taken if an exception is raised
during execution of the body of the guarded section. Execution proceeds as follows:

1. The guarded section is executed.

2. If no exception occurs during execution of the guarded section, execution continues at the statement after
the __except clause.

3. If an exception occurs during execution of the guarded section or in any routine the guarded section calls,
the __except expression (called the filter expression) is evaluated and the value determines how the
exception is handled. There are three possible values:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/try-except-statement.md

The __leave KeywordThe __leave Keyword

Structured Exception Handling Intrinsic FunctionsStructured Exception Handling Intrinsic Functions

typedef struct _EXCEPTION_POINTERS {
 PEXCEPTION_RECORD ExceptionRecord;
 PCONTEXT ContextRecord;
} EXCEPTION_POINTERS, *PEXCEPTION_POINTERS;

EXCEPTION_CONTINUE_EXECUTION (-1) Exception is dismissed. Continue execution at the point
where the exception occurred.

EXCEPTION_CONTINUE_SEARCH (0) Exception is not recognized. Continue to search up the stack
for a handler, first for containing try-except statements, then for handlers with the next highest
precedence.

EXCEPTION_EXECUTE_HANDLER (1) Exception is recognized. Transfer control to the exception
handler by executing the __except compound statement, then continue execution after the __except
block.

Because the __except expression is evaluated as a C expression, it is limited to a single value, the conditional-
expression operator, or the comma operator. If more extensive processing is required, the expression can call a
routine that returns one of the three values listed above.

Each application can have its own exception handler.

It is not valid to jump into a __try statement, but valid to jump out of one. The exception handler is not called if a
process is terminated in the middle of executing a try-except statement.

For compatibility with previous versions, _try, _except, and _leave are synonyms for __try, __except, and
__leave unless compiler option /Za (Disable language extensions) is specified.

The __leave keyword is valid only within the guarded section of a try-except statement, and its effect is to jump
to the end of the guarded section. Execution continues at the first statement after the exception handler.

A goto statement can also jump out of the guarded section, and it does not degrade performance as it does in a
try-finally statement because stack unwinding does not occur. However, we recommend that you use the __leave
keyword rather than a goto statement because you are less likely to make a programming mistake if the guarded
section is large or complex.

Structured exception handling provides two intrinsic functions that are available to use with the try-except
statement: GetExceptionCode and GetExceptionInformation .

GetExceptionCode returns the code (a 32-bit integer) of the exception.

The intrinsic function GetExceptionInformation returns a pointer to a structure containing additional information
about the exception. Through this pointer, you can access the machine state that existed at the time of a hardware
exception. The structure is as follows:

The pointer types PEXCEPTION_RECORD and PCONTEXT are defined in the include file <winnt.h>, and
_EXCEPTION_RECORD and _CONTEXT are defined in the include file <excpt.h>

You can use GetExceptionCode within the exception handler. However, you can use GetExceptionInformation only
within the exception filter expression. The information it points to is generally on the stack and is no longer
available when control is transferred to the exception handler.

The intrinsic function AbnormalTermination is available within a termination handler. It returns 0 if the body of the
try-finally statement terminates sequentially. In all other cases, it returns 1.

excpt.h defines some alternate names for these intrinsics:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

Example
// exceptions_try_except_Statement.cpp
// Example of try-except and try-finally statements
#include <stdio.h>
#include <windows.h> // for EXCEPTION_ACCESS_VIOLATION
#include <excpt.h>

int filter(unsigned int code, struct _EXCEPTION_POINTERS *ep)
{
 puts("in filter.");
 if (code == EXCEPTION_ACCESS_VIOLATION)
 {
 puts("caught AV as expected.");
 return EXCEPTION_EXECUTE_HANDLER;
 }
 else
 {
 puts("didn't catch AV, unexpected.");
 return EXCEPTION_CONTINUE_SEARCH;
 };
}

int main()
{
 int* p = 0x00000000; // pointer to NULL
 puts("hello");
 __try
 {
 puts("in try");
 __try
 {
 puts("in try");
 *p = 13; // causes an access violation exception;
 }
 __finally
 {
 puts("in finally. termination: ");
 puts(AbnormalTermination() ? "\tabnormal" : "\tnormal");
 }
 }
 __except(filter(GetExceptionCode(), GetExceptionInformation()))
 {
 puts("in except");
 }
 puts("world");
}

OutputOutput

GetExceptionCode is equivalent to _exception_code

GetExceptionInformation is equivalent to _exception_info

AbnormalTermination is equivalent to _abnormal_termination

hello
in try
in try
in filter.
caught AV as expected.
in finally. termination:
 abnormal
in except
world

See also

END Microsoft Specific

Writing an Exception Handler
Structured Exception Handling (C/C++)
Keywords

Writing an Exception Filter
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

// exceptions_Writing_an_Exception_Filter.cpp
#include <windows.h>
int main() {
 int Eval_Exception(int);

 __try {}

 __except (Eval_Exception(GetExceptionCode())) {
 ;
 }

}
void ResetVars(int) {}
int Eval_Exception (int n_except) {
 if (n_except != STATUS_INTEGER_OVERFLOW &&
 n_except != STATUS_FLOAT_OVERFLOW) // Pass on most exceptions
 return EXCEPTION_CONTINUE_SEARCH;

 // Execute some code to clean up problem
 ResetVars(0); // initializes data to 0
 return EXCEPTION_CONTINUE_EXECUTION;
}

You can handle an exception either by jumping to the level of the exception handler or by continuing execution.
Instead of using the exception handler code to handle the exception and falling through, you can use filter to clean
up the problem and then, by returning -1, resume normal flow without clearing the stack.

Some exceptions cannot be continued. If filter evaluates to -1 for such an exception, the system raises a new exception.
When you call RaiseException, you determine whether the exception will continue.

For example, the following code uses a function call in the filter expression: this function handles the problem and
then returns -1 to resume normal flow of control:

It is a good idea to use a function call in the filter expression whenever filter needs to do anything complex.
Evaluating the expression causes execution of the function, in this case, Eval_Exception .

Note the use of GetExceptionCode to determine the exception. You must call this function inside the filter itself.
Eval_Exception cannot call GetExceptionCode , but it must have the exception code passed to it.

This handler passes control to another handler unless the exception is an integer or floating-point overflow. If it is,
the handler calls a function (ResetVars is only an example, not an API function) to reset some global variables.
Statement-block-2, which in this example is empty, can never be executed because Eval_Exception never returns
EXCEPTION_EXECUTE_HANDLER (1).

Using a function call is a good general-purpose technique for dealing with complex filter expressions. Two other C
language features that are useful are:

The conditional operator

The comma operator

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/writing-an-exception-filter.md
https://msdn.microsoft.com/library/windows/desktop/ms680552
https://docs.microsoft.com/windows/desktop/Debug/getexceptioncode

__except(GetExceptionCode() == STATUS_INTEGER_OVERFLOW ? 1 : 0) {

__except(GetExceptionCode() == STATUS_INTEGER_OVERFLOW) {

__except(nCode = GetExceptionCode(), nCode == STATUS_INTEGER_OVERFLOW)

See also

The conditional operator is frequently useful, because it can be used to check for a specific return code and then
return one of two different values. For example, the filter in the following code recognizes the exception only if the
exception is STATUS_INTEGER_OVERFLOW:

The purpose of the conditional operator in this case is mainly to provide clarity, because the following code
produces the same results:

The conditional operator is more useful in situations where you might want the filter to evaluate to -1,
EXCEPTION_CONTINUE_EXECUTION.

The comma operator enables you to perform multiple, independent operations inside a single expression. The
effect is roughly that of executing multiple statements and then returning the value of the last expression. For
example, the following code stores the exception code in a variable and then tests it:

Writing an Exception Handler
Structured Exception Handling (C/C++)

Raising Software Exceptions
10/31/2018 • 2 minutes to read • Edit Online

BITS RECOMMENDED BINARY SETTING DESCRIPTION

31-30 11 These two bits describe the basic status
of the code: 11 = error, 00 = success,
01 = informational, 10 = warning.

29 1 Client bit. Set to 1 for user-defined
codes.

28 0 Reserved bit. (Leave set to 0.)

#define STATUS_INSUFFICIENT_MEM 0xE0000001
#define STATUS_FILE_BAD_FORMAT 0xE0000002

lpstr = _malloc(nBufferSize);
if (lpstr == NULL)
 RaiseException(STATUS_INSUFFICIENT_MEM, 0, 0, 0);

Some of the most common sources of program errors are not flagged as exceptions by the system. For example, if
you attempt to allocate a memory block but there is insufficient memory, the run-time or API function does not
raise an exception but returns an error code.

However, you can treat any condition as an exception by detecting that condition in your code and then reporting it
by calling the RaiseException function. By flagging errors this way, you can bring the advantages of structured
exception handling to any kind of run-time error.

To use structured exception handling with errors:

Define your own exception code for the event.

Call RaiseException when you detect a problem.

Use exception-handling filters to test for the exception code you defined.

The <winerror.h> file shows the format for exception codes. To make sure that you do not define a code that
conflicts with an existing exception code, set the third most significant bit to 1. The four most-significant bits should
be set as shown in the following table.

You can set the first two bits to a setting other than 11 binary if you want, although the "error" setting is
appropriate for most exceptions. The important thing to remember is to set bits 29 and 28 as shown in the
previous table.

The resulting error code should therefore have the highest four bits set to hexadecimal E. For example, the
following definitions define exception codes that do not conflict with any Windows exception codes. (You may,
however, need to check which codes are used by third-party DLLs.)

After you have defined an exception code, you can use it to raise an exception. For example, the following code
raises the STATUS_INSUFFICIENT_MEM exception in response to a memory allocation problem:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/raising-software-exceptions.md
https://msdn.microsoft.com/library/windows/desktop/ms680552

__try {
 ...
}
__except (GetExceptionCode() == STATUS_INSUFFICIENT_MEM ||
 GetExceptionCode() == STATUS_FILE_BAD_FORMAT)

See also

If you want to simply raise an exception, you can set the last three parameters to 0. The three last parameters are
useful for passing additional information and setting a flag that prevents handlers from continuing execution. See
the RaiseException function in the Windows SDK for more information.

In your exception-handling filters, you can then test for the codes you've defined. For example:

Writing an Exception Handler
Structured Exception Handling (C/C++)

https://msdn.microsoft.com/library/windows/desktop/ms680552

Hardware Exceptions
10/31/2018 • 2 minutes to read • Edit Online

EXCEPTION CODE CAUSE OF EXCEPTION

STATUS_ACCESS_VIOLATION Reading or writing to an inaccessible memory location.

STATUS_BREAKPOINT Encountering a hardware-defined breakpoint; used only by
debuggers.

STATUS_DATATYPE_MISALIGNMENT Reading or writing to data at an address that is not properly
aligned; for example, 16-bit entities must be aligned on 2-byte
boundaries. (Not applicable to Intel 80x86 processors.)

STATUS_FLOAT_DIVIDE_BY_ZERO Dividing floating-point type by 0.0.

STATUS_FLOAT_OVERFLOW Exceeding maximum positive exponent of floating-point type.

STATUS_FLOAT_UNDERFLOW Exceeding magnitude of lowest negative exponent of floating-
point type.

STATUS_FLOATING_RESEVERED_OPERAND Using a reserved floating-point format (invalid use of format).

STATUS_ILLEGAL_INSTRUCTION Attempting to execute an instruction code not defined by the
processor.

STATUS_PRIVILEGED_INSTRUCTION Executing an instruction not allowed in current machine mode.

STATUS_INTEGER_DIVIDE_BY_ZERO Dividing an integer type by 0.

STATUS_INTEGER_OVERFLOW Attempting an operation that exceeds the range of the
integer.

STATUS_SINGLE_STEP Executing one instruction in single-step mode; used only by
debuggers.

Most of the standard exceptions recognized by the operating system are hardware-defined exceptions. Windows
recognizes a few low-level software exceptions, but these are usually best handled by the operating system.

Windows maps the hardware errors of different processors to the exception codes in this section. In some cases, a
processor may generate only a subset of these exceptions. Windows preprocesses information about the exception
and issues the appropriate exception code.

The hardware exceptions recognized by Windows are summarized in the following table:

Many of the exceptions listed in the previous table are intended to be handled by debuggers, the operating system,
or other low-level code. With the exception of integer and floating-point errors, your code should not handle these
errors. Thus, you should usually use the exception-handling filter to ignore exceptions (evaluate to 0). Otherwise,
you may prevent lower-level mechanisms from responding appropriately. You can, however, take appropriate
precautions against the potential effect of these low-level errors by writing termination handlers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/hardware-exceptions.md

See also
Writing an Exception Handler
Structured Exception Handling (C/C++)

Restrictions on Exception Handlers
10/31/2018 • 2 minutes to read • Edit Online

See also

The principal limitation to using exception handlers in code is that you cannot use a goto statement to jump into a
__try statement block. Instead, you must enter the statement block through normal flow of control. You can jump
out of a __try statement block and nest exception handlers as you choose.

Writing an Exception Handler
Structured Exception Handling (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/restrictions-on-exception-handlers.md

Writing a Termination Handler
10/31/2018 • 2 minutes to read • Edit Online

What do you want to know more about?

See also

Unlike an exception handler, a termination handler is always executed, regardless of whether the protected block
of code terminated normally. The sole purpose of the termination handler should be to ensure that resources,
such as memory, handles, and files, are properly closed regardless of how a section of code finishes executing.

Termination handlers use the try-finally statement.

The try-finally statement

Cleaning up resources

Timing of actions in exception handling

Restrictions on termination handlers

Structured Exception Handling (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/writing-a-termination-handler.md

try-finally Statement
4/1/2019 • 3 minutes to read • Edit Online

Grammar

NOTENOTE

Microsoft Specific

The following syntax describes the try-finally statement:

__try
{
 // guarded code
}
__finally
{
 // termination code
}

try-finally-statement:
 __try compound-statement __finally compound-statement

The try-finally statement is a Microsoft extension to the C and C++ languages that enables target applications to
guarantee execution of cleanup code when execution of a block of code is interrupted. Cleanup consists of such
tasks as deallocating memory, closing files, and releasing file handles. The try-finally statement is especially
useful for routines that have several places where a check is made for an error that could cause premature return
from the routine.

For related information and a code sample, see try-except Statement. For more information on structured
exception handling in general, see Structured Exception Handling. For more information on handling exceptions in
managed applications with C++/CLI, see Exception Handling under /clr.

Structured exception handling works with Win32 for both C and C++ source files. However, it is not specifically designed for
C++. You can ensure that your code is more portable by using C++ exception handling. Also, C++ exception handling is
more flexible, in that it can handle exceptions of any type. For C++ programs, it is recommended that you use the C++
exception-handling mechanism (try, catch, and throw statements).

The compound statement after the __try clause is the guarded section. The compound statement after the
__finally clause is the termination handler. The handler specifies a set of actions that execute when the guarded
section is exited, regardless of whether the guarded section is exited by an exception (abnormal termination), or by
standard fall through (normal termination).

Control reaches a __try statement by simple sequential execution (fall through). When control enters the __try, its
associated handler becomes active. If the flow of control reaches the end of the try block, execution proceeds as
follows:

1. The termination handler is invoked.

2. When the termination handler completes, execution continues after the __finally statement. Regardless of
how the guarded section ends (for example, via a goto out of the guarded body or a return statement), the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/try-finally-statement.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/exception-handling-cpp-component-extensions

NOTENOTE

The __leave Keyword

Abnormal Termination

See also

termination handler is executed before the flow of control moves out of the guarded section.

A __finally statement does not block searching for an appropriate exception handler.

If an exception occurs in the __try block, the operating system must find a handler for the exception or the
program will fail. If a handler is found, any and all __finally blocks are executed and execution resumes in the
handler.

For example, suppose a series of function calls links function A to function D, as shown in the following figure.
Each function has one termination handler. If an exception is raised in function D and handled in A, the
termination handlers are called in this order as the system unwinds the stack: D, C, B.

Order of Termination-Handler Execution

The behavior of try-finally is different from some other languages that support the use of finally, such as C#. A single __try
may have either, but not both, of __finally and __except. If both are to be used together, an outer try-except statement
must enclose the inner try-finally statement. The rules specifying when each block executes are also different.

For compatibility with previous versions, _try, _finally, and _leave are synonyms for __try, __finally, and __leave
unless compiler option /Za (Disable language extensions) is specified.

The __leave keyword is valid only within the guarded section of a try-finally statement, and its effect is to jump
to the end of the guarded section. Execution continues at the first statement in the termination handler.

A goto statement can also jump out of the guarded section, but it degrades performance because it invokes stack
unwinding. The __leave statement is more efficient because it does not cause stack unwinding.

Exiting a try-finally statement using the longjmp run-time function is considered abnormal termination. It is
illegal to jump into a __try statement, but legal to jump out of one. All __finally statements that are active
between the point of departure (normal termination of the __try block) and the destination (the __except block
that handles the exception) must be run. This is called a local unwind.

If a try block is prematurely terminated for any reason, including a jump out of the block, the system executes the
associated finally block as a part of the process of unwinding the stack. In such cases, the AbnormalTermination
function returns true if called from within the finally block; otherwise, it returns false.

The termination handler is not called if a process is killed in the middle of executing a try-finally statement.

END Microsoft Specific

Writing a Termination Handler
Structured Exception Handling (C/C++)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/longjmp
https://docs.microsoft.com/windows/desktop/Debug/abnormaltermination

Keywords
Termination-Handler Syntax

https://docs.microsoft.com/windows/desktop/Debug/termination-handler-syntax

Cleaning up Resources
10/31/2018 • 2 minutes to read • Edit Online

Example

During termination-handler execution, you may not know which resources are actually allocated before the
termination handler was called. It is possible that the __try statement block was interrupted before all resources
were allocated, so that not all resources were opened.

Therefore, to be safe, you should check to see which resources are actually open before proceeding with
termination-handling cleanup. A recommended procedure is to:

1. Initialize handles to NULL.

2. In the __try statement block, allocate resources. Handles are set to positive values as the resource is
allocated.

3. In the __finally statement block, release each resource whose corresponding handle or flag variable is
nonzero or not NULL.

For example, the following code uses a termination handler to close three files and a memory block that were
allocated in the __try statement block. Before cleaning up a resource, the code first checks to see if the resource
was allocated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cleaning-up-resources.md

// exceptions_Cleaning_up_Resources.cpp
#include <stdlib.h>
#include <malloc.h>
#include <stdio.h>
#include <windows.h>

void fileOps() {
 FILE *fp1 = NULL,
 *fp2 = NULL,
 *fp3 = NULL;
 LPVOID lpvoid = NULL;
 errno_t err;

 __try {
 lpvoid = malloc(BUFSIZ);

 err = fopen_s(&fp1, "ADDRESS.DAT", "w+");
 err = fopen_s(&fp2, "NAMES.DAT", "w+");
 err = fopen_s(&fp3, "CARS.DAT", "w+");
 }
 __finally {
 if (fp1)
 fclose(fp1);
 if (fp2)
 fclose(fp2);
 if (fp3)
 fclose(fp3);
 if (lpvoid)
 free(lpvoid);
 }
}

int main() {
 fileOps();
}

See also
Writing a Termination Handler
Structured Exception Handling (C/C++)

Timing of Exception Handling: A Summary
5/7/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

A termination handler is executed no matter how the __try statement block is terminated. Causes include jumping
out of the __try block, a longjmp statement that transfers control out of the block, and unwinding the stack due to
exception handling.

The Microsoft C++ compiler supports two forms of the setjmp and longjmp statements. The fast version bypasses
termination handling but is more efficient. To use this version, include the file <setjmp.h>. The other version supports
termination handling as described in the previous paragraph. To use this version, include the file <setjmpex.h>. The increase
in performance of the fast version depends on hardware configuration.

The operating system executes all termination handlers in the proper order before any other code can be executed,
including the body of an exception handler.

When the cause for interruption is an exception, the system must first execute the filter portion of one or more
exception handlers before deciding what to terminate. The order of events is:

1. An exception is raised.

2. The system looks at the hierarchy of active exception handlers and executes the filter of the handler with
highest precedence; this is the exception handler most recently installed and most deeply nested, in terms of
blocks and function calls.

3. If this filter passes control (returns 0), the process continues until a filter is found that does not pass control.

4. If this filter returns -1, execution continues where the exception was raised, and no termination takes place.

5. If the filter returns 1, the following events occur:

The system unwinds the stack, clearing all stack frames between the currently executing code (where
the exception was raised) and the stack frame that contains the exception handler gaining control.

As the stack is unwound, each termination handler on the stack is executed.

The exception handler itself is executed.

Control passes to the line of code after the end of this exception handler.

Writing a Termination Handler
Structured Exception Handling (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/timing-of-exception-handling-a-summary.md

Restrictions on Termination Handlers
10/31/2018 • 2 minutes to read • Edit Online

See also

You cannot use a goto statement to jump into a __try statement block or a __finally statement block. Instead, you
must enter the statement block through normal flow of control. (You can, however, jump out of a __try statement
block.) Also, you cannot nest an exception handler or termination handler inside a __finally block.

In addition, some kinds of code permitted in a termination handler produce questionable results, so you should use
them with caution, if at all. One is a goto statement that jumps out of a __finally statement block. If the block is
executing as part of normal termination, nothing unusual happens. But if the system is unwinding the stack, that
unwinding stops, and the current function gains control as if there were no abnormal termination.

A return statement inside a __finally statement block presents roughly the same situation. Control returns to the
immediate caller of the function containing the termination handler. If the system was unwinding the stack, this
process is halted, and the program proceeds as if there had been no exception raised.

Writing a Termination Handler
Structured Exception Handling (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/restrictions-on-termination-handlers.md

Transporting exceptions between threads
5/7/2019 • 10 minutes to read • Edit Online

Syntax
namespace std
{
 typedef unspecified exception_ptr;
 exception_ptr current_exception();
 void rethrow_exception(exception_ptr p);
 template<class E>
 exception_ptr make_exception_ptr(E e) noexcept;
}

ParametersParameters

PARAMETER DESCRIPTION

unspecified An unspecified internal class that is used to implement the
exception_ptr type.

p An exception_ptr object that references an exception.

E A class that represents an exception.

e An instance of the parameter E class.

Return Value

Remarks
ScenarioScenario

The Microsoft C++ compiler (MSVC) supports transporting an exception from one thread to another. Transporting
exceptions enables you to catch an exception in one thread and then make the exception appear to be thrown in a
different thread. For example, you can use this feature to write a multithreaded application where the primary
thread handles all the exceptions thrown by its secondary threads. Transporting exceptions is useful mostly to
developers who create parallel programming libraries or systems. To implement transporting exceptions, MSVC
provides the exception_ptr type and the current_exception, rethrow_exception, and make_exception_ptr functions.

The current_exception function returns an exception_ptr object that references the exception that is currently in
progress. If no exception is in progress, the function returns an exception_ptr object that is not associated with any
exception.

The make_exception_ptr function returns an exception_ptr object that references the exception specified by the e
parameter.

Imagine that you want to create an application that can scale to handle a variable amount of work. To achieve this
objective, you design a multithreaded application where an initial, primary thread creates as many secondary
threads as it needs in order to do the job. The secondary threads help the primary thread to manage resources, to
balance loads, and to improve throughput. By distributing the work, the multithreaded application performs better

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/transporting-exceptions-between-threads.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-typedefs
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions

SolutionSolution

Exception-Handling Models and Compiler OptionsException-Handling Models and Compiler Options

than a single-threaded application.

However, if a secondary thread throws an exception, you want the primary thread to handle it. This is because you
want your application to handle exceptions in a consistent, unified manner regardless of the number of secondary
threads.

To handle the previous scenario, the C++ Standard supports transporting an exception between threads. If a
secondary thread throws an exception, that exception becomes the current exception. By analogy to the real world,
the current exception is said to be in flight. The current exception is in flight from the time it is thrown until the
exception handler that catches it returns.

The secondary thread can catch the current exception in a catch block, and then call the current_exception

function to store the exception in an exception_ptr object. The exception_ptr object must be available to the
secondary thread and to the primary thread. For example, the exception_ptr object can be a global variable whose
access is controlled by a mutex. The term transport an exception means an exception in one thread can be
converted to a form that can be accessed by another thread.

Next, the primary thread calls the rethrow_exception function, which extracts and then throws the exception from
the exception_ptr object. When the exception is thrown, it becomes the current exception in the primary thread.
That is, the exception appears to originate in the primary thread.

Finally, the primary thread can catch the current exception in a catch block and then process it or throw it to a
higher level exception handler. Or, the primary thread can ignore the exception and allow the process to end.

Most applications do not have to transport exceptions between threads. However, this feature is useful in a parallel
computing system because the system can divide work among secondary threads, processors, or cores. In a
parallel computing environment, a single, dedicated thread can handle all the exceptions from the secondary
threads and can present a consistent exception-handling model to any application.

For more information about the C++ Standards committee proposal, search the Internet for document number
N2179, titled "Language Support for Transporting Exceptions between Threads".

Your application's exception-handling model determines whether it can catch and transport an exception. Visual
C++ supports three models that can handle C++ exceptions, structured exception handling (SEH) exceptions, and
common language runtime (CLR) exceptions. Use the /EH and /clr compiler options to specify your application's
exception-handling model.

Only the following combination of compiler options and programming statements can transport an exception.
Other combinations either cannot catch exceptions, or can catch but cannot transport exceptions.

The /EHa compiler option and the catch statement can transport SEH and C++ exceptions.

The /EHa, /EHs, and /EHsc compiler options and the catch statement can transport C++ exceptions.

The /CLR compiler option and the catch statement can transport C++ exceptions. The /CLR compiler
option implies specification of the /EHa option. Note that the compiler does not support transporting
managed exceptions. This is because managed exceptions, which are derived from the System.Exception
class, are already objects that you can move between threads by using the facilities of the common
languange runtime.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-class

Usage

exception_ptr Type

ComparisonsComparisons

current_exception Function

DetailsDetails

IMPORTANTIMPORTANT
We recommend that you specify the /EHsc compiler option and catch only C++ exceptions. You expose yourself to a
security threat if you use the /EHa or /CLR compiler option and a catch statement with an ellipsis exception-
declaration (catch(...)). You probably intend to use the catch statement to capture a few specific exceptions.
However, the catch(...) statement captures all C++ and SEH exceptions, including unexpected ones that should
be fatal. If you ignore or mishandle an unexpected exception, malicious code can use that opportunity to undermine
the security of your program.

The following sections describe how to transport exceptions by using the exception_ptr type, and the
current_exception , rethrow_exception , and make_exception_ptr functions.

Use an exception_ptr object to reference the current exception or an instance of a user-specified exception. In the
Microsoft implementation, an exception is represented by an EXCEPTION_RECORD structure. Each exception_ptr

object includes an exception reference field that points to a copy of the EXCEPTION_RECORD structure that represents
the exception.

When you declare an exception_ptr variable, the variable is not associated with any exception. That is, its
exception reference field is NULL. Such an exception_ptr object is called a null exception_ptr.

Use the current_exception or make_exception_ptr function to assign an exception to an exception_ptr object.
When you assign an exception to an exception_ptr variable, the variable's exception reference field points to a
copy of the exception. If there is insufficient memory to copy the exception, the exception reference field points to a
copy of a std::bad_alloc exception. If the current_exception or make_exception_ptr function cannot copy the
exception for any other reason, the function calls the terminate function to exit the current process.

Despite its name, an exception_ptr object is not itself a pointer. It does not obey pointer semantics and cannot be
used with the pointer member access (->) or indirection (*) operators. The exception_ptr object has no public
data members or member functions.

You can use the equal (==) and not-equal (!=) operators to compare two exception_ptr objects. The operators
do not compare the binary value (bit pattern) of the EXCEPTION_RECORD structures that represent the exceptions.
Instead, the operators compare the addresses in the exception reference field of the exception_ptr objects.
Consequently, a null exception_ptr and the NULL value compare as equal.

Call the current_exception function in a catch block. If an exception is in flight and the catch block can catch the
exception, the current_exception function returns an exception_ptr object that references the exception.
Otherwise, the function returns a null exception_ptr object.

The current_exception function captures the exception that is in flight regardless of whether the catch statement
specifies an exception-declaration statement.

The destructor for the current exception is called at the end of the catch block if you do not rethrow the exception.
However, even if you call the current_exception function in the destructor, the function returns an exception_ptr

object that references the current exception.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_exception_record
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bad-alloc-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/terminate-crt

SEH ExceptionsSEH Exceptions

rethrow_exception Function

make_exception_ptr Function

Successive calls to the current_exception function return exception_ptr objects that refer to different copies of the
current exception. Consequently, the objects compare as unequal because they refer to different copies, even
though the copies have the same binary value.

If you use the /EHa compiler option, you can catch an SEH exception in a C++ catch block. The
current_exception function returns an exception_ptr object that references the SEH exception. And the
rethrow_exception function throws the SEH exception if you call it with thetransported exception_ptr object as its

argument.

The current_exception function returns a null exception_ptr if you call it in an SEH __finally termination handler,
an __except exception handler, or the __except filter expression.

A transported exception does not support nested exceptions. A nested exception occurs if another exception is
thrown while an exception is being handled. If you catch a nested exception, the EXCEPTION_RECORD.ExceptionRecord

data member points to a chain of EXCEPTION_RECORD structures that describe the associated exceptions. The
current_exception function does not support nested exceptions because it returns an exception_ptr object whose
ExceptionRecord data member is zeroed out.

If you catch an SEH exception, you must manage the memory referenced by any pointer in the
EXCEPTION_RECORD.ExceptionInformation data member array. You must guarantee that the memory is valid during

the lifetime of the corresponding exception_ptr object, and that the memory is freed when the exception_ptr

object is deleted.

You can use structured exception (SE) translator functions together with the transport exceptions feature. If an SEH
exception is translated to a C++ exception, the current_exception function returns an exception_ptr that
references the translated exception instead of the original SEH exception. The rethrow_exception function
subsequently throws the translated exception, not the original exception. For more information about SE translator
functions, see _set_se_translator.

After you store a caught exception in an exception_ptr object, the primary thread can process the object. In your
primary thread, call the rethrow_exception function together with the exception_ptr object as its argument. The
rethrow_exception function extracts the exception from the exception_ptr object and then throws the exception in

the context of the primary thread. If the p parameter of the rethrow_exception function is a null exception_ptr , the
function throws std::bad_exception.

The extracted exception is now the current exception in the primary thread, and you can handle it as you would any
other exception. If you catch the exception, you can handle it immediately or use a throw statement to send it to a
higher level exception handler. Otherwise, do nothing and let the default system exception handler terminate your
process.

The make_exception_ptr function takes an instance of a class as its argument and then returns an exception_ptr

that references the instance. Usually, you specify an exception class object as the argument to the
make_exception_ptr function, although any class object can be the argument.

Calling the make_exception_ptr function is equivalent to throwing a C++ exception, catching it in a catch block,
and then calling the current_exception function to return an exception_ptr object that references the exception.
The Microsoft implementation of the make_exception_ptr function is more efficient than throwing and then
catching an exception.

An application typically does not require the make_exception_ptr function, and we discourage its use.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/set-se-translator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/bad-exception-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-class

Example

// transport_exception.cpp
// compile with: /EHsc /MD
#include <windows.h>
#include <stdio.h>
#include <exception>
#include <stdexcept>

using namespace std;

// Define thread-specific information.
#define THREADCOUNT 2
exception_ptr aException[THREADCOUNT];
int aArg[THREADCOUNT];

DWORD WINAPI ThrowExceptions(LPVOID);

// Specify a user-defined, custom exception.
// As a best practice, derive your exception
// directly or indirectly from std::exception.
class myException : public std::exception {
};
int main()
{
 HANDLE aThread[THREADCOUNT];
 DWORD ThreadID;

 // Create secondary threads.
 for(int i=0; i < THREADCOUNT; i++)
 {
 aArg[i] = i;
 aThread[i] = CreateThread(
 NULL, // Default security attributes.
 0, // Default stack size.
 (LPTHREAD_START_ROUTINE) ThrowExceptions,
 (LPVOID) &aArg[i], // Thread function argument.
 0, // Default creation flags.
 &ThreadID); // Receives thread identifier.
 if(aThread[i] == NULL)
 {
 printf("CreateThread error: %d\n", GetLastError());
 return -1;
 }
 }

 // Wait for all threads to terminate.
 WaitForMultipleObjects(THREADCOUNT, aThread, TRUE, INFINITE);
 // Close thread handles.
 for(int i=0; i < THREADCOUNT; i++) {
 CloseHandle(aThread[i]);
 }

 // Rethrow and catch the transported exceptions.
 for (int i = 0; i < THREADCOUNT; i++) {
 try {
 if (aException[i] == NULL) {
 printf("exception_ptr %d: No exception was transported.\n", i);
 }
 else {
 rethrow_exception(aException[i]);
 }
 }
 catch(const invalid_argument &) {

The following example transports a standard C++ exception and a custom C++ exception from one thread to
another.

 printf("exception_ptr %d: Caught an invalid_argument exception.\n", i);
 }
 catch(const myException &) {
 printf("exception_ptr %d: Caught a myException exception.\n", i);
 }
 }
}
// Each thread throws an exception depending on its thread
// function argument, and then ends.
DWORD WINAPI ThrowExceptions(LPVOID lpParam)
{
 int x = *((int*)lpParam);
 if (x == 0) {
 try {
 // Standard C++ exception.
 // This example explicitly throws invalid_argument exception.
 // In practice, your application performs an operation that
 // implicitly throws an exception.
 throw invalid_argument("A C++ exception.");
 }
 catch (const invalid_argument &) {
 aException[x] = current_exception();
 }
 }
 else {
 // User-defined exception.
 aException[x] = make_exception_ptr(myException());
 }
 return TRUE;
}

exception_ptr 0: Caught an invalid_argument exception.
exception_ptr 1: Caught a myException exception.

Requirements

See also

Header: <exception>

Exception Handling
/EH (Exception Handling Model)
/clr (Common Language Runtime Compilation)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

Assertion and User-Supplied Messages (C++)
10/31/2018 • 2 minutes to read • Edit Online

Remarks

See also

The C++ language supports three error handling mechanisms that help you debug your application: the #error
directive, the static_assert keyword, and the assert Macro, _assert, _wassert macro. All three mechanisms issue
error messages, and two also test software assertions. A software assertion specifies a condition that you expect to
be true at a particular point in your program. If a compile time assertion fails, the compiler issues a diagnostic
message and a compilation error. If a run-time assertion fails, the operating system issues a diagnostic message
and closes your application.

The lifetime of your application consists of a preprocessing, compile, and run time phase. Each error handling
mechanism accesses debug information that is available during one of these phases. To debug effectively, select the
mechanism that provides appropriate information about that phase:

The #error directive is in effect at preprocessing time. It unconditionally emits a user-specified message and
causes the compilation to fail with an error. The message can contain text that is manipulated by
preprocessor directives but any resulting expression is not evaluated.

The static_assert declaration is in effect at compile time. It tests a software assertion that is represented by a
user-specified integral expression that can be converted to a Boolean. If the expression evaluates to zero
(false), the compiler issues the user-specified message and the compilation fails with an error.

The static_assert declaration is especially useful for debugging templates because template arguments
can be included in the user-specified expression.

The assert Macro, _assert, _wassert macro is in effect at run time. It evaluates a user-specified expression,
and if the result is zero, the system issues a diagnostic message and closes your application. Many other
macros, such as_ASSERT and _ASSERTE, resemble this macro but issue different system-defined or user-
defined diagnostic messages.

#error Directive (C/C++)
assert Macro, _assert, _wassert
_ASSERT, _ASSERTE, _ASSERT_EXPR Macros
static_assert
_STATIC_ASSERT Macro
Templates

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/assertion-and-user-supplied-messages-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-error-directive-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-macro-assert-wassert
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-error-directive-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-macro-assert-wassert
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-asserte-assert-expr-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-error-directive-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-macro-assert-wassert
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-asserte-assert-expr-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/static-assert-macro

static_assert
10/31/2018 • 2 minutes to read • Edit Online

Syntax
static_assert(constant-expression, string-literal);

static_assert(constant-expression); // Visual Studio 2017 and later

ParametersParameters

PARAMETER DESCRIPTION

constant-expression An integral constant expression that can be converted to a
Boolean.

If the evaluated expression is zero (false), the string-literal
parameter is displayed and the compilation fails with an error.
If the expression is nonzero (true), the static_assert
declaration has no effect.

string-literal An message that is displayed if the constant-expression
parameter is zero. The message is a string of characters in the
base character set of the compiler; that is, not multibyte or
wide characters.

Remarks

Tests a software assertion at compile time. If the specified constant expression is FALSE, the compiler displays the
specified message, if one is provided, and the compilation fails with error C2338; otherwise, the declaration has no
effect.

The constant-expression parameter of a static_assert declaration represents a software assertion. A software
assertion specifies a condition that you expect to be true at a particular point in your program. If the condition is
true, the static_assert declaration has no effect. If the condition is false, the assertion fails, the compiler displays
the message in string-literal parameter, and the compilation fails with an error. In Visual Studio 2017 and later, the
string-literal parameter is optional.

The static_assert declaration tests a software assertion at compile time. In contrast, the assert Macro, _assert,
_wassert macro tests a software assertion at run time and incurs a run time cost in space or time. The
static_assert declaration is especially useful for debugging templates because template arguments can be
included in the constant-expression parameter.

The compiler examines the static_assert declaration for syntax errors when the declaration is encountered. The
compiler evaluates the constant-expression parameter immediately if it does not depend on a template parameter.
Otherwise, the compiler evaluates the constant-expression parameter when the template is instantiated.
Consequently, the compiler might issue a diagnostic message once when the declaration is encountered, and
again when the template is instantiated.

You can use the static_assert keyword at namespace, class, or block scope. (The static_assert keyword is
technically a declaration, even though it does not introduce new name into your program, because it can be used
at namespace scope.)

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/static-assert.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/ascii-character-set
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/multibyte-and-wide-characters
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-macro-assert-wassert

Description

Example
static_assert(sizeof(void *) == 4, "64-bit code generation is not supported.");

Description

Example
#include <type_traits>
#include <iosfwd>
namespace std {
template <class CharT, class Traits = std::char_traits<CharT> >
class basic_string {
 static_assert(std::is_pod<CharT>::value,
 "Template argument CharT must be a POD type in class template basic_string");
 // ...
 };
}

struct NonPOD {
 NonPOD(const NonPOD &) {}
 virtual ~NonPOD() {}
};

int main()
{
 std::basic_string<char> bs;
}

Description

Example

In the following example, the static_assert declaration has namespace scope. Because the compiler knows the
size of type void * , the expression is evaluated immediately.

In the following example, the static_assert declaration has class scope. The static_assert verifies that a template
parameter is a plain old data (POD) type. The compiler examines the static_assert declaration when it is declared,
but does not evaluate the constant-expression parameter until the basic_string class template is instantiated in
main() .

In the following example, the static_assert declaration has block scope. The static_assert verifies that the size of
the VMPage structure is equal to the virtual memory pagesize of the system.

#include <sys/param.h> // defines PAGESIZE
class VMMClient {
public:
 struct VMPage { // ...
 };
 int check_pagesize() {
 static_assert(sizeof(VMPage) == PAGESIZE,
 "Struct VMPage must be the same size as a system virtual memory page.");
 // ...
 }
// ...
};

See also
Assertion and User-Supplied Messages (C++)
#error Directive (C/C++)
assert Macro, _assert, _wassert
Templates
ASCII Character Set
Declarations and Definitions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-error-directive-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-macro-assert-wassert
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/ascii-character-set

Templates (C++)
10/31/2018 • 6 minutes to read • Edit Online

Defining and using templates

template <typename T>
T minimum(const T& lhs, const T& rhs)
{
 return lhs < rhs ? lhs : rhs;
}

int a = get_a();
int b = get_b();
int i = minimum<int>(a, b);

int i = minimum(a, b);

int minimum(const int& lhs, const int& rhs)
{
 return lhs < rhs ? lhs : rhs;
}

Templates are the basis for generic programming in C++. As a strongly-typed language, C++ requires all
variables to have a specific type, either explicitly declared by the programmer or deduced by the compiler.
However, many data structures and algorithms look the same no matter what type they are operating on.
Templates enable you to define the operations of a class or function, and let the user specify what concrete types
those operations should work on.

A template is a construct that generates an ordinary type or function at compile time based on arguments the
user supplies for the template parameters. For example, you can define a function template like this:

The above code describes a template for a generic function with a single type parameter T, whose return value
and call parameters (lhs and rhs) are all of this type. You can name a type parameter anything you like, but by
convention single upper case letters are most commonly used. T is a template parameter ; the typename
keyword says that this parameter is a placeholder for a type. When the function is called, the compiler will
replace every instance of T with the concrete type argument that is either specified by the user or deduced by
the compiler. The process in which the compiler generates a class or function from a template is referred to as
template instantiation; minimum<int> is an instantiation of the template minimum<T> .

Elsewhere, a user can declare an instance of the template that is specialized for int. Assume that get_a() and
get_b() are functions that return an int:

However, because this is a function template and the compiler can deduce the type of T from the arguments a
and b, you can call it just like an ordinary function:

When the compiler encounters that last statement, it generates a new function in which every occurrence of T in
the template is replaced with int:

The rules for how the compiler performs type deduction in function templates are based on the rules for

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/templates-cpp.md

Type parameters

template <typename T, typename U, typename V> class Foo{};

template <class T, class U, class V> class Foo{};

template<typename... Arguments> class vtclass;

vtclass< > vtinstance1;
vtclass<int> vtinstance2;
vtclass<float, bool> vtinstance3;

class MyClass
{
public:
 int num;
 std::wstring description;
};

int main()
{
 MyClass mc1 {1, L"hello"};
 MyClass mc2 {2, L"goodbye"};
 auto result = minimum(mc1, mc2); // Error! C2678
}

ordinary functions. For more information, see Overload Resolution of Function Template Calls.

In the minimum template above, note that the type parameter T is not qualified in any way until it is used in the
function call parameters, where the const and reference qualifiers are added.

There is no practical limit to the number of type parameters. Separate multiple parameters by commas:

The keyword class is equivalent to typename in this context. You can express the previous example as:

You can use the ellipses operator (...) to define a template that takes an arbitrary number of zero or more type
parameters:

Any built-in or user-defined type can be used as a type argument. For example, you can use std::vector in the
Standard Library to store ints, doubles, strings, MyClass, const MyClass*, MyClass&. The primary restriction
when using templates is that a type argument must support any operations that are applied to the type
parameters. For example, if we call minimum using MyClass as in this example:

A compiler error will be generated because MyClass does not provide an overload for the < operator.

There is no inherent requirement that the type arguments for any particular template all belong to the same
object hierarchy, although you can define a template that enforces such a restriction. You can combine object-
oriented techniques with templates; for example, you can store a Derived* in a vector<Base*>. Note that the
arguments must be pointers

vector<MyClass*> vec;
 MyDerived d(3, L"back again", time(0));
 vec.push_back(&d);

 // or more realistically:
 vector<shared_ptr<MyClass>> vec2;
 vec2.push_back(make_shared<MyDerived>());

Non-type parameters

template<typename T, size_t L>
class MyArray
{
 T arr[L];
public:
 MyArray() { ... }
};

MyArray<MyClass*, 10> arr;

Templates as template parameters

template<typename T, template<typename U, int I> class Arr>
class MyClass2
{
 T t; //OK
 Arr<T, 10> a;
 U u; //Error. U not in scope
};

The basic requirements that vector and other standard library containers impose on elements of T is that T be
copy-assignable and copy-constructible.

Unlike generic types in other languages such as C# and Java, C++ templates support non-type parameters, also
called value parameters. For example, you can provide a constant integral value to specify the length of an array,
as with this example that is similar to the std::array class in the Standard Library:

Note the syntax in the template declaration. The size_t value is passed in as a template argument at compile time
and must be constant or a constexpr expression. You use it like this:

Other kinds of values including pointers and references can be passed in as non-type parameters. For example,
you can pass in a pointer to a function or function object to customize some operation inside the template code.

A template can be a template parameter. In this example, MyClass2 has two template parameters: a typename
parameter T and a template parameter Arr:

Because the Arr parameter itself has no body, its parameter names are not needed. In fact, it is an error to refer
to Arr's typename or class parameter names from within the body of MyClass2 . For this reason, Arr's type
parameter names can be omitted, as shown in this example:

template<typename T, template<typename, int> class Arr>
class MyClass2
{
 T t; //OK
 Arr<T, 10> a;
};

Default template arguments

template <class T, class Allocator = allocator<T>> class vector;

vector<int> myInts;

vector<int, MyAllocator> ints;

template<typename A = int, typename B = double>
class Bar
{
 //...
};
...
int main()
{
 Bar<> bar; // use all default type arguments
}

Template specialization

Class and function templates can have default arguments. When a template has a default argument you can
leave it unspecified when you use it. For example, the std::vector template has a default argument for the
allocator :

In most cases the default std::allocator class is acceptable, so you use a vector like this:

But if necessary you can specify a custom allocator like this:

For multiple template arguments, all arguments after the first default argument must have default arguments.

When using a template whose parameters are all defaulted, use empty angle brackets:

In some cases, it isn’t possible or desirable for a template to define exactly the same code for any type. For
example, you might wish to define a code path to be executed only if the type argument is a pointer, or a
std::wstring, or a type derived from a particular base class. In such cases you can define a specialization of the
template for that particular type. When a user instantiates the template with that type, the compiler uses the
specialization to generate the class, and for all other types, the compiler chooses the more general template.
Specializations in which all parameters are specialized are complete specializations. If only some of the
parameters are specialized, it is called a partial specialization.

template <typename K, typename V>
class MyMap{/*...*/};

// partial specialization for string keys
template<typename V>
class MyMap<string, V> {/*...*/};
...
MyMap<int, MyClass> classes; // uses original template
MyMap<string, MyClass> classes2; // uses the partial specialization

A template can have any number of specializations as long as each specialized type parameter is unique. Only
class templates may be partially specialized. All complete and partial specializations of a template must be
declared in the same namespace as the original template.

For more information, see Template Specialization.

typename
10/31/2018 • 2 minutes to read • Edit Online

Syntax
typename identifier;

Remarks

template <class T>
class C1 : typename T::InnerType // Error - typename not allowed.
{};
template <class T>
class C2 : A<typename T::InnerType> // typename OK.
{};

template<class T1, class T2>...
template<typename T1, typename T2>...

Example
// typename.cpp
template<class T> class X
{
 typename T::Y m_y; // treat Y as a type
};

int main()
{
}

See also

In template definitions, provides a hint to the compiler that an unknown identifier is a type. In template parameter
lists, is used to specify a type parameter.

This keyword must be used if a name in a template definition is a qualified name that is dependent on a template
argument; it is optional if the qualified name is not dependent. For more information, see Templates and Name
Resolution.

typename can be used by any type anywhere in a template declaration or definition. It is not allowed in the base
class list, unless as a template argument to a template base class.

The typename keyword can also be used in place of class in template parameter lists. For example, the following
statements are semantically equivalent:

Templates
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/typename.md

Class Templates
10/31/2018 • 6 minutes to read • Edit Online

Member functions of class templates

// member_function_templates1.cpp
template<class T, int i> class MyStack
{
 T* pStack;
 T StackBuffer[i];
 static const int cItems = i * sizeof(T);
public:
 MyStack(void);
 void push(const T item);
 T& pop(void);
};

template< class T, int i > MyStack< T, i >::MyStack(void)
{
};

template< class T, int i > void MyStack< T, i >::push(const T item)
{
};

template< class T, int i > T& MyStack< T, i >::pop(void)
{
};

int main()
{
}

This topic describes rules that are specific to C++ class templates.

Member functions can be defined inside or outside of a class template. They are defined like function templates if
defined outside the class template.

Note that just as with any template class member function, the definition of the class's constructor member
function includes the template argument list twice.

Member functions can themselves be function templates, specifying additional parameters, as in the following
example.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/class-templates.md

// member_templates.cpp
template<typename T>
class X
{
public:
 template<typename U>
 void mf(const U &u);
};

template<typename T> template <typename U>
void X<T>::mf(const U &u)
{
}

int main()
{
}

Nested class templates

// nested_class_template1.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

class X
{

 template <class T>
 struct Y
 {
 T m_t;
 Y(T t): m_t(t) { }
 };

 Y<int> yInt;
 Y<char> yChar;

public:
 X(int i, char c) : yInt(i), yChar(c) { }
 void print()
 {
 cout << yInt.m_t << " " << yChar.m_t << endl;
 }
};

int main()
{
 X x(1, 'a');
 x.print();
}

// nested_class_template2.cpp
// compile with: /EHsc

Templates can be defined within classes or class templates, in which case they are referred to as member templates.
Member templates that are classes are referred to as nested class templates. Member templates that are functions
are discussed in Member Function Templates.

Nested class templates are declared as class templates inside the scope of the outer class. They can be defined
inside or outside of the enclosing class.

The following code demonstrates a nested class template inside an ordinary class.

// compile with: /EHsc
#include <iostream>
using namespace std;

template <class T>
class X
{
 template <class U> class Y
 {
 U* u;
 public:
 Y();
 U& Value();
 void print();
 ~Y();
 };

 Y<int> y;
public:
 X(T t) { y.Value() = t; }
 void print() { y.print(); }
};

template <class T>
template <class U>
X<T>::Y<U>::Y()
{
 cout << "X<T>::Y<U>::Y()" << endl;
 u = new U();
}

template <class T>
template <class U>
U& X<T>::Y<U>::Value()
{
 return *u;
}

template <class T>
template <class U>
void X<T>::Y<U>::print()
{
 cout << this->Value() << endl;
}

template <class T>
template <class U>
X<T>::Y<U>::~Y()
{
 cout << "X<T>::Y<U>::~Y()" << endl;
 delete u;
}

int main()
{
 X<int>* xi = new X<int>(10);
 X<char>* xc = new X<char>('c');
 xi->print();
 xc->print();
 delete xi;
 delete xc;
}

//Output:
X<T>::Y<U>::Y()
X<T>::Y<U>::Y()
10
99
X<T>::Y<U>::~Y()

X<T>::Y<U>::~Y()

Template friends

// template_friend1.cpp
// compile with: /EHsc

#include <iostream>
using namespace std;

template <class T> class Array {
 T* array;
 int size;

public:
 Array(int sz): size(sz) {
 array = new T[size];
 memset(array, 0, size * sizeof(T));
 }

 Array(const Array& a) {
 size = a.size;
 array = new T[size];
 memcpy_s(array, a.array, sizeof(T));
 }

 T& operator[](int i) {
 return *(array + i);
 }

 int Length() { return size; }

 void print() {
 for (int i = 0; i < size; i++)
 cout << *(array + i) << " ";

 cout << endl;
 }

 template<class T>
 friend Array<T>* combine(Array<T>& a1, Array<T>& a2);
};

template<class T>
Array<T>* combine(Array<T>& a1, Array<T>& a2) {
 Array<T>* a = new Array<T>(a1.size + a2.size);
 for (int i = 0; i < a1.size; i++)
 (*a)[i] = *(a1.array + i);

 for (int i = 0; i < a2.size; i++)
 (*a)[i + a1.size] = *(a2.array + i);

 return a;
}

Local classes are not allowed to have member templates.

Class templates can have friends. A class or class template, function, or function template can be a friend to a
template class. Friends can also be specializations of a class template or function template, but not partial
specializations.

In the following example, a friend function is defined as a function template within the class template. This code
produces a version of the friend function for every instantiation of the template. This construct is useful if your
friend function depends on the same template parameters as the class does.

int main() {
 Array<char> alpha1(26);
 for (int i = 0 ; i < alpha1.Length() ; i++)
 alpha1[i] = 'A' + i;

 alpha1.print();

 Array<char> alpha2(26);
 for (int i = 0 ; i < alpha2.Length() ; i++)
 alpha2[i] = 'a' + i;

 alpha2.print();
 Array<char>*alpha3 = combine(alpha1, alpha2);
 alpha3->print();
 delete alpha3;
}
//Output:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z

// template_friend2.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

template <class T>
class Array;

template <class T>
void f(Array<T>& a);

template <class T> class Array
{
 T* array;
 int size;

public:
 Array(int sz): size(sz)
 {
 array = new T[size];
 memset(array, 0, size * sizeof(T));
 }
 Array(const Array& a)
 {
 size = a.size;
 array = new T[size];
 memcpy_s(array, a.array, sizeof(T));
 }
 T& operator[](int i)
 {
 return *(array + i);
 }
 int Length()
 {
 return size;
 }
 void print()
 {

The next example involves a friend that has a template specialization. A function template specialization is
automatically a friend if the original function template is a friend.

It is also possible to declare only the specialized version of the template as the friend, as the comment before the
friend declaration in the following code indicates. If you do this, you must put the definition of the friend template
specialization outside of the template class.

 {
 for (int i = 0; i < size; i++)
 {
 cout << *(array + i) << " ";
 }
 cout << endl;
 }
 // If you replace the friend declaration with the int-specific
 // version, only the int specialization will be a friend.
 // The code in the generic f will fail
 // with C2248: 'Array<T>::size' :
 // cannot access private member declared in class 'Array<T>'.
 //friend void f<int>(Array<int>& a);

 friend void f<>(Array<T>& a);
};

// f function template, friend of Array<T>
template <class T>
void f(Array<T>& a)
{
 cout << a.size << " generic" << endl;
}

// Specialization of f for int arrays
// will be a friend because the template f is a friend.
template<> void f(Array<int>& a)
{
 cout << a.size << " int" << endl;
}

int main()
{
 Array<char> ac(10);
 f(ac);

 Array<int> a(10);
 f(a);
}
//Output:
10 generic
10 int

The next example shows a friend class template declared within a class template. The class template is then used as
the template argument for the friend class. Friend class templates must be defined outside of the class template in
which they are declared. Any specializations or partial specializations of the friend template are also friends of the
original class template.

// template_friend3.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

template <class T>
class X
{
private:
 T* data;
 void InitData(int seed) { data = new T(seed); }
public:
 void print() { cout << *data << endl; }
 template <class U> friend class Factory;
};

template <class U>
class Factory
{
public:
 U* GetNewObject(int seed)
 {
 U* pu = new U;
 pu->InitData(seed);
 return pu;
 }
};

int main()
{
 Factory< X<int> > XintFactory;
 X<int>* x1 = XintFactory.GetNewObject(65);
 X<int>* x2 = XintFactory.GetNewObject(97);

 Factory< X<char> > XcharFactory;
 X<char>* x3 = XcharFactory.GetNewObject(65);
 X<char>* x4 = XcharFactory.GetNewObject(97);
 x1->print();
 x2->print();
 x3->print();
 x4->print();
}
//Output:
65
97
A
a

Reuse of Template Parameters
Template parameters can be reused in the template parameter list. For example, the following code is allowed:

// template_specifications2.cpp

class Y
{
};
template<class T, T* pT> class X1
{
};
template<class T1, class T2 = T1> class X2
{
};

Y aY;

X1<Y, &aY> x1;
X2<int> x2;

int main()
{
}

See also
Templates

Function Templates
10/31/2018 • 2 minutes to read • Edit Online

// function_templates1.cpp
template< class T > void MySwap(T& a, T& b) {
 T c(a);
 a = b;
 b = c;
}
int main() {
}

int j = 10;
int k = 18;
CString Hello = "Hello, Windows!";
MySwap(j, k); //OK
MySwap(j, Hello); //error

// function_templates2.cpp
template<class T> void f(T) {}
int main(int j) {
 f<char>(j); // Generate the specialization f(char).
 // If not explicitly specified, f(int) would be deduced.
}

See also

Class templates define a family of related classes that are based on the type arguments passed to the class upon
instantiation. Function templates are similar to class templates but define a family of functions. With function
templates, you can specify a set of functions that are based on the same code but act on different types or classes.
The following function template swaps two items:

This code defines a family of functions that swap the values of the arguments. From this template, you can
generate functions that will swap int and long types and also user-defined types. MySwap will even swap classes if
the class's copy constructor and assignment operator are properly defined.

In addition, the function template will prevent you from swapping objects of different types, because the compiler
knows the types of the a and b parameters at compile time.

Although this function could be performed by a nontemplated function, using void pointers, the template version
is typesafe. Consider the following calls:

The second MySwap call triggers a compile-time error, because the compiler cannot generate a MySwap function
with parameters of different types. If void pointers were used, both function calls would compile correctly, but the
function would not work properly at run time.

Explicit specification of the template arguments for a function template is allowed. For example:

When the template argument is explicitly specified, normal implicit conversions are done to convert the function
argument to the type of the corresponding function template parameters. In the above example, the compiler will
convert char j to type int.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/function-templates.md

Templates
Function Template Instantiation
Explicit Instantiation
Explicit Specialization of Function Templates

Function Template Instantiation
10/31/2018 • 2 minutes to read • Edit Online

// function_template_instantiation.cpp
template<class T> void f(T) { }

// Instantiate f with the explicitly specified template.
// argument 'int'
//
template void f<int> (int);

// Instantiate f with the deduced template argument 'char'.
template void f(char);
int main()
{
}

See also

When a function template is first called for each type, the compiler creates an instantiation. Each instantiation is a
version of the templated function specialized for the type. This instantiation will be called every time the function is
used for the type. If you have several identical instantiations, even in different modules, only one copy of the
instantiation will end up in the executable file.

Conversion of function arguments is allowed in function templates for any argument and parameter pair where
the parameter does not depend on a template argument.

Function templates can be explicitly instantiated by declaring the template with a particular type as an argument.
For example, the following code is allowed:

Function Templates

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/function-template-instantiation.md

Explicit Instantiation
10/31/2018 • 2 minutes to read • Edit Online

template class MyStack<int, 6>;

template MyStack<int, 6>::MyStack(void);

extern template class MyStack<int, 6>;

extern template MyStack<int, 6>::MyStack(void);

NOTENOTE

See also

You can use explicit instantiation to create an instantiation of a templated class or function without actually using it
in your code. Because this is useful when you are creating library (.lib) files that use templates for distribution,
uninstantiated template definitions are not put into object (.obj) files.

This code explicitly instantiates MyStack for int variables and six items:

This statement creates an instantiation of MyStack without reserving any storage for an object. Code is generated
for all members.

The next line explicitly instantiates only the constructor member function:

You can explicitly instantiate function templates by using a specific type argument to re-declare them, as shown in
the example in Function Template Instantiation.

You can use the extern keyword to prevent the automatic instantiation of members. For example:

Similarly, you can mark specific members as being external and not instantiated:

You can use the extern keyword to keep the compiler from generating the same instantiation code in more than
one object module. You must instantiate the template function by using the specified explicit template parameters
in at least one linked module if the function is called, or you will get a linker error when the program is built.

The extern keyword in the specialization only applies to member functions defined outside of the body of the class.
Functions defined inside the class declaration are considered inline functions and are always instantiated.

Function Templates

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/explicit-instantiation.md

Explicit Specialization of Function Templates
10/31/2018 • 2 minutes to read • Edit Online

template<> void MySwap(double a, double b);

Example
// explicit_specialization.cpp
template<class T> void f(T t)
{
};

// Explicit specialization of f with 'char' with the
// template argument explicitly specified:
//
template<> void f<char>(char c)
{
}

// Explicit specialization of f with 'double' with the
// template argument deduced:
//
template<> void f(double d)
{
}
int main()
{
}

See also

With a function template, you can define special behavior for a specific type by providing an explicit specialization
(override) of the function template for that type. For example:

This declaration enables you to define a different function for double variables. Like non-template functions,
standard type conversions (such as promoting a variable of type float to double) are applied.

Function Templates

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/explicit-specialization-of-function-templates.md

Partial Ordering of Function Templates (C++)
11/15/2018 • 2 minutes to read • Edit Online

Example

Multiple function templates that match the argument list of a function call can be available. C++ defines a partial
ordering of function templates to specify which function should be called. The ordering is partial because there can
be some templates that are considered equally specialized.

The compiler chooses the most specialized template function available from the possible matches. For example, if a
function template takes a type T, and another function template taking T* is available, the T* version is said to be
more specialized and is preferred over the generic T version whenever the argument is a pointer type, even though
both would be allowable matches.

Use the following process to determine if one function template candidate is more specialized:

1. Consider two function templates, T1 and T2.

2. Replace the parameters in T1 with a hypothetical unique type X.

3. With the parameter list in T1, see if T2 is a valid template for that parameter list. Ignore any implicit
conversions.

4. Repeat the same process with T1 and T2 reversed.

5. If one template is a valid template argument list for the other template, but the converse is not true, then
that template is considered to be less specialized than the other template. If both templates using the
previous step form valid arguments for each other, then they are considered to be equally specialized, and an
ambiguous call results when you attempt to use them.

6. Using these rules:

a. A template specialization for a specific type is more specialized than one taking a generic type
argument.

b. A template taking only T* is more specialized than one taking only T, because a hypothetical type X*
is a valid argument for a T template argument, but X is not a valid argument for a T* template
argument.

c. const T is more specialized than T, because const X is a valid argument for a T template argument,
but X is not a valid argument for a const T template argument.

d. const T* is more specialized than T*, because const X* is a valid argument for a T* template
argument, but X* is not a valid argument for a const T* template argument.

The following sample works as specified in the standard:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/partial-ordering-of-function-templates-cpp.md

// partial_ordering_of_function_templates.cpp
// compile with: /EHsc
#include <iostream>

extern "C" int printf(const char*,...);
template <class T> void f(T) {
 printf_s("Less specialized function called\n");
}

template <class T> void f(T*) {
 printf_s("More specialized function called\n");
}

template <class T> void f(const T*) {
 printf_s("Even more specialized function for const T*\n");
}

int main() {
 int i =0;
 const int j = 0;
 int *pi = &i;
 const int *cpi = &j;

 f(i); // Calls less specialized function.
 f(pi); // Calls more specialized function.
 f(cpi); // Calls even more specialized function.
 // Without partial ordering, these calls would be ambiguous.
}

OutputOutput

Less specialized function called
More specialized function called
Even more specialized function for const T*

See also
Function Templates

Member Function Templates
10/31/2018 • 2 minutes to read • Edit Online

Example

// member_function_templates.cpp
struct X
{
 template <class T> void mf(T* t) {}
};

int main()
{
 int i;
 X* x = new X();
 x->mf(&i);
}

Example

// member_function_templates2.cpp
template<typename T>
class X
{
public:
 template<typename U>
 void mf(const U &u)
 {
 }
};

int main()
{
}

Example

The term member template refers to both member function templates and nested class templates. Member
function templates are template functions that are members of a class or class template.

Member functions can be function templates in several contexts. All functions of class templates are generic but
are not referred to as member templates or member function templates. If these member functions take their own
template arguments, they are considered to be member function templates.

Member function templates of nontemplate or template classes are declared as function templates with their
template parameters.

The following example shows a member function template of a template class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/member-function-templates.md

// defining_member_templates_outside_class.cpp
template<typename T>
class X
{
public:
 template<typename U>
 void mf(const U &u);
};

template<typename T> template <typename U>
void X<T>::mf(const U &u)
{
}

int main()
{
}

Example

// templated_user_defined_conversions.cpp
template <class T>
struct S
{
 template <class U> operator S<U>()
 {
 return S<U>();
 }
};

int main()
{
 S<int> s1;
 S<long> s2 = s1; // Convert s1 using UDC and copy constructs S<long>.
}

See also

Local classes are not allowed to have member templates.

Member template functions cannot be virtual functions and cannot override virtual functions from a base class
when they are declared with the same name as a base class virtual function.

The following example shows a templated user-defined conversion:

Function Templates

Template Specialization (C++)
4/4/2019 • 5 minutes to read • Edit Online

Example
// partial_specialization_of_class_templates.cpp
template <class T> struct PTS {
 enum {
 IsPointer = 0,
 IsPointerToDataMember = 0
 };
};

template <class T> struct PTS<T*> {
 enum {
 IsPointer = 1,
 IsPointerToDataMember = 0
 };
};

template <class T, class U> struct PTS<T U::*> {
 enum {
 IsPointer = 0,
 IsPointerToDataMember = 1
 };
};

struct S{};

extern "C" int printf_s(const char*,...);

int main() {
 printf_s("PTS<S>::IsPointer == %d PTS<S>::IsPointerToDataMember == %d\n",
 PTS<S>::IsPointer, PTS<S>:: IsPointerToDataMember);
 printf_s("PTS<S*>::IsPointer == %d PTS<S*>::IsPointerToDataMember ==%d\n"
 , PTS<S*>::IsPointer, PTS<S*>:: IsPointerToDataMember);
 printf_s("PTS<int S::*>::IsPointer == %d PTS"
 "<int S::*>::IsPointerToDataMember == %d\n",
 PTS<int S::*>::IsPointer, PTS<int S::*>::
 IsPointerToDataMember);
}

PTS<S>::IsPointer == 0 PTS<S>::IsPointerToDataMember == 0
PTS<S*>::IsPointer == 1 PTS<S*>::IsPointerToDataMember ==0
PTS<int S::*>::IsPointer == 0 PTS<int S::*>::IsPointerToDataMember == 1

Example

Class templates can be partially specialized, and the resulting class is still a template. Partial specialization allows
template code to be partially customized for specific types in situations, such as:

A template has multiple types and only some of them need to be specialized. The result is a template
parameterized on the remaining types.

A template has only one type, but a specialization is needed for pointer, reference, pointer to member, or
function pointer types. The specialization itself is still a template on the type pointed to or referenced.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/template-specialization-cpp.md

// partial_specialization_of_class_templates2.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

// Original template collection class.
template <class T> class Bag {
 T* elem;
 int size;
 int max_size;

public:
 Bag() : elem(0), size(0), max_size(1) {}
 void add(T t) {
 T* tmp;
 if (size + 1 >= max_size) {
 max_size *= 2;
 tmp = new T [max_size];
 for (int i = 0; i < size; i++)
 tmp[i] = elem[i];
 tmp[size++] = t;
 delete[] elem;
 elem = tmp;
 }
 else
 elem[size++] = t;
 }

 void print() {
 for (int i = 0; i < size; i++)
 cout << elem[i] << " ";
 cout << endl;
 }
};

// Template partial specialization for pointer types.
// The collection has been modified to check for NULL
// and store types pointed to.
template <class T> class Bag<T*> {
 T* elem;
 int size;
 int max_size;

public:
 Bag() : elem(0), size(0), max_size(1) {}
 void add(T* t) {
 T* tmp;
 if (t == NULL) { // Check for NULL
 cout << "Null pointer!" << endl;
 return;
 }

 if (size + 1 >= max_size) {
 max_size *= 2;
 tmp = new T [max_size];
 for (int i = 0; i < size; i++)
 tmp[i] = elem[i];
 tmp[size++] = *t; // Dereference
 delete[] elem;

If you have a template collection class that takes any type T , you can create a partial specialization that takes any
pointer type T* . The following code demonstrates a collection class template Bag and a partial specialization for
pointer types in which the collection dereferences the pointer types before copying them to the array. The
collection then stores the values that are pointed to. With the original template, only the pointers themselves would
have been stored in the collection, leaving the data vulnerable to deletion or modification. In this special pointer
version of the collection, code to check for a null pointer in the add method is added.

 elem = tmp;
 }
 else
 elem[size++] = *t; // Dereference
 }

 void print() {
 for (int i = 0; i < size; i++)
 cout << elem[i] << " ";
 cout << endl;
 }
};

int main() {
 Bag<int> xi;
 Bag<char> xc;
 Bag<int*> xp; // Uses partial specialization for pointer types.

 xi.add(10);
 xi.add(9);
 xi.add(8);
 xi.print();

 xc.add('a');
 xc.add('b');
 xc.add('c');
 xc.print();

 int i = 3, j = 87, *p = new int[2];
 *p = 8;
 *(p + 1) = 100;
 xp.add(&i);
 xp.add(&j);
 xp.add(p);
 xp.add(p + 1);
 p = NULL;
 xp.add(p);
 xp.print();
}

10 9 8
a b c
Null pointer!
3 87 8 100

Example

// partial_specialization_of_class_templates3.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

template <class Key, class Value> class Dictionary {
 Key* keys;
 Value* values;
 int size;
 int max_size;
public:
 Dictionary(int initial_size) : size(0) {
 max_size = 1;

The following example defines a template class that takes pairs of any two types and then defines a partial
specialization of that template class specialized so that one of the types is int. The specialization defines an
additional sort method that implements a simple bubble sort based on the integer.

 max_size = 1;
 while (initial_size >= max_size)
 max_size *= 2;
 keys = new Key[max_size];
 values = new Value[max_size];
 }
 void add(Key key, Value value) {
 Key* tmpKey;
 Value* tmpVal;
 if (size + 1 >= max_size) {
 max_size *= 2;
 tmpKey = new Key [max_size];
 tmpVal = new Value [max_size];
 for (int i = 0; i < size; i++) {
 tmpKey[i] = keys[i];
 tmpVal[i] = values[i];
 }
 tmpKey[size] = key;
 tmpVal[size] = value;
 delete[] keys;
 delete[] values;
 keys = tmpKey;
 values = tmpVal;
 }
 else {
 keys[size] = key;
 values[size] = value;
 }
 size++;
 }

 void print() {
 for (int i = 0; i < size; i++)
 cout << "{" << keys[i] << ", " << values[i] << "}" << endl;
 }
};

// Template partial specialization: Key is specified to be int.
template <class Value> class Dictionary<int, Value> {
 int* keys;
 Value* values;
 int size;
 int max_size;
public:
 Dictionary(int initial_size) : size(0) {
 max_size = 1;
 while (initial_size >= max_size)
 max_size *= 2;
 keys = new int[max_size];
 values = new Value[max_size];
 }
 void add(int key, Value value) {
 int* tmpKey;
 Value* tmpVal;
 if (size + 1 >= max_size) {
 max_size *= 2;
 tmpKey = new int [max_size];
 tmpVal = new Value [max_size];
 for (int i = 0; i < size; i++) {
 tmpKey[i] = keys[i];
 tmpVal[i] = values[i];
 }
 tmpKey[size] = key;
 tmpVal[size] = value;
 delete[] keys;
 delete[] values;
 keys = tmpKey;
 values = tmpVal;
 }
 else {

 else {
 keys[size] = key;
 values[size] = value;
 }
 size++;
 }

 void sort() {
 // Sort method is defined.
 int smallest = 0;
 for (int i = 0; i < size - 1; i++) {
 for (int j = i; j < size; j++) {
 if (keys[j] < keys[smallest])
 smallest = j;
 }
 swap(keys[i], keys[smallest]);
 swap(values[i], values[smallest]);
 }
 }

 void print() {
 for (int i = 0; i < size; i++)
 cout << "{" << keys[i] << ", " << values[i] << "}" << endl;
 }
};

int main() {
 Dictionary<char*, char*>* dict = new Dictionary<char*, char*>(10);
 dict->print();
 dict->add("apple", "fruit");
 dict->add("banana", "fruit");
 dict->add("dog", "animal");
 dict->print();

 Dictionary<int, char*>* dict_specialized = new Dictionary<int, char*>(10);
 dict_specialized->print();
 dict_specialized->add(100, "apple");
 dict_specialized->add(101, "banana");
 dict_specialized->add(103, "dog");
 dict_specialized->add(89, "cat");
 dict_specialized->print();
 dict_specialized->sort();
 cout << endl << "Sorted list:" << endl;
 dict_specialized->print();
}

{apple, fruit}
{banana, fruit}
{dog, animal}
{100, apple}
{101, banana}
{103, dog}
{89, cat}

Sorted list:
{89, cat}
{100, apple}
{101, banana}
{103, dog}

Templates and Name Resolution
10/31/2018 • 2 minutes to read • Edit Online

In template definitions, there are three types of names.

Locally declared names, including the name of the template itself and any names declared inside the
template definition.

Names from the enclosing scope outside the template definition.

Names that depend in some way on the template arguments, referred to as dependent names.

While the first two names also pertain to class and function scopes, special rules for name resolution are required
in template definitions to deal with the added complexity of dependent names. This is because the compiler knows
little about these names until the template is instantiated, because they could be totally different types depending
on which template arguments are used. Nondependent names are looked up according to the usual rules and at
the point of definition of the template. These names, being independent of the template arguments, are looked up
once for all template specializations. Dependent names are not looked up until the template is instantiated and are
looked up separately for each specialization.

A type is dependent if it depends on the template arguments. Specifically, a type is dependent if it is:

T

T::myType

N::T

const T

T *, T &, T [10], T (*)()

template <int arg> class X {
int x[arg] ; // dependent type
}

The template argument itself:

A qualified name with a qualification including a dependent type:

A qualified name if the unqualified part identifies a dependent type:

A const or volatile type for which the base type is a dependent type:

A pointer, reference, array, or function pointer type based on a dependent type:

An array whose size is based on a template parameter:

a template type constructed from a template parameter :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/templates-and-name-resolution.md

Type Dependence and Value Dependence

See also

T<int>, MyTemplate<T>

Names and expressions dependent on a template parameter are categorized as type dependent or value
dependent, depending on whether the template parameter is a type parameter or a value parameter. Also, any
identifiers declared in a template with a type dependent on the template argument are considered value
dependent, as is a integral or enumeration type initialized with a value-dependent expression.

Type-dependent and value-dependent expressions are expressions that involve variables that are type dependent
or value dependent. These expressions can have semantics that differ, depending on the parameters used for the
template.

Templates

Name Resolution for Dependent Types
5/7/2019 • 2 minutes to read • Edit Online

// template_name_resolution1.cpp
#include <stdio.h>
template <class T> class X
{
public:
 void f(typename T::myType* mt) {}
};

class Yarg
{
public:
 struct myType { };
};

int main()
{
 X<Yarg> x;
 x.f(new Yarg::myType());
 printf("Name resolved by using typename keyword.");
}

Name resolved by using typename keyword.

Use typename for qualified names in template definitions to tell the compiler that the given qualified name
identifies a type. For more information, see typename.

Name lookup for dependent names examines names from both the context of the template definition—in the
following example, this context would find myFunction(char) —and the context of the template instantiation.In the
following example, the template is instantiated in main; therefore, the MyNamespace::myFunction is visible from the
point of instantiation and is picked as the better match. If MyNamespace::myFunction were renamed,
myFunction(char) would be called instead.

All names are resolved as if they were dependent names. Nevertheless, we recommend that you use fully qualified
names if there is any possible conflict.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/name-resolution-for-dependent-types.md

// template_name_resolution2.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

void myFunction(char)
{
 cout << "Char myFunction" << endl;
}

template <class T> class Class1
{
public:
 Class1(T i)
 {
 // If replaced with myFunction(1), myFunction(char)
 // will be called
 myFunction(i);
}
};

namespace MyNamespace
{
 void myFunction(int)
 {
 cout << "Int MyNamespace::myFunction" << endl;
 }
};

using namespace MyNamespace;

int main()
{
 Class1<int>* c1 = new Class1<int>(100);
}

OutputOutput

Int MyNamespace::myFunction

Template DisambiguationTemplate Disambiguation
Visual Studio 2012 enforces the C++98/03/11 standard rules for disambiguation with the "template" keyword. In
the following example, Visual Studio 2010 would accept both the nonconforming lines and the conforming lines.
Visual Studio 2012 accepts only the conforming lines.

#include <iostream>
#include <ostream>
#include <typeinfo>
using namespace std;

template <typename T> struct Allocator {
 template <typename U> struct Rebind {
 typedef Allocator<U> Other;
 };
};

template <typename X, typename AY> struct Container {
 #if defined(NONCONFORMANT)
 typedef typename AY::Rebind<X>::Other AX; // nonconformant
 #elif defined(CONFORMANT)
 typedef typename AY::template Rebind<X>::Other AX; // conformant
 #else
 #error Define NONCONFORMANT or CONFORMANT.
 #endif
};

int main() {
 cout << typeid(Container<int, Allocator<float>>::AX).name() << endl;
}

See also

Conformance with the disambiguation rules is required because, by default, C++ assumes that AY::Rebind isn't a
template, and so the compiler interprets the following " < " as a less-than. It has to know that Rebind is a template
so that it can correctly parse " < " as an angle bracket.

Name Resolution

Name Resolution for Locally Declared Names
10/31/2018 • 3 minutes to read • Edit Online

Example

// template_name_resolution3.cpp
// compile with: /c
template <class T> class A {
 A* a1; // A refers to A<T>
 A<int>* a2; // A<int> refers to a specialization of A.
 A<T*>* a3; // A<T*> refers to the partial specialization A<T*>.
};

template <class T> class A<T*> {
 A* a4; // A refers to A<T*>.
};

template<> class A<int> {
 A* a5; // A refers to A<int>.
};

Example

// template_name_resolution4.cpp
// compile with: /EHsc
template <class T>
class Base1 {};

template <class T>
class Derived1 : Base1<T> {};

int main() {
 // Derived1<int> d;
}

Example

The template's name itself can be referred to with or without the template arguments. In the scope of a class
template, the name itself refers to the template. In the scope of a template specialization or partial specialization,
the name alone refers to the specialization or partial specialization. Other specializations or partial specializations
of the template can also be referenced, with the appropriate template arguments.

The following code shows that the class template's name A is interpreted differently in the scope of a specialization
or partial specialization.

In the case of a name conflict between a template parameter and another object, the template parameter can or
cannot be hidden. The following rules will help determine precedence.

The template parameter is in scope from the point where it first appears until the end of the class or function
template. If the name appears again in the template argument list or in the list of base classes, it refers to the same
type. In standard C++, no other name that is identical to the template parameter can be declared in the same
scope. A Microsoft extension allows the template parameter to be redefined in the scope of the template. The
following example shows using the template parameter in the base specification of a class template.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/name-resolution-for-locally-declared-names.md

// template_name_resolution5.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

template <class T> class C {
public:
 struct Z {
 Z() { cout << "Z::Z()" << endl; }
 };
 void f();
};

template <class Z>
void C<Z>::f() {
 // Z refers to the struct Z, not to the template arg;
 // Therefore, the constructor for struct Z will be called.
 Z z;
}

int main() {
 C<int> c;
 c.f();
}

Z::Z()

Example

// template_name_resolution6.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

namespace NS {
 void g() { cout << "NS::g" << endl; }

 template <class T> struct C {
 void f();
 void g() { cout << "C<T>::g" << endl; }
 };
};

template <class T>
void NS::C<T>::f() {
 g(); // C<T>::g, not NS::g
};

int main() {
 NS::C<int> c;
 c.f();
}

When defining a template's member functions outside the class template, a different template parameter name can
be used. If the template member function definition uses a different name for the template parameter than the
declaration does, and the name used in the definition conflicts with another member of the declaration, the
member in the template declaration takes precedence.

When defining a template function or member function outside the namespace in which the template was declared,
the template argument takes precedence over the names of other members of the namespace.

C<T>::g

Example

// template_name_resolution7.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

struct B {
 int i;
 void print() { cout << "Base" << endl; }
};

template <class T, int i> struct C : public B {
 void f();
};

template <class B, int i>
void C<B, i>::f() {
 B b; // Base class b, not template argument.
 b.print();
 i = 1; // Set base class's i to 1.
}

int main() {
 C<int, 1> c;
 c.f();
 cout << c.i << endl;
}

Base
1

See also

In definitions that are outside of the template class declaration, if a template class has a base class that does not
depend on a template argument and if the base class or one of its members has the same name as a template
argument, then the base class or member name hides the template argument.

Name Resolution

Overload Resolution of Function Template Calls
10/31/2018 • 2 minutes to read • Edit Online

Example

// template_name_resolution9.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

void f(int, int) { cout << "f(int, int)" << endl; }
void f(char, char) { cout << "f(char, char)" << endl; }

template <class T1, class T2>
void f(T1, T2)
{
 cout << "void f(T1, T2)" << endl;
};

int main()
{
 f(1, 1); // Equally good match; choose the nontemplate function.
 f('a', 1); // Chooses the template function.
 f<int, int>(2, 2); // Template arguments explicitly specified.
}

f(int, int)
void f(T1, T2)
void f(T1, T2)

Example

A function template can overload nontemplate functions of the same name. In this scenario, function calls are
resolved by first using template argument deduction to instantiate the function template with a unique
specialization. If template argument deduction fails, the other function overloads are considered to resolve the call.
These other overloads, also known as the candidate set, include nontemplate functions and other instantiated
function templates. If template argument deduction succeeds, then the generated function is compared with the
other functions to determine the best match, following the rules for overload resolution. For more information, see
Function Overloading.

If a nontemplate function is an equally good match to a template function, the nontemplate function is chosen
(unless the template arguments were explicitly specified), as in the call f(1, 1) in the following example.

The next example illustrates that the exactly matching template function is preferred if the nontemplate function
requires a conversion.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/overload-resolution-of-function-template-calls.md

// template_name_resolution10.cpp
// compile with: /EHsc
#include <iostream>
using namespace std;

void f(int, int) { cout << "f(int, int)" << endl; }

template <class T1, class T2>
void f(T1, T2)
{
 cout << "void f(T1, T2)" << endl;
};

int main()
{
 long l = 0;
 int i = 0;
 // Call the template function f(long, int) because f(int, int)
 // would require a conversion from long to int.
 f(l, i);
}

void f(T1, T2)

See also
Name Resolution
typename

Source code organization (C++ Templates)
5/14/2019 • 3 minutes to read • Edit Online

Background

The inclusion model

When defining a class template, you must organize the source code in such a way that the member definitions are
visible to the compiler when it needs them. You have the choice of using the inclusion model or the explicit
instantiation model. In the inclusion model, you include the member definitions in every file that uses a template.
This approach is simplest and provides maximum flexibility in terms of what concrete types can be used with your
template. Its disadvantage is that it can increase compilation times. The impact can be significant if a project and/or
the included files themselves are large. With the explicit instantiation approach, the template itself instantiates
concrete classes or class members for specific types. This approach can speed up compilation times, but it limits
usage to only those classes that the template implementer has enabled ahead of time. In general, we recommend
that you use the inclusion model unless the compilation times become a problem.

Templates are not like ordinary classes in the sense that the compiler does not generate object code for a template
or any of its members. There is nothing to generate until the template is instantiated with concrete types. When the
compiler encounters a template instantiation such as MyClass<int> mc; and no class with that signature exists yet,
it generates a new class. It also attempts to generate code for any member functions that are used. If those
definitions are in a file that is not #included, directly or indirectly, in the .cpp file that is being compiled, the compiler
can't see them. From the compiler's point of view, this isn't necessarily an error because the functions may be
defined in another translation unit, in which case the linker will find them. If the linker does not find that code, it
raises an unresolved external error.

The simplest and most common way to make template definitions visible throughout a translation unit, is to put
the definitions in the header file itself. Any .cpp file that uses the template simply has to #include the header. This is
the approach used in the Standard Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/source-code-organization-cpp-templates.md

#ifndef MYARRAY
#define MYARRAY
#include <iostream>

template<typename T, size_t N>
class MyArray
{
 T arr[N];
public:
 // Full definitions:
 MyArray(){}
 void Print()
 {
 for (const auto v : arr)
 {
 std::cout << v << " , ";
 }
 }

 T& operator[](int i)
 {
 return arr[i];
 }
};
#endif

The explicit instantiation model

template MyArray<double, 5>;

With this approach, the compiler has access to the complete template definition and can instantiate templates on-
demand for any type. It is simple and relatively easy to maintain. However, the inclusion model does have a cost in
terms of compilation times. This cost can be significant in large programs, especially if the template header itself
#includes other headers. Every .cpp file that #includes the header will get its own copy of the function templates
and all the definitions. The linker will generally be able to sort things out so that you do not end up with multiple
definitions for a function, but it takes time to do this work. In smaller programs that extra compilation time is
probably not significant.

If the inclusion model is not viable for your project, and you know definitively the set of types that will be used to
instantiate a template, then you can separate out the template code into an .h and .cpp file, and in the .cpp file
explicitly instantiate the templates. This will cause object code to be generated that the compiler will see when it
encounters user instantiations.

You create an explicit instantiation by using the keyword template followed by the signature of the entity you want
to instantiate. This can be a type or a member. If you explicitly instantiate a type, all members are instantiated.

//MyArray.h
#ifndef MYARRAY
#define MYARRAY

template<typename T, size_t N>
class MyArray
{
 T arr[N];
public:
 MyArray();
 void Print();
 T& operator[](int i);
};
#endif

//MyArray.cpp
#include <iostream>
#include "MyArray.h"

using namespace std;

template<typename T, size_t N>
MyArray<T,N>::MyArray(){}

template<typename T, size_t N>
void MyArray<T,N>::Print()
{
 for(const auto v : arr)
 {
 cout << v << "'";
 }
 cout << endl;
}

template MyArray<double, 5>;template MyArray<string, 5>;

NOTENOTE

In the previous example, the explicit instantiations are at the bottom of the .cpp file. A MyArray may be used only
for double or String types.

In C++11 the export keyword was deprecated in the context of template definitions. In practical terms this has little impact
because most compilers never supported it.

Event Handling
5/7/2019 • 2 minutes to read • Edit Online

TOPIC DESCRIPTION

event_source Creates an event source.

event_receiver Creates an event receiver (sink).

__event Declares an event.

__raise Emphasizes the call site of an event.

__hook Associates a handler method with an event.

__unhook Dissociates a handler method from an event.

See also

Event handling is primarily supported for COM classes (C++ classes that implement COM objects, typically using
ATL classes or the coclass attribute). For more information, see Event Handling in COM.

Event handling is also supported for native C++ classes (C++ classes that do not implement COM objects),
however, that support is deprecated and will be removed in a future release. For more information, see Event
Handling in Native C++.

Event handling supports single- and multithreaded usage and protects data from simultaneous multithread
access. It also allows you to derive subclasses from event source or receiver classes and support extended event
sourcing/receiving in the derived class.

The Microsoft C++ compiler includes attributes and keywords for declaring events and event handlers. The event
attributes and keywords can be used in CLR programs and in native C++ programs.

C++ Language Reference
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/event-handling.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/coclass
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

__event
4/1/2019 • 3 minutes to read • Edit Online

Syntax
__event method-declarator;
__event __interface interface-specifier;
__event member-declarator;

Remarks

NATIVE C++ COM MANAGED (.NET FRAMEWORK)

Method — method

— interface —

— — data member

NOTENOTE

Native Events

// Examples of native C++ events:
__event void OnDblClick();
__event HRESULT OnClick(int* b, char* s);

Declares an event.

The keyword __event can be applied to a method declaration, an interface declaration, or a data member
declaration. However, you cannot use the __event keyword to qualify a member of a nested class.

Depending on whether your event source and receiver are native C++, COM, or managed (.NET Framework), you
can use the following constructs as events:

Use __hook in an event receiver to associate a handler method with an event method. Note that after you create
an event with the __event keyword, all event handlers subsequently hooked to that event will be called when the
event is called.

An __event method declaration cannot have a definition; a definition is implicitly generated, so the event method
can be called as if it were any ordinary method.

A templated class or struct cannot contain events.

Native events are methods. The return type is typically HRESULT or void, but can be any integral type, including
an enum. When an event uses an integral return type, an error condition is defined when an event handler returns
a nonzero value, in which case the event being raised will call the other delegates.

See Event Handling in Native C++ for sample code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/event.md

COM Events

// Example of a COM event:
__event __interface IEvent1;

Managed Events

// Examples of managed events:
__event ClickEventHandler* OnClick; // data member as event
__event void OnClick(String* s); // method as event

Example: Native Events
// EventHandling_Native_Event.cpp
// compile with: /c
[event_source(native)]
class CSource {
public:
 __event void MyEvent(int nValue);
};

Example: COM Events

COM events are interfaces. The parameters of a method in an event source interface should be in parameters (but
this is not rigorously enforced), because an out parameter is not useful when multicasting. A level 1 warning will
be issued if you use an out parameter.

The return type is typically HRESULT or void, but can be any integral type, including enum. When an event uses
an integral return type and an event handler returns a nonzero value, it is an error condition, in which case the
event being raised aborts calls to the other delegates. Note that the compiler will automatically mark an event
source interface as a source in the generated IDL.

The __interface keyword is always required after __event for a COM event source.

See Event Handling in COM for sample code.

For information on coding events in the new syntax, see event.

Managed events are data members or methods. When used with an event, the return type of a delegate must be
compliant with the Common Language Specification. The return type of the event handler must match the return
type of the delegate. For more information on delegates, see Delegates and Events. If a managed event is a data
member, its type must be a pointer to a delegate.

In the .NET Framework, you can treat a data member as if it were a method itself (that is, the Invoke method of
its corresponding delegate). You must predefine the delegate type for declaring a managed event data member. In
contrast, a managed event method implicitly defines the corresponding managed delegate if it is not already
defined. For example, you can declare an event value such as OnClick as an event as follows:

When implicitly declaring a managed event, you can specify add and remove accessors that will be called when
event handlers are added or removed. You can also define the method that calls (raises) the event from outside the
class.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/source-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/event-cpp-component-extensions
https://docs.microsoft.com/dotnet/standard/language-independence-and-language-independent-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/delegates-and-events

// EventHandling_COM_Event.cpp
// compile with: /c
#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>

[module(dll, name="EventSource", uuid="6E46B59E-89C3-4c15-A6D8-B8A1CEC98830")];

[dual, uuid("00000000-0000-0000-0000-000000000002")]
__interface IEventSource {
 [id(1)] HRESULT MyEvent();
};
[coclass, uuid("00000000-0000-0000-0000-000000000003"), event_source(com)]
class CSource : public IEventSource {
public:
 __event __interface IEventSource;
 HRESULT FireEvent() {
 __raise MyEvent();
 return S_OK;
 }
};

See also
Keywords
Event Handling
event_source
event_receiver
__hook
__unhook
__raise

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

__hook
4/1/2019 • 2 minutes to read • Edit Online

Syntax
long __hook(
 &SourceClass::EventMethod,
 source,
 &ReceiverClass::HandlerMethod
 [, receiver = this]
);
long __hook(
 interface,
 source
);

ParametersParameters

Associates a handler method with an event.

&SourceClass::EventMethod
A pointer to the event method to which you hook the event handler method:

Native C++ events: SourceClass is the event source class and EventMethod is the event.

COM events: SourceClass is the event source interface and EventMethod is one of its methods.

Managed events: SourceClass is the event source class and EventMethod is the event.

interface
The interface name being hooked to receiver, only for COM event receivers in which the layout_dependent
parameter of the event_receiver attribute is true.

source
A pointer to an instance of the event source. Depending on the code type specified in event_receiver , source
can be one of the following:

A native event source object pointer.

An IUnknown -based pointer (COM source).

A managed object pointer (for managed events).

&ReceiverClass::HandlerMethod
A pointer to the event handler method to be hooked to an event. The handler is specified as a method of a class or
a reference to the same; if you do not specify the class name, __hook assumes the class to be that in which it is
called.

Native C++ events: ReceiverClass is the event receiver class and HandlerMethod is the handler.

COM events: ReceiverClass is the event receiver interface and HandlerMethod is one of its handlers.

Managed events: ReceiverClass is the event receiver class and HandlerMethod is the handler.

receiver
(Optional) A pointer to an instance of the event receiver class. If you do not specify a receiver, the default is the

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/hook.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

Usage

Remarks

NOTENOTE

Example

See also

receiver class or structure in which __hook is called.

Can be use in any function scope, including main, outside the event receiver class.

Use the intrinsic function __hook in an event receiver to associate or hook a handler method with an event
method. The specified handler is then called when the source raises the specified event. You can hook several
handlers to a single event or hook several events to a single handler.

There are two forms of __hook. You can use the first (four-argument) form in most cases, specifically, for COM
event receivers in which the layout_dependent parameter of the event_receiver attribute is false.

In these cases you do not need to hook all methods in an interface before firing an event on one of the methods;
only the method handling the event needs to be hooked. You can use the second (two-argument) form of __hook
only for a COM event receiver in which layout_dependent = true.

__hook returns a long value. A nonzero return value indicates that an error has occurred (managed events throw
an exception).

The compiler checks for the existence of an event and that the event signature agrees with the delegate signature.

With the exception of COM events, __hook and __unhook can be called outside the event receiver.

An alternative to using __hook is to use the += operator.

For information on coding managed events in the new syntax, see event.

A templated class or struct cannot contain events.

See Event Handling in Native C++ and Event Handling in COM for samples.

Keywords
Event Handling
event_source
event_receiver
__unhook
__raise

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/event-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

__raise
4/1/2019 • 2 minutes to read • Edit Online

Syntax
__raise method-declarator;

Remarks

NOTENOTE

Example
// EventHandlingRef_raise.cpp
struct E {
 __event void func1();
 void func1(int) {}

 void func2() {}

 void b() {
 __raise func1();
 __raise func1(1); // C3745: 'int Event::bar(int)':
 // only an event can be 'raised'
 __raise func2(); // C3745
 }
};

int main() {
 E e;
 __raise e.func1();
 __raise e.func1(1); // C3745
 __raise e.func2(); // C3745
}

See also

Emphasizes the call site of an event.

From managed code, an event can only be raised from within the class where it is defined. See event for more
information.

The keyword __raise causes an error to be emitted if you call a non-event.

A templated class or struct cannot contain events.

Keywords
Event Handling
Component Extensions for Runtime Platforms

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/raise.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/event-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/component-extensions-for-runtime-platforms

__unhook
4/1/2019 • 2 minutes to read • Edit Online

Syntax
long __unhook(
 &SourceClass::EventMethod,
 source,
 &ReceiverClass::HandlerMethod
 [, receiver = this]
);
long __unhook(
 interface,
 source
);
long __unhook(
 source
);

ParametersParameters

Dissociates a handler method from an event.

& SourceClass :: EventMethod A pointer to the event method from which you unhook the event handler
method:

Native C++ events: SourceClass is the event source class and EventMethod is the event.

COM events: SourceClass is the event source interface and EventMethod is one of its methods.

Managed events: SourceClass is the event source class and EventMethod is the event.

interface
The interface name being unhooked from receiver, only for COM event receivers in which the layout_dependent
parameter of the event_receiver attribute is true.

source
A pointer to an instance of the event source. Depending on the code type specified in event_receiver , source
can be one of the following:

A native event source object pointer.

An IUnknown -based pointer (COM source).

A managed object pointer (for managed events).

& ReceiverClass :: HandlerMethod A pointer to the event handler method to be unhooked from an event. The
handler is specified as a method of a class or a reference to the same; if you do not specify the class name,
__unhook assumes the class to be that in which it is called.

Native C++ events: ReceiverClass is the event receiver class and HandlerMethod is the handler.

COM events: ReceiverClass is the event receiver interface and HandlerMethod is one of its handlers.

Managed events: ReceiverClass is the event receiver class and HandlerMethod is the handler.

receiver(optional) A pointer to an instance of the event receiver class. If you do not specify a receiver, the default is

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/unhook.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

Usage

Remarks

NOTENOTE

Example

See also

the receiver class or structure in which __unhook is called.

Can be use in any function scope, including main, outside the event receiver class.

Use the intrinsic function __unhook in an event receiver to dissociate or "unhook" a handler method from an
event method.

There are three forms of __unhook. You can use the first (four-argument) form in most cases. You can use the
second (two-argument) form of __unhook only for a COM event receiver; this unhooks the entire event interface.
You can use the third (one-argument) form to unhook all delegates from the specified source.

A nonzero return value indicates that an error has occurred (managed events will throw an exception).

If you call __unhook on an event and event handler that are not already hooked, it will have no effect.

At compile time, the compiler verifies that the event exists and does parameter type checking with the specified
handler.

With the exception of COM events, __hook and __unhook can be called outside the event receiver.

An alternative to using __unhook is to use the -= operator.

For information on coding managed events in the new syntax, see event.

A templated class or struct cannot contain events.

See Event Handling in Native C++ and Event Handling in COM for samples.

Keywords
event_source
event_receiver
__event
__hook
__raise

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/extensions/event-cpp-component-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

Event Handling in Native C++
5/7/2019 • 2 minutes to read • Edit Online

Declaring Events

Defining Event Handlers

Hooking Event Handlers to Events

Firing Events

Native C++ Event CodeNative C++ Event Code

Example
CodeCode

In native C++ event handling, you set up an event source and event receiver using the event_source and
event_receiver attributes, respectively, specifying type = native . These attributes allow the classes to which they
are applied to fire events and handle events in a native, non-COM context.

In an event source class, use the __event keyword on a method declaration to declare the method as an event.
Make sure to declare the method, but do not define it; to do so will generate a compiler error, because the
compiler defines the method implicitly when it is made into an event. Native events can be methods with zero or
more parameters. The return type can be void or any integral type.

In an event receiver class, you define event handlers, which are methods with signatures (return types, calling
conventions, and arguments) that match the event that they will handle.

Also in an event receiver class, you use the intrinsic function __hook to associate events with event handlers and
__unhook to dissociate events from event handlers. You can hook several events to an event handler, or several
event handlers to an event.

To fire an event, simply call the method declared as an event in the event source class. If handlers have been
hooked to the event, the handlers will be called.

The following example shows how to fire an event in native C++. To compile and run the example, refer to the
comments in the code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/event-handling-in-native-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver

// evh_native.cpp
#include <stdio.h>

[event_source(native)]
class CSource {
public:
 __event void MyEvent(int nValue);
};

[event_receiver(native)]
class CReceiver {
public:
 void MyHandler1(int nValue) {
 printf_s("MyHandler1 was called with value %d.\n", nValue);
 }

 void MyHandler2(int nValue) {
 printf_s("MyHandler2 was called with value %d.\n", nValue);
 }

 void hookEvent(CSource* pSource) {
 __hook(&CSource::MyEvent, pSource, &CReceiver::MyHandler1);
 __hook(&CSource::MyEvent, pSource, &CReceiver::MyHandler2);
 }

 void unhookEvent(CSource* pSource) {
 __unhook(&CSource::MyEvent, pSource, &CReceiver::MyHandler1);
 __unhook(&CSource::MyEvent, pSource, &CReceiver::MyHandler2);
 }
};

int main() {
 CSource source;
 CReceiver receiver;

 receiver.hookEvent(&source);
 __raise source.MyEvent(123);
 receiver.unhookEvent(&source);
}

OutputOutput

MyHandler2 was called with value 123.
MyHandler1 was called with value 123.

See also
Event Handling

Event Handling in COM
4/1/2019 • 4 minutes to read • Edit Online

Declaring Events

Defining Event Handlers

Hooking Event Handlers to Events

NOTENOTE

Firing Events

COM Event CodeCOM Event Code

In COM event handling, you set up an event source and event receiver using the event_source and event_receiver
attributes, respectively, specifying type = com . These attributes inject the appropriate code for custom, dispatch,
and dual interfaces to allow the classes to which they are applied to fire events and handle events through COM
connection points.

In an event source class, use the __event keyword on an interface declaration to declare that interface's methods as
events. The events of that interface are fired when you call them as interface methods. Methods on event
interfaces can have zero or more parameters (which should all be in parameters). The return type can be void or
any integral type.

In an event receiver class, you define event handlers, which are methods with signatures (return types, calling
conventions, and arguments) that match the event that they will handle. For COM events, calling conventions do
not have to match; see Layout Dependent COM Events below for details.

Also in an event receiver class, you use the intrinsic function __hook to associate events with event handlers and
__unhook to dissociate events from event handlers. You can hook several events to an event handler, or several
event handlers to an event.

Typically, there are two techniques to allow a COM event receiver to access event source interface definitions. The first, as
shown below, is to share a common header file. The second is to use #import with the embedded_idl import qualifier, so
that the event source type library is written to the .tlh file with the attribute-generated code preserved.

To fire an event, simply call a method in the interface declared with the __event keyword in the event source class.
If handlers have been hooked to the event, the handlers will be called.

The following example shows how to fire an event in a COM class. To compile and run the example, refer to the
comments in the code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/event-handling-in-com.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-import-directive-cpp

// evh_server.h
#pragma once

[dual, uuid("00000000-0000-0000-0000-000000000001")]
__interface IEvents {
 [id(1)] HRESULT MyEvent([in] int value);
};

[dual, uuid("00000000-0000-0000-0000-000000000002")]
__interface IEventSource {
 [id(1)] HRESULT FireEvent();
};

class DECLSPEC_UUID("530DF3AD-6936-3214-A83B-27B63C7997C4") CSource;

// evh_server.cpp
// compile with: /LD
// post-build command: Regsvr32.exe /s evh_server.dll
#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>
#include "evh_server.h"

[module(dll, name="EventSource", uuid="6E46B59E-89C3-4c15-A6D8-B8A1CEC98830")];

[coclass, event_source(com), uuid("530DF3AD-6936-3214-A83B-27B63C7997C4")]
class CSource : public IEventSource {
public:
 __event __interface IEvents;

 HRESULT FireEvent() {
 __raise MyEvent(123);
 return S_OK;
 }
};

And then the server:

And then the client:

// evh_client.cpp
// compile with: /link /OPT:NOREF
#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>
#include <stdio.h>
#include "evh_server.h"

[module(name="EventReceiver")];

[event_receiver(com)]
class CReceiver {
public:
 HRESULT MyHandler1(int nValue) {
 printf_s("MyHandler1 was called with value %d.\n", nValue);
 return S_OK;
 }

 HRESULT MyHandler2(int nValue) {
 printf_s("MyHandler2 was called with value %d.\n", nValue);
 return S_OK;
 }

 void HookEvent(IEventSource* pSource) {
 __hook(&IEvents::MyEvent, pSource, &CReceiver::MyHandler1);
 __hook(&IEvents::MyEvent, pSource, &CReceiver::MyHandler2);
 }

 void UnhookEvent(IEventSource* pSource) {
 __unhook(&IEvents::MyEvent, pSource, &CReceiver::MyHandler1);
 __unhook(&IEvents::MyEvent, pSource, &CReceiver::MyHandler2);
 }
};

int main() {
 // Create COM object
 CoInitialize(NULL);
 {
 IEventSource* pSource = 0;
 HRESULT hr = CoCreateInstance(__uuidof(CSource), NULL, CLSCTX_ALL, __uuidof(IEventSource), (void
**) &pSource);
 if (FAILED(hr)) {
 return -1;
 }

 // Create receiver and fire event
 CReceiver receiver;
 receiver.HookEvent(pSource);
 pSource->FireEvent();
 receiver.UnhookEvent(pSource);
 }
 CoUninitialize();
 return 0;
}

OutputOutput

MyHandler1 was called with value 123.
MyHandler2 was called with value 123.

Layout Dependent COM Events
Layout dependency is only an issue for COM programming. In native and managed event handling, the signatures

[id(1)] HRESULT MyEvent1([in] int value);
[id(2)] HRESULT MyEvent2([in] int value);

[coclass, event_source(com)]
class CSource : public IEventSource {
public:
 __event __interface IEvents;

 HRESULT FireEvent() {
 MyEvent1(123);
 MyEvent2(123);
 return S_OK;
 }
};

[coclass, event_receiver(com, true)]
class CReceiver {
public:
 HRESULT MyEvent1(int nValue) { // name and signature matches MyEvent1
 ...
 }
 HRESULT MyEvent2(E c, char* pc) { // signature doesn't match MyEvent2
 ...
 }
 HRESULT MyHandler1(int nValue) { // name doesn't match MyEvent1 (or 2)
 ...
 }
 void HookEvent(IEventSource* pSource) {
 __hook(IFace, pSource); // Hooks up all name-matched events
 // under layout_dependent = true
 __hook(&IFace::MyEvent1, pSource, &CReceive::MyEvent1); // valid
 __hook(&IFace::MyEvent2, pSource, &CSink::MyEvent2); // not valid
 __hook(&IFace::MyEvent1, pSource, &CSink:: MyHandler1); // not valid
 }
};

See also

(return type, calling convention, and arguments) of the handlers must match their events, but the handler names
do not have to match their events.

However, in COM event handling, when you set the layout_dependent parameter of event_receiver to true, the
name and signature matching is enforced. This means that the names and signatures of the handlers in the event
receiver must exactly match the names and signatures of the events to which they are hooked.

When layout_dependent is set to false, the calling convention and storage class (virtual, static, and so on) can be
mixed and matched between the firing event method and the hooking methods (its delegates). It is slightly more
efficient to have layout_dependent=true.

For example, suppose IEventSource is defined to have the following methods:

Assume the event source has the following form:

Then, in the event receiver, any handler hooked to a method in IEventSource must match its name and signature,
as follows:

Event Handling

Microsoft-Specific Modifiers
3/11/2019 • 2 minutes to read • Edit Online

Microsoft-Specific Keywords

KEYWORD MEANING USED TO FORM DERIVED TYPES?

__based The name that follows declares a 32-
bit offset to the 32-bit base contained
in the declaration.

Yes

__cdecl The name that follows uses the C
naming and calling conventions.

Yes

__declspec The name that follows specifies a
Microsoft-specific storage-class
attribute.

No

__fastcall The name that follows declares a
function that uses registers, when
available, instead of the stack for
argument passing.

Yes

__restrict Similar to __declspec(restrict), but for
use on variables.

No

__stdcall The name that follows specifies a
function that observes the standard
calling convention.

Yes

__w64 Marks a data type as being larger on a
64-bit compiler.

No

__unaligned Specifies that a pointer to a type or
other data is not aligned..

No

__vectorcall The name that follows declares a
function that uses registers, including
SSE registers, when available, instead of
the stack for argument passing.

Yes

This section describes Microsoft-specific extensions to C++ in the following areas:

Based addressing, the practice of using a pointer as a base from which other pointers can be offset

Function calling conventions

Extended storage-class attributes declared with the __declspec keyword

The __w64 keyword

Many of the Microsoft-specific keywords can be used to modify declarators to form derived types. For more
information about declarators, see Declarators.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/microsoft-specific-modifiers.md

See also
C++ Language Reference

Based Addressing
10/31/2018 • 2 minutes to read • Edit Online

See also

This section includes the following topics:

__based Grammar

Based Pointers

Microsoft-Specific Modifiers

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/based-addressing.md

__based Grammar
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

Grammar

See also

Based addressing is useful when you need precise control over the segment in which objects are allocated (static
and dynamic based data).

The only form of based addressing acceptable in 32-bit and 64-bit compilations is "based on a pointer" that
defines a type that contains a 32-bit or 64-bit displacement to a 32-bit or 64-bit base or based on void.

based-range-modifier: __based(base-expression)

base-expression: based-variablebased-abstract-declaratorsegment-namesegment-cast

based-variable: identifier

based-abstract-declarator: abstract-declarator

base-type: type-name

END Microsoft Specific

Based Pointers

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/based-grammar.md

Based Pointers (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax

type __based(base) declarator

Remarks

// based_pointers1.cpp
// compile with: /c
void *vpBuffer;
struct llist_t {
 void __based(vpBuffer) *vpData;
 struct llist_t __based(vpBuffer) *llNext;
};

NOTENOTE

Example

Microsoft Specific

The __based keyword allows you to declare pointers based on pointers (pointers that are offsets from existing
pointers).

Pointers based on pointer addresses are the only form of the __based keyword valid in 32-bit or 64-bit
compilations. For the Microsoft 32-bit C/C++ compiler, a based pointer is a 32-bit offset from a 32-bit pointer
base. A similar restriction holds for 64-bit environments, where a based pointer is a 64-bit offset from the 64-bit
base.

One use for pointers based on pointers is for persistent identifiers that contain pointers. A linked list that consists
of pointers based on a pointer can be saved to disk, then reloaded to another place in memory, with the pointers
remaining valid. For example:

The pointer vpBuffer is assigned the address of memory allocated at some later point in the program. The linked
list is relocated relative to the value of vpBuffer .

Persisting identifiers containing pointers can also be accomplished by using memory-mapped files.

When dereferencing a based pointer, the base must be either explicitly specified or implicitly known through the
declaration.

For compatibility with previous versions, _based is a synonym for __based unless compiler option /Za (Disable
language extensions) is specified.

The following code demonstrates changing a based pointer by changing its base.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/based-pointers-cpp.md
https://docs.microsoft.com/windows/desktop/Memory/file-mapping
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

// based_pointers2.cpp
// compile with: /EHsc
#include <iostream>

int a1[] = { 1,2,3 };
int a2[] = { 10,11,12 };
int *pBased;

typedef int __based(pBased) * pBasedPtr;

using namespace std;
int main() {
 pBased = &a1[0];
 pBasedPtr pb = 0;

 cout << *pb << endl;
 cout << *(pb+1) << endl;

 pBased = &a2[0];

 cout << *pb << endl;
 cout << *(pb+1) << endl;
}

1
2
10
11

See also
Keywords
alloc_text

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/alloc-text

Calling Conventions
12/19/2018 • 2 minutes to read • Edit Online

Topics in this section

See also

The Visual C/C++ compiler provides several different conventions for calling internal and external functions.
Understanding these different approaches can help you debug your program and link your code with assembly-
language routines.

The topics on this subject explain the differences between the calling conventions, how arguments are passed, and
how values are returned by functions. They also discuss naked function calls, an advanced feature that enables you
to write your own prolog and epilog code.

For information on calling conventions for x64 processors, see Calling Convention.

Argument Passing and Naming Conventions (__cdecl , __stdcall , __fastcall , and others)

Calling Example: Function Prototype and Call

Using naked function calls to write custom prolog/epilog code

Floating Point Coprocessor and Calling Conventions

Obsolete calling conventions

Microsoft-Specific Modifiers

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/calling-conventions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-calling-convention

Argument Passing and Naming Conventions
5/7/2019 • 2 minutes to read • Edit Online

NOTENOTE

KEYWORD STACK CLEANUP PARAMETER PASSING

__cdecl Caller Pushes parameters on the stack, in
reverse order (right to left)

__clrcall n/a Load parameters onto CLR expression
stack in order (left to right).

__stdcall Callee Pushes parameters on the stack, in
reverse order (right to left)

__fastcall Callee Stored in registers, then pushed on
stack

__thiscall Callee Pushed on stack; this pointer stored in
ECX

__vectorcall Callee Stored in registers, then pushed on
stack in reverse order (right to left)

Microsoft Specific

The Microsoft C++ compilers allow you to specify conventions for passing arguments and return values between
functions and callers. Not all conventions are available on all supported platforms, and some conventions use
platform-specific implementations. In most cases, keywords or compiler switches that specify an unsupported
convention on a particular platform are ignored, and the platform default convention is used.

On x86 plaftorms, all arguments are widened to 32 bits when they are passed. Return values are also widened to
32 bits and returned in the EAX register, except for 8-byte structures, which are returned in the EDX:EAX register
pair. Larger structures are returned in the EAX register as pointers to hidden return structures. Parameters are
pushed onto the stack from right to left. Structures that are not PODs will not be returned in registers.

The compiler generates prolog and epilog code to save and restore the ESI, EDI, EBX, and EBP registers, if they
are used in the function.

When a struct, union, or class is returned from a function by value, all definitions of the type need to be the same, else the
program may fail at runtime.

For information on how to define your own function prolog and epilog code, see Naked Function Calls.

For information about the default calling conventions in code that targets x64 platforms, see x64 Calling
Convention. For information about calling convention issues in code that targets ARM platforms, see Common
Visual C++ ARM Migration Issues.

The following calling conventions are supported by the Visual C/C++ compiler.

For related information, see Obsolete Calling Conventions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/argument-passing-and-naming-conventions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-calling-convention
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/common-visual-cpp-arm-migration-issues

See also

END Microsoft Specific

Calling Conventions

__cdecl
10/31/2018 • 2 minutes to read • Edit Online

ELEMENT IMPLEMENTATION

Argument-passing order Right to left.

Stack-maintenance responsibility Calling function pops the arguments from the stack.

Name-decoration convention Underscore character (_) is prefixed to names, except when
__cdecl functions that use C linkage are exported.

Case-translation convention No case translation performed.

NOTENOTE

struct CMyClass {
 void __cdecl mymethod();
};

void CMyClass::mymethod() { return; }

void __cdecl CMyClass::mymethod() { return; }

Microsoft Specific

__cdecl is the default calling convention for C and C++ programs. Because the stack is cleaned up by the caller, it
can do vararg functions. The __cdecl calling convention creates larger executables than __stdcall, because it
requires each function call to include stack cleanup code. The following list shows the implementation of this
calling convention.

For related information, see Decorated Names.

Place the __cdecl modifier before a variable or a function name. Because the C naming and calling conventions
are the default, the only time you must use __cdecl in x86 code is when you have specified the /Gv (vectorcall),
/Gz (stdcall), or /Gr (fastcall) compiler option. The /Gd compiler option forces the __cdecl calling convention.

On ARM and x64 processors, __cdecl is accepted but typically ignored by the compiler. By convention on ARM
and x64, arguments are passed in registers when possible, and subsequent arguments are passed on the stack. In
x64 code, use __cdecl to override the /Gv compiler option and use the default x64 calling convention.

For non-static class functions, if the function is defined out-of-line, the calling convention modifier does not have
to be specified on the out-of-line definition. That is, for class non-static member methods, the calling convention
specified during declaration is assumed at the point of definition. Given this class definition:

this:

is equivalent to this:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cdecl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/decorated-names
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gd-gr-gv-gz-calling-convention

Example

// Example of the __cdecl keyword on function
int __cdecl system(const char *);
// Example of the __cdecl keyword on function pointer
typedef BOOL (__cdecl *funcname_ptr)(void * arg1, const char * arg2, DWORD flags, ...);

See also

For compatibility with previous versions, cdecl and _cdecl are a synonym for __cdecl unless compiler option /Za
(Disable language extensions) is specified.

In the following example, the compiler is instructed to use C naming and calling conventions for the system

function.

Argument Passing and Naming Conventions
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

__clrcall
10/31/2018 • 3 minutes to read • Edit Online

Example

Microsoft Specific

Specifies that a function can only be called from managed code. Use __clrcall for all virtual functions that will only
be called from managed code. However this calling convention cannot be used for functions that will be called
from native code.

Use __clrcall to improve performance when calling from a managed function to a virtual managed function or
from managed function to managed function through pointer.

Entry points are separate, compiler-generated functions. If a function has both native and managed entry points,
one of them will be the actual function with the function implementation. The other function will be a separate
function (a thunk) that calls into the actual function and lets the common language runtime perform PInvoke.
When marking a function as __clrcall, you indicate the function implementation must be MSIL and that the native
entry point function will not be generated.

When taking the address of a native function if __clrcall is not specified, the compiler uses the native entry point.
__clrcall indicates that the function is managed and there is no need to go through the transition from managed to
native. In that case the compiler uses the managed entry point.

When /clr (not /clr:pure or /clr:safe) is used and __clrcall is not used, taking the address of a function
always returns the address of the native entry point function. When __clrcall is used, the native entry point
function is not created, so you get the address of the managed function, not an entry point thunk function. For
more information, see Double Thunking. The /clr:pure and /clr:safe compiler options are deprecated in Visual
Studio 2015 and unsupported in Visual Studio 2017.

/clr (Common Language Runtime Compilation) implies that all functions and function pointers are __clrcall and
the compiler will not permit a function inside the compiland to be marked anything other than __clrcall. When
/clr:pure is used, __clrcall can only be specified on function pointers and external declarations.

You can directly call __clrcall functions from existing C++ code that was compiled by using /clr as long as that
function has an MSIL implementation. __clrcall functions cannot be called directly from functions that have inline
asm and call CPU-specific intrinisics, for example, even if those functions are compiled with /clr .

__clrcall function pointers are only meant to be used in the application domain in which they were created. Instead
of passing __clrcall function pointers across application domains, use CrossAppDomainDelegate. For more
information, see Application Domains and Visual C++.

Note that when a function is declared with __clrcall, code will be generated when needed; for example, when
function is called.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/clrcall.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/double-thunking-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://msdn.microsoft.com/en-us/library/system.crossappdomaindelegate(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/application-domains-and-visual-cpp

// clrcall2.cpp
// compile with: /clr
using namespace System;
int __clrcall Func1() {
 Console::WriteLine("in Func1");
 return 0;
}

// Func1 hasn't been used at this point (code has not been generated),
// so runtime returns the adddress of a stub to the function
int (__clrcall *pf)() = &Func1;

// code calls the function, code generated at difference address
int i = pf(); // comment this line and comparison will pass

int main() {
 if (&Func1 == pf)
 Console::WriteLine("&Func1 == pf, comparison succeeds");
 else
 Console::WriteLine("&Func1 != pf, comparison fails");

 // even though comparison fails, stub and function call are correct
 pf();
 Func1();
}

in Func1
&Func1 != pf, comparison fails
in Func1
in Func1

Example

// clrcall3.cpp
// compile with: /clr
void Test() {
 System::Console::WriteLine("in Test");
}

int main() {
 void (*pTest)() = &Test;
 (*pTest)();

 void (__clrcall *pTest2)() = &Test;
 (*pTest2)();
}

See also

The following sample shows that you can define a function pointer, such that, you declare that the function pointer
will only be invoked from managed code. This allows the compiler to directly call the managed function and avoid
the native entry point (double thunk issue).

Argument Passing and Naming Conventions
Keywords

__stdcall
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

ELEMENT IMPLEMENTATION

Argument-passing order Right to left.

Argument-passing convention By value, unless a pointer or reference type is passed.

Stack-maintenance responsibility Called function pops its own arguments from the stack.

Name-decoration convention An underscore (_) is prefixed to the name. The name is
followed by the at sign (@) followed by the number of bytes
(in decimal) in the argument list. Therefore, the function
declared as int func(int a, double b) is decorated as
follows: _func@12

Case-translation convention None

struct CMyClass {
 void __stdcall mymethod();
};

Microsoft Specific

The __stdcall calling convention is used to call Win32 API functions. The callee cleans the stack, so the compiler
makes vararg functions __cdecl. Functions that use this calling convention require a function prototype.

return-type __stdcall function-name[(argument-list)]

The following list shows the implementation of this calling convention.

The /Gz compiler option specifies __stdcall for all functions not explicitly declared with a different calling
convention.

For compatibility with previous versions, _stdcall is a synonym for __stdcall unless compiler option /Za (Disable
language extensions) is specified.

Functions declared using the __stdcall modifier return values the same way as functions declared using __cdecl.

On ARM and x64 processors, __stdcall is accepted and ignored by the compiler; on ARM and x64 architectures,
by convention, arguments are passed in registers when possible, and subsequent arguments are passed on the
stack.

For non-static class functions, if the function is defined out-of-line, the calling convention modifier does not have
to be specified on the out-of-line definition. That is, for class non-static member methods, the calling convention
specified during declaration is assumed at the point of definition. Given this class definition,

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/stdcall.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gd-gr-gv-gz-calling-convention
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

void CMyClass::mymethod() { return; }

void __stdcall CMyClass::mymethod() { return; }

Example

// Example of the __stdcall keyword
#define WINAPI __stdcall
// Example of the __stdcall keyword on function pointer
typedef BOOL (__stdcall *funcname_ptr)(void * arg1, const char * arg2, DWORD flags, ...);

See also

this

is equivalent to this

In the following example, use of __stdcall results in all WINAPI function types being handled as a standard call:

Argument Passing and Naming Conventions
Keywords

__fastcall
12/19/2018 • 2 minutes to read • Edit Online

ELEMENT IMPLEMENTATION

Argument-passing order The first two DWORD or smaller arguments that are found in
the argument list from left to right are passed in ECX and EDX
registers; all other arguments are passed on the stack from
right to left.

Stack-maintenance responsibility Called function pops the arguments from the stack.

Name-decoration convention At sign (@) is prefixed to names; an at sign followed by the
number of bytes (in decimal) in the parameter list is suffixed
to names.

Case-translation convention No case translation performed.

NOTENOTE

struct CMyClass {
 void __fastcall mymethod();
};

void CMyClass::mymethod() { return; }

Microsoft Specific

The __fastcall calling convention specifies that arguments to functions are to be passed in registers, when
possible. This calling convention only applies to the x86 architecture. The following list shows the implementation
of this calling convention.

Future compiler versions may use different registers to store parameters.

Using the /Gr compiler option causes each function in the module to compile as __fastcall unless the function is
declared by using a conflicting attribute, or the name of the function is main .

The __fastcall keyword is accepted and ignored by the compilers that target ARM and x64 architectures; on an
x64 chip, by convention, the first four arguments are passed in registers when possible, and additional arguments
are passed on the stack. For more information, see x64 Calling Convention. On an ARM chip, up to four integer
arguments and eight floating-point arguments may be passed in registers, and additional arguments are passed
on the stack.

For non-static class functions, if the function is defined out-of-line, the calling convention modifier does not have
to be specified on the out-of-line definition. That is, for class non-static member methods, the calling convention
specified during declaration is assumed at the point of definition. Given this class definition:

this:

is equivalent to this:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/fastcall.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gd-gr-gv-gz-calling-convention
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-calling-convention

void __fastcall CMyClass::mymethod() { return; }

Example

// Example of the __fastcall keyword
#define FASTCALL __fastcall

void FASTCALL DeleteAggrWrapper(void* pWrapper);
// Example of the __ fastcall keyword on function pointer
typedef BOOL (__fastcall *funcname_ptr)(void * arg1, const char * arg2, DWORD flags, ...);

See also

For compatibility with previous versions, _fastcall is a synonym for __fastcall unless compiler option /Za (Disable
language extensions) is specified.

In the following example, the function DeleteAggrWrapper is passed arguments in registers:

END Microsoft Specific

Argument Passing and Naming Conventions
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

__thiscall
5/7/2019 • 2 minutes to read • Edit Online

See also

Microsoft Specific

The __thiscall calling convention is used on member functions and is the default calling convention used by C++
member functions that do not use variable arguments. Under __thiscall, the callee cleans the stack, which is
impossible for vararg functions. Arguments are pushed on the stack from right to left, with the this pointer being
passed via register ECX, and not on the stack, on the x86 architecture.

One reason to use __thiscall is in classes whose member functions use __clrcall by default. In that case, you can
use __thiscall to make individual member functions callable from native code.

When compiling with /clr :pure, all functions and function pointers are __clrcall unless specified otherwise. The
/clr:pure and /clr:safe compiler options are deprecated in Visual Studio 2015 and unsupported in Visual Studio
2017.

In releases before Visual Studio 2005, the __thiscall calling convention could not be explicitly specified in a
program, because __thiscall was not a keyword.

vararg member functions use the __cdecl calling convention. All function arguments are pushed on the stack,
with the this pointer placed on the stack last

Because this calling convention applies only to C++, there is no C name decoration scheme.

On ARM and x64 machines, __thiscall is accepted and ignored by the compiler.

For non-static class functions, if the function is defined out-of-line, the calling convention modifier does not have
to be specified on the out-of-line definition. That is, for class non-static member methods, the calling convention
specified during declaration is assumed at the point of definition.

END Microsoft Specific

Argument Passing and Naming Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/thiscall.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

__vectorcall
12/19/2018 • 12 minutes to read • Edit Online

ELEMENT IMPLEMENTATION

C name-decoration convention Function names are suffixed with two "at" signs (@@)
followed by the number of bytes (in decimal) in the parameter
list.

Case-translation convention No case translation is performed.

typedef struct {
 __m256 x;
 __m256 y;
 __m256 z;
} hva3; // 3 element HVA type on __m256

Microsoft Specific

The __vectorcall calling convention specifies that arguments to functions are to be passed in registers, when
possible. __vectorcall uses more registers for arguments than __fastcall or the default x64 calling convention use.
The __vectorcall calling convention is only supported in native code on x86 and x64 processors that include
Streaming SIMD Extensions 2 (SSE2) and above. Use __vectorcall to speed functions that pass several floating-
point or S IMD vector arguments and perform operations that take advantage of the arguments loaded in
registers. The following list shows the features that are common to the x86 and x64 implementations of
__vectorcall. The differences are explained later in this article.

Using the /Gv compiler option causes each function in the module to compile as __vectorcall unless the function
is a member function, is declared with a conflicting calling convention attribute, uses a vararg variable argument
list, or has the name main .

You can pass three kinds of arguments by register in __vectorcall functions: integer type values, vector type
values, and homogeneous vector aggregate (HVA) values.

An integer type satisfies two requirements: it fits in the native register size of the processor—for example, 4 bytes
on an x86 machine or 8 bytes on an x64 machine—and it’s convertible to an integer of register length and back
again without changing its bit representation. For example, any type that can be promoted to int on x86 (long
long on x64)—for example, a char or short—or that can be cast to int (long long on x64) and back to its original
type without change is an integer type. Integer types include pointer, reference, and struct or union types of 4
bytes (8 bytes on x64) or less. On x64 platforms, larger struct and union types are passed by reference to
memory allocated by the caller ; on x86 platforms, they are passed by value on the stack.

A vector type is either a floating-point type—for example, a float or double—or an SIMD vector type—for
example, __m128 or __m256.

An HVA type is a composite type of up to four data members that have identical vector types. An HVA type has
the same alignment requirement as the vector type of its members. This is an example of an HVA struct definition
that contains three identical vector types and has 32-byte alignment:

Declare your functions explicitly with the __vectorcall keyword in header files to allow separately compiled code
to link without errors. Functions must be prototyped to use __vectorcall, and can’t use a vararg variable length
argument list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/vectorcall.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-calling-convention
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gd-gr-gv-gz-calling-convention

struct MyClass {
 void __vectorcall mymethod();
};

void MyClass::mymethod() { return; }

void __vectorcall MyClass::mymethod() { return; }

typedef __m256 (__vectorcall * vcfnptr)(double, double, double, double);

__vectorcall convention on x64

A member function may be declared by using the __vectorcall specifier. The hidden this pointer is passed by
register as the first integer type argument.

On ARM machines, __vectorcall is accepted and ignored by the compiler.

For non-static class member functions, if the function is defined out-of-line, the calling convention modifier does
not have to be specified on the out-of-line definition. That is, for class non-static members, the calling convention
specified during declaration is assumed at the point of definition. Given this class definition:

this:

is equivalent to this:

The __vectorcall calling convention modifier must be specified when a pointer to a __vectorcall function is
created. The next example creates a typedef for a pointer to a __vectorcall function that takes four double
arguments and returns an __m256 value:

For compatibility with previous versions, _vectorcall is a synonym for __vectorcall unless compiler option /Za
(Disable language extensions) is specified.

The __vectorcall calling convention on x64 extends the standard x64 calling convention to take advantage of
additional registers. Both integer type arguments and vector type arguments are mapped to registers based on
position in the argument list. HVA arguments are allocated to unused vector registers.

When any of the first four arguments in order from left to right are integer type arguments, they are passed in the
register that corresponds to that position—RCX, RDX, R8, or R9. A hidden this pointer is treated as the first
integer type argument. When an HVA argument in one of the first four arguments can’t be passed in the available
registers, a reference to caller-allocated memory is passed in the corresponding integer type register instead.
Integer type arguments after the fourth parameter position are passed on the stack.

When any of the first six arguments in order from left to right are vector type arguments, they are passed by value
in SSE vector registers 0 to 5 according to argument position. Floating-point and __m128 types are passed in
XMM registers, and __m256 types are passed in YMM registers. This differs from the standard x64 calling
convention, because the vector types are passed by value instead of by reference, and additional registers are
used. The shadow stack space allocated for vector type arguments is fixed at 8 bytes, and the /homeparams option
does not apply. Vector type arguments in the seventh and later parameter positions are passed on the stack by
reference to memory allocated by the caller.

After registers are allocated for vector arguments, the data members of HVA arguments are allocated, in
ascending order, to unused vector registers XMM0 to XMM5 (or YMM0 to YMM5, for __m256 types), as long as
there are enough registers available for the entire HVA. If not enough registers are available, the HVA argument is

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/homeparams-copy-register-parameters-to-stack

// crt_vc64.c
// Build for amd64 with: cl /arch:AVX /W3 /FAs crt_vc64.c
// This example creates an annotated assembly listing in
// crt_vc64.asm.

#include <intrin.h>
#include <xmmintrin.h>

typedef struct {
 __m128 array[2];
} hva2; // 2 element HVA type on __m128

typedef struct {
 __m256 array[4];
} hva4; // 4 element HVA type on __m256

// Example 1: All vectors
// Passes a in XMM0, b in XMM1, c in YMM2, d in XMM3, e in YMM4.
// Return value in XMM0.
__m128 __vectorcall
example1(__m128 a, __m128 b, __m256 c, __m128 d, __m256 e) {
 return d;
}

// Example 2: Mixed int, float and vector parameters
// Passes a in RCX, b in XMM1, c in R8, d in XMM3, e in YMM4,
// f in XMM5, g pushed on stack.
// Return value in YMM0.
__m256 __vectorcall
example2(int a, __m128 b, int c, __m128 d, __m256 e, float f, int g) {
 return e;
}

// Example 3: Mixed int and HVA parameters
// Passes a in RCX, c in R8, d in R9, and e pushed on stack.
// Passes b by element in [XMM0:XMM1];
// b's stack shadow area is 8-bytes of undefined value.
// Return value in XMM0.
__m128 __vectorcall example3(int a, hva2 b, int c, int d, int e) {
 return b.array[0];
}

// Example 4: Discontiguous HVA
// Passes a in RCX, b in XMM1, d in XMM3, and e is pushed on stack.
// Passes c by element in [YMM0,YMM2,YMM4,YMM5], discontiguous because
// vector arguments b and d were allocated first.
// Shadow area for c is an 8-byte undefined value.

passed by reference to memory allocated by the caller. The stack shadow space for an HVA argument is fixed at 8
bytes with undefined content. HVA arguments are assigned to registers in order from left to right in the parameter
list, and may be in any position. HVA arguments in one of the first four argument positions that are not assigned
to vector registers are passed by reference in the integer register that corresponds to that position. HVA
arguments passed by reference after the fourth parameter position are pushed on the stack.

Results of __vectorcall functions are returned by value in registers when possible. Results of integer type,
including structs or unions of 8 bytes or less, are returned by value in RAX. Vector type results are returned by
value in XMM0 or YMM0, depending on size. HVA results have each data element returned by value in registers
XMM0:XMM3 or YMM0:YMM3, depending on element size. Result types that don't fit in the corresponding
registers are returned by reference to memory allocated by the caller.

The stack is maintained by the caller in the x64 implementation of __vectorcall. The caller prolog and epilog code
allocates and clears the stack for the called function. Arguments are pushed on the stack from right to left, and
shadow stack space is allocated for arguments passed in registers.

Examples:

// Shadow area for c is an 8-byte undefined value.
// Return value in XMM0.
float __vectorcall example4(int a, float b, hva4 c, __m128 d, int e) {
 return b;
}

// Example 5: Multiple HVA arguments
// Passes a in RCX, c in R8, e pushed on stack.
// Passes b in [XMM0:XMM1], d in [YMM2:YMM5], each with
// stack shadow areas of an 8-byte undefined value.
// Return value in RAX.
int __vectorcall example5(int a, hva2 b, int c, hva4 d, int e) {
 return c + e;
}

// Example 6: HVA argument passed by reference, returned by register
// Passes a in [XMM0:XMM1], b passed by reference in RDX, c in YMM2,
// d in [XMM3:XMM4].
// Register space was insufficient for b, but not for d.
// Return value in [YMM0:YMM3].
hva4 __vectorcall example6(hva2 a, hva4 b, __m256 c, hva2 d) {
 return b;
}

int __cdecl main(void)
{
 hva4 h4;
 hva2 h2;
 int i;
 float f;
 __m128 a, b, d;
 __m256 c, e;

 a = b = d = _mm_set1_ps(3.0f);
 c = e = _mm256_set1_ps(5.0f);
 h2.array[0] = _mm_set1_ps(6.0f);
 h4.array[0] = _mm256_set1_ps(7.0f);

 b = example1(a, b, c, d, e);
 e = example2(1, b, 3, d, e, 6.0f, 7);
 d = example3(1, h2, 3, 4, 5);
 f = example4(1, 2.0f, h4, d, 5);
 i = example5(1, h2, 3, h4, 5);
 h4 = example6(h2, h4, c, h2);
}

__vectorcall convention on x86
The __vectorcall calling convention follows the __fastcall convention for 32-bit integer type arguments, and
takes advantage of the SSE vector registers for vector type and HVA arguments.

The first two integer type arguments found in the parameter list from left to right are placed in ECX and EDX,
respectively. A hidden this pointer is treated as the first integer type argument, and is passed in ECX. The first six
vector type arguments are passed by value through SSE vector registers 0 to 5, in the XMM or YMM registers,
depending on argument size.

The first six vector type arguments in order from left to right are passed by value in SSE vector registers 0 to 5.
Floating-point and __m128 types are passed in XMM registers, and __m256 types are passed in YMM registers.
No shadow stack space is allocated for vector type arguments passed by register. The seventh and subsequent
vector type arguments are passed on the stack by reference to memory allocated by the caller. The limitation of
compiler error C2719 does not apply to these arguments.

After registers are allocated for vector arguments, the data members of HVA arguments are allocated in ascending
order to unused vector registers XMM0 to XMM5 (or YMM0 to YMM5, for __m256 types), as long as there are

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c2719

// crt_vc86.c
// Build for x86 with: cl /arch:AVX /W3 /FAs crt_vc86.c
// This example creates an annotated assembly listing in
// crt_vc86.asm.

#include <intrin.h>
#include <xmmintrin.h>

typedef struct {
 __m128 array[2];
} hva2; // 2 element HVA type on __m128

typedef struct {
 __m256 array[4];
} hva4; // 4 element HVA type on __m256

// Example 1: All vectors
// Passes a in XMM0, b in XMM1, c in YMM2, d in XMM3, e in YMM4.
// Return value in XMM0.
__m128 __vectorcall
example1(__m128 a, __m128 b, __m256 c, __m128 d, __m256 e) {
 return d;
}

// Example 2: Mixed int, float and vector parameters
// Passes a in ECX, b in XMM0, c in EDX, d in XMM1, e in YMM2,
// f in XMM3, g pushed on stack.
// Return value in YMM0.
__m256 __vectorcall
example2(int a, __m128 b, int c, __m128 d, __m256 e, float f, int g) {
 return e;
}

// Example 3: Mixed int and HVA parameters
// Passes a in ECX, c in EDX, d and e pushed on stack.
// Passes b by element in [XMM0:XMM1].
// Return value in XMM0.
__m128 __vectorcall example3(int a, hva2 b, int c, int d, int e) {
 return b.array[0];
}

// Example 4: HVA assigned after vector types
// Passes a in ECX, b in XMM0, d in XMM1, and e in EDX.
// Passes c by element in [YMM2:YMM5].
// Return value in XMM0.
float __vectorcall example4(int a, float b, hva4 c, __m128 d, int e) {
 return b;

enough registers available for the entire HVA. If not enough registers are available, the HVA argument is passed
on the stack by reference to memory allocated by the caller. No stack shadow space for an HVA argument is
allocated. HVA arguments are assigned to registers in order from left to right in the parameter list, and may be in
any position.

Results of __vectorcall functions are returned by value in registers when possible. Results of integer type,
including structs or unions of 4 bytes or less, are returned by value in EAX. Integer type structs or unions of 8
bytes or less are returned by value in EDX:EAX. Vector type results are returned by value in XMM0 or YMM0,
depending on size. HVA results have each data element returned by value in registers XMM0:XMM3 or
YMM0:YMM3, depending on element size. Other result types are returned by reference to memory allocated by
the caller.

The x86 implementation of __vectorcall follows the convention of arguments pushed on the stack from right to
left by the caller, and the called function clears the stack just before it returns. Only arguments that are not placed
in registers are pushed on the stack.

Examples:

 return b;
}

// Example 5: Multiple HVA arguments
// Passes a in ECX, c in EDX, e pushed on stack.
// Passes b in [XMM0:XMM1], d in [YMM2:YMM5].
// Return value in EAX.
int __vectorcall example5(int a, hva2 b, int c, hva4 d, int e) {
 return c + e;
}

// Example 6: HVA argument passed by reference, returned by register
// Passes a in [XMM1:XMM2], b passed by reference in ECX, c in YMM0,
// d in [XMM3:XMM4].
// Register space was insufficient for b, but not for d.
// Return value in [YMM0:YMM3].
hva4 __vectorcall example6(hva2 a, hva4 b, __m256 c, hva2 d) {
 return b;
}

int __cdecl main(void)
{
 hva4 h4;
 hva2 h2;
 int i;
 float f;
 __m128 a, b, d;
 __m256 c, e;

 a = b = d = _mm_set1_ps(3.0f);
 c = e = _mm256_set1_ps(5.0f);
 h2.array[0] = _mm_set1_ps(6.0f);
 h4.array[0] = _mm256_set1_ps(7.0f);

 b = example1(a, b, c, d, e);
 e = example2(1, b, 3, d, e, 6.0f, 7);
 d = example3(1, h2, 3, 4, 5);
 f = example4(1, 2.0f, h4, d, 5);
 i = example5(1, h2, 3, h4, 5);
 h4 = example6(h2, h4, c, h2);
}

See also

End Microsoft Specific

Argument Passing and Naming Conventions
Keywords

Calling Example: Function Prototype and Call
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

void calltype MyFunc(char c, short s, int i, double f);
.
.
.
void MyFunc(char c, short s, int i, double f)
 {
 .
 .
 .
 }
.
.
.
MyFunc ('x', 12, 8192, 2.7183);

See also

The following example shows the results of making a function call using various calling conventions.

This example is based on the following function skeleton. Replace calltype with the appropriate calling
convention.

For more information, see Results of Calling Example.

END Microsoft Specific

Calling Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/calling-example-function-prototype-and-call.md

Results of Calling Example
11/20/2018 • 2 minutes to read • Edit Online

__cdecl

__stdcall and thiscall

__fastcall

Microsoft Specific

The C decorated function name is _MyFunc .

The __cdecl calling convention

The C decorated name (__stdcall) is _MyFunc@20 . The C++ decorated name is implementation-specific.

The __stdcall and thiscall calling conventions

The C decorated name (__fastcall) is @MyFunc@20 . The C++ decorated name is implementation-specific.

The __fastcall calling convention

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/results-of-calling-example.md

See also
Calling Example: Function Prototype and Call

Naked Function Calls
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

What do you want to know more about?

See also

Functions declared with the naked attribute are emitted without prolog or epilog code, enabling you to write your
own custom prolog/epilog sequences using the inline assembler. Naked functions are provided as an advanced
feature. They enable you to declare a function that is being called from a context other than C/C++, and thus make
different assumptions about where parameters are, or which registers are preserved. Examples include routines
such as interrupt handlers. This feature is particularly useful for writers of virtual device drivers (VxDs).

naked

Rules and Limitations for Naked Functions

Considerations for Writing Prolog/Epilog Code

END Microsoft Specific

Calling Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/naked-function-calls.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/inline/inline-assembler

Rules and Limitations for Naked Functions
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific
The following rules and limitations apply to naked functions:

The return statement is not permitted.

Structured Exception Handling and C++ Exception Handling constructs are not permitted because they
must unwind across the stack frame.

For the same reason, any form of setjmp is prohibited.

Use of the _alloca function is prohibited.

To ensure that no initialization code for local variables appears before the prolog sequence, initialized local
variables are not permitted at function scope. In particular, the declaration of C++ objects is not permitted at
function scope. There may, however, be initialized data in a nested scope.

Frame pointer optimization (the /Oy compiler option) is not recommended, but it is automatically
suppressed for a naked function.

You cannot declare C++ class objects at the function lexical scope. You can, however, declare objects in a
nested block.

The naked keyword is ignored when compiling with /clr.

For __fastcall naked functions, whenever there is a reference in C/C++ code to one of the register
arguments, the prolog code should store the values of that register into the stack location for that variable.
For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/rules-and-limitations-for-naked-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

// nkdfastcl.cpp
// compile with: /c
// processor: x86
__declspec(naked) int __fastcall power(int i, int j) {
 // calculates i^j, assumes that j >= 0

 // prolog
 __asm {
 push ebp
 mov ebp, esp
 sub esp, __LOCAL_SIZE
 // store ECX and EDX into stack locations allocated for i and j
 mov i, ecx
 mov j, edx
 }

 {
 int k = 1; // return value
 while (j-- > 0)
 k *= i;
 __asm {
 mov eax, k
 };
 }

 // epilog
 __asm {
 mov esp, ebp
 pop ebp
 ret
 }
}

See also

END Microsoft Specific

Naked Function Calls

Considerations for Writing Prolog/Epilog Code
10/31/2018 • 2 minutes to read • Edit Online

Stack Frame Layout

push ebp ; Save ebp
mov ebp, esp ; Set stack frame pointer
sub esp, localbytes ; Allocate space for locals
push <registers> ; Save registers

pop <registers> ; Restore registers
mov esp, ebp ; Restore stack pointer
pop ebp ; Restore ebp
ret ; Return from function

__LOCAL_SIZE

mov eax, __LOCAL_SIZE ;Immediate operand--Okay
mov eax, [ebp - __LOCAL_SIZE] ;Error

Microsoft Specific

Before writing your own prolog and epilog code sequences, it is important to understand how the stack frame is
laid out. It is also useful to know how to use the __LOCAL_SIZE symbol.

This example shows the standard prolog code that might appear in a 32-bit function:

The localbytes variable represents the number of bytes needed on the stack for local variables, and the
<registers> variable is a placeholder that represents the list of registers to be saved on the stack. After pushing

the registers, you can place any other appropriate data on the stack. The following is the corresponding epilog
code:

The stack always grows down (from high to low memory addresses). The base pointer (ebp) points to the pushed
value of ebp . The locals area begins at ebp-4 . To access local variables, calculate an offset from ebp by
subtracting the appropriate value from ebp .

The compiler provides a symbol, __LOCAL_SIZE , for use in the inline assembler block of function prolog code. This
symbol is used to allocate space for local variables on the stack frame in custom prolog code.

The compiler determines the value of __LOCAL_SIZE . Its value is the total number of bytes of all user-defined local
variables and compiler-generated temporary variables. __LOCAL_SIZE can be used only as an immediate operand;
it cannot be used in an expression. You must not change or redefine the value of this symbol. For example:

The following example of a naked function containing custom prolog and epilog sequences uses the __LOCAL_SIZE

symbol in the prolog sequence:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/considerations-for-writing-prolog-epilog-code.md

// the__local_size_symbol.cpp
// processor: x86
__declspec (naked) int main() {
 int i;
 int j;

 __asm { /* prolog */
 push ebp
 mov ebp, esp
 sub esp, __LOCAL_SIZE
 }

 /* Function body */
 __asm { /* epilog */
 mov esp, ebp
 pop ebp
 ret
 }
}

See also

END Microsoft Specific

Naked Function Calls

Floating Point Coprocessor and Calling Conventions
10/31/2018 • 2 minutes to read • Edit Online

See also

If you are writing assembly routines for the floating point coprocessor, you must preserve the floating point control
word and clean the coprocessor stack unless you are returning a float or double value (which your function
should return in ST(0)).

Calling Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/floating-point-coprocessor-and-calling-conventions.md

Obsolete Calling Conventions
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

See also

The __pascal, __fortran, and __syscall calling conventions are no longer supported. You can emulate their
functionality by using one of the supported calling conventions and appropriate linker options.

<windows.h> now supports the WINAPI macro, which translates to the appropriate calling convention for the
target. Use WINAPI where you previously used PASCAL or __far __pascal.

END Microsoft Specific

Argument Passing and Naming Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/obsolete-calling-conventions.md

restrict (C++ AMP)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

CLAUSE DESCRIPTION

restrict(cpu) The function can use the full C++ language. Only other
functions that are declared by using restrict(cpu) functions can
call the function.

restrict(amp) The function can only use the subset of the C++ language
that C++ AMP can accelerate.

A sequence of restrict(cpu) and restrict(amp) . The function must adhere to the limitations of both
restrict(cpu) and restrict(amp) . The function can be

called by functions that are declared by using restrict(cpu)

, restrict(amp) , restrict(cpu, amp) , or
restrict(amp, cpu) .

The form restrict(A) restrict(B) can be written as
restrict(A,B) .

Remarks

The restriction specifier can be applied to function and lambda declarations. It enforces restrictions on the code in
the function and on the behavior of the function in applications that use the C++ Accelerated Massive Parallelism
(C++ AMP) runtime.

For information about the restrict keyword that is part of the __declspec storage-class attributes, see restrict.

The restrict clause takes the following forms:

The restrict keyword is a contextual keyword. The restriction specifiers, cpu and amp are not reserved words. The
list of specifiers is not extensible. A function that does not have a restrict clause is the same as a function that has
the restrict(cpu) clause.

A function that has the restrict(amp) clause has the following limitations:

The function can call only functions that have the restrict(amp) clause.

The function must be inlinable.

The function can declare only int, unsigned int, float, and double variables, and classes and structures
that contain only these types. bool is also allowed, but it must be 4-byte-aligned if you use it in a compound
type.

Lambda functions cannot capture by reference and cannot capture pointers.

References and single-indirection pointers are supported only as local variables, function arguments, and
return types.

The following are not allowed:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/restrict-cpp-amp.md

Example

void functionAmp() restrict(amp) {}
void functionNonAmp() {}

void callFunctions() restrict(amp)
{
 // int is allowed.
 int x;
 // long long int is not allowed in an amp-restricted function. This generates a compiler error.
 // long long int y;

 // Calling an amp-restricted function is allowed.
 functionAmp();

 // Calling a non-amp-restricted function is not allowed.
 // functionNonAmp();
}

See also

Recursion.

Variables declared with the volatile keyword.

Virtual functions.

Pointers to functions.

Pointers to member functions.

Pointers in structures.

Pointers to pointers.

goto statements.

Labeled statements.

try, catch, or throw statements.

Global variables.

Static variables. Use tile_static Keyword instead.

dynamic_cast casts.

The typeid operator.

asm declarations.

Varargs.

For a discussion of function limitations, see restrict (amp) Restrictions.

The following example shows how to use the restrict(amp) clause.

C++ AMP (C++ Accelerated Massive Parallelism)

https://blogs.msdn.microsoft.com/nativeconcurrency/2011/12/19/restrictamp-restrictions-part-0-of-n-introduction/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism

tile_static Keyword
10/31/2018 • 3 minutes to read • Edit Online

Example

// Sample data:
int sampledata[] = {
 2, 2, 9, 7, 1, 4,
 4, 4, 8, 8, 3, 4,
 1, 5, 1, 2, 5, 2,
 6, 8, 3, 2, 7, 2};

// The tiles:
// 2 2 9 7 1 4
// 4 4 8 8 3 4
//
// 1 5 1 2 5 2
// 6 8 3 2 7 2

// Averages:
int averagedata[] = {
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
};

array_view<int, 2> sample(4, 6, sampledata);
array_view<int, 2> average(4, 6, averagedata);

parallel_for_each(
 // Create threads for sample.extent and divide the extent into 2 x 2 tiles.
 sample.extent.tile<2,2>(),
 [=](tiled_index<2,2> idx) restrict(amp)
 {
 // Create a 2 x 2 array to hold the values in this tile.
 tile_static int nums[2][2];
 // Copy the values for the tile into the 2 x 2 array.
 nums[idx.local[1]][idx.local[0]] = sample[idx.global];

The tile_static keyword is used to declare a variable that can be accessed by all threads in a tile of threads. The
lifetime of the variable starts when execution reaches the point of declaration and ends when the kernel function
returns. For more information on using tiles, see Using Tiles.

The tile_static keyword has the following limitations:

It can be used only on variables that are in a function that has the restrict(amp) modifier.

It cannot be used on variables that are pointer or reference types.

A tile_static variable cannot have an initializer. Default constructors and destructors are not invoked
automatically.

The value of an uninitialized tile_static variable is undefined.

If a tile_static variable is declared in a call graph that is rooted by a non-tiled call to parallel_for_each , a
warning is generated and the behavior of the variable is undefined.

The following example shows how a tile_static variable can be used to accumulate data across several threads in a
tile.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/tile-static-keyword.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/using-tiles

 nums[idx.local[1]][idx.local[0]] = sample[idx.global];
 // When all the threads have executed and the 2 x 2 array is complete, find the average.
 idx.barrier.wait();
 int sum = nums[0][0] + nums[0][1] + nums[1][0] + nums[1][1];
 // Copy the average into the array_view.
 average[idx.global] = sum / 4;
 }
);

for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 6; j++) {
 std::cout << average(i,j) << " ";
 }
 std::cout << "\n";
}

// Output:
// 3 3 8 8 3 3
// 3 3 8 8 3 3
// 5 5 2 2 4 4
// 5 5 2 2 4 4
// Sample data.
int sampledata[] = {
 2, 2, 9, 7, 1, 4,
 4, 4, 8, 8, 3, 4,
 1, 5, 1, 2, 5, 2,
 6, 8, 3, 2, 7, 2};

// The tiles are:
// 2 2 9 7 1 4
// 4 4 8 8 3 4
//
// 1 5 1 2 5 2
// 6 8 3 2 7 2

// Averages.
int averagedata[] = {
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
};

array_view<int, 2> sample(4, 6, sampledata);
array_view<int, 2> average(4, 6, averagedata);

parallel_for_each(
 // Create threads for sample.grid and divide the grid into 2 x 2 tiles.
 sample.extent.tile<2,2>(),
 [=](tiled_index<2,2> idx) restrict(amp)
 {
 // Create a 2 x 2 array to hold the values in this tile.
 tile_static int nums[2][2];
 // Copy the values for the tile into the 2 x 2 array.
 nums[idx.local[1]][idx.local[0]] = sample[idx.global];
 // When all the threads have executed and the 2 x 2 array is complete, find the average.
 idx.barrier.wait();
 int sum = nums[0][0] + nums[0][1] + nums[1][0] + nums[1][1];
 // Copy the average into the array_view.
 average[idx.global] = sum / 4;
 }
);

for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 6; j++) {
 std::cout << average(i,j) << " ";
 }
 std::cout << "\n";
}

// Output.
// 3 3 8 8 3 3
// 3 3 8 8 3 3
// 5 5 2 2 4 4
// 5 5 2 2 4 4

See also
Microsoft-Specific Modifiers
C++ AMP Overview
parallel_for_each Function (C++ AMP)
Walkthrough: Matrix Multiplication

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/reference/concurrency-namespace-functions-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/walkthrough-matrix-multiplication

__declspec
3/25/2019 • 2 minutes to read • Edit Online

Grammar

Microsoft Specific

The extended attribute syntax for specifying storage-class information uses the __declspec keyword, which
specifies that an instance of a given type is to be stored with a Microsoft-specific storage-class attribute listed
below. Examples of other storage-class modifiers include the static and extern keywords. However, these
keywords are part of the ANSI specification of the C and C++ languages, and as such are not covered by
extended attribute syntax. The extended attribute syntax simplifies and standardizes Microsoft-specific
extensions to the C and C++ languages.

decl-specifier:
 __declspec (extended-decl-modifier-seq)

extended-decl-modifier-seq:
 extended-decl-modifier
 extended-decl-modifier extended-decl-modifier-seq

opt

extended-decl-modifier:
 align(#)
 allocate(" segname ")
 allocator
 appdomain
 code_seg(" segname ")
 deprecated
 dllimport
 dllexport
 jitintrinsic
 naked
 noalias
 noinline
 noreturn
 nothrow
 novtable
 process
 property({ get=get_func_name | ,put=put_func_name })
 restrict
 safebuffers
 selectany
 spectre(nomitigation)
 thread
 uuid(" ComObjectGUID ")

White space separates the declaration modifier sequence. Examples appear in later sections.

Extended attribute grammar supports these Microsoft-specific storage-class attributes: align, allocate,
allocator, appdomain, code_seg, deprecated, dllexport, dllimport, jitintrinsic, naked, noalias, noinline, noreturn,
nothrow, novtable, process, restrict, safebuffers, selectany, spectre, and thread. It also supports these COM-

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/declspec.md

__declspec(dllimport) class X {} varX;

class __declspec(dllimport) X {};

__declspec(selectany) int * pi1 = 0; //Recommended, selectany & int both part of decl-specifier
int __declspec(selectany) * pi2 = 0; //OK, selectany & int both part of decl-specifier
int * __declspec(selectany) pi3 = 0; //ERROR, selectany is not part of a declarator

// Example of the __declspec keyword
__declspec(thread) int tls_i = 1;

See also

object attributes: property and uuid.

The code_seg, dllexport, dllimport, naked, noalias, nothrow, property, restrict, selectany, thread, and
uuid storage-class attributes are properties only of the declaration of the object or function to which they are
applied. The thread attribute affects data and objects only. The naked and spectre attributes affect functions
only. The dllimport and dllexport attributes affect functions, data, and objects. The property, selectany,
and uuid attributes affect COM objects.

For compatibility with previous versions, _declspec is a synonym for __declspec unless compiler option /Za
(Disable language extensions) is specified.

The __declspec keywords should be placed at the beginning of a simple declaration. The compiler ignores,
without warning, any __declspec keywords placed after * or & and in front of the variable identifier in a
declaration.

A __declspec attribute specified in the beginning of a user-defined type declaration applies to the variable of
that type. For example:

In this case, the attribute applies to varX . A __declspec attribute placed after the class or struct keyword
applies to the user-defined type. For example:

In this case, the attribute applies to X .

The general guideline for using the __declspec attribute for simple declarations is as follows:

decl-specifier-seq init-declarator-list;

The decl-specifier-seq should contain, among other things, a base type (e.g. int, float, a typedef, or a class
name), a storage class (e.g. static, extern), or the __declspec extension. The init-declarator-list should
contain, among other things, the pointer part of declarations. For example:

The following code declares an integer thread local variable and initializes it with a value:

END Microsoft Specific

Keywords
C Extended Storage-Class Attributes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-extended-storage-class-attributes

align (C++)
12/19/2018 • 8 minutes to read • Edit Online

Syntax

Remarks

In Visual Studio 2015 and later, use the C++11 standard alignas specifier to control alignment. For more
information, see Alignment.

Microsoft Specific

Use __declspec(align(#)) to precisely control the alignment of user-defined data (for example, static allocations
or automatic data in a function).

__declspec(align(#)) declarator

Writing applications that use the latest processor instructions introduces some new constraints and issues. In
particular, many new instructions require that data must be aligned to 16-byte boundaries. Additionally, by
aligning frequently used data to the cache line size of a specific processor, you improve cache performance. For
example, if you define a structure whose size is less than 32 bytes, you may want to align it to 32 bytes to make
sure that objects of that structure type are efficiently cached.

is the alignment value. Valid entries are integer powers of two from 1 to 8192 (bytes), such as 2, 4, 8, 16, 32, or
64. declarator is the data that you are declaring as aligned.

For information about how to return a value of type size_t that is the alignment requirement of the type, see
__alignof. For information about how to declare unaligned pointers when targeting 64-bit processors, see
__unaligned.

You can use __declspec(align(#)) when you define a struct, union, or class, or when you declare a variable.

The compiler does not guarantee or attempt to preserve the alignment attribute of data during a copy or data
transform operation. For example, memcpy can copy a struct declared with __declspec(align(#)) to any location.
Note that ordinary allocators—for example, malloc, C++ operator new, and the Win32 allocators—return
memory that is usually not sufficiently aligned for __declspec(align(#)) structures or arrays of structures. To
guarantee that the destination of a copy or data transformation operation is correctly aligned, use
_aligned_malloc, or write your own allocator.

You cannot specify alignment for function parameters. When data that has an alignment attribute is passed by
value on the stack, its alignment is controlled by the calling convention. If data alignment is important in the called
function, copy the parameter into correctly aligned memory before use.

Without __declspec(align(#)) , the compiler generally aligns data on natural boundaries based on the target
processor and the size of the data, up to 4-byte boundaries on 32-bit processors, and 8-byte boundaries on 64-bit
processors. Data in classes or structures is aligned in the class or structure at the minimum of its natural
alignment and the current packing setting (from #pragma pack or the /Zp compiler option).

This example demonstrates the use of __declspec(align(#)) :

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/align-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memcpy-wmemcpy
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/aligned-malloc

__declspec(align(32)) struct Str1{
 int a, b, c, d, e;
};

align Examples

#define CACHE_LINE 32
#define CACHE_ALIGN __declspec(align(CACHE_LINE))

This type now has a 32-byte alignment attribute. This means that all static and automatic instances start on a 32-
byte boundary. Additional structure types declared with this type as a member preserve this type's alignment
attribute, that is, any structure with Str1 as an element has an alignment attribute of at least 32.

Note that sizeof(struct Str1) is equal to 32. This implies that if an array of Str1 objects is created, and the base
of the array is 32-byte aligned, each member of the array is also 32-byte aligned. To create an array whose base is
correctly aligned in dynamic memory, use _aligned_malloc, or write your own allocator.

The sizeof value for any structure is the offset of the final member, plus that member's size, rounded up to the
nearest multiple of the largest member alignment value or the whole structure alignment value, whichever is
larger.

The compiler uses these rules for structure alignment:

Unless overridden with __declspec(align(#)) , the alignment of a scalar structure member is the minimum
of its size and the current packing.

Unless overridden with __declspec(align(#)) , the alignment of a structure is the maximum of the
individual alignments of its member(s).

A structure member is placed at an offset from the start of its parent structure which is the smallest
multiple of its alignment greater than or equal to the offset of the end of the previous member.

The size of a structure is the smallest multiple of its alignment greater than or equal to the offset of the end
of its last member.

__declspec(align(#)) can only increase alignment restrictions.

For more information, see:

align Examples

Defining New Types with __declspec(align(#))

Aligning Data in Thread Local Storage

How align Works with Data Packing

Examples of Structure Alignment (x64 specific)

The following examples show how __declspec(align(#)) affects the size and alignment of data structures. The
examples assume the following definitions:

In this example, the S1 structure is defined by using __declspec(align(32)) . All uses of S1 for a variable
definition or in other type declarations are 32-byte aligned. sizeof(struct S1) returns 32, and S1 has 16
padding bytes following the 16 bytes required to hold the four integers. Each int member requires 4-byte
alignment, but the alignment of the structure itself is declared to be 32. Therefore, the overall alignment is 32.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/aligned-malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions

struct CACHE_ALIGN S1 { // cache align all instances of S1
 int a, b, c, d;
};
struct S1 s1; // s1 is 32-byte cache aligned

__declspec(align(8)) struct S2 {
 int a, b, c, d;
};

struct S3 {
 struct S1 s1; // S3 inherits cache alignment requirement
 // from S1 declaration
 int a; // a is now cache aligned because of s1
 // 28 bytes of trailing padding
};

struct S4 {
 int a;
 // 28 bytes padding
 struct S1 s1; // S4 inherits cache alignment requirement of S1
};

CACHE_ALIGN int i;
CACHE_ALIGN int array[128];
CACHE_ALIGN struct s2 s;

typedef CACHE_ALIGN struct { int a; } S5;
S5 array[10];

In this example, sizeof(struct S2) returns 16, which is exactly the sum of the member sizes, because that is a
multiple of the largest alignment requirement (a multiple of 8).

In the following example, sizeof(struct S3) returns 64.

In this example, notice that a has the alignment of its natural type, in this case, 4 bytes. However, S1 must be
32-byte aligned. Twenty-eight bytes of padding follow a , so that s1 starts at offset 32. S4 then inherits the
alignment requirement of S1 , because it is the largest alignment requirement in the structure. sizeof(struct S4)

returns 64.

The following three variable declarations also use __declspec(align(#)) . In each case, the variable must be 32-
byte aligned. In the case of the array, the base address of the array, not each array member, is 32-byte aligned. The
sizeof value for each array member is not affected when you use __declspec(align(#)) .

To align each member of an array, code such as this should be used:

In this example, notice that aligning the structure itself and aligning the first element have the same effect:

CACHE_ALIGN struct S6 {
 int a;
 int b;
};

struct S7 {
 CACHE_ALIGN int a;
 int b;
};

void fn() {
 int a;
 char b;
 long c;
 char d[10]
}

Defining New Types with __declspec(align(#))

struct aType {int a; int b;};
typedef __declspec(align(32)) struct aType bType;

Aligning Data in Thread Local Storage

S6 and S7 have identical alignment, allocation, and size characteristics.

In this example, the alignment of the starting addresses of a, b, c, and d are 4, 1, 4, and 1, respectively.

The alignment when memory is allocated on the heap depends on which allocation function is called. For
example, if you use malloc , the result depends on the operand size. If arg >= 8, the memory returned is 8 byte
aligned. If arg < 8, the alignment of the memory returned is the first power of 2 less than arg. For example, if you
use malloc(7), the alignment is 4 bytes.

You can define a type with an alignment characteristic.

For example, you can define a struct with an alignment value this way:

Now, aType and bType are the same size (8 bytes) but variables of type bType are 32-byte aligned.

Static thread-local storage (TLS) created with the __declspec(thread) attribute and put in the TLS section in the
image works for alignment exactly like normal static data. To create TLS data, the operating system allocates
memory the size of the TLS section and respects the TLS section alignment attribute.

This example shows various ways to place aligned data into thread local storage.

// put an aligned integer in TLS
__declspec(thread) __declspec(align(32)) int a;

// define an aligned structure and put a variable of the struct type
// into TLS
__declspec(thread) __declspec(align(32)) struct F1 { int a; int b; } a;

// create an aligned structure
struct CACHE_ALIGN S9 {
 int a;
 int b;
};
// put a variable of the structure type into TLS
__declspec(thread) struct S9 a;

How align Works with Data Packing

struct S {
 char a;
 short b;
 double c;
 CACHE_ALIGN double d;
 char e;
 double f;
};

VARIABLE /ZP1 /ZP2 /ZP4 /ZP8

a 0 0 0 0

b 1 2 2 2

c 3 4 4 8

d 32 32 32 32

e 40 40 40 40

f 41 42 44 48

sizeof(S) 64 64 64 64

The /Zp compiler option and the pack pragma have the effect of packing data for structure and union
members.This example shows how /Zp and __declspec(align(#)) work together :

The following table lists the offset of each member under a variety of /Zp (or #pragma pack) values, showing
how the two interact.

For more information, see /Zp (Struct Member Alignment).

The offset of an object is based on the offset of the previous object and the current packing setting, unless the
object has a __declspec(align(#)) attribute, in which case the alignment is based on the offset of the previous
object and the __declspec(align(#)) value for the object.

END Microsoft Specific

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment

See also
__declspec
Overview of ARM ABI Conventions
x64 software conventions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/overview-of-arm-abi-conventions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions

allocate
10/31/2018 • 2 minutes to read • Edit Online

Syntax
 __declspec(allocate("segname")) declarator

Remarks

Example
// allocate.cpp
#pragma section("mycode", read)
__declspec(allocate("mycode")) int i = 0;

int main() {
}

See also

Microsoft Specific

The allocate declaration specifier names a data segment in which the data item will be allocated.

The name segname must be declared using one of the following pragmas:

code_seg

const_seg

data_seg

init_seg

section

END Microsoft Specific

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/allocate.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/code-seg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/const-seg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/data-seg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/init-seg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/section

allocator
3/25/2019 • 2 minutes to read • Edit Online

Syntax
 __declspec(allocator)

Remarks

__declspec(allocator) void* myMalloc(size_t size)

Microsoft Specific

The allocator declaration specifier can be applied to custom memory-allocation functions to make the allocations
visible via Event Tracing for Windows (ETW).

The native memory profiler in Visual Studio works by collecting allocation ETW event data emitted by during
runtime. Allocators in the CRT and Windows SDK have been annotated at the source level so that their allocation
data can be captured. If you are writing your own allocators, then any functions that return a pointer to newly
allocated heap memory can be decorated with __declspec(allocator) , as seen in this example for myMalloc:

For more information, see Measure memory usage in Visual Studio and Custom native ETW heap events.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/allocator.md
https://docs.microsoft.com/visualstudio/profiling/memory-usage
https://docs.microsoft.com/visualstudio/profiling/custom-native-etw-heap-events

appdomain
10/31/2018 • 2 minutes to read • Edit Online

Example
// declspec_appdomain.cpp
// compile with: /clr
#include <stdio.h>
using namespace System;

class CGlobal {
public:
 CGlobal(bool bProcess) {
 Counter = 10;
 m_bProcess = bProcess;
 Console::WriteLine("__declspec({0}) CGlobal::CGlobal constructor", m_bProcess ? (String^)"process" :
(String^)"appdomain");
 }

 ~CGlobal() {
 Console::WriteLine("__declspec({0}) CGlobal::~CGlobal destructor", m_bProcess ? (String^)"process" :
(String^)"appdomain");
 }

 int Counter;

private:
 bool m_bProcess;

Specifies that each application domain of your managed application should have its own copy of a particular
global variable or static member variable. See Application Domains and Visual C++ for more information.

Every application domain has its own copy of a per-appdomain variable. A constructor of an appdomain variable is
executed when an assembly is loaded into an application domain, and the destructor is executed when the
application domain is unloaded.

If you want all application domains within a process in the common language runtime to share a global variable,
use the __declspec(process) modifier. __declspec(process) is in effect by default under /clr. The /clr:pure and
/clr:safe compiler options are deprecated in Visual Studio 2015 and unsupported in Visual Studio 2017.

__declspec(appdomain) is only valid when one of the /clr compiler options is used. Only a global variable, static
member variable, or a static local variable can be marked with __declspec(appdomain) . It is an error to apply
__declspec(appdomain) to static members of managed types because they always have this behavior.

Using __declspec(appdomain) is similar to using Thread Local Storage (TLS). Threads have their own storage, as do
application domains. Using __declspec(appdomain) ensures the global variable has its own storage in each
application domain created for this application.

There are limitations to mixing the use of per process and per appdomain variables; see process for more
information.

For example, at program start up, all per-process variables are initialized, then all per-appdomain variables are
initialized. Therefore when a per-process variable is being initialized, it cannot depend on the value of any per-
application domain variable. It is bad practice to mix the use (assignment) of per appdomain and per process
variables.

For information on how to call a function in a specific application domain, see call_in_appdomain Function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/appdomain.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/application-domains-and-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/thread-local-storage-tls
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/call-in-appdomain-function

 bool m_bProcess;
};

__declspec(process) CGlobal process_global = CGlobal(true);
__declspec(appdomain) CGlobal appdomain_global = CGlobal(false);

value class Functions {
public:
 static void change() {
 ++appdomain_global.Counter;
 }

 static void display() {
 Console::WriteLine("process_global value in appdomain '{0}': {1}",
 AppDomain::CurrentDomain->FriendlyName,
 process_global.Counter);

 Console::WriteLine("appdomain_global value in appdomain '{0}': {1}",
 AppDomain::CurrentDomain->FriendlyName,
 appdomain_global.Counter);
 }
};

int main() {
 AppDomain^ defaultDomain = AppDomain::CurrentDomain;
 AppDomain^ domain = AppDomain::CreateDomain("Domain 1");
 AppDomain^ domain2 = AppDomain::CreateDomain("Domain 2");
 CrossAppDomainDelegate^ changeDelegate = gcnew CrossAppDomainDelegate(&Functions::change);
 CrossAppDomainDelegate^ displayDelegate = gcnew CrossAppDomainDelegate(&Functions::display);

 // Print the initial values of appdomain_global in all appdomains.
 Console::WriteLine("Initial value");
 defaultDomain->DoCallBack(displayDelegate);
 domain->DoCallBack(displayDelegate);
 domain2->DoCallBack(displayDelegate);

 // Changing the value of appdomain_global in the domain and domain2
 // appdomain_global value in "default" appdomain remain unchanged
 process_global.Counter = 20;
 domain->DoCallBack(changeDelegate);
 domain2->DoCallBack(changeDelegate);
 domain2->DoCallBack(changeDelegate);

 // Print values again
 Console::WriteLine("Changed value");
 defaultDomain->DoCallBack(displayDelegate);
 domain->DoCallBack(displayDelegate);
 domain2->DoCallBack(displayDelegate);

 AppDomain::Unload(domain);
 AppDomain::Unload(domain2);
}

__declspec(process) CGlobal::CGlobal constructor
__declspec(appdomain) CGlobal::CGlobal constructor
Initial value
process_global value in appdomain 'declspec_appdomain.exe': 10
appdomain_global value in appdomain 'declspec_appdomain.exe': 10
__declspec(appdomain) CGlobal::CGlobal constructor
process_global value in appdomain 'Domain 1': 10
appdomain_global value in appdomain 'Domain 1': 10
__declspec(appdomain) CGlobal::CGlobal constructor
process_global value in appdomain 'Domain 2': 10
appdomain_global value in appdomain 'Domain 2': 10
Changed value
process_global value in appdomain 'declspec_appdomain.exe': 20
appdomain_global value in appdomain 'declspec_appdomain.exe': 10
process_global value in appdomain 'Domain 1': 20
appdomain_global value in appdomain 'Domain 1': 11
process_global value in appdomain 'Domain 2': 20
appdomain_global value in appdomain 'Domain 2': 12
__declspec(appdomain) CGlobal::~CGlobal destructor
__declspec(appdomain) CGlobal::~CGlobal destructor
__declspec(appdomain) CGlobal::~CGlobal destructor
__declspec(process) CGlobal::~CGlobal destructor

See also
__declspec
Keywords

code_seg (__declspec)
10/31/2018 • 3 minutes to read • Edit Online

Syntax
__declspec(code_seg("segname")) declarator

Remarks

Microsoft Specific

The code_seg declaration attribute names an executable text segment in the .obj file in which the object code for
the function or class member functions will be stored.

The __declspec(code_seg(...)) attribute enables the placement of code into separate named segments that can be
paged or locked in memory individually. You can use this attribute to control the placement of instantiated
templates and compiler-generated code.

A segment is a named block of data in an .obj file that is loaded into memory as a unit. A text segment is a segment
that contains executable code. The term section is often used interchangeably with segment.

Object code that's generated when declarator is defined is put in the text segment specified by segname , which is
a narrow-string literal. The name segname does not have to be specified in a section pragma before it can be used
in a declaration. By default, when no code_seg is specified, object code is put in a segment named .text. A
code_seg attribute overrides any existing #pragma code_seg directive. A code_seg attribute applied to a member
function overrides any code_seg attribute applied to the enclosing class.

If an entity has a code_seg attribute, all declarations and definitions of the same entity must have identical
code_seg attributes. If a base-class has a code_seg attribute, derived classes must have the same attribute.

When a code_seg attribute is applied to a namespace-scope function or a member function, the object code for
that function is put in the specified text segment. When this attribute is applied to a class, all member functions of
the class and nested classes—this includes compiler-generated special member functions—are put in the specified
segment. Locally defined classes—for example, classes defined in a member function body—do not inherit the
code_seg attribute of the enclosing scope.

When a code_seg attribute is applied to a template class or template function, all implicit specializations of the
template are put in the specified segment. Explicit or partial specializations do not inherit the code_seg attribute
from the primary template. You may specify the same or a different code_seg attribute on the specialization. A
code_seg attribute can’t be applied to an explicit template instantiation.

By default, compiler-generated code such as a special member function is put in the .text segment. The
#pragma code_seg directive does not override this default. Use the code_seg attribute on the class, class template,

or function template to control where compiler-generated code is put.

Lambdas inherit code_seg attributes from their enclosing scope. To specify a segment for a lambda, apply a
code_seg attribute after the parameter-declaration clause and before any mutable or exception specification, any
trailing return-type specification, and the lambda body. For more information, see Lambda Expression Syntax. This
example defines a lambda in a segment named PagedMem:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/code-seg-declspec.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/section
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/code-seg

auto Sqr = [](int t) __declspec(code_seg("PagedMem")) -> int { return t*t; };

Example

// code_seg.cpp
// Compile: cl /EHsc /W4 code_seg.cpp

// Base template places object code in Segment_1 segment
template<class T>
class __declspec(code_seg("Segment_1")) Example
{
public:
 virtual void VirtualMemberFunction(T /*arg*/) {}
};

// bool specialization places code in default .text segment
template<>
class Example<bool>
{
public:
 virtual void VirtualMemberFunction(bool /*arg*/) {}
};

// int specialization places code in Segment_2 segment
template<>
class __declspec(code_seg("Segment_2")) Example<int>
{
public:
 virtual void VirtualMemberFunction(int /*arg*/) {}
};

// Compiler warns and ignores __declspec(code_seg("Segment_3"))
// in this explicit specialization
__declspec(code_seg("Segment_3")) Example<short>; // C4071

int main()
{
 // implicit double specialization uses base template's
 // __declspec(code_seg("Segment_1")) to place object code
 Example<double> doubleExample{};
 doubleExample.VirtualMemberFunction(3.14L);

 // bool specialization places object code in default .text segment
 Example<bool> boolExample{};
 boolExample.VirtualMemberFunction(true);

 // int specialization uses __declspec(code_seg("Segment_2"))
 // to place object code
 Example<int> intExample{};
 intExample.VirtualMemberFunction(42);
}

Be careful when you put specific member functions—especially virtual member functions—in different segments.
If you define a virtual function in a derived class that resides in a paged segment when the base class method
resides in a non-paged segment, other base class methods or user code may assume that invoking the virtual
method will not trigger a page fault.

This example shows how a code_seg attribute controls segment placement when implicit and explicit template
specialization is used:

END Microsoft Specific

See also
__declspec
Keywords

deprecated (C++)
10/31/2018 • 2 minutes to read • Edit Online

Example

// deprecated.cpp
// compile with: /W3
#define MY_TEXT "function is deprecated"
void func1(void) {}
__declspec(deprecated) void func1(int) {}
__declspec(deprecated("** this is a deprecated function **")) void func2(int) {}
__declspec(deprecated(MY_TEXT)) void func3(int) {}

int main() {
 func1();
 func1(1); // C4996
 func2(1); // C4996
 func3(1); // C4996
}

Example

This topic is about the Microsoft-specific deprecated declspec declaration. For information about the C++14
[[deprecated]] attribute, and guidance on when to use that attribute vs. the Microsoft-specific declspec or

pragma, see C++ Standard Attributes.

With the exceptions noted below, the deprecated declaration offers the same functionality as the deprecated
pragma:

The deprecated declaration lets you specify particular forms of function overloads as deprecated, whereas
the pragma form applies to all overloaded forms of a function name.

The deprecated declaration lets you specify a message that will display at compile time. The text of the
message can be from a macro.

Macros can only be marked as deprecated with the deprecated pragma.

If the compiler encounters the use of a deprecated identifier or the standard [[deprecated]] attribute, a C4996
warning is thrown.

The following sample shows how to mark functions as deprecated, and how to specify a message that will be
displayed at compile time, when the deprecated function is used.

The following sample shows how to mark classes as deprecated, and how to specify a message that will be
displayed at compile time, when the deprecated class is used.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/deprecated-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/deprecated-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4996

// deprecate_class.cpp
// compile with: /W3
struct __declspec(deprecated) X {
 void f(){}
};

struct __declspec(deprecated("** X2 is deprecated **")) X2 {
 void f(){}
};

int main() {
 X x; // C4996
 X2 x2; // C4996
}

See also
__declspec
Keywords

dllexport, dllimport
10/31/2018 • 2 minutes to read • Edit Online

Syntax
 __declspec(dllimport) declarator
 __declspec(dllexport) declarator

Remarks

Example
// Example of the dllimport and dllexport class attributes
__declspec(dllimport) int i;
__declspec(dllexport) void func();

#define DllImport __declspec(dllimport)
#define DllExport __declspec(dllexport)

DllExport void func();
DllExport int i = 10;
DllImport int j;
DllExport int n;

Microsoft Specific

The dllexport and dllimport storage-class attributes are Microsoft-specific extensions to the C and C++
languages. You can use them to export and import functions, data, and objects to or from a DLL.

These attributes explicitly define the DLL's interface to its client, which can be the executable file or another DLL.
Declaring functions as dllexport eliminates the need for a module-definition (.def) file, at least with respect to the
specification of exported functions. The dllexport attribute replaces the __export keyword.

If a class is marked declspec(dllexport), any specializations of class templates in the class hierarchy are implicitly
marked as declspec(dllexport). This means that class templates are explicitly instantiated and the class's members
must be defined.

dllexport of a function exposes the function with its decorated name. For C++ functions, this includes name
mangling. For C functions or functions that are declared as extern "C" , this includes platform-specific decoration
that's based on the calling convention. For information on name decoration in C/C++ code, see Decorated
Names. No name decoration is applied to exported C functions or C++ extern "C" functions using the __cdecl

calling convention.

To export an undecorated name, you can link by using a Module Definition (.def) file that defines the undecorated
name in an EXPORTS section. For more information, see EXPORTS. Another way to export an undecorated name
is to use a #pragma comment(linker, "/export:alias=decorated_name") directive in the source code.

When you declare dllexport or dllimport, you must use extended attribute syntax and the __declspec keyword.

Alternatively, to make your code more readable, you can use macro definitions:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/dllexport-dllimport.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/decorated-names
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/exports

See also

For more information, see:

Definitions and Declarations

Defining Inline C++ Functions with dllexport and dllimport

General Rules and Limitations

Using dllimport and dllexport in C++ Classes

END Microsoft Specific

__declspec
Keywords

Definitions and Declarations (C++)
10/31/2018 • 2 minutes to read • Edit Online

__declspec(dllimport) int func() { // Error; dllimport
 // prohibited on definition.
 return 1;
}

__declspec(dllimport) int i = 10; // Error; this is a definition.

__declspec(dllexport) int i = 10; // Okay--export definition

#define DllImport __declspec(dllimport)
#define DllExport __declspec(dllexport)

extern DllExport int k; // These are both correct and imply a
DllImport int j; // declaration.

static __declspec(dllimport) int l; // Error; not declared extern.

void func() {
 static __declspec(dllimport) int s; // Error; not declared
 // extern.
 __declspec(dllimport) int m; // Okay; this is a
 // declaration.
 __declspec(dllexport) int n; // Error; implies external
 // definition in local scope.
 extern __declspec(dllimport) int i; // Okay; this is a
 // declaration.
 extern __declspec(dllexport) int k; // Okay; extern implies
 // declaration.
 __declspec(dllexport) int x = 5; // Error; implies external
 // definition in local scope.
}

Microsoft Specific

The DLL interface refers to all items (functions and data) that are known to be exported by some program in the
system; that is, all items that are declared as dllimport or dllexport. All declarations included in the DLL interface
must specify either the dllimport or dllexport attribute. However, the definition must specify only the dllexport
attribute. For example, the following function definition generates a compiler error:

This code also generates an error:

However, this is correct syntax:

The use of dllexport implies a definition, while dllimport implies a declaration. You must use the extern keyword
with dllexport to force a declaration; otherwise, a definition is implied. Thus, the following examples are correct:

The following examples clarify the preceding:

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/definitions-and-declarations-cpp.md

See also
dllexport, dllimport

Defining Inline C++ Functions with dllexport and
dllimport
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

See also

You can define as inline a function with the dllexport attribute. In this case, the function is always instantiated and
exported, whether or not any module in the program references the function. The function is presumed to be
imported by another program.

You can also define as inline a function declared with the dllimport attribute. In this case, the function can be
expanded (subject to /Ob specifications), but never instantiated. In particular, if the address of an inline imported
function is taken, the address of the function residing in the DLL is returned. This behavior is the same as taking
the address of a non-inline imported function.

These rules apply to inline functions whose definitions appear within a class definition. In addition, static local data
and strings in inline functions maintain the same identities between the DLL and client as they would in a single
program (that is, an executable file without a DLL interface).

Exercise care when providing imported inline functions. For example, if you update the DLL, don't assume that the
client will use the changed version of the DLL. To ensure that you are loading the proper version of the DLL,
rebuild the DLL's client as well.

END Microsoft Specific

dllexport, dllimport

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/defining-inline-cpp-functions-with-dllexport-and-dllimport.md

General Rules and Limitations
10/31/2018 • 3 minutes to read • Edit Online

Microsoft Specific

__declspec(dllimport) int i;
__declspec(dllexport) int i; // Warning; inconsistent;
 // dllexport takes precedence.

__declspec(dllimport) void func1(void);
__declspec(dllimport) int i;

int *pi = &i; // Error in C
static void (*pf)(void) = &func1; // Address of thunk in C,
 // function in C++

void func2()
{
 static int *pi = &i; // Error in C
 static void (*pf)(void) = &func1; // Address of thunk in C,
 // function in C++
}

If you declare a function or object without the dllimport or dllexport attribute, the function or object is not
considered part of the DLL interface. Therefore, the definition of the function or object must be present in
that module or in another module of the same program. To make the function or object part of the DLL
interface, you must declare the definition of the function or object in the other module as dllexport.
Otherwise, a linker error is generated.

If you declare a function or object with the dllexport attribute, its definition must appear in some module of
the same program. Otherwise, a linker error is generated.

If a single module in your program contains both dllimport and dllexport declarations for the same
function or object, the dllexport attribute takes precedence over the dllimport attribute. However, a
compiler warning is generated. For example:

In C++, you can initialize a globally declared or static local data pointer or with the address of a data object
declared with the dllimport attribute, which generates an error in C. In addition, you can initialize a static
local function pointer with the address of a function declared with the dllimport attribute. In C, such an
assignment sets the pointer to the address of the DLL import thunk (a code stub that transfers control to the
function) rather than the address of the function. In C++, it sets the pointer to the address of the function.
For example:

However, because a program that includes the dllexport attribute in the declaration of an object must
provide the definition for that object somewhere in the program, you can initialize a global or local static
function pointer with the address of a dllexport function. Similarly, you can initialize a global or local static
data pointer with the address of a dllexport data object. For example, the following code does not generate
errors in C or C++:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/general-rules-and-limitations.md

See also

__declspec(dllexport) void func1(void);
__declspec(dllexport) int i;

int *pi = &i; // Okay
static void (*pf)(void) = &func1; // Okay

void func2()
{
 static int *pi = &i; // Okay
 static void (*pf)(void) = &func1; // Okay
}

template class __declspec(dllexport) B<int>;
class __declspec(dllexport) D : public B<int> {
// ...

class __declspec(dllexport) D : public B<D> {
// ...

class __declspec(dllexport) D : public B<D> {
// ...

If you apply dllexport to a regular class that has a base class that is not marked as dllexport, the compiler
will generate C4275.

The compiler generates the same warning if the base class is a specialization of a class template. To work
around this, mark the base-class with dllexport. The problem with a specialization of a class template is
where to place the __declspec(dllexport); you are not allowed to mark the class template. Instead, explicitly
instantiate the class template and mark this explicit instantiation with dllexport. For example:

This workaround fails if the template argument is the deriving class. For example:

Because this is common pattern with templates, the compiler changed the semantics of dllexport when it is
applied to a class that has one or more base-classes and when one or more of the base classes is a
specialization of a class template. In this case, the compiler implicitly applies dllexport to the specializations
of class templates. You can do the following and not get a warning:

END Microsoft Specific

dllexport, dllimport

Using dllimport and dllexport in C++ Classes
10/31/2018 • 3 minutes to read • Edit Online

Microsoft Specific

#define DllExport __declspec(dllexport)

class DllExport C {
 int i;
 virtual int func(void) { return 1; }
};

dllexport Classes

dllimport Classes

Inheritance and Exportable Classes

Selective Member Import/Export

You can declare C++ classes with the dllimport or dllexport attribute. These forms imply that the entire class is
imported or exported. Classes exported this way are called exportable classes.

The following example defines an exportable class. All its member functions and static data are exported:

Note that explicit use of the dllimport and dllexport attributes on members of an exportable class is prohibited.

When you declare a class dllexport, all its member functions and static data members are exported. You must
provide the definitions of all such members in the same program. Otherwise, a linker error is generated. The one
exception to this rule applies to pure virtual functions, for which you need not provide explicit definitions. However,
because a destructor for an abstract class is always called by the destructor for the base class, pure virtual
destructors must always provide a definition. Note that these rules are the same for nonexportable classes.

If you export data of class type or functions that return classes, be sure to export the class.

When you declare a class dllimport, all its member functions and static data members are imported. Unlike the
behavior of dllimport and dllexport on nonclass types, static data members cannot specify a definition in the
same program in which a dllimport class is defined.

All base classes of an exportable class must be exportable. If not, a compiler warning is generated. Moreover, all
accessible members that are also classes must be exportable. This rule permits a dllexport class to inherit from a
dllimport class, and a dllimport class to inherit from a dllexport class (though the latter is not recommended).
As a rule, everything that is accessible to the DLL's client (according to C++ access rules) should be part of the
exportable interface. This includes private data members referenced in inline functions.

Because member functions and static data within a class implicitly have external linkage, you can declare them with
the dllimport or dllexport attribute, unless the entire class is exported. If the entire class is imported or exported,
the explicit declaration of member functions and data as dllimport or dllexport is prohibited. If you declare a
static data member within a class definition as dllexport, a definition must occur somewhere within the same
program (as with nonclass external linkage).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/using-dllimport-and-dllexport-in-cpp-classes.md

See also

Similarly, you can declare member functions with the dllimport or dllexport attributes. In this case, you must
provide a dllexport definition somewhere within the same program.

It is worthwhile to note several important points regarding selective member import and export:

Selective member import/export is best used for providing a version of the exported class interface that is
more restrictive; that is, one for which you can design a DLL that exposes fewer public and private features
than the language would otherwise allow. It is also useful for fine-tuning the exportable interface: when you
know that the client, by definition, is unable to access some private data, you need not export the entire
class.

If you export one virtual function in a class, you must export all of them, or at least provide versions that the
client can use directly.

If you have a class in which you are using selective member import/export with virtual functions, the
functions must be in the exportable interface or defined inline (visible to the client).

If you define a member as dllexport but do not include it in the class definition, a compiler error is
generated. You must define the member in the class header.

Although the definition of class members as dllimport or dllexport is permitted, you cannot override the
interface specified in the class definition.

If you define a member function in a place other than the body of the class definition in which you declared
it, a warning is generated if the function is defined as dllexport or dllimport (if this definition differs from
that specified in the class declaration).

END Microsoft Specific

dllexport, dllimport

jitintrinsic
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(jitintrinsic)

Remarks

See also

Marks the function as significant to the 64-bit common language runtime. This is used on certain functions in
Microsoft-provided libraries.

jitintrinsic adds a MODOPT (IsJitIntrinsic) to a function signature.

Users are discouraged from using this __declspec modifier, as unexpected results can occur.

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/jitintrinsic.md
https://msdn.microsoft.com/en-us/library/system.runtime.compilerservices.isjitintrinsic(v=vs.110).aspx

naked (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(naked) declarator

Remarks

Examples

__declspec(naked) int func(formal_parameters) {}

#define Naked __declspec(naked)
Naked int func(formal_parameters) {}

__declspec(naked) int i;
// Error--naked attribute not permitted on data declarations.

Microsoft Specific

For functions declared with the naked attribute, the compiler generates code without prolog and epilog code. You
can use this feature to write your own prolog/epilog code sequences using inline assembler code. Naked functions
are particularly useful in writing virtual device drivers. Note that the naked attribute is only valid on x86 and
ARM, and is not available on x64.

Because the naked attribute is only relevant to the definition of a function and is not a type modifier, naked
functions must use extended attribute syntax and the __declspec keyword.

The compiler cannot generate an inline function for a function marked with the naked attribute, even if the
function is also marked with the __forceinline keyword.

The compiler issues an error if the naked attribute is applied to anything other than the definition of a non-
member method.

This code defines a function with the naked attribute:

Or, alternately:

The naked attribute affects only the nature of the compiler's code generation for the function's prolog and epilog
sequences. It does not affect the code that is generated for calling such functions. Thus, the naked attribute is not
considered part of the function's type, and function pointers cannot have the naked attribute. Furthermore, the
naked attribute cannot be applied to a data definition. For example, this code sample generates an error:

The naked attribute is relevant only to the definition of the function and cannot be specified in the function's
prototype. For example, this declaration generates a compiler error:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/naked-cpp.md

__declspec(naked) int func(); // Error--naked attribute not permitted on function declarations

See also

END Microsoft Specific

__declspec
Keywords
Naked Function Calls

noalias
10/31/2018 • 2 minutes to read • Edit Online

Example

Microsoft Specific

noalias means that a function call does not modify or reference visible global state and only modifies the memory
pointed to directly by pointer parameters (first-level indirections).

If a function is annotated as noalias, the optimizer can assume that, in addition to the parameters themselves, only
first-level indirections of pointer parameters are referenced or modified inside the function. The visible global state
is the set of all data that is not defined or referenced outside of the compilation scope, and their address is not
taken. The compilation scope is all source files (/LTCG (Link-time Code Generation) builds) or a single source file
(non-/LTCG build).

The noalias annotation only applies within the body of the annotated function. Marking a function as
__declspec(noalias) does not affect the aliasing of pointers returned by the function.

For another annotation that can impact aliasing, see __declspec(restrict).

The following sample demonstrates the use of __declspec(noalias).

When the function multiply that accesses memory is annotated __declspec(noalias), it tells the compiler that
this function does not modify the global state except through the pointers in its parameter list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/noalias.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ltcg-link-time-code-generation

// declspec_noalias.c
#include <stdio.h>
#include <stdlib.h>

#define M 800
#define N 600
#define P 700

float * mempool, * memptr;

float * ma(int size)
{
 float * retval;
 retval = memptr;
 memptr += size;
 return retval;
}

float * init(int m, int n)
{
 float * a;
 int i, j;
 int k=1;

 a = ma(m * n);
 if (!a) exit(1);
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 a[i*n+j] = 0.1/k++;
 return a;
}

__declspec(noalias) void multiply(float * a, float * b, float * c)
{
 int i, j, k;

 for (j=0; j<P; j++)
 for (i=0; i<M; i++)
 for (k=0; k<N; k++)
 c[i * P + j] =
 a[i * N + k] *
 b[k * P + j];
}

int main()
{
 float * a, * b, * c;

 mempool = (float *) malloc(sizeof(float) * (M*N + N*P + M*P));

 if (!mempool)
 {
 puts("ERROR: Malloc returned null");
 exit(1);
 }

 memptr = mempool;
 a = init(M, N);
 b = init(N, P);
 c = init(M, P);

 multiply(a, b, c);
}

See also

__declspec
Keywords
__declspec(restrict)

noinline
3/11/2019 • 2 minutes to read • Edit Online

Microsoft Specific

class X {
 __declspec(noinline) int mbrfunc() {
 return 0;
 } // will not inline
};

See also

__declspec(noinline) tells the compiler to never inline a particular member function (function in a class).

It may be worthwhile to not inline a function if it is small and not critical to the performance of your code. That is,
if the function is small and not likely to be called often, such as a function that handles an error condition.

Keep in mind that if a function is marked noinline, the calling function will be smaller and thus, itself a candidate
for compiler inlining.

END Microsoft Specific

__declspec
Keywords
inline, __inline, __forceinline

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/noinline.md

noreturn
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

NOTENOTE

Example

// noreturn2.cpp
__declspec(noreturn) extern void fatal () {}

int main() {
 if(1)
 return 1;
 else if(0)
 return 0;
 else
 fatal();
}

See also

This __declspec attribute tells the compiler that a function does not return. As a consequence, the compiler knows
that the code following a call to a __declspec(noreturn) function is unreachable.

If the compiler finds a function with a control path that does not return a value, it generates a warning (C4715) or
error message (C2202). If the control path cannot be reached due to a function that never returns, you can use
__declspec(noreturn) to prevent this warning or error.

Adding __declspec(noreturn) to a function that is expected to return can result in undefined behavior.

In the following sample,the else clause does not contain a return statement. Declaring fatal as
__declspec(noreturn) avoids an error or warning message.

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/noreturn.md

nothrow (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

#define WINAPI __declspec(nothrow) __stdcall

void WINAPI f1();
void __declspec(nothrow) __stdcall f2();
void __stdcall f3() throw();

See also

Microsoft Specific

A __declspec extended attribute which can be used in the declaration of functions.

return-type __declspec(nothrow) [call-convention] function-name ([argument-list])

We recommend that all new code use the noexcept operator rather than __declspec(nothrow) .

This attribute tells the compiler that the declared function and the functions it calls never throw an exception.
However, it does not enforce the directive. In other words, it never causes std::terminate to be invoked, unlike
noexcept , or in std:c++17 mode (Visual Studio 2017 version 15.5 and later), throw() .

With the synchronous exception handling model, now the default, the compiler can eliminate the mechanics of
tracking the lifetime of certain unwindable objects in such a function, and significantly reduce the code size. Given
the following preprocessor directive, the three function declarations below are equivalent in /std:c++14 mode:

In /std:c++17 mode, throw() is not equivalent to the others that use __declspec(nothrow) because it causes
std::terminate to be invoked if an exception is thrown from the function.

The void __stdcall f3() throw(); declaration uses the syntax defined by the C++ standard. In C++17 the
throw() keyword was deprecated.

END Microsoft Specific

__declspec
noexcept
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/nothrow-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-functions

novtable
10/31/2018 • 2 minutes to read • Edit Online

Microsoft Specific

Example
// novtable.cpp
#include <stdio.h>

struct __declspec(novtable) X {
 virtual void mf();
};

struct Y : public X {
 void mf() {
 printf_s("In Y\n");
 }
};

int main() {
 // X *pX = new X();
 // pX->mf(); // Causes a runtime access violation.

 Y *pY = new Y();
 pY->mf();
}

In Y

See also

This is a __declspec extended attribute.

This form of __declspec can be applied to any class declaration, but should only be applied to pure interface
classes, that is, classes that will never be instantiated on their own. The __declspec stops the compiler from
generating code to initialize the vfptr in the constructor(s) and destructor of the class. In many cases, this removes
the only references to the vtable that are associated with the class and, thus, the linker will remove it. Using this
form of __declspec can result in a significant reduction in code size.

If you attempt to instantiate a class marked with novtable and then access a class member, you will receive an
access violation (AV).

END Microsoft Specific

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/novtable.md

process
10/31/2018 • 2 minutes to read • Edit Online

See also

Specifies that your managed application process should have a single copy of a particular global variable, static
member variable, or static local variable shared across all application domains in the process. This was primarily
intended to be used when compiling with /clr:pure, which is deprecated in Visual Studio 2017 and unsupported
in Visual Studio 2017. When compiling with /clr, global and static variables are per-process by default and do not
need to use __declspec(process).

Only a global variable, a static member variable, or a static local variable of native type can be marked with
__declspec(process).

process is only valid when compiling with /clr.

If you want each application domain to have its own copy of a global variable, use appdomain.

See Application Domains and Visual C++ for more information.

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/process.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/application-domains-and-visual-cpp

property (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
 __declspec(property(get=get_func_name)) declarator
 __declspec(property(put=put_func_name)) declarator
 __declspec(property(get=get_func_name, put=put_func_name)) declarator

Remarks

__declspec(property(get=GetX, put=PutX)) int x[];

Example
// declspec_property.cpp
struct S {
 int i;
 void putprop(int j) {
 i = j;
 }

 int getprop() {
 return i;
 }

 __declspec(property(get = getprop, put = putprop)) int the_prop;
};

int main() {
 S s;
 s.the_prop = 5;
 return s.the_prop;
}

Microsoft Specific

This attribute can be applied to non-static "virtual data members" in a class or structure definition. The compiler
treats these "virtual data members" as data members by changing their references into function calls.

When the compiler sees a data member declared with this attribute on the right of a member-selection operator
("." or "->"), it converts the operation to a get or put function, depending on whether such an expression is an l-
value or an r-value. In more complicated contexts, such as " += ", a rewrite is performed by doing both get and
put .

This attribute can also be used in the declaration of an empty array in a class or structure definition. For example:

The above statement indicates that x[] can be used with one or more array indices. In this case, i=p->x[a][b]

will be turned into i=p->GetX(a, b) , and p->x[a][b] = i will be turned into p->PutX(a, b, i);

END Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/property-cpp.md

See also
__declspec
Keywords

restrict
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

Example

Microsoft Specific

When applied to a function declaration or definition that returns a pointer type, restrict tells the compiler that the
function returns an object that is not aliased, that is, referenced by any other pointers. This allows the compiler to
perform additional optimizations.

__declspec(restrict) pointer_return_type function();

The compiler propagates __declspec(restrict). For example, the CRT malloc function has a __declspec(restrict)
decoration, and therefore, the compiler assumes that pointers initialized to memory locations by malloc are also
not aliased by previously existing pointers.

The compiler does not check that the returned pointer is not actually aliased. It is the developer's responsibility to
ensure the program does not alias a pointer marked with the restrict __declspec modifier.

For similar semantics on variables, see __restrict.

For another annotation that applies to aliasing within a function, see __declspec(noalias).

For information about the restrict keyword that is part of C++ AMP, see restrict (C++ AMP).

The following sample demonstrates the use of __declspec(restrict).

When __declspec(restrict) is applied to a function that returns a pointer, this tells the compiler that the memory
pointed to by the return value is not aliased. In this example, the pointers mempool and memptr are global, so the
compiler can't be sure that the memory they refer to is not aliased. However, they are used within ma and its
caller init in a way that returns memory that isn't otherwise referenced by the program, so
__decslpec(restrict) is used to help the optimizer. This is similar to how the CRT headers decorate allocation
functions such as malloc by using __declspec(restrict) to indicate that they always return memory that cannot
be aliased by existing pointers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/restrict.md

// declspec_restrict.c
// Compile with: cl /W4 declspec_restrict.c
#include <stdio.h>
#include <stdlib.h>

#define M 800
#define N 600
#define P 700

float * mempool, * memptr;

__declspec(restrict) float * ma(int size)
{
 float * retval;
 retval = memptr;
 memptr += size;
 return retval;
}

__declspec(restrict) float * init(int m, int n)
{
 float * a;
 int i, j;
 int k=1;

 a = ma(m * n);
 if (!a) exit(1);
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 a[i*n+j] = 0.1f/k++;
 return a;
}

void multiply(float * a, float * b, float * c)
{
 int i, j, k;

 for (j=0; j<P; j++)
 for (i=0; i<M; i++)
 for (k=0; k<N; k++)
 c[i * P + j] =
 a[i * N + k] *
 b[k * P + j];
}

int main()
{
 float * a, * b, * c;

 mempool = (float *) malloc(sizeof(float) * (M*N + N*P + M*P));

 if (!mempool)
 {
 puts("ERROR: Malloc returned null");
 exit(1);
 }

 memptr = mempool;
 a = init(M, N);
 b = init(N, P);
 c = init(M, P);

 multiply(a, b, c);
}

END Microsoft Specific

See also
Keywords
__declspec
__declspec(noalias)

safebuffers
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(safebuffers)

Remarks

C a u t i o nC a u t i o n

Inline Functions

Example

Microsoft Specific

Tells the compiler not to insert buffer overrun security checks for a function.

The /GS compiler option causes the compiler to test for buffer overruns by inserting security checks on the stack.
The types of data structures that are eligible for security checks are described in /GS (Buffer Security Check). For
more information about buffer overrun detection, see Security Features in MSVC.

An expert manual code review or external analysis might determine that a function is safe from a buffer overrun. In
that case, you can suppress security checks for a function by applying the __declspec(safebuffers) keyword to the
function declaration.

Buffer security checks provide important security protection and have a negligible affect on performance.
Therefore, we recommend that you do not suppress them, except in the rare case where the performance of a
function is a critical concern and the function is known to be safe.

A primary function can use an inlining keyword to insert a copy of a secondary function. If the
__declspec(safebuffers) keyword is applied to a function, buffer overrun detection is suppressed for that function.
However, inlining affects the __declspec(safebuffers) keyword in the following ways.

Suppose the /GS compiler option is specified for both functions, but the primary function specifies the
__declspec(safebuffers) keyword. The data structures in the secondary function make it eligible for security
checks, and the function does not suppress those checks. In this case:

Specify the __forceinline keyword on the secondary function to force the compiler to inline that function
regardless of compiler optimizations.

Because the secondary function is eligible for security checks, security checks are also applied to the
primary function even though it specifies the __declspec(safebuffers) keyword.

The following code shows how to use the __declspec(safebuffers) keyword.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/safebuffers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-buffer-security-check
https://blogs.msdn.microsoft.com/vcblog/2017/06/28/security-features-in-microsoft-visual-c/

// compile with: /c /GS
typedef struct {
 int x[20];
} BUFFER;
static int checkBuffers() {
 BUFFER cb;
 // Use the buffer...
 return 0;
};
static __declspec(safebuffers)
 int noCheckBuffers() {
 BUFFER ncb;
 // Use the buffer...
 return 0;
}
int wmain() {
 checkBuffers();
 noCheckBuffers();
 return 0;
}

See also

END Microsoft Specific

__declspec
Keywords
inline, __inline, __forceinline
strict_gs_check

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/strict-gs-check

selectany
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(selectany) declarator

Remarks

NOTENOTE

Example

Microsoft Specific

Tells the compiler that the declared global data item (variable or object) is a pick-any COMDAT (a packaged
function).

At link time, if multiple definitions of a COMDAT are seen, the linker picks one and discards the rest. If the linker
option /OPT:REF (Optimizations) is selected, then COMDAT elimination will occur to remove all the unreferenced
data items in the linker output.

Constructors and assignment by global function or static methods in the declaration do not create a reference and
will not prevent /OPT:REF elimination. Side effects from such code should not be depended on when no other
references to the data exist.

For dynamically initialized, global objects, selectany will discard an unreferenced object's initialization code, as
well.

A global data item can normally be initialized only once in an EXE or DLL project. selectany can be used in
initializing global data defined by headers, when the same header appears in more than one source file. selectany
is available in both the C and C++ compilers.

selectany can only be applied to the actual initialization of global data items that are externally visible.

This code shows how to use the selectany attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/selectany.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/opt-optimizations

//Correct - x1 is initialized and externally visible
__declspec(selectany) int x1=1;

//Incorrect - const is by default static in C++, so
//x2 is not visible externally (This is OK in C, since
//const is not by default static in C)
const __declspec(selectany) int x2 =2;

//Correct - x3 is extern const, so externally visible
extern const __declspec(selectany) int x3=3;

//Correct - x4 is extern const, so it is externally visible
extern const int x4;
const __declspec(selectany) int x4=4;

//Incorrect - __declspec(selectany) is applied to the uninitialized
//declaration of x5
extern __declspec(selectany) int x5;

// OK: dynamic initialization of global object
class X {
public:
X(int i){i++;};
int i;
};

__declspec(selectany) X x(1);

Example

// selectany2.cpp
// in the following lines, const marks the variables as read only
__declspec(selectany) extern const int ix = 5;
__declspec(selectany) extern const int jx = 5;
int main() {
 int ij;
 ij = ix + jx;
}

See also

This code shows how to use the selectany attribute to ensure data COMDAT folding when you also use the
/OPT:ICF linker option. Note that data must be marked with selectany and placed in a const (readonly) section.
You must explicitly specify the read-only section.

END Microsoft Specific

__declspec
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/opt-optimizations

spectre
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

C a u t i o nC a u t i o n

Example

// compile with: /c /Qspectre
static __declspec(spectre(nomitigation))
int noSpectreIssues() {
 // No Spectre variant 1 vulnerability here
 // ...
 return 0;
}

int main() {
 noSpectreIssues();
 return 0;
}

See also

Microsoft Specific

Tells the compiler not to insert Spectre variant 1 speculative execution barrier instructions for a function.

__declspec(spectre(nomitigation))

The /Qspectre compiler option causes the compiler to insert speculative execution barrier instructions where
analysis indicates that a Spectre variant 1 security vulnerability exists. The specific instructions emitted depend on
the processor. While these instructions should have a minimal impact on code size or performance, there may be
cases where your code is not affected by the vulnerability, and requires maximum performance.

Expert analysis might determine that a function is safe from a Spectre variant 1 bounds check bypass defect. In that
case, you can suppress the generation of mitigation code within a function by applying
__declspec(spectre(nomitigation)) to the function declaration.

The /Qspectre speculative execution barrier instructions provide important security protection and have a
negligible affect on performance. Therefore, we recommend that you do not suppress them, except in the rare case
where the performance of a function is a critical concern and the function is known to be safe.

The following code shows how to use __declspec(spectre(nomitigation)) .

END Microsoft Specific

__declspec
Keywords
/Qspectre

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/spectre.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qspectre
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qspectre

thread
5/7/2019 • 3 minutes to read • Edit Online

Syntax

Remarks

__declspec(thread) int tls_i = 1;

Microsoft Specific

The thread extended storage-class modifier is used to declare a thread local variable. For the portable equivalent
in C++11 and later, use the thread_local storage class specifier for portable code. On Windows thread_local is
implemented with __declspec(thread).

__declspec(thread) declarator

Thread Local Storage (TLS) is the mechanism by which each thread in a multithreaded process allocates storage
for thread-specific data. In standard multithreaded programs, data is shared among all threads of a given process,
whereas thread local storage is the mechanism for allocating per-thread data. For a complete discussion of
threads, see Multithreading.

Declarations of thread local variables must use extended attribute syntax and the __declspec keyword with the
thread keyword. For example, the following code declares an integer thread local variable and initializes it with a
value:

When using thread-local variables in dynamically-loaded libraries, you need to be aware of factors that can cause
a thread-local variable to not be initialized correctly:

1. If the variable is initialized with a function call (including constructors), this function will only be called for
the thread that caused the binary/DLL to load into the process, and for those threads that started after the
binary/DLL was loaded. The initialization functions are not called for any other thread that was already
running when the DLL was loaded. Dynamic initialization occurs on the DllMain call for
DLL_THREAD_ATTACH, but the DLL never gets that message if the DLL isn't in the process when the
thread starts.

2. Thread-local variables that are initialized statically with constant values are generally initialized properly on
all threads. However, as of December 2017 there is a known conformance issue in the Microsoft C++
compiler whereby constexpr variables receive dynamic rather than static initialization.

Note: Both of these issues are expected to be fixed in future updates of the compiler.

Additionally, you must observe these guidelines when declaring thread local objects and variables:

You can apply the thread attribute only to class and data declarations and definitions; thread cannot be
used on function declarations or definitions.

You can specify the thread attribute only on data items with static storage duration. This includes global
data objects (both static and extern), local static objects, and static data members of classes. You cannot
declare automatic data objects with the thread attribute.

You must use the thread attribute for the declaration and the definition of a thread local object, whether

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/thread.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp

See also

// declspec_thread_2.cpp
// compile with: /LD
__declspec(thread) class B {
public:
 int data;
} BObject; // BObject declared thread local.

class B2 {
public:
 int data;
};
__declspec(thread) B2 BObject2; // BObject2 declared thread local.

// declspec_thread_3.cpp
// compile with: /LD
#define Thread __declspec(thread)
int j = j; // Okay in C++; C error
Thread int tls_i = sizeof(tls_i); // Okay in C and C++

the declaration and definition occur in the same file or separate files.

You cannot use the thread attribute as a type modifier.

Because the declaration of objects that use the thread attribute is permitted, these two examples are
semantically equivalent:

Standard C permits initialization of an object or variable with an expression involving a reference to itself,
but only for objects of nonstatic extent. Although C++ normally permits such dynamic initialization of an
object with an expression involving a reference to itself, this type of initialization is not permitted with
thread local objects. For example:

Note that a sizeof expression that includes the object being initialized does not constitute a reference to
itself and is allowed in C and C++.

END Microsoft Specific

__declspec
Keywords
Thread Local Storage (TLS)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/thread-local-storage-tls

uuid (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__declspec(uuid("ComObjectGUID")) declarator

Remarks

struct __declspec(uuid("00000000-0000-0000-c000-000000000046")) IUnknown;
struct __declspec(uuid("{00020400-0000-0000-c000-000000000046}")) IDispatch;

See also

Microsoft Specific

The compiler attaches a GUID to a class or structure declared or defined (full COM object definitions only) with
the uuid attribute.

The uuid attribute takes a string as its argument. This string names a GUID in normal registry format with or
without the { } delimiters. For example:

This attribute can be applied in a redeclaration. This allows the system headers to supply the definitions of
interfaces such as IUnknown , and the redeclaration in some other header (such as <comdef.h>) to supply the
GUID.

The keyword __uuidof can be applied to retrieve the constant GUID attached to a user-defined type.

END Microsoft Specific

__declspec
Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/uuid-cpp.md

__restrict
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Example
// __restrict_keyword.c
// compile with: /LD
// In the following function, declare a and b as disjoint arrays
// but do not have same assurance for c and d.
void sum2(int n, int * __restrict a, int * __restrict b,
 int * c, int * d) {
 int i;
 for (i = 0; i < n; i++) {
 a[i] = b[i] + c[i];
 c[i] = b[i] + d[i];
 }
}

// By marking union members as __restrict, tell compiler that
// only z.x or z.y will be accessed in any given scope.
union z {
 int * __restrict x;
 double * __restrict y;
};

See also

Like the __declspec (restrict) modifier, the __restrict keyword indicates that a symbol is not aliased in the
current scope. The __restrict keyword differs from the __declspec (restrict) modifier in the following ways:

The __restrict keyword is valid only on variables, and __declspec (restrict) is only valid on function
declarations and definitions.

__restrict is similar to restrict from the C99 spec, but __restrict can be used in C++ or C programs.

When __restrict is used, the compiler will not propagate the no-alias property of a variable. That is, if you
assign a __restrict variable to a non-__restrict variable, the compiler will still allow the non-__restrict
variable to be aliased. This is different from the behavior of the restrict keyword from the C99
specification.

Generally, if you affect the behavior of an entire function, it is better to use __declspec (restrict) than the
keyword.

For compatibility with previous versions, _restrict is a synonym for __restrict unless compiler option /Za (Disable
language extensions) is specified.

In Visual Studio 2015 and later, __restrict can be used on C++ references.

When used on a variable that also has the volatile keyword, volatile will take precedence.

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/extension-restrict.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

__sptr, __uptr
10/31/2018 • 2 minutes to read • Edit Online

int * __sptr psp;
int * __uptr pup;
int * __ptr32 __sptr psp32;
int * __ptr32 __uptr pup32;
void MyFunction(char * __uptr __ptr32 myValue);

Example

Microsoft Specific

Use the __sptr or __uptr modifier on a 32-bit pointer declaration to specify how the compiler converts a 32-bit
pointer to a 64-bit pointer. A 32-bit pointer is converted, for example, when it is assigned to a 64-bit pointer
variable or is dereferenced on a 64-bit platform.

Microsoft documentation for support of 64-bit platforms sometimes refers to the most significant bit of a 32-bit
pointer as the sign bit. By default, the compiler uses sign extension to convert a 32-bit pointer to a 64-bit pointer.
That is, the least significant 32 bits of the 64-bit pointer are set to the value of the 32-bit pointer and the most
significant 32 bits are set to the value of the sign bit of the 32-bit pointer. This conversion yields correct results if
the sign bit is 0, but not if the sign bit is 1. For example, the 32-bit address 0x7FFFFFFF yields the equivalent 64-
bit address 0x000000007FFFFFFF, but the 32-bit address 0x80000000 is incorrectly changed to
0xFFFFFFFF80000000.

The __sptr, or signed pointer, modifier specifies that a pointer conversion set the most significant bits of a 64-bit
pointer to the sign bit of the 32-bit pointer. The __uptr, or unsigned pointer, modifier specifies that a conversion set
the most significant bits to zero. The following declarations show the __sptr and __uptr modifiers used with two
unqualified pointers, two pointers qualified with the __ptr32 type, and a function parameter.

Use the __sptr and __uptr modifiers with pointer declarations. Use the modifiers in the position of a pointer type
qualifier, which means the modifier must follow the asterisk. You cannot use the modifiers with pointers to
members. The modifiers do not affect non-pointer declarations.

For compatibility with previous versions, _sptr and _uptr are synonyms for __sptr and __uptr unless compiler
option /Za (Disable language extensions) is specified.

The following example declares 32-bit pointers that use the __sptr and __uptr modifiers, assigns each 32-bit
pointer to a 64-bit pointer variable, and then displays the hexadecimal value of each 64-bit pointer. The example is
compiled with the native 64-bit compiler and is executed on a 64-bit platform.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/sptr-uptr.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/pointer-declarations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

// sptr_uptr.cpp
// processor: x64
#include "stdio.h"

int main()
{
 void * __ptr64 p64;
 void * __ptr32 p32d; //default signed pointer
 void * __sptr __ptr32 p32s; //explicit signed pointer
 void * __uptr __ptr32 p32u; //explicit unsigned pointer

// Set the 32-bit pointers to a value whose sign bit is 1.
 p32d = reinterpret_cast<void *>(0x87654321);
 p32s = p32d;
 p32u = p32d;

// The printf() function automatically displays leading zeroes with each 32-bit pointer. These are unrelated
// to the __sptr and __uptr modifiers.
 printf("Display each 32-bit pointer (as an unsigned 64-bit pointer):\n");
 printf("p32d: %p\n", p32d);
 printf("p32s: %p\n", p32s);
 printf("p32u: %p\n", p32u);

 printf("\nDisplay the 64-bit pointer created from each 32-bit pointer:\n");
 p64 = p32d;
 printf("p32d: p64 = %p\n", p64);
 p64 = p32s;
 printf("p32s: p64 = %p\n", p64);
 p64 = p32u;
 printf("p32u: p64 = %p\n", p64);
 return 0;
}

Display each 32-bit pointer (as an unsigned 64-bit pointer):
p32d: 0000000087654321
p32s: 0000000087654321
p32u: 0000000087654321

Display the 64-bit pointer created from each 32-bit pointer:
p32d: p64 = FFFFFFFF87654321
p32s: p64 = FFFFFFFF87654321
p32u: p64 = 0000000087654321

See also

END Microsoft Specific

Microsoft-Specific Modifiers

__unaligned
12/19/2018 • 2 minutes to read • Edit Online

Remarks

See also

Microsoft specific. When you declare a pointer with the __unaligned modifier, the compiler assumes that the
pointer addresses data that is not aligned. Consequently, platform-appropriate code is generated to handle
unaligned reads and writes through the pointer.

This modifier describes the alignment of the data addressed by the pointer; the pointer itself is assumed to be
aligned.

The necessity for the __unaligned keyword varies by platform and environment. Failure to mark data
appropriately can result in issues ranging from performance penalties to hardware faults. The __unaligned
modifier is not valid for the x86 platform.

For compatibility with previous versions, _unaligned is a synonym for __unaligned unless compiler option /Za
(Disable language extensions) is specified.

For more information about alignment, see:

align

__alignof Operator

pack

/Zp (Struct Member Alignment)

Examples of Structure Alignment

Keywords

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/unaligned.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pack
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions

__w64
5/7/2019 • 2 minutes to read • Edit Online

Syntax

ParametersParameters

Remarks

IMPORTANTIMPORTANT

Example

Microsoft Specific

This keyword is obsolete. In versions of Visual Studio earlier than Visual Studio 2013, this lets you mark variables,
so that when you compile with /Wp64 the compiler will report any warnings that would be reported if you were
compiling with a 64-bit compiler.

type __w64 identifier

type
One of the three types that could cause problems in code being ported from a 32-bit to a 64-bit compiler: int,
long, or a pointer.

identifier
The identifier for the variable you are creating.

The /Wp64 compiler option and __w64 keyword are deprecated in Visual Studio 2010 and Visual Studio 2013 and removed
starting in Visual Studio 2013. If you use the /Wp64 compiler option on the command line, the compiler issues Command-
Line Warning D9002. The __w64 keyword is silently ignored. Instead of using this option and keyword to detect 64-bit
portability issues, use a Microsoft C++ compiler that targets a 64-bit platform. For more information, see Configure Visual
C++ for 64-bit, x64 targets.

Any typedef that has __w64 on it must be 32 bits on x86 and 64 bits on x64.

To detect portability issues by using versions of the Microsoft C++ compiler earlier than Visual Studio 2010, the
__w64 keyword should be specified on any typedefs that change size between 32 bit and 64 bit platforms. For any
such type, __w64 must appear only on the 32-bit definition of the typedef.

For compatibility with previous versions, _w64 is a synonym for __w64 unless compiler option /Za (Disable
language extensions) is specified.

The __w64 keyword is ignored if the compilation does not use /Wp64 .

For more information about porting to 64-bit, see the following topics:

MSVC Compiler Options

Porting 32-Bit Code to 64-Bit Code

Configure Visual C++ for 64-bit, x64 targets

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/w64.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/wp64-detect-64-bit-portability-issues
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/wp64-detect-64-bit-portability-issues
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-64-bit-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-options
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/common-visual-cpp-64-bit-migration-issues
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-64-bit-visual-cpp

// __w64.cpp
// compile with: /W3 /Wp64
typedef int Int_32;
#ifdef _WIN64
typedef __int64 Int_Native;
#else
typedef int __w64 Int_Native;
#endif

int main() {
 Int_32 i0 = 5;
 Int_Native i1 = 10;
 i0 = i1; // C4244 64-bit int assigned to 32-bit int

 // char __w64 c; error, cannot use __w64 on char
}

See also
Keywords

funcfunc
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__func__

Return Value

Example
#include <string>
#include <iostream>

namespace Test
{
 struct Foo
 {
 static void DoSomething(int i, std::string s)
 {
 std::cout << __func__ << std::endl; // Output: DoSomething
 }
 };
}

int main()
{
 Test::Foo::DoSomething(42, "Hello");

 return 0;
}

Requirements

(C++11) The predefined identifier __func__ is implicitly defined as a string that contains the unqualified and
unadorned name of the enclosing function. __func__ is mandated by the C++ standard and is not a Microsoft
extension.

Returns a null-terminated const char array of characters that contains the function name.

C++11

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/func.md

Compiler COM Support
5/7/2019 • 2 minutes to read • Edit Online

Microsoft Specific

See also

The Microsoft C++ compiler can directly read component object model (COM) type libraries and translate the
contents into C++ source code that can be included in the compilation. Language extensions are available to
facilitate COM programming on the client side.

By using the #import preprocessor directive, the compiler can read a type library and convert it into a C++ header
file that describes the COM interfaces as classes. A set of #import attributes is available for user control of the
content for the resulting type library header files.

You can use the __declspec extended attribute uuid to assign a globally unique identifier (GUID) to a COM object.
The keyword __uuidof can be used to extract the GUID associated with a COM object. Another __declspec
attribute, property, can be used to specify the get and set methods for a data member of a COM object.

A set of COM support global functions and classes is provided to support the VARIANT and BSTR types,
implement smart pointers, and encapsulate the error object thrown by _com_raise_error :

Compiler COM Global Functions

_bstr_t

_com_error

_com_ptr_t

_variant_t

END Microsoft Specific

Compiler COM Support Classes
Compiler COM Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/compiler-com-support.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-import-directive-cpp

Compiler COM Global Functions
10/31/2018 • 2 minutes to read • Edit Online

FUNCTION DESCRIPTION

_com_raise_error Throws a _com_error in response to a failure.

_set_com_error_handler Replaces the default function that is used for COM error-
handling.

ConvertBSTRToString Converts a BSTR value to a char * .

ConvertStringToBSTR Converts a char * value to a BSTR .

See also

Microsoft Specific

The following routines are available:

END Microsoft Specific

Compiler COM Support Classes
Compiler COM Support

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/compiler-com-global-functions.md

_com_raise_error
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void __stdcall _com_raise_error(
 HRESULT hr,
 IErrorInfo* perrinfo = 0
);

ParametersParameters

Remarks

void __stdcall _com_raise_error(HRESULT hr, IErrorInfo* perrinfo) {
 throw _com_error(hr, perrinfo);
}

Requirements

See also

Microsoft Specific

Throws a _com_error in response to a failure.

hr
HRESULT information.

perrinfo
IErrorInfo object.

_com_raise_error, which is defined in <comdef.h>, can be replaced by a user-written version of the same name
and prototype. This could be done if you want to use #import but do not want to use C++ exception handling. In
that case, a user version of _com_raise_error might decide to do a longjmp or display a message box and halt.
The user version should not return, though, because the compiler COM support code does not expect it to return.

You can also use _set_com_error_handler to replace the default error-handling function.

By default, _com_raise_error is defined as follows:

END Microsoft Specific

Header: <comdef.h>

Lib: If the wchar_t is Native Type compiler option is on, use comsuppw.lib or comsuppwd.lib. If wchar_t is
Native Type is off, use comsupp.lib. For more information, see /Zc:wchar_t (wchar_t Is Native Type).

Compiler COM Global Functions
_set_com_error_handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-raise-error.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

ConvertStringToBSTR
10/31/2018 • 2 minutes to read • Edit Online

Syntax
BSTR __stdcall ConvertStringToBSTR(const char* pSrc)

ParametersParameters

Example
// ConvertStringToBSTR.cpp
#include <comutil.h>
#include <stdio.h>

#pragma comment(lib, "comsuppw.lib")
#pragma comment(lib, "kernel32.lib")

int main() {
 char* lpszText = "Test";
 printf_s("char * text: %s\n", lpszText);

 BSTR bstrText = _com_util::ConvertStringToBSTR(lpszText);
 wprintf_s(L"BSTR text: %s\n", bstrText);

 SysFreeString(bstrText);
}

char * text: Test
BSTR text: Test

Requirements

See also

Microsoft Specific

Converts a char * value to a BSTR .

pSrc
A char * variable.

END Microsoft Specific

Header: <comutil.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/convertstringtobstr.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

ConvertBSTRToString
10/31/2018 • 2 minutes to read • Edit Online

Syntax
char* __stdcall ConvertBSTRToString(BSTR pSrc);

ParametersParameters

Remarks

Example
// ConvertBSTRToString.cpp
#include <comutil.h>
#include <stdio.h>

#pragma comment(lib, "comsuppw.lib")

int main() {
 BSTR bstrText = ::SysAllocString(L"Test");
 wprintf_s(L"BSTR text: %s\n", bstrText);

 char* lpszText2 = _com_util::ConvertBSTRToString(bstrText);
 printf_s("char * text: %s\n", lpszText2);

 SysFreeString(bstrText);
 delete[] lpszText2;
}

BSTR text: Test
char * text: Test

Requirements

See also

Microsoft Specific

Converts a BSTR value to a char * .

pSrc
A BSTR variable.

ConvertBSTRToString allocates a string you must delete.

END Microsoft Specific

Header: <comutil.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/convertbstrtostring.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

_set_com_error_handler
2/27/2019 • 2 minutes to read • Edit Online

Syntax
void __stdcall _set_com_error_handler(
 void (__stdcall *pHandler)(
 HRESULT hr,
 IErrorInfo* perrinfo
)
);

ParametersParameters

Remarks

Example

Microsoft Specific

Replaces the default function that is used for COM error-handling.

pHandler
Pointer to the replacement function.

hr
HRESULT information.

perrinfo
IErrorInfo object.

By default, _com_raise_error handles all COM errors. You can change this behavior by using
_set_com_error_handler to call your own error-handling function.

The replacement function must have a signature that is equivalent to that of _com_raise_error .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/set-com-error-handler.md

// _set_com_error_handler.cpp
// compile with /EHsc
#include <stdio.h>
#include <comdef.h>
#include <comutil.h>

// Importing ado dll to attempt to establish an ado connection.
// Not related to _set_com_error_handler
#import "C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF", "adoEOF")

void __stdcall _My_com_raise_error(HRESULT hr, IErrorInfo* perrinfo)
{
 throw "Unable to establish the connection!";
}

int main()
{
 _set_com_error_handler(_My_com_raise_error);
 _bstr_t bstrEmpty(L"");
 _ConnectionPtr Connection = NULL;
 try
 {
 Connection.CreateInstance(__uuidof(Connection));
 Connection->Open(bstrEmpty, bstrEmpty, bstrEmpty, 0);
 }
 catch(char* errorMessage)
 {
 printf("Exception raised: %s\n", errorMessage);
 }

 return 0;
}

Exception raised: Unable to establish the connection!

Requirements

See also

Header: <comdef.h>

Lib: If the /Zc:wchar_t compiler option is specified (the default), use comsuppw.lib or comsuppwd.lib. If the
/Zc:wchar_t- compiler option is specified, use comsupp.lib. For more information, including how to set this option
in the IDE, see /Zc:wchar_t (wchar_t Is Native Type).

Compiler COM Global Functions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

Compiler COM Support Classes
10/31/2018 • 2 minutes to read • Edit Online

CLASS PURPOSE

_bstr_t Wraps the BSTR type to provide useful operators and
methods.

_com_error Defines the error object thrown by _com_raise_error in most
failures.

_com_ptr_t Encapsulates COM interface pointers, and automates the
required calls to AddRef , Release , and QueryInterface .

_variant_t Wraps the VARIANT type to provide useful operators and
methods.

See also

Microsoft Specific

Standard classes are used to support some of the COM types. The classes are defined in <comdef.h> and the
header files generated from the type library.

END Microsoft Specific

Compiler COM Support
Compiler COM Global Functions
C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/compiler-com-support-classes.md

_bstr_t Class
10/31/2018 • 2 minutes to read • Edit Online

ConstructionConstruction

_bstr_t Constructs a _bstr_t object.

OperationsOperations

Assign Copies a BSTR into the BSTR wrapped by a _bstr_t .

Attach Links a _bstr_t wrapper to a BSTR .

copy Constructs a copy of the encapsulated BSTR .

Detach Returns the BSTR wrapped by a _bstr_t and detaches
the BSTR from the _bstr_t .

GetAddress Points to the BSTR wrapped by a _bstr_t .

GetBSTR Points to the beginning of the BSTR wrapped by the
_bstr_t .

length Returns the number of characters in the _bstr_t .

OperatorsOperators

operator = Assigns a new value to an existing _bstr_t object.

operator += Appends characters to the end of the _bstr_t object.

operator + Concatenates two strings.

operator ! Checks if the encapsulated BSTR is a NULL string.

operator ==, !=, <, >, <=, >= Compares two _bstr_t objects.

operator wchar_t* | char* Extract the pointers to the encapsulated Unicode or
multibyte BSTR object.

Microsoft Specific

A _bstr_t object encapsulates the BSTR data type. The class manages resource allocation and deallocation
through function calls to SysAllocString and SysFreeString and other BSTR APIs when appropriate. The
_bstr_t class uses reference counting to avoid excessive overhead.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-class.md
https://docs.microsoft.com/previous-versions/windows/desktop/automat/bstr

Requirements

See also

END Microsoft Specific

Header: <comutil.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Support Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

_bstr_t Member Functions
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about _bstr_t member functions, see _bstr_t Class.

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-member-functions.md

_bstr_t::Assign
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Assign(
 BSTR s
);

ParametersParameters

Remarks

Example

Microsoft Specific

Copies a BSTR into the BSTR wrapped by a _ bstr_t .

s
A BSTR to be copied into the BSTR wrapped by a _bstr_t .

Assign does a binary copy, which means the entire length of the BSTR is copied, regardless of content.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-assign.md

// _bstr_t_Assign.cpp

#include <comdef.h>
#include <stdio.h>

int main()
{
 // creates a _bstr_t wrapper
 _bstr_t bstrWrapper;

 // creates BSTR and attaches to it
 bstrWrapper = "some text";
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));

 // bstrWrapper releases its BSTR
 BSTR bstr = bstrWrapper.Detach();
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));
 // "some text"
 wprintf_s(L"bstr = %s\n", bstr);

 bstrWrapper.Attach(SysAllocString(OLESTR("SysAllocedString")));
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));

 // assign a BSTR to our _bstr_t
 bstrWrapper.Assign(bstr);
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));

 // done with BSTR, do manual cleanup
 SysFreeString(bstr);

 // resuse bstr
 bstr= SysAllocString(OLESTR("Yet another string"));
 // two wrappers, one BSTR
 _bstr_t bstrWrapper2 = bstrWrapper;

 *bstrWrapper.GetAddress() = bstr;

 // bstrWrapper and bstrWrapper2 do still point to BSTR
 bstr = 0;
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));
 wprintf_s(L"bstrWrapper2 = %s\n",
 static_cast<wchar_t*>(bstrWrapper2));

 // new value into BSTR
 _snwprintf_s(bstrWrapper.GetBSTR(), 100, bstrWrapper.length(),
 L"changing BSTR");
 wprintf_s(L"bstrWrapper = %s\n",
 static_cast<wchar_t*>(bstrWrapper));
 wprintf_s(L"bstrWrapper2 = %s\n",
 static_cast<wchar_t*>(bstrWrapper2));
}

bstrWrapper = some text
bstrWrapper = (null)
bstr = some text
bstrWrapper = SysAllocedString
bstrWrapper = some text
bstrWrapper = Yet another string
bstrWrapper2 = some text
bstrWrapper = changing BSTR
bstrWrapper2 = some text

See also

END Microsoft Specific

_bstr_t Class

_bstr_t::Attach
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Attach(
 BSTR s
);

ParametersParameters

Remarks

Example

See also

Microsoft Specific

Links a _bstr_t wrapper to a BSTR .

s
A BSTR to be associated with, or assigned to, the _bstr_t variable.

If the _bstr_t was previously attached to another BSTR , the _bstr_t will clean up the BSTR resource, if no other
_bstr_t variables are using the BSTR .

See _bstr_t::Assign for an example using Attach.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-attach.md

_bstr_t::_bstr_t
11/8/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t() throw();
_bstr_t(
 const _bstr_t& s1
) throw();
_bstr_t(
 const char* s2
);
_bstr_t(
 const wchar_t* s3
);
_bstr_t(
 const _variant_t& var
);
_bstr_t(
 BSTR bstr,
 bool fCopy
);

ParametersParameters

Remarks

CONSTRUCTOR DESCRIPTION

_bstr_t() Constructs a default _bstr_t object that encapsulates a null
BSTR object.

Microsoft Specific

Constructs a _bstr_t object.

s1
A _bstr_t object to be copied.

s2
A multibyte string.

s3
A Unicode string

var
A _variant_t object.

bstr
An existing BSTR object.

fCopy
If FALSE, the bstr argument is attached to the new object without making a copy by calling SysAllocString .

The following table describes the _bstr_t constructors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-bstr-t.md

_bstr_t(_bstr_t& s1) Constructs a _bstr_t object as a copy of another.

This is a shallow copy, which increments the reference count
of the encapsulated BSTR object instead of creating a new
one.

_bstr_t(char* s2) Constructs a _bstr_t object by calling SysAllocString to
create a new BSTR object and then encapsulates it.

This constructor first performs a multibyte to Unicode
conversion.

_bstr_t(wchar_t* s3) Constructs a _bstr_t object by calling SysAllocString to
create a new BSTR object and then encapsulates it.

_bstr_t(_variant_t& var) Constructs a _bstr_t object from a _variant_t object by
first retrieving a BSTR object from the encapsulated VARIANT
object.

_bstr_t(BSTR bstr , bool fCopy) Constructs a _bstr_t object from an existing BSTR (as
opposed to a wchar_t* string). If fCopy is false, the supplied
BSTR is attached to the new object without making a new

copy with SysAllocString .

This constructor is used by wrapper functions in the type
library headers to encapsulate and take ownership of a BSTR

that is returned by an interface method.

CONSTRUCTOR DESCRIPTION

See also

END Microsoft Specific

_bstr_t Class
_variant_t Class

_bstr_t::copy
10/31/2018 • 2 minutes to read • Edit Online

Syntax
BSTR copy(bool fCopy = true) const;

ParametersParameters

Remarks

Example
STDMETHODIMP CAlertMsg::get_ConnectionStr(BSTR *pVal){ // m_bsConStr is _bstr_t
 *pVal = m_bsConStr.copy();
}

See also

Microsoft Specific

Constructs a copy of the encapsulated BSTR .

fCopy
If TRUE, copy returns a copy of the contained BSTR , otherwise copy returns the actual BSTR.

Returns a newly allocated copy of the encapsulated BSTR object.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-copy.md

_bstr_t::Detach
10/31/2018 • 2 minutes to read • Edit Online

Syntax
BSTR Detach() throw;

Return Value

Example

See also

Microsoft Specific

Returns the BSTR wrapped by a _bstr_t and detaches the BSTR from the _bstr_t .

The BSTR wrapped by the _bstr_t .

See _bstr_t::Assign for a example using Detach.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-detach.md

_bstr_t::GetAddress
10/31/2018 • 2 minutes to read • Edit Online

Syntax
BSTR* GetAddress();

Return Value

Remarks

Example

See also

Microsoft Specific

Frees any existing string and returns the address of a newly allocated string.

A pointer to the BSTR wrapped by the _bstr_t .

GetAddress affects all _bstr_t objects that share a BSTR . More than one _bstr_t can share a BSTR through the
use of the copy constructor and operator=.

See _bstr_t::Assign for a example using GetAddress.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-getaddress.md

_bstr_t::GetBSTR
10/31/2018 • 2 minutes to read • Edit Online

Syntax
BSTR& GetBSTR();

Return Value

Remarks

Example

See also

Microsoft Specific

Points to the beginning of the BSTR wrapped by the _bstr_t .

The beginning of the BSTR wrapped by the _bstr_t .

GetBSTR affects all _bstr_t objects that share a BSTR . More than one _bstr_t can share a BSTR through the
use of the copy constructor and operator=.

See _bstr_t::Assign for an example using GetBSTR.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-getbstr.md

_bstr_t::length
10/31/2018 • 2 minutes to read • Edit Online

Syntax
unsigned int length () const throw();

Remarks

See also

Microsoft Specific

Returns the number of characters in the _bstr_t , not including the terminating null, of the encapsulated BSTR .

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-length.md

_bstr_t Operators
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _bstr_t operators, see _bstr_t Class.

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-operators.md

_bstr_t::operator =
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t& operator=(const _bstr_t& s1) throw ();
_bstr_t& operator=(const char* s2);
_bstr_t& operator=(const wchar_t* s3);
_bstr_t& operator=(const _variant_t& var);

ParametersParameters

Example

See also

Microsoft Specific

Assigns a new value to an existing _bstr_t object.

s1
A _bstr_t object to be assigned to an existing _bstr_t object.

s2
A multibyte string to be assigned to an existing _bstr_t object.

s3
A Unicode string to be assigned to an existing _bstr_t object.

var
A _variant_t object to be assigned to an existing _bstr_t object.

END Microsoft Specific

See _bstr_t::Assign for an example of using operator=.

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-operator-equal.md

_bstr_t::operator +=, +
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t& operator+=(const _bstr_t& s1);
_bstr_t operator+(const _bstr_t& s1);
friend _bstr_t operator+(const char* s2, const _bstr_t& s1);
friend _bstr_t operator+(const wchar_t* s3, const _bstr_t& s1);

ParametersParameters

Remarks

See also

Microsoft Specific

Appends characters to the end of the _bstr_t object or concatenates two strings.

s1
A _bstr_t object.

s2
A multibyte string.

s3
A Unicode string.

These operators perform string concatenation:

operator+=(s1) Appends the characters in the encapsulated BSTR of s1 to the end of this object's
encapsulated BSTR .

operator+(s1) Returns the new _bstr_t that is formed by concatenating this object's BSTR with that of s1.

operator+(s2 | s1) Returns a new _bstr_t that is formed by concatenating a multibyte string s2, converted
to Unicode, with the BSTR encapsulated in s1.

operator+(s3 , s1) Returns a new _bstr_t that is formed by concatenating a Unicode string s3 with the
BSTR encapsulated in s1.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-operator-add-equal-plus.md

_bstr_t::operator !
10/31/2018 • 2 minutes to read • Edit Online

Syntax
bool operator!() const throw();

Return Value

See also

Microsoft Specific

Checks if the encapsulated BSTR is a NULL string.

It returns TRUE if yes, FALSE if not.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-operator-logical-not.md

_bstr_t Relational Operators
5/7/2019 • 2 minutes to read • Edit Online

Syntax
bool operator!() const throw();
bool operator==(const _bstr_t& str) const throw();
bool operator!=(const _bstr_t& str) const throw();
bool operator<(const _bstr_t& str) const throw();
bool operator>(const _bstr_t& str) const throw();
bool operator<=(const _bstr_t& str) const throw();
bool operator>=(const _bstr_t& str) const throw();

Remarks

See also

Microsoft Specific

Compares two _bstr_t objects.

These operators compare two _bstr_t objects lexicographically. The operators return TRUE if the comparisons
hold, otherwise return FALSE.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-relational-operators.md

_bstr_t::wchar_t*, _bstr_t::char*
11/8/2018 • 2 minutes to read • Edit Online

Syntax
operator const wchar_t*() const throw();
operator wchar_t*() const throw();
operator const char*() const;
operator char*() const;

Remarks

See also

Microsoft Specific

Returns the BSTR characters as a narrow or wide character array.

These operators can be used to extract the character data that is encapsulated by the BSTR object. Assigning a new
value to the returned pointer does not modify the original BSTR data.

END Microsoft Specific

_bstr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/bstr-t-wchar-t-star-bstr-t-char-star.md

_com_error Class
11/9/2018 • 2 minutes to read • Edit Online

ConstructionConstruction

_com_error Constructs a _com_error object.

OperatorsOperators

operator = Assigns an existing _com_error object to another.

Extractor FunctionsExtractor Functions

Error Retrieves the HRESULT passed to the constructor.

ErrorInfo Retrieves the IErrorInfo object passed to the constructor.

WCode Retrieves the 16-bit error code mapped into the
encapsulated HRESULT.

IErrorInfo FunctionsIErrorInfo Functions

Description Calls IErrorInfo::GetDescription function.

HelpContext Calls IErrorInfo::GetHelpContext function.

HelpFile Calls IErrorInfo::GetHelpFile function

Source Calls IErrorInfo::GetSource function.

GUID Calls IErrorInfo::GetGUID function.

Format Message ExtractorFormat Message Extractor

ErrorMessage Retrieves the string message for HRESULT stored in the
_com_error object.

ExepInfo.wCode to HRESULT MappersExepInfo.wCode to HRESULT Mappers

Microsoft Specific

A _com_error object represents an exception condition detected by the error-handling wrapper functions in the
header files generated from the type library or by one of the COM support classes. The _com_error class
encapsulates the HRESULT error code and any associated IErrorInfo Interface object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-class.md

HRESULTToWCode Maps 32-bit HRESULT to 16-bit wCode .

WCodeToHRESULT Maps 16-bit wCode to 32-bit HRESULT.

Requirements

See also

END Microsoft Specific

Header: <comdef.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Support Classes
IErrorInfo Interface

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-ierrorinfo

_com_error Member Functions
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _com_error member functions, see _com_error Class.

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-member-functions.md

_com_error::_com_error
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_com_error(
 HRESULT hr,
 IErrorInfo* perrinfo = NULL,
 bool fAddRef=false) throw();

_com_error(const _com_error& that) throw();

ParametersParameters

throw _com_error(hr, perrinfo);

_com_error err(hr, perrinfo, true);

Remarks

See also

Microsoft Specific

Constructs a _com_error object.

hr
HRESULT information.

perrinfo
IErrorInfo object.

fAddRef
The default causes the constructor to call AddRef on a non-null IErrorInfo interface. This provides for correct
reference counting in the common case where ownership of the interface is passed into the _com_error object,
such as:

If you do not want your code to transfer ownership to the _com_error object, and the AddRef is required to offset
the Release in the _com_error destructor, construct the object as follows:

that
An existing _com_error object.

The first constructor creates a new object given an HRESULT and optional IErrorInfo object. The second creates a
copy of an existing _com_error object.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-com-error.md

_com_error::Description
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t Description() const;

Return Value

Remarks

See also

Microsoft Specific

Calls IErrorInfo::GetDescription function.

Returns the result of IErrorInfo::GetDescription for the IErrorInfo object recorded within the _com_error object.
The resulting BSTR is encapsulated in a _bstr_t object. If no IErrorInfo is recorded, it returns an empty _bstr_t

.

Calls the IErrorInfo::GetDescription function and retrieves IErrorInfo recorded within the _com_error object.
Any failure while calling the IErrorInfo::GetDescription method is ignored.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-description.md

_com_error::Error
10/31/2018 • 2 minutes to read • Edit Online

Syntax
HRESULT Error() const throw();

Return Value

Remarks

See also

Microsoft Specific

Retrieves the HRESULT passed to the constructor.

Raw HRESULT item passed into the constructor.

Retrieves the encapsulated HRESULT item in a _com_error object.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-error.md

_com_error::ErrorInfo
10/31/2018 • 2 minutes to read • Edit Online

Syntax
IErrorInfo * ErrorInfo() const throw();

Return Value

Remarks

See also

Microsoft Specific

Retrieves the IErrorInfo object passed to the constructor.

Raw IErrorInfo item passed into the constructor.

Retrieves the encapsulated IErrorInfo item in a _com_error object, or NULL if no IErrorInfo item is recorded.
The caller must call Release on the returned object when finished using it.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-errorinfo.md

_com_error::ErrorMessage
10/31/2018 • 2 minutes to read • Edit Online

Syntax
const TCHAR * ErrorMessage() const throw();

Return Value

Remarks

See also

Microsoft Specific

Retrieves the string message for HRESULT stored in the _com_error object.

Returns the string message for the HRESULT recorded within the _com_error object. If the HRESULT is a mapped
16-bit wCode, then a generic message " IDispatch error #<wCode> " is returned. If no message is found, then a
generic message " Unknown error #<hresult> " is returned. The returned string is either a Unicode or multibyte
string, depending on the state of the _UNICODE macro.

Retrieves the appropriate system message text for HRESULT recorded within the _com_error object. The system
message text is obtained by calling the Win32 FormatMessage function. The string returned is allocated by the
FormatMessage API, and it is released when the _com_error object is destroyed.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-errormessage.md
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-formatmessage

_com_error::GUID
10/31/2018 • 2 minutes to read • Edit Online

Syntax
GUID GUID() const throw();

Return Value

Remarks

See also

Microsoft Specific

Calls IErrorInfo::GetGUID function.

Returns the result of IErrorInfo::GetGUID for the IErrorInfo object recorded within the _com_error object. If no
IErrorInfo object is recorded, it returns GUID_NULL .

Any failure while calling the IErrorInfo::GetGUID method is ignored.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-guid.md

_com_error::HelpContext
10/31/2018 • 2 minutes to read • Edit Online

Syntax
DWORD HelpContext() const throw();

Return Value

Remarks

See also

Microsoft Specific

Calls IErrorInfo::GetHelpContext function.

Returns the result of IErrorInfo::GetHelpContext for the IErrorInfo object recorded within the _com_error object.
If no IErrorInfo object is recorded, it returns a zero.

Any failure while calling the IErrorInfo::GetHelpContext method is ignored.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-helpcontext.md

_com_error::HelpFile
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t HelpFile() const;

Return Value

Remarks

See also

Microsoft Specific

Calls IErrorInfo::GetHelpFile function.

Returns the result of IErrorInfo::GetHelpFile for the IErrorInfo object recorded within the _com_error object.
The resulting BSTR is encapsulated in a _bstr_t object. If no IErrorInfo is recorded, it returns an empty _bstr_t

.

Any failure while calling the IErrorInfo::GetHelpFile method is ignored.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-helpfile.md

_com_error::HRESULTToWCode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
static WORD HRESULTToWCode(
 HRESULT hr
) throw();

ParametersParameters

Return Value

Remarks

See also

Microsoft Specific

Maps 32-bit HRESULT to 16-bit wCode .

hr
The 32-bit HRESULT to be mapped to 16-bit wCode .

16-bit wCode mapped from the 32-bit HRESULT.

See _com_error::WCode for more information.

END Microsoft Specific

_com_error::WCode
_com_error::WCodeToHRESULT
_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-hresulttowcode.md

_com_error::Source
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_bstr_t Source() const;

Return Value

Remarks

See also

Microsoft Specific

Calls IErrorInfo::GetSource function.

Returns the result of IErrorInfo::GetSource for the IErrorInfo object recorded within the _com_error object. The
resulting BSTR is encapsulated in a _bstr_t object. If no IErrorInfo is recorded, it returns an empty _bstr_t .

Any failure while calling the IErrorInfo::GetSource method is ignored.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-source.md

_com_error::WCode
10/31/2018 • 2 minutes to read • Edit Online

Syntax
WORD WCode () const throw();

Return Value

Remarks

See also

Microsoft Specific

Retrieves the 16-bit error code mapped into the encapsulated HRESULT.

If the HRESULT is within the range 0x80040200 to 0x8004FFFF, the WCode method returns the HRESULT minus
0x80040200; otherwise, it returns zero.

The WCode method is used to undo a mapping that happens in the COM support code. The wrapper for a
dispinterface property or method calls a support routine that packages the arguments and calls
IDispatch::Invoke . Upon return, if a failure HRESULT of DISP_E_EXCEPTION is returned, the error information is

retrieved from the EXCEPINFO structure passed to IDispatch::Invoke . The error code can either be a 16-bit value
stored in the wCode member of the EXCEPINFO structure or a full 32-bit value in the scode member of the
EXCEPINFO structure. If a 16-bit wCode is returned, it must first be mapped to a 32-bit failure HRESULT.

END Microsoft Specific

_com_error::HRESULTToWCode
_com_error::WCodeToHRESULT
_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-wcode.md

_com_error::WCodeToHRESULT
10/31/2018 • 2 minutes to read • Edit Online

Syntax
static HRESULT WCodeToHRESULT(
 WORD wCode
) throw();

ParametersParameters

Return Value

Remarks

See also

Microsoft Specific

Maps 16-bit wCode to 32-bit HRESULT.

wCode
The 16-bit wCode to be mapped to 32-bit HRESULT.

32-bit HRESULT mapped from the 16-bit wCode.

See the WCode member function.

END Microsoft Specific

_com_error::WCode
_com_error::HRESULTToWCode
_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-wcodetohresult.md

_com_error Operators
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _com_error operators, see _com_error Class.

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-operators.md

_com_error::operator =
5/7/2019 • 2 minutes to read • Edit Online

Syntax
_com_error& operator = (
 const _com_error& that
) throw ();

ParametersParameters

See also

Microsoft Specific

Assigns an existing _com_error object to another.

that
A _com_error object.

END Microsoft Specific

_com_error Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-error-operator-equal.md

_com_ptr_t Class
10/31/2018 • 2 minutes to read • Edit Online

_COM_SMARTPTR_TYPEDEF(IMyInterface, __uuidof(IMyInterface));

ConstructionConstruction

_com_ptr_t Constructs a _com_ptr_t object.

Low-Level OperationsLow-Level Operations

AddRef Calls the AddRef member function of IUnknown on the
encapsulated interface pointer.

Attach Encapsulates a raw interface pointer of this smart pointer's
type.

CreateInstance Creates a new instance of an object given a CLSID or
ProgID .

Detach Extracts and returns the encapsulated interface pointer.

GetActiveObject Attaches to an existing instance of an object given a CLSID

or ProgID .

GetInterfacePtr Returns the encapsulated interface pointer.

QueryInterface Calls the QueryInterface member function of IUnknown

on the encapsulated interface pointer.

Release Calls the Release member function of IUnknown on the
encapsulated interface pointer.

OperatorsOperators

Microsoft Specific

A _com_ptr_t object encapsulates a COM interface pointer and is called a "smart" pointer. This template class
manages resource allocation and deallocation through function calls to the IUnknown member functions:
QueryInterface , AddRef , and Release .

A smart pointer is usually referenced by the typedef definition provided by the _COM_SMARTPTR_TYPEDEF
macro. This macro takes an interface name and the IID and declares a specialization of _com_ptr_t with the
name of the interface plus a suffix of Ptr . For example:

declares the _com_ptr_t specialization IMyInterfacePtr .

A set of function templates, not members of this template class, support comparisons with a smart pointer on
the right side of the comparison operator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-class.md

operator = Assigns a new value to an existing _com_ptr_t object.

operators ==, !=, <, >, <=, >= Compare the smart pointer object to another smart pointer,
raw interface pointer, or NULL.

Extractors Extract the encapsulated COM interface pointer.

Requirements

See also

END Microsoft Specific

Header: <comip.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Support Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

_com_ptr_t Member Functions
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _com_ptr_t member functions, see _com_ptr_t Class.

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-member-functions.md

_com_ptr_t::_com_ptr_t
11/8/2018 • 2 minutes to read • Edit Online

Syntax
// Default constructor.
// Constructs a NULL smart pointer.
_com_ptr_t() throw();

// Constructs a NULL smart pointer. The NULL argument must be zero.
_com_ptr_t(
 int null
);

// Constructs a smart pointer as a copy of another instance of the
// same smart pointer. AddRef is called to increment the reference
// count for the encapsulated interface pointer.
_com_ptr_t(
 const _com_ptr_t& cp
) throw();

// Move constructor (Visual Studio 2015 Update 3 and later)
_com_ptr_t(_com_ptr_t&& cp) throw();

// Constructs a smart pointer from a raw interface pointer of this
// smart pointer's type. If fAddRef is true, AddRef is called
// to increment the reference count for the encapsulated
// interface pointer. If fAddRef is false, this constructor
// takes ownership of the raw interface pointer without calling AddRef.
_com_ptr_t(
 Interface* pInterface,
 bool fAddRef
) throw();

// Construct pointer for a _variant_t object.
// Constructs a smart pointer from a _variant_t object. The
// encapsulated VARIANT must be of type VT_DISPATCH or VT_UNKNOWN, or
// it can be converted into one of these two types. If QueryInterface
// fails with an E_NOINTERFACE error, a NULL smart pointer is
// constructed.
_com_ptr_t(
 const _variant_t& varSrc
);

// Constructs a smart pointer given the CLSID of a coclass. This
// function calls CoCreateInstance, by the member function
// CreateInstance, to create a new COM object and then queries for
// this smart pointer's interface type. If QueryInterface fails with
// an E_NOINTERFACE error, a NULL smart pointer is constructed.
explicit _com_ptr_t(
 const CLSID& clsid,
 IUnknown* pOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL
);

// Calls CoCreateClass with provided CLSID retrieved from string.
explicit _com_ptr_t(
 LPCWSTR str,

Microsoft Specific

Constructs a _com_ptr_t object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-com-ptr-t.md

 LPCWSTR str,
 IUnknown* pOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL
);

// Constructs a smart pointer given a multibyte character string that
// holds either a CLSID (starting with "{") or a ProgID. This function
// calls CoCreateInstance, by the member function CreateInstance, to
// create a new COM object and then queries for this smart pointer's
// interface type. If QueryInterface fails with an E_NOINTERFACE error,
// a NULL smart pointer is constructed.
explicit _com_ptr_t(
 LPCSTR str,
 IUnknown* pOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL
);

// Saves the interface.
template<>
_com_ptr_t(
 Interface* pInterface
) throw();

// Make sure correct ctor is called
template<>
_com_ptr_t(
 LPSTR str
);

// Make sure correct ctor is called
template<>
_com_ptr_t(
 LPWSTR str
);

// Constructs a smart pointer from a different smart pointer type or
// from a different raw interface pointer. QueryInterface is called to
// find an interface pointer of this smart pointer's type. If
// QueryInterface fails with an E_NOINTERFACE error, a NULL smart
// pointer is constructed.
template<typename _OtherIID>
_com_ptr_t(
 const _com_ptr_t<_OtherIID>& p
);

// Constructs a smart-pointer from any IUnknown-based interface pointer.
template<typename _InterfaceType>
_com_ptr_t(
 _InterfaceType* p
);

// Disable conversion using _com_ptr_t* specialization of
// template<typename _InterfaceType> _com_ptr_t(_InterfaceType* p)
template<>
explicit _com_ptr_t(
 _com_ptr_t* p
);

ParametersParameters

pInterface
A raw interface pointer.

fAddRef
If TRUE, AddRef is called to increment the reference count of the encapsulated interface pointer.

cp

See also

A _com_ptr_t object.

p
A raw interface pointer, its type being different from the smart pointer type of this _com_ptr_t object.

varSrc
A _variant_t object.

clsid
The CLSID of a coclass.

dwClsContext
Context for running executable code.

lpcStr
A multibyte string that holds either a CLSID (starting with "{") or a ProgID .

pOuter
The outer unknown for aggregation.

_com_ptr_t Class

https://docs.microsoft.com/windows/desktop/com/aggregation

_com_ptr_t::AddRef
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void AddRef();

Remarks

See also

Microsoft Specific

Calls the AddRef member function of IUnknown on the encapsulated interface pointer.

Calls IUnknown::AddRef on the encapsulated interface pointer, raising an E_POINTER error if the pointer is NULL.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-addref.md

_com_ptr_t::Attach
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Attach(Interface* pInterface) throw();
void Attach(Interface* pInterface, bool fAddRef) throw();

ParametersParameters

Remarks

See also

Microsoft Specific

Encapsulates a raw interface pointer of this smart pointer's type.

pInterface
A raw interface pointer.

fAddRef
If it is TRUE, then AddRef is called. If it is FALSE, the _com_ptr_t object takes ownership of the raw interface
pointer without calling AddRef .

Attach(pInterface) AddRef is not called. The ownership of the interface is passed to this _com_ptr_t object.
Release is called to decrement the reference count for the previously encapsulated pointer.

Attach(pInterface , fAddRef) If fAddRef is TRUE, AddRef is called to increment the reference count for the
encapsulated interface pointer. If fAddRef is FALSE, this _com_ptr_t object takes ownership of the raw
interface pointer without calling AddRef . Release is called to decrement the reference count for the
previously encapsulated pointer.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-attach.md

_com_ptr_t::CreateInstance
10/31/2018 • 2 minutes to read • Edit Online

Syntax
HRESULT CreateInstance(
 const CLSID& rclsid,
 IUnknown* pOuter=NULL,
 DWORD dwClsContext = CLSCTX_ALL
) throw();
HRESULT CreateInstance(
 LPCWSTR clsidString,
 IUnknown* pOuter=NULL,
 DWORD dwClsContext = CLSCTX_ALL
) throw();
HRESULT CreateInstance(
 LPCSTR clsidStringA,
 IUnknown* pOuter=NULL,
 DWORD dwClsContext = CLSCTX_ALL
) throw();

ParametersParameters

Remarks

Microsoft Specific

Creates a new instance of an object given a CLSID or ProgID .

rclsid
The CLSID of an object.

clsidString
A Unicode string that holds either a CLSID (starting with "{") or a ProgID .

clsidStringA
A multibyte string, using the ANSI code page, that holds either a CLSID (starting with "{") or a ProgID .

dwClsContext
Context for running executable code.

pOuter
The outer unknown for aggregation.

These member functions call CoCreateInstance to create a new COM object and then queries for this smart
pointer's interface type. The resulting pointer is then encapsulated within this _com_ptr_t object. Release is called
to decrement the reference count for the previously encapsulated pointer. This routine returns the HRESULT to
indicate success or failure.

CreateInstance(rclsid , dwClsContext) Creates a new running instance of an object given a CLSID .

CreateInstance(clsidString , dwClsContext) Creates a new running instance of an object given a Unicode
string that holds either a CLSID (starting with "{") or a ProgID .

CreateInstance(clsidStringA , dwClsContext) Creates a new running instance of an object given a multibyte
character string that holds either a CLSID (starting with "{") or a ProgID . Calls MultiByteToWideChar, which

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-createinstance.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/aggregation
https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

See also

assumes that the string is in the ANSI code page rather than an OEM code page.

END Microsoft Specific

_com_ptr_t Class

_com_ptr_t::Detach
10/31/2018 • 2 minutes to read • Edit Online

Syntax
Interface* Detach() throw();

Remarks

See also

Microsoft Specific

Extracts and returns the encapsulated interface pointer.

Extracts and returns the encapsulated interface pointer, and then clears the encapsulated pointer storage to NULL.
This removes the interface pointer from encapsulation. It is up to you to call Release on the returned interface
pointer.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-detach.md

_com_ptr_t::GetActiveObject
10/31/2018 • 2 minutes to read • Edit Online

Syntax
HRESULT GetActiveObject(
 const CLSID& rclsid
) throw();
HRESULT GetActiveObject(
 LPCWSTR clsidString
) throw();
HRESULT GetActiveObject(
 LPCSTR clsidStringA
) throw();

ParametersParameters

Remarks

See also

Microsoft Specific

Attaches to an existing instance of an object given a CLSID or ProgID .

rclsid
The CLSID of an object.

clsidString
A Unicode string that holds either a CLSID (starting with "{") or a ProgID .

clsidStringA
A multibyte string, using the ANSI code page, that holds either a CLSID (starting with "{") or a ProgID .

These member functions call GetActiveObject to retrieve a pointer to a running object that has been registered
with OLE and then queries for this smart pointer's interface type. The resulting pointer is then encapsulated within
this _com_ptr_t object. Release is called to decrement the reference count for the previously encapsulated pointer.
This routine returns the HRESULT to indicate success or failure.

GetActiveObject(rclsid) Attaches to an existing instance of an object given a CLSID .

GetActiveObject(clsidString) Attaches to an existing instance of an object given a Unicode string that
holds either a CLSID (starting with "{") or a ProgID .

GetActiveObject(clsidStringA) Attaches to an existing instance of an object given a multibyte character
string that holds either a CLSID (starting with "{") or a ProgID . Calls MultiByteToWideChar, which assumes
that the string is in the ANSI code page rather than an OEM code page.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-getactiveobject.md
https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

_com_ptr_t::GetInterfacePtr
11/8/2018 • 2 minutes to read • Edit Online

Syntax
Interface* GetInterfacePtr() const throw();
Interface*& GetInterfacePtr() throw();

Remarks

See also

Microsoft Specific

Returns the encapsulated interface pointer.

Returns the encapsulated interface pointer, which may be NULL.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-getinterfaceptr.md

_com_ptr_t::QueryInterface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template<typename _InterfaceType> HRESULT QueryInterface (
 const IID& iid,
 _InterfaceType*& p
) throw ();
template<typename _InterfaceType> HRESULT QueryInterface (
 const IID& iid,
 _InterfaceType** p
) throw();

ParametersParameters

Remarks

See also

Microsoft Specific

Calls the QueryInterface member function of IUnknown on the encapsulated interface pointer.

iid
IID of an interface pointer.

p
Raw interface pointer.

Calls IUnknown::QueryInterface on the encapsulated interface pointer with the specified IID and returns the
resulting raw interface pointer in p. This routine returns the HRESULT to indicate success or failure.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-queryinterface.md

_com_ptr_t::Release
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Release();

Remarks

See also

Microsoft Specific

Calls the Release member function of IUnknown on the encapsulated interface pointer.

Calls IUnknown::Release on the encapsulated interface pointer, raising an E_POINTER error if this interface pointer
is NULL.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-release.md

_com_ptr_t Operators
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _com_ptr_t operators, see _com_ptr_t Class.

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-operators.md

_com_ptr_t::operator =
5/7/2019 • 2 minutes to read • Edit Online

Syntax
template<typename _OtherIID>
_com_ptr_t& operator=(const _com_ptr_t<_OtherIID>& p);

// Sets a smart pointer to be a different smart pointer of a different
// type or a different raw interface pointer. QueryInterface is called
// to find an interface pointer of this smart pointer's type, and
// Release is called to decrement the reference count for the previously
// encapsulated pointer. If QueryInterface fails with an E_NOINTERFACE,
// a NULL smart pointer results.
template<typename _InterfaceType>
_com_ptr_t& operator=(_InterfaceType* p);

// Encapsulates a raw interface pointer of this smart pointer's type.
// AddRef is called to increment the reference count for the encapsulated
// interface pointer, and Release is called to decrement the reference
// count for the previously encapsulated pointer.
template<> _com_ptr_t&
operator=(Interface* pInterface) throw();

// Sets a smart pointer to be a copy of another instance of the same
// smart pointer of the same type. AddRef is called to increment the
// reference count for the encapsulated interface pointer, and Release
// is called to decrement the reference count for the previously
// encapsulated pointer.
_com_ptr_t& operator=(const _com_ptr_t& cp) throw();

// Sets a smart pointer to NULL. The NULL argument must be a zero.
_com_ptr_t& operator=(int null);

// Sets a smart pointer to be a _variant_t object. The encapsulated
// VARIANT must be of type VT_DISPATCH or VT_UNKNOWN, or it can be
// converted to one of these two types. If QueryInterface fails with an
// E_NOINTERFACE error, a NULL smart pointer results.
_com_ptr_t& operator=(const _variant_t& varSrc);

Remarks

See also

Microsoft Specific

Assigns a new value to an existing _com_ptr_t object.

Assigns an interface pointer to this _com_ptr_t object.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-operator-equal.md

_com_ptr_t Relational Operators
11/8/2018 • 2 minutes to read • Edit Online

Syntax

Microsoft Specific

Compare the smart pointer object to another smart pointer, raw interface pointer, or NULL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-relational-operators.md

template<typename _OtherIID>
bool operator==(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator==(_com_ptr_t<_OtherIID>& p);

template<typename _InterfaceType>
bool operator==(_InterfaceType* p);

template<>
bool operator==(Interface* p);

template<>
bool operator==(const _com_ptr_t& p) throw();

template<>
bool operator==(_com_ptr_t& p) throw();

bool operator==(Int null);

template<typename _OtherIID>
bool operator!=(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator!=(_com_ptr_t<_OtherIID>& p);

template<typename _InterfaceType>
bool operator!=(_InterfaceType* p);

bool operator!=(Int null);

template<typename _OtherIID>
bool operator<(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator<(_com_ptr_t<_OtherIID>& p);

template<typename _InterfaceType>
bool operator<(_InterfaceType* p);

template<typename _OtherIID>
bool operator>(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator>(_com_ptr_t< _OtherIID>& p);

template<typename _InterfaceType>
bool operator>(_InterfaceType* p);

template<typename _OtherIID>
bool operator<=(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator<=(_com_ptr_t<_OtherIID>& p);

template<typename _InterfaceType>
bool operator<=(_InterfaceType* p);

template<typename _OtherIID>
bool operator>=(const _com_ptr_t<_OtherIID>& p);

template<typename _OtherIID>
bool operator>=(_com_ptr_t<_OtherIID>& p);

template<typename _InterfaceType>
bool operator>=(_InterfaceType* p);

Remarks

See also

Compares a smart pointer object to another smart pointer, raw interface pointer, or NULL. Except for the NULL
pointer tests, these operators first query both pointers for IUnknown , and compare the results.

END Microsoft Specific

_com_ptr_t Class

_com_ptr_t Extractors
11/8/2018 • 2 minutes to read • Edit Online

Syntax
operator Interface*() const throw();
operator Interface&() const;
Interface& operator*() const;
Interface* operator->() const;
Interface** operator&() throw();
operator bool() const throw();

Remarks

See also

Microsoft Specific

Extract the encapsulated COM interface pointer.

operator Interface* Returns the encapsulated interface pointer, which may be NULL.

operator Interface& Returns a reference to the encapsulated interface pointer, and issues an error if the
pointer is NULL.

operator* Allows a smart pointer object to act as though it were the actual encapsulated interface when
dereferenced.

operator-> Allows a smart pointer object to act as though it were the actual encapsulated interface when
dereferenced.

operator& Releases any encapsulated interface pointer, replacing it with NULL, and returns the address of
the encapsulated pointer. This allows the smart pointer to be passed by address to a function that has an out
parameter through which it returns an interface pointer.

operator bool Allows a smart pointer object to be used in a conditional expression. This operator returns
TRUE if the pointer is not NULL.

END Microsoft Specific

_com_ptr_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/com-ptr-t-extractors.md

Relational Function Templates
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/relational-function-templates.md

template<typename _InterfaceType> bool operator==(
 int NULL,
 _com_ptr_t<_InterfaceType>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator==(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);
template<typename _Interface> bool operator!=(
 int NULL,
 _com_ptr_t<_Interface>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator!=(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);
template<typename _Interface> bool operator<(
 int NULL,
 _com_ptr_t<_Interface>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator<(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);
template<typename _Interface> bool operator>(
 int NULL,
 _com_ptr_t<_Interface>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator>(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);
template<typename _Interface> bool operator<=(
 int NULL,
 _com_ptr_t<_Interface>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator<=(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);
template<typename _Interface> bool operator>=(
 int NULL,
 _com_ptr_t<_Interface>& p
);
template<typename _Interface,
 typename _InterfacePtr> bool operator>=(
 _Interface* i,
 _com_ptr_t<_InterfacePtr>& p
);

ParametersParameters

Remarks

i
A raw interface pointer.

p
A smart pointer.

See also

These function templates allow comparison with a smart pointer on the right side of the comparison operator.
These are not member functions of _com_ptr_t .

END Microsoft Specific

_com_ptr_t Class

_variant_t Class
10/31/2018 • 2 minutes to read • Edit Online

ConstructionConstruction

_variant_t Constructs a _variant_t object.

OperationsOperations

Attach Attaches a VARIANT object into the _variant_t object.

Clear Clears the encapsulated VARIANT object.

ChangeType Changes the type of the _variant_t object to the indicated
VARTYPE .

Detach Detaches the encapsulated VARIANT object from this
_variant_t object.

SetString Assigns a string to this _variant_t object.

OperatorsOperators

Operator = Assigns a new value to an existing _variant_t object.

operator ==, != Compare two _variant_t objects for equality or inequality.

Extractors Extract data from the encapsulated VARIANT object.

Requirements

See also

Microsoft Specific

A _variant_t object encapsulates the VARIANT data type. The class manages resource allocation and deallocation
and makes function calls to VariantInit and VariantClear as appropriate.

END Microsoft Specific

Header: <comutil.h>

Lib: comsuppw.lib or comsuppwd.lib (see /Zc:wchar_t (wchar_t Is Native Type) for more information)

Compiler COM Support Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type

_variant_t Member Functions
3/11/2019 • 2 minutes to read • Edit Online

See also

For information about the _variant_t member functions, see _variant_t Class.

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-member-functions.md

_variant_t::_variant_t
10/31/2018 • 4 minutes to read • Edit Online

Syntax
_variant_t() throw();

_variant_t(
 const VARIANT& varSrc
);

_variant_t(
 const VARIANT* pVarSrc
);

_variant_t(
 const _variant_t& var_t_Src
);

_variant_t(
 VARIANT& varSrc,
 bool fCopy
);

_variant_t(
 short sSrc,
 VARTYPE vtSrc = VT_I2
);

_variant_t(
 long lSrc,
 VARTYPE vtSrc = VT_I4
);

_variant_t(
 float fltSrc
) throw();

_variant_t(
 double dblSrc,
 VARTYPE vtSrc = VT_R8
);

_variant_t(
 const CY& cySrc
) throw();

_variant_t(
 const _bstr_t& bstrSrc
);

_variant_t(
 const wchar_t *wstrSrc
);

_variant_t(
 const char* strSrc

Microsoft Specific

Constructs a _variant_t object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-variant-t.md

);

_variant_t(
 IDispatch* pDispSrc,
 bool fAddRef = true
) throw();

_variant_t(
 bool bSrc
) throw();

_variant_t(
 IUnknown* pIUknownSrc,
 bool fAddRef = true
) throw();

_variant_t(
 const DECIMAL& decSrc
) throw();

_variant_t(
 BYTE bSrc
) throw();

variant_t(
 char cSrc
) throw();

_variant_t(
 unsigned short usSrc
) throw();

_variant_t(
 unsigned long ulSrc
) throw();

_variant_t(
 int iSrc
) throw();

_variant_t(
 unsigned int uiSrc
) throw();

_variant_t(
 __int64 i8Src
) throw();

_variant_t(
 unsigned __int64 ui8Src
) throw();

ParametersParameters

varSrc
A VARIANT object to be copied into the new _variant_t object.

pVarSrc
Pointer to a VARIANT object to be copied into the new _variant_t object.

var_t_Src
A _variant_t object to be copied into the new _variant_t object.

fCopy
If false, the supplied VARIANT object is attached to the new _variant_t object without making a new copy by
VariantCopy .

Remarks

ISrc, sSrc
An integer value to be copied into the new _variant_t object.

vtSrc
The VARTYPE for the new _variant_t object.

fltSrc, dblSrc
A numerical value to be copied into the new _variant_t object.

cySrc
A CY object to be copied into the new _variant_t object.

bstrSrc
A _bstr_t object to be copied into the new _variant_t object.

strSrc, wstrSrc
A string to be copied into the new _variant_t object.

bSrc
A bool value to be copied into the new _variant_t object.

pIUknownSrc
COM interface pointer to a VT_UNKNOWN object to be encapsulated into the new _variant_t object.

pDispSrc
COM interface pointer to a VT_DISPATCH object to be encapsulated into the new _variant_t object.

decSrc
A DECIMAL value to be copied into the new _variant_t object.

bSrc
A BYTE value to be copied into the new _variant_t object.

cSrc
A char value to be copied into the new _variant_t object.

usSrc
A unsigned short value to be copied into the new _variant_t object.

ulSrc
A unsigned long value to be copied into the new _variant_t object.

iSrc
An int value to be copied into the new _variant_t object.

uiSrc
An unsigned int value to be copied into the new _variant_t object.

i8Src
An __int64 value to be copied into the new _variant_t object.

ui8Src
An unsigned __int64 value to be copied into the new _variant_t object.

_variant_t() Constructs an empty _variant_t object, VT_EMPTY .

_variant_t(VARIANT& varSrc) Constructs a _variant_t object from a copy of the VARIANT object. The

See also

variant type is retained.

_variant_t(VARIANT* pVarSrc) Constructs a _variant_t object from a copy of the VARIANT object. The
variant type is retained.

_variant_t(_variant_t& var_t_Src) Constructs a _variant_t object from another _variant_t object. The
variant type is retained.

_variant_t(VARIANT& varSrc , bool fCopy) Constructs a _variant_t object from an existing VARIANT

object. If fCopy is false, the VARIANT object is attached to the new object without making a copy.

_variant_t(short sSrc , VARTYPE vtSrc = VT_I2) Constructs a _variant_t object of type VT_I2 or
VT_BOOL from a short integer value. Any other VARTYPE results in an E_INVALIDARG error.

_variant_t(long lSrc , VARTYPE vtSrc = VT_I4) Constructs a _variant_t object of type VT_I4,
VT_BOOL, or VT_ERROR from a long integer value. Any other VARTYPE results in an E_INVALIDARG error.

_variant_t(float fltSrc) Constructs a _variant_t object of type VT_R4 from a float numerical value.

_variant_t(double dblSrc , VARTYPE vtSrc = VT_R8) Constructs a _variant_t object of type VT_R8 or
VT_DATE from a double numerical value. Any other VARTYPE results in an E_INVALIDARG error.

_variant_t(CY& cySrc) Constructs a _variant_t object of type VT_CY from a CY object.

_variant_t(_bstr_t& bstrSrc) Constructs a _variant_t object of type VT_BSTR from a _bstr_t object. A
new BSTR is allocated.

_variant_t(wchar_t * wstrSrc) Constructs a _variant_t object of type VT_BSTR from a Unicode string. A
new BSTR is allocated.

_variant_t(char* strSrc) Constructs a _variant_t object of type VT_BSTR from a string. A new BSTR is
allocated.

_variant_t(bool bSrc) Constructs a _variant_t object of type VT_BOOL from a bool value.

_variant_t(IUnknown* pIUknownSrc , bool fAddRef = true) Constructs a _variant_t object of type
VT_UNKNOWN from a COM interface pointer. If fAddRef is true, then AddRef is called on the supplied
interface pointer to match the call to Release that will occur when the _variant_t object is destroyed. It is
up to you to call Release on the supplied interface pointer. If fAddRef is false, this constructor takes
ownership of the supplied interface pointer ; do not call Release on the supplied interface pointer.

_variant_t(IDispatch* pDispSrc , bool fAddRef = true) Constructs a _variant_t object of type
VT_DISPATCH from a COM interface pointer. If fAddRef is true, then AddRef is called on the supplied
interface pointer to match the call to Release that will occur when the _variant_t object is destroyed. It is
up to you to call Release on the supplied interface pointer. If fAddRef is false, this constructor takes
ownership of the supplied interface pointer ; do not call Release on the supplied interface pointer.

_variant_t(DECIMAL& decSrc) Constructs a _variant_t object of type VT_DECIMAL from a DECIMAL

value.

_variant_t(BYTE bSrc) Constructs a _variant_t object of type VT_UI1 from a BYTE value.

END Microsoft Specific

_variant_t Class

_variant_t::Attach
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Attach(VARIANT& varSrc);

ParametersParameters

Remarks

See also

Microsoft Specific

Attaches a VARIANT object into the _variant_t object.

varSrc
A VARIANT object to be attached to this _variant_t object.

Takes ownership of the VARIANT by encapsulating it. This member function releases any existing encapsulated
VARIANT , then copies the supplied VARIANT , and sets its VARTYPE to VT_EMPTY to make sure its resources can

only be released by the _variant_t destructor.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-attach.md

_variant_t::Clear
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void Clear();

Remarks

See also

Microsoft Specific

Clears the encapsulated VARIANT object.

Calls VariantClear on the encapsulated VARIANT object.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-clear.md

_variant_t::ChangeType
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void ChangeType(
 VARTYPE vartype,
 const _variant_t* pSrc = NULL
);

ParametersParameters

Remarks

See also

Microsoft Specific

Changes the type of the _variant_t object to the indicated VARTYPE .

vartype
The VARTYPE for this _variant_t object.

pSrc
A pointer to the _variant_t object to be converted. If this value is NULL, conversion is done in place.

This member function converts a _variant_t object into the indicated VARTYPE . If pSrc is NULL, the conversion is
done in place, otherwise this _variant_t object is copied from pSrc and then converted.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-changetype.md

_variant_t::Detach
11/9/2018 • 2 minutes to read • Edit Online

Syntax
VARIANT Detach();

Return Value

Remarks

See also

Microsoft Specific

Detaches the encapsulated VARIANT object from this _variant_t object.

The encapsulated VARIANT .

Extracts and returns the encapsulated VARIANT , then clears this _variant_t object without destroying it. This
member function removes the VARIANT from encapsulation and sets the VARTYPE of this _variant_t object to
VT_EMPTY. It is up to you to release the returned VARIANT by calling the VariantClear function.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-detach.md
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-variantclear

_variant_t::SetString
10/31/2018 • 2 minutes to read • Edit Online

Syntax
void SetString(const char* pSrc);

ParametersParameters

Remarks

See also

Microsoft Specific

Assigns a string to this _variant_t object.

pSrc
Pointer to the character string.

Converts an ANSI character string to a Unicode BSTR string and assigns it to this _variant_t object.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-setstring.md

_variant_t Operators
10/31/2018 • 2 minutes to read • Edit Online

See also

For information about the _variant_t operators, see _variant_t Class.

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-operators.md

_variant_t::operator =
10/31/2018 • 2 minutes to read • Edit Online

Syntax
_variant_t& operator=(
 const VARIANT& varSrc
);

_variant_t& operator=(
 const VARIANT* pVarSrc
);

_variant_t& operator=(
 const _variant_t& var_t_Src
);

_variant_t& operator=(
 short sSrc
);

_variant_t& operator=(
 long lSrc
);

_variant_t& operator=(
 float fltSrc
);

_variant_t& operator=(
 double dblSrc
);

_variant_t& operator=(
 const CY& cySrc
);

_variant_t& operator=(
 const _bstr_t& bstrSrc
);

_variant_t& operator=(
 const wchar_t* wstrSrc
);

_variant_t& operator=(
 const char* strSrc
);

_variant_t& operator=(
 IDispatch* pDispSrc
);

_variant_t& operator=(
 bool bSrc
);

_variant_t& operator=(
 IUnknown* pSrc
);

Microsoft Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-operator-equal.md

);

_variant_t& operator=(
 const DECIMAL& decSrc
);

_variant_t& operator=(
 BYTE bSrc
);

_variant_t& operator=(
 char cSrc
);

_variant_t& operator=(
 unsigned short usSrc
);

_variant_t& operator=(
 unsigned long ulSrc
);

_variant_t& operator=(
 int iSrc
);

_variant_t& operator=(
 unsigned int uiSrc
);

_variant_t& operator=(
 __int64 i8Src
);

_variant_t& operator=(
 unsigned __int64 ui8Src
);

Remarks
The operator assigns a new value to the _variant_t object:

operator=(varSrc) Assigns an existing VARIANT to a _variant_t object.

operator=(pVarSrc) Assigns an existing VARIANT to a _variant_t object.

operator=(var_t_Src) Assigns an existing _variant_t object to a _variant_t object.

operator=(sSrc) Assigns a short integer value to a _variant_t object.

operator=(lSrc) Assigns a long integer value to a _variant_t object.

operator=(fltSrc) Assigns a float numerical value to a _variant_t object.

operator=(dblSrc) Assigns a double numerical value to a _variant_t object.

operator=(cySrc) Assigns a CY object to a _variant_t object.

operator=(bstrSrc) Assigns a BSTR object to a _variant_t object.

operator=(wstrSrc) Assigns a Unicode string to a _variant_t object.

operator=(strSrc) Assigns a multibyte string to a _variant_t object.

operator=(bSrc) Assigns a bool value to a _variant_t object.

See also

operator=(pDispSrc) Assigns a VT_DISPATCH object to a _variant_t object.

operator=(pIUnknownSrc) Assigns a VT_UNKNOWN object to a _variant_t object.

operator=(decSrc) Assigns a DECIMAL value to a _variant_t object.

operator=(bSrc) Assigns a BYTE value to a _variant_t object.

END Microsoft Specific

_variant_t Class

_variant_t Relational Operators
10/31/2018 • 2 minutes to read • Edit Online

Syntax
bool operator==(
 const VARIANT& varSrc) const;
bool operator==(
 const VARIANT* pSrc) const;
bool operator!=(
 const VARIANT& varSrc) const;
bool operator!=(
 const VARIANT* pSrc) const;

ParametersParameters

Return Value

Remarks

See also

Microsoft Specific

Compare two _variant_t objects for equality or inequality.

varSrc
A VARIANT to be compared with the _variant_t object.

pSrc
Pointer to the VARIANT to be compared with the _variant_t object.

Returns true if comparison holds, false if not.

Compares a _variant_t object with a VARIANT , testing for equality or inequality.

END Microsoft Specific

_variant_t Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-relational-operators.md

_variant_t Extractors
11/8/2018 • 2 minutes to read • Edit Online

Syntax
operator short() const;
operator long() const;
operator float() const;
operator double() const;
operator CY() const;
operator _bstr_t() const;
operator IDispatch*() const;
operator bool() const;
operator IUnknown*() const;
operator DECIMAL() const;
operator BYTE() const;
operator VARIANT() const throw();
operator char() const;
operator unsigned short() const;
operator unsigned long() const;
operator int() const;
operator unsigned int() const;
operator __int64() const;
operator unsigned __int64() const;

Remarks

Microsoft Specific

Extract data from the encapsulated VARIANT object.

Extracts raw data from an encapsulated VARIANT . If the VARIANT is not already the proper type, VariantChangeType

is used to attempt a conversion, and an error is generated upon failure:

operator short() Extracts a short integer value.

operator long() Extracts a long integer value.

operator float() Extracts a float numerical value.

operator double() Extracts a double integer value.

operator CY() Extracts a CY object.

operator bool() Extracts a bool value.

operator DECIMAL() Extracts a DECIMAL value.

operator BYTE() Extracts a BYTE value.

operator _bstr_t() Extracts a string, which is encapsulated in a _bstr_t object.

operator IDispatch*() Extracts a dispinterface pointer from an encapsulated VARIANT . AddRef is called on
the resulting pointer, so it is up to you to call Release to free it.

operator IUnknown*() Extracts a COM interface pointer from an encapsulated VARIANT . AddRef is called
on the resulting pointer, so it is up to you to call Release to free it.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/variant-t-extractors.md

See also

END Microsoft Specific

_variant_t Class

Microsoft Extensions
10/31/2018 • 2 minutes to read • Edit Online

asm-statement:
 __asm assembly-instruction ;
 __asm { assembly-instruction-list } ;

opt

opt

assembly-instruction-list:
 assembly-instruction ;
 assembly-instruction ; assembly-instruction-list ;

opt

opt

ms-modifier-list:
 ms-modifier ms-modifier-listopt

ms-modifier:
 __cdecl
 __fastcall
 __stdcall
 __syscall (reserved for future implementations)
 __oldcall (reserved for future implementations)
 __unaligned (reserved for future implementations)
 based-modifier

based-modifier:
 __based (based-type)

based-type:
 name

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/microsoft-extensions.md

Nonstandard Behavior
5/7/2019 • 2 minutes to read • Edit Online

Covariant Return Types

// CovariantReturn.cpp
class A
{
 virtual A* f(int c, ...); // remove ...
};

class B : virtual A
{
 B* f(int c, ...); // C2688 remove ...
};

Binding Nondependent Names in Templates

#include <iostream>
using namespace std;

namespace N {
 void f(int) { cout << "f(int)" << endl;}
}

template <class T> void g(T) {
 N::f('a'); // calls f(char), should call f(int)
}

namespace N {
 void f(char) { cout << "f(char)" << endl;}
}

int main() {
 g('c');
}
// Output: f(char)

Function Exception Specifiers

The following sections list some of the places where the Microsoft implementation of C++ does not comply with
the C++ standard. The section numbers given below refer to the section numbers in the C++ 11 standard
(ISO/IEC 14882:2011(E)).

The list of compiler limits that differ from those defined in the C++ standard is given in Compiler Limits.

Virtual base classes are not supported as covariant return types when the virtual function has a variable number of
arguments. This does not comply with section 10.3, paragraph 7 of the C++ ISO specification. The following
sample does not compile, giving compiler error C2688

The Microsoft C++ compiler does not currently support binding nondependent names when initially parsing a
template. This does not comply with section 14.6.3 of the C++ ISO specification. This can cause overloads declared
after the template (but before the template is instantiated) to be seen.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/nonstandard-behavior.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-2/compiler-error-c2688

void f() throw(int); // parsed but not used
void g() throw(); // parsed and used

char_traits::eof()

#include <iostream>

int main()
{
 using namespace std;

 char_traits<char>::int_type int2 = char_traits<char>::eof();
 cout << "The eof marker for char_traits<char> is: " << int2 << endl;

 char_traits<wchar_t>::int_type int3 = char_traits<wchar_t>::eof();
 cout << "The eof marker for char_traits<wchar_t> is: " << int3 << endl;
}

Storage Location of Objects

Function exception specifiers other than throw() are parsed but not used. This does not comply with section 15.4
of the ISO C++ specification. For example:

For more information on exception specifications, see Exception Specifications.

The C++ standard states that char_traits::eof must not correspond to a valid char_type value. The Microsoft C++
compiler enforces this constraint for type char, but not for type wchar_t. This does not comply with the
requirement in Table 62 in section 12.1.1 of the C++ ISO specification. The example below demonstrates this.

The C++ standard (section 1.8 paragraph 6) requires complete C++ objects to have unique storage locations.
However with Microsoft C++, there are cases where types without data members will share a storage location with
other types for the lifetime of the object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/char-traits-struct

Compiler Limits
5/7/2019 • 2 minutes to read • Edit Online

See also

The C++ standard recommends limits for various language constructs. The following is a list of cases where the
Microsoft C++ compiler does not implement the recommended limits. The first number is the limit that is
established in the ISO C++ 11 standard (INCITS/ISO/IEC 14882-2011[2012], Annex B) and the second number is
the limit implemented by the Microsoft C++ compiler:

Nesting levels of compound statements, iteration control structures, and selection control structures - C++
standard: 256, Microsoft C++ compiler: depends on the combination of statements that are nested, but
generally between 100 and 110.

Parameters in one macro definition - C++ standard: 256, Microsoft C++ compiler: 127.

Arguments in one macro invocation - C++ standard: 256, Microsoft C++ compiler 127.

Characters in a character string literal or wide string literal (after concatenation) - C++ standard: 65536,
Microsoft C++ compiler: 65535 single-byte characters, including the NULL terminator, and 32767 double-
byte characters, including the NULL terminator.

Levels of nested class, structure, or union definitions in a single struct-declaration-list - C++ standard:
256, Microsoft C++ compiler: 16.

Member initializers in a constructor definition - C++ standard: 6144, Microsoft C++ compiler: at least 6144.

Scope qualifications of one identifier - C++ standard: 256, Microsoft C++ compiler: 127.

Nested extern specifications - C++ standard: 1024, Microsoft C++ compiler: 9 (not counting the implicit
extern specification in global scope, or 10, if you count the implicit extern specification in global scope..

Template arguments in a template declaration - C++ standard: 1024, Microsoft C++ compiler: 2046.

Nonstandard Behavior

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/compiler-limits.md

	Cover Page
	Language Reference
	Welcome Back to C++ (Modern C++)
	Type System (Modern C++)
	Value Types (Modern C++)
	Type Conversions and Type Safety (Modern C++)

	Uniform Initialization and Delegating Constructors
	Object Lifetime And Resource Management (Modern C++)
	Objects Own Resources (RAII)
	Smart Pointers (Modern C++)
	How to: Create and Use unique_ptr Instances
	How to: Create and Use shared_ptr Instances
	How to: Create and Use weak_ptr Instances
	How to: Create and Use CComPtr and CComQIPtr Instances

	Pimpl For Compile-Time Encapsulation (Modern C++)
	Containers (Modern C++)
	Algorithms (Modern C++)
	String and I-O Formatting (Modern C++)
	Errors and Exception Handling (Modern C++)
	How to: Design for Exception Safety
	How to: Interface Between Exceptional and Non-Exceptional Code

	Portability At ABI Boundaries (Modern C++)

	Lexical Conventions
	Overview of File Translation
	Character Sets
	Tokens
	Comments
	Identifiers
	Keywords
	auto Keyword

	Punctuators
	Numeric, Boolean and Pointer Literals
	String and Character Literals
	User-Defined Literals

	Basic Concepts
	Declarations and Definitions
	Overview of Declarators
	Specifiers
	extern
	Header files
	Point of declaration in C++
	Initializers
	Aliases and typedefs
	using Declaration
	Resolving ambiguous declarations
	Storage classes
	const
	constexpr
	volatile
	auto
	decltype
	Attributes

	Scope
	Header Files
	Program and Linkage
	extern

	Startup and Termination
	main: Program Startup
	Using wmain Instead of main
	Argument Definitions
	Wildcard Expansion
	Parsing C++ Command-Line Arguments
	Customizing C++ Command-Line Processing
	main Function Restrictions

	Program Termination
	exit Function
	abort Function
	return Statement in Program Termination

	Additional Startup Considerations
	Additional Termination Considerations
	Using exit or return
	Using atexit
	Using abort

	Lvalues and Rvalues
	Temporary Objects
	Alignment (C++ Declarations)
	alignof and alignas
	Trivial, standard-layout, and POD types

	Fundamental Types
	Data Type Ranges
	nullptr
	void
	bool
	false
	true
	char, wchar_t, char16_t, char32_t
	__int8, __int16, __int32, __int64
	__m64
	__m128
	__m128d
	__m128i
	__ptr32, __ptr64
	Numerical Limits
	Integer Limits
	Floating Limits

	Standard Conversions

	Built-in Operators, Precedence and Associativity
	__alignof Operator
	__uuidof Operator
	Additive Operators: + and -
	Address-of Operator: &
	Assignment Operators
	Bitwise AND Operator: &
	Bitwise Exclusive OR Operator: ^
	Bitwise Inclusive OR Operator: |
	Cast Operator: ()
	Comma Operator: ,
	Conditional Operator: ? :
	delete Operator
	Equality Operators: == and !=
	Explicit Type Conversion Operator: ()
	Function Call Operator: ()
	Indirection Operator: *
	Left Shift and Right Shift Operators (>> and <<)
	Logical AND Operator: &&
	Logical Negation Operator: !
	Logical OR Operator: ||
	Member Access Operators: . and ->
	Multiplicative Operators and the Modulus Operator
	new Operator
	One's Complement Operator: ~
	Pointer-to-Member Operators: .* and ->*
	Postfix Increment and Decrement Operators: ++ and --
	Prefix Increment and Decrement Operators: ++ and --
	Relational Operators: <, >, <=, and >=
	Scope Resolution Operator: ::
	sizeof Operator
	Subscript Operator:
	typeid Operator
	Unary Plus and Negation Operators: + and -

	Expressions
	Types of Expressions
	Primary Expressions
	Ellipses and Variadic Templates
	Postfix Expressions
	Expressions with Unary Operators
	Expressions with Binary Operators
	Constant Expressions

	Semantics of Expressions
	Casting
	Casting Operators
	dynamic_cast Operator
	bad_cast Exception
	static_cast Operator
	const_cast Operator
	reinterpret_cast Operator

	Run-Time Type Information
	bad_typeid Exception
	type_info Class

	Statements
	Overview of C++ Statements
	Labeled Statements
	Expression Statement
	Null Statement

	Compound Statements (Blocks)
	Selection Statements
	if-else Statement
	__if_exists Statement
	__if_not_exists Statement
	switch Statement

	Iteration Statements
	while Statement
	do-while Statement
	for Statement
	Range-based for Statement

	Jump Statements
	break Statement
	continue Statement
	return Statement
	goto Statement
	Transfers of Control

	Namespaces
	Enumerations
	Unions
	Functions
	Functions with Variable Argument Lists
	Function Overloading
	Explicitly Defaulted and Deleted Functions
	Argument-Dependent Name (Koenig) Lookup on Functions
	Default Arguments
	Inline Functions

	Operator Overloading
	General Rules for Operator Overloading
	Overloading Unary Operators
	Increment and Decrement Operator Overloading

	Binary Operators
	Assignment
	Function Call
	Subscripting
	Member Access

	Classes and Structs
	class
	struct
	Class Member Overview
	Member Access Control
	friend
	private
	protected
	public

	Initializing classes and structs without constructors
	Constructors
	Copy Constructors and Copy Assignment Operators
	Move Constructors and Move Assignment Operators

	Destructors
	Overview of Member Functions
	virtual Specifier
	override Specifier
	final Specifier

	Inheritance
	Virtual Functions
	Single Inheritance
	Base Classes
	Multiple Base Classes
	Explicit Overrides
	Abstract Classes
	Summary of Scope Rules
	Inheritance Keywords
	virtual
	__super
	__interface

	Special Member Functions
	Static Members
	User-Defined Type Conversions
	Mutable Data Members
	Nested Class Declarations
	Anonymous Class Types
	Pointers to Members
	this Pointer
	Bit Fields

	Lambda Expressions in C++
	Lambda Expression Syntax
	Examples of Lambda Expressions
	constexpr Lambda Expressions

	Arrays
	Using Arrays
	Initializing Arrays
	Arrays in Expressions
	Interpretation of Subscript Operator
	Indirection on Array Types
	Ordering of C++ Arrays

	References
	Lvalue Reference Declarator: &
	Rvalue Reference Declarator: &&
	Reference-Type Function Arguments
	Reference-Type Function Returns
	References to Pointers

	Pointers
	const and volatile Pointers
	new and delete Operators

	Exception Handling in C++
	Exception Handling
	try, throw, and catch Statements
	How Catch Blocks are Evaluated
	Exceptions and Stack Unwinding in C++
	Exception Specifications (throw)
	noexcept
	Unhandled C++ Exceptions
	Mixing C (Structured) and C++ Exceptions
	Using setjmp-longjmp
	Handle structured exceptions in C++

	Structured Exception Handling (C/C++)
	Writing an Exception Handler
	try-except Statement
	Writing an Exception Filter
	Raising Software Exceptions
	Hardware Exceptions
	Restrictions on Exception Handlers

	Writing a Termination Handler
	try-finally Statement
	Cleaning up Resources
	Timing of Exception Handling: A Summary
	Restrictions on Termination Handlers

	Transporting Exceptions Between Threads

	Assertion and User-Supplied Messages
	static_assert

	Templates
	typename
	Class Templates
	Function Templates
	Function Template Instantiation
	Explicit Instantiation
	Explicit Specialization of Function Templates
	Partial Ordering of Function Templates
	Member Function Templates

	Template Specialization
	Templates and Name Resolution
	Name Resolution for Dependent Types
	Name Resolution for Locally Declared Names
	Overload Resolution of Function Template Calls

	Source code organization (C++ Templates)

	Event Handling
	__event
	__hook
	__raise
	__unhook
	Event Handling in Native C++
	Event Handling in COM

	Microsoft-Specific Modifiers
	Based Addressing
	__based Grammar
	Based Pointers

	Calling Conventions
	Argument Passing and Naming Conventions
	__cdecl
	__clrcall
	__stdcall
	__fastcall
	__thiscall
	__vectorcall

	Calling Example: Function Prototype and Call
	Results of Calling Example

	Naked Function Calls
	Rules and Limitations for Naked Functions
	Considerations for Writing Prolog-Epilog Code

	Floating Point Coprocessor and Calling Conventions
	Obsolete Calling Conventions

	restrict (C++ AMP)
	tile_static Keyword
	__declspec
	align
	allocate
	allocator
	appdomain
	code_seg (__declspec)
	deprecated
	dllexport, dllimport
	Definitions and Declarations
	Defining Inline C++ Functions with dllexport and dllimport
	General Rules and Limitations
	Using dllimport and dllexport in C++ Classes

	jitintrinsic
	naked
	noalias
	noinline
	noreturn
	nothrow
	novtable
	process
	property
	restrict
	safebuffers
	selectany
	spectre
	thread
	uuid

	__restrict
	__sptr, __uptr
	__unaligned
	__w64
	__func__

	Compiler COM Support
	Compiler COM Global Functions
	_com_raise_error
	ConvertStringToBSTR
	ConvertBSTRToString
	_set_com_error_handler

	Compiler COM Support Classes
	_bstr_t Class
	_bstr_t Member Functions
	_bstr_t::Assign
	_bstr_t::Attach
	_bstr_t::_bstr_t
	_bstr_t::copy
	_bstr_t::Detach
	_bstr_t::GetAddress
	_bstr_t::GetBSTR
	_bstr_t::length

	_bstr_t Operators
	_bstr_t::operator =
	_bstr_t::operator +=, +
	_bstr_t::operator !
	_bstr_t Relational Operators
	_bstr_t::wchar_t*, _bstr_t::char*

	_com_error Class
	_com_error Member Functions
	_com_error::_com_error
	_com_error::Description
	_com_error::Error
	_com_error::ErrorInfo
	_com_error::ErrorMessage
	_com_error::GUID
	_com_error::HelpContext
	_com_error::HelpFile
	_com_error::HRESULTToWCode
	_com_error::Source
	_com_error::WCode
	_com_error::WCodeToHRESULT

	_com_error Operators
	_com_error::operator =

	_com_ptr_t Class
	_com_ptr_t Member Functions
	_com_ptr_t::_com_ptr_t
	_com_ptr_t::AddRef
	_com_ptr_t::Attach
	_com_ptr_t::CreateInstance
	_com_ptr_t::Detach
	_com_ptr_t::GetActiveObject
	_com_ptr_t::GetInterfacePtr
	_com_ptr_t::QueryInterface
	_com_ptr_t::Release

	_com_ptr_t Operators
	_com_ptr_t::operator =
	_com_ptr_t Relational Operators
	_com_ptr_t Extractors

	Relational Function Templates

	_variant_t Class
	_variant_t Member Functions
	_variant_t::_variant_t
	_variant_t::Attach
	_variant_t::Clear
	_variant_t::ChangeType
	_variant_t::Detach
	_variant_t::SetString

	_variant_t Operators
	_variant_t::operator =
	_variant_t Relational Operators
	_variant_t Extractors

	Microsoft Extensions
	Nonstandard Behavior
	Compiler Limits

