
Contents

 C++ in Visual Studio
 Overview of C++ development in Visual Studio
 What's new for C++ in Visual Studio
 C++ conformance improvements in Visual Studio
 Microsoft C++ language conformance
 Supported platforms
 Visual C++ Tools and Features in Visual Studio Editions
 Samples
 Help and community
 How to report a problem with the Visual C++ toolset

 Visual C++ Tutorials
 Install C++ support in Visual Studio
 Create a C++ console app project
 Build and run a C++ console app project

 Projects and Build Systems
 Writing and refactoring code
 Windows desktop development
 UWP development
 Game development
 Linux development
 Cross-platform Mobile Development
 .NET development with C++/CLI
 Cloud and Web programming
 Port and upgrade C++ code
 Security best practices for C++

 Running as a member of the users group
 How User Account Control (UAC) affects your application
 C++ developer guidance for speculative execution side channels

 Reference

https://docs.microsoft.com/visualstudio/cross-platform/visual-cpp-for-cross-platform-mobile-development

 Languages
 C language
 C++ language
 C/C++ preprocessor
 Compiler intrinsics and assembly language
 C Runtime Library
 Component extensions for .NET and UWP
 C++ attributes for COM and .NET

 Libraries
 C Runtime Library
 C++ Standard Library
 SafeInt library

 SafeInt Class
 SafeInt Functions
 SafeIntException Class

 OpenMP
 MFC/ATL
 Parallel libraries
 Data access libraries

C++ in Visual Studio
5/23/2019 • 5 minutes to read • Edit Online

NOTE

What's New and Conformance History

Install Visual Studio and upgrade from earlier versions

This developer documentation applies to Visual Studio 2015 and later. Use the version selector in the upper left of the page
to match your version of Visual Studio.

If you are looking for a Visual C++ redistributable package so that you can run a program, go to the Microsoft Download
Center and enter Visual C++ in the search box.

Microsoft Visual C++, usually shortened to Visual C++ or MSVC, is the name for the C++, C, and assembly
language development tools and libraries available as part of Visual Studio on Windows. These tools and libraries
let you create Universal Windows Platform (UWP) apps, native Windows desktop and server applications, cross-
platform libraries and apps that run on Windows, Linux, Android, and iOS, as well as managed apps and libraries
that use the .NET Framework. You can use Visual C++ to write anything from simple console apps to the most
sophisticated and complex apps for Windows desktop, from device drivers and operating system components to
cross-platform games for mobile devices, and from the smallest IoT devices to multi-server high performance
computing in the Azure cloud.

Visual Studio 2015, 2017 and 2019 can be installed side-by-side. You can use Visual Studio 2019 (compiler
toolset v142) to edit and build programs using the toolset from Visual Studio 2015 (v140) and Visual Studio 2017
(v141).

What's New for C++ in Visual Studio
Find out what’s new in Visual Studio.

What's New for C++ in Visual Studio 2003 through 2015
Find out what was new in C++ for each version of Visual Studio from 2003 through 2015.

C++ conformance improvements in Visual Studio
Learn about C++ conformance improvements in Visual Studio.

Visual C++ language conformance
A list of conformance status by feature in the MSVC C++ compiler.

Visual C++ change history 2003 - 2015
Learn about the breaking changes in previous versions.

Install C++ support in Visual Studio
Download Visual Studio 2017 or Visual Studio 2019 and install the Visual C++ toolset.

Visual C++ Porting and Upgrading Guide
Guidance for porting code and upgrading projects to Visual Studio 2015 or later to take advantage of greater
compiler conformance to the C++ standard as well as greatly improved compilation times and security features
such as Spectre mitigation.

Visual C++ Tools and Features in Visual Studio Editions

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/visual-cpp-in-visual-studio.md
http://www.microsoft.com/download/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-what-s-new-2003-through-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-change-history-2003-2015

Learn C++

C++ development tools

Write applications in C++

Find out about different Visual Studio editions.

Supported Platforms
Find out which platforms are supported.

Welcome Back to C++
Learn more about modern C++ programming techniques based on C++11 and later that enable you to write fast,
safe code and avoid many of the pitfalls of C-style programming.

Standard C++
Learn about C++, get an overview of Modern C++, and find links to books, articles, talks, and events

Learn Visual C++
Start learning C++.

Visual C++ Samples
Information about samples.

Overview of C++ Development in Visual Studio
How to use the Visual Studio IDE to create projects, edit code, link to libraries, compile, debug, create unit tests, do
static analysis, deploy, and more.

Projects and Build Systems
How to create and configure Visual Studio C++ projects, CMake projects, and other kinds of projects with MSVC
compiler and linker options.

Writing and refactoring C++ code
How to use the productivity features in the C++ editor to refactor, navigate, understand and write code.

Debugging Native Code
Use the Visual Studio debugger with C++ projects.

Code analysis for C/C++ overview
Use SAL annotations or the C++ Core Guidelines checkers to perform static analysis.

Write unit tests for C/C++ in Visual Studio
Create unit tests using the Microsoft Unit Testing Framework for C++, Google Test, Boost.Test, or CTest.

Universal Windows Apps
Find guides and reference content on the Windows Developer Center. For information about developing UWP
apps, see Intro to the Universal Windows Platform and Create your first UWP app using C++.

Desktop Applications (C++)
Learn how to create traditional native C++ desktop applications for Windows.

.NET Programming with C++/CLI
Learn how to create DLLs that enable interoperability between native C++ and .NET programs written in
languages such as C# or Visual Basic.

Linux Programming
Use the Visual Studio IDE to code and deploy to a remote Linux machine for compilation with GCC.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp
http://isocpp.org/
https://docs.microsoft.com/visualstudio/debugger/debugging-native-code
https://docs.microsoft.com/visualstudio/code-quality/code-analysis-for-c-cpp-overview
https://docs.microsoft.com/visualstudio/test/writing-unit-tests-for-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/universal-windows-apps-cpp
https://docs.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/windows/uwp/get-started/create-a-basic-windows-10-app-in-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/desktop-applications-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/linux/index

Languages reference

C++ Libraries in Visual Studio

Create C/C++ DLLs in Visual Studio
Find out how to use Win32, ATL, and MFC to create Windows desktop DLLs, and provides information about
how to compile and register your DLL.

Parallel Programming
Learn how to use the Parallel Patterns Library, C++ AMP, OpenMP, and other features that are related to
multithreading on Windows.

Security Best Practices
Learn how to protect applications from malicious code and unauthorized use.

Cloud and Web Programming
In C++, you have several options for connecting to the web and the cloud.

Data Access
Connect to databases using ODBC and OLE DB.

Text and Strings
Learn about working with different text and string formats and encodings for local and international development.

C++ Language Reference

C/C++ Preprocessor Reference

C Language Reference

Compiler Intrinsics and Assembly Language

The following sections provide information about the different C and C++ libraries that are included in Visual
Studio.

C Run-Time Library Reference
Includes security-enhanced alternatives to functions that are known to pose security issues.

C++ Standard Library
The C++ Standard Library.

Active Template Library (ATL)
Support for COM components and apps.

Microsoft Foundation Class (MFC) libraries
Support for creating desktop apps that have traditional or Office-style user interfaces.

Parallel Patterns Library (PPL)
Asynchronous and parallel algorithms that execute on the CPU.

C++ AMP (C++ Accelerated Massive Parallelism)
Massively parallel algorithms that execute on the GPU.

Windows Runtime Template Library (WRL)
Universal Windows Platform (UWP) apps and components.

.NET Programming with C++/CLI
Programming for the common language runtime (CLR).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/dlls-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/text-and-strings-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/parallel-patterns-library-ppl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-runtime-cpp-template-library-wrl

Third-party open source C++ libraries

Feedback and community

See also

The cross-platform vcpkg command-line tool greatly simplifies the discovery and installation of over 900 C++
open source libraries. See vcpkg: C++ Package Manager for Windows.

How to Report a Problem with the Visual C++ Toolset
Learn how to create effective error reports against the Visual C++ toolset (compiler, linker, and other tools), and
ways to submit your report.

Microsoft C++ Team Blog
Learn more about new features and the latest information from the developers of the C++ tools in Visual Studio.

Visual Studio Developer Community
Find out how to get help, file bugs, and make suggestions for Visual Studio.

C Language Reference
C Run-Time Library Reference
Compiler Intrinsics and Assembly Language

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg
https://devblogs.microsoft.com/cppblog/
https://developercommunity.visualstudio.com/

Overview of C++ development in Visual Studio
5/23/2019 • 5 minutes to read • Edit Online

Create projects

As part of the Visual Studio Integrated Development Environment (IDE), Microsoft C++ (MSVC) shares many
windows and tools in common with other languages. Many of those, including Solution Explorer, the code editor,
and the debugger, are documented under Visual Studio IDE. Often, a shared tool or window has a slightly different
set of features for C++ than for other languages. A few windows or tools are only available in Visual Studio
Professional or Visual Studio Enterprise editions.

In addition to shared tools in the Visual Studio IDE, MSVC has several tools specifically for native code
development. These tools are also listed in this article. For a list of which tools are available in each edition of
Visual Studio, see C++ Tools and Features in Visual Studio Editions.

A project is basically a set of source code files and resources such as images or data files that are built into an
executable program or library.

Visual Studio provides support for any project system or custom build tools that you wish to use, with full support
for IntelliSense, browsing and debugging:

MSBuild is the native project system for Visual Studio. When you select File > New > Project from the
main menu, you see many kinds of MSBuild project templates that get you started quickly developing
different kinds of C++ applications.

In general, you should use these templates for new projects unless you are using existing CMake projects,

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/overview-of-cpp-development.md
https://docs.microsoft.com/visualstudio/get-started/visual-studio-ide

Add to source control

or you are using another project system. For more information, see Creating and managing MSBuild-based
projects.

CMake is a cross-platform build system that is integrated into the Visual Studio IDE when you install the
Desktop development with C++ workload. You can use the CMake project template for new projects, or
simply open a folder with a CMakeLists.txt file. For more information, see CMake projects in Visual Studio.

Any other C++ build system, including a loose collection of files, is supported via the Open Folder feature.
You create simple JSON files to invoke your build program and configure debugging sessions. For more
information, see Open Folder projects for C++.

Source control enables you to coordinate work among multiple developers, isolate in-progress work from
production code, and backup your source code. Visual Studio supports Git and Team Foundation Version Control
(TFVC) through its Team Explorer window.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-and-managing-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/cmake-projects-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/open-folder-projects-cpp
https://docs.microsoft.com/azure/devops/repos/tfvc/

Obtain libraries

Create user interfaces with designers

For more information about Git integration with repos in Azure, see Share your code with Visual Studio 2017 and
Azure Repos Git. For information about Git integration with GitHub, see GitHub Extension for Visual Studio.

Use the vcpkg package manager to obtain and install third-party libraries. Over 900 open-source libraries are
currently available in the catalog.

If your program has a user interface, you can use a designer to quickly populate it with controls such as buttons,
list boxes and so on. When you drag a control from the toolbox window and drop it onto the design surface, Visual
Studio generates the resources and code required to make it all work. You then write the code to customize the
appearance and behavior.

https://docs.microsoft.com/azure/devops/repos/git/share-your-code-in-git-vs-2017
https://visualstudio.github.com/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg

Write code

Add and edit resources

For more information about designing a user interface for a Universal Windows Platform app, see Design and UI.

For more information about creating a user interface for an MFC application, see MFC Desktop Applications. For
information about Win32 Windows programs, see Windows Desktop Applications.

After you create a project, all the project files are displayed in the Solution Explorer window. (A solution is a
logical container for one or more related projects.) When you click on a .h or .cpp file in Solution Explorer, the file
opens up in the code editor.

The code editor is a specialized word processor for C++ source code. It color-codes language keywords, method
and variable names, and other elements of your code to make the code more readable and easier to understand. It
also provides tools for refactoring code, navigating between different files, and understanding how the code is
structured. For more information, see Writing and refactoring code.

https://developer.microsoft.com/windows/design
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-desktop-applications-cpp

Build (compile and link)

Debug

The term resource includes things such as dialogs, icons, images, localizable strings, splash screens, database
connection strings, or any arbitrary data that you want to include in the executable file.

For more information on adding and editing resources in native desktop C++ projects, see Working with Resource
Files.

Choose Build > Build Solution on the menu bar, or enter the Ctrl+Shift+B key combination to compile and link
a project. Build errors and warnings are reported in the Error List (Ctrl+\, E). The Output Window (Alt+2) shows
information about the build process.

For more information about configuring builds, see Working with Project Properties and Projects and build
systems.

You can also use the compiler (cl.exe) and many other build-related standalone tools such as NMAKE and LIB
directly from the command line. For more information, see Build C/C++ code on the command line and C/C++
Building Reference.

You can start debugging by pressing F5. Execution pauses on any breakpoints you have set. You can also step
through code one line at a time, view the values of variables or registers, and even in some cases make changes in
code and continue debugging without re-compiling. The following illustration shows a debugging session in which
execution is stopped on a breakpoint. The values of the data structure members are visible in the Watch Window.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/working-with-resource-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/working-with-project-properties
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-on-the-command-line
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference

Test

Analyze

Deploy completed applications

For more information, see Debugging in Visual Studio.

Visual Studio includes the Microsoft Unit Test Framework for C++, as well as support for Boost.Test, Google Test,
and CTest. Run your tests from the Test Explorer window:

For more information, see Verifying Code by Using Unit Tests and Write unit tests for C/C++ in Visual Studio.

Visual Studio includes static code analysis tools that can detect potential problems in your source code. These tools
include an implementation of the C++ Core Guidelines rules checkers. For more information, see Code analysis
for C/C++ overview.

You can deploy both traditional desktop applications and UWP apps to customers through the Microsoft Store.
Deployment of the CRT is handled automatically behind the scenes. For more information, see Publish Windows

https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio
https://docs.microsoft.com/visualstudio/test/unit-test-your-code
https://docs.microsoft.com/visualstudio/test/writing-unit-tests-for-c-cpp
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://docs.microsoft.com/visualstudio/code-quality/code-analysis-for-c-cpp-overview
https://docs.microsoft.com/windows/uwp/publish/

Next steps

apps and games.

You can also deploy a native C++ desktop to another computer For more information, see Deploying Desktop
Applications.

For more information about deploying a C++/CLI program, see Deployment Guide for Developers,

Explore Visual Studio further by following along with one of these introductory articles:

Learn to use the code editor

Learn about projects and solutions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/deploying-native-desktop-applications-visual-cpp
https://docs.microsoft.com/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/visualstudio/get-started/tutorial-editor
https://docs.microsoft.com/visualstudio/get-started/tutorial-projects-solutions

4/3/2019 • 40 minutes to read • Edit Online

What's New for C++ in Visual Studio 2019

C++ compiler

Codegen, security, diagnostics, and versioning

C++ Standard Library improvements

Performance/throughput improvements in the compiler and Standard
Library

Visual Studio 2019 brings many updates and fixes to the Microsoft C++ environment. We've fixed many bugs and
issues in the compiler and tools, many submitted by customers through the Report a Problem and Provide a
Suggestion options under Send Feedback. Thank you for reporting bugs! For more information on what's new
in all of Visual Studio, visit What's new in Visual Studio.

Enhanced support for C++17 features and correctness fixes, plus experimental support for C++20 features
such as modules and coroutines. For detailed information, see C++ Conformance Improvements in Visual
Studio 2019.

The /std:c++latest option now includes C++20 features that aren't necessarily complete, including initial
support for the C++20 operator <=> ("spaceship") for three-way comparison.

The C++ compiler switch /Gm is nowdeprecated. Consider disabling the /Gm switch in your build scripts if
it's explicitly defined. However, you can also safely ignore the deprecation warning for /Gm , because it's not
treated as an error when using "Treat warnings as errors" (/WX).

As MSVC begins implementing features from the C++20 standard draft under the /std:c++latest flag,
/std:c++latest is now incompatible with /clr (all flavors), /ZW , and /Gm . In Visual Studio 2019, use
/std:c++17 or /std:c++14 modes when compiling with /clr , /ZW or /Gm (but see previous bullet).

Precompiled headers are no longer generated by default for C++ console and desktop apps.

Improved analysis with /Qspectre for providing mitigation assistance for Spectre Variant 1 (CVE-2017-5753). For
more information, see Spectre Mitigations in MSVC.

Implementation of additional C++17 and C++20 library features and correctness fixes. For detailed
information, see C++ Conformance Improvements in Visual Studio 2019.

Clang-Format has been applied to the C++ Standard Library headers for improved readability.

Because Visual Studio now supports Just My Code for C++, the Standard Library no longer needs to
provide custom machinery for std::function and std::visit to achieve the same effect. Removing that
machinery largely has no user-visible effects, except that the compiler will no longer produce diagnostics
that indicate issues on line 15732480 or 16707566 of <type_traits> or <variant>.

Build throughput improvements, including the way the linker handles File I/O, and link time in PDB type
merging and creation.

Added basic support for OpenMP SIMD vectorization. You can enable it using the new compiler switch

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/what-s-new-for-visual-cpp-in-visual-studio.md
https://docs.microsoft.com/visualstudio/how-to-report-a-problem-with-visual-studio-2017
https://developercommunity.visualstudio.com/spaces/62/index.html
https://docs.microsoft.com/visualstudio/ide/whats-new-visual-studio-2019
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/

-openmp:experimental . This option allows loops annotated with #pragma omp simd to potentially be
vectorized. The vectorization isn't guaranteed, and loops annotated but not vectorized will get a warning
reported. No SIMD clauses are supported, they're simply ignored with a warning reported.

Added a new inlining command-line switch -Ob3 , which is a more aggressive version of -Ob2 . -O2

(optimize the binary for speed) still implies -Ob2 by default. If you find that the compiler doesn't inline
aggressively enough, consider passing -O2 -Ob3 .

To support hand vectorization of loops with calls to math library functions, and certain other operations like
integer division, we've added support for Short Vector Math Library (SVML) intrinsic functions. These
functions compute the 128-bit, 256-bit, or 512-bit vector equivalents. See the Intel Intrinsic Guide for
definitions of the supported functions.

New and improved optimizations:

Constant-folding and arithmetic simplifications for expressions using SIMD vector intrinsics, for
both float and integer forms.

A more powerful analysis for extracting information from control flow (if/else/switch statements) to
remove branches always proven to be true or false.

Improved memset unrolling to use SSE2 vector instructions.

Improved removal of useless struct/class copies, especially for C++ programs that pass by value.

Improved optimization of code using memmove , such as std::copy or std::vector and std::string

construction.

Optimized the Standard Library physical design to avoid compiling parts of the Standard Library not
#include'd, cutting in half the build time of an empty file that includes only <vector>. As a result of this
change, you may need to add #include directives for headers that were previously indirectly included. For
example, code that uses std::out_of_range may now need to #include <stdexcept>. Code that uses a
stream insertion operator may now need to #include <ostream>. The benefit is that only translation units
actually using <stdexcept> or <ostream> components pay the throughput cost to compile them.

if constexpr was applied in more places in the Standard Library for improved throughput and reduced
code size in copy operations, in permutations like reverse and rotate, and in the parallel algorithms library.

The Standard Library now internally uses if constexpr to reduce compile times even in C++14 mode.

The runtime dynamic linking detection for the parallel algorithms library no longer uses an entire page to
store the function pointer array. Marking this memory read-only was deemed no longer relevant for
security purposes.

std::thread 's constructor no longer waits for the thread to start, and no longer inserts so many layers of
function calls between the underlying C library _beginthreadex and the supplied callable object. Previously
std::thread put 6 functions between _beginthreadex and the supplied callable object, which has been

reduced to only 3 (2 of which are just std::invoke). This also resolves an obscure timing bug where
std::thread 's constructor would hang if the system clock changed at the exact moment a std::thread was

being created.

Fixed a performance regression in std::hash that we introduced when implementing
std::hash<std::filesystem::path> .

In several places the Standard Library now uses destructors instead of catch blocks to achieve correctness.
This results in better debugger interaction; exceptions you throw through the Standard Library in the
affected locations will now show up as being thrown from their original throw site, rather than our rethrow.
Not all Standard Library catch blocks have been eliminated; we expect the number of catch blocks to be

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#!=undefined&techs=SVML

C++ IDE
Live Share C++ support

IntelliCode for C++

Template IntelliSense

New Start window experience

New names for some project templates

Various productivity improvements

reduced in subsequent releases of MSVC.

Suboptimal codegen in std::bitset caused by a conditional throw inside a noexcept function was fixed by
factoring out the throwing path.

The std::list and std::unordered_* family use non-debugging iterators internally in more places.

Several std::list members were changed to reuse list nodes where possible rather than deallocating and
reallocating them. For example, given a list<int> that already has a size of 3, a call to assign(4, 1729)

will now overwrite the ints in the first 3 list nodes, and allocate one new list node with the value 1729,
rather than deallocating all 3 list nodes and then allocating 4 new list nodes with the value 1729.

All Standard Library calls to erase(begin(), end()) were changed to clear() .

std::vector now initializes and erases elements more efficiently in certain cases.

Improvements to std::variant to make it more optimizer-friendly, resulting in better generated code.
Code inlining is now much better with std::visit .

Live Share now supports C++, allowing developers using Visual Studio or Visual Studio Code to collaborate in
real time. For more information, see Announcing Live Share for C++: Real-Time Sharing and Collaboration

IntelliCode is an optional extension (added as a workload component in 16.1) that uses its own extensive training
and your code context to put what you’re most likely to use at the top of your completion list. It can often
eliminate the need to scroll down through the list. For C++, IntelliCode offers the most help when using popular
libraries such as the Standard Library. For more information, see AI-Assisted Code Completion Suggestions
Come to C++ via IntelliCode.

The Template Bar now uses the Peek Window UI rather than a modal window, supports nested templates, and
pre-populates any default arguments into the Peek Window. For more information, see Template IntelliSense
Improvements for Visual Studio 2019 Preview 2. A Most Recently Used dropdown in the Template Bar enables
you to quickly switch between previous sets of sample arguments.

When launching the IDE, a new Start window appears with options to open recent projects, clone code from
source control, open local code as a solution or a folder, or create a new project. The New Project dialog has also
been overhauled into a search-first, filterable experience.

We've modified several project template names and descriptions to fit with the updated New Project dialog.

Visual Studio 2019 includes the following features that will help make coding easier and more intuitive:

Quick fixes for:
Add missing #include
NULL to nullptr
Add missing semicolon
Resolve missing namespace or scope
Replace bad indirection operands (* to & and & to *)

https://docs.microsoft.com/visualstudio/liveshare/
https://devblogs.microsoft.com/cppblog/cppliveshare/
https://devblogs.microsoft.com/cppblog/cppintellicode/
https://devblogs.microsoft.com/cppblog/template-intellisense-improvements-for-visual-studio-2019-preview-2/

QuickInfo improvements

IntelliCode available in C++ workload

CMake support

Quick Info for a block by hovering on closing brace
Peek Header / Code File
Go to Definition on #include opens the file

For more information, see C++ Productivity Improvements in Visual Studio 2019 Preview 2.

Visual Studio 2019 version 16.1

The Quick Info tooltip now respects the semantic colorization of your editor. It also has a new Search Online link
that will search for online docs to learn more about the hovered code construct. For red-squiggled code, the link
provided by Quick Info will search for the error online. This way you don’t need to retype the message into your
browser. For more information, see Quick Info Improvements in Visual Studio 2019: Colorization and Search
Online.

IntelliCode now ships as an optional component in the Desktop Development with C++ workload. For more
information, see Improved C++ IntelliCode now Ships with Visual Studio 2019.

Support for CMake 3.14

Visual Studio can now open existing CMake caches generated by external tools, such as CMakeGUI,
customized meta-build systems or build scripts that invoke cmake.exe themselves.

Improved IntelliSense performance.

A new settings editor provides an alternative to manually editing the CMakeSettings.json file, and provides
some parity with CMakeGUI.

Visual Studio helps bootstrap your C++ development with CMake on Linux by detecting if you have a
compatible version of CMake on your Linux machine, and if not offers to install it for you.

Incompatible settings in CMakeSettings, such as mismatched architectures or incompatible CMake
generator settings, show squiggles in the JSON editor and errors in the error list.

The vcpkg toolchain is automatically detected and enabled for CMake projects that are opened in the IDE
once vcpkg integrate install has been run. This behavior can be turned off by specifying an empty
toolchain file in CMakeSettings.

CMake projects now enable Just My Code debugging by default.

Static analysis warnings can now be processed in the background and displayed in the editor for CMake
projects.

Clearer build and configure 'begin' and 'end' messages for CMake projects and support for Visual Studio's
build progress UI. Additionally, there's now a CMake verbosity setting in Tools > Options to customize the
detail level of CMake build and configuration messages in the Output Window.

The cmakeToolchain setting is now supported in CMakeSettings.json to specify toolchains without
manually modifying the CMake command line.

A new Build All menu shortcut Ctrl+Shift+B.

Visual Studio 2019 version 16.1

Integrated support for editing, building, and debugging CMake projects with Clang/LLVM. For more
information, see Clang/LLVM Support in Visual Studio.

https://devblogs.microsoft.com/cppblog/c-productivity-improvements-in-visual-studio-2019-preview-2/
https://devblogs.microsoft.com/cppblog/quick-info-improvements-in-visual-studio-2019-colorization-and-search-online/
https://devblogs.microsoft.com/cppblog/
https://devblogs.microsoft.com/cppblog/clang-llvm-support-in-visual-studio/

Linux and WSL

IncrediBuild integration

Debugging

Windows desktop development with C++

Mobile development with C++ (Android and iOS)

Clang/C2 platform toolset

Visual Studio 2019 version 16.1

Support for AddressSanitizer (ASan) in Linux and CMake cross-platform projects. For more information,
see AddressSanitizer (ASan) for the Linux Workload in Visual Studio 2019.

Integrated Visual Studio support for using C++ with the Windows Subsystem for Linux (WSL). For more
information, see C++ with Visual Studio 2019 and Windows Subsystem for Linux (WSL).

IncrediBuild is included as an optional component in the Desktop development with C++ workload. The
IncrediBuild Build Monitor is fully integrated in the Visual Studio IDE. For more information, see Visualize your
build with IncrediBuild’s Build Monitor and Visual Studio 2019.

For C++ applications running on Windows, PDB files now load in a separate 64-bit process. This change
addresses a range of crashes caused by the debugger running out of memory when debugging
applications that contain a large number of modules and PDB files.

Search is enabled in the Watch, Autos, and Locals windows.

These C++ ATL/MFC wizards are no longer available:

ATL COM+ 1.0 Component Wizard
ATL Active Server Pages Component Wizard
ATL OLE DB Provider Wizard
ATL Property Page Wizard
ATL OLE DB Consumer Wizard
MFC ODBC Consumer
MFC class from ActiveX control
MFC class from Type Lib.

Sample code for these technologies is archived at Microsoft Docs and the VCSamples GitHub repository.

The Windows 8.1 SDK is no longer available in the Visual Studio installer. We recommend you upgrade
your C++ projects to the latest Windows 10 SDK. If you have a hard dependency on 8.1, you can download
it from the Windows SDK archive.

Windows XP targeting will no longer be available for the latest C++ toolset. XP targeting with VS 2017-
level MSVC compiler & libraries is still supported and can be installed via "Individual components."

Our documentation actively discourages usage of Merge Modules for Visual C++ Runtime deployment.
We're taking the extra step this release of marking our MSMs as deprecated. Consider migrating your
VCRuntime central deployment from MSMs to the redistributable package.

The C++ Android experience now defaults to Android SDK 25 and Android NDK 16b.

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-the-linux-workload-in-visual-studio-2019/
https://devblogs.microsoft.com/cppblog/c-with-visual-studio-2019-and-windows-subsystem-for-linux-wsl/
https://devblogs.microsoft.com/cppblog/visualize-your-build-with-incredibuilds-build-monitor-and-visual-studio-2019/

Code analysis

Unit testing

What's New for C++ in Visual Studio 2017

C++ compiler
C++ conformance improvements

New compiler options

The Clang/C2 experimental component has been removed. Use the MSVC toolset for full C++ standards
conformance with /permissive- and /std:c++17 , or the Clang/LLVM toolchain for Windows.

Code analysis now runs automatically in the background. Warnings display as green squiggles in-editor as
you type. For more information, see In-editor code analysis in Visual Studio 2019 Preview 2.

New experimental ConcurrencyCheck rules for well-known Standard Library types from the <mutex>
header. For more information, see Concurrency Code Analysis in Visual Studio 2019.

An updated partial implementation of the Lifetime profile checker, which detects dangling pointers and
references. For more information, see Lifetime Profile Update in Visual Studio 2019 Preview 2.

More coroutine-related checks, including C26138, C26810, C26811, and the experimental rule C26800. For
more information, see New Code Analysis Checks in Visual Studio 2019: use-after-move and coroutine.

Visual Studio 2019 version 16.1

New quick fixes for uninitialized variable checks. For more information, see New code analysis quick fixes for
uninitialized memory (C6001) and use before init (C26494) warnings.

The Managed C++ Test Project template is no longer available. You can continue using the Managed C++ Test
framework in your existing projects. For new unit tests, consider using one of the native test frameworks for which
Visual Studio provides templates (MSTest, Google Test), or the Managed C# Test Project template.

Visual Studio 2017 brings many updates and fixes to the C++ environment. We've fixed over 250 bugs and
reported issues in the compiler and tools, many submitted by customers through the Report a Problem and
Provide a Suggestion options under Send Feedback. Thank you for reporting bugs! For more information on
what's new in all of Visual Studio, please visit What's new in Visual Studio 2017.

In this release, we've updated the C++ compiler and standard library with enhanced support for C++11 and
C++14 features, as well as preliminary support for certain features expected to be in the C++17 standard. For
detailed information, see C++ Conformance Improvements in Visual Studio 2017.

Visual Studio 2017 version 15.5: The compiler supports about 75% of the features that are new in C++17,
including structured bindings, constexpr lambdas, if constexpr , inline variables, fold expressions, and adding
noexcept to the type system. These are available under the /std:c++17 option. For more information, see C++

Conformance Improvements in Visual Studio 2017

Visual Studio 2017 version 15.7: The MSVC compiler toolset in Visual Studio version 15.7 now conforms with
the C++ Standard. For more information, see Announcing: MSVC Conforms to the C++ Standard and Microsoft
C++ Language Conformance.

/permissive-: Enable all strict standards conformance compiler options and disable most Microsoft-specific
compiler extensions (but not __declspec(dllimport) , for example). This option is on by default in Visual
Studio 2017 version 15.5. The /permissive- conformance mode includes support for two-phase name

https://devblogs.microsoft.com/cppblog/in-editor-code-analysis-in-visual-studio-2019-preview-2/
https://devblogs.microsoft.com/cppblog/concurrency-code-analysis-in-visual-studio-2019/
https://herbsutter.com/2018/09/20/lifetime-profile-v1-0-posted/
https://devblogs.microsoft.com/cppblog/lifetime-profile-update-in-visual-studio-2019-preview-2/
https://devblogs.microsoft.com/cppblog/new-code-analysis-checks-in-visual-studio-2019-use-after-move-and-coroutine/
https://devblogs.microsoft.com/cppblog/new-code-analysis-quick-fixes-for-uninitialized-memory-c6001-and-use-before-init-c26494-warnings/
https://docs.microsoft.com/visualstudio/how-to-report-a-problem-with-visual-studio-2017
https://docs.microsoft.com/visualstudio/ide/whats-new-in-visual-studio
https://blogs.msdn.microsoft.com/vcblog/2018/05/07/announcing-msvc-conforms-to-the-c-standard/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance

Codegen, security, diagnostics and versioning

lookup. For more information, see C++ Conformance Improvements in Visual Studio.

/diagnostics: Enable display of the line number, the line number and column, or the line number and
column and a caret under the line of code where the diagnostic error or warning was found.

/debug:fastlink: Enable up to 30% faster incremental link times (vs. Visual Studio 2015) by not copying all
debug information into the PDB file. The PDB file instead points to the debug information for the object
and library files used to create the executable. See Faster C++ build cycle in VS "15" with /Debug:fastlink
and Recommendations to speed C++ builds in Visual Studio.

Visual Studio 2017 allows using /sdl with /await. We removed the /RTC limitation with Coroutines.

Visual Studio 2017 version 15.3:

/std:c++14 and /std:c++latest: These compiler options enable you to opt-in to specific versions of the ISO
C++ programming language in a project. Most of the new draft standard features are guarded by the
/std:c++latest option.

/std:c++17 enables the set of C++17 features implemented by the compiler. This option disables compiler
and standard library support for features that are changed or new in versions of the Working Draft and
defect updates of the C++ Standard after C++17. To enable those features, use /std:c++latest.

This release brings several improvements in optimization, code generation, toolset versioning, and diagnostics.
Some notable improvements include:

Improved code generation of loops: Support for automatic vectorization of division of constant integers, better
identification of memset patterns.
Improved code security: Improved emission of buffer overrun compiler diagnostics, and /guard:cf now guards
switch statements that generate jump tables.
Versioning: The value of the built-in preprocessor macro _MSC_VER is now being monotonically updated at
every Visual C++ toolset update. For more information, see Visual C++ Compiler Version.
New toolset layout: The compiler and related build tools have a new location and directory structure on your
development machine. The new layout enables side-by-side installations of multiple versions of the compiler.
For more information, see Compiler Tools Layout in Visual Studio "15".
Improved diagnostics: The output window now shows the column where an error occurs. For more
information, see C++ compiler diagnostics improvements in VS "15" Preview 5.
When using co-routines, the experimental keyword yield (available under the /await option) has been
removed. Your code should be updated to use co_yield instead. For more information, see the Visual C++
Team blog.

Visual Studio 2017 version 15.3:

Additional improvements to diagnostics in the compiler. For more information, see Diagnostic Improvements in
Visual Studio 2017 15.3.0.

Visual Studio 2017 version 15.5:

Visual C++ runtime performance continues to improve due to better generated code quality. This means that you
can simply recompile your code, and your app runs faster. Some of the compiler optimizations are brand new,
such as the vectorization of conditional scalar stores, the combining of calls sin(x) and cos(x) into a new
sincos(x) , and the elimination of redundant instructions from the SSA Optimizer. Other compiler optimizations

are improvements to existing functionality such as vectorizer heuristics for conditional expressions, better loop
optimizations, and float min/max codegen. The linker has a new and faster /OPT:ICF implementation which can
result in up to 9% link time speedups, and there are other perf fixes in incremental linking. For more information,
see /OPT (Optimizations) and /INCREMENTAL (Link Incrementally).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/diagnostics-compiler-diagnostic-options
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/debug-generate-debug-info
https://blogs.msdn.microsoft.com/vcblog/2016/10/05/faster-c-build-cycle-in-vs-15-with-debugfastlink/
https://blogs.msdn.microsoft.com/vcblog/2016/10/26/recommendations-to-speed-c-builds-in-visual-studio/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/sdl-enable-additional-security-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/await-enable-coroutine-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/rtc-run-time-error-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/guard-enable-control-flow-guard
https://blogs.msdn.microsoft.com/vcblog/2016/10/05/visual-c-compiler-version/
https://blogs.msdn.microsoft.com/vcblog/2016/10/07/compiler-tools-layout-in-visual-studio-15/
https://blogs.msdn.microsoft.com/vcblog/2016/10/05/c-compiler-diagnostics-improvements-in-vs-15-rc/
https://blogs.msdn.microsoft.com/vcblog/
https://blogs.msdn.microsoft.com/vcblog/2017/07/21/diagnostic-improvements-in-vs2017-15-3-0/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/opt-optimizations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/incremental-link-incrementally

C++ Standard Library improvements

The Microsoft C++ compiler supports Intel's AVX-512, including the Vector Length instructions that bring new
functions in AVX-512 to 128- and 256-bit wide registers.

The /Zc:noexceptTypes- option can be used to revert to the C++14 version of noexcept while using C++17 mode
in general. This enables you to update your source code to conform to C++17 without having to rewrite all your
throw() code at the same time. For more information, see Dynamic exception specification removal and noexcept.

Visual Studio 2017 version 15.7:

New compiler switch /Qspectre to help mitigate against speculative execution side-channel attacks. See
Spectre mitigations in MSVC for more information.
New diagnostic warning for Spectre mitigation. See Spectre diagnostic in Visual Studio 2017 Version 15.7
Preview 4 for more information.
A new value for /Zc, /Zc:__cplusplus, enables correct reporting of the C++ standard support. For example,
when the switch is set and the compiler is in /std:c++17 mode the value expands to 201703L. See MSVC now
correctly reports __cplusplus for more information.

Minor basic_string _ITERATOR_DEBUG_LEVEL != 0 diagnostics improvements. Tripping an IDL check in string
machinery will now report the specific behavior that caused the trip. For example, instead of "string iterator not
dereferencable" you'll get "cannot dereference string iterator because it is out of range (e.g. an end iterator)".
Performance improvement: made basic_string::find(char) overloads only call traits::find once. Previously
this was implemented as a general string search for a string of length 1.
Performance improvement: basic_string::operator== now checks the string's size before comparing the
strings' contents.
Performance improvement: removed control coupling in basic_string , which was difficult for the compiler
optimizer to analyze. Note that for all short strings, calling reserve still has a nonzero cost to do nothing.
We added <any>, <string_view>, apply() , make_from_tuple() .
std::vector has been overhauled for correctness and performance: aliasing during insertion and

emplacement is now correctly handled as required by the Standard, the strong exception guarantee is now
provided when required by the Standard via move_if_noexcept() and other logic, and insertion/emplacement
perform fewer element operations.
The C++ Standard Library now avoids dereferencing null fancy pointers.
Added <optional>, <variant>, shared_ptr::weak_type , and <cstdalign>.
Enabled C++14 constexpr in min(initializer_list) , max(initializer_list) , and minmax(initializer_list) ,
and min_element() , max_element() , and minmax_element() .
Improved weak_ptr::lock() performance.
Fixed the std::promise move assignment operator, which previously could cause code to block forever.
Fixed compiler errors with the atomic<T*> implicit conversion to T* .
pointer_traits<Ptr> now correctly detects Ptr::rebind<U> .

Fixed a missing const qualifier in the move_iterator subtraction operator.
Fixed silent bad codegen for stateful user-defined allocators requesting
propagate_on_container_copy_assignment and propagate_on_container_move_assignment .
atomic<T> now tolerates overloaded operator&() .

To increase compiler throughput, C++ Standard Library headers now avoid including declarations for
unnecessary compiler intrinsics.
Slightly improved compiler diagnostics for incorrect bind() calls.
Improved the performance of std::string and std::wstring move constructors by more than three times.

For a complete list of Standard Library improvements see the Standard Library Fixes In VS 2017 RTM.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-noexcepttypes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qspectre
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/04/20/spectre-diagnostic-in-visual-studio-2017-version-15-7-preview-4/
https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/
https://blogs.msdn.microsoft.com/vcblog/2017/02/06/stl-fixes-in-vs-2017-rtm/

Visual Studio 2017 version 15.3
C++17 features

Other new features

Correctness fixes in Visual Studio 2017 version 15.3

Several additional C++17 features have been implemented. For more information, see Visual C++ Language
Conformance.

Implemented P0602R0 "variant and optional should propagate copy/move triviality".
The Standard Library now officially tolerates dynamic RTTI being disabled via the /GR- option. Both
dynamic_pointer_cast() and rethrow_if_nested() inherently require dynamic_cast , so the Standard Library

now marks them as =delete under /GR-.
Even when dynamic RTTI has been disabled via /GR-, "static RTTI" (in the form of typeid(SomeType)) is still
available and powers several Standard Library components. The Standard Library now supports disabling this
too, via /D_HAS_STATIC_RTTI=0. Note that this will disable std::any , the target() and target_type()

member functions of std::function , and the get_deleter() friend member function of std::shared_ptr and
std::weak_ptr .

Standard Library containers now clamp their max_size() to numeric_limits<difference_type>::max() rather
than the max() of size_type . This ensures that the result of distance() on iterators from that container is
representable in the return type of distance() .
Fixed missing specialization auto_ptr<void> .
The for_each_n() , generate_n() , and search_n() algorithms previously failed to compile if the length
argument was not an integral type; they now attempt to convert non-integral lengths to the iterators'
difference_type .
normal_distribution<float> no longer emits warnings inside the Standard Library about narrowing from

double to float.
Fixed some basic_string operations which were comparing with npos instead of max_size() when checking
for maximum size overflow.
condition_variable::wait_for(lock, relative_time, predicate) would wait for the entire relative time in the

event of a spurious wake. Now it will wait for only a single interval of the relative time.
future::get() now invalidates the future , as the standard requires.
iterator_traits<void *> used to be a hard error because it attempted to form void& ; it now cleanly becomes

an empty struct to allow use of iterator_traits in "is iterator" SFINAE conditions.
Some warnings reported by Clang -Wsystem-headers were fixed.
Also fixed "exception specification in declaration does not match previous declaration" reported by Clang -
Wmicrosoft-exception-spec.
Also fixed mem-initializer-list ordering warnings reported by Clang and C1XX.
The unordered containers did not swap their hashers or predicates when the containers themselves were
swapped. Now they do.
Many container swap operations are now marked noexcept (as our Standard Library never intends to throw
an exception when detecting the non- propagate_on_container_swap non-equal-allocator undefined behavior
condition).
Many vector<bool> operations are now marked noexcept .
The Standard Library will now enforce matching allocator value_type (in C++17 mode) with an opt-out
escape hatch.
Fixed some conditions where self-range-insert into basic_string would scramble the strings contents. (Note:
self-range-insert into vectors is still prohibited by the Standard.)
basic_string::shrink_to_fit() is no longer affected by the allocator's propagate_on_container_swap .
std::decay now handles abominable function types (i.e. function types that are cv-qualified and/or ref-

qualified).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gr-enable-run-time-type-information

Performance/throughput fixes

Changed include directives to use proper case sensitivity and forward slashes, improving portability.
Fixed warning C4061 "enumerator 'enumerator' in switch of enum 'enumeration' is not explicitly handled by a
case label". This warning is off-by-default and was fixed as an exception to the Standard Library's general
policy for warnings. (The Standard Library is /W4 clean, but does not attempt to be /Wall clean. Many off-by-
default warnings are extremely noisy and aren't intended to be used on a regular basis.)
Improved std::list debug checks. List iterators now check operator->() , and list::unique() now marks
iterators as invalidated.
Fixed uses-allocator metaprogramming in tuple .

Worked around interactions with noexcept which prevented inlining the std::atomic implementation into
functions that use Structured Exception Handling (SEH).
Changed the Standard Library's internal _Deallocate() function to optimize into smaller code, allowing it to be
inlined into more places.
Changed std::try_lock() to use pack expansion instead of recursion.
Improved the std::lock() deadlock avoidance algorithm to use lock() operations instead of spinning on
try_lock() on all the locks.

Enabled the Named Return Value Optimization in system_category::message() .
conjunction and disjunction now instantiate N + 1 types, instead of 2N + 2 types.
std::function no longer instantiates allocator support machinery for each type-erased callable, improving

throughput and reducing .obj size in programs that pass many distinct lambdas to std::function .
allocator_traits<std::allocator> contains manually inlined std::allocator operations, reducing code size in

code that interacts with std::allocator through allocator_traits only (that is, in most code).
The C++11 minimal allocator interface is now handled by the Standard Library calling allocator_traits

directly, instead of wrapping the allocator in an internal class _Wrap_alloc . This reduces the code size
generated for allocator support, improves the optimizer's ability to reason about Standard Library containers in
some cases, and provides a better debugging experience (as now you see your allocator type, rather than
_Wrap_alloc<your_allocator_type> in the debugger).

Removed metaprogramming for customized allocator::reference , which allocators aren't actually allowed to
customize. (Allocators can make containers use fancy pointers but not fancy references.)
The compiler front-end was taught to unwrap debug iterators in range-based for-loops, improving the
performance of debug builds.
The basic_string internal shrink path for shrink_to_fit() and reserve() is no longer in the path of
reallocating operations, reducing code size for all mutating members.
The basic_string internal grow path is no longer in the path of shrink_to_fit() .
The basic_string mutating operations are now factored into non-allocating fast path and allocating slow path
functions, making it more likely for the common no-reallocate case to be inlined into callers.
The basic_string mutating operations now construct reallocated buffers in the desired state rather than
resizing in place. For example, inserting at the beginning of a string now moves the content after the insertion
exactly once (either down or to the newly allocated buffer), instead of twice in the reallocating case (to the
newly allocated buffer and then down).
Operations calling the C standard library in <string> now cache the errno address to remove repeated
interaction with TLS.
Simplified the is_pointer implementation.
Finished changing function-based Expression SFINAE to struct and void_t -based.
Standard Library algorithms now avoid postincrementing iterators.
Fixed truncation warnings when using 32-bit allocators on 64-bit systems.
std::vector move assignment is now more efficient in the non-POCMA non-equal-allocator case, by reusing

the buffer when possible.

Readability and other improvements

Visual Studio 2017 version 15.5

New experimental features

Performance fixes and improvements

The Standard Library now uses C++14 constexpr unconditionally, instead of conditionally-defined macros.
The Standard Library now uses alias templates internally.
The Standard Library now uses nullptr internally, instead of nullptr_t{} . (Internal usage of NULL has been
eradicated. Internal usage of 0-as-null is being cleaned up gradually.)
The Standard Library now uses std::move() internally, instead of stylistically misusing std::forward() .
Changed static_assert(false, "message") to #error message . This improves compiler diagnostics because
#error immediately stops compilation.

The Standard Library no longer marks functions as __declspec(dllimport) . Modern linker technology no
longer requires this.
Extracted SFINAE to default template arguments, which reduces clutter compared to return types and function
argument types.
Debug checks in <random> now use the Standard Library's usual machinery, instead of the internal function
_Rng_abort() which called fputs() to stderr. This function's implementation is being retained for binary

compatibility, but has been removed in the next binary-incompatible version of the Standard Library.

Several Standard Library features have been added, deprecated or removed in accordance with the C++17
standard. For more information see C++ conformance improvements in Visual Studio.

Experimental support for the following parallel algorithms:

The signatures for the following parallel algorithms are added but not parallelized at this time; profiling
showed no benefit in parallelizing algorithms that only move or permute elements:

all_of

any_of

for_each

for_each_n

none_of

reduce

replace

replace_if

sort

copy

copy_n

fill

fill_n

move

reverse

reverse_copy

rotate

rotate_copy

swap_ranges

basic_string<char16_t> now engages the same memcmp , memcpy , and similar optimizations that
basic_string<wchar_t> engages.

An optimizer limitation which prevented function pointers from being inlined exposed by our "avoid copying
functions" work in Visual Studio 2015 Update 3 has been worked around, restoring performance of

Correctness fixes in Visual Studio 2017 version 15.5

Visual Studio 2017 version 15.6

Visual Studio 2017 version 15.7

Other Libraries
Open source library support

lower_bound(iter, iter, function pointer) .
The overhead of iterator debugging's order verification of inputs to includes , set_difference ,
set_symmetric_difference , and set_union was reduced by unwrapping iterators before checking order.
std::inplace_merge now skips over elements that are already in position.

Constructing std::random_device no longer constructs and then destroys a std::string .
std::equal and std::partition had a jump-threading optimization pass which saves an iterator comparison.

When std::reverse is passed pointers to trivially copyable T , it will now dispatch to a handwritten vectorized
implementation.
std::fill , std::equal , and std::lexicographical_compare were taught how to dispatch to memset and
memcmp for std::byte and gsl::byte (and other char-like enums and enum classes). Note that std::copy

dispatches using is_trivially_copyable and thus didn't need any changes.
The Standard Library no longer contains empty-braces destructors whose only behavior was to make types
non-trivially-destructible.

std::partition now calls the predicate N times instead of N + 1 times, as the standard requires.
Attempts to avoid magic statics in version 15.3 have been repaired in version 15.5.
std::atomic<T> no longer requires T to be default constructible.

Heap algorithms that take logarithmic time no longer do a linear time assertion that the input is in fact a heap
when iterator debugging is enabled.
__declspec(allocator) is now guarded for C1XX only, to prevent warnings from Clang which doesn't

understand this declspec.
basic_string::npos is now available as a compile time constant.
std::allocator in C++17 mode now properly handles allocation of over-aligned types, that is, types whose

alignment is greater than max_align_t , unless disabled by /Zc:alignedNew-. For example, vectors of objects
with 16 or 32-byte alignment will now be properly aligned for SSE and AVX instructions.

<memory_resource>
Library Fundamentals V1
Deleting polymorphic_allocator assignment
Improving class template argument deduction

support for parallel algorithms is no longer experimental
a new implementation of <filesystem>
elementary string conversions (partial)
std::launder()
std::byte
hypot(x,y,z)
avoiding unnecessary decay
mathematical special functions
constexpr char_traits
deduction guides for STL

See Visual C++ language conformance for more information.

CPPRest SDK 2.9.0

ATL

Visual C++ runtime

C++ IDE

Feature Performance Improvement

Rename 5.3x

Change Signature 4.5x

Find All References 4.7x

IntelliSense

Vcpkg is an open-source command line tool that greatly simplifies the process of acquiring and building open
source C++ static libs and DLLS in Visual Studio. For more information, see vcpkg: A package manager for C++.

Visual Studio 2017 version 15.5:

The CPPRestSDK, a cross-platform web API for C++, has been updated to version 2.9.0. For more information,
see CppRestSDK 2.9.0 is available on GitHub.

Yet another set of name-lookup conformance fixes
Existing move constructors and move assignment operators are now properly marked as non-throwing
Un-suppress valid warning C4640 about thread safe init of local statics in atlstr.h
Thread Safe Initialization of local statics was automatically turned off in the XP toolset when [using ATL AND
building a DLL]. This is no longer the case. You can add /Zc:threadSafeInit- in your Project settings if having
thread safe initialization off is desired.

New header "cfguard.h" for Control Flow Guard symbols.

Configuration change performance is now better for C++ native projects and much better for C++/CLI
projects. When a solution configuration is activated for the first time it will now be faster and all subsequent
activations of this solution configuration will be almost instantaneous.

Visual Studio 2017 version 15.3:

Several project and code wizards have been rewritten in the signature dialog style.
Add Class now launches the Add Class wizard directly. All of the other items that were previously here are
now available under Add > New Item.
Win32 projects are now under the Windows Desktop category in the New Project dialog.
The Windows Console and Desktop Application templates now create the projects without displaying a
wizard. There's a new Windows Desktop Wizard under the same category that displays the same options as
the old Win32 Console Application wizard.

Visual Studio 2017 version 15.5:

Several C++ operations that use the IntelliSense engine for refactoring and code navigation run much faster. The
following numbers are based on the Visual Studio Chromium solution with 3500 projects:

C++ now supports Ctrl+Click Go To Definition, making mouse navigation to definitions easy. The Structure
Visualizer from the Productivity Power Tools pack is now also included in the product by default.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg
https://blogs.msdn.microsoft.com/vcblog/2016/10/21/cpprestsdk-2-9-0-is-available-on-github/

The new SQLite-based database engine is now being used by default. This will speed up database
operations like Go To Definition and Find All References, and will significantly improve initial solution
parse time. The setting has been moved to Tools > Options > Text Editor > C/C++ > Advanced (it was
formerly under ...C/C++ | Experimental).

We've improved IntelliSense performance on projects and files not using precompiled headers - an
Automatic Precompiled Header will be created for headers in the current file.

We've added error filtering and help for IntelliSense errors in the error list. Clicking on the error column
now allows for filtering. Also, clicking on the specific errors or pressing F1 will launch an online search for
the error message.

Added the ability to filter Member List items by kind.

Added a new experimental Predictive IntelliSense feature that provides contextually-aware filtering of what
appears in the Member List. See C++ IntelliSense Improvements - Predictive IntelliSense & Filtering

Find All References (Shift+F12) now helps you get around easily, even in complex codebases. It provides
advanced grouping, filtering, sorting, searching within results, and (for some languages) colorization, so
you can get a clear understanding of your references. For C++, the new UI includes information about
whether we are reading from or writing to a variable.

The Dot-to-Arrow IntelliSense feature has been moved from experimental to advanced, and is now enabled
by default. The editor features Expand Scopes and Expand Precedence have also been moved from
experimental to advanced.

The experimental refactoring features Change Signature and Extract Function are now available by
default.

The experimental 'Faster project load' feature for C++ projects. The next time you open a C++ project it
will load faster, and the time after that it will load really fast!

Some of these features are common to other languages, and some are specific to C++. For more

https://blogs.msdn.microsoft.com/vcblog/2016/10/05/c-intellisense-improvements-predictive-intellisense-filtering/

Non-MSBuild projects with Open Folder

CMake support via Open Folder

information about these new features, see Announcing Visual Studio "15".

Visual Studio 1027 version 15.7: Support added for ClangFormat. For more information, see ClangFormat
Support in Visual Studio 2017.

Visual Studio 2017 introduces the Open Folder feature, which enables you to code, build and debug in a folder
containing source code without the need to create any solutions or projects. This makes it much simpler to get
started with Visual Studio even if your project is not an MSBuild-based project. With Open Folder you get access
to the powerful code understanding, editing, building and debugging capabilities that Visual Studio already
provides for MSBuild projects. For more information, see Open Folder projects for C++.

Improvements to the Open Folder experience. You can customize the experience through these .json files:
CppProperties.json to customize the IntelliSense and browsing experience.
Tasks.json to customize the build steps.
Launch.json to customize the debugging experience.

Visual Studio 2017 version 15.3:

Improved support for alternative compilers and build environments such as MinGW and Cygwin. For more
information, see Using MinGW and Cygwin with Visual C++ and Open Folder.
Added support to define global and configuration-specific environment variables in CppProperties.json and
CMakeSettings.json. These environment variables can be consumed by debug configurations defined in
launch.vs.json and tasks in tasks.vs.json. For more information, see Customizing your Environment with Visual
C++ and Open Folder.
Improved support for CMake's Ninja generator, including the ability to easily target 64-bit platforms.

Visual Studio 2017 introduces support for using CMake projects without converting to MSBuild project files
(.vcxproj). For more information, see CMake projects in Visual Studio. Opening CMake projects with Open Folder
automatically configures the environment for C++ editing, building and debugging.

C++ IntelliSense works without the need to create a CppProperties.json file in the root folder. Along with
this, we've added a new dropdown to allow users to easily switch between configurations provided by
CMake and CppProperties.json files.

Further configuration is supported via a CMakeSettings.json file that sits in the same folder as the
CMakeLists.txt file.

https://blogs.msdn.microsoft.com/visualstudio/2016/10/05/announcing-visual-studio-15-preview-5/
https://blogs.msdn.microsoft.com/vcblog/2018/03/13/clangformat-support-in-visual-studio-2017-15-7-preview-1/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/open-folder-projects-cpp
https://blogs.msdn.microsoft.com/vcblog/2017/07/19/using-mingw-and-cygwin-with-visual-cpp-and-open-folder/
https://blogs.msdn.microsoft.com/vcblog/2017/11/02/customizing-your-environment-with-visual-c-and-open-folder/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/cmake-projects-in-visual-studio

Windows desktop development with C++

Linux development with C++

Visual Studio 2017 version 15.3: Support added for the CMake Ninja generator.

Visual Studio 2017 version 15.5: Support added for importing existing CMake caches.

Visual Studio 2017 version 15.7: Support added for CMake 3.11, code analysis in CMake projects, Targets view
in Solution Explorer, options for cache generation, and single file compilation. For more information, see CMake
Support in Visual Studio and CMake projects in Visual Studio.

We now provide a more granular installation experience for installing the original C++ workload. We have added
selectable components that enable you to install just the tools that you need. Please note that the indicated
installation sizes for the components listed in the installer UI are not accurate and underestimate the total size.

To successfully create Win32 projects in the C++ desktop workload, you must install both a toolset and a
Windows SDK. Installing the recommended (selected) components VC++ 2017 v141 toolset (x86, x64) and
Windows 10 SDK (10.0.nnnnn) ensures this will work. If the necessary tools are not installed, projects will not
be created successfully and the wizard will hang.

Visual Studio 2017 version 15.5:

The Visual C++ Build tools (previously available as a standalone product) are now included as a workload in the
Visual Studio Installer. This workload installs only the tools required to build C++ projects without installing the
Visual Studio IDE. Both the v140 and v141 toolsets are included. The v141 toolset contains the latest
improvements in Visual Studio 2017 version 15.5. For more information, see Visual Studio Build Tools now
include the VS2017 and VS2015 MSVC Toolsets.

The popular extension Visual C++ for Linux Development is now part of Visual Studio. This installation provides
everything you need to develop and debug C++ applications running on a Linux environment.

Visual Studio 2017 version 15.2:

Improvements have been made in cross-platform code sharing and type visualization. For more information, see

https://blogs.msdn.microsoft.com/vcblog/2018/04/09/cmake-support-in-visual-studio-targets-view-single-file-compilation-and-cache-generation-settings/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/cmake-projects-in-visual-studio
https://blogs.msdn.microsoft.com/vcblog/2017/11/02/visual-studio-build-tools-now-include-the-vs2017-and-vs2015-msvc-toolsets/
https://visualstudiogallery.msdn.microsoft.com/725025cf-7067-45c2-8d01-1e0fd359ae6e

Game development with C++

Mobile development with C++ (Android and iOS)

Universal Windows Apps

New options for C++ on Universal Windows Platform (UWP)

Linux C++ improvements for cross-platform code sharing and type visualization.

Visual Studio 2017 version 15.5:

The Linux workload has added support for rsync as an alternative to sftp for synchronizing files to remote
Linux machines.
Support is added for cross compilation targeting ARM microcontrollers. To enable this in the installation,
choose the Linux development with C++ workload and select the option for Embedded and IoT
Development. This adds the ARM GCC cross compilation tools and Make to your installation. For more
information, see ARM GCC Cross Compilation in Visual Studio.
Support added for CMake. You can now work on your existing CMake code base without having to convert it
to a Visual Studio project. For more information, see Configure a Linux CMake Project.
Support added for running remote tasks. This capability allows you to run any command on a remote system
that is defined in Visual Studio’s Connection Manager. Remote tasks also provide the capability to copy files to
the remote system. For more information, see Configure a Linux CMake Project.

Visual Studio 2017 version 15.7:

Various improvements to Linux workload scenarios. For more information, see Linux C++ Workload
improvements to the Project System, Linux Console Window, rsync and Attach to Process.
IntelliSense for headers on remote Linux connections. For more information, see IntelliSense for Remote Linux
Headers and Configure a Linux CMake Project.

Use the full power of C++ to build professional games powered by DirectX or Cocos2d.

You can now create and debug mobile apps using Visual Studio that can target Android and iOS.

C++ comes as an optional component for the Universal Windows App workload. Upgrading C++ projects
currently must be done manually. If you open a v140-targeted UWP project in Visual Studio 2017, you need to
select the v141 platform toolset in the project property pages if you do not have Visual Studio 2015 installed.

You now have new options for writing and packaging C++ applications for the Universal Windows Platform and
the Windows Store: You can use the Desktop Bridge infrastructure to package your existing desktop application or
COM object for deployment through the Windows Store or through your existing channels via side-loading. New
capabilities in Windows 10 enable you to add UWP functionality to your desktop application in various ways. For
more information, see Desktop Bridge.

Visual Studio 2017 version 15.5: A Windows Application Packaging Project project template is added
which greatly simplifies the work of packaging desktop applications with using Desktop Bridge. It is available
under File | New | Project | Installed | Visual C++ | Universal Windows Platform. For more information, see
Package an app by using Visual Studio (Desktop Bridge).

When writing new code, you can now use C++/WinRT, a standard C++ language projection for the Windows
Runtime implemented solely in header files. It allows you to both author and consume Windows Runtime APIs
using any standards-compliant C++ compiler. C++/WinRT is designed to provide C++ developers with first-class
access to the modern Windows API. For more information, see C++/WinRT Available on GitHub.

https://blogs.msdn.microsoft.com/vcblog/2017/05/10/linux-cross-platform-and-type-visualization/
https://blogs.msdn.microsoft.com/vcblog/2017/10/23/arm-gcc-cross-compilation-in-visual-studio/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/linux/cmake-linux-project
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/linux/cmake-linux-project
https://blogs.msdn.microsoft.com/vcblog/2018/03/13/linux-c-workload-improvements-to-the-project-system-linux-console-window-rsync-and-attach-to-process/
https://blogs.msdn.microsoft.com/vcblog/2018/04/09/intellisense-for-remote-linux-headers/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/linux/cmake-linux-project
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net
https://moderncpp.com/

Clang/C2 platform toolset

C++ code analysis

As of build 17025 of the Windows SDK Insider Preview, C++/WinRT is included in the Windows SDK. For more
information, see C++/WinRT is now included the Windows SDK.

The Clang/C2 toolset that ships with Visual Studio 2017 now supports the /bigobj switch, which is crucial for
building large projects. It also includes several important bug fixes, both in the front-end and the back-end of the
compiler.

The C++ Core Checkers for enforcing the C++ Core Guidelines are now distributed with Visual Studio. Simply
enable the checkers in the Code Analysis Extensions page in the project's property pages and the extensions
will be included when you run code analysis. For more information, see Using the C++ Core Guidelines checkers.

Visual Studio 2017 version 15.3: Support added for rules related to resource management.

Visual Studio 2017 version 15.5: New C++ Core Guidelines checks cover smart pointer correctness, correct use
of global initializers, and flagging uses of constructs like goto and bad casts.

Some warning numbers you may find in 15.3 are no longer available in 15.5. These warnings were replaced with
more specific checks.

Visual Studio 2017 version 15.6:

Support added for single-file analysis, and improvements in analysis run-time performance. For more
information, see C++ Static Analysis Improvements for Visual Studio 2017 15.6 Preview 2

Visual Studio 2017 version 15.7:

Support added for /analyze:ruleset which enables you to specify which code analysis rules to run.
Support added for additional C++ Core Guidelines rules. For more information, see Using the C++ Core

https://blogs.msdn.microsoft.com/vcblog/2017/11/01/cppwinrt-is-now-included-the-windows-sdk/
https://github.com/isocpp/CppCoreGuidelines
https://docs.microsoft.com/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers
https://blogs.msdn.microsoft.com/vcblog/2018/01/10/c-static-analysis-improvements-for-visual-studio-2017-15-6-preview-2/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/analyze-code-analysis

Unit testing

Visual Studio graphics diagnostics

Guidelines checkers.

Visual Studio 2017 version 15.5:

Google Test Adapter and Boost.Test Adapter are now available as components of the Desktop Development
with C++ workload, and are integrated with Test Explorer. CTest support is added for Cmake projects (using
Open Folder) although full integration with Test Explorer is not yet available. For more information, see Writing
unit tests for C/C++.

Visual Studio 2017 version 15.6:

Support added for Boost.Test dynamic library support.
A Boost.Test item template is now available in the IDE.

For more information, see Boost.Test Unit Testing: Dynamic Library support and New Item Template.

Visual Studio 2017 version 15.7:

CodeLens supported added for C++ unit test projects. For more information, see Announcing CodeLens for C++
Unit Testing.

Visual Studio Graphics Diagnostics is a set of tools for recording and analyzing rendering and performance
problems in Direct3D apps. Graphics Diagnostics features can be used with apps that are running locally on your
Windows PC, in a Windows device emulator, or on a remote PC or device.

Input & Output for Vertex and Geometry shaders: The ability to view input and output of vertex
shaders and geometry shaders has been one of the most requested features, and it is now supported in the
tools. Simply select the VS or GS stage in the Pipeline Stages view to start inspecting its input and output
in the table below.

Search and filter in the object table: Provides a quick and easy way to find the resources you're looking
for.

https://docs.microsoft.com/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers
https://docs.microsoft.com/visualstudio/test/writing-unit-tests-for-c-cpp
https://blogs.msdn.microsoft.com/vcblog/2018/01/10/boost-test-unit-testing-dynamic-library-support-and-new-item-template/
https://docs.microsoft.com/visualstudio/ide/find-code-changes-and-other-history-with-codelens
https://blogs.msdn.microsoft.com/vcblog/2018/04/09/announcing-codelens-for-c-unit-testing/

Resource History: This new view provides a streamlined way of seeing the entire modification history of a
resource as it was used during the rendering of a captured frame. To invoke the history for any resource,
simply click the clock icon next to any resource hyperlink.

This will display the new Resource History tool window, populated with the change history of the
resource.

Note that if your frame was captured with full call stack capturing enabled (Visual Studio > Tools >
Options under Graphics Diagnostics), then the context of each change event can be quickly deduced and
inspected within your Visual Studio project.

API Statistics: View a high-level summary of API usage in your frame. This can be handy in discovering
calls you may not realize you’re making at all or calls you are making too much. This window is available
via View > API Statistics in Visual Studio Graphics Analyzer.

Memory Statistics: View how much memory the driver is allocating for the resources you create in the
frame. This window is available via View > Memory Statistics in Visual Studio Graphics Analyzer.
Data can be copied to a CSV file for viewing in a spreadsheet by right-clicking and choosing Copy All.

Frame Validation: The new errors and warnings list provides an easy way to navigate your event list
based on potential issues detected by the Direct3D debug layer. Click View > Frame Validation in Visual
Studio Graphics Analyzer to open the window. Then click Run Validation to start the analysis. It can take
several minutes to complete, depending on the frame's complexity.

Frame Analysis for D3D12: Use Frame Analysis to analyze draw call performance with directed "what-if"
experiments. Switch to the Frame Analysis tab and run analysis to view the report. For more details, watch
the GoingNative 25: Visual Studio Graphics Frame Analysis video.

GPU Usage Improvements: Open traces taken via the Visual Studio GPU Usage profiler with either GPU
View or the Windows Performance Analyzer (WPA) tool for more detailed analysis. If you have the
Windows Performance Toolkit installed there will be two hyperlinks, one for WPA and other for GPU View,
at the bottom right of the session overview.

https://channel9.msdn.com/Shows/C9-GoingNative/GoingNative-25-Offline-Analysis-Graphics-Tool

Traces opened in GPU View via this link support synchronized zooming and panning in the timeline
between VS and GPU View. A checkbox in VS is used to control whether synchronization is enabled or not.

4/3/2019 • 68 minutes to read • Edit Online

C++ conformance improvements in Visual Studio 2019
RTW and version 16.1
Improvements in Visual Studio 2019 RTW

Improved modules support for templates and error detection

Modified specification of aggregate type

struct A
{
 A() = delete; // user-declared ctor
};

struct B
{
 B() = default; // user-declared ctor
 int i = 0;
};

A a{}; // ill-formed in C++20, previously well-formed
B b = { 1 }; // ill-formed in C++20, previously well-formed

Partial support for operator <=>

Visual Studio 2019 RTW contains the following conformance improvements, bug fixes and behavior changes in
the Microsoft C++ compiler (MSVC).

Note: C++20 features will be made available in /std:c++latest mode until the C++20 implementation is
complete for both the compiler and IntelliSense. At that time, the /std:c++20 compiler mode will be introduced.

Modules are now officially in the C++20 standard. Improved support was added in Visual Studio 2017 version
15.9. For more information, see Better template support and error detection in C++ Modules with MSVC 2017
version 15.9.

The specification of an aggregate type has changed in C++20 (see Prohibit aggregates with user-declared
constructors). In Visual Studio 2019, under /std:c++latest , a class with any user-declared constructor (e.g.
including a constructor declared = default or = delete) is not an aggregate. Previously, only user-provided
constructors would disqualify a class from being an aggregate. This change puts additional restrictions on how
such types can be initialized.

The following code compiles without errors in Visual Studio 2017 but raises errors C2280 and C2440 in Visual
Studio 2019 under /std:c++latest :

P0515R3 C++20 introduces the <=> three-way comparison operator, also known as the "spaceship operator".
Visual Studio 2019 in /std:c++latest mode introduces partial support for the operator by raising errors for
syntax that is now disallowed. For example, the following code compiles without errors in Visual Studio 2017 but
raises multiple errors in Visual Studio 2019 under /std:c++latest :

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/cpp-conformance-improvements.md
https://devblogs.microsoft.com/cppblog/better-template-support-and-error-detection-in-c-modules-with-msvc-2017-version-15-9/
http://wg21.link/p1008r1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf

struct S
{
 bool operator<=(const S&) const { return true; }
};

template <bool (S::*)(const S&) const>
struct U { };
int main(int argc, char** argv)
{
 U<&S::operator<=> u; // In Visual Studio 2019 raises C2039, 2065, 2146.
}

References to types with mismatched cv-qualifiers

struct X
{
 const void* const& PData() const
 {
 return _pv;
 }

 void* _pv;
};

int main()
{
 X x;
 auto p = x.PData(); // C4172
}

reinterpret_cast from an overloaded function

int f(int) { return 1; }
int f(float) { return .1f; }
using fp = int(*)(int);

int main()
{
 fp r = reinterpret_cast<fp>(&f);
}

To avoid the errors, insert a space in the offending line before the final bracket: U<&S::operator<= > u; .

MSVC previously allowed direct binding of a reference from a type with mismatched cv-qualifiers below the top
level. This could allow modification of supposedly const data referred to by the reference, and the compiler now
creates a temporary as required by the standard. In Visual Studio 2017, the following code compiles without
warnings. In Visual Studio 2019, the compiler raises warning C4172: <func:#1 "?PData@X@@QBEABQBXXZ">
returning address of local variable or temporary.

The argument to reinterpret_cast is not one of the contexts in which the address of an overloaded function is
permitted. The following code compiles without errors in Visual Studio 2017, but in Visual Studio 2019 it raises
C2440: cannot convert from 'overloaded-function' to 'fp':

To avoid the error, use an allowed cast for this scenario:

int f(int);
int f(float);
using fp = int(*)(int);

int main()
{
 fp r = static_cast<fp>(&f); // or just &f;
}

Lambda closures

int main()
{
 constexpr auto l = [] {}; // C2127 in VS2019
}

std::create_directory failure codes

operator<<(std::ostream, nullptr_t)

Additional parallel algorithms

atomic initialization

remove_cvref and remove_cvref_t

Feature-test macros

Prohibit aggregates with user-declared constructors

Improvements in Visual Studio 2019 version 16.1
char8_t

In C++14, lambda closure types are not literal. The primary consequence of this rule is that a lambda may not be
assigned to a constexpr variable. The following code compiles without errors in Visual Studio 2017 but in Visual
Studio 2019 it raises C2127: 'l': illegal initialization of 'constexpr' entity with a non-constant expression :

To avoid the error, either remove the constexpr qualifier, or else change the conformance mode to /std:c++17 .

Implemented P1164 from C++20 unconditionally. This changes std::create_directory to check whether the
target was already a directory on failure. Previously, all ERROR_ALREADY_EXISTS type errors were turned into
success-but-directory-not-created codes.

Per LWG 2221, added operator<<(std::ostream, nullptr_t) for writing nullptrs to streams.

New parallel versions of is_sorted , is_sorted_until , is_partitioned , set_difference , set_intersection ,
is_heap , and is_heap_until .

P0883 "Fixing atomic initialization" changes std::atomic to value-initialize the contained T rather than default-
initializing it. The fix is enabled when using Clang/LLVM with the Microsoft Standard Library. It is currently
disabled for the Microsoft C++ compiler as a workaround for a bug in constexpr processing.

Implemented the remove_cvref and remove_cvref_t type traits from P0550. These remove reference-ness and
cv-qualification from a type without decaying functions and arrays to pointers (unlike std::decay and
std::decay_t).

P0941R2 - feature-test macros is complete, with support for __has_cpp_attribute . Feature-test macros are
supported in all Standard modes.

C++20 P1008R1 - prohibiting aggregates with user-declared constructors is complete.

P0482r6. C++20 adds a new character type that is used to represent UTF-8 code units. u8 string literals in

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1164r1.pdf
https://cplusplus.github.io/LWG/issue2221
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0883r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0550r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0941r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1008r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0482r6.html

Example

const char* s = u8"Hello"; // C++17
const char8_t* s = u8"Hello"; // C++20

std::type_identity metafunction and std::identity function object

#include <type_traits>

using T = std::identity<int>::type;
T x, y = std::identity<T>{}(x);
int i = 42;
long j = std::identity<long>{}(i);

#include <type_traits>
#include <functional>

using T = std::type_identity<int>::type;
T x, y = std::identity{}(x);
int i = 42;
long j = static_cast<long>(i);

Syntax checks for generic lambdas

void f() {
 auto a = [](auto arg) {
 decltype(arg)::Type t;
 };
}

C++20 have type const char8_t[N] instead of const char[N] , which was the case previously. Similar changes
have been proposed for the C Standard in N2231. Suggestions for char8_t backward compatibility remediation
are given in P1423r0. The Microsoft C++ compiler adds support for char8_t in Visual Studio 2019 version 16.1
when you specify the /Zc:char8_t compiler option. In the future, it will be supported with /std:c++latest, which
can be reverted to C++17 behavior via /Zc:char8_t-. The EDG compiler which powers IntelliSense does not yet
support it, so you will see spurious IntelliSense-only errors which do not impact the actual compilation.

P0887R1 type_identity. The deprecated std::identity class template extension has been removed, and replaced
with the C++20 std::type_identity metafunction and std::identity function object. Both are available only
under /std:c++latest.

The following example produces deprecation warning C4996 for std::identity (defined in <type_traits>) in
Visual Studio 2017:

The following example shows how to use the new std::identity (defined in <functional>) together with the
new std::type_identity :

The new lambda processor enables some conformance-mode syntactic checks in generic lambdas, under
/std:c++latest or under any other language mode with /experimental:newLambdaProcessor.

In Visual Studio 2017, this code compiles without warnings, but in Visual Studio 2019 it produces error C2760
syntax error: unexpected token '<id-expr>', expected 'id-expression':

The following example shows the correct syntax, now enforced by the compiler:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2231.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1423r0.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0887r1.pdf
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

void f() {
 auto a = [](auto arg) {
 typename decltype(arg)::Type t;
 };
}

Argument-dependent lookup for function calls

Designated initialization

New and updated Standard Library functions (C++20)

Bug fixes and behavior changes in Visual Studio 2019 RTW
Correct diagnostics for basic_string range constructor

std::wstring ws = /* … */;
std::string out(ws.begin(), ws.end());

std::wstring ws = L"Hello world";
std::string out;
for (wchar_t ch : ws)
{
 out.push_back(static_cast<char>(ch));
}

Incorrect calls to += and -= under /clr or /ZW are now correctly detected

public enum class E { e };

void f(System::String ^s)
{
 s += E::e; // C2845 in VS2019
}

P0846R0 (C++20) Increased ability to find function templates via argument-dependent lookup for function call
expressions with explicit template arguments. Requires /std:c++latest.

P0329R4 (C++20) Designated initialization allows specific members to be selected in aggregate initialization by
using the Type t { .member = expr } syntax. Requires /std:c++latest.

starts_with() and ends_with() for basic_string and basic_string_view .
contains() for associative containers.
remove() , remove_if() , and unique() for list and forward_list now return size_type .
shift_left() and shift_right() added to <algorithm>.

In Visual Studio 2019, the basic_string range constructor no longer suppresses compiler diagnostics with
static_cast . The following code compiles without warnings in Visual Studio 2017, despite the possible loss of

data from wchar_t to char when initializing out :

Visual Studio 2019 correctly raises C4244: 'argument': conversion from 'wchar_t' to 'const _Elem', possible loss of
data. To avoid the warning, you can initialize the std::string as shown in this example:

A bug was introduced in Visual Studio 2017 which caused the compiler to silently ignore errors and generate no
code for the invalid calls to += and -= under /clr or /ZW . The following code compiles without errors in Visual
Studio 2017 but in Visual Studio 2019 it correctly raises error C2845: 'System::String ^': pointer arithmetic not
allowed on this type:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0846r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf

Initializers for inline static data members

struct X
{
 private:
 static inline const int c = 1000;
};

struct Y : X
{
 static inline int d = c; // C2248 in Visual Studio 2019
};

struct X
{
 protected:
 static inline const int c = 1000;
};

C4800 reinstated

bool test(IUnknown* p)
{
 bool valid = p; // warning C4800: Implicit conversion from 'IUnknown*' to bool. Possible information loss
 IDispatch* d = nullptr;
 HRESULT hr = p->QueryInterface(__uuidof(IDispatch), reinterpret_cast<void**>(&d));
 return hr; // warning C4165: 'HRESULT' is being converted to 'bool'; are you sure this is what you want?
}

bool test(IUnknown* p)
{
 bool valid = p != nullptr; // OK
 IDispatch* d = nullptr;
 HRESULT hr = p->QueryInterface(__uuidof(IDispatch), reinterpret_cast<void**>(&d));
 return SUCCEEDED(hr); // OK
}

Local class member function doesn't have a body

To avoid the error in this example, use the operator with the ToString() method: s += E::e.ToString(); .

Invalid member accesses within inline and static constexpr initializers are now correctly detected. The
following example compiles without error in Visual Studio 2017, but in Visual Studio 2019 under /std:c++17

mode it raises error C2248: cannot access private member declared in class 'X'.

To avoid the error, declare the member X::c as protected:

MSVC used to have a performance warning C4800 about implicit conversion to bool that was too noisy and
insuppressible, leading us to remove it in Visual Studio 2017. However, over the lifecycle of Visual Studio 2017
we got a lot of feedback on the useful cases it was solving. We bring back in Visual Studio 2019 a carefully
tailored C4800 along with its accompanying C4165, both of which can be easily suppressed with either an
explicit cast or comparison to 0 of the appropriate type. C4800 is an off-by-default level 4 warning, and C4165 is
an off-by-default level 3 warning. Both are discoverable by using the /Wall compiler option.

The following example raises C4800 and C4165 under /Wall :

To avoid the warnings in the previous example, you can write the code like this:

In Visual Studio 2017, C4822: Local class member function doesn't have a body is raised only when compiler

void foo()
{
 struct A
 {
 int boo(); // warning C4822
 };
}

Function template bodies containing constexpr if statements

template <typename T>

int f()
{
 T::Type a; // error C7510

 if constexpr (T::val)
 {
 return 1;
 }
 else
 {
 return 2;
 }
}

struct X
{
 using Type = X;
 constexpr static int val = 1;
};

int main()
{
 return f<X>();
}

Inline assembly code is not supported in a lambda expression

option /w14822 is explicitly set; it isn't shown with /Wall . In Visual Studio 2019, C4822 is an off-by-default
warning, which makes it discoverable under /Wall without having to set /w14822 explicitly.

Template function bodies containing if constexpr statements have some /permissive- parsing-related checks
enabled. For example, in Visual Studio 2017 the following code produces C7510: 'Type': use of dependent type
name must be prefixed with 'typename' only if the /permissive- option is not set. In Visual Studio 2019 the
same code raises errors whether or not the /permissive- option is set:

To avoid the error, add the typename keyword to the declaration of a : typename T::Type a; .

The Visual C++ team was recently made aware of a security issue in which the use of inline-assembler within a
lambda could lead to the corruption of 'ebp' (the return address register) at runtime. A malicious attacker might
be able to take advantage of this scenario. Given the nature of the issue, the fact that inline assembler is only
supported on x86, and the poor interaction of the inline assembler with the rest of the compiler it was felt that
the safest solution to this problem was disallow inline assembler within a lambda expression.

Note: the only use of inline assembler within a lambda expression that we have encountered in the 'wild' was a
use in which the aim was to capture the return address. In this scenario, you can capture the return address on all
platforms simply by using a compiler intrinsic _ReturnAddress() .

The following code produces C7552: inline assembler is not supported in a lambda in both Visual Studio 2017

#include <cstdio>

int f()
{
 int y = 1724;
 int x = 0xdeadbeef;

 auto lambda = [&]
 {
 __asm {

 mov eax, x
 mov y, eax
 }
 };

 lambda();
 return y;
}

#include <cstdio>

void g(int& x, int& y)
{
 __asm {
 mov eax, x
 mov y, eax
 }
}

int f()
{
 int y = 1724;
 int x = 0xdeadbeef;
 auto lambda = [&]
 {
 g(x, y);
 };
 lambda();
 return y;
}

int main()
{
 std::printf("%d\n", f());
}

Iterator debugging and std::move_iterator

Fixes for <xkeycheck.h> keyword enforcement

15.9 and in Visual Studio 2019:

To avoid the error, move the assembly code into a named function as shown in the following example:

The iterator debugging feature has been taught to properly unwrap std::move_iterator . For example,
std::copy(std::move_iterator<std::vector<int>::iterator>, std::move_iterator<std::vector<int>::iterator>,
int*)

can now engage the memcpy fast path.

The Standard Library’s macro-ized keyword enforcement <xkeycheck.h> was fixed to emit the actual problem
keyword detected rather than a generic message. It also supports C++20 keywords, and avoids tricking
IntelliSense into saying random keywords are macros.

Allocator types un-deprecated

Correct warning for narrowing string conversions

Various <filesystem> correctness fixes

Parallel algorithms on Windows 8 and later

std::system_category::message() whitespace

std::linear_congruential_engine divide by zero

Fixes for iterator unwrapping

Time handling

Various fixes for containers

std::allocator<void> , std::allocator::size_type , and std::allocator::difference_type have been un-
deprecated.

A spurious static_cast not called for by the standard that accidentally suppressed C4244 narrowing warnings
was removed from std::string. Attempting to call std::string::string(const wchar_t*, const wchar_t*) will now
properly emit C4244 "narrowing a wchar_t into a char."

Fixed std::filesystem::last_write_time failing when attempting to change a directory’s last write time.
The std::filesystem::directory_entry constructor now stores a failed result, rather than throwing an
exception, when supplied a nonexistent target path.
The std::filesystem::create_directory 2-parameter version was changed to call the 1-parameter version, as
the underlying CreateDirectoryExW function would perform copy_symlink when the existing_p was a symlink.
std::filesystem::directory_iterator no longer fails when encountering a broken symlink.
std::filesystem::space now accepts relative paths.
std::filesystem::path::lexically_relative is no longer confused by trailing slashes, reported as LWG 3096.

Worked around CreateSymbolicLinkW rejecting paths with forward slashes in
std::filesystem::create_symlink .

Worked around the POSIX deletion mode delete function existing on Windows 10 LTSB 1609 but not
actually being capable of deleting files.
std::boyer_moore_searcher and std::boyer_moore_horspool_searcher 's copy constructors and copy assignment

operators now actually copy things.

The parallel algorithms library now properly uses the real WaitOnAddress family on Windows 8 and later, rather
than always using the Windows 7 and earlier fake versions.

std::system_category::message() now trims trailing whitespace from the returned message.

Some conditions that would cause std::linear_congruential_engine to trigger divide by 0 have been fixed.

The iterator unwrapping machinery that was first exposed for programmer-user integration in Visual Studio
2017 15.8 (as described in https://devblogs.microsoft.com/cppblog/stl-features-and-fixes-in-vs-2017-15-8/) no
longer unwraps iterators derived from standard library iterators. For example, a user that derives from
std::vector<int>::iterator and tries to customize behavior now gets their customized behavior when calling

standard library algorithms, rather than the behavior of a pointer. The unordered container reserve function now
actually reserves for N elements, as described in LWG 2156.

Previously, some time values that were passed to the concurrency library would overflow, for example,
condition_variable::wait_for(seconds::max()) . These overflows, now fixed, changed behavior on a

seemingly random 29-day cycle (when uint32_t milliseconds accepted by underlying Win32 APIs
overflowed).

The header now correctly declares timespec and timespec_get in namespace std in addition to declaring
them in the global namespace.

https://cplusplus.github.io/LWG/issue3096
https://devblogs.microsoft.com/cppblog/stl-features-and-fixes-in-vs-2017-15-8/
https://cplusplus.github.io/LWG/issue2156

std::basic_istream::read processing of \r\n => \n

std::bitset constructor

std::pair::operator= regression

Non-deduced contexts for add_const_t

See also

C++ conformance improvements in Visual Studio 2017
versions 15.0, 15.3, 15.5, 15.6, 15.7, 15.8, 15.9

C++11
Expression SFINAE support in more libraries

Many Standard Library internal container functions have been made private for an improved IntelliSense
experience. Additional fixes to mark members as private are expected in subsequent releases of MSVC.

Exception safety correctness problems wherein the node-based containers like list , map , and
unordered_map would become corrupted were fixed. During a propagate_on_container_copy_assignment or
propagate_on_container_move_assignment reassignment operation, we would free the container ’s sentinel

node with the old allocator, do the POCCA/POCMA assignment over the old allocator, and then try to
acquire the sentinel node from the new allocator. If this allocation failed, the container is corrupted and
can’t even be destroyed, as owning a sentinel node is a hard data structure invariant. This was fixed to
allocate the new sentinel node from the source container ’s allocator before destroying the existing sentinel
node.

The containers were fixed to always copy/move/swap allocators according to
propagate_on_container_copy_assignment , propagate_on_container_move_assignment , and
propagate_on_container_swap , even for allocators declared is_always_equal .

Added the overloads for container merge and extract member functions that accept rvalue containers per
P0083 "Splicing Maps And Sets"

std::basic_istream::read was fixed to not write into parts of the supplied buffer temporarily as part of \r\n =>
\n processing. This gives up some of the performance advantage that was gained in Visual Studio 2017 15.8 for
reads larger than 4K in size, but efficiency improvements from avoiding 3 virtual calls per character are still
present.

std::bitset 's constructor no longer reads the ones and zeroes in reverse order for large bitsets.

Fixed a regression in std::pair 's assignment operator introduced when implementing LWG 2729 "Missing
SFINAE on std::pair::operator=";. It now correctly accepts types convertible to std::pair again.

Fixed a minor type traits bug, where add_const_t and related functions are supposed to be a non-deduced
context. In other words, add_const_t should be an alias for typename add_const<T>::type , not const T .

What's new in Visual Studio 2019

With support for generalized constexpr and NSDMI for aggregates, the Microsoft C++ compiler is now
complete for features added in the C++14 Standard. Note that the compiler still lacks a few features from the
C++11 and C++98 Standards. See Visual C++ Language Conformance for a table that shows the current state
of the compiler.

The compiler continues to improve its support for expression SFINAE, which is required for template argument
deduction and substitution where decltype and constexpr expressions may appear as template parameters. For

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0083r3.pdf
https://cplusplus.github.io/LWG/issue2729

C++ 14
NSDMI for Aggregates

Extended constexpr

C++17
Terse static_assert

[[fallthrough]] attribute

Generalized range-based for loops

Improvements in Visual Studio 2017 version 15.3
constexpr lambdas

if constexpr in function templates

Selection statements with initializers

[[maybe_unused]] and [[nodiscard]] attributes

Using attribute namespaces without repetition

Structured bindings

more information, see Expression SFINAE improvements in Visual Studio 2017 RC.

An aggregate is an array or a class with no user-provided constructor, no private or protected non-static data
members, no base classes, and no virtual functions. Beginning in C++14 aggregates may contain member
initializers. For more information, see Member initializers and aggregates.

Expressions declared as constexpr are now allowed to contain certain kinds of declarations, if and switch
statements, loop statements, and mutation of objects whose lifetime began within the constexpr expression
evaluation. Also, there is no longer a requirement that a constexpr non-static member function be implicitly
const. For more information, see Relaxing constraints on constexpr functions.

the message parameter for static_assert is optional. For more information, see Extending static_assert, v2.

In /std:c++17 mode, the [[fallthrough]] attribute can be used in the context of switch statements as a hint to the
compiler that the fall-through behavior is intended. This prevents the compiler from issuing warnings in such
cases. For more information, see Wording for [[fallthrough]] attribute.

Range-based for loops no longer require that begin() and end() return objects of the same type. This enables
end() to return a sentinel as used by ranges in range-v3 and the completed-but-not-quite-published Ranges
Technical Specification. For more information, see Generalizing the Range-Based For Loop.

Lambda expressions may now be used in constant expressions. For more information, see constexpr lambda
expressions in C++.

A function template may contain if constexpr statements to enable compile-time branching. For more
information, see if constexpr statements.

An if statement may include an initializer that introduces a variable at block scope within the statement itself.
For more information, see if statements with initializer.

New attributes to silence warnings when an entity is not used, or to create a warning if the return value of a
function call is discarded. For more information, see Attributes in C++.

New syntax to enable only a single namespace identifier in an attribute list. For more information, see Attributes
in C++.

It is now possible in a single declaration to store a value with individual names for its components, when the

https://blogs.msdn.microsoft.com/vcblog/2016/06/07/expression-sfinae-improvements-in-vs-2015-update-3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3605.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3652.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3928.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0188r0.pdf
https://github.com/ericniebler/range-v3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-constexpr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/if-else-statement-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/if-else-statement-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes

Construction rules for enum class values

Capturing *this by value

Removing operator++ for bool

Removing deprecated "register" keyword

Improvements in Visual Studio 2017 version 15.5

New compiler switch for extern constexpr

Removing Dynamic Exception Specifications

not_fn()

Rewording enable_shared_from_this

Splicing Maps And Sets

Deprecating Vestigial Library Parts

value is an array, a std::tuple or std::pair , or has all public non-static data members. For more information,
see Structured Bindings and Returning multiple values from a function.

There is now an implicit/non-narrowing conversion from a scoped enumeration's underlying type to the
enumeration itself, when its definition introduces no enumerator and the source uses a list-initialization syntax.
For more information, see Construction Rules for enum class Values and Enumerations.

The *this object in a lambda expression may now be captured by value. This enables scenarios in which the
lambda is invoked in parallel and asynchronous operations, especially on newer machine architectures. For more
information, see Lambda Capture of *this by Value as [=,*this].

operator++ is no longer supported on bool types. For more information, see Remove Deprecated operator++
(bool).

The register keyword, previously deprecated (and ignored by the compiler), is now removed from the
language. For more information, see Remove Deprecated Use of the register Keyword.

For the complete list of conformance improvements up through Visual Studio 2015 Update 3, see Visual C++
What's New 2003 through 2015.

Features marked with [14] are available unconditionally even in /std:c++14 mode.

In earlier versions of Visual Studio, the compiler always gave a constexpr variable internal linkage even when
the variable was marked extern . In Visual Studio 2017 version 15.5, a new compiler switch,
/Zc:externConstexpr, enables correct standards-conforming behavior. For more information, see extern constexpr
linkage.

P0003R5 Dynamic exception specifications were deprecated in C++11. the feature is removed from C++17, but
the (still) deprecated throw() specification is retained strictly as an alias for noexcept(true) . For more
information, see Dynamic exception specification removal and noexcept.

P0005R4 not_fn is a replacement of not1 and not2 .

P0033R1 enable_shared_from_this was added in C++11. The C++17 Standard updates the specification to
better handle certain corner cases. [14]

P0083R3 This feature enables extraction of nodes from associative containers (e.g., map, set, unordered_map,
unordered_set) which can then be modified and inserted back into the same container or a different container
that uses the same node type. (A common use case is to extract a node from a std::map , change the key, and
reinsert.)

P0174R2 Several features of the C++ Standard library have been superseded by newer features over the years,
or else have been found to be not very useful or to be problematic. These features are officially deprecated in

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/functions-cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0138r2.pdf
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/enumerations-cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0018r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0002r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0001r1.html
https://docs.microsoft.com/cpp/porting/visual-cpp-what-s-new-2003-through-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-externconstexpr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0005r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0033r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0083r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0174r2.html

Removing Allocator Support In std::function

Fixes for not_fn()

shared_ptr<T[]>, shared_ptr<T[N]>

Fixing shared_ptr for Arrays

Clarifying insert_return_type

Inline Variables For The STL

Annex D features deprecated

Improvements in Visual Studio 2017 version 15.6
C++17 Library Fundamentals V1

C++17 Improving Class Template Argument Deduction For The STL

Improvements in Visual Studio 2017 version 15.7

C++17.

P0302R1 Prior to C++17 the class template std::function had several constructors that took an allocator
argument. However, the use of allocators in this context was problematic, and the semantics were unclear.
Therefore these contructors were removed.

P0358R1 New wording for std::not_fn provides support of propagation of value category in case of wrapper
invocation.

P0414R2 Merging shared_ptr changes from Library Fundamentals to C++17. [14]

P0497R0 Fixes to shared_ptr support for arrays. [14]

P0508R0 The associative containers with unique keys, and the unordered containers with unique keys have a
member function insert that returns a nested type insert_return_type . That return type is now defined as a
specialization of a type that is parameterized on the Iterator and NodeType of the container.

P0607R0

Annex D of the C++ standard contains all the features that have been deprecated, including
shared_ptr::unique() , <codecvt> , and namespace std::tr1 . When the /std:c++17 compiler switch is set, almost

all the Standard Library features in Annex D are marked as deprecated. For more information, see Standard
Library features in Annex D are marked as deprecated.

The std::tr2::sys namespace in <experimental/filesystem> now emits a deprecation warning under
/std:c++14 by default, and is now removed under /std:c++17 by default.

Improved conformance in iostreams by avoiding a non-Standard extension (in-class explicit specializations).

The Standard Library now uses variable templates internally.

The Standard Library has been updated in response to C++17 compiler changes, including the addition of
noexcept in the type system and the removal of dynamic-exception-specifications.

P0220R1 incorporates Library Fundamentals Technical Specification for C++17 into the standard. Covers
updates to <experimental/tuple>, <experimental/optional>, <experimental/functional>, <experimental/any>,
<experimental/string_view> , <experimental/memory>, <experimental/memory_resource>,and
<experimental/algorithm>.

P0739R0 Move adopt_lock_t to front of parameter list for scoped_lock to enable consistent use of scoped_lock

. Allow std::variant constructor to participate in overload resolution in more cases, in order to enable copy
assignment.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0358r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0497r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0508r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0607r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0739r0.html

C++17 Rewording inheriting constructors

struct A {
 template<typename T>
 A(T, typename T::type = 0);
 A(int);
};

struct B : A {
 using A::A;
 B(int n) = delete; // Error C2280
};

B b(42L); // Calls B<long>(long), which calls A(int)
 // due to substitution failure in A<long>(long).

struct A {
 template<typename T>
 A(T, typename T::type = 0);
 A(int);
};

struct B : A {
 using A::A;
 B(int n)
 {
 //do something
 }
};

B b(42L); // now calls B(int)

C++17 Extended aggregate initialization

P0136R1 specifies that a using declaration that names a constructor now makes the corresponding base class
constructors visible to initializations of the derived class rather than declaring additional derived class
constructors. This is a change from C++14. In Visual Studio 2017 version 15.7 and later, in /std:c++17 mode,
code that is valid in C++14 and uses inheriting constructors may not be valid or may have different semantics.

The following example shows C++14 behavior:

The following example shows /std:c++17 behavior in Visual Studio 15.7:

For more information, see Constructors.

P0017R1

If the constructor of a base class is non-public, but accessible to a derived class, then under /std:c++17 mode in
Visual Studio version 15.7 you can no longer use empty braces to initialize an object of the derived type.

The following example shows C++14 conformant behavior:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0136r1.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/constructors-cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

struct Derived;

struct Base {
 friend struct Derived;
private:
 Base() {}
};

struct Derived : Base {};

Derived d1; // OK. No aggregate init involved.
Derived d2 {}; // OK in C++14: Calls Derived::Derived()
 // which can call Base ctor.

struct Derived;

struct Base {
 friend struct Derived;
private:
 Base() {}
};

struct Derived : Base {
 Derived() {} // add user-defined constructor
 // to call with {} initialization
};

Derived d1; // OK. No aggregate init involved.

Derived d2 {}; // error C2248: 'Base::Base': cannot access
 // private member declared in class 'Base'

C++17 Declaring non-type template parameters with auto

template <auto x> constexpr auto constant = x;

auto v1 = constant<5>; // v1 == 5, decltype(v1) is int
auto v2 = constant<true>; // v2 == true, decltype(v2) is bool
auto v3 = constant<'a'>; // v3 == 'a', decltype(v3) is char

In C++17, Derived is now considered an aggregate type; therefore, the initialization of Base via the private
default constructor happens directly as part of the extended aggregate initialization rule. Previously, the Base

private constructor was called via the Derived constructor and it succeeded because of the friend declaration.

The following example shows C++17 behavior in Visual Studio version 15.7 in /std:c++17 mode:

P0127R2

In /std:c++17 mode, the compiler can now deduce the type of a non-type template argument that is declared
with auto:

One impact of this new feature is that valid C++14 code may not be valid or may have different semantics. For
example, some overloads which were previously invalid are now valid. The following example shows C++14
code that compiles because the call to foo(p) is bound to foo(void*); . In Visual Studio 2017 version 15.7, in
/std:c++17 mode, the foo function template is the best match.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0127r2.html

template <int N> struct A;
template <typename T, T N> int foo(A<N>*) = delete;

void foo(void *);

void bar(A<0> *p)
{
 foo(p); // OK in C++14
}

template <int N> struct A;
template <typename T, T N> int foo(A<N>*);

void foo(void *);

void bar(A<0> *p)
{
 foo(p); // C2280: 'int foo<int,0>(A<0>*)': attempting to reference a deleted function
}

C++17 Elementary string conversions (partial)

C++20 Avoiding unnecessary decay (partial)

C++17 Parallel algorithms

C++17 hypot(x, y, z)

C++17 <filesystem>

C++17 Mathematical special functions

C++17 Deduction guides for the STL

C++17 Repairing elementary string conversions

C++17 constexpr for char_traits (partial)

The following example shows C++17 code in Visual Studio 15.7 in /std:c++17 mode:

P0067R5 Low-level, locale-independent functions for conversions between integers and strings and between
floating-point numbers and strings. (As of Visual Studio 15.7 Preview 2, supported for integers only.)

P0777R1 Adds differentiation between the concept of "decay" and that of simply removing const or reference
qualifiers. New type trait remove_reference_t replaces decay_t in some contexts. Support for remove_cvref_t is
not yet implemented as of Visual Studio 2017 version 15.7 Preview 2.

P0024R2 The Parallelism TS is incorporated into the standard, with minor modifications.

P0030R1 Adds three new overloads to std::hypot , for types float, double, and long double, each of which
has three input parameters.

P0218R1 Adopts the File System TS into the standard with a few wording modifications.

P0226R1 Adopts previous technical specifications for Mathematical Special Functions into the standard
<cmath> header.

P0433R2 Updates to STL to take advantage of C++17 adoption of P0091R3, which adds support for class
template argument deduction.

P0682R1 Move the new elementary string conversion functions from P0067R5 into a new header <charconv>
and make other improvements, including changing error handling to use std::errc instead of std::error_code .

P0426R1 Changes to std::traits_type member functions length , compare , and find in order to make
std::string_view usable in constant expressions. (In Visual Studio 2017 version 15.6, supported for

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0777r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0024r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0030r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0682r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0426r1.html

 Improvements in Visual Studio 2017 version 15.9
Left-to-right evaluation order for operators ->*, [], >>, and <<

// C4866.cpp
// compile with: /w14866 /std:c++17

class HasCopyConstructor
{
public:
 int x;

 HasCopyConstructor(int x) : x(x) {}
 HasCopyConstructor(const HasCopyConstructor& h) : x(h.x) { }
};

int operator>>(HasCopyConstructor a, HasCopyConstructor b) { return a.x >> b.x; }

// This version of operator>> does not trigger the warning:
// int operator>>(const HasCopyConstructor& a, const HasCopyConstructor& b) { return a.x >> b.x; }

int main()
{
 HasCopyConstructor a{ 1 };
 HasCopyConstructor b{ 2 };

 a>>b; // C4866 for call to operator>>
};

Bug fixes in Visual Studio versions 15.0, 15.3, 15.5, 15.7, 15.8, and 15.9
Copy-list-initialization

Clang/LLVM only. In version 15.7 Preview 2, support is nearly complete for ClXX as well.)

Starting in C++17, the operands of the operators ->*, [], >>, and << must be evaluated in left-to-right order.
There are two cases in which the compiler is unable to guarantee this order:

when one of the operand expressions is an object passed by value or contains an object passed by value, or
when compiled by using /clr, and one of the operands is a field of an object or an array element.

The compiler emits warning C4866 when it can't guarantee left-to-right evaluation. This warning is only
generated if /std:c++17 or later is specified, as the left-to-right order requirement of these operators was
introduced in C++17.

To resolve this warning, first consider whether left-to-right evaluation of the operands is necessary, such as when
evaluation of the operands might produce order-dependent side-effects. In many cases, the order in which
operands are evaluated does not have an observable effect. If the order of evaluation must be left-to-right,
consider whether you can pass the operands by const reference instead. This change eliminates the warning in
the following code sample.

Visual Studio 2017 correctly raises compiler errors related to object creation using initializer lists that were not
caught in Visual Studio 2015 and could lead to crashes or undefined runtime behavior. As per N4594 13.3.1.7p1,
in copy-list-initialization, the compiler is required to consider an explicit constructor for overload resolution, but
must raise an error if that overload is actually chosen.

The following two examples compile in Visual Studio 2015 but not in Visual Studio 2017.

https://docs.microsoft.com/cpp/error-messages/compiler-warnings/c4866?view=vs-2017

struct A
{
 explicit A(int) {}
 A(double) {}
};

int main()
{
 A a1 = { 1 }; // error C3445: copy-list-initialization of 'A' cannot use an explicit constructor
 const A& a2 = { 1 }; // error C2440: 'initializing': cannot convert from 'int' to 'const A &'

}

A a1{ 1 };
const A& a2{ 1 };

// From http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#1228
struct MyStore {
 explicit MyStore(int initialCapacity);
};

struct MyInt {
 MyInt(int i);
};

struct Printer {
 void operator()(MyStore const& s);
 void operator()(MyInt const& i);
};

void f() {
 Printer p;
 p({ 23 }); // C3066: there are multiple ways that an object of this type can be called with these
arguments
}

struct A {
 explicit A(int) {}
};

struct B {
 B(int) {}
};

void f(const A&) {}
void f(const B&) {}

int main()
{
 f({ 1 }); // error C2668: 'f': ambiguous call to overloaded function
}

To correct the error, use direct initialization:

In Visual Studio 2015, the compiler erroneously treated copy-list-initialization in the same way as regular copy-
initialization; it considered only converting constructors for overload resolution. In the following example, Visual
Studio 2015 chooses MyInt(23) but Visual Studio 2017 correctly raises the error.

This example is similar to the previous one but raises a different error. It succeeds in Visual Studio 2015 and fails
in Visual Studio 2017 with C2668.

Deprecated typedefs

struct A
{
 // also for __declspec(deprecated)
 [[deprecated]] typedef int inttype;
};

int main()
{
 A::inttype a = 0; // C4996 'A::inttype': was declared deprecated
}

constexpr

template<int N>
struct array
{
 int size() const { return N; }
};

constexpr bool f(const array<1> &arr)
{
 return arr.size() == 10 || arr.size() == 11; // C3615
}

Class types passed to variadic functions

Visual Studio 2017 now issues the correct warning for deprecated typedefs that are declared in a class or struct.
The following example compiles without warnings in Visual Studio 2015 but produces C4996 in Visual Studio
2017.

Visual Studio 2017 correctly raises an error when the left-hand operand of a conditionally evaluating operation is
not valid in a constexpr context. The following code compiles in Visual Studio 2015 but not in Visual Studio 2017
(C3615 constexpr function 'f' cannot result in a constant expression):

To correct the error, either declare the array::size() function as constexpr or remove the constexpr qualifier
from f .

In Visual Studio 2017, classes or structs that are passed to a variadic function such as printf must be trivially
copyable. When passing such objects, the compiler simply makes a bitwise copy and does not call the constructor
or destructor.

#include <atomic>
#include <memory>
#include <stdio.h>

int main()
{
 std::atomic<int> i(0);
 printf("%i\n", i); // error C4839: non-standard use of class 'std::atomic<int>'
 // as an argument to a variadic function.
 // note: the constructor and destructor will not be called;
 // a bitwise copy of the class will be passed as the argument
 // error C2280: 'std::atomic<int>::atomic(const std::atomic<int> &)':
 // attempting to reference a deleted function

 struct S {
 S(int i) : i(i) {}
 S(const S& other) : i(other.i) {}
 operator int() { return i; }
 private:
 int i;
 } s(0);
 printf("%i\n", s); // warning C4840 : non-portable use of class 'main::S'
 // as an argument to a variadic function
}

 std::atomic<int> i(0);
 printf("%i\n", i.load());

 struct S {/* as before */} s(0);
 printf("%i\n", static_cast<int>(s))

CString str1;
CString str2 = _T("hello!");
str1.Format(_T("%s"), static_cast<LPCTSTR>(str2));

cv-qualifiers in class construction

struct S
{
 S(int);
 operator int();
};

int i = (const S)0; // error C2440

To correct the error, you can call a member function that returns a trivially copyable type,

or else perform a static cast to convert the object before passing it:

For strings built and managed using CString, the provided operator LPCTSTR() should be used to cast a CString
object to the C pointer expected by the format string.

In Visual Studio 2015, the compiler sometimes incorrectly ignores the cv-qualifier when generating a class object
via a constructor call. This can potentially cause a crash or unexpected runtime behavior. The following example
compiles in Visual Studio 2015 but raises a compiler error in Visual Studio 2017:

To correct the error, declare operator int() as const .

Access checking on qualified names in templates

#include <type_traits>

template <class T> class S {
 typedef typename T type;
};

template <class T, std::enable_if<std::is_integral<typename S<T>::type>::value, T> * = 0>
bool f(T x);

int main()
{
 f(10); // C2672: No matching overloaded function found.
}

Missing template argument lists

template <class T> class ListNode;
template <class T> using ListNodeMember = ListNode<T> T::*;
template <class T, ListNodeMember M> class ListHead; // C2955: 'ListNodeMember': use of alias
 // template requires template argument list

// correct: template <class T, ListNodeMember<T> M> class ListHead;

Expression-SFINAE

Previous versions of the compiler did not perform access checking on qualified names in some template contexts.
This can interfere with expected SFINAE behavior where the substitution is expected to fail due to the
inaccessibility of a name. This could have potentially caused a crash or unexpected behavior at runtime due to the
compiler incorrectly calling the wrong overload of the operator. In Visual Studio 2017, a compiler error is raised.
The specific error might vary but typically it is "C2672 no matching overloaded function found". The following
code compiles in Visual Studio 2015 but raises an error in Visual Studio 2017:

In Visual Studio 2015 and earlier, the compiler did not diagnose missing template argument lists when the
template appeared in a template parameter list (for example as part of a default template argument or a non-
type template parameter). This can result in unpredictable behavior, including compiler crashes or unexpected
runtime behavior. The following code compiles in Visual Studio 2015 but produces an error in Visual Studio
2017.

To support expression-SFINAE, the compiler now parses decltype arguments when the templates are declared
rather than instantiated. Consequently, if a non-dependent specialization is found in the decltype argument, it is
not deferred to instantiation-time and is processed immediately and any resulting errors are diagnosed at that
time.

The following example shows such a compiler error that is raised at the point of declaration:

#include <utility>
template <class T, class ReturnT, class... ArgsT>
class IsCallable
{
public:
 struct BadType {};

 template <class U>
 static decltype(std::declval<T>()(std::declval<ArgsT>()...)) Test(int); //C2064. Should be declval<U>

 template <class U>
 static BadType Test(...);

 static constexpr bool value = std::is_convertible<decltype(Test<T>(0)), ReturnT>::value;
};

constexpr bool test1 = IsCallable<int(), int>::value;
static_assert(test1, "PASS1");
constexpr bool test2 = !IsCallable<int*, int>::value;
static_assert(test2, "PASS2");

Classes declared in anonymous namespaces

struct __declspec(dllexport) S1 { virtual void f() {} }; //C2201

Default initializers for value class members (C++/CLI)

value struct V
{
 int i = 0; // error C3446: 'V::i': a default member initializer
 // is not allowed for a member of a value class
};

Default Indexers (C++/CLI)

According to the C++ standard, a class declared inside an anonymous namespace has internal linkage, and
therefore cannot be exported. In Visual Studio 2015 and earlier, this rule was not enforced. In Visual Studio 2017
the rule is partially enforced. The following example raises this error in Visual Studio 2017: "error C2201: const
anonymous namespace::S1::vftable: must have external linkage in order to be exported/imported."

In Visual Studio 2015 and earlier, the compiler permitted (but ignored) a default member initializer for a member
of a value class. Default initialization of a value class always zero-initializes the members; a default constructor is
not permitted. In Visual Studio 2017, default member initializers raise a compiler error, as shown in this example:

In Visual Studio 2015 and earlier, the compiler in some cases misidentified a default property as a default indexer.
It was possible to work around the issue by using the identifier default to access the property. The workaround
itself became problematic after default was introduced as a keyword in C++11. Therefore, in Visual Studio
2017 the bugs that required the workaround were fixed, and the compiler now raises an error when default is
used to access the default property for a class.

//class1.cs

using System.Reflection;
using System.Runtime.InteropServices;

namespace ClassLibrary1
{
 [DefaultMember("Value")]
 public class Class1
 {
 public int Value
 {
 // using attribute on the return type triggers the compiler bug
 [return: MarshalAs(UnmanagedType.I4)]
 get;
 }
 }
 [DefaultMember("Value")]
 public class Class2
 {
 public int Value
 {
 get;
 }
 }
}

// code.cpp
#using "class1.dll"

void f(ClassLibrary1::Class1 ^r1, ClassLibrary1::Class2 ^r2)
{
 r1->Value; // error
 r1->default;
 r2->Value;
 r2->default; // error
}

#using "class1.dll"

void f(ClassLibrary1::Class1 ^r1, ClassLibrary1::Class2 ^r2)
{
 r1->Value;
 r2->Value;
}

Bug fixes in Visual Studio 2017 version 15.3
Calls to deleted member templates

In Visual Studio 2017, you can access both Value properties by their name:

In previous versions of Visual Studio, the compiler in some cases would fail to emit an error for ill-formed calls to
a deleted member template which would’ve potentially caused crashes at runtime. The following code now
produces C2280, "'int S<int>::f<int>(void)': attempting to reference a deleted function":

template<typename T>
struct S {
 template<typename U> static int f() = delete;
};

void g()
{
 decltype(S<int>::f<int>()) i; // this should fail
}

Pre-condition checks for type traits

struct S;
enum E;

static_assert(!__is_assignable(S, S), "fail"); // C2139 in 15.3
static_assert(__is_convertible_to(E, E), "fail"); // C2139 in 15.3

New compiler warning and runtime checks on native-to-managed marshaling

To fix the error, declare i as int .

Visual Studio 2017 version 15.3 improves pre-condition checks for type-traits to more strictly follow the
standard. One such check is for assignable. The following code produces C2139 in Visual Studio 2017 version
15.3:

Calling from managed functions to native functions requires marshalling. The CLR performs the marshaling but
it doesn't understand C++ semantics. If you pass a native object by value, CLR either calls the object's copy-
constructor or uses BitBlt, which may cause undefined behavior at runtime.

Now the compiler emits a warning if it can know at compile time that a native object with deleted copy ctor is
passed between native and managed boundary by value. For those cases in which the compiler doesn't know at
compile time, it injects a runtime check so that the program calls std::terminate immediately when an ill-
formed marshalling occurs. In Visual Studio 2017 version 15.3, the following code produces warning C4606 "'A':
passing argument by value across native and managed boundary requires valid copy constructor. Otherwise the
runtime behavior is undefined".

class A
{
public:
 A() : p_(new int) {}
 ~A() { delete p_; }

 A(A const &) = delete;
 A(A &&rhs) {
 p_ = rhs.p_;
}

private:
 int *p_;
};

#pragma unmanaged

void f(A a)
{
}

#pragma managed

int main()
{
 f(A()); // This call from managed to native requires marshalling. The CLR doesn't understand C++ and uses
BitBlt, which results in a double-free later.
}

Experimental API warning for WinRT

Windows::Storage::IApplicationDataStatics2::GetForUserAsync(); //C4698

#pragma warning(push)
#pragma warning(disable:4698)

Windows::Storage::IApplicationDataStatics2::GetForUserAsync();

#pragma warning(pop)

Out-of-line definition of a template member function

To fix the error, remove the #pragma managed directive to mark the caller as native and avoid marshalling.

WinRT APIs that are released for experimentation and feedback are decorated with
Windows.Foundation.Metadata.ExperimentalAttribute . In Visual Studio 2017 version 15.3, the compiler produces

warning C4698 when it encounters the attribute. A few APIs in previous versions of the Windows SDK have
already been decorated with the attribute, and calls to these APIs now trigger this compiler warning. Newer
Windows SDKs have the attribute removed from all shipped types, but if you are using an older SDK, you'll need
to suppress these warnings for all calls to shipped types.

The following code produces warning C4698: "'Windows::Storage::IApplicationDataStatics2::GetForUserAsync' is
for evaluation purposes only and is subject to change or removal in future updates":

To disable the warning, add a #pragma:

Visual Studio 2017 version 15.3 produces an error when it encounters an out-of-line definition of a template
member function that was not declared in the class. The following code now produces error C2039: 'f': is not a
member of 'S':

struct S {};

template <typename T>
void S::f(T t) {} //C2039: 'f': is not a member of 'S'

struct S {
 template <typename T>
 void f(T t);
};
template <typename T>
void S::f(T t) {}

Attempting to take the address of "this" pointer

Conversion to an inaccessible base class

#include <memory>

class B { };
class D : B { }; // C2243. should be public B { };

void f()
{
 std::unique_ptr(new D());
}

Default arguments are not allowed on out of line definitions of member functions

template <typename T>
struct A {
 T f(T t, bool b = false);
};

template <typename T>
T A<T>::f(T t, bool b = false) // C5034
{
 // ...
}

To fix the error, add a declaration to the class:

In C++ this is an prvalue of type pointer to X. You cannot take the address of this or bind it to an lvalue
reference. In previous versions of Visual Studio, the compiler would allow you to circumvent this restriction by
performing a cast. In Visual Studio 2017 version 15.3, the compiler produces error C2664.

Visual Studio 2017 version 15.3 produces an error when you attempt to convert a type to a base class which is
inaccessible. The compiler now raises "error C2243: 'type cast': conversion from 'D *' to 'B *' exists, but is
inaccessible". The following code is ill-formed and can potentially cause a crash at runtime. The compiler now
produces C2243 when it encounters code like this:

Default arguments are not allowed on out-of-line definitions of member functions in template classes The
compiler will issue a warning under /permissive, and a hard error under /permissive-.

In previous versions of Visual Studio, the following ill-formed code could potentially cause a runtime crash.
Visual Studio 2017 version 15.3 produces warning C5034: 'A<T>::f': an out-of-line definition of a member of a
class template cannot have default arguments:

To fix the error, remove the = false default argument.

Use of offsetof with compound member designator

struct A {
 int arr[10];
};

// warning C4841: non-standard extension used: compound member designator in offsetof
constexpr auto off = offsetof(A, arr[2]);

#pragma warning(push)
#pragma warning(disable: 4841)
constexpr auto off = offsetof(A, arr[2]);
#pragma warning(pop)

Using offsetof with static data member or member function

#include <cstddef>

struct A {
 int foo() { return 10; }
 static constexpr int bar = 0;
};

constexpr auto off = offsetof(A, foo);
constexpr auto off2 = offsetof(A, bar);

New warning on declspec attributes

__declspec(noinline) extern "C" HRESULT __stdcall //C4768

extern "C" __declspec(noinline) HRESULT __stdcall

decltype and calls to deleted destructors

In Visual Studio 2017 version 15.3, using offsetof(T, m) where m is a "compound member designator" results
in a warning when you compile with the /Wall option. The following code is ill-formed and could potentially
cause a crash at runtime. Visual Studio 2017 version 15.3 produces "warning C4841: non-standard extension
used: compound member designator in offsetof":

To fix the code, either disable the warning with a pragma or change the code to not use offsetof :

In Visual Studio 2017 version 15.3, using offsetof(T, m) where m refers to a static data member or a member
function results in an error. The following code produces "error C4597: undefined behavior: offsetof applied to
member function 'foo'" and "error C4597: undefined behavior: offsetof applied to static data member 'bar'":

This code is ill-formed and could potentially cause a crash at runtime. To fix the error, change the code to no
longer invoke undefined behavior. This is non-portable code that is disallowed by the C++ standard.

In Visual Studio 2017 version 15.3, the compiler no longer ignores attributes if __declspec(...) is applied before
extern "C" linkage specification. Previously, the compiler would ignore the attribute, which could have runtime

implications. When the /Wall and /WX options are set, the following code produces "warning C4768: __declspec
attributes before linkage specification are ignored":

To fix the warning, put extern "C" first:

This warning is off by default in 15.3, but on by default in 15.5, and only impacts code compiled with /Wall /WX.

In previous versions of Visual Studio, the compiler did not detect when a call to a deleted destructor occurred in

template<typename T>
struct A
{
 ~A() = delete;
};

template<typename T>
auto f() -> A<T>;

template<typename T>
auto g(T) -> decltype((f<T>()));

void h()
{
 g(42);
}

Uninitialized const variables

const int Value; //C4132

Empty declarations

struct A {};
template <typename> struct B {};
enum C { c1, c2, c3 };

int; // warning C4091 : '' : ignored on left of 'int' when no variable is declared
A; // warning C4091 : '' : ignored on left of 'main::A' when no variable is declared
B<int>; // warning C4091 : '' : ignored on left of 'B<int>' when no variable is declared
C; // warning C4091 : '' : ignored on left of 'C' when no variable is declared

std::is_convertible for array types

the context of the expression associated with 'decltype'. In Visual Studio 2017 version 15.3, the following code
produces "error C2280: 'A<T>::~A(void)': attempting to reference a deleted function":

Visual Studio 2017 RTW release had a regression in which the C++ compiler would not issue a diagnostic if a
'const' variable was not initialized. This regression has been fixed in Visual Studio 2017 version 15.3. The
following code now produces "warning C4132: 'Value': const object should be initialized":

To fix the error, assign a value to Value .

Visual Studio 2017 version 15.3 now warns on empty declarations for all types, not just built-in types. The
following code now produces a level 2 C4091 warning for all four declarations:

To remove the warnings, simply comment-out or remove the empty declarations. In cases where the un-named
object is intended to have a side effect (such as RAII) it should be given a name.

The warning is excluded under /Wv:18 and is on by default under warning level W2.

Previous versions of the compiler gave incorrect results for std::is_convertible for array types. This required
library writers to special-case the Microsoft C++ compiler when using the std::is_convertible<...> type trait. In
the following example, the static asserts pass in earlier versions of Visual Studio but fail in Visual Studio 2017
version 15.3:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/is-convertible-class

#include <type_traits>

using Array = char[1];

static_assert(std::is_convertible<Array, Array>::value);
static_assert(std::is_convertible<const Array, const Array>::value, "");
static_assert(std::is_convertible<Array&, Array>::value, "");
static_assert(std::is_convertible<Array, Array&>::value, "");

 To test() { return std::declval<From>(); }

Private destructors and std::is_constructible

#include <type_traits>

class PrivateDtor {
 PrivateDtor(int) { }
private:
 ~PrivateDtor() { }
};

// This assertion used to succeed. It now correctly fails.
static_assert(std::is_constructible<PrivateDtor, int>::value);

 T obj(std::declval<Args>()...)

C2668: Ambiguous overload resolution

std::is_convertible<From, To> is calculated by checking to see if an imaginary function definition is well formed:

Previous versions of the compiler ignored whether a destructor was private when deciding the result of
std::is_constructible. It now considers them. In the following example, the static asserts pass in earlier versions of
Visual Studio but fail in Visual Studio 2017 version 15.3:

Private destructors cause a type to be non-constructible. std::is_constructible<T, Args...> is calculated as if the
following declaration were written:

This call implies a destructor call.

Previous versions of the compiler sometimes failed to detect ambiguity when it found multiple candidates via
both using declarations and argument dependent lookup. This can lead to wrong overload being chosen and
unexpected runtime behavior. In the following example, Visual Studio 2017 version 15.3 correctly raises C2668
'f': ambiguous call to overloaded function:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/is-constructible-class

namespace N {
 template<class T>
 void f(T&, T&);

 template<class T>
 void f();
}

template<class T>
void f(T&, T&);

struct S {};
void f()
{
 using N::f;

 S s1, s2;
 f(s1, s2); // C2668
}

C2660: local function declarations and argument dependent lookup

struct S {};
void f(S, int);

void g()
{
 void f(S); // C2660 'f': function does not take 2 arguments:
 // or void f(S, int);
 S s;
 f(s, 0);
}

C5038: order of initialization in initializer lists

struct A
{
 A(int a) : y(a), x(y) {} // Initialized in reverse, y reused
 int x;
 int y;
};

To fix the code, remove the using N::f statement if you intended to call ::f() .

Local function declarations hide the function declaration in the enclosing scope and disable argument dependent
lookup. However, previous versions of the compiler performed argument dependent lookup in this case,
potentially leading to the wrong overload being chosen and unexpected runtime behavior. Typically, the error is
due to an incorrect signature of the local function declaration. In the following example, Visual Studio 2017
version 15.3 correctly raises C2660 'f': function does not take 2 arguments:

To fix the problem, either change the f(S) signature or remove it.

Class members are initialized in the order they are declared, not the order they appear in initializer lists. Previous
versions of the compiler did not warn when the order of the initializer list differed from the order of declaration.
This could lead to undefined runtime behavior if the initialization of one member depended on another member
in the list already being initialized. In the following example, Visual Studio 2017 version 15.3 (with /Wall) raises
"warning C5038: data member 'A::y' will be initialized after data member 'A::x'":

To fix the problem, arrange the initializer list to have the same order as the declarations. A similar warning is
raised when one or both initializers refer to base class members.

 Bug fixes and other behavior changes in Visual Studio 2017 version
15.5
Partial Ordering Change

template<typename... T>
int f(T* ...)
{
 return 1;
}

template<typename T>
int f(const T&)
{
 return 2;
}

int main()
{
 int i = 0;
 f(&i); // C2668
}

t161.cpp
t161.cpp(16): error C2668: 'f': ambiguous call to overloaded function
t161.cpp(8): note: could be 'int f<int*>(const T &)'
 with
 [
 T=int*
]
t161.cpp(2): note: or 'int f<int>(int*)'
t161.cpp(16): note: while trying to match the argument list '(int*)'

template<typename... T>
int f(T* ...)
{
 return 1;
}

template<typename T>
int f(T&)
{
 return 2;
}

int main()
{
 int i = 0;
 f(&i);
}

Exception handlers

Note that the warning is off-by-default and only affects code compiled with /Wall.

The compiler now correctly rejects the following code and gives the correct error message:

The problem in the example above is that there are two differences in the types (const vs. non-const and pack vs.
non-pack). To eliminate the compiler error, remove one of the differences. This enables the compiler to
unambiguously order the functions.

int main()
{
 try {
 throw "";
 }
 catch (int (&)[1]) {} // C4843 (This should always be dead code.)
 catch (void (&)()) {} // C4843 (This should always be dead code.)
 catch (char*) {} // This should not be a match under /Zc:strictStrings
}

warning C4843: 'int (&)[1]': An exception handler of reference to array or function type is unreachable, use
'int*' instead
warning C4843: 'void (__cdecl &)(void)': An exception handler of reference to array or function type is
unreachable, use 'void (__cdecl*)(void)' instead

catch (int (*)[1]) {}

std::tr1 namespace is deprecated

#include <functional>
#include <iostream>
using namespace std;

int main() {
 std::tr1::function<int (int, int)> f = std::plus<int>(); //C4996
 cout << f(3, 5) << std::endl;
 f = std::multiplies<int>();
 cout << f(3, 5) << std::endl;
}

warning C4996: 'std::tr1': warning STL4002: The non-Standard std::tr1 namespace and TR1-only machinery are
deprecated and will be REMOVED. You can define _SILENCE_TR1_NAMESPACE_DEPRECATION_WARNING to acknowledge that
you have received this warning.

#include <functional>
#include <iostream>
using namespace std;

int main() {
 std::function<int (int, int)> f = std::plus<int>();
 cout << f(3, 5) << std::endl;
 f = std::multiplies<int>();
 cout << f(3, 5) << std::endl;
}

Standard Library features in Annex D are marked as deprecated

Handlers of reference to array or function type are never a match for any exception object. The compiler now
correctly honors this rule and raises a level 4 warning. It also no longer matches a handler of char* or wchar_t*

to a string literal when /Zc:strictStrings is used.

The following code avoids the error:

The non-Standard std::tr1 namespace is now marked as deprecated in both C++14 and C++17 modes. In
Visual Studio 2017 version 15.5, the following code raises C4996:

To fix the error, remove the reference to the tr1 namespace:

#include <iterator>

class MyIter : public std::iterator<std::random_access_iterator_tag, int> {
public:
 // ... other members ...
};

#include <type_traits>

static_assert(std::is_same<MyIter::pointer, int*>::value, "BOOM");

warning C4996: 'std::iterator<std::random_access_iterator_tag,int,ptrdiff_t,_Ty*,_Ty &>::pointer': warning
STL4015: The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
(The <iterator> header is NOT deprecated.) The C++ Standard has never required user-defined iterators to
derive from std::iterator. To fix this warning, stop deriving from std::iterator and start providing publicly
accessible typedefs named iterator_category, value_type, difference_type, pointer, and reference. Note that
value_type is required to be non-const, even for constant iterators. You can define
_SILENCE_CXX17_ITERATOR_BASE_CLASS_DEPRECATION_WARNING or _SILENCE_ALL_CXX17_DEPRECATION_WARNINGS to
acknowledge that you have received this warning.

#include <iterator>

class MyIter {
public:
 typedef std::random_access_iterator_tag iterator_category;
 typedef int value_type;
 typedef ptrdiff_t difference_type;
 typedef int* pointer;
 typedef int& reference;

 // ... other members ...
};

#include <type_traits>

static_assert(std::is_same<MyIter::pointer, int*>::value, "BOOM");

Unreferenced local variables

void f() {
 char s[2] = {0}; // C4189. Either use the variable or remove it.
}

warning C4189: 's': local variable is initialized but not referenced

Single line comments

When the /std:c++17 mode compiler switch is set, almost all Standard Library features in Annex D are marked
as deprecated.

In Visual Studio 2017 version 15.5, the following code raises C4996:

To fix the error, follow the instructions in the warning text, as demonstrated in the following code:

In Visual Studio 15.5, warning C4189 is emitted in more cases, as shown in the following code:

To fix the error, remove the unused variable.

In Visual Studio 2017 version 15.5, warnings C4001 and C4179 are no longer emitted by the C compiler.

/* C only */
#pragma warning(disable:4001) //C4619
#pragma warning(disable:4179)
// single line comment
//* single line comment */

warning C4619: #pragma warning: there is no warning number '4001'

/* C only */

#pragma warning(disable:4619)
#pragma warning(disable:4001)
#pragma warning(disable:4179)

// single line comment
/* single line comment */

__declspec attributes with extern "C" linkage

__declspec(noinline) extern "C" HRESULT __stdcall //C4768

warning C4768: __declspec attributes before linkage specification are ignored

extern "C" __declspec(noinline) HRESULT __stdcall

 #pragma warning (push)
 #pragma warning(disable:4768)
 #include <shlobj.h>
 #pragma warning (pop)

Previously, they were only emitted under the /Za compiler switch. The warnings are no longer needed because
single line comments have been part of the C standard since C99.

If the code does not need to be backwards compatible, you can avoid the warning by removing the
C4001/C4179 suppression. If the code does need to be backward compatible, then suppress C4619 only.

In earlier versions of Visual Studio, the compiler ignored __declspec(...) attributes when __declspec(...) was
applied before the extern "C" linkage specification. This behavior caused code to be generated that user didn't
intend, with possible runtime implications. The warning was added in Visual Studio version 15.3, but was off by
default. In Visual Studio 2017 version 15.5, the warning is enabled by default.

To fix the error, place the linkage specification before the __declspec attribute:

This new warning C4768 is given on some Windows SDK headers that were shipped with Visual Studio 2017
15.3 or older (for example: version 10.0.15063.0, also known as RS2 SDK). However, later versions of Windows
SDK headers (specifically, ShlObj.h and ShlObj_core.h) have been fixed so that they do not produce this warning.
When you see this warning coming from Windows SDK headers, you can take these actions:

1. Switch to the latest Windows SDK that came with Visual Studio 2017 version 15.5 release.

2. Turn off the warning around the #include of the Windows SDK header statement:

Extern constexpr linkage

extern constexpr int x = 10;

error LNK2005: "int const x" already defined

extern constexpr __declspec(selectany) int x = 10;

typeid can't be used on incomplete class type

#include <typeinfo>

struct S;

void f() { typeid(S); } //C2027 in 15.5

error C2027: use of undefined type 'S'

std::is_convertible target type

#include <type_traits>

struct B { virtual ~B() = 0; };
struct D : public B { virtual ~D(); };

static_assert(std::is_convertible<D, B>::value, "fail"); // C2338 in 15.5

#include <type_traits>

struct B { virtual ~B() = 0; };
struct D : public B { virtual ~D(); };

static_assert(std::is_convertible<D *, B *>::value, "fail");

Dynamic exception specification removal and noexcept

In earlier versions of Visual Studio, the compiler always gave a constexpr variable internal linkage even when
the variable was marked extern . In Visual Studio 2017 version 15.5, a new compiler switch
(/Zc:externConstexpr) enables correct standards-conforming behavior. Eventually this will become the default.

If a header file contains a variable declared extern constexpr , it needs to be marked __declspec(selectany) in
order to correctly have its duplicate declarations combined:

In earlier versions of Visual Studio, the compiler incorrectly allowed the following code, resulting in potentially
incorrect type information. In Visual Studio 2017 version 15.5, the compiler correctly raises an error:

std::is_convertible requires the target type to be a valid return type. In earlier versions of Visual Studio, the
compiler incorrectly allowed abstract types, which might lead to incorrect overload resolution and unintended
runtime behavior. The following code now correctly raises C2338:

To avoid the error, when using is_convertible you should compare pointer types because a non-pointer-type
comparison might fail if one type is abstract:

In C++17, throw() is an alias for noexcept , throw(<type list>) and throw(...) are removed, and certain types

void f() throw(); // equivalent to void f() noexcept;
void f() {} // warning C5043
void g() throw(); // warning C5040

struct A {
 virtual void f() throw();
};

struct B : A {
 virtual void f() { } // error C2694
};

void f() noexcept;
void f() noexcept { }
void g() noexcept(false);

struct A {
 virtual void f() noexcept;
};

struct B : A {
 virtual void f() noexcept { }
};

Inline variables

struct X {
 static constexpr int size = 3;
};
const int X::size; // C5041

extern "C" __declspec(...) warning C4768 now on by default

Defaulted functions and __declspec(nothrow)

may include noexcept . This can cause source compatibility issues with code that conforms to C++14 or earlier.
The /Zc:noexceptTypes- switch can be used to revert to the C++14 version of noexcept while using C++17
mode in general. This enables you to update your source code to conform to C++17 without having to rewrite all
your throw() code at the same time.

The compiler also now diagnoses more mismatched exception specifications in declarations in C++17 mode or
with /permissive- with the new warning C5043.

The following code generates C5043 and C5040 in Visual Studio 2017 version 15.5 when the /std:c++17 switch
is applied:

To remove the errors while still using /std:c++17, either add the /Zc:noexceptTypes- switch to the command
line, or else update your code to use noexcept , as shown in the following example:

Static constexpr data members are now implicitly inline, which means that their declaration within a class is now
their definition. Using an out-of-line definition for a static constexpr data member is redundant, and now
deprecated. In Visual Studio 2017 version 15.5 when the /std:c++17 switch is applied, the following code now
produces warning C5041 'size': out-of-line definition for constexpr static data member is not needed and is
deprecated in C++17:

The warning was added in Visual Studio 2017 version 15.3 but was off by default. In Visual Studio 2017 version
15.5 it is on by default. See New warning on declspec attributes for more information.

The compiler previously allowed defaulted functions to be declared with __declspec(nothrow) when the
corresponding base/member functions permitted exceptions. This behavior is contrary to the C++ Standard and

struct A {
 A& operator=(const A& other) { // No exception specification; this function may throw.
 ...
 }
};

struct B : public A {
 __declspec(nothrow) B& operator=(const B& other) = default;
};

int main()
{
 B b1, b2;
 b2 = b1; // error C2280
}

struct A {
 A& operator=(const A& other) {
 // ...
 }
};

struct B : public A {
 B& operator=(const B& other) = default;
};

int main()
{
 B b1, b2;
 b2 = b1;
}

noexcept and partial specializations

can cause undefined behavior at runtime. The standard requires such functions to be defined as deleted if there is
an exception specification mismatch. Under /std:c++17, the following code raises C2280 attempting to
reference a deleted function. Function was implicitly deleted because the explicit exception specification is
incompatible with that of the implicit declaration.:

To correct this code, either remove __declspec(nothrow) from the defaulted function, or remove = default and
provide a definition for the function along with any required exception handling:

With noexcept in the type system, partial specializations for matching particular "callable" types may fail to
compile or choose the primary template due to a missing partial specialization for pointers-to-noexcept-
functions.

In such cases, you may need to add additional partial specializations to handle the noexcept function pointers and
noexcept pointers to member functions. These overloads are only legal in /std:c++17 mode. If backwards-
compatibility with C++14 must be maintained, and you are writing code that others consume, then you should
guard these new overloads inside #ifdef directives. If you are working in a self-contained module, then instead
of using #ifdef guards you can just compile with the /Zc:noexceptTypes- switch.

The following code compiles under /std:c++14 but fails under /std:c++17 with "error C2027:use of undefined
type 'A<T>'":

template <typename T> struct A;

template <>
struct A<void(*)()>
{
 static const bool value = true;
};

template <typename T>
bool g(T t)
{
 return A<T>::value;
}

void f() noexcept {}

int main()
{
 return g(&f) ? 0 : 1; // C2027
}

template <typename T> struct A;

template <>
struct A<void(*)()>
{
 static const bool value = true;
};

template <>
struct A<void(*)() noexcept>
{
 static const bool value = true;
};

template <typename T>
bool g(T t)
{
 return A<T>::value;
}

void f() noexcept {}

int main()
{
 return g(&f) ? 0 : 1; // OK
}

Bug fixes and other behavior changes in Visual Studio 2017 version
15.7
C++17 Default argument in the primary class template

The following code succeeds under /std:c++17 because the compiler chooses the new partial specialization
A<void (*)() noexcept> :

This behavior change is a precondition for Template argument deduction for class templates - P0091R3, which is
planned to be fully supported in a later preview of Visual Studio 2017 version 15.7.

Previously, the compiler ignored the default argument in the primary class template.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html

template<typename T>
struct S {
 void f(int = 0);
};

template<typename T>
void S<T>::f(int = 0) {} // Re-definition necessary

template<typename T>
struct S {
 void f(int = 0);
};

template<typename T>
void S<T>::f(int) {} // Default argument is used

Dependent name resolution

template<typename T>
struct B {
 using type = T;
};

template<typename T>
struct D : B<T*> {
 using type = B<T*>::type;
};

template<typename T>
struct B {
 using type = T;
};

template<typename T>
struct D : B<T*> {
 using type = typename B<T*>::type;
};

C++17 [[nodiscard]] attribute - warning level increase

In /std:c++17 mode in Visual Studio 2017 version 15.7, the default argument is not ignored:

This behavior change is a precondition for Template argument deduction for class templates - P0091R3, which is
planned to be fully supported in a later preview of Visual Studio 2017 version 15.7.

In the following example, the compiler in Visual Studio 15.6 and earlier resolves D::type to B<T>::type in the
primary class template.

Visual Studio 2017 version 15.7, in /std:c++17 mode, requires the typename keyword in the using statement in
D. Without typename the compiler raises warning C4346: 'B<T*>::type': dependent name is not a type and error
C2061: syntax error: identifier 'type':

In Visual Studio 2017 version 15.7 in /std:c++17 mode, the warning level of C4834 ("discarding return value of
function with 'nodiscard' attribute") is increased from W3 to W1. You can disable the warning with a cast to
void , or by passing /wd:4834 to the compiler

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html

[[nodiscard]] int f() { return 0; }

int main() {
 f(); // warning: discarding return value
 // of function with 'nodiscard'
}

Variadic template constructor base class initialization list

template<typename T>
struct B {};

template<typename T>
struct D : B<T>
{

 template<typename ...C>
 D() : B() {} // C2614. Missing template arguments to B.
};

D<int> d;

constexpr aggregate initialization

#include <array>
struct X {
 unsigned short a;
 unsigned char b;
};

int main() {
 constexpr std::array<X, 2> xs = {
 { 1, 2 },
 { 3, 4 }
 };
 return 0;
}

In previous editions of Visual Studio, a variadic template constructor base class initialization list that was missing
template arguments was erroneously allowed without error. In Visual Studio 2017 version 15.7, a compiler error
is raised.

The following code example in Visual Studio 2017 version 15.7 raises error C2614: D<int>: illegal member
initialization: 'B' is not a base or member

To fix the error, change the B() expression to B<T>().

Previous versions of the C++ compiler incorrectly handled constexpr aggregate initialization; it accepted invalid
code in which the aggregate-init-list had too many elements, and produced bad codegen for it. The following
code is an example of such code:

In Visual Studio 2017 version 15.7 update 3 and later, the previous example now raises C2078 too many
initializers. The following example shows how to fix the code. When initializing a std::array with nested brace-
init-lists, give the inner array a braced-list of its own:

#include <array>
struct X {
 unsigned short a;
 unsigned char b;
};

int main() {
 constexpr std::array<X, 2> xs = {{ // note double braces
 { 1, 2 },
 { 3, 4 }
 }}; // note double braces
 return 0;
}

Bug fixes and behavior changes in Visual Studio 2017 version 15.8

typename on unqualified identifiers

template <typename T>
using X = typename T;

__declspec() on right side of alias template definitions

template <typename T>
using X = __declspec(deprecated("msg")) T;

template <typename T>
using X [[deprecated("msg")]] = T;

Two-phase name lookup diagnostics

The compiler changes in Visual Studio 2017 version 15.8 all fall under the category of bug fixes and behavior
changes, and are listed below:

In /permissive- mode, spurious typename keywords on unqualified identifiers in alias template definitions are no
longer accepted by the compiler. The following code now produces C7511 'T': 'typename' keyword must be
followed by a qualified name:

To fix the error, simply change the second line to using X = T; .

__declspec is no longer permitted on the right-hand-side of an alias template definition. This was previously
accepted by the compiler but was completely ignored, and would never result in a deprecation warning when the
alias was used.

The standard C++ attribute [[deprecated]] may be used instead, and will be respected as of Visual Studio 2017
version 15.6. The following code now produces C2760 syntax error: unexpected token '__declspec', expected 'type
specifier':

To fix the error, change to code to the following (with the attribute placed before the '=' of the alias definition):

Two-phase name lookup requires that non-dependent names used in template bodies must be visible to the
template at definition time. Previously, the Microsoft C++ compiler would leave an unfound name un-looked-up
until instantiation times. Now, it requires that non-dependent names are bound in the template body.

One way this can manifest is with lookup into dependent base classes. Previously, the compiler allowed the use
of names that are defined in dependent base classes because they would be looked up during instantiation time
when all the types are resolved. Now that code it is treated as an error. In these cases you can force the variable

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/declspec
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes

template <class T>
struct Base {
 int base_value = 42;
};

template <class T>
struct S : Base<T> {
 int f() {
 return base_value;
 }
};

forward declarations and definitions in namespace std

namespace std {
 template<typename T> class vector;
}

#include <vector>

Constructors that delegate to themselves

to be looked up at instantiation time by qualifying it with the base class type or otherwise making it dependent,
for example by adding a this-> pointer.

In /permissive- mode, the following code now raises C3861: 'base_value': identifier not found:

To fix the error, change the return statement to return this->base_value; .

Note: In the Boost python library, there has been for a long time an MSVC-specific workaround for a template
forward declaration in unwind_type.hpp. Under /permissive- mode starting with Visual Studio 2017 version 15.8
(_MSC_VER=1915), the MSVC compiler does argument-dependent name lookup (ADL) correctly and is
consistent with other compilers, making this workaround guard unnecessary. In order to avoid this error C3861:
'unwind_type': identifier not found, see PR 229 in the Boostorg repo to update the header file. We have already
patched the vcpkg Boost package, so if you get or upgrade your Boost sources from vcpkg then you do not need
to apply the patch separately.

The C++ standard doesn't allow a user to add forward declarations or definitions into namespace std . Adding
declarations or definitions to namespace std or to a namespace within namespace std now results in undefined
behavior.

At some time in the future, Microsoft will move the location where some STL types are defined. When this
happens, it will break existing code that adds forward declarations to namespace std . A new warning, C4643,
helps identify such source issues. The warning is enabled in /default mode and is off by default. It will impact
programs that are compiled with /Wall or /WX.

The following code now raises C4643: Forward declaring 'vector' in namespace std is not permitted by the C++
Standard.

To fix the error, use an include directive rather than a forward declaration:

The C++ Standard suggests that a compiler should emit a diagnostic when a delegating constructor delegates to
itself. The Microsoft C++ compiler in /std:c++17 and /std:c++latest modes now raises C7535: 'X::X': delegating
constructor calls itself.

Without this error, the following program will compile but will generate an infinite loop:

https://github.com/boostorg/python/blame/develop/include/boost/python/detail/unwind_type.hpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://github.com/boostorg/python/pull/229
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

class X {
public:
 X(int, int);
 X(int v) : X(v){}
};

class X {
public:

 X(int, int);
 X(int v) : X(v, 0) {}
};

offsetof with constant expressions

struct Data {
 int x;
};

// Common pattern of user-defined offsetof
#define MY_OFFSET(T, m) (unsigned long long)(&(((T*)nullptr)->m))

int main()

{
 switch (0) {
 case MY_OFFSET(Data, x): return 0;
 default: return 1;
 }
}

To avoid the infinite loop, delegate to a different constructor:

offsetof has traditionally been implemented using a macro that requires a reinterpret_cast. This is illegal in
contexts that require a constant expression, but the Microsoft C++ compiler has traditionally allowed it. The
offsetof macro that is shipped as part of the STL correctly uses a compiler intrinsic (__builtin_offsetof), but
many people have used the macro trick to define their own offsetof.

In Visual Studio 2017 version 15.8, the compiler constrains the areas that these reinterpret_casts can appear in
the default mode in order to help code conform to standard C++ behavior. Under /permissive-, the constraints
are even stricter. Using the result of an offsetof in places that require constant expressions may result in code that
issues warning C4644 usage of the macro-based offsetof pattern in constant expressions is non-standard; use
offsetof defined in the C++ standard library instead or C2975 invalid template argument, expected compile-time
constant expression.

The following code raises C4644 in /default and /std:c++17 modes, and C2975 in /permissive- mode:

To fix the error, use offsetof as defined via <cstddef>:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/offsetof-macro
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/reinterpret-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance

#include <cstddef>

struct Data {
 int x;
};

int main()
{
 switch (0) {
 case offsetof(Data, x): return 0;
 default: return 1;
 }
}

cv-qualifiers on base classes subject to pack expansion

template<typename... T>
class X : public T... { };

class S { };

int main()
{
 X<const S> x;
}

template keyword and nested-name-specifiers

template<typename T> struct Base
{
 template<class U> void foo() {}
};

template<typename T>
struct X : Base<T>
{
 void foo()
 {
 Base<T>::foo<int>();
 }
};

Previous versions of the Microsoft C++ compiler did not detect that a base-class had cv-qualifiers if it was also
subject to pack expansion.

In Visual Studio 2017 version 15.8, in /permissive- mode the following code raises C3770 'const S': is not a
valid base class:

In /permissive- mode, the compiler now requires the template keyword to precede a template-name when it
comes after a nested-name-specifier which is dependent.

The following code in /permissive- mode now raises C7510: 'foo': use of dependent template name must be
prefixed with 'template'. note: see reference to class template instantiation 'X' being compiled:

To fix the error, add the template keyword to the Base<T>::foo<int>(); statement, as shown in the following
example:

template<typename T> struct Base
{
 template<class U> void foo() {}
};

template<typename T>
struct X : Base<T>
{
 void foo()
 {
 // Add template keyword here:
 Base<T>::template foo<int>();
 }
};

Bug fixes and behavior changes in Visual Studio 2017 version 15.9
Identifiers in member alias templates

template <typename... Ts>
struct A
{
 public:
 template <typename U>
 using from_template_t = decltype(from_template(A<U>{}));

 private:
 template <template <typename...> typename Type, typename... Args>
 static constexpr A<Args...> from_template(A<Type<Args...>>);
};

A<>::from_template_t<A<int>> a;

Modules changes

cl /EHsc /std:c++17 m.ixx /experimental:module
cl /experimental:module /module:reference m.ifc main.cpp /std:c++14

An identifier used in a member alias template definition must be declared before use.

In previous versions of the compiler, the following code was allowed:

In Visual Studio 2017 version 15.9, in /permissive- mode, the compiler raises C3861: 'from_template': identifier
not found.

To fix the error, declare from_template before from_template_t .

In Visual Studio 2017, version 15.9, the compiler raises C5050 whenever the command line options for modules
are not consistent between the module creation and module consumption sides. In the following example, there
are two issues:

on the consumption side (main.cpp) the option /EHsc is not specified.
the C++ version is /std:c++17 on the creation side and /std:c++14 on the consumption side.

The compiler raises C5050 for both of these cases: warning C5050: Possible incompatible environment while
importing module 'm': mismatched C++ versions. Current "201402" module version "201703".

In addition, the compiler raises C7536 whenever the .ifc file has been tampered with. The header of the module
interface contains an SHA2 hash of the contents below it. On import, the .ifc file is hashed in the same way and
then checked against the hash provided in the header; if these do not match error C7536 is raised: ifc failed

Partial ordering involving aliases and non-deduced contexts

#include <utility>
using size_t = std::size_t;

template <typename T>
struct A {};
template <size_t, size_t>
struct AlignedBuffer {};
template <size_t len>
using AlignedStorage = AlignedBuffer<len, 4>;

template <class T, class Alloc>
int f(Alloc &alloc, const AlignedStorage<T::size> &buffer)
{
 return 1;
}

template <class T, class Alloc>
int f(A<Alloc> &alloc, const AlignedStorage<T::size> &buffer)
{
 return 2;
}

struct Alloc
{
 static constexpr size_t size = 10;
};

int main()
{
 A<void> a;
 AlignedStorage<Alloc::size> buf;
 if (f<Alloc>(a, buf) != 2)
 {
 return 1;
 }

 return 0;
}

partial_alias.cpp(32): error C2668: 'f': ambiguous call to overloaded function
partial_alias.cpp(18): note: could be 'int f<Alloc,void>(A<void> &,const AlignedBuffer<10,4> &)'
partial_alias.cpp(12): note: or 'int f<Alloc,A<void>>(Alloc &,const AlignedBuffer<10,4> &)'
 with
 [
 Alloc=A<void>
]
partial_alias.cpp(32): note: while trying to match the argument list '(A<void>, AlignedBuffer<10,4>)'

integrity checks. Expected SHA2:
'66d5c8154df0c71d4cab7665bab4a125c7ce5cb9a401a4d8b461b706ddd771c6'.

There is implementation divergence in the partial ordering rules involving aliases in non-deduced contexts. In the
following example, GCC and the Microsoft C++ compiler (in /permissive- mode) raise an error, while Clang
accepts the code.

The previous example raises C2668:

The implementation divergence is due to a regression in the Standard wording where the resolution to core issue
2235 removed some text that would allow these overloads to be ordered. The current C++ standard does not
provide a mechanism to partially order these functions, so they are considered ambiguous.

#include <utility>
using size_t = std::size_t;

template <typename T>
struct A {};
template <size_t, size_t>
struct AlignedBuffer {};
template <size_t len>
using AlignedStorage = AlignedBuffer<len, 4>;

template <typename T> struct IsA : std::false_type {};
template <typename T> struct IsA<A<T>> : std::true_type {};

template <class T, class Alloc, typename = std::enable_if_t<!IsA<Alloc>::value>>
int f(Alloc &alloc, const AlignedStorage<T::size> &buffer)
{
 return 1;
}

template <class T, class Alloc>
int f(A<Alloc> &alloc, const AlignedStorage<T::size> &buffer)
{
 return 2;
}

struct Alloc
{
 static constexpr size_t size = 10;
};

int main()
{
 A<void> a;
 AlignedStorage<Alloc::size> buf;
 if (f<Alloc>(a, buf) != 2)
 {
 return 1;
 }

 return 0;
}

Illegal expressions and non-literal types in templated function definitions

As a workaround, we recommended that you not rely on partial ordering to resolve this problem, and instead use
SFINAE to remove particular overloads. In the following example, we use a helper class IsA to remove the first
overload when Alloc is a specialization of A :

Illegal expressions and non-literal types are now correctly diagnosed in the definitions of templated functions
that are explicitly specialized. Previously, such errors were not emitted for the function definition. However, the
illegal expression or non-literal type would still have been diagnosed if evaluated as part of a constant
expression.

In previous versions of Visual Studio, the following code compiles without warning:

void g();

template<typename T>
struct S
{
 constexpr void f();
};

template<>
constexpr void S<int>::f()
{
 g(); // C3615 in 15.9
}

See also

In Visual Studio 2017 version 15.9, the code raises this error: error C3615: constexpr function 'S::f' cannot result
in a constant expression. note: failure was caused by call of undefined function or one not declared 'constexpr'
note: see usage of 'g'. To avoid the error, remove the constexpr qualifier from the explicit instantiation of the
function f().

Visual C++ Language Conformance

Microsoft C++ Language Conformance Table
5/21/2019 • 16 minutes to read • Edit Online

NOTE

Compiler Features
FEATURE AREA

C++03/11 Core Language Features Supported

 Everything else VS 2015

 Two-phase name lookup VS 2017 15.7

 N2634 Expression SFINAE VS 2017 15.7

 N1653 C99 preprocessor Partial

C++14 Core Language Features Supported

 N3323 Tweaked wording for contextual conversions VS 2013

 N3472 Binary literals VS 2015

 N3638 auto and decltype(auto) return types VS 2015

 N3648 init-captures VS 2015

 N3649 Generic lambdas VS 2015

 N3760 [[deprecated]] attribute VS 2015

 N3778 Sized deallocation VS 2015

This topic summarizes the ISO C++03, C++11, C++14, C++17, and C++20 language standards conformance of
compiler features and Standard Library features for the Microsoft C++ compiler in Visual Studio 2019 and earlier
versions. Each compiler and standard library feature name links to the ISO C++ Standard proposal paper that
describes the feature, if one is available at publication time. The Supported column lists the Visual Studio version
in which support for the feature first appeared.

For details on conformance improvements and other changes in Visual Studio 2017 or Visual Studio 2019, set the
version selector in the upper left of this page, then see C++ conformance improvements in Visual Studio and
What's New for Visual C++ in Visual Studio. For conformance changes in earlier versions, see Visual C++
change history and Visual C++ What's New 2003 through 2015. For current news from the C++ team, visit the
C++ team blog.

There are no binary breaking changes between Visual Studio 2015, Visual Studio 2017, and Visual Studio 2019.

A

B

C

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/visual-cpp-language-conformance.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-change-history-2003-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-what-s-new-2003-through-2015
https://devblogs.microsoft.com/cppblog/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3323.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3472.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3638.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3648.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3760.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3778.html

 N3781 Digit separators VS 2015

 N3651 Variable templates VS 2015.2

 N3652 Extended constexpr VS 2017 15.0

 N3653 Default member initializers for aggregates VS 2017 15.0

C++17 Core Language Features Supported

 N4086 Removing trigraphs VS 2010

 N3922 New rules for auto with braced-init-lists VS 2015

 N4051 typename in template template-parameters VS 2015

 N4266 Attributes for namespaces and enumerators VS 2015

 N4267 u8 character literals VS 2015

 N4230 Nested namespace definitions VS 2015.3

 N3928 Terse static_assert VS 2017 15.0

 P0184R0 Generalized range-based for-loops VS 2017 15.0

 P0188R1 [[fallthrough]] attribute VS 2017 15.0

 P0001R1 Removing the register keyword VS 2017 15.3

 P0002R1 Removing operator++ for bool VS 2017 15.3

 P0018R3 Capturing *this by value VS 2017 15.3

 P0028R4 Using attribute namespaces without repetition VS 2017 15.3

 P0061R1 __has_include VS 2017 15.3

 P0138R2 Direct-list-init of fixed enums from integers VS 2017 15.3

 P0170R1 constexpr lambdas VS 2017 15.3

 P0189R1 [[nodiscard]] attribute VS 2017 15.3

 P0212R1 [[maybe_unused]] attribute VS 2017 15.3

 P0217R3 Structured bindings VS 2017 15.3

 P0292R2 constexpr if-statements VS 2017 15.3

FEATURE AREA

14

14

14

14

14

17

17

14

17

17

17

17

17

14

17

17

17

17

17

D

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3651.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3652.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3653.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4086.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3922.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4266.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4267.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4230.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3928.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0188r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0001r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0002r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0018r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0028r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0061r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0138r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0170r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0189r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0212r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0292r2.html

 P0305R1 Selection statements with initializers VS 2017 15.3

 P0245R1 Hexfloat literals VS 2017 15.5

 N4268 Allowing more non-type template args VS 2017 15.5

 N4295 Fold expressions VS 2017 15.5

 P0003R5 Removing dynamic-exception-specifications VS 2017 15.5

 P0012R1 Adding noexcept to the type system VS 2017 15.5

 P0035R4 Over-aligned dynamic memory allocation VS 2017 15.5

 P0386R2 Inline variables VS 2017 15.5

 P0522R0 Matching template template-parameters to
compatible arguments

VS 2017 15.5

 P0036R0 Removing some empty unary folds VS 2017 15.5

 N4261 Fixing qualification conversions VS 2017 15.7

 P0017R1 Extended aggregate initialization VS 2017 15.7

 P0091R3 Template argument deduction for class templates
 P0512R0 Class template argument deduction issues

VS 2017 15.7

 P0127R2 Declaring non-type template parameters with
auto

VS 2017 15.7

 P0135R1 Guaranteed copy elision VS 2017 15.6

 P0136R1 Rewording inheriting constructors VS 2017 15.7

 P0137R1 std::launder VS 2017 15.7

 P0145R3 Refining expression evaluation order
 P0400R0 Order of evaluation of function arguments

VS 2017 15.7

 P0195R2 Pack expansions in using-declarations VS 2017 15.7

 P0283R2 Ignoring unrecognized attributes VS 2015

FEATURE AREA

FEATURE AREA

C++17 Core Language Features (Defect Reports) Supported

 P0702R1 Fixing class template argument deduction for
initializer-list ctors

VS 2017 15.7

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

14

17

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0305r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0245r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4268.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4295.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0012r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0035r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0522r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0036r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4261.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0512r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0127r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0135r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0136r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0137r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0400r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0195r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0283r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0702r1.html

 P0961R1 Relaxing the structured bindings customization
point finding rules

VS 2019 16.0

 P0969R0 Allowing structured bindings to accessible
members

VS 2019 16.0

 P0588R1 Simplifying implicit lambda capture No

 P0962R2 Relaxing the range-for loop customization point
finding rules

No

 P0929R2 Checking for abstract class types No

 P1009R2 Array size deduction in new-expressions No

 P1286R2 Contra CWG DR1778 No

Feature Area

---- ---

C++20 Core Language Features Supported

 P0704R1 Fixing const lvalue ref-qualified pointers to
members

VS 2015

 P1041R4 Make char16_t/char32_t string literals be UTF-
16/32

VS 2015

 P1330R0 Changing the active member of a union inside
constexpr

VS 2017 15.0

 P0972R0 noexcept For <chrono> zero(), min(), max() VS 2017 15.7

 P0515R3 Three-way (spaceship) comparison operator <=> VS 2019 16.0

 P1008R1 Prohibiting aggregates with user-declared
constructors

VS 2019 16.0

 P0329R4 Designated initialization VS 2019 16.1

 P0409R2 Allowing lambda-capture [=, this] VS 2019 16.1

 P0515R3 Three-way (spaceship) comparison operator <=> VS 2019 16.0

 P0941R2 Feature-test macros VS 2019 16.0

 P1008R1 Prohibiting aggregates with user-declared
constructors

VS 2019 16.0

 P0846R0 ADL and function templates that are not visible VS 2019 16.1

FEATURE AREA

17

17

14

14

14

14

20

20

20

20

20

14

20

20

http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0961r1.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0969r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0588r1.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0962r1.html
https://wg21.link/P0929R2
https://wg21.link/P1009R2
https://wg21.link/P1286R2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0704r1.html
https://wg21.link/P1041R4
https://wg21.link/P1330R0
https://wg21.link/P0972R0
https://wg21.link/P0515R3
https://wg21.link/P1008R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r4.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0409r2.html
https://wg21.link/P0515R3
https://wg21.link/P0941R2
https://wg21.link/P1008R1
https://wg21.link/P0846R0

 P0641R2 const mismatch with defaulted copy constructor Partial

 P0306R4 Adding __VA_OPT__ for comma omission and
comma deletion

No

 P0315R4 Allowing lambdas in unevaluated contexts No

 P0409R2 Allowing lambda-capture [=, this] No

 [P0428R2 Familiar template syntax for generic lambdas]
(http://www.open-std.org/jtc1/sc22/wg21/docs/pa
pers/2017/p0428r2.pdf)

No

 P0479R5 [[likely]] and [[unlikely]] attributes No

 P0542R5 Contracts No

 P0614R1 Range-based for-loops with initializers No

 P0624R2 Default constructible and assignable stateless
lambdas

No

 P0634R3 Down with typename! No

 P0683R1 Default member initializers for bit-fields No

 P0692R1 Relaxing access checking on specializations No

 P0722R3 Efficient sized delete for variable sized classes No

 P0732R2 Class types in non-type template parameters No

 P0734R0 Concepts No

 P0780R2 Allowing pack expansion in lambda init-capture No

 P0806R2 Deprecate implicit capture of this via [=] No

 P0840R2 [[no_unique_address]] attribute No

 P0857R0 Fixing functionality gaps in constraints No

 P0892R2 Conditional explicit No

 P0912R5 Coroutines No

 P0960R3 Allow initializing aggregates from a parenthesized
list of values

No

 P1002R1 try-catch blocks in constexpr functions No

FEATURE AREA

https://wg21.link/P0641R2
https://wg21.link/P0306R4
https://wg21.link/P0315R4
https://wg21.link/P0409R2
http://www.open-std.org/jtc1/sc22/wg21/docs/pa
https://wg21.link/P0479R5
https://wg21.link/P0542R5
https://wg21.link/P0614R1
https://wg21.link/P0624R2
https://wg21.link/P0634R3
https://wg21.link/P0683R1
https://wg21.link/P0692R1
https://wg21.link/P0722R3
https://wg21.link/P0732R2
https://wg21.link/P0734R0
https://wg21.link/P0780R2
https://wg21.link/P0806R2
https://wg21.link/P0840R2
https://wg21.link/P0857R0
https://wg21.link/P0892R2
https://wg21.link/P0912R5
https://wg21.link/P0960R3
https://wg21.link/P1002R1

 P1064R0 Allowing virtual function calls in constant
expressions

No

 P1073R3 Immediate functions No

 P1084R2 Today's return-type-requirements are insufficient No

 P1091R3 Extending structured bindings to be more like
variable declarations

No

 P1094R2 Nested inline namespaces No

 P1103R3 Modules No

 P1120R0 Consistency improvements for <=> and other
comparison operators

No

 P1139R2 Address wording issues related to ISO 10646 No

 P1141R2 Yet another approach for constrained declarations No

 P1185R2 <=> != == No

 P1236R1 Signed integers are two's complement No

 P1289R1 Access control in contract conditions No

 P1323R2 Contract postconditions and return type
deduction

No

 P1327R1 Allowing dynamic_cast, polymorphic typeid in
constant expressions

No

 P1353R0 Missing feature-test macros No

 P1381R1 Reference capture of structured bindings No

FEATURE AREA

Standard Library Features
FEATURE AREA

C++20 Standard Library Features Supported

 P0809R0 Comparing Unordered Containers VS 2010

 P0858R0 Constexpr Iterator Requirements VS 2017 15.3

 P0777R1 Avoiding Unnecessary Decay VS 2017 15.7

 P0550R2 remove_cvref VS 2019 16.0

14

17

14

20

https://wg21.link/P1064R0
https://wg21.link/P1073R3
https://wg21.link/P1084R2
https://wg21.link/P1091R3
https://wg21.link/P1094R2
https://wg21.link/P1103R3
https://wg21.link/P1120R0
https://wg21.link/P1139R2
https://wg21.link/P1141R2
https://wg21.link/P1185R2
https://wg21.link/P1236R1
https://wg21.link/P1289R1
https://wg21.link/P1323R2
https://wg21.link/P1327R1
https://wg21.link/P1353R0
https://wg21.link/P1381R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0809r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0858r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0777r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0550r2.pdf

 P0318R1 unwrap_reference, unwrap_ref_decay VS 2019 16.1

 P0457R2 starts_with()/ends_with() For
basic_string/basic_string_view

VS 2019 16.1

 P0458R2 contains() For Ordered And Unordered Associative
Containers

VS 2019 16.1

 P0646R1 list/forward_list remove()/remove_if()/unique()
Return size_type

VS 2019 16.1

 P0769R2 shift_left(), shift_right() VS 2019 16.1

 P0887R1 type_identity VS 2019 16.1

 P0019R8 atomic_ref No

 P0020R6 atomic<float>, atomic<double>, atomic<long
double>

No

 P0053R7 <syncstream>
 P0753R2 osyncstream Manipulators

No

 P0122R7 No

 P0202R3 constexpr For <algorithm> And exchange() No

 P0339R6 polymorphic_allocator<> No

 P0340R3 SFINAE-Friendly underlying_type No

 P0355R7 <chrono> Calendars And Time Zones No

 P0356R5 bind_front() No

 P0357R3 Supporting Incomplete Types In
reference_wrapper

No

 P0415R1 constexpr For <complex> (Again) No

 P0439R0 enum class memory_order No

 P0463R1 endian No

 P0475R1 Guaranteed Copy Elision For Piecewise
Construction

No

 P0476R2 bit_cast No

 P0482R6 char8_t: A type for UTF-8 characters and strings No

FEATURE AREA

20

20

20

20

20

20

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0318r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0457r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0458r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0646r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0769r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0887r1.pdf
https://wg21.link/P0019R8
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0020r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0053r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0753r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0122r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0202r3.html
https://wg21.link/P0339R6
https://wg21.link/P0340R3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0355r7.html
https://wg21.link/P0356R5
https://wg21.link/P0357R3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0415r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0439r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0463r1.html
https://wg21.link/P0475R1
https://wg21.link/P0476R2
https://wg21.link/P0482R6

 P0487R1 Fixing operator>>(basic_istream&, CharT*) No

 P0528R3 Atomic Compare-And-Exchange With Padding Bits No

 P0556R3 ispow2(), ceil2(), floor2(), log2p1() No

 P0591R4 Utility Functions For Uses-Allocator Construction No

 P0600R1 [[nodiscard]] For The STL, Part 1 No

 P0608R3 Improving variant's Converting
Constructor/Assignment

No

 P0616R0 Using move() In <numeric> No

 P0619R4 Removing C++17-Deprecated Features In C++20 No

 P0653R2 to_address() No

 P0655R1 visit() No

 P0674R1 make_shared() For Arrays No

 P0718R2 atomic<shared_ptr<T>>, atomic<weak_ptr<T>> No

 P0738R2 istream_iterator Cleanup No

 P0754R2 <version> No

 P0758R1 is_nothrow_convertible No

 P0767R1 Deprecating is_pod No

 P0768R1 Library Support For The Spaceship Comparison
Operator <=>

No

 P0771R1 noexcept For std::function's Move Constructor No

 P0811R3 midpoint(), lerp() No

 P0879R0 constexpr For Swapping Functions No

 P0896R4 <ranges> No

 P0898R3 Standard Library Concepts No

 P0912R5 Library Support For Coroutines No

 P0919R3 Heterogeneous Lookup For Unordered Containers No

FEATURE AREA

https://wg21.link/P0487R1
https://wg21.link/P0528R3
https://wg21.link/P0556R3
https://wg21.link/P0591R4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0600r1.pdf
https://wg21.link/P0608R3
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0616r0.pdf
https://wg21.link/P0619R4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0653r2.html
https://wg21.link/P0655R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0674r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0718r2.html
https://wg21.link/P0738R2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0754r2.pdf
https://wg21.link/P0758R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0767r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0768r1.pdf
https://wg21.link/P0771R1
https://wg21.link/P0811R3
https://wg21.link/P0879R0
https://wg21.link/P0896R4
https://wg21.link/P0898R3
https://wg21.link/P0912R5
https://wg21.link/P0919R3

 P0920R2 Precalculated Hash Value Lookup No

 P0935R0 Eradicating Unnecessarily Explicit Default
Constructors

No

 P0966R1 string::reserve() Should Not Shrink No

 P1001R2 execution::unseq No

 P1006R1 constexpr For pointer_traits<T*>::pointer_to() No

 P1007R3 assume_aligned() No

 P1020R1 Smart Pointer Creation With Default Initialization No

 P1023R0 constexpr For std::array Comparisons No

 P1032R1 Miscellaneous constexpr No

 P1165R1 Consistently Propagating Stateful Allocators In
basic_string's operator+()

No

 P1209R0 erase_if(), erase() No

 P1227R2 Signed std::ssize(), Unsigned span::size() No

 P1285R0 Improving Completeness Requirements For Type
Traits

No

 P1357R1 is_bounded_array, is_unbounded_array No

C++17 Standard Library Features Supported

 LWG 2221 Formatted output operator for nullptr VS 2019 16.1

 N3911 void_t VS 2015

 N4089 Safe Conversions In unique_ptr<T[]> VS 2015

 N4169 invoke() VS 2015

 N4190 Removing auto_ptr, random_shuffle(), And Old
<functional> Stuff

VS 2015

 N4258 noexcept Cleanups VS 2015

 N4259 uncaught_exceptions() VS 2015

 N4277 Trivially Copyable reference_wrapper VS 2015

FEATURE AREA

14

14

14

rem

14

14

14

https://wg21.link/P0920R2
https://wg21.link/P0935R0
https://wg21.link/P0966R1
https://wg21.link/P1001R2
https://wg21.link/P1006R1
https://wg21.link/P1007R3
https://wg21.link/P1020R1
https://wg21.link/P1023R0
https://wg21.link/P1032R1
https://wg21.link/P1165R1
https://wg21.link/P1209R0
https://wg21.link/P1227R2
https://wg21.link/P1285R0
https://wg21.link/P1357R1
https://cplusplus.github.io/LWG/issue2221
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4089.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4169.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4190.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4258.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4259.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4277.html

 N4279 insert_or_assign()/try_emplace() For
map/unordered_map

VS 2015

 N4280 size(), empty(), data() VS 2015

 N4366 Precisely Constraining unique_ptr Assignment VS 2015

 N4387 Improving pair And tuple VS 2015.2

 N4389 bool_constant VS 2015

 N4508 shared_mutex (Untimed) VS 2015.2

 N4510 Supporting Incomplete Types In
vector/list/forward_list

VS 2013

 N4562 Library Fundamentals: <algorithm> sample() VS 2017 15.0

 N4562 Library Fundamentals: <any> VS 2017 15.0

 N4562 Library Fundamentals: <memory_resource>
 P0337R0 Deleting polymorphic_allocator Assignment

VS 2017 15.6

 N4562 Library Fundamentals: <optional> VS 2017 15.0

 N4562 Library Fundamentals: <string_view> VS 2017 15.0

 N4562 Library Fundamentals: <tuple> apply() VS 2017 15.0

 N4562 Library Fundamentals: Boyer-Moore search()
 P0253R1 Fixing Searcher Return Types

VS 2017 15.3

 P0003R5 Removing Dynamic Exception Specifications VS 2017 15.5

 P0004R1 Removing Deprecated Iostreams Aliases VS 2015.2

 P0005R4 not_fn()
 P0358R1 Fixes For not_fn()

VS 2017 15.5

 P0006R0 Variable Templates For Type Traits (is_same_v, etc.) VS 2015.2

 P0007R1 as_const() VS 2015.2

 P0013R1 Logical Operator Type Traits (conjunction, etc.) VS 2015.2

 P0024R2 Parallel Algorithms
 P0336R1 Renaming Parallel Execution Policies
 P0394R4 Parallel Algorithms Should terminate() For
Exceptions
 P0452R1 Unifying <numeric> Parallel Algorithms

VS 2017 15.7

 P0025R1 clamp() VS 2015.3

FEATURE AREA

14

14

14

14

14

14

14

17

17

rem

17

14

14

14

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4279.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4280.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4366.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4389.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4508.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4510.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#alg.random.sample
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#any
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#memory.resource.synop
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0337r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#optional
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#string.view
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#tuple
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#func.searchers.boyer_moore
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0253r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0004r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0005r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0358r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0006r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0007r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0013r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0024r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0336r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0394r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0452r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0025r1.html

 P0030R1 hypot(x, y, z) VS 2017 15.7

 P0031R0 constexpr For <array> (Again) And <iterator> VS 2017 15.3

 P0032R3 Homogeneous Interface For variant/any/optional VS 2017 15.0

 P0033R1 Rewording enable_shared_from_this VS 2017 15.5

 P0040R3 Extending Memory Management Tools VS 2017 15.3

 P0063R3 C11 Standard Library VS 2015

 P0067R5 Elementary String Conversions VS 2017 15.7

 P0074R0 owner_less<> VS 2015.2

 P0077R2 is_callable, is_nothrow_callable VS 2017 15.0

 P0083R3 Splicing Maps And Sets
 P0508R0 Clarifying insert_return_type

VS 2017 15.5

 P0084R2 Emplace Return Type VS 2017 15.3

 P0088R3 <variant> VS 2017 15.0

 P0092R1 <chrono> floor(), ceil(), round(), abs() VS 2015.2

 P0152R1 atomic::is_always_lock_free VS 2017 15.3

 P0154R1 hardware_destructive_interference_size, etc. VS 2017 15.3

 P0156R0 Variadic lock_guard VS 2015.2

 P0156R2 Renaming Variadic lock_guard to scoped_lock VS 2017 15.3

 P0163R0 shared_ptr::weak_type VS 2017 15.0

 P0174R2 Deprecating Vestigial Library Parts VS 2017 15.5

 P0185R1 is_swappable, is_nothrow_swappable VS 2015.3

 P0209R2 make_from_tuple() VS 2017 15.0

 P0218R1 <filesystem>
 P0219R1 Relative Paths For Filesystem
 P0317R1 Directory Entry Caching For Filesystem
 P0392R0 Supporting string_view In Filesystem Paths
 P0430R2 Supporting Non-POSIX Filesystems
 P0492R2 Resolving NB Comments for Filesystem

VS 2017 15.7

 P0220R1 Library Fundamentals V1 VS 2017 15.6

FEATURE AREA

17

14

17

C11, 14

ch arcon v

14

17

17

14

17

17

14

17

17

E

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0030r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0031r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0033r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0040r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0063r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0074r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0077r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0083r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0508r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0084r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0092r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0152r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0156r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0156r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0163r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0174r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0185r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0209r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0219r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0317r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0392r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html

 P0226R1 Mathematical Special Functions VS 2017 15.7

 P0254R2 Integrating string_view And std::string VS 2017 15.0

 P0258R2 has_unique_object_representations VS 2017 15.3

 P0272R1 Non-const basic_string::data() VS 2015.3

 P0295R0 gcd(), lcm() VS 2017 15.3

 P0298R3 std::byte VS 2017 15.3

 P0302R1 Removing Allocator Support In std::function VS 2017 15.5

 P0307R2 Making Optional Greater Equal Again VS 2017 15.0

 P0393R3 Making Variant Greater Equal VS 2017 15.0

 P0403R1 UDLs For <string_view> ("meow"sv, etc.) VS 2017 15.3

 P0414R2 shared_ptr<T[]>, shared_ptr<T[N]>
 P0497R0 Fixing shared_ptr For Arrays

VS 2017 15.5

 P0418R2 atomic compare_exchange memory_order
Requirements

VS 2017 15.3

 P0426R1 constexpr For char_traits VS 2017 15.7

 P0433R2 Integrating template deduction for class templates
into the standard library
 P0739R0 Improving class template argument deduction
integration into the standard library

VS 2017 15.7

 P0435R1 Overhauling common_type
 P0548R1 Tweaking common_type and duration

VS 2017 15.3

 P0504R0 Revisiting
in_place_t/in_place_type_t<T>/in_place_index_t<I>

VS 2017 15.0

 P0505R0 constexpr For <chrono> (Again) VS 2017 15.3

 P0510R0 Rejecting variants Of Nothing, Arrays, References,
And Incomplete Types

VS 2017 15.0

 P0513R0 Poisoning hash
 P0599R1 noexcept hash

VS 2017 15.3

 P0516R0 Marking shared_future Copying As noexcept VS 2017 15.3

 P0517R0 Constructing future_error From future_errc VS 2017 15.3

 P0521R0 Deprecating shared_ptr::unique() VS 2017 15.5

FEATURE AREA

G

17

17, byte

17

17

14

14

14

17

14

14

14

17

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0254r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0258r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0272r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0295r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0298r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0307r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0393r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0403r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0497r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0418r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0426r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0739r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0435r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0548r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0504r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0505r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0513r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0599r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0516r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0517r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0521r0.html

 P0558R1 Resolving atomic<T> Named Base Class
Inconsistencies

VS 2017 15.3

 P0595R2 std::is_constant_evaluated() No

 P0602R4 Propagating Copy/Move Triviality In
variant/optional

VS 2017 15.3

 P0604R0 Changing is_callable/result_of To invoke_result,
is_invocable, is_nothrow_invocable

VS 2017 15.3

 P0607R0 Inline Variables for the Standard Library VS 2017 15.5

 P0618R0 Deprecating <codecvt> VS 2017 15.5

 P0682R1 Repairing Elementary String Conversions VS 2015 15.7

C++14 Standard Library Features Supported

 N3462 SFINAE-Friendly result_of VS 2015.2

 N3302 constexpr For <complex> VS 2015

 N3469 constexpr For <chrono> VS 2015

 N3470 constexpr For <array> VS 2015

 N3471 constexpr For <initializer_list>, <tuple>, <utility> VS 2015

 N3545 integral_constant::operator()() VS 2015

 N3642 UDLs For <chrono>, <string> (1729ms, "meow"s,
etc.)

VS 2015

 N3644 Null Forward Iterators VS 2015

 N3654 quoted() VS 2015

 N3657 Heterogeneous Associative Lookup VS 2015

 N3658 integer_sequence VS 2015

 N3659 shared_mutex (Timed) VS 2015

 N3668 exchange() VS 2015

 N3669 Fixing constexpr Member Functions Without const VS 2015

 N3670 get<T>() VS 2015

 N3671 Dual-Range equal(), is_permutation(), mismatch() VS 2015

FEATURE AREA

14

17

17

17

17

17

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0558r1.pdf
https://wg21.link/P0595R2
https://wg21.link/P0602R4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0604r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0607r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0618r0.html
https://wg21.link/P0682R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3462.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3302.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3469.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3470.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3471.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3545.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3642.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3644.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3654.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3657.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3658.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3659.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3668.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3669.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3670.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3671.html

 N3778 Sized Deallocation VS 2015

 N3779 UDLs For <complex> (3.14i, etc.) VS 2015

 N3789 constexpr For <functional> VS 2015

 N3887 tuple_element_t VS 2015

 N3891 Renaming shared_mutex (Timed) To
shared_timed_mutex

VS 2015

 N3346 Minimal Container Element Requirements VS 2013

 N3421 Transparent Operator Functors (less<>, etc.) VS 2013

 N3655 Alias Templates For <type_traits> (decay_t, etc.) VS 2013

 N3656 make_unique() VS 2013

FEATURE AREA

Supported values

Notes

A group of papers listed together indicates that a feature was voted into the Standard, and then one or more
papers to improve or expand that feature were also voted in. These features are implemented together.

No means not yet implemented.
Partial means the implementation is incomplete. For more details, see the Notes section.
VS 2010 indicates features that are supported in Visual Studio 2010.
VS 2013 indicates features that are supported in Visual Studio 2013.
VS 2015 indicates features that are supported in Visual Studio 2015 RTW.
VS 2015.2 and VS 2015.3 indicate features that are supported in Visual Studio 2015 Update 2 and Visual Studio
2015 Update 3, respectively.
VS 2017 15.0 indicates features that are supported in Visual Studio 2017 version 15.0 (RTW).
VS 2017 15.3 indicates features that are supported in Visual Studio 2017 version 15.3.
VS 2017 15.5 indicates features that are supported in Visual Studio 2017 version 15.5.
VS 2017 15.7 indicates features that are supported in Visual Studio 2017 version 15.7.
VS 2019 16.0 indicates features that are supported in Visual Studio 2019 version 16.0 (RTW).
VS 2019 16.1 indicates features that are supported in Visual Studio 2019 version 16.1.

 A In /std:c++14 mode, dynamic exception specifications remain unimplemented, and throw() is still treated as a
synonym for __declspec(nothrow) . In C++17, dynamic exception specifications were mostly removed by
P0003R5, leaving one vestige: throw() is deprecated and required to behave as a synonym for noexcept . In
/std:c++17 mode, MSVC now conforms to the Standard by giving throw() the same behavior as noexcept , i.e.
enforcement via termination.

The compiler option /Zc:noexceptTypes requests our old behavior of __declspec(nothrow) . It’s likely that throw()

will be removed in C++20. To help with migrating code in response to these changes in the Standard and our
implementation, new compiler warnings for exception specification issues have been added under /std:c++17 and
/permissive-.

 B Supported in /permissive- mode in Visual Studio 2017 version 15.7. see Two-phase name lookup support
comes to MSVC for more information.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3778.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3779.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3789.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3887.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3891.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3346.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3655.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3656.htm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-noexcepttypes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://blogs.msdn.microsoft.com/vcblog/2017/09/11/two-phase-name-lookup-support-comes-to-msvc/

 C The compiler’s support for C99 Preprocessor rules is incomplete in Visual Studio 2017. Variadic macros are
supported, but there are many bugs in the preprocessor’s behavior. We are overhauling the preprocessor, and will
experimentally ship those changes under the /permissive- mode soon.

 D Supported under /std:c++14 with a suppressible warning, C4984.

 E This is a completely new implementation, incompatible with the previous std::experimental version,
necessitated by symlink support, bug fixes, and changes in standard-required behavior. Currently, including
<filesystem> provides the new std::filesystem and the previous std::experimental::filesystem , and including
<experimental/filesystem> provides only the old experimental implementation. The experimental implementation
will be REMOVED in the next ABI-breaking release of the libraries.

 G Supported by a compiler intrinsic.

 14 These C++17/20 features are always enabled, even when /std:c++14 (the default) is specified. This is either
because the feature was implemented before the introduction of the /std options, or because conditional
implementation was undesirably complex.

 17 These features are enabled by the /std:c++17 (or /std:c++latest) compiler option.

 20 These features are enabled by the /std:c++latest compiler option. When the C++20 implementation is
complete, a new /std:c++20 compiler option will be added, under which these features will also be available.

 byte std::byte is enabled by /std:c++17 (or /std:c++latest), but because it can conflict with the Windows SDK
headers in some cases, it has a fine-grained opt-out macro. It can be disabled by defining _HAS_STD_BYTE as 0 .

 C11 The Universal CRT implemented the parts of the C11 Standard Library that are required by C++17, with the
exception of C99 strftime() E/O alternative conversion specifiers, C11 fopen() exclusive mode, and C11
aligned_alloc() . The latter is unlikely to be implemented, because C11 specified aligned_alloc() in a way that's

incompatible with the Microsoft implementation of free() , namely, that free() must be able to handle highly
aligned allocations.

 rem Features removed when the /std:c++17 (or /std:c++latest) compiler option is specified. These features can
be re-enabled to ease the transition to newer language modes by use of these macros: _HAS_AUTO_PTR_ETC ,
_HAS_FUNCTION_ALLOCATOR_SUPPORT , _HAS_OLD_IOSTREAMS_MEMBERS , and _HAS_UNEXPECTED .

 charconv from_chars() and to_chars() are available for integers. The timeline for floating-point from_chars()

and floating-point to_chars() is as follows:

VS 2017 15.7: Integer from_chars() and to_chars() .
VS 2017 15.8: Floating-point from_chars() .
VS 2017 15.9: Floating-point to_chars() overloads for shortest decimal.
VS 2019 16.0: Floating-point to_chars() overloads for shortest hex and precision hex.
VS 2019 16.2: Floating-point to_chars() overloads for precision fixed and precision scientific.
Not yet implemented: The floating-point to_chars() overload for precision general.

 parallel C++17’s parallel algorithms library is complete. This doesn’t mean every algorithm is parallelized in
every case; the most important algorithms have been parallelized and execution policy signatures are provided
even where algorithms are not parallelized. Our implementation’s central internal header, yvals_core.h, contains
the following "Parallel Algorithms Notes": C++ allows an implementation to implement parallel algorithms as
calls to the serial algorithms. This implementation parallelizes several common algorithm calls, but not all.

The following algorithms are parallelized:

adjacent_difference , adjacent_find , all_of , any_of , count , count_if , equal , exclusive_scan , find ,
find_end , find_first_of , find_if , find_if_not , for_each , for_each_n , inclusive_scan , is_heap ,
is_heap_until , is_partitioned , is_sorted , is_sorted_until , mismatch , none_of , partition , reduce ,

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version

See also

remove , remove_if , replace , replace_if , search , search_n , set_difference , set_intersection , sort ,
stable_sort , transform , transform_exclusive_scan , transform_inclusive_scan , transform_reduce

The following are not presently parallelized:

No apparent parallelism performance improvement on target hardware; all algorithms which merely copy or
permute elements with no branches are typically memory bandwidth limited:

Confusion over user parallelism requirements exists; likely in the above category anyway:

Effective parallelism suspected to be infeasible:

Not yet evaluated; parallelism may be implemented in a future release and is suspected to be beneficial:

copy , copy_n , fill , fill_n , move , reverse , reverse_copy , rotate , rotate_copy , shift_left ,
shift_right , swap_ranges

generate , generate_n

partial_sort , partial_sort_copy

copy_if , includes , inplace_merge , lexicographical_compare , max_element , merge , min_element ,
minmax_element , nth_element , partition_copy , remove_copy , remove_copy_if , replace_copy ,
replace_copy_if , set_symmetric_difference , set_union , stable_partition , unique , unique_copy

C++ Language Reference
C++ Standard Library
C++ conformance improvements in Visual Studio
What's New for Visual C++ in Visual Studio
Visual C++ change history 2003 through 2015
Visual C++ What's New 2003 through 2015
C++ team blog

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-change-history-2003-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-what-s-new-2003-through-2015
https://devblogs.microsoft.com/cppblog/

Supported Platforms (Visual C++)
5/23/2019 • 2 minutes to read • Edit Online

OPERATING SYSTEM X86 X64 ARM ARM64****

Windows XP X* X*

Windows Server 2003 X* X*

Windows Vista X X

Windows Server 2008 X X

Windows 7 X X

Windows Server 2012
R2

X X

Windows 8 X X X

Windows 8.1 X X X

Windows 10 X X X X

Android ** X X X X

iOS ** X X X X

Linux *** X X X X

Apps built by using Visual Studio can be targeted to various platforms, as follows.

* You can use the Windows XP platform toolset included in Visual Studio 2017, Visual Studio 2015, Visual Studio
2013, and Visual Studio 2012 Update 1 or later to build Windows XP and Windows Server 2003 projects. For
information on how to use this platform toolset, see Configuring Programs for Windows XP. For additional
information on changing the platform toolset, see How to: Modify the Target Framework and Platform Toolset.

** You can install the Mobile development with C++ workload in the installer for Visual Studio 2017 and later.
In Visual Studio 2015 setup, choose the optional Visual C++ for Cross Platform Mobile Development
component to target iOS or Android platforms. For instructions, see Install Visual C++ for Cross-Platform Mobile
Development. To build iOS code, you must have a Mac computer and meet other requirements. For a list of
prerequisites and installation instructions, see Install And Configure Tools to Build using iOS. You can build x86 or
ARM code to match the target hardware. Use x86 configurations to build for the iOS simulator, Microsoft Visual
Studio Emulator for Android, and some Android devices. Use ARM configurations to build for iOS devices and
most Android devices.

*** You can install the Linux development with C++ workload in the installer for Visual Studio 2017 and later to
target Linux platforms. For instructions, see Download, Install and Setup the Linux Workload. This toolset compiles
your executable on the target machine, so you can build for any supported architecture.

**** ARM64 support is available in Visual Studio 2017 and later.

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/supported-platforms-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-windows-xp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/how-to-modify-the-target-framework-and-platform-toolset
https://docs.microsoft.com/visualstudio/cross-platform/install-visual-cpp-for-cross-platform-mobile-development
https://docs.microsoft.com/visualstudio/cross-platform/install-and-configure-tools-to-build-using-ios

See also

For information about how to set the target platform configuration, see How to: Configure Visual C++ Projects to
Target 64-Bit, x64 Platforms.

Visual C++ Tools and Features in Visual Studio Editions
Getting Started

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/how-to-configure-visual-cpp-projects-to-target-64-bit-platforms
https://docs.microsoft.com/visualstudio/ide/getting-started-with-cpp-in-visual-studio

C++ Tools and Features in Visual Studio Editions
5/23/2019 • 9 minutes to read • Edit Online

Platforms

Compilers

C++ Workloads

Desktop development with C++

The following C++ features are available in Visual Studio 2019. Unless stated otherwise, all features are available
in all editions: Visual Studio Community, Visual Studio Professional, and Visual Studio Enterprise. Some features
require specific workloads or optional components, which you can install with the Visual Studio Installer.

Windows Desktop
Universal Windows Platform ((tablet, PC, Xbox, IoT, and HoloLens))
Linux
Android
iOS

MSVC 32-bit compiler for x86, x64, ARM, and ARM64
MSVC 64-bit compiler for x86, x64, ARM, and ARM64
GCC cross-compiler for ARM
Clang/LLVM

On Windows, Clang/LLVM 7.0, targeting x86 or x64 (CMake support only). Other Clang versions might
work but are not officially supported.
On Linux, any Clang/LLVM installation supported by the distro.

Visual Studio includes the following workloads for C++ development. You can install any or all of these, along
with other workloads such as .NET Desktop Development, Python Development, Azure Development, Visual
Studio Extension Development, and others.

Included:

C++ core desktop features

Optional Components:

MSVC v142 - VS 2019 C++ x64/x86 build tools (v14.21)
Windows 10 SDK (10.0.17763.0)
Just-In-Time debugger
C++ profiling tools
C++ CMake tools for Windows
C++ ATL for v142 build tools (x86 & x64)
Test Adapter for Boost.Test
Test Adapter for Google Test
Live Share
IntelliCode

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/visual-cpp-tools-and-features-in-visual-studio-editions.md

Linux development with C++

Universal Windows Platform development

C++ Game Development

IntelliTrace (Enterprise only)
C++ MFC for v142 build tools (x86 & x64)
C++/CLI support for v142 build tools (14.21)
C++ Modules for v142 build tools (x64/x86 – experimental)
Clang compiler for Windows
IncrediBuild - Build Acceleration
Windows 10 SDK (10.0.17134.0)
Windows 10 SDK (10.0.16299.0)
MSVC v141 - VS 2017 C++ x64/x86 build tools (v14.16)
MSVC v140 - VS 2015 C++ build tools (v14.00)

Included:

C++ core features
Windows Universal C Runtime
C++ for Linux Development

Optional Components:

C++ CMake tools for Linux
Embedded and IoT development tools

Included:

Blend for Visual Studio
.NET Native and .NET Standard
NuGet package manager
Universal Windows Platform tools
Windows 10 SDK (10.0.17763.0)

Optional Components:

IntelliCode
IntelliTrace (Enterprise only)
USB Device Connectivity
C++ (v142) Universal Windows Platform tools
C++ (v141) Universal Windows Platform tools
Graphics debugger and GPU profiler for DirectX
Windows 10 SDK (10.0.18362.0)
Windows 10 SDK (10.0.17134.0)
Windows 10 SDK (10.0.16299.0)
Architecture and analysis tools

Included:

C++ core features
Windows Universal C Runtime
C++ 2019 Redistributable Update
MSVC v142 - VS 2019 C++ x64/x86 build tools (v14.21)

Mobile development with C++

Individual components

Libraries and Headers

Optional Components:

C++ profiling tools
Windows 10 SDK (10.0.17763.0)
IntelliCode
IntelliTrace (Enterprise only)
Windows 10 SDK (10.0.17134.0)
Windows 10 SDK (10.0.16299.0)
IncrediBuild - Build Acceleration
Cocos
Unreal Engine installer
Android IDE support for Unreal engine

Included:

C++ core features
Android SDK setup (API level 25) (local install for Mobile development with C++)

Optional Components:

Android NDK (R16B)
Apache Ant (1.9.3)
C++ Android development tools
IntelliCode
Google Android Emulator (API Level 25) (local install)
Intel Hardware Accelerated Execution Manager (HAXM) (local install)
Android NDK (R16B) (32bit)
C++ iOS development tools
IncrediBuild - Build Acceleration

You can install these components independently from any workload.

JavaScript diagnostics
Live Share
C++ Universal Windows Platform runtime for v142 build tools
ClickOnce Publishing
Microsoft Visual Studio Installer Projects

Windows headers and libraries
Windows Universal C Runtime (CRT)
C++ Standard Library
ATL
MFC
.NET Framework class library
C++ Support Library for .NET
OpenMP 2.0

Build and Project Systems

Project Templates

Over 900 open-source libraries via vcpkg catalog

CMake
Any build system via Open Folder
Command line builds (msbuild.exe)
Native Multi-targeting
Managed Multi-targeting
Parallel Builds
Build Customizations
Property Pages Extensibility

The following project templates are available depending on which workloads you have installed.

Windows Desktop:

Empty Project
Console App
Windows Desktop Wizard
Windows Desktop Application
Shared Items Project
MFC App
Dynamic Link Library
CLR Empty Project
CLR Console App
Static Library
CMake Project
ATL Project
MFC Dynamic Link Library
CLR Class Library
Makefile Project (Windows)
MFC ActiveXControl
Native Unit Test Project
Google Test

Universal Windows Platform (C++/CX):

Blank App
DirectX 11 and XAML App
DirectX 11 App
DirectX 12 App
Unit Test App
DLL
Windows Runtime Component
Static Library
Windows Application Packaging Project

Linux:

Tools

Debugging Features

Designers and Editors

Console App (Linux)
Empty Project (Linux)
Raspberry Pi Blink
Makefile Project (Linux)

Incremental Linker (Link.exe)
Microsoft Makefile Utility (Nmake.exe)
Lib Generator (Lib.exe)
Windows Resource Compiler (Rc.exe)
Windows Resource to Object Converter (CvtRes.exe)
Browse Information Maintenance Utility (BscMake.exe)
C++ Name Undecorator (Undname.exe)
COFF/PE Dumper (Dumpbin.exe)
COFF/PE Editor (Editbin.exe)
MASM (Ml.exe)
Spy++
ErrLook
AtlTrace
Inference Rules
Profile Guided Optimizations

Native Debugging
natvis (native type visualization)
Graphics Debugging
Managed Debugging
GPU usage
Memory usage
Remote Debugging
SQL Debugging
Static Code Analysis

XAML Designer
CSS Style Designer/Editor
HTML Designer/Editor
XML Editor
Source Code Editor
Productivity Features: Refactoring, EDG IntelliSense engine, C++ Code Formatting
Windows Forms Designer
Data Designer
Native Resource Editor (.rc files)
Resource Editors
Model editor

Data Features

Automation and Extensibility

Application Lifecycle Management Tools

See also

Platforms

Shader designer
Live Dependency Validation (Enterprise Only)
Architectural Layer Diagrams (Enterprise Only)
Architecture Validation (Enterprise Only)
Code Clone (Enterprise Only)

Data Designer
Data Objects
Web Services
Server Explorer

Extensibility Object Models
Code Model
Project Model
Resource Editor Model
Wizard Model
Debugger Object Model

Unit Testing (Microsoft Native C++, Boost.Test, Google Test, CTest)
Code map and dependency graphs (Professional and Enterprise)
Code coverage (Enterprise Only)
Manual testing (Enterprise only)
Exploratory testing (Enterprise only)
Test case management (Enterprise only)
Code map debugger integration (Enterprise only)
Live Unit Testing (Enterprise only)
IntelliTrace (Enterprise only)
IntelliTest (Enterprise only)
Microsoft Fakes (Unit Test Isolation) (Enterprise only)
Code Coverage (Enterprise only)

Install Visual Studio
What's New in Visual Studio
C++ project types in Visual Studio

The following tables show Visual C++ features that are available in Visual Studio 2017. An X in a cell indicates
that the feature is available; an empty cell indicates that the feature is not available. Notes in parentheses indicate
that a feature is available, but restricted.

https://docs.microsoft.com/visualstudio/install/install-visual-studio
https://docs.microsoft.com/visualstudio/ide/whats-new-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/visual-cpp-project-types

Platform Visual Studio Express
for Windows 10

Visual Studio Express
for Windows Desktop

Visual Studio
Community/Professio
nal

Visual Studio
Enterprise

Windows Desktop X X X

Universal Windows
Platform ((phone,
tablet, PC, Xbox, IoT,
and HoloLens))

X X X

Linux X X

Microsoft Store 8.1 X X

Windows Phone 8.0 X X

Android X X

iOS X X

Compilers

COMPILER

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

MSVC 32-bit X86
compiler

X X X X

X86_arm cross-
compiler

X X X

MSVC 64-bit x64
compiler

X X

X86_ x64 cross-
compiler

X X X X

Libraries and Headers

LIBRARY OR HEADER

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Windows headers and
libraries and CRT
library

(X) X X X

C++ Standard Library X X X X

ATL X X

MFC X X

.NET Framework class
library

X X X

C++ Support Library
for .NET

X X X

OpenMP 2.0 X X X X

LIBRARY OR HEADER

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Project Templates

TEMPLATE

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

XAML Templates for
UWP, Windows 8.1,
Windows Phone 8.0

X X X

Direct3D App X X X

DLL (Universal
Windows)

X X X

Static Library
(Universal Windows)

X X X

Windows Runtime
Component

X X X

Unit Test App
(Universal Windows)

X X X

ATL Project X X

Class Library (CLR) X X X

CLR Console
Application

X X X

CLR Empty Project X X X

Custom Wizard X X

Empty Project X X X

Makefile Project X X X

MFC ActiveX Control X X

MFC Application X X

MFC DLL X X

Test Project X X X X

Win32 Console
Application

X X X

Win32 Project X X X

TEMPLATE

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Tools

TOOL

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Incremental Linker
(Link.exe)

X X X X

Program
Maintenance Utility
(Nmake.exe)

X X X

Lib Generator
(Lib.exe)

X X X X

Windows Resource
Compiler (Rc.exe)

X X X X

Windows Resource to
Object Converter
(CvtRes.exe)

X X X

Browse Information
Maintenance Utility
(BscMake.exe)

X X X X

C++ Name
Undecorator
(Undname.exe)

X X X X

COFF/PE Dumper
(Dumpbin.exe)

X X X X

COFF/PE Editor
(Editbin.exe)

X X X X

MASM (Ml.exe) X X

Spy++ X X

ErrLook X X

AtlTrace X X

Devenv.com X X

Inference Rules X X

Upgrade VCBuild
.vcproj projects to
MSBuild
(VCUpgrade.exe)

X X X X

Profile Guided
Optimizations

X X

TOOL

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Debugging Features

DEBUGGING FEATURE

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Native Debugging X X X X

natvis (native type
visualization)

X X X X

Graphics Debugging X X X

Managed Debugging X X X

GPU usage X X X

Memory usage X X X

Remote Debugging X X X X

SQL Debugging X X

Static Code Analysis Limited Limited X X

Designers and Editors

DESIGNER OR EDITOR

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

XAML Designer X X X

CSS Style
Designer/Editor

X X X X

HTML
Designer/Editor

X X X X

XML Editor X X X X

Source Code Editor X X X X

Productivity Features:
Refactoring,
IntelliSense, C++
Code Formatting

X X X X

Windows Forms
Designer

X X X

Data Designer X X

Native Resource
Editor (.rc files)

X X

Resource Editors X X X X

Model editor X X X

Shader designer X X X

DESIGNER OR EDITOR

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Data Features

DATA FEATURE

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Data Designer X X

Data Objects X X

Web Services X X

Server Explorer X X

Build and Project Systems

BUILD OR PROJECT
FEATURE

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Command line builds
(msbuild.exe)

X X X X

Native Multi-
targeting

X X X

Managed Multi-
targeting

X X X

Parallel Builds X X X X

Build Customizations X X X X

Property Pages
Extensibility

X X X X

Automation and Extensibility

AUTOMATION AND
EX TENSIBILITY

VISUAL STUDIO
EXPRESS FOR
WINDOWS

VISUAL STUDIO
EXPRESS FOR
WINDOWS DESKTOP

VISUAL STUDIO
PROFESSIONAL /
COMMUNITY

VISUAL STUDIO
ENTERPRISE

Extensibility Object
Models

X X

Code Model X X

Project Model X X

Resource Editor
Model

X X

Wizard Model X X

Debugger Object
Model

X X

Application Lifecycle Management Tools

Tool Visual Studio Express
for Windows

Visual Studio Express
for Windows Desktop

Visual Studio
Professional /
Community

Visual Studio
Enterprise

Unit Testing (native
framework)

X X X X

Unit Testing
(managed framework)

X X X

Code coverage X

Manual testing X

Exploratory testing X

Test case
management

X

Code map and
dependency graphs

read-only X

Code map debugging X

See also
Install Visual Studio
What's New in Visual Studio
C++ project types in Visual Studio

https://docs.microsoft.com/visualstudio/install/install-visual-studio
https://docs.microsoft.com/visualstudio/ide/whats-new-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/visual-cpp-project-types

Visual C++ Samples
4/1/2019 • 2 minutes to read • Edit Online

IMPORTANT

The Visual C++ samples listed below demonstrate different functionalities across multiple technologies.

Visual C++ samples

Visual Studio samples

Windows on GitHub

Universal Windows app samples

The All-In-One code framework

Windows Desktop code samples

MFC samples

CodePlex samples

ADO code samples

Windows Hardware development samples

This sample code is intended to illustrate a concept, and it shows only the code that is relevant to that concept. It may not
meet the security requirements for a specific environment, and it should not be used exactly as shown. We recommend that
you add security and error-handling code to make your projects more secure and robust. Microsoft provides this sample
code "AS IS" with no warranties.

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/visual-cpp-samples.md
https://github.com/Microsoft/vcsamples
https://code.msdn.microsoft.com/vstudio/site/search?f%5B0%5D.Type=ProgrammingLanguage&f%5B0%5D.Value=C%2B%2B
https://microsoft.github.io/windows/
https://code.msdn.microsoft.com/windowsapps/Universal-Windows-app-cb3248c3
https://1code.codeplex.com/
https://code.msdn.microsoft.com/windowsdesktop/site/search?f%5B0%5D.Type=ProgrammingLanguage&f%5B0%5D.Value=C%2B%2B&f%5B0%5D.Text=C%2B%2B
https://code.msdn.microsoft.com/site/search?query=mfc&f%5B0%5D.Value=mfc&f%5B0%5D.Type=SearchText&ac=4
https://archive.codeplex.com/
https://msdn.microsoft.com/library/jj249212.aspx
https://code.msdn.microsoft.com/windowshardware/

Visual C++ Help and Community
5/15/2019 • 2 minutes to read • Edit Online

Samples
TITLE DESCRIPTION

Developer Code Samples Contains downloadable sample code from Microsoft and
community contributors.

Product Documentation
TITLE DESCRIPTION

C++ in Visual Studio Contains reference and conceptual documentation about
Visual C++. Part of the MSDN Library.

Windows Developer Center Contains information about how to use C++ and other
languages to develop apps for Windows 10. Part of the
Windows Developer Center; the C++ content is under the
Docs > Language Reference node.

Online and Offline Documentation

Related Articles
TITLE DESCRIPTION

Visual C++ Team Blog Contains posts on various subjects by the experts on the
Visual C++ product team.

Channel 9 Contains video interviews and lectures. Use the search box on
the Channel 9 home page to find C++ content.

Visual Studio Contains articles and news about Visual Studio and related
development tools.

MSDN forums and Developer Community Official Microsoft forums where you can post questions about
C++ and get answers from Microsoft and from experts in the
community.

Here's how to getting information about how to write C++ code and use the Visual Studio development tools.

You can view Microsoft developer content online. This content is updated regularly.

You can also download and view the content locally in the offline Help Viewer. The offline documentation is
organized by books of related content, which are also updated periodically. You can download the books you are
interested in as they become available. For more information, see Microsoft Help Viewer.

Many sections of the documentation are also available in PDF form. These sections have a Download PDF link on
included pages on docs.microsoft.com.

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/visual-cpp-help-and-community.md
https://code.msdn.microsoft.com/
https://developer.microsoft.com/windows/
https://docs.microsoft.com/visualstudio/ide/microsoft-help-viewer
https://blogs.msdn.microsoft.com/vcblog/
https://channel9.msdn.com/
https://visualstudio.microsoft.com/
https://social.msdn.microsoft.com/Forums/home?category=visualc
https://developercommunity.visualstudio.com

How to report a problem with the Visual C++ toolset
or documentation
5/8/2019 • 24 minutes to read • Edit Online

How to report a C++ toolset issue

How to prepare your report

The toolset version

To report the full version of the compiler you're using

If you encounter problems with the Microsoft C++ compiler, linker, or other tools and libraries, we want to know
about them. If the issue is in our documentation, we want to know about that, too.

The best way to let us know about a problem is to send us a report that includes a description of the problem
you've encountered, details about how you're building your program, and a repro, a complete test case we can use
to reproduce the problem on our own machines. This information lets us quickly verify that the problem exists in
our code and is not local to your environment, to determine whether it affects other versions of the compiler, and
to diagnose its cause.

In the sections below, you'll read about what makes a good report, how to generate a repro for the kind of issue
you've found, and how to send your report to the product team. Your reports are important to us and to other
developers like you. Thank you for helping us improve Visual C++!

Creating a high-quality report is important because it is very difficult to reproduce the problem you encountered
on our own machines without complete information. The better your report is, the more effectively we are able
recreate and diagnose the problem.

At a minimum, your report should contain

The full version information of the toolset you're using.

The full cl.exe command line used to build your code.

A detailed description of the problem you encountered.

A repro: a complete, simplified, self-contained source code example that demonstrates the problem.

Read on to learn more about the specific information we need and where you can find it, and how to create a good
repro.

We need the full version information and the target architecture of the toolset that causes the problem so that we
can test your repro against the same toolset on our machines. If we can reproduce the problem, this information
also gives us a starting point to investigate which other versions of the toolset exhibit the same problem.

1. Open the Developer Command Prompt that matches the Visual Studio version and configuration
architecture used to build your project. For example, if you build by using Visual Studio 2017 on x64 for x64
targets, choose x64 Native Tools Command Prompt for VS 2017. For more information, see Developer
command prompt shortcuts.

2. In the developer command prompt console window, enter the command cl /Bv.

The output should look similar to this:

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/how-to-report-a-problem-with-the-visual-cpp-toolset.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-on-the-command-line

C:\Users\username\Source>cl /Bv
Microsoft (R) C/C++ Optimizing Compiler Version 19.14.26428.1 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

Compiler Passes:
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\cl.exe: Version 19.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\c1.dll: Version 19.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\c1xx.dll: Version 19.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\c2.dll: Version 19.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\link.exe: Version 14.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\mspdb140.dll: Version 14.14.26428.1
 C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\VC\Tools\MSVC\14.14.26428\bin\HostX86\x86\1033\clui.dll: Version 19.14.26428.1

cl : Command line error D8003 : missing source filename

The command line

To report the contents of the command line

A description of the problem

Copy and paste the entire output into your report.

We need the exact command line (cl.exe and all of its arguments) used to build your code, so that we can build it in
exactly the same way on our machines. This is important because the problem you've encountered might only exist
when building with a certain argument or combination of arguments.

The best place to find this information is in the build log immediately after experiencing the problem. This ensures
that the command line contains exactly the same arguments that might be contributing to the problem.

1. Locate the CL.command.1.tlog file and open it. By default, this file is located in your Documents folder in
\Visual Studio
version\Projects\SolutionName\ProjectName\Configuration\ProjectName.tlog\CL.command.1.tlog, or in
your User folder under
\Source\Repos\SolutionName\ProjectName\Configuration\ProjectName.tlog\CL.command.1.tlog. It may
be in a different location if you use another build system or if you have changed the default location for your
project.

Inside this file, you'll find the names of source code files followed by the command line arguments used to
compile them, each on separate lines.

2. Locate the line that contains the name of the source code file where the problem occurs; the line below it
contains the corresponding cl.exe command arguments.

Copy and paste the entire command line into your report.

We need a detailed description of the problem you've encountered so that we can verify that we see the same
effect on our machines; its also sometimes useful for us to know what you were trying to accomplish, and what
you expected to happen.

Please provide the exact error messages given by the toolset, or the exact runtime behavior you see. We need
this information to verify that we've properly reproduced the issue. Please include all of the compiler output, not
just the last error message. We need to see everything that led up to the issue you report. If you can duplicate the
issue by using the command line compiler, that compiler output is preferred; the IDE and other build systems may
filter the error messages you see, or only capture the first line of an error message.

The repro

What makes a good repro

If the issue is that the compiler accepts invalid code and does not generate a diagnostic, please note this in your
report.

To report a runtime behavior problem, include an exact copy of what the program prints out, and what you expect
to see. Ideally, this is embedded in the output statement itself, for example,
printf("This should be 5: %d\n", actual_result); . If your program crashes or hangs, mention that as well.

Add any other details that might help us diagnose the problem you experienced, such as any work-arounds you
may have found. Avoid repeating information found elsewhere in your report.

A repro is a complete, self-contained source code example that reproducibly demonstrates the problem you've
encountered (hence the name). We need a repro so that we can reproduce the error on our machines. The code
should be sufficient by itself to create a simple executable that compiles and runs, or that would compile and run if
not for the problem you've found. A repro is not a code snippet; it should have complete functions and classes and
contain all the necessary #include directives, even for the standard headers.

A good repro is:

Minimal. Repros should be as small as possible yet still demonstrate exactly the problem you encountered.
Repros do not need to be complex or realistic; they only need to show code that conforms to the Standard
or the documented compiler implementation, or in the case of a missing diagnostic, the code that is not
conformant. Simple, to-the-point repros that contain just enough code to demonstrate the problem are best.
If you can eliminate or simplify the code and remain conformant and also leave the issue unchanged, please
do so. You do not need to include counter-examples of code that works.

Self-Contained. Repros should avoid unnecessary dependencies. If you can reproduce the problem
without third-party libraries, please do so. If you can reproduce the problem without any library code
besides simple output statements (for example, puts("this shouldn't compile"); , std::cout << value; , and
printf("%d\n", value); are okay), please do so. It's ideal if the example can be condensed to a single source

code file, without reference to any user headers. Reducing the amount of code we have to consider as a
possible contributor to the problem is enormously helpful to us.

Against the latest compiler version. Repros should use the most recent update to the latest version of
the toolset, or the most recent prerelease version of the next update or next major release, whenever
possible. Problems you may encounter in older versions of the toolset have very often been fixed in newer
versions. Fixes are backported to older versions only in exceptional circumstances.

Checked against other compilers if relevant. Repros that involve portable C++ code should verify
behavior against other compilers if possible. The Standard ultimately determines program correctness, and
no compiler is perfect, but when Clang and GCC accept your code without a diagnostic and MSVC does not,
it's likely you're looking at a bug in our compiler. (Other possibilities include differences in Unix and
Windows behavior, or different levels of C++ standards implementation, and so on.) On the other hand, if
all the compilers reject your code, then it's likely that your code is incorrect. Seeing different error messages
may help you diagnose the issue yourself.

You can find lists of online compilers to test your code against in Online C++ compilers on the ISO C++
website, or this curated List of Online C++ Compilers on GitHub. Some specific examples include Wandbox,
Compiler Explorer, and Coliru.

https://isocpp.org/blog/2013/01/online-c-compilers
https://arnemertz.github.io/online-compilers/
https://wandbox.org/
https://godbolt.org/
http://coliru.stacked-crooked.com/

Frontend (parser) crash

SandBoxHost.cpp
d:\o\dev\search\foundation\common\tools\sandbox\managed\managed.h(929):
 fatal error C1001: An internal error has occurred in the compiler.
(compiler file 'msc1.cpp', line 1369)
To work around this problem, try simplifying or changing the program near the
 locations listed above.
Please choose the Technical Support command on the Visual C++
Help menu, or open the Technical Support help file for more information
d:\o\dev\search\foundation\common\tools\sandbox\managed\managed.h(929):
 note: This diagnostic occurred in the compiler generated function
 'void Microsoft::Ceres::Common::Tools::Sandbox::SandBoxedProcess::Dispose(bool)'
Internal Compiler Error in d:\o\dev\otools\bin\x64\cl.exe. You will be prompted
 to send an error report to Microsoft later.
INTERNAL COMPILER ERROR in 'd:\o\dev\otools\bin\x64\cl.exe'
 Please choose the Technical Support command on the Visual C++
 Help menu, or open the Technical Support help file for more information

Backend (code generation) crash

NOTE
The online compiler websites are not affiliated with Microsoft. Many online compiler websites are run as personal
projects, and some of these sites may not be available when you read this, but a search should find others you can
use.

Problems in the compiler, linker, and in the libraries, tend to show themselves in particular ways. The kind of
problem you encounter will determine what kind of repro you should include in your report. Without an
appropriate repro, we have nothing to investigate. Here are a few of the kinds of issues that you may see, and
instructions for generating the kinds of repros you should use to report each kind of problems.

Frontend crashes occur during the parsing phase of the compiler. Typically, the compiler will emit Fatal Error
C1001 and reference the source code file and line number on which the error occurred; it will often mention a file
msc1.cpp, but you can ignore this detail.

For this kind of crash, please provide a Preprocessed Repro.

Here's example compiler output for this kind of crash:

Backend crashes occur during the code generation phase of the compiler. Typically, the compiler will emit Fatal
Error C1001, and might not reference the source code file and line number associated with the problem; it will
often mention the file compiler\utc\src\p2\main.c, but you can ignore this detail.

For this kind of crash, please provide a Link repro if you are using Link-Time Code Generation (LTCG), enabled by
the /GL command-line argument to cl.exe. If not, please provide a Preprocessed repro instead.

Here's example compiler output for a backend crash in which LTCG is not used. If your compiler output looks like
this you should provide a Preprocessed Repro.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/fatal-error-c1001
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/fatal-error-c1001

repro.cpp
\\officefile\public\tadg\vc14\comperror\repro.cpp(13) : fatal error C1001:
 An internal error has occurred in the compiler.
(compiler file 'f:\dd\vctools\compiler\utc\src\p2\main.c', line 230)
To work around this problem, try simplifying or changing the program near the
 locations listed above.
Please choose the Technical Support command on the Visual C++
Help menu, or open the Technical Support help file for more information
INTERNAL COMPILER ERROR in
 'C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\cl.exe'
 Please choose the Technical Support command on the Visual C++
 Help menu, or open the Technical Support help file for more information

Linker crash

NOTE

z:\foo.obj : error LNK1000: Internal error during IMAGE::Pass2

 Version 14.00.22816.0

 ExceptionCode = C0000005
 ExceptionFlags = 00000000
 ExceptionAddress = 00007FF73C9ED0E6 (00007FF73C9E0000)
 "z:\tools\bin\x64\link.exe"
 NumberParameters = 00000002
 ExceptionInformation[0] = 0000000000000000
 ExceptionInformation[1] = FFFFFFFFFFFFFFFF

CONTEXT:

 Rax = 0000000000000400 R8 = 0000000000000000
 Rbx = 000000655DF82580 R9 = 00007FF840D2E490
 Rcx = 005C006B006F006F R10 = 000000655F97E690
 Rdx = 000000655F97E270 R11 = 0000000000000400
 Rsp = 000000655F97E248 R12 = 0000000000000000
 Rbp = 000000655F97EFB0 E13 = 0000000000000000
 Rsi = 000000655DF82580 R14 = 000000655F97F390
 Rdi = 0000000000000000 R15 = 0000000000000000
 Rip = 00007FF73C9ED0E6 EFlags = 0000000000010206
 SegCs = 0000000000000033 SegDs = 000000000000002B
 SegSs = 000000000000002B SegEs = 000000000000002B
 SegFs = 0000000000000053 SegGs = 000000000000002B
 Dr0 = 0000000000000000 Dr3 = 0000000000000000
 Dr1 = 0000000000000000 Dr6 = 0000000000000000
 Dr2 = 0000000000000000 Dr7 = 0000000000000000

If the line that begins with INTERNAL COMPILER ERROR mentions link.exe, rather than cl.exe, LTCG was
enabled and you should provide a Link Repro. If its not clear whether LTCG was enabled from the compiler error
message, you may need to examine the command line arguments that you copied from your build log in a
previous step for the /GL command-line argument.

Linker crashes occur during the linking phase, after the compiler has run. Typically, the linker will emit Linker Tools
Error LNK1000.

If the output mentions C1001 or involves Link-Time Code Generation, refer to Backend (code generation) crash instead for
more information.

For this kind of crash, please provide a Link repro.

Here's example compiler output for this kind of crash.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/tool-errors/linker-tools-error-lnk1000

Bad code generation

How to generate a repro

Preprocessed repros

NOTE

To preprocess a source code file

To confirm that the error still repros with the preprocessed file

If incremental linking is enabled and the crash occurred only after a successful initial link, (that is, only after the first
full linking on which subsequent incremental linking is based) please also provide a copy of the object (.obj) and
library (.lib) files that correspond to source files that were modified after the initial link was completed.

Bad code generation is rare, but occurs when the compiler mistakenly generates incorrect code that will cause your
application to crash at runtime rather than detecting this problem at compile-time. If you believe the problem you
are experiencing results in bad code generation, treat your report the same as a Backend (code generation) crash.

For this kind of crash please provide a Link repro if you are using Link-Time Code Generation (LTCG), enabled by
the /GL command-line argument to cl.exe. Please provide a Preprocessed repro if not.

To help us track down the source of the problem, a good repro is vital. Before you do any of the steps outlined
below for specific kinds of repros, try to condense the code that demonstrates the problem as much as possible.
Try to eliminate or minimize dependencies, required headers, and libraries, and limit the compiler options and
preprocessor definitions used if possible.

Below are instructions for generating the various kinds of repros you'll use to report different kinds of problems.

A preprocessed repro is a single source file that demonstrates a problem, generated from the output of the C
preprocessor by using the /P compiler option on the original repro source file. This inlines included headers to
remove dependencies on additional source and header files, and also resolves macros, #ifdefs, and other
preprocessor commands that could depend your local environment.

Preprocessed repros are not as useful for problems that might be the result of bugs in our standard library implementation,
because we will often want to substitute our latest, in-progress implementation to see whether we've already fixed the
problem. In this case, don't preprocess the repro, and if you can't reduce the problem to a single source file, package your
code into a .zip file or similar, or consider using an IDE project repro. For more information, see Other repros.

1. Capture the command line arguments used to build your repro, as described in To report the contents of the
command line.

2. Open the Developer Command Prompt that matches the Visual Studio version and configuration
architecture used to build your project.

3. Change to the directory that contains your repro project.

4. In the developer command prompt console window, enter the command cl /P arguments filename.cpp,
where arguments is the list of arguments captured above, and filename.cpp is the name of your repro
source file. This command replicates the command line used for the repro, but stops the compilation after
the preprocessor pass, and outputs the preprocessed source code to filename.i.

If you are preprocessing a C++/CX source code file, or you are using the C++ Modules feature, some additional
steps are required. For more information, see the sections below.

After you have generated the preprocessed file, its a good idea to make sure that the problem still repros using the
preprocessed file.

1. In the developer command prompt console window, enter the command cl arguments /TP filename.i to tell
cl.exe to compile the preprocessed file as a C++ source file, where arguments is the list of arguments

Preprocessed C++/CX WinRT/UWP code repros

To preprocess C++/CX source code

Preprocessed C++ Modules repros

To preprocess a source code file that uses a module

captured above, but with any /D and /I arguments removed (because they have already been included in
the preprocessed file); and where filename.i is the name of your preprocessed file.

2. Confirm that the problem is reproduced.

Finally, attach the preprocessed repro filename.i to your report.

If you're using C++/CX to build your executable, there are some extra steps required to create and validate a
preprocessed repro.

1. Create a preprocessed source file as described in To preprocess a source code file.

2. Search the generated filename.i file for #using directives.

3. Make a list of all of the referenced files. Leave out any Windows*.winmd files, platform.winmd files, and
mscorlib.dll.

To prepare to validate that the preprocessed file still reproduces the problem,

1. Create a new directory for the preprocessed file and copy it to the new directory.

2. Copy the .winmd files from your #using list to the new directory.

3. Create an empty vccorlib.h file in the new directory.

4. Edit the preprocessed file to remove any #using directives for mscorlib.dll.

5. Edit the preprocessed file to change any absolute paths to just the bare filenames for the copied .winmd
files.

Confirm that the preprocessed file still reproduces the problem, as above.

If you're using the Modules feature of the C++ compiler, there are some different steps required to create and
validate a preprocessed repro.

1. Capture the command line arguments used to build your repro, as described in To report the contents of the
command line.

2. Open the Developer Command Prompt that matches the Visual Studio version and configuration
architecture used to build your project.

3. Change to the directory that contains your repro project.

4. In the developer command prompt console window, enter the command cl /P arguments filename.cpp,
where arguments is the list of arguments captured above, and filename.cpp is the name of the source file
that consumes the module.

5. Change to the directory that contains the repro project that built the module interface (the .ifc output).

6. Capture the command line arguments used to build your module interface.

7. In the developer command prompt console window, enter the command cl /P arguments modulename.ixx,
where arguments is the list of arguments captured above, and modulename.ixx is the name of the file that
creates the module interface.

After you have generated the preprocessed files, its a good idea to make sure the problem still repros using the
preprocessed file.

To confirm that the error still repros with the preprocessed file

Link repros

To generate a link repro

Other repros

Ways to send your report

1. In the developer console window, change back to the directory that contains your repro project.

2. Enter the command cl arguments /TP filename.i as above, to compile the preprocessed file as if it were a
C++ source file.

3. Confirm that the problem is still reproduced by the preprocessed file.

Finally, attach the preprocessed repro files (filename.i and modulename.i) along with the .ifc output to your report.

A link repro is the linker-generated contents of a directory specified by the link_repro environment variable. It
contains build artifacts that collectively demonstrate a problem that occurs at link time, such as a backend crash
involving Link-Time Code Generation (LTCG), or a linker crash. These build artifacts are the ones needed as linker
input so that the problem can be reproduced. A link repro can be created easily by using this environment variable
to enable the built-in repro generation capability of the linker.

1. Capture the command line arguments used to build your repro, as described in To report the contents of the
command line.

2. Open the Developer Command Prompt that matches the Visual Studio version and configuration
architecture used to build your project.

3. In the developer command prompt console window, change to the directory that contains your repro
project.

4. Enter mkdir linkrepro to create a directory for the link repro.

5. Enter the command set link_repro=linkrepro to set the link_repro environment variable to the directory
you just created. If your build is run from a different directory, as is often the case for more complex
projects, then set link_repro to the full path to your linkrepro directory instead.

6. To build the repro project in Visual Studio, in the developer command prompt console window, enter the
command devenv. This ensures that the value of the link_repro environment variable is visible to Visual
Studio. To build the project at the command line, use the command line arguments captured above to
duplicate the repro build.

7. Build your repro project, and confirm that the expected problem has occurred.

8. Close Visual Studio if you used it to perform the build.

9. In the developer command prompt console window, enter the command set link_repro= to clear the
link_repro environment variable.

Finally, package the repro by compressing the entire linkrepro directory into a .zip file or similar and attach it to
your report.

If you can't reduce the problem to a single source file or preprocessed repro, and the problem does not require a
link repro, we can investigate an IDE project. All the guidance on how to create a good repro still applies; the code
should be minimal and self-contained, the problem should occur in our most recent tools, and if relevant, the
problem should not be seen in other compilers.

Create your repro as a minimal IDE project, then package it by compressing the entire directory structure into a
.zip file or similar and attach it to your report.

NOTE

Use the Report a Problem tool

Use the Visual Studio Developer Community pages

TIP

Reports and privacy

There are a couple of good ways to get your report to us. You can use Visual Studio's built-in Report a Problem
Tool, or the Visual Studio Developer Community pages. You can also get directly to our Developer Community
pages by choosing the Product feedback button at the bottom of this page. The choice depends on whether you
want to use the tools built into the IDE for capturing screenshots and organizing your report for posting on the
Developer Community pages, or if you'd prefer to use the website directly.

Regardless of how you submit your report, Microsoft respects your privacy. Microsoft is committed to compliance with all
data privacy laws and regulations. For information about how we treat the data that you send us, see the Microsoft Privacy
Statement.

The Report a Problem tool in Visual Studio is a way for Visual Studio users to report a variety of problems with
just a few clicks. It provides a simple form that you can use to specify detailed information about the problem
you've encountered and then submit your report without ever leaving the IDE.

Reporting your problem through the Report a Problem tool is easy and convenient from the IDE. You can access
it from the title bar by choosing the Send Feedback icon next to the Quick Launch search box, or you can find it
on the menu bar in Help > Send Feedback > Report a Problem.

When you choose to report a problem, first search the Developer Community for similar problems. If your
problem has been reported before, upvote the topic and add comments with additional specifics. If you don't see a
similar problem, choose the Report new problem button at the bottom of the Visual Studio Feedback dialog and
follow the steps to report your problem.

The Visual Studio Developer Community pages are another convenient way to report problems and find solutions
for Visual Studio and the C++ compiler, tools, and libraries. There are specific Developer Community pages for
Visual Studio, Visual Studio for Mac, .NET, C++, Azure DevOps, and TFS. Beneath these tabs, near the top of each
page, is a search box you can use to find posts or topics that report problems similar to yours. You may find that a
solution or other useful information related to your problem is already available. If someone has reported the
same problem before, please upvote and comment on that topic rather than create a new problem report. To
comment, vote, or report a new problem, you may be asked to sign in to your Visual Studio account and to agree
to give the Developer Community app access to your profile.

For issues with the C++ compiler, linker, and other tools and libraries, use the C++ page. If you search for your
problem, and it hasn't been reported before, choose the Report a problem button next to the search box at the
top of the page. You can include your repro code and command line, screen shots, links to related discussions, and
any other information you think is relevant and useful.

For other kinds of problems you might encounter in Visual Studio that are not related to the C++ toolset (For example, UI
issues, broken IDE functionality, or general crashes), use the Report a Problem tool in the IDE. This is the best choice, due
to its screenshot capabilities and its ability to record UI actions that lead to the problem you've encountered. These kinds of
errors can also be looked up on the Developer Community site. For more information, see How to report a problem with
Visual Studio.

By default, all information in reports and any comments and replies are publicly visible. Normally, this is a
benefit, because it allows the entire community to see the issues, solutions, and workarounds other users have
found. However, if you're concerned about making your data or identity public, for privacy or intellectual property

https://docs.microsoft.com/visualstudio/ide/how-to-report-a-problem-with-visual-studio-2017
https://developercommunity.visualstudio.com/
https://privacy.microsoft.com/privacystatement
https://developercommunity.visualstudio.com/spaces/8/index.html
https://developercommunity.visualstudio.com/spaces/41/index.html
https://developercommunity.visualstudio.com/spaces/61/index.html
https://developercommunity.visualstudio.com/spaces/62/index.html
https://developercommunity.visualstudio.com/spaces/21/index.html
https://developercommunity.visualstudio.com/spaces/22/index.html
https://developercommunity.visualstudio.com/spaces/62/index.html
https://developercommunity.visualstudio.com/
https://docs.microsoft.com/visualstudio/ide/how-to-report-a-problem-with-visual-studio-2017

To create a problem report for private information

How to report a C++ documentation issue

reasons, you have options.

If you are concerned about revealing your identity, create a new Microsoft account that does not disclose any
details about you. Use this account to create your report.

Don't put anything you want to keep private in the title or content of the initial report, which is public.
Instead, note that you will send details privately in a separate comment. To make sure that your report is directed
to the right people, include cppcompiler in the topic list of your problem report. Once the problem report is
created, it's now possible to specify who can see your replies and attachments.

1. In the report you created, choose Add comment to create your private description of the problem.

2. In the reply editor, use the dropdown control below the Submit and Cancel buttons to specify the audience
for your reply. Only the people you specify can see these private replies and any images, links, or code you
include in them. Choose Viewable by moderators and the original poster to limit visibility to Microsoft
employees and yourself.

3. Add the description and any other information, images, and file attachments needed for your repro. Choose
the Submit button to send this information privately.

Note that there is a 2GB limit on attached files, and a maximum of 10 files. For any larger uploads, please
request an upload URL in your private comment.

Any replies under this comment have the same restricted visibility you specified. This is true even if the dropdown
control on replies does not show the restricted visibility status correctly.

To maintain your privacy and keep your sensitive information out of public view, please take care to keep all
interaction with Microsoft to replies under this restricted comment. Replies to other comments may cause you to
accidentally disclose sensitive information.

We use GitHub issues to track problems reported in our documentation. You can now create GitHub issues directly
from a content page, which enables you interact in a much richer way with writers and product teams. If you see an
issue with a document, a bad code sample, a confusing explanation, a critical omission, or even just a typo, you can
easily let us know. Scroll to the bottom of the page and select Sign in to give documentation feedback. You'll
need to create a GitHub account if you don't have one already, but once you do, you can see all of our
documentation issues, their status, and get notifications when changes are made for the issue you reported. For
more information, see A New Feedback System Is Coming to docs.microsoft.com.

When you create a documentation issue on GitHub by using the documentation feedback button, the issue is
automatically filled in with some information about the page you created the issue on, so we know where the
problem is located. Please don't edit this information. Just append the details about what's wrong and, if you like, a
suggested fix. Our documentation is open source, so if you'd like to actually make a fix and propose it yourself, you
can do that. For more information about how you can contribute to our documentation, see our Contributing guide
on GitHub.

https://signup.live.com/
https://docs.microsoft.com/teamblog/a-new-feedback-system-is-coming-to-docs
https://github.com/MicrosoftDocs/cpp-docs/
https://github.com/MicrosoftDocs/cpp-docs/blob/master/CONTRIBUTING.md

Install C++ support in Visual Studio
4/2/2019 • 8 minutes to read • Edit Online

Visual Studio 2019 Installation

NOTE

Step 1 - Make sure your computer is ready for Visual Studio

Step 2 - Download Visual Studio

Step 3 - Install the Visual Studio installer

If you haven't downloaded and installed Visual Studio and the Visual C++ tools yet, here's how to get started.

Welcome to Visual Studio 2019! In this version, it's easy to choose and install just the features you need. And
because of its reduced minimum footprint, it installs quickly and with less system impact.

This topic applies to installation of Visual Studio on Windows. Visual Studio Code is a lightweight, cross-platform
development environment that runs on Windows, Mac, and Linux systems. The Microsoft C/C++ for Visual Studio Code
extension supports IntelliSense, debugging, code formatting, auto-completion. Visual Studio for Mac doesn't support
Microsoft C++, but does support .NET languages and cross-platform development. For installation instructions, see Install
Visual Studio for Mac.

Want to know more about what else is new in this version? See the Visual Studio release notes.

Ready to install? We'll walk you through it, step-by-step.

Before you begin installing Visual Studio:

1. Check the system requirements. These requirements help you know whether your computer supports
Visual Studio 2019.

2. Apply the latest Windows updates. These updates ensure that your computer has both the latest security
updates and the required system components for Visual Studio.

3. Reboot. The reboot ensures that any pending installs or updates don't hinder the Visual Studio install.

4. Free up space. Remove unneeded files and applications from your %SystemDrive% by, for example, running
the Disk Cleanup app.

For questions about running previous versions of Visual Studio side by side with Visual Studio 2019, see the
Visual Studio 2019 Platform Targeting and Compatibility page.

Next, download the Visual Studio bootstrapper file. To do so, choose the following button, choose the edition of
Visual Studio that you want, choose Save, and then choose Open folder.

D O W N L O A D V IS U A L

S TU D IO

Run the bootstrapper file to install the Visual Studio Installer. This new lightweight installer includes everything
you need to both install and customize Visual Studio.

1. From your Downloads folder, double-click the bootstrapper that matches or is similar to one of the
following files:

https://github.com/Microsoft/cpp-docs/blob/master/docs/build/vscpp-step-0-installation.md
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://docs.microsoft.com/visualstudio/mac/installation/
https://docs.microsoft.com/visualstudio/releases/2019/release-notes/
https://docs.microsoft.com/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/visualstudio/releases/2019/compatibility/
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2019+rc

Step 4 - Choose workloads

TIP

vs_community.exe for Visual Studio Community
vs_professional.exe for Visual Studio Professional
vs_enterprise.exe for Visual Studio Enterprise

If you receive a User Account Control notice, choose Yes.

2. We'll ask you to acknowledge the Microsoft License Terms and the Microsoft Privacy Statement. Choose
Continue.

After the installer is installed, you can use it to customize your installation by selecting the workloads, or feature
sets, that you want. Here's how.

1. Find the workload you want in the Installing Visual Studio screen.

For core C++ support, choose the "Desktop development with C++" workload. It comes with the default
core editor, which includes basic code editing support for over 20 languages, the ability to open and edit
code from any folder without requiring a project, and integrated source code control.

Additional workloads support other kinds of C++ development. For example, choose the "Universal
Windows Platform development" workload to create apps that use the Windows Runtime for the Microsoft
Store. Choose "Game development with C++" to create games that use DirectX, Unreal, and Cocos2d.
Choose "Linux development with C++" to target Linux platforms, including IoT development.

The Installation details pane lists the included and optional components installed by each workload. You
can select or deselect optional components in this list. For example, to support development by using the
Visual Studio 2017 or 2015 compiler toolsets, choose the MSVC v141 or MSVC v140 optional
components. You can add support for MFC, the experimental Modules language extension, IncrediBuild,
and more.

2. After you choose the workload(s) and optional components you want, choose Install.

Next, status screens appear that show the progress of your Visual Studio installation.

At any time after installation, you can install workloads or components that you didn't install initially. If you have Visual
Studio open, go to Tools > Get Tools and Features... which opens the Visual Studio Installer. Or, open Visual Studio
Installer from the Start menu. From there, you can choose the workloads or components that you wish to install. Then,
choose Modify.

https://visualstudio.microsoft.com/license-terms/
https://privacy.microsoft.com/privacystatement

Step 5 - Choose individual components (Optional)

Step 6 - Install language packs (Optional)

Change the installer language from the command line

Step 7 - Change the installation location (Optional)

If you don't want to use the Workloads feature to customize your Visual Studio installation, or you want to add
more components than a workload installs, you can do so by installing or adding individual components from the
Individual components tab. Choose what you want, and then follow the prompts.

By default, the installer program tries to match the language of the operating system when it runs for the first time.
To install Visual Studio in a language of your choosing, choose the Language packs tab from the Visual Studio
Installer, and then follow the prompts.

Another way that you can change the default language is by running the installer from the command line. For
example, you can force the installer to run in English by using the following command:
vs_installer.exe --locale en-US . The installer will remember this setting when it's run the next time. The installer

supports the following language tokens: zh-cn, zh-tw, cs-cz, en-us, es-es, fr-fr, de-de, it-it, ja-jp, ko-kr, pl-pl, pt-br, ru-
ru, and tr-tr.

IMPORTANT

Step 8 - Start developing

Visual Studio 2017 Installation

Prerequisites

You can reduce the installation footprint of Visual Studio on your system drive. You can choose to move the
download cache, shared components, SDKs, and tools to different drives, and keep Visual Studio on the drive that
runs it the fastest.

You can select a different drive only when you first install Visual Studio. If you've already installed it and want to change
drives, you must uninstall Visual Studio and then reinstall it.

1. After Visual Studio installation is complete, choose the Launch button to get started developing with Visual
Studio.

2. On the start window, choose Create a new project.

3. In the search box, enter the type of app you want to create to see a list of available templates. The list of
templates depends on the workload(s) that you chose during installation. To see different templates, choose
different workloads.

You can also filter your search for a specific programming language by using the Language drop-down list.
You can filter by using the Platform list and the Project type list, too.

4. Visual Studio opens your new project, and you're ready to code!

In Visual Studio 2017, it's easy to choose and install just the features you need. And because of its reduced
minimum footprint, it installs quickly and with less system impact.

A broadband internet connection. The Visual Studio installer can download several gigabytes of data.

A computer that runs Microsoft Windows 7 or later versions. We recommend Windows 10 for the best
development experience. Make sure that the latest updates are applied to your system before you install
Visual Studio.

Enough free disk space. Visual Studio requires at least 7 GB of disk space, and can take 50 GB or more if

Download and install

many common options are installed. We recommend you install it on your C: drive.

For details on the disk space and operating system requirements, see Visual Studio Product Family System
Requirements. The installer reports how much disk space is required for the options you select.

TIP

1. Download the latest Visual Studio 2017 installer for Windows.

Install Visual Studio 2017 Community

The Community edition is for individual developers, classroom learning, academic research, and open source
development. For other uses, install Visual Studio 2017 Professional or Visual Studio 2017 Enterprise.

2. Find the installer file you downloaded and run it. It may be displayed in your browser, or you may find it in
your Downloads folder. The installer needs Administrator privileges to run. You may see a User Account
Control dialog asking you to give permission to let the installer make changes to your system; choose Yes.
If you're having trouble, find the downloaded file in File Explorer, right-click on the installer icon, and choose
Run as Administrator from the context menu.

3. The installer presents you with a list of workloads, which are groups of related options for specific
development areas. Support for C++ is now part of optional workloads that aren't installed by default.

For C++, select the Desktop development with C++ workload and then choose Install.

https://docs.microsoft.com/visualstudio/productinfo/vs2017-system-requirements-vs
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017

4. When the installation completes, choose the Launch button to start Visual Studio.

The first time you run Visual Studio, you're asked to sign in with a Microsoft Account. If you don't have one,
you can create one for free. You must also choose a theme. Don't worry, you can change it later if you want
to.

It may take Visual Studio several minutes to get ready for use the first time you run it. Here's what it looks
like in a quick time-lapse:

Visual Studio starts much faster when you run it again.

5. When Visual Studio opens, check to see if the flag icon in the title bar is highlighted:

Visual Studio 2015 Installation

Next Steps

https://docs.microsoft.com/

If it's highlighted, select it to open the Notifications window. If there are any updates available for Visual
Studio, we recommend you install them now. Once the installation is complete, restart Visual Studio.

To install Visual Studio 2015, go to Download older versions of Visual Studio. Run the setup program and choose
Custom installation and then choose the C++ component. To add C++ support to an existing Visual Studio
2015 installation, click on the Windows Start button and type Add Remove Programs. Open the program from
the results list and then find your Visual Studio 2015 installation in the list of installed programs. Double-click it,
then choose Modify and select the Visual C++ components to install.

In general, we highly recommend that you use Visual Studio 2017 even if you need to compile your code using the
Visual Studio 2015 compiler. For more information, see Use native multi-targeting in Visual Studio to build old
projects.

When Visual Studio is running, you're ready to continue to the next step.

Create a C++ project

https://www.visualstudio.com/vs/older-downloads/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/use-native-multi-targeting
https://docs.microsoft.com/

Create a C++ console app project
4/3/2019 • 5 minutes to read • Edit Online

Prerequisites

Create your app project

The usual starting point for a C++ programmer is a "Hello, world!" application that runs on the command line.
That's what you'll create in Visual Studio in this step.

Have Visual Studio with the Desktop development with C++ workload installed and running on your computer.
If it's not installed yet, see Install C++ support in Visual Studio.

Visual Studio uses projects to organize the code for an app, and solutions to organize your projects. A project
contains all the options, configurations, and rules used to build your apps, and manages the relationship between
all the project's files and any external files. To create your app, first, you'll create a new project and solution.

1. In Visual Studio, open the File menu and choose New > Project to open the Create a new Project
dialog. Select the Console App template, and then choose Next.

2. In the Configure your new project dialog, enter HelloWorld in the Project name edit box. Choose
Create to create the project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/build/vscpp-step-1-create.md

Visual Studio creates a new project, ready for you to add and edit your source code. By default, the Console
App template fills in your source code with a "Hello World" app:

When the code looks like this in the editor, you're ready to go on to the next step and build your app.

1. In Visual Studio, open the File menu and choose New > Project to open the New Project dialog.

 Make your project a console app

2. In the New Project dialog, select Installed, Visual C++ if it isn't selected already, and then choose the
Empty Project template. In the Name field, enter HelloWorld. Choose OK to create the project.

Visual Studio creates a new, empty project, ready for you to specialize for the kind of app you want to create and to
add your source code files. You'll do that next.

I ran into a problem.

 Add a source code file

Visual Studio can create all kinds of apps and components for Windows and other platforms. The Empty Project
template isn't specific about what kind of app it creates. To create a console app, one that runs in a console or
command prompt window, you must tell Visual Studio to build your app to use the console subsystem.

1. In Visual Studio, open the Project menu and choose Properties to open the HelloWorld Property Pages
dialog.

2. In the Property Pages dialog, under Configuration Properties, select Linker, System, and then choose
the edit box next to the Subsystem property. In the dropdown menu that appears, select Console
(/SUBSYSTEM:CONSOLE). Choose OK to save your changes.

Visual Studio now knows to build your project to run in a console window. Next, you'll add a source code file and
enter the code for your app.

I ran into a problem.

1. In Solution Explorer, select the HelloWorld project. On the menu bar, choose Project, Add New Item to
open the Add New Item dialog.

2. In the Add New Item dialog, select Visual C++ under Installed if it isn't selected already. In the center
pane, select C++ file (.cpp). Change the Name to HelloWorld.cpp. Choose Add to close the dialog and
create the file.

 Add code to the source file

Visual studio creates a new, empty source code file and opens it in an editor window, ready to enter your source
code.

I ran into a problem.

#include <iostream>

int main()
{
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

1. Copy this code into the HelloWorld.cpp editor window.

The code should look like this in the editor window:

When the code looks like this in the editor, you're ready to go on to the next step and build your app.

I ran into a problem.

Next Steps

Troubleshooting guide

Create your app project issues

Make your project a console app issues

Add a source code file issues

Add code to the source file issues

https://docs.microsoft.com/

Build and run a C++ project

Come here for solutions to common issues when you create your first C++ project.

If the New Project dialog doesn't show a Visual C++ entry under Installed, your copy of Visual Studio probably
doesn't have the Desktop development with C++ workload installed. You can run the installer right from the
New Project dialog. Choose the Open Visual Studio Installer link to start the installer again. If the User
Account Control dialog requests permissions, choose Yes. In the installer, make sure the Desktop development
with C++ workload is checked, and choose OK to update your Visual Studio installation.

If another project with the same name already exists, choose another name for your project, or delete the existing
project and try again. To delete an existing project, delete the solution folder (the folder that contains the
helloworld.sln file) in File Explorer.

Go back.

If you don't see Linker listed under Configuration Properties, choose Cancel to close the Property Pages
dialog and then make sure that the HelloWorld project is selected in Solution Explorer, not the solution or
another file or folder, before you try again.

The dropdown control does not appear in the SubSystem property edit box until you select the property. You can
select it by using the pointer, or you can press Tab to cycle through the dialog controls until SubSystem is
highlighted. Choose the dropdown control or press Alt+Down to open it.

Go back

It's okay if you give the source code file a different name. However, don't add more than one source code file that
contains the same code to your project.

If you added the wrong kind of file to your project, for example, a header file, delete it and try again. To delete the
file, select it in Solution Explorer and press the Delete key.

Go back.

If you accidentally closed the source code file editor window, to open it again, double-click on HelloWorld.cpp in
the Solution Explorer window.

If red squiggles appear under anything in the source code editor, check that your code matches the example in
spelling, punctuation, and case. Case is significant in C++ code.

Go back.

https://docs.microsoft.com/

Build and run a C++ console app project
3/12/2019 • 3 minutes to read • Edit Online

Prerequisites

Build and run your code in Visual Studio

When you've created a C++ console app project and entered your code, you can build and run it within Visual
Studio, and then run it as a stand-alone app from the command line.

Have Visual Studio with the Desktop development with C++ workload installed and running on your
computer. If it's not installed yet, follow the steps in Install C++ support in Visual Studio.

Create a "Hello, World!" project and enter its source code. If you haven't done this yet, follow the steps in
Create a C++ console app project.

If Visual Studio looks like this, you're ready to build and run your app:

1. To build your project, choose Build Solution from the Build menu. The Output window shows the results
of the build process.

https://github.com/Microsoft/cpp-docs/blob/master/docs/build/vscpp-step-2-build.md

 Run your code in a command window

2. To run the code, on the menu bar, choose Debug, Start without debugging.

A console window opens and then runs your app. When you start a console app in Visual Studio, it runs
your code, then prints "Press any key to continue . . ." to give you a chance to see the output.

Congratulations! You've created your first "Hello, world!" console app in Visual Studio! Press a key to dismiss the
console window and return to Visual Studio.

I ran into a problem.

Next Steps

Troubleshooting guide

Build and run your code in Visual Studio issues

Normally, you run console apps at the command prompt, not in Visual Studio. Once your app is built by Visual
Studio, you can run it from any command window. Here's how to find and run your new app in a command
prompt window.

1. In Solution Explorer, select the HelloWorld solution and right-click to open the context menu. Choose
Open Folder in File Explorer to open a File Explorer window in the HelloWorld solution folder.

2. In the File Explorer window, open the Debug folder. This contains your app, HelloWorld.exe, and a couple
of other debugging files. Select HelloWorld.exe, hold down the Shift key and right-click to open the context
menu. Choose Copy as path to copy the path to your app to the clipboard.

3. To open a command prompt window, press Windows-R to open the Run dialog. Enter cmd.exe in the Open
textbox, then choose OK to run a command prompt window.

4. In the command prompt window, right-click to paste the path to your app into the command prompt. Press
Enter to run your app.

Congratulations, you've built and run a console app in Visual Studio!

I ran into a problem.

Once you've built and run this simple app, you're ready for more complex projects. See Using the Visual Studio
IDE for C++ Desktop Development for more detailed walkthroughs that explore the capabilities of Visual C++ in
Visual Studio.

Come here for solutions to common issues when you create your first C++ project.

If red squiggles appear under anything in the source code editor, the build may have errors or warnings. Check that
your code matches the example in spelling, punctuation, and case.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/using-the-visual-studio-ide-for-cpp-desktop-development

 Run your code in a command window issues

https://docs.microsoft.com/

Go back.

You can also navigate to the solution Debug folder at the command line to run your app. You can't run your app
from other directories without specifying the path to the app. However, you can copy your app to another directory
and run it from there.

If you don't see Copy as path in the shortcut menu, dismiss the menu, and then hold down the Shift key while you
open it again. This is just for convenience. You can also copy the path to the folder from the File Explorer search
bar, and paste it into the Run dialog, and then enter the name of your executable at the end. It's just a little more
typing, but it has the same result.

Go back.

https://docs.microsoft.com/

C/C++ projects and build systems in Visual Studio
5/7/2019 • 4 minutes to read • Edit Online

C++ compilation

The MSVC toolset

cl /EHsc hello.cpp

Build systems and projects

You can use Visual Studio 2017 to edit, compile and build any C++ code base with full IntelliSense support
without having to convert that code into a Visual Studio project or compile with the MSVC toolset. For example,
you can edit a cross-platform CMake project in Visual Studio on a Windows machine, then compile it for Linux
using g++ on a remote Linux machine.

To build a C++ program means to compile source code from one or more files and then link those files into an
executable file (.exe), a dynamic-load library (.dll) or a static library (.lib).

Basic C++ compilation involves three main steps:

The C++ preprocessor transforms all the #directives and macro definitions in each source file. This creates a
translation unit.
The C++ compiler compiles each translation unit into object files (.obj), applying whatever compiler options
have been set.
The linker merges the object files into a single executable, applying the linker options that have been set.

The Microsoft C++ compiler, linker, standard libraries, and related utilities comprise the MSVC compiler toolset
(also called a toolchain or "build tools"). These are included in Visual Studio. You can also download and use the
toolset as a standalone package for free from the Build Tools for Visual Studio 2017 download location.

You can build simple programs by invoking the MSVC compiler (cl.exe) directly from the command line. The
following command accepts a single source code file, and invokes cl.exe to build an executable called hello.exe:

Note that here the compiler (cl.exe) automatically invokes the C++ preprocessor and the linker to produce the final
output file. For more information, see Building on the command line.

Most real-world programs use some kind of build system to manage complexities of compiling multiple source
files for multiple configurations (i.e. debug vs. release), multiple platforms (x86, x64, ARM, and so on), custom
build steps, and even multiple executables that must be compiled in a certain order. You make settings in a build
configuration file(s), and the build system accepts that file as input before it invoke the compiler. The set of source
code files and build configuration files needed to build an executable file is called a project.

The following list shows various options for Visual Studio Projects - C++:

create a Visual Studio project by using the Visual Studio IDE and configure it by using property pages.
Visual Studio projects produce programs that run on Windows. For an overview, see Compiling and
Building in the Visual Studio documentation.

open a folder that contains a CMakeLists.txt file. CMake support is integrated into Visual Studio. You can
use the IDE to edit, test and debug without modifying the CMake files in any way. This enables you to work

https://github.com/Microsoft/cpp-docs/blob/master/docs/build/projects-and-build-systems-cpp.md
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-on-the-command-line
https://docs.microsoft.com/visualstudio/ide/compiling-and-building-in-visual-studio

MSBuild from the command line

In This Section

in the same CMake project as others who might be using different editors. CMake is the recommended
approach for cross-platform development. For more information, see CMake projects.

open a loose folder of source files with no project file. Visual Studio will use heuristics to build the files. This
is an easy way to compile and run small console applications. For more information, see Open Folder
projects.

open a folder that contains a makefile, or any other build system configuration file. You can configure Visual
Studio to invoke any arbitrary build commands by adding JSON files to the folder. For more information,
see Open Folder projects.

Open a Windows makefile in Visual Studio. For more information, see NMAKE Reference.

You can invoke MSBuild from the command line by passing it a .vcxproj file along with command-line options.
This approach requires a good understanding of MSBuild, and is recommended only when absolutely necessary.
For more information, see MSBuild.

Visual Studio projects How to create, configure, and build C++ projects in Visual Studio using its native build
system (MSBuild).

CMake projects How to code, build, and deploy CMake projects in Visual Studio.

Open Folder projects How to use Visual Studio to code, build and deploy C++ projects based on any arbitrary
build system, or no build system. at all.

Release builds How to create and troubleshoot optimized release builds for deployment to end users.

Use the MSVC toolset from the command line
Discusses how to use the C/C++ compiler and build tools directly from the command line rather than using the
Visual Studio IDE.

Building DLLs in Visual Studio How to create, debug and deploy C/C++ DLLs (shared libraries) in Visual Studio.

Walkthrough: Creating and Using a Static Library How to create a .lib binary file.

Building C/C++ Isolated Applications and Side-by-side Assemblies Describes the deployment model for Windows
Desktop applications, based on the idea of isolated applications and side-by-side assemblies.

Configure C++ projects for 64-bit, x64 targets How to target 64-bit x64 hardware with the MSVC build tools.

Configure C++ projects for ARM processors How to use the MSVC build tools to target ARM hardware.

Optimizing Your Code How to optimize your code in various ways including program guided optimizations.

Configuring Programs for Windows XP How to target Windows XP with the MSVC build tools.

C/C++ Building Reference
Provides links to reference articles about program building in C++, compiler and linker options, and various build
tools.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/cmake-projects-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/open-folder-projects-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/open-folder-projects-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/nmake-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/msbuild-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-and-managing-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/cmake-projects-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/open-folder-projects-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/release-builds
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-on-the-command-line
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/dlls-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/walkthrough-creating-and-using-a-static-library-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-c-cpp-isolated-applications-and-side-by-side-assemblies
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-64-bit-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-arm-processors-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/optimizing-your-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/configuring-programs-for-windows-xp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference

Writing and refactoring code (C++)
5/15/2019 • 4 minutes to read • Edit Online

Adding new files

Formatting options

IntelliSense

The C++ code editor and Visual Studio IDE provide many coding aids. Some are unique to C++, and some are
essentially the same for all Visual Studio languages. For more information about the shared features, see Writing
Code in the Code and Text Editor. Options for enabling and configuring C++-specific features are located under
Tools | Options | Text Editor | C/C++. After choosing which option you want to set, you can get more help by
pressing F1 when the dialog is in focus. For general code formatting options, type Editor C++ into QuickLaunch.

Experimental features, which may or may not be included in a future version of Visual Studio, are found in the Text
Editor C++ Experimental dialog. In Visual Studio 2017 you can enable Predictive IntelliSense in this dialog.

To add new files to a project, right-click on the project node in Solution Explorer and choose Add | New.

To set formatting options such as indents, brace completion, and colorization, type "C++ Formatting" into the
QuickLaunch window. Visual Studio 2017 version 15.7 and later supports ClangFormat. You can configure it in
the C/C++ Formatting Property Page under Tools | Options | Text Editor | C/C++ | Formatting.

IntelliSense is the name for a set of features that provide inline information about members, types, and function
overloads. The following illustration shows the member list drop-down that appears as you type. You can press the
tab key to enter the selected item text into your code file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/ide/writing-and-refactoring-code-cpp.md
https://docs.microsoft.com/visualstudio/ide/writing-code-in-the-code-and-text-editor
https://docs.microsoft.com/visualstudio/ide/reference/options-text-editor-c-cpp-experimental
https://docs.microsoft.com/visualstudio/ide/reference/options-text-editor-c-cpp-formatting

Insert Snippets

Add Class

For complete information see Visual C++ IntelliSense.

A snippet is a predefined piece of source code. Right-click on a single point or on selected text to either insert a
snippet or surround the selected text with the snippet. The following illustration shows the three steps to surround
a selected statement with a for loop. The yellow highlights in the final image are editable fields that you access
with the tab key. For more information, see Code Snippets.

Add a new class from the Project menu by using the Class Wizard.

You can also use Class Wizard to modify or examine an existing class.

https://docs.microsoft.com/visualstudio/ide/visual-cpp-intellisense
https://docs.microsoft.com/visualstudio/ide/code-snippets

Refactoring

Navigate and understand

QuickInfo

Open document (Navigate to header)

For more information, see Adding Functionality with Code Wizards (C++).

Refactorings are available under the Quick Action context menu, or by clicking on a light bulb in the editor. Some
are also found in the Edit > Refactor menu. These features include:

Rename
Extract Function
Implement Pure Virtuals
Create Declaration / Definition
Move Function Definition
Convert to Raw String Literal
Change Signature

Visual C++ shares many code navigation features with other languages. For more information, see Navigating
Code and Viewing the Structure of Code.

Hover over a variable to see its type information.

Right click on the header name in an #include directive and open the header file.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/visualstudio/ide/perform-quick-actions-with-light-bulbs
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/rename
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/extract-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/implement-pure-virtuals
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/create-declaration-definition
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/move-definition-location
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/convert-to-raw-string-literal
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/refactoring/change-signature
https://docs.microsoft.com/visualstudio/ide/navigating-code
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code

Peek Definition

Go To Definition

View Call Hierarchy

Toggle Header / Code File

Hover over a variable or function declaration, right-click, then choose Peek Definition to see an inline view of its
definition. For more information, see Peek Definition (Alt+F12).

Hover over a variable or function declaration, right-click, then choose Go To Definition to open the document
where the object is defined.

Right click on any function call and view a recursive list of all the functions that it calls, and all the functions that
call it. Each function in the list can be expanded in the same way. For more information, see Call Hierarchy.

Right-click and choose Toggle Header / Code File to switch back and forth between a header file and its
associated code file.

https://docs.microsoft.com/visualstudio/ide/how-to-view-and-edit-code-by-using-peek-definition-alt-plus-f12
https://docs.microsoft.com/visualstudio/ide/reference/call-hierarchy

Outlining

Scrollbar map mode

Generate graph of include files

Right-click anywhere in a source code file and choose Outlining to collapse or expand definitions and/or custom
regions to make it easier to browse only the parts you are interested in. For more information, see Outlining.

Scrollbar map mode enables you to quickly scroll and browse through a code file without actually leaving your
current location. Or click anywhere on the code map to go directly to that location. For more information, see How
to: Track your code by customizing the scrollbar.

Right click on a code file in your project and choose Generate graph of include files to see a graph of which files
are included by other files.

https://docs.microsoft.com/visualstudio/ide/outlining
https://docs.microsoft.com/visualstudio/ide/how-to-track-your-code-by-customizing-the-scrollbar

F1 Help

Quick Launch

Place the cursor on or just after any type, keyword or function and press F1 to go directly to the relevant reference
topic on docs.microsoft.com. F1 also works on items in the error list, and in many dialog boxes.

To easily navigate to any window or tool in Visual Studio, simply type its name in the Quick Launch window in the
upper right corner of the UI. The auto-completion list will filter as you type.

Overview of Windows Programming in C++
5/24/2019 • 7 minutes to read • Edit Online

Command line (console) applications

Native desktop client applications

C++ or .NET?

COM Components

There are several broad categories of Windows applications that you can create with C++. Each has its own
programming model and set of Windows-specific libraries, but the C++ standard library and third-party C++
libraries can be used in any of them.

C++ console applications run from the command line in a console window and can display text output only. For
more information, see Console Applications.

A native desktop client application is a C or C++ windowed application that uses the original native Windows C
APIs or Component Object Model (COM) APIs to access the operating system. Those APIs are themselves written
mostly in C. There's more than one way to create a native desktop app: You can program using the Win32 APIs
directly, using a C-style message loop that processes operating system events. Or, you can program using
Microsoft Foundation Classes (MFC), a lightly object-oriented C++ library that wraps Win32. Neither approach is
considered "modern" compared to the Universal Windows Platform (UWP), but both are still fully supported and
have millions of lines of code running in the world today. A Win32 application that runs in a window requires the
developer to work explicitly with Windows messages inside a Windows procedure function. Despite the name, a
Win32 application can be compiled as a 32-bit (x86) or 64-bit (x64) binary. In the Visual Studio IDE, the terms x86
and Win32 are synonymous.

To get started with traditional Windows C++ programming, see Get Started with Win32 and C++. After you gain
some understanding of Win32, it will be easier to learn about MFC Desktop Applications. For an example of a
traditional C++ desktop application that uses sophisticated graphics, see Hilo: Developing C++ Applications for
Windows.

In general, .NET programming in C# is less complex, less error-prone, and has a more modern object-oriented API
than Win32 or MFC. In most cases, its performance is more than adequate. .NET features the Windows
Presentation Foundation (WPF) for rich graphics, and you can consume both Win32 and the modern Windows
Runtime API. As a general rule, we recommend using C++ for desktop applications when you require:

precise control over memory usage
the utmost economy in power consumption
usage of the GPU for general computing
access to DirectX
heavy usage of standard C++ libraries

It's also possible to combine the power and efficiency of C++ with .NET programming. You can create a user
interface in C# and use C++/CLI to enable the application to consume native C++ libraries. For more information,
see .NET Programming with C++/CLI.

The Component Object Model (COM) is a specification that enables programs written in different languages to
communicate with one another. Many Windows components are implemented as COM objects and follow

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/overview-of-windows-programming-in-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/console-applications-in-visual-cpp
https://docs.microsoft.com/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/windows/desktop/LearnWin32/learn-to-program-for-windows
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://msdn.microsoft.com/library/windows/desktop/ff708696.aspx
https://docs.microsoft.com/windows/desktop/com/the-component-object-model

Universal Windows Platform apps

Desktop Bridge

Games

SQL Server database clients

Windows device drivers

Windows services

SDKs, libraries, and header files

standard COM rules for object creation, interface discovery, and object destruction. Using COM objects from C++
desktop applications is relatively straightforward, but writing your own COM object is more advanced. The Active
Template Library (ATL) provides macros and helper functions that simplify COM development. For more
information, see ATL COM desktop components.

The Universal Windows Platform (UWP) is the modern Windows API. UWP apps run on any Windows 10 device,
use XAML for the user-interface, and are fully touch-enabled. For more information about UWP, see What's a
Universal Windows Platform (UWP) app? and Guide to Windows Universal Apps.

The original C++ support for UWP consisted of (1) C++/CX, a dialect of C++ with syntax extensions, or (2) the
Windows Runtime Library (WRL), which is based on standard C++ and COM. Both C++/CX and WRL are still
supported. For new projects, we recommend C++/WinRT, which is entirely based on standard C++ and provides
faster performance.

In Windows 10, you can package your existing desktop application or COM object as a UWP app, and add UWP
features such as touch, or call APIs from the modern Windows API set. You can also add a UWP app to a desktop
solution in Visual Studio, and package them together in a single package and use Windows APIs to communicate
between them.

Visual Studio 2017 version 15.4 and later lets you create a Windows Application Package Project to greatly
simplify the work of packaging your existing desktop application. A few restrictions apply to the registry calls or
APIs your desktop application can use. However, in many cases you can create alternate code paths to achieve
similar functionality while running in an app package. For more information, see Desktop Bridge.

DirectX games can run on the PC or Xbox. For more information, see DirectX Graphics and Gaming.

To access SQL Server databases from native code, use ODBC or OLE DB. For more information, see SQL Server
Native Client.

Drivers are low-level components that make data from hardware devices accessible to applications and other
operating system components. For more information, see Windows Driver Kit (WDK).

A Windows service is a program that can run in the background with little or no user interaction. These programs
are called daemons on UNIX systems. For more information, see Services.

Visual Studio includes the C Runtime Library (CRT), the C++ Standard Library, and other Microsoft-specific
libraries. Most of the include folders that contain header files for these libraries are located in the Visual Studio
installation directory under the \VC\ folder. The Windows and CRT header files are found in the Windows SDK
installation folder.

The Vcpkg package manager lets you conveniently install hundreds of third-party open-source libraries for

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/windows/uwp/get-started/whats-a-uwp
https://docs.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/intro-to-using-cpp-with-winrt
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/windows/desktop/directx
https://docs.microsoft.com/sql/relational-databases/native-client/odbc/sql-server-native-client-odbc
https://docs.microsoft.com/windows-hardware/drivers/index
https://docs.microsoft.com/windows/desktop/services/services
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg

Development Tools

In this section
TITLE DESCRIPTION

Walkthrough: Creating a Standard C++ Program Create a Windows console application.

Walkthrough: Creating Windows Desktop Applications (C++) Create a native Windows desktop application.

Windows Desktop Wizard Use the wizard to create new Windows projects.

Active Template Library (ATL) Use the ATL library to create COM components in C++.

Microsoft Foundation Classes (MFC) Use MFC to create large or small Windows applications with
dialogs and controls

ATL and MFC Shared Classes Use classes such as CString that are shared in ATL and MFC.

Data Access OLE DB and ODBC

Windows.

The Microsoft libraries include:

Microsoft Foundation Classes (MFC): An object-oriented framework for creating traditional Windows
programs—especially enterprise applications—that have rich user interfaces that feature buttons, list boxes,
tree views, and other controls. For more information, see MFC Desktop Applications.

Active Template Library (ATL): A powerful helper library for creating COM components. For more
information, see ATL COM Desktop Components.

C++ AMP (C++ Accelerated Massive Parallelism): A library that enables high-performance general
computational work on the GPU. For more information, see C++ AMP (C++ Accelerated Massive
Parallelism).

Concurrency Runtime: A library that simplifies the work of parallel and asynchronous programming for
multicore and many-core devices. For more information, see Concurrency Runtime.

Many Windows programming scenarios also require the Windows SDK, which includes the header files that
enable access to the Windows operating system components. By default, Visual Studio installs the Windows SDK
as a component of the C++ Desktop workload, which enables development of Universal Windows apps. To
develop UWP apps, you need the Windows 10 version of the Windows SDK. For information, see Windows 10
SDK. (For more information about the Windows SDKs for earlier versions of Windows, see the Windows SDK
archive).

Program Files (x86)\Windows Kits is the default location for all versions of the Windows SDK that you've
installed.

Other platforms such as Xbox and Azure have their own SDKs that you may have to install. For more information,
see the DirectX Developer Center and the Azure Developer Center.

Visual Studio includes a powerful debugger for native code, static analysis tools, graphics debugging tools, a full-
featured code editor, support for unit tests, and many other tools and utilities. For more information, see Get
started developing with Visual Studio, and Overview of C++ development in Visual Studio.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/concurrency-runtime
https://dev.windows.com/downloads/windows-10-sdk
https://developer.microsoft.com/windows/downloads/sdk-archive
https://docs.microsoft.com/visualstudio/ide/get-started-developing-with-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/walkthrough-creating-a-standard-cpp-program-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/walkthrough-creating-windows-desktop-applications-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-desktop-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
file:///T:/fo0i/vcppdocs-2015/atl-mfc-shared/TOC.md

Text and Strings Various string types on Windows.

Resources for Creating a Game Using DirectX

How to: Use the Windows 10 SDK in a Windows Desktop
Application

Windows SDK

Working with Resource Files How to add images, icons, string tables, and other resources
to a desktop application.

Resources for Creating a Game Using DirectX (C++) Links to content for creating games in C++.

How to: Use the Windows 10 SDK in a Windows Desktop
Application

Contains steps for setting up your project to build using the
Windows 10 SDK.

Deploying Native Desktop Applications Deploy native applications on Windows.

TITLE DESCRIPTION

Related Articles
TITLE DESCRIPTION

C++ in Visual Studio Parent topic for Visual C++ developer content.

.NET Development with C++/CLI Create wrappers for native C++ libraries that enable it to
communication with .NET applications and components.

Component Extensions for .NET and UWP Reference for syntax elements shared by C++/CX and
C++/CLI.

Universal Windows Apps (C++) Write UWP applications using C++/CX or Windows Runtime
Template Library (WRL).

C++ Attributes for COM and .NET Non-standard attributes for Windows-only programming
using .NET or COM.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/text-and-strings-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resources-for-creating-a-game-using-directx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-use-the-windows-10-sdk-in-a-windows-desktop-application
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/working-with-resource-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resources-for-creating-a-game-using-directx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-use-the-windows-10-sdk-in-a-windows-desktop-application
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/deploying-native-desktop-applications-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/universal-windows-apps-cpp

Universal Windows Apps (C++)
4/1/2019 • 2 minutes to read • Edit Online

UWP apps that use C++/CX

Visual C++ language reference (C++/CX) Describes the set of extensions that simplify C++
consumption of Windows Runtime APIs and enable error
handling that's based on exceptions.

Building apps and libraries (C++/CX) Describes how to create DLLs and static libraries that can be
accessed from a C++/CX app or component.

Tutorial: Create a UWP "Hello, World" app in C++/CX A walkthrough that introduces the basic concepts of UWP app
development in C++/CX.

Creating Windows Runtime Components in C++/CX Describes how to create DLLs that other UWP apps and
components can consume.

UWP game programming Describes how to use DirectX and C++/CX to create games.

UWP Apps that Use the Windows Runtime C++ Template Library
(WRL)

See also

The Universal Windows Platform (UWP) is the modern programming interface for Windows. With UWP you write
an application or component once and deploy it on any Windows 10 device. You can write a component in C++
and applications written in any other UWP-compatible language can use it.

Most of the UWP documentation is in the Windows content tree at Universal Windows Platform documentation.
There you will find beginning tutorials as well as reference documentation.

For new UWP apps and components, we recommend that you use C++/WinRT, a new standard C++17 language
projection for Windows Runtime APIs. C++/WinRT is available in the Windows 10 SDK from version 1803
onward. C++/WinRT is implemented entirely in header files, and is designed to provide you with first-class access
to the modern Windows API. Unlike the C++/CX implementation. C++/WinRT doesn't use non-standard syntax or
Microsoft language extensions, and it takes full advantage of the C++ compiler to create highly-optimized output.
For more information, see Introduction to C++/WinRT.

You can use the Desktop Bridge app converter to package your existing desktop application for deployment
through the Microsoft Store. For more information, see Using Visual C++ Runtime in Centennial project and
Desktop Bridge.

The Windows Runtime C++ Template Library provides the low-level COM interfaces by which ISO C++ code can
access the Windows Runtime in an exception-free environment. In most cases, we recommend that you use
C++/WinRT or C++/CX instead of the Windows Runtime C++ Template Library for UWP app development. For
information about the Windows Runtime C++ Template Library, see Windows Runtime C++ Template Library
(WRL).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/universal-windows-apps-cpp.md
https://docs.microsoft.com/windows/uwp/
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/intro-to-using-cpp-with-winrt
https://blogs.msdn.microsoft.com/vcblog/2016/07/07/using-visual-c-runtime-in-centennial-project
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/visual-c-language-reference-c-cx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/building-apps-and-libraries-c-cx
https://docs.microsoft.com/windows/uwp/get-started/create-a-basic-windows-10-app-in-cpp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp
https://docs.microsoft.com/windows/uwp/gaming/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cppcx/wrl/windows-runtime-cpp-template-library-wrl

C++ in Visual Studio
Overview of Windows Programming in C++

Game Development with C++
4/1/2019 • 2 minutes to read • Edit Online

When you create a Windows 10 game, you have the opportunity to reach millions of players worldwide across
phone, PC, and Xbox One. With Xbox on Windows, Xbox Live, cross-device multiplayer, an amazing gaming
community, and powerful new features like the Universal Windows Platform (UWP) and DirectX 12, Windows 10
games thrill players of all ages and genres. The new Universal Windows Platform (UWP) delivers compatibility for
your game across Windows 10 devices with a common API for phone, PC, and Xbox One, along with tools and
options to tailor your game to each device experience.

Game development is documented on the Windows Dev Center.

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/game-development-cpp.md
https://docs.microsoft.com/windows/uwp/gaming/getting-started

Download, install, and set up the Linux workload
3/11/2019 • 3 minutes to read • Edit Online

Visual Studio setup

Options for creating a Linux environment

You can use the Visual Studio 2017 IDE in Windows to create, edit and debug C++ projects that execute on a Linux
physical computer, virtual machine, or the Windows Subsystem for Linux.

You can work on your existing code base that uses CMake or any other build system without having to convert it
to a Visual Studio project. If your code base is cross-platform, you can target both Windows and Linux from within
Visual Studio. For example, you can edit, debug and profile your code on Windows using Visual Studio, then
quickly retarget the project for Linux to do further testing. The Linux header files are automatically copied to your
local machine where Visual Studio uses them to provide full IntelliSense support (Statement Completion, Go to
Definition, and so on).

For any of these scenarios, the Linux development with C++ workload is required.

1. Type "Visual Studio Installer" in the Windows search box:

2. Look for the installer under the Apps results and double-click it. When the installer opens, choose Modify,
and then click on the Workloads tab. Scroll down to Other toolsets and select the Linux development
with C++ workload.

3. If you use CMake or you are targeting IoT or embedded platforms, go to the Installation details pane on
the right, under Linux development with C++, expand Optional Components and choose the
components you need.

Visual Studio 2017 version 15.4 and later
: When you install the Linux C++ workload for Visual Studio, CMake support for Linux is selected by
default.

4. Click Modify to continue with the installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/linux/download-install-and-setup-the-linux-development-workload.md
https://docs.microsoft.com/windows/wsl/about

Linux setup: Ubuntu

Linux setup: Fedora

Ensure you have CMake 3.8 on the remote Linux machine

If you don't already have a Linux machine, you can create a Linux Virtual Machine on Azure. For more information,
see Quickstart: Create a Linux virtual machine in the Azure portal .

Another option, on Windows 10, is to activate the Windows Subsystem for Linux. For more information, see
Windows 10 Installation Guide.

The target Linux computer must have openssh-server, g++, gdb, and gdbserver installed, and the ssh daemon
must be running. zip is required for automatic syncing of remote headers with your local machine for Intellisense
support. If these applications are not already present, you can install them as follows:

1. At a shell prompt on your Linux computer, run:

sudo apt-get install openssh-server g++ gdb gdbserver zip

You may be prompted for your root password due to the sudo command. If so, enter it and continue. Once
complete, the required services and tools are installed.

2. Ensure the ssh service is running on your Linux computer by running:

sudo service ssh start

This starts the service and runs it in the background, ready to accept connections.

The target machine running Fedora uses the dnf package installer. To download openssh-server, g++, gdb,
gdbserver and zip, and restart the ssh daemon, follow these instructions:

1. At a shell prompt on your Linux computer, run:

sudo dnf install openssh-server gcc-g++ gdb gdb-gdbserver zip

You may be prompted for your root password due to the sudo command. If so, enter it and continue. Once
complete, the required services and tools are installed.

2. Ensure the ssh service is running on your Linux computer by running:

sudo systemctl start sshd

This starts the service and runs it in the background, ready to accept connections.

Your Linux distro may have an older version of CMake. The CMake support in Visual Studio requires the server
mode support that was introduced in CMake 3.8. For a Microsoft-provided CMake variant, download the latest
prebuilt binaries to your Linux machine at https://github.com/Microsoft/CMake/releases.

https://docs.microsoft.com/azure/virtual-machines/linux/quick-create-portal
https://docs.microsoft.com/windows/wsl/install-win10
https://github.com/Microsoft/CMake/releases

.NET Programming with C++/CLI (Visual C++)
3/11/2019 • 2 minutes to read • Edit Online

In This Section

See also

Visual Studio 2015: By default, CLR projects created with Visual Studio 2015 target .NET Framework 4.5.2. To
target .NET Framework 4.6 when you create a new project, in the New Project dialog, change the target
framework in the dropdown at the top middle of the dialog. To change the target framework for an existing
project, close the project, edit the project file (.vcxproj), and change the value of the Target Framework Version to
4.6. Next time you open the project, the settings will take effect.

Visual Studio 2017: In Visual Studio 2017, the default framework is 4.6.1 and the Framework version selector is
at the bottom of the New Project Dialog. C++/CLI itself is not installed by default. To install the component,
open the Visual Studio Installer and choose the C++/CLI component under Visual C++.

C++/CLI Tasks

Native and .NET Interoperability

C++/CLI Migration Primer

Pure and Verifiable Code (C++/CLI)

Regular Expressions (C++/CLI)

File Handling and I/O (C++/CLI)

Graphics Operations (C++/CLI)

Windows Operations (C++/CLI)

Data Access Using ADO.NET (C++/CLI)

Interoperability with Other .NET Languages (C++/CLI)

Serialization (C++/CLI)

Managed Types (C++/CLI)

Reflection (C++/CLI)

Strong Name Assemblies (Assembly Signing) (C++/CLI)

Debug Class (C++/CLI)

STL/CLR Library Reference

C++ Support Library

Exceptions in C++/CLI

Boxing (C++/CLI)

Native and .NET Interoperability

https://github.com/Microsoft/cpp-docs/blob/master/docs/dotnet/dotnet-programming-with-cpp-cli-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-cli-tasks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-cli-migration-primer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/pure-and-verifiable-code-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/regular-expressions-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/file-handling-and-i-o-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/graphics-operations-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/windows-operations-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/data-access-using-adonet-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/interoperability-with-other-dotnet-languages-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/serialization-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/managed-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/reflection-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/strong-name-assemblies-assembly-signing-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/debug-class-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/stl-clr-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-support-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/exceptions-in-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/boxing-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability

Cloud and Web Programming in Visual C++
5/16/2019 • 2 minutes to read • Edit Online

Microsoft Azure SDKs and REST services

Windows and cross-platform networking APIs

In C++, you have several options for connecting to the web and the cloud.

Microsoft Azure Storage Client Library for C++

The Azure Storage Client Library for C++ provides a comprehensive API for working with Azure storage,
including but not limited to the following abilities:

Create, read, delete, and list blob containers, tables, and queues.
Create, read, delete, list and copy blobs plus read and write blob ranges.
Insert, delete, replace, merge, and query entities in an Azure table.
Enqueue and dequeue messages in an Azure queue.
Lazily list containers, blobs, tables, and queues, and lazily query entities

The ANSI C99 Azure IoT Hub SDKs for Internet of Things enable IoT applications to run on the device or
on the backend.

OneDrive and SharePoint in Microsoft Graph

The OneDrive API provides a set of HTTP services to connect your application to files and folders in Office
365 and SharePoint Server 2016.

C++ REST SDK (Code name "Casablanca")

Provides a modern, cross-platform, asynchronous API for interacting with REST services.

Perform REST calls against any HTTP server, with built-in support for JSON document parsing and
serialization
Supports OAuth 1 and 2, including a local redirect listener
Make WebSockets connections against remote services
A fully asynchronous task API based on PPL, including a built-in thread pool

Supports Windows Desktop (7+), Windows Server (2012+), Universal Windows Platform, Linux, OSX,
Android, and iOS.

Windows::Web::Http::HttpClient

A Windows Runtime HTTP client class modeled on the .NET Framework class of the same name in the
System.Web namespace. HttpClient fully supports asynchronous upload and download over HTTP, and
pipeline filters that enable the insertion of custom HTTP handlers into the pipeline. The Windows SDK
includes sample filters for metered networks, OAuth authentication, and more. For apps that target only
Universal Windows Platform, we recommend that you use the Windows::Web:HttpClient class.

IXMLHTTPRequest2 interface

Provides a native COM interface that you can use in Windows Runtime apps or Windows desktop apps to
connect to the Internet over HTTP and issue GET, PUT, and other HTTP commands. For more information,
see Walkthrough: Connecting Using Tasks and XML HTTP Requests.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cloud/cloud-and-web-programming-in-visual-cpp.md
https://azure.github.io/azure-storage-cpp/
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-sdks
https://dev.onedrive.com/README.htm
https://github.com/Microsoft/cpprestsdk
https://docs.microsoft.com/uwp/api/windows.web.http.httpclient
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/walkthrough-connecting-using-tasks-and-xml-http-requests

See also

Windows Internet (WinInet)

Windows API that you can use in Windows desktop apps to connect to the Internet.

C++ in Visual Studio
Microsoft Azure C and C++ Developer Center
Networks and web services (UWP)

https://docs.microsoft.com/windows/desktop/WinInet/portal
https://azure.microsoft.com/develop/cpp/
https://docs.microsoft.com/windows/uwp/networking/

Visual C++ Porting and Upgrading Guide
5/15/2019 • 6 minutes to read • Edit Online

Reasons to Upgrade Visual C++ Code

Porting your Code

Porting Visual Studio Projects

This topic provides a guide for upgrading Visual C++ code. This includes getting the code to compile and run
correctly on a newer release of the tools, as well as taking advantage of new language and Visual Studio features.
This topic also includes information about migrating legacy apps to more modern platforms.

You should consider upgrading your code for the following reasons:

Faster code, due to improved compiler optimizations.

Faster builds, due to performance improvements in the compiler itself.

Improved standards conformance. Visual C++ now implements many features from the latest C++
standards.

Better security. Security features such as guard checking.

When upgrading, first consider your application's code and projects. Is your application built with Visual Studio? If
so, identify the projects involved. Do you have custom build scripts? If you have custom build scripts instead of
using Visual Studio's build system, you will have more work to do in upgrading, because you can't save time by
having Visual Studio update your project files and build settings.

The build system and project file format in Visual Studio changed from vcbuild in versions up to Visual Studio
2008 to MSBuild in versions of Visual Studio from 2010 onwards. If your upgrade is from a version prior to 2010,
and you have a highly customized build system, you might have to do more work to upgrade. If you are upgrading
from Visual Studio 2010 or later, your projects are already using MSBuild, so upgrading the project and build for
your application should be easier.

If you are not using Visual Studio's build system, you should consider upgrading to use MSBuild. If you upgrade to
use MSBuild, you might have an easier time in future upgrades, and it will be easier to use services such as Visual
Studio Online. MSBuild supports all the target platforms that Visual Studio supports.

To start upgrading a project or solution, just open the solution in the new version of Visual Studio, and follow the
prompts to start upgrading it. When you upgrade a project, you get an upgrade report, which is also saved in your
project folder as UpgradeLog.htm. The upgrade report shows a summary of what problems were encountered
during the upgrade process and some information about changes that were made, or problems that could not be
addressed automatically.

1. Project properties

2. Include files

3. Code that no longer compiles cleanly due to compiler conformance imrovements or changes in the
standard

4. Code that relies on Visual Studio or Windows features that are no longer available or header files that either
aren't included in a default installation of Visual Studio, or were removed from the product

5. Code that no longer compiles due to changes in APIs such as renamed APIs, changed function signatures,

https://github.com/Microsoft/cpp-docs/blob/master/docs/porting/visual-cpp-porting-and-upgrading-guide.md

Related Topics
TITLE DESCRIPTION

Upgrading Projects from Earlier Versions of Visual C++ Discusses how to use projects created in earlier versions of
Visual Studio.

What's New for The C++ compiler in Visual Studio Changes in the IDE and tools to the current version of Visual
Studio

or deprecated functions

6. Code that no longer compiles due to changes in diagnostics, such as warning becoming an error

7. Linker errors due to libraries that were changed, especially when /NODEFAULTLIB is used.

8. Runtime errors or unexpected results due to behavior changes

9. Errors due to errors that were introduced in the tools. If you encounter an issue, report it to the Visual C++
team through your normal support channels or by using the Visual Studio Feedback Center.

In addition to changes that you can't avoid due to compiler errors, some changes are optional in an upgrade
process, such as:

1. New warnings might mean you want to clean up your code. Depending on the specific diagnostics, this can
improve the portability, standards conformance, and security of your code.

2. You might want to take advantage of newer compiler features such as the /guard:cf (Enable Flow Control
Guard) compiler option, which adds checks for unauthorized code execution.

3. You might want to update some code to use new language features that simplify the code, improve the
performance of your programs, or update the code to use modern libraries and conform to modern
standards and best practices.

Once you've upgraded and tested your project, you might also want to consider improving your code further or
plan the future direction of your code, or even reconsider the architecture of your project. Will it receive ongoing
development work? Will it be important for your code to run on other platforms? If so, what platforms? C++ is a
standardized language designed with portability and cross-platform development in mind, and yet the code for
many Windows applications is strongly tied to the Windows platform. Do you want to refactor your code, to
separate out those parts that are more tied to the Windows platform?

What about your user interface? If you are using MFC, you might want to update the UI. Are you using any of the
newer MFC features that were introduced in 2008 as a Feature Pack? If you just want to give your app a newer
look and feel, without rewriting the entire app, you might consider using the ribbon APIs in MFC, or using some of
new features of MFC.

If you want to give your program a XAML user-interface but don't want to create a UWP app, you can use C# with
WPF to create the UI layer and refactor your standard C++ logic into DLLs. Create an interoperability layer in
C++/CLI to connect C# with your native code. Another option is to create a UWP app using C++/CX or
C++/WinRT. In Windows 10, you can use the Desktop App Converter to package your existing desktop application
as a UWP app without having to modify any code.

Alternatively, perhaps you now have new requirements, or you can foresee the need for targeting platforms other
than Windows desktop, such as Windows Phone, or Android devices. You could port your user interface code to a
cross-platform UI library. With these UI frameworks, you can target multiple devices and still use Visual Studio
and the Visual Studio debugger as your development environment.

http://connect.microsoft.com/VisualStudio/Feedback
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/guard-enable-control-flow-guard
https://msdn.microsoft.com/library/windows/apps/xaml/hh699871.aspx
https://github.com/microsoft/cppwinrt
https://msdn.microsoft.com/windows/uwp/porting/desktop-to-uwp-run-desktop-app-converter
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/upgrading-projects-from-earlier-versions-of-visual-cpp

C++ conformance improvements in Visual Studio Standards conformance improvements from Visual Studio
2015 to Visual Studio

Visual C++ change history 2003 - 2015 A list of all the changes in the Visual C++ libraries and build
tools from Visual Studio 2003 through 2015 that might
require changes in your code.

Visual C++ What's New 2003 through 2015 All the "what's new" information for Visual C++ from Visual
Studio 2003 through Visual Studio 2015.

Porting 3rd-party libraries How to use the vcpkg command line tool to port older open-
source libraries to versions compiled with more recent Visual
C++ toolsets.

Porting and Upgrading: Examples and Case Studies For this section, we ported and upgrades several samples and
applications and discussed the experiences and results. You
might find that reading these gives you a sense of what is
involved in the porting and upgrading process. Throughout
the process, we discuss tips and tricks for upgrading and show
how specific errors were fixed.

Porting to the Universal Windows Platform Contains information about porting code to Windows 10

Introduction to Visual C++ for UNIX Users Provides information for UNIX users who are new to Visual
C++ and want to become productive with it.

Porting from UNIX to Win32 Discusses options for migrating UNIX applications to
Windows.

TITLE DESCRIPTION

See also
C++ in Visual Studio

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-change-history-2003-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/visual-cpp-what-s-new-2003-through-2015
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/porting-third-party-libraries
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/porting-and-upgrading-examples-and-case-studies
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/porting-to-the-universal-windows-platform-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/introduction-to-visual-cpp-for-unix-users
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/porting-from-unix-to-win32

Security Best Practices for C++
5/8/2019 • 3 minutes to read • Edit Online

Visual C++ Security Features

Security-Enhanced CRT

SafeInt Library

This article contains information about security tools and practices. Using them does not make applications
immune from attack, but it makes successful attacks less likely.

These security features are built into the Microsoft C++ compiler and linker:

/guard (Enable Control Flow Guard)
Causes the compiler to analyze control flow for indirect call targets at compile time, and then to insert code to
verify the targets at runtime.

/GS (Buffer Security Check)
Instructs the compiler to insert overrun detection code into functions that are at risk of being exploited. When an
overrun is detected, execution is stopped. By default, this option is on.

/SAFESEH (Image has Safe Exception Handlers)
Instructs the linker to include in the output image a table that contains the address of each exception handler. At
run time, the operating system uses this table to make sure that only legitimate exception handlers are executed.
This helps prevent the execution of exception handlers that are introduced by a malicious attack at run time. By
default, this option is off.

/NXCOMPAT, /NXCOMPAT (Compatible with Data Execution Prevention) These compiler and linker options
enable Data Execution Prevention (DEP) compatibility. DEP guards the CPU against the execution of non-code
pages.

/analyze (Code Analysis)
This compiler option activates code analysis that reports potential security issues such as buffer overrun, un-
initialized memory, null pointer dereferencing, and memory leaks. By default, this option is off. For more
information, see Code Analysis for C/C++ Overview.

/DYNAMICBASE (Use address space layout randomization)
This linker option enables the building of an executable image that can be loaded at different locations in memory
at the beginning of execution. This option also makes the stack location in memory much less predictable.

The C Runtime Library (CRT) has been augmented to include secure versions of functions that pose security risks
—for example, the unchecked strcpy string copy function. Because the older, nonsecure versions of these
functions are deprecated, they cause compile-time warnings. We encourage you to use the secure versions of
these CRT functions instead of suppressing the compilation warnings. For more information, see Security Features
in the CRT.

SafeInt Library helps prevent integer overflows and other exploitable errors that might occur when the application
performs mathematical operations. The SafeInt library includes the SafeInt Class, the SafeIntException Class,
and several SafeInt Functions.

The SafeInt class protects against integer overflow and divide-by-zero exploits. You can use it to handle

https://github.com/Microsoft/cpp-docs/blob/master/docs/security/security-best-practices-for-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/guard-enable-control-flow-guard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-buffer-security-check
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/safeseh-image-has-safe-exception-handlers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/nxcompat
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/nxcompat-compatible-with-data-execution-prevention
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/analyze-code-analysis
https://docs.microsoft.com/visualstudio/code-quality/code-analysis-for-c-cpp-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dynamicbase-use-address-space-layout-randomization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/security-features-in-the-crt

Checked Iterators

Code Analysis for Managed Code

Windows Application Verifier

Windows User Accounts

Guidance for Speculative Execution Side Channels

comparisons between values of different types. It provides two error handling policies. The default policy is for the
SafeInt class to throw a SafeIntException class exception to report why a mathematical operation cannot be

completed. The second policy is for the SafeInt class to stop program execution. You can also define a custom
policy.

Each SafeInt function protects one mathematical operation from an exploitable error. You can use two different
kinds of parameters without converting them to the same type. To protect multiple mathematical operations, use
the SafeInt class.

A checked iterator enforces container boundaries. By default, when a checked iterator is out of bounds, it generates
an exception and ends program execution. A checked iterator provides other levels of response that depend on
values that are assigned to preprocessor defines such as _SECURE_SCL_THROWS and
_ITERATOR_DEBUG_LEVEL. For example, at _ITERATOR_DEBUG_LEVEL=2, a checked iterator provides
comprehensive correctness checks in debug mode, which are made available by using asserts. For more
information, see Checked Iterators and _ITERATOR_DEBUG_LEVEL.

Code Analysis for Managed Code, also known as FxCop, checks assemblies for conformance to the.NET
Framework design guidelines. FxCop analyzes the code and metadata in each assembly to check for defects in the
following areas:

Library design

Localization

Naming conventions

Performance

Security

The Application Verifier (AppVerifier) can help you identify potential application compatibility, stability, and
security issues.

The AppVerifier monitors how an application uses the operating system. It watches the file system, registry,
memory, and APIs while the application is running, and recommends source-code fixes for issues that it uncovers.

You can use the AppVerifier to:

Test for potential application compatibility errors that are caused by common programming mistakes.

Examine an application for memory-related issues.

Identify potential security issues in an application.

Using Windows user accounts that belong to the Administrators group exposes developers and--by extension--
customers to security risks. For more information, see Running as a Member of the Users Group and How User
Account Control (UAC) Affects Your Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/checked-iterators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iterator-debug-level
https://docs.microsoft.com/windows-hardware/drivers/debugger/application-verifier

See also

For information about how to indentify and mitigate against speculative execution side channel hardware
vulnerabilities in C++ software, see C++ Developer Guidance for Speculative Execution Side Channels.

System.Security
Security
How User Account Control (UAC) Affects Your Application

https://msdn.microsoft.com/en-us/library/system.security(v=vs.110).aspx
https://docs.microsoft.com/dotnet/standard/security/index

Running as a Member of the Users Group
3/11/2019 • 2 minutes to read • Edit Online

Security Risks

Non Administrator User Groups

Exposing Customers to Security Risks

Code That Requires Administrator Privileges

Debugging

This topic explains how configuring Windows user accounts as a member of the Users Group (as opposed to the
Administrators Group) increases security by reducing the chances of being infected with malicious code.

Running as an administrator makes your system vulnerable to several kinds of security attack, such as "Trojan
horse" and "buffer overrun." Merely visiting an Internet site as an administrator can be damaging to the system, as
malicious code that is downloaded from an Internet site may attack your computer. If successful, it inherits your
administrator permissions and can then perform actions such as deleting all your files, reformatting your hard
drive, and creating a new user accounts with administrative access.

The Windows user accounts that developers use normally should be added to either the Users or Power Users
Groups. Developers should also be added to the Debugging Group. Being a member of the Users group allows
you to perform routine tasks including running programs and visiting Internet sites without exposing your
computer to unnecessary risk. As a member of the Power Users group, you can also perform tasks such as
application installation, printer installation, and most Control Panel operations. If you need to perform
administrative tasks such as upgrading the operating system or configuring system parameters, you should log
into an administrator account for just long enough to perform the administrative task. Alternatively, the Windows
runas command can be used to launch specific applications with Administrative access.

Not being part of the Administrators group is particularly important for developers because, in addition to
protecting development machines, it prevents developers from inadvertently writing code that requires customers
to join the Administrators Group in order to execute the applications you develop. If code that requires
administrator access is introduced during development, it will fail at runtime, alerting you to the fact that your
application now requires customers to run as Administrators.

Some code requires Administrator access in order to execute. If possible, alternatives to this code should be
pursued. Examples of code operations that require Administrator access are:

Writing to protected areas of the file system, such as the Windows or Program Files directories

Writing to protected areas of the registry, such as HKEY_LOCAL_MACHINE

Installing assemblies in the Global Assembly Cache (GAC)

Generally, these actions should be limited to application installation programs. This allows users to use
administrator status only temporarily.

You can debug any applications that you launch within Visual Studio (native and unmanaged) as a non-
administrator by becoming part of the Debugging Group. This includes the ability to attach to a running

https://github.com/Microsoft/cpp-docs/blob/master/docs/security/running-as-a-member-of-the-users-group.md

See also

application using the Attach to Process command. However, it is necessary to be part of the Administrator Group
in order to debug native or managed applications that were launched by a different user.

Security Best Practices

How User Account Control (UAC) Affects Your
Application
5/8/2019 • 2 minutes to read • Edit Online

Building Projects after Enabling UAC

Applications that Require Administrative Privileges

User Account Control (UAC) is a feature of Windows Vista in which user accounts have limited privileges. You can
find detailed information about UAC at these sites:

Developer Best Practices and Guidelines for Applications in a Least Privileged Environment

If you build a Visual Studio C++ project on Windows Vista with UAC disabled, and you later enable UAC, you
must clean and rebuild the project for it to work correctly.

By default, the Visual C++ linker embeds a UAC fragment into the manifest of an application with an execution
level of asInvoker . If your application requires administrative privileges to run correctly (for example, if it modifies
the HKLM node of the registry or if it writes to protected areas of the disk, such as the Windows directory), you
must modify your application.

The first option is to modify the UAC fragment of the manifest to change the execution level to
requireAdministrator. The application will then prompt the user for administrative credentials before it runs. For
information about how to do this, see /MANIFESTUAC (Embeds UAC information in manifest).

The second option is to not embed a UAC fragment into the manifest by specifying the /MANIFESTUAC:NO linker
option. In this case, your application will run virtualized. Any changes you make to the registry or to the file system
will not persist after your application has ended.

The following flowchart describes how your application will run depending on whether UAC is enabled and
whether the application has a UAC manifest:

https://github.com/Microsoft/cpp-docs/blob/master/docs/security/how-user-account-control-uac-affects-your-application.md
https://docs.microsoft.com/windows/desktop/uxguide/winenv-uac
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/manifestuac-embeds-uac-information-in-manifest

See also
Security Best Practices

C++ Developer Guidance for Speculative Execution
Side Channels
5/8/2019 • 20 minutes to read • Edit Online

What are Speculative Execution Side Channel hardware vulnerabilities?

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ReadByte(unsigned char *buffer, unsigned int buffer_size, unsigned int untrusted_index) {
 if (untrusted_index < buffer_size) {
 unsigned char value = buffer[untrusted_index];
 return shared_buffer[value * 4096];
 }
}

This article contains guidance for developers to assist with identifying and mitigating speculative execution side
channel hardware vulnerabilities in C++ software. These vulnerabilities can disclose sensitive information across
trust boundaries and can affect software that runs on processors that support speculative, out-of-order execution
of instructions. This class of vulnerabilities was first described in January, 2018 and additional background and
guidance can be found in Microsoft's security advisory.

The guidance provided by this article is related to the classes of vulnerabilities represented by:

1. CVE-2017-5753, also known as Spectre variant 1. This hardware vulnerability class is related to side
channels that can arise due to speculative execution that occurs as a result of a conditional branch
misprediction. The Microsoft C++ compiler in Visual Studio 2017 (starting with version 15.5.5) includes
support for the /Qspectre switch which provides a compile-time mitigation for a limited set of potentially
vulnerable coding patterns related to CVE-2017-5753. The /Qspectre switch is also available in Visual
Studio 2015 Update 3 through KB 4338871. The documentation for the /Qspectre flag provides more
information on its effects and usage.

2. CVE-2018-3639, also known as Speculative Store Bypass (SSB). This hardware vulnerability class is related
to side channels that can arise due to speculative execution of a load ahead of a dependent store as a result
of a memory access misprediction.

An accessible introduction to speculative execution side channel vulnerabilities can be found in the presentation
titled The Case of Spectre and Meltdown by one of the research teams that discovered these issues.

Modern CPUs provide higher degrees of performance by making use of speculative and out-of-order execution of
instructions. For example, this is often accomplished by predicting the target of branches (conditional and indirect)
which enables the CPU to begin speculatively executing instructions at the predicted branch target, thus avoiding a
stall until the actual branch target is resolved. In the event that the CPU later discovers that a misprediction
occurred, all of the machine state that was computed speculatively is discarded. This ensures that there are no
architecturally visible effects of the mispredicted speculation.

While speculative execution does not affect the architecturally visible state, it can leave residual traces in non-
architectural state, such as the various caches that are used by the CPU. It is these residual traces of speculative
execution that can give rise to side channel vulnerabilities. To better understand this, consider the following code
fragment which provides an example of CVE-2017-5753 (Bounds Check Bypass):

https://github.com/Microsoft/cpp-docs/blob/master/docs/security/developer-guidance-speculative-execution.md
https://portal.msrc.microsoft.com/security-guidance/advisory/ADV180002
https://support.microsoft.com/help/4338871
https://docs.microsoft.com/cpp/build/reference/qspectre
https://aka.ms/sescsrdssb
https://www.youtube.com/watch?v=_4O0zMW-Zu4

What software scenarios can be impacted?

In this example, ReadByte is supplied a buffer, a buffer size, and an index into that buffer. The index parameter, as
specified by untrusted_index , is supplied by a less privileged context, such as a non-administrative process. If
untrusted_index is less than buffer_size , then the character at that index is read from buffer and used to index

into a shared region of memory referred to by shared_buffer .

From an architectural perspective, this code sequence is perfectly safe as it is guaranteed that untrusted_index will
always be less than buffer_size . However, in the presence of speculative execution, it is possible that the CPU will
mispredict the conditional branch and execute the body of the if statement even when untrusted_index is greater
than or equal to buffer_size . As a consequence of this, the CPU may speculatively read a byte from beyond the
bounds of buffer (which could be a secret) and could then use that byte value to compute the address of a
subsequent load through shared_buffer .

While the CPU will eventually detect this misprediction, residual side effects may be left in the CPU cache that
reveal information about the byte value that was read out of bounds from buffer . These side effects can be
detected by a less privileged context running on the system by probing how quickly each cache line in
shared_buffer is accessed. The steps that can be taken to accomplish this are:

1. Invoke ReadByte multiple times with untrusted_index being less than buffer_size . The attacking
context can cause the victim context to invoke ReadByte (e.g. via RPC) such that the branch predictor is
trained to be not-taken as untrusted_index is less than buffer_size .

2. Flush all cache lines in shared_buffer . The attacking context must flush all of the cache lines in the shared
region of memory referred to by shared_buffer . Since the memory region is shared, this is straightforward
and can be accomplished using intrinsics such as _mm_clflush .

3. Invoke ReadByte with untrusted_index being greater than buffer_size . The attacking context causes
the victim context to invoke ReadByte such that it incorrectly predicts that the branch will not be taken. This
causes the processor to speculatively execute the body of the if block with untrusted_index being greater
than buffer_size , thus leading to an out-of-bounds read of buffer . Consequently, shared_buffer is
indexed using a potentially secret value that was read out-of-bounds, thus causing the respective cache line
to be loaded by the CPU.

4. Read each cache line in shared_buffer to see which is accessed most quickly. The attacking context
can read each cache line in shared_buffer and detect the cache line that loads significantly faster than the
others. This is the cache line that is likely to have been brought in by step 3. Since there is a 1:1 relationship
between byte value and cache line in this example, this allows the attacker to infer the actual value of the
byte that was read out-of-bounds.

The above steps provide an example of using a technique known as FLUSH+RELOAD in conjunction with
exploiting an instance of CVE-2017-5753.

Developing secure software using a process like the Security Development Lifecycle (SDL) typically requires
developers to identify the trust boundaries that exist in their application. A trust boundary exists in places where an
application may interact with data provided by a less-trusted context, such as another process on the system or a
non-administrative user mode process in the case of a kernel-mode device driver. The new class of vulnerabilities
involving speculative execution side channels is relevant to many of the trust boundaries in existing software
security models that isolate code and data on a device.

The following table provides a summary of the software security models where developers may need to be
concerned about these vulnerabilities occurring:

https://www.microsoft.com/sdl/

TRUST BOUNDARY DESCRIPTION

Virtual machine boundary Applications that isolate workloads in separate virtual
machines that receive untrusted data from another virtual
machine may be at risk.

Kernel boundary A kernel-mode device driver that receives untrusted data from
a non-administrative user mode process may be at risk.

Process boundary An application that receives untrusted data from another
process running on the local system, such as through a
Remote Procedure Call (RPC), shared memory, or other Inter-
Process Communication (IPC) mechanisms may be at risk.

Enclave boundary An application that executes within a secure enclave (such as
Intel SGX) that receives untrusted data from outside of the
enclave may be at risk.

Language boundary An application that interprets or Just-In-Time (JIT) compiles
and executes untrusted code written in a higher-level
language may be at risk.

Potentially vulnerable coding patterns

Speculative out-of-bounds load

Array out-of-bounds load feeding a load

Applications that have attack surface exposed to any of the above trust boundaries should review code on the
attack surface to identify and mitigate possible instances of speculative execution side channel vulnerabilities. It
should be noted that trust boundaries exposed to remote attack surfaces, such as remote network protocols, have
not been demonstrated to be at risk to speculative execution side channel vulnerabilities.

Speculative execution side channel vulnerabilities can arise as a consequence of multiple coding patterns. This
section describes potentially vulnerable coding patterns and provides examples for each, but it should be
recognized that variations on these themes may exist. As such, developers are advised to take these patterns as
examples and not as an exhaustive list of all potentially vulnerable coding patterns. The same classes of memory
safety vulnerabilities that can exist in software today may also exist along speculative and out-of-order paths of
execution, including but not limited to buffer overruns, out-of-bounds array accesses, uninitialized memory use,
type confusion, and so on. The same primitives that attackers can use to exploit memory safety vulnerabilities
along architectural paths may also apply to speculative paths.

In general, speculative execution side channels related to conditional branch misprediction can arise when a
conditional expression operates on data that can be controlled or influenced by a less-trusted context. For example,
this can include conditional expressions used in if , for , while , switch , or ternary statements. For each of these
statements, the compiler may generate a conditional branch that the CPU may then predict the branch target for at
runtime.

For each example, a comment with the phrase "SPECULATION BARRIER" is inserted where a developer could
introduce a barrier as a mitigation. This is discussed in more detail in the section on mitigations.

This category of coding patterns involves a conditional branch misprediction that leads to a speculative out-of-
bounds memory access.

This coding pattern is the originally described vulnerable coding pattern for CVE-2017-5753 (Bounds Check
Bypass). The background section of this article explains this pattern in detail.

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ReadByte(unsigned char *buffer, unsigned int buffer_size, unsigned int untrusted_index) {
 if (untrusted_index < buffer_size) {
 // SPECULATION BARRIER
 unsigned char value = buffer[untrusted_index];
 return shared_buffer[value * 4096];
 }
}

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ReadBytes(unsigned char *buffer, unsigned int buffer_size) {
 for (unsigned int x = 0; x < buffer_size; x++) {
 // SPECULATION BARRIER
 unsigned char value = buffer[x];
 return shared_buffer[value * 4096];
 }
}

Array out-of-bounds load feeding an indirect branch

#define MAX_MESSAGE_ID 16

typedef void (*MESSAGE_ROUTINE)(unsigned char *buffer, unsigned int buffer_size);

const MESSAGE_ROUTINE DispatchTable[MAX_MESSAGE_ID];

void DispatchMessage(unsigned int untrusted_message_id, unsigned char *buffer, unsigned int buffer_size) {
 if (untrusted_message_id < MAX_MESSAGE_ID) {
 // SPECULATION BARRIER
 DispatchTable[untrusted_message_id](buffer, buffer_size);
 }
}

Array out-of-bounds store feeding an indirect branch

Similarly, an array out-of-bounds load may occur in conjunction with a loop that exceeds its terminating condition
due to a misprediction. In this example, the conditional branch associated with the x < buffer_size expression
may mispredict and speculatively execute the body of the for loop when x is greater than or equal to
buffer_size , thus resulting in a speculative out-of-bounds load.

This coding pattern involves the case where a conditional branch misprediction can lead to an out-of-bounds
access to an array of function pointers which then leads to an indirect branch to the target address that was read
out-of-bounds. The following snippet provides an example that demonstrates this.

In this example, an untrusted message identifier is provided to DispatchMessage through the
untrusted_message_id parameter. If untrusted_message_id is less than MAX_MESSAGE_ID , then it is used to index into

an array of function pointers and branch to the corresponding branch target. This code is safe architecturally, but if
the CPU mispredicts the conditional branch, it could result in DispatchTable being indexed by
untrusted_message_id when its value is greater than or equal to MAX_MESSAGE_ID , thus leading to an out-of-bounds

access. This could result in speculative execution from a branch target address that is derived beyond the bounds
of the array which could lead to information disclosure depending on the code that is executed speculatively.

As with the case of an array out-of-bounds load feeding another load, this condition may also arise in conjunction
with a loop that exceeds its terminating condition due to a misprediction.

unsigned char WriteSlot(unsigned int untrusted_index, void *ptr) {
 void *pointers[256];
 if (untrusted_index < 256) {
 // SPECULATION BARRIER
 pointers[untrusted_index] = ptr;
 }
}

unsigned char WriteSlot(unsigned int untrusted_index, void *ptr) {
 void *pointers[256];
 void (*func)() = &callback;
 if (untrusted_index < 256) {
 // SPECULATION BARRIER
 pointers[untrusted_index] = ptr;
 }
 func();
}

Speculative type confusion

While the previous example showed how a speculative out-of-bounds load can influence an indirect branch target,
it is also possible for an out-of-bounds store to modify an indirect branch target, such as a function pointer or a
return address. This can potentially lead to speculative execution from an attacker-specified address.

In this example, an untrusted index is passed through the untrusted_index parameter. If untrusted_index is less
than the element count of the pointers array (256 elements), then the provided pointer value in ptr is written to
the pointers array. This code is safe architecturally, but if the CPU mispredicts the conditional branch, it could
result in ptr being speculatively written beyond the bounds of the stack-allocated pointers array. This could lead
to speculative corruption of the return address for WriteSlot . If an attacker can control the value of ptr , they may
be able to cause speculative execution from an arbitrary address when WriteSlot returns along the speculative
path.

Similarly, if a function pointer local variable named func were allocated on the stack, then it may be possible to
speculatively modify the address that func refers to when the conditional branch misprediction occurs. This could
result in speculative execution from an arbitrary address when the function pointer is called through.

It should be noted that both of these examples involve speculative modification of stack-allocated indirect branch
pointers. It is possible that speculative modification could also occur for global variables, heap-allocated memory,
and even read-only memory on some CPUs. For stack-allocated memory, the Microsoft C++ compiler already
takes steps to make it more difficult to speculatively modify stack-allocated indirect branch targets, such as by
reordering local variables such that buffers are placed adjacent to a security cookie as part of the /GS compiler
security feature.

This category deals with coding patterns that can give rise to a speculative type confusion. This occurs when
memory is accessed using an incorrect type along a non-architectural path during speculative execution. Both
conditional branch misprediction and speculative store bypass can potentially lead to a speculative type confusion.

For speculative store bypass, this could occur in scenarios where a compiler reuses a stack location for variables of
multiple types. This is because the architectural store of a variable of type A may be bypassed, thus allowing the
load of type A to speculatively execute before the variable is assigned. If the previously stored variable is of a
different type, then this can create the conditions for a speculative type confusion.

For conditional branch misprediction, the following code snippet will be used to describe different conditions that
speculative type confusion can give rise to.

https://docs.microsoft.com/cpp/build/reference/gs-buffer-security-check

enum TypeName {
 Type1,
 Type2
};

class CBaseType {
public:
 CBaseType(TypeName type) : type(type) {}
 TypeName type;
};

class CType1 : public CBaseType {
public:
 CType1() : CBaseType(Type1) {}
 char field1[256];
 unsigned char field2;
};

class CType2 : public CBaseType {
public:
 CType2() : CBaseType(Type2) {}
 void (*dispatch_routine)();
 unsigned char field2;
};

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ProcessType(CBaseType *obj)
{
 if (obj->type == Type1) {
 // SPECULATION BARRIER
 CType1 *obj1 = static_cast<CType1 *>(obj);

 unsigned char value = obj1->field2;

 return shared_buffer[value * 4096];
 }
 else if (obj->type == Type2) {
 // SPECULATION BARRIER
 CType2 *obj2 = static_cast<CType2 *>(obj);

 obj2->dispatch_routine();

 return obj2->field2;
 }
}

Speculative type confusion leading to an out-of-bounds load

Speculative type confusion leading to an indirect branch

This coding pattern involves the case where a speculative type confusion can result in an out-of-bounds or type-
confused field access where the loaded value feeds a subsequent load address. This is similar to the array out-of-
bounds coding pattern but it is manifested through an alternative coding sequence as shown above. In this
example, an attacking context could cause the victim context to execute ProcessType multiple times with an object
of type CType1 (type field is equal to Type1). This will have the effect of training the conditional branch for the
first if statement to predict not taken. The attacking context can then cause the victim context to execute
ProcessType with an object of type CType2 . This can result in a speculative type confusion if the conditional branch

for the first if statement mispredicts and executes the body of the if statement, thus casting an object of type
CType2 to CType1 . Since CType2 is smaller than CType1 , the memory access to CType1::field2 will result in a

speculative out-of-bounds load of data that may be secret. This value is then used in a load from shared_buffer

which can create observable side effects, as with the array out-of-bounds example described previously.

Speculative uninitialized use

Speculative uninitialized use leading to an out-of-bounds load

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

void InitializeIndex(unsigned int trusted_index, unsigned int *index) {
 *index = trusted_index;
}

unsigned char ReadByte(unsigned char *buffer, unsigned int buffer_size, unsigned int trusted_index) {
 unsigned int index;

 InitializeIndex(trusted_index, &index); // not inlined

 // SPECULATION BARRIER
 unsigned char value = buffer[index];
 return shared_buffer[value * 4096];
}

Speculative uninitialized use leading to an indirect branch

This coding pattern involves the case where a speculative type confusion can result in an unsafe indirect branch
during speculative execution. In this example, an attacking context could cause the victim context to execute
ProcessType multiple times with an object of type CType2 (type field is equal to Type2). This will have the effect

of training the conditional branch for the first if statement to be taken and the else if statement to be not
taken. The attacking context can then cause the victim context to execute ProcessType with an object of type
CType1 . This can result in a speculative type confusion if the conditional branch for the first if statement predicts

taken and the else if statement predicts not taken, thus executing the body of the else if and casting an object
of type CType1 to CType2 . Since the CType2::dispatch_routine field overlaps with the char array CType1::field1 ,
this could result in a speculative indirect branch to an unintended branch target. If the attacking context can control
the byte values in the CType1::field1 array, they may be able to control the branch target address.

This category of coding patterns involves scenarios where speculative execution may access uninitialized memory
and use it to feed a subsequent load or indirect branch. For these coding patterns to be exploitable, an attacker
needs to be able to control or meaningfully influence the contents of the memory that is used without being
initialized by the context that it is being used in.

A speculative uninitialized use can potentially lead to an out-of-bounds load using an attacker controlled value. In
the example below, the value of index is assigned trusted_index on all architectural paths and trusted_index is
assumed to be less than or equal to buffer_size . However, depending on the code produced by the compiler, it is
possible that a speculative store bypass may occur that allows the load from buffer[index] and dependent
expressions to execute ahead of the assignment to index . If this occurs, an uninitialized value for index will be
used as the offset into buffer which could enable an attacker to read sensitive information out-of-bounds and
convey this through a side channel through the dependent load of shared_buffer .

A speculative uninitialized use can potentially lead to an indirect branch where the branch target is controlled by an
attacker. In the example below, routine is assigned to either DefaultMessageRoutine1 or DefaultMessageRoutine

depending on the value of mode . On the architectural path, this will result in routine always being initialized
ahead of the indirect branch. However, depending on the code produced by the compiler, a speculative store
bypass may occur that allows the indirect branch through routine to be speculatively executed ahead of the
assignment to routine . If this occurs, an attacker may be able to speculatively execute from an arbitrary address,
assuming the attacker can influence or control the uninitialized value of routine .

#define MAX_MESSAGE_ID 16

typedef void (*MESSAGE_ROUTINE)(unsigned char *buffer, unsigned int buffer_size);

const MESSAGE_ROUTINE DispatchTable[MAX_MESSAGE_ID];
extern unsigned int mode;

void InitializeRoutine(MESSAGE_ROUTINE *routine) {
 if (mode == 1) {
 *routine = &DefaultMessageRoutine1;
 }
 else {
 *routine = &DefaultMessageRoutine;
 }
}

void DispatchMessage(unsigned int untrusted_message_id, unsigned char *buffer, unsigned int buffer_size) {
 MESSAGE_ROUTINE routine;

 InitializeRoutine(&routine); // not inlined

 // SPECULATION BARRIER
 routine(buffer, buffer_size);
}

Mitigation options

Speculation barrier via manual instrumentation

ARCHITECTURE
SPECULATION BARRIER INTRINSIC FOR
CVE-2017-5753

SPECULATION BARRIER INTRINSIC FOR
CVE-2018-3639

x86/x64 _mm_lfence() _mm_lfence()

ARM not currently available __dsb(0)

ARM64 not currently available __dsb(0)

Speculative execution side channel vulnerabilities can be mitigated by making changes to source code. These
changes can involve mitigating specific instances of a vulnerability, such as by adding a speculation barrier, or by
making changes to the design of an application to make sensitive information inaccessible to speculative execution.

A speculation barrier can be manually inserted by a developer to prevent speculative execution from proceeding
along a non-architectural path. For example, a developer can insert a speculation barrier before a dangerous
coding pattern in the body of a conditional block, either at the beginning of the block (after the conditional branch)
or before the first load that is of concern. This will prevent a conditional branch misprediction from executing the
dangerous code on a non-architectural path by serializing execution. The speculation barrier sequence differs by
hardware architecture as described by the following table:

For example, the following code pattern can be mitigated by using the _mm_lfence intrinsic as shown below.

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ReadByte(unsigned char *buffer, unsigned int buffer_size, unsigned int untrusted_index) {
 if (untrusted_index < buffer_size) {
 _mm_lfence();
 unsigned char value = buffer[untrusted_index];
 return shared_buffer[value * 4096];
 }
}

Speculation barrier via compiler-time instrumentation

Masking array indices

// A pointer to a shared memory region of size 1MB (256 * 4096)
unsigned char *shared_buffer;

unsigned char ReadByte(unsigned char *buffer, unsigned int buffer_size, unsigned int untrusted_index) {
 if (untrusted_index < buffer_size) {
 untrusted_index &= (buffer_size - 1);
 unsigned char value = buffer[untrusted_index];
 return shared_buffer[value * 4096];
 }
}

Removing sensitive information from memory

See also

The Microsoft C++ compiler in Visual Studio 2017 (starting with version 15.5.5) includes support for the
/Qspectre switch which automatically inserts a speculation barrier for a limited set of potentially vulnerable

coding patterns related to CVE-2017-5753. The documentation for the /Qspectre flag provides more information
on its effects and usage. It is important to note that this flag does not cover all of the potentially vulnerable coding
patterns and as such developers should not rely on it as a comprehensive mitigation for this class of vulnerabilities.

In cases where a speculative out-of-bounds load may occur, the array index can be strongly bounded on both the
architectural and non-architectural path by adding logic to explicitly bound the array index. For example, if an array
can be allocated to a size that is aligned to a power of two, then a simple mask can be introduced. This is illustrated
in the sample below where it is assumed that buffer_size is aligned to a power of two. This ensures that
untrusted_index is always less than buffer_size , even if a conditional branch misprediction occurs and
untrusted_index was passed in with a value greater than or equal to buffer_size .

It should be noted that the index masking performed here could be subject to speculative store bypass depending
on the code that is generated by the compiler.

Another technique that can be used to mitigate speculative execution side channel vulnerabilities is to remove
sensitive information from memory. Software developers can look for opportunities to refactor their application
such that sensitive information is not accessible during speculative execution. This can be accomplished by
refactoring the design of an application to isolate sensitive information into separate processes. For example, a web
browser application can attempt to isolate the data associated with each web origin into separate processes, thus
preventing one process from being able to access cross-origin data through speculative execution.

Guidance to mitigate speculative execution side-channel vulnerabilities
Mitigating speculative execution side channel hardware vulnerabilities

https://docs.microsoft.com/cpp/build/reference/qspectre
https://portal.msrc.microsoft.com/security-guidance/advisory/ADV180002
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

Languages
4/1/2019 • 2 minutes to read • Edit Online

C Language
C++ Language
C/C++ Preprocessor
Compiler Intrinsics and Assembly Language

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/languages-cpp.md

C Language Reference
2/12/2019 • 2 minutes to read • Edit Online

See also

The C Language Reference describes the C programming language as implemented in Microsoft C. The book's
organization is based on the ANSI C standard (sometimes referred to as C89) with additional material on the
Microsoft extensions to the ANSI C standard.

Organization of the C Language Reference

For additional reference material on C++ and the preprocessor, see:

C++ Language Reference

Preprocessor Reference

Compiler and linker options are documented in the C/C++ Building Reference.

C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-language/c-language-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/organization-of-the-c-language-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference

C++ Language Reference
5/7/2019 • 2 minutes to read • Edit Online

In This Section

This reference explains the C++ programming language as implemented in the Microsoft C++ compiler. The
organization is based on The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup and on
the ANSI/ISO C++ International Standard (ISO/IEC FDIS 14882). Microsoft-specific implementations of C++
language features are included.

For an overview of Modern C++ programming practices, see Welcome Back to C++.

See the following tables to quickly find a keyword or operator:

C++ Keywords

C++ Operators

Lexical Conventions
Fundamental lexical elements of a C++ program: tokens, comments, operators, keywords, punctuators, literals.
Also, file translation, operator precedence/associativity.

Basic Concepts
Scope, linkage, program startup and termination, storage classes, and types.

Standard Conversions
Type conversions between built-in, or "fundamental," types. Also, arithmetic conversions and conversions among
pointer, reference, and pointer-to-member types.

Operators, Precedence and Associativity
The operators in C++.

Expressions
Types of expressions, semantics of expressions, reference topics on operators, casting and casting operators, run-
time type information.

Lambda Expressions
A programming technique that implicitly defines a function object class and constructs a function object of that
class type.

Statements
Expression, null, compound, selection, iteration, jump, and declaration statements.

Declarations and Definitions
Storage-class specifiers, function definitions, initializations, enumerations, class, struct, and union declarations,
and typedef declarations. Also, inline functions, const keyword, namespaces.

Classes, Structures, and Unions
Introduction to classes, structures, and unions. Also, member functions, special member functions, data members,
bit fields, this pointer, nested classes.

Derived Classes
Single and multiple inheritance, virtual functions, multiple base classes, abstract classes, scope rules. Also, the
__super and __interface keywords.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cpp/cpp-language-reference.md
http://www.stroustrup.com/arm.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/keywords-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-built-in-operators-precedence-and-associativity
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lexical-conventions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/basic-concepts-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/standard-conversions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-built-in-operators-precedence-and-associativity
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/expressions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/statements-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/declarations-and-definitions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/classes-and-structs-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inheritance-cpp

Related Sections

See also

Member-Access Control
Controlling access to class members: public, private, and protected keywords. Friend functions and classes.

Overloading
Overloaded operators, rules for operator overloading.

Exception Handling
C++ exception handling, structured exception handling (SEH), keywords used in writing exception handling
statements.

Assertion and User-Supplied Messages
#error directive, the static_assert keyword, the assert macro.

Templates
Template specifications, function templates, class templates, typename keyword, templates vs. macros, templates
and smart pointers.

Event Handling
Declaring events and event handlers.

Microsoft-Specific Modifiers
Modifiers specific to Microsoft C++. Memory addressing, calling conventions, naked functions, extended
storage-class attributes (__declspec), __w64.

Inline Assembler
Using assembly language and C++ in __asm blocks.

Compiler COM Support
A reference to Microsoft-specific classes and global functions used to support COM types.

Microsoft Extensions
Microsoft extensions to C++.

Nonstandard Behavior
Information about nonstandard behavior of the Microsoft C++ compiler.

Welcome Back to C++
An overview of modern C++ programming practices for writing safe, correct and efficient programs.

Component Extensions for Runtime Platforms
Reference material on using the Microsoft C++ compiler to target .NET.

C/C++ Building Reference
Compiler options, linker options, and other build tools.

C/C++ Preprocessor Reference
Reference material on pragmas, preprocessor directives, predefined macros, and the preprocessor.

Visual C++ Libraries
A list of links to the reference start pages for the various Microsoft C++ libraries.

C Language Reference

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/member-access-control-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/operator-overloading
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/exception-handling-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/assertion-and-user-supplied-messages-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/templates-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/event-handling
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/microsoft-specific-modifiers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/inline/inline-assembler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/compiler-com-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/microsoft-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/nonstandard-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/welcome-back-to-cpp-modern-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference

C/C++ Preprocessor Reference
5/7/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

The C/C++ Preprocessor Reference explains the preprocessor as it is implemented in Microsoft C/C++. The
preprocessor performs preliminary operations on C and C++ files before they are passed to the compiler. You can
use the preprocessor to conditionally compile code, insert files, specify compile-time error messages, and apply
machine-specific rules to sections of code.

Preprocessor Directives
Describes directives, typically used to make source programs easy to change and easy to compile in different
execution environments.

Preprocessor Operators
Discusses the four preprocessor-specific operators used in the context of the #define directive.

Predefined Macros
Discusses predefined macros as specified by ANSI and Microsoft C++.

Pragmas
Discusses pragmas, which offer a way for each compiler to offer machine- and operating system-specific features
while retaining overall compatibility with the C and C++ languages.

C++ Language Reference
Provides reference material for the Microsoft implementation of the C++ language.

C Language Reference
Provides reference material for the Microsoft implementation of the C language.

Building a C/C++ Program
Provides links to topics discussing compiler and linker options.

Visual Studio Projects - C++
Describes the user interface in Visual Studio that enables you to specify the directories that the project system will
search to locate files for your C++ project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/c-cpp-preprocessor-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/preprocessor-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/preprocessor-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-and-managing-visual-cpp-projects

Compiler Intrinsics and Assembly Language
5/15/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Compiler Intrinsics Describes intrinsic functions that are available in Microsoft C
and C++ for x86, ARM, and x64 architectures.

Inline Assembler Explains how to use the Visual C/C++ inline assembler with
x86 processors.

ARM Assembler Reference Provides reference material for the Microsoft ARM assembler
(armasm) and related tools.

Microsoft Macro Assembler Reference Provides reference material for the Microsoft Macro assembler
(masm).

C++ in Visual Studio The top-level article for Visual C++ documentation.

This section of the documentation contains information about compiler intrinsics and the assembly language.

https://github.com/Microsoft/cpp-docs/blob/master/docs/intrinsics/compiler-intrinsics-and-assembly-language.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/compiler-intrinsics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/inline/inline-assembler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/arm/arm-assembler-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/assembler/masm/microsoft-macro-assembler-reference

C Run-Time Library Reference
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The Microsoft run-time library provides routines for programming for the Microsoft Windows operating system.
These routines automate many common programming tasks that are not provided by the C and C++ languages.

Sample programs are included in the individual reference topics for most routines in the library.

C Run-Time Libraries
Discusses the .lib files that comprise the C run-time libraries.

Universal C runtime routines by category
Provides links to the run-time library by category.

Global Variables and Standard Types
Provides links to the global variables and standard types provided by the run-time library.

Global Constants
Provides links to the global constants defined by the run-time library.

Alphabetical Function Reference
Provides a table of contents entry point into an alphabetical listing of all C run-time library functions.

Generic-Text Mappings
Provides links to the generic-text mappings defined in Tchar.h.

Language and Country/Region Strings
Describes how to use the setlocale function to set the language and Country/Region strings.

Debug Routines
Provides links to the debug versions of the run-time library routines.

Run-Time Error Checking
Provides links to functions that support run-time error checks.

DLLs and Visual C++ run-time library behavior
Discusses the entry point and startup code used for a DLL.

Debugging
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored procedures.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/c-run-time-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-routines-by-category
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-variables-and-standard-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-constants
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crt-alphabetical-function-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/generic-text-mappings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/locale-names-languages-and-country-region-strings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/debug-routines
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-error-checking
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio

Component Extensions for .NET and UWP
4/4/2019 • 5 minutes to read • Edit Online

NOTE

Two runtimes, one set of extensions

Data Type Keywords

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

ref class

ref struct

No Declares a class. Classes and Structs

value class

value struct

No Declares a value class. Classes and Structs

interface class

interface struct

No Declares an interface. interface class

The C++ standard allows compiler vendors to provide non-standard extensions to the language. Microsoft
provides extensions to help you connect native C++ code to code that runs on the .NET Framework or the
Universal Windows Platform (UWP). The .NET extensions are called C++/CLI and produce code that executes in
the .NET managed execution environment that is called the Common Language Runtime (CLR). The UWP
extensions are called C++/CX and they produce native machine code.

For new applications, we recommend using C++/WinRT rather than C++/CX. C++/WinRT is a new, standard C++17
language projection for Windows Runtime APIs. We will continue to support C++/CX and WRL, but highly recommend that
new applications use C++/WinRT. For more information, see C++/WinRT.

C++/CLI extends the ISO/ANSI C++ standard, and is defined under the Ecma C++/CLI Standard. For more
information, see .NET Programming with C++/CLI (Visual C++).

The C++/CX extensions are a subset of C++/CLI. Although the extension syntax is identical in most cases, the
code that is generated depends on whether you specify the /ZW compiler option to target UWP, or the /clr

option to target .NET. These switches are set automatically when you use Visual Studio to create a project.

The language extensions include aggregate keywords, which consist of two tokens separated by white space. The
tokens might have one meaning when they are used separately, and another meaning when they are used
together. For example, the word "ref" is an ordinary identifier, and the word "class" is a keyword that declares a
native class. But when these words are combined to form ref class, the resulting aggregate keyword declares an
entity that is known as a runtime class.

The extensions also include context-sensitive keywords. A keyword is treated as context-sensitive depending on the
kind of statement that contains it, and its placement in that statement. For example, the token "property" can be an
identifier, or it can declare a special kind of public class member.

The following table lists keywords in the C++ language extension.

https://github.com/Microsoft/cpp-docs/blob/master/docs/extensions/component-extensions-for-runtime-platforms.md
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/index
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
file:///T:/fo0i/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/classes-and-structs-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/interface-class-cpp-component-extensions.html

enum class

enum struct

No Declares an enumeration. enum class

property Yes Declares a property. property

delegate Yes Declares a delegate. delegate (C++/CLI and
C++/CX)

event Yes Declares an event. event

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

Override Specifiers

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

abstract Yes Indicates that functions or
classes are abstract.

abstract

new No Indicates that a function is
not an override of a base
class version.

new (new slot in vtable)

override Yes Indicates that a method
must be an override of a
base-class version.

override

sealed Yes Prevents classes from being
used as base classes.

sealed

Keywords for Generics

KEYWORD CONTEX T SENSITIVE PURPOSE

generic No Declares a generic type.

where Yes Specifies the constraints that are
applied to a generic type parameter.

Miscellaneous Keywords

You can use the following keywords to qualify override behavior for derivation. Although the new keyword is not
an extension of C++, it is listed here because it can be used in an additional context. Some specifiers are also valid
for native programming. For more information, see How to: Declare Override Specifiers in Native Compilations
(C++/CLI).

The following keywords have been added to support generic types. For more information, see Generics.

The following keywords have been added to the C++ extensions.

file:///T:/fo0i/vcppdocs-2015/extensions/enum-class-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/property-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/delegate-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/event-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli
file:///T:/fo0i/vcppdocs-2015/extensions/abstract-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/new-new-slot-in-vtable-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/override-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/sealed-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/generics-cpp-component-extensions.html

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

finally Yes Indicates default exception
handlings behavior.

Exception Handling

for each, in No Enumerates elements of a
collection.

for each, in

gcnew No Allocates types on the
garbage-collected heap. Use
instead of new and delete.

ref new, gcnew

ref new Yes Allocates a Windows
Runtime type. Use instead of
new and delete.

ref new, gcnew

initonly Yes Indicates that a member can
only be initialized at
declaration or in a static
constructor.

initonly (C++/CLI)

literal Yes Creates a literal variable. literal

nullptr No Indicates that a handle or
pointer does not point at an
object.

nullptr

Template Constructs

KEYWORD PURPOSE REFERENCE

array Declares an array. Arrays

interior_ptr (CLR only) Points to data in a reference
type.

interior_ptr (C++/CLI)

pin_ptr (CLR only) Points to CLR reference
types to temporarily suppress the
garbage-collection system.

pin_ptr (C++/CLI)

safe_cast Determines and executes the optimal
casting method for a runtime type.

safe_cast

typeid (CLR only) Retrieves a System.Type
object that describes the given type or
object.

typeid

Declarators

The following language constructs are implemented as templates, instead of as keywords. If you specify the /ZW

compiler option, they are defined in the lang namespace. If you specify the /clr compiler option, they are
defined in the cli namespace.

The following type declarators instruct the runtime to automatically manage the lifetime and deletion of allocated
objects.

file:///T:/fo0i/vcppdocs-2015/extensions/exception-handling-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/for-each-in
file:///T:/fo0i/vcppdocs-2015/extensions/ref-new-gcnew-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/ref-new-gcnew-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/initonly-cpp-cli
file:///T:/fo0i/vcppdocs-2015/extensions/literal-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/nullptr-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/arrays-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/interior-ptr-cpp-cli.html
file:///T:/fo0i/vcppdocs-2015/extensions/pin-ptr-cpp-cli.html
file:///T:/fo0i/vcppdocs-2015/extensions/safe-cast-cpp-component-extensions.html
https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx
file:///T:/fo0i/vcppdocs-2015/extensions/typeid-cpp-component-extensions.html

OPERATOR PURPOSE REFERENCE

^ Declares a handle to an object; that is, a
pointer to a Windows Runtime or CLR
object that is automatically deleted
when it is no longer usable.

Handle to Object Operator (^)

% Declares a tracking reference; that is, a
reference to a Windows Runtime or CLR
object that is automatically deleted
when it is no longer usable.

Tracking Reference Operator

Additional Constructs and Related Topics

TOPIC DESCRIPTION

__identifier (C++/CLI) (Windows Runtime and CLR) Enables the use of keywords as
identifiers.

Variable Argument Lists (...) (C++/CLI) (Windows Runtime and CLR) Enables a function to take a
variable number of arguments.

.NET Framework Equivalents to C++ Native Types (C++/CLI) Lists the CLR types that are used in place of C++ integral
types.

appdomain __declspec modifier __declspec modifier that mandates that static and global
variables exist per appdomain.

C-Style Casts with /clr (C++/CLI) Describes how C-style casts are interpreted.

__clrcall calling convention Indicates the CLR-compliant calling convention.

__cplusplus_cli Predefined Macros

Custom Attributes Describes how to define your own CLR attributes.

Exception Handling Provides an overview of exception handling.

Explicit Overrides Demonstrates how member functions can override arbitrary
members.

Friend Assemblies (C++) Discusses how a client assembly can access all types in an
assembly component.

Boxing Demonstrates the conditions in which values types are boxed.

Compiler Support for Type Traits Discusses how to detect characteristics of types at compile
time.

managed, unmanaged pragmas Demonstrates how managed and unmanaged functions can
co-exist in the same module.

This section lists additional programming constructs, and topics that pertain to the CLR.

file:///T:/fo0i/vcppdocs-2015/extensions/handle-to-object-operator-hat-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/tracking-reference-operator-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/identifier-cpp-cli.html
file:///T:/fo0i/vcppdocs-2015/extensions/variable-argument-lists-dot-dot-dot-cpp-cli.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-framework-equivalents-to-cpp-native-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/appdomain
file:///T:/fo0i/vcppdocs-2015/extensions/c-style-casts-with-clr-cpp-cli.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/clrcall
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros
file:///T:/fo0i/vcppdocs-2015/extensions/user-defined-attributes-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/exception-handling-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/explicit-overrides-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/friend-assemblies-cpp
file:///T:/fo0i/vcppdocs-2015/extensions/boxing-cpp-component-extensions.html
file:///T:/fo0i/vcppdocs-2015/extensions/compiler-support-for-type-traits-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/managed-unmanaged

process __declspec modifier __declspec modifier that mandates that static and global
variables exist per process.

Reflection (C++/CLI) Demonstrates the CLR version of run-time type information.

String Discusses compiler conversion of string literals to String.

Type Forwarding (C++/CLI) Enables the movement of a type in a shipping assembly to
another assembly so that client code does not have to be
recompiled.

User-Defined Attributes Demonstrates user-defined attributes.

#using Directive Imports external assemblies.

XML Documentation Explains XML-based code documentation by using /doc
(Process Documentation Comments) (C/C++)

TOPIC DESCRIPTION

See also
.NET Programming with C++/CLI (Visual C++)
Native and .NET Interoperability

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/process
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/reflection-cpp-cli
file:///T:/fo0i/vcppdocs-2015/extensions/string-cpp-component-extensions.html
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
file:///T:/fo0i/vcppdocs-2015/extensions/type-forwarding-cpp-cli.html
file:///T:/fo0i/vcppdocs-2015/extensions/user-defined-attributes-cpp-component-extensions.html
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-using-directive-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/xml-documentation-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/doc-process-documentation-comments-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability

C++ Attributes for COM and .NET
5/8/2019 • 4 minutes to read • Edit Online

NOTE

Purpose of Attributes

[event_receiver(com)]
class CMyReceiver
{
 void handler1(int i) { ... }
 void handler2(int i, float j) { ... }
}

Basic Mechanics of Attributes

Microsoft defines a set of C++ attributes that simplify COM programming and .NET Framework common
language runtime development. When you include attributes in your source files, the compiler works with provider
DLLs to insert code or modify the code in the generated object files. These attributes aid in the creation of .idl files,
interfaces, type libraries, and other COM elements. In the integrated development environment (IDE), attributes
are supported by the wizards and by the Properties window.

While attributes eliminate some of the detailed coding needed to write COM objects, you need a background in
COM fundamentals to best use them.

If you are looking for C++ standard attributes, see Attributes.

Attributes extend C++ in directions not currently possible without breaking the classic structure of the language.
Attributes allow providers (separate DLLs) to extend language functionality dynamically. The primary goal of
attributes is to simplify the authoring of COM components, in addition to increasing the productivity level of the
component developer. Attributes can be applied to nearly any C++ construct, such as classes, data members, or
member functions. The following is a highlight of benefits provided by this new technology:

Exposes a familiar and simple calling convention.

Uses inserted code, which, unlike macros, is recognized by the debugger.

Allows easy derivation from base classes without burdensome implementation details.

Replaces the large amount of IDL code required by a COM component with a few concise attributes.

For example, to implement a simple event sink for a generic ATL class, you could apply the event_receiver attribute
to a specific class such as CMyReceiver . The event_receiver attribute is then compiled by the Microsoft C++
compiler, which inserts the proper code into the object file.

You can then set up the CMyReceiver methods handler1 and handler2 to handle events (using the intrinsic
function __hook) from an event source, which you can create using event_source.

There are three ways to insert attributes into your project. First, you can insert them manually into your source
code. Second, you can insert them using the property grid of an object in your project. Finally, you can insert them
using the various wizards. For more information on using the Properties window and the various wizards, see
Visual Studio Projects - C++.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/cpp-attributes-com-net.md
https://docs.microsoft.com/windows/desktop/com/the-component-object-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-receiver
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/hook
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/event-source
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-and-managing-visual-cpp-projects

NOTE

Building an Attributed Program

Attribute Contexts

Applies To

As before, when the project is built, the compiler parses each C++ source file, producing an object file. However,
when the compiler encounters an attribute, it is parsed and syntactically verified. The compiler then dynamically
calls an attribute provider to insert code or make other modifications at compile time. The implementation of the
provider differs depending on the type of attribute. For example, ATL-related attributes are implemented by
Atlprov.dll.

The following figure demonstrates the relationship between the compiler and the attribute provider.

Attribute usage does not alter the contents of the source file. The only time the generated attribute code is visible is during
debugging sessions. In addition, for each source file in the project, you can generate a text file that displays the results of the
attribute substitution. For more information on this procedure, see /Fx (Merge Injected Code) and Debugging Injected Code.

Like most C++ constructs, attributes have a set of characteristics that defines their proper usage. This is referred to
as the context of the attribute and is addressed in the attribute context table for each attribute reference topic. For
example, the coclass attribute can only be applied to an existing class or structure, as opposed to the cpp_quote
attribute, which can be inserted anywhere within a C++ source file.

After you put Visual C++ attributes into your source code, you may want the Microsoft C++ compiler to produce a
type library and .idl file for you. The following linker options help you build .tlb and .idl files:

/IDLOUT

/IGNOREIDL

/MIDL

/TLBOUT

Some projects contain multiple independent .idl files. These are used to produce two or more .tlb files and
optionally bind them into the resource block. This scenario is not currently supported in Visual C++.

In addition, the Visual C++ linker will output all IDL-related attribute information to a single MIDL file. There will
be no way to generate two type libraries from a single project.

C++ attributes can be described using four basic fields: the target they can be applied to (Applies To), if they are
repeatable or not (Repeatable), the required presence of other attributes (Required Attributes), and
incompatibilities with other attributes (Invalid Attributes). These fields are listed in an accompanying table in
each attribute's reference topic. Each of these fields is described below.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code
https://docs.microsoft.com/visualstudio/debugger/how-to-debug-injected-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/coclass
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/cpp-quote
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/idlout-name-midl-output-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ignoreidl-don-t-process-attributes-into-midl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/midl-specify-midl-command-line-options
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/tlbout-name-dot-tlb-file

Repeatable

Required Attributes

Invalid Attributes

In This Section

This field describes the different C++ language elements that are legal targets for the specified attribute. For
instance, if an attribute specifies "class" in the Applies To field, this indicates that the attribute can only be applied
to a legal C++ class. If the attribute is applied to a member function of a class, a syntax error would result.

For more information, see Attributes by Usage.

This field states whether the attribute can be repeatedly applied to the same target. The majority of attributes are
not repeatable.

This field lists other attributes that need to be present (that is, applied to the same target) for the specified attribute
to function properly. It is uncommon for an attribute to have any entries for this field.

This field lists other attributes that are incompatible with the specified attribute. It is uncommon for an attribute to
have any entries for this field.

Attribute Programming FAQ
Attributes by Group
Attributes by Usage
Attributes Alphabetical Reference

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attributes-by-usage
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attribute-programming-faq
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attributes-by-group
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attributes-by-usage
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/attributes-alphabetical-reference

Libraries
4/1/2019 • 2 minutes to read • Edit Online

Standard Libraries

Libraries for Windows applications

Visual Studio includes the following libraries when you install one or more of the C++ workloads. For information
about installing 3rd-party libraries, see vcpkg: A C++ package manager for Windows, Linux and MacOS.

C Runtime Library
C++ Standard Library
SafeInt Library
OpenMP

MFC/ATL
Parallel Libraries
Data Access Libraries

https://github.com/Microsoft/cpp-docs/blob/master/docs/overview/libraries-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vcpkg

C Run-Time Library Reference
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The Microsoft run-time library provides routines for programming for the Microsoft Windows operating system.
These routines automate many common programming tasks that are not provided by the C and C++ languages.

Sample programs are included in the individual reference topics for most routines in the library.

C Run-Time Libraries
Discusses the .lib files that comprise the C run-time libraries.

Universal C runtime routines by category
Provides links to the run-time library by category.

Global Variables and Standard Types
Provides links to the global variables and standard types provided by the run-time library.

Global Constants
Provides links to the global constants defined by the run-time library.

Alphabetical Function Reference
Provides a table of contents entry point into an alphabetical listing of all C run-time library functions.

Generic-Text Mappings
Provides links to the generic-text mappings defined in Tchar.h.

Language and Country/Region Strings
Describes how to use the setlocale function to set the language and Country/Region strings.

Debug Routines
Provides links to the debug versions of the run-time library routines.

Run-Time Error Checking
Provides links to functions that support run-time error checks.

DLLs and Visual C++ run-time library behavior
Discusses the entry point and startup code used for a DLL.

Debugging
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored procedures.

https://github.com/Microsoft/cpp-docs/blob/master/docs/c-runtime-library/c-run-time-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-routines-by-category
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-variables-and-standard-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/global-constants
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crt-alphabetical-function-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/generic-text-mappings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/locale-names-languages-and-country-region-strings
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/debug-routines
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/run-time-error-checking
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio

C++ Standard Library Reference
3/11/2019 • 2 minutes to read • Edit Online

In This Section

A C++ program can call on a large number of functions from this conforming implementation of the C++
Standard Library. These functions perform essential services such as input and output and provide efficient
implementations of frequently used operations.

For more information about Visual C++ run-time libraries, see CRT Library Features.

C++ Standard Library Overview
Provides an overview of the Microsoft implementation of the C++ Standard Library.

iostream Programming
Provides an overview of iostream programming.

Header Files Reference
Provides links to reference topics discussing the C++ Standard Library header files, with code examples.

https://github.com/Microsoft/cpp-docs/blob/master/docs/standard-library/cpp-standard-library-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/iostream-programming
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-header-files

SafeInt Library
4/1/2019 • 2 minutes to read • Edit Online

In This Section
SECTION DESCRIPTION

SafeInt Class This class protects against integer overflows.

SafeInt Functions Functions that can be used without creating a SafeInt object.

SafeIntException Class A class of exceptions related to the SafeInt class.

Related Sections
SECTION DESCRIPTION

C++ Language Reference Reference and conceptual content for the C++ language.

SafeInt is a portable library that can be used with MSVC, GCC or Clang to help prevent integer overflows that
might result when the application performs mathematical operations. The latest version of this library is located at
https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/safeint/safeint-library.md
https://github.com/dcleblanc/SafeInt

SafeInt Class
4/1/2019 • 9 minutes to read • Edit Online

NOTE

Syntax
template<typename T, typename E = _SAFEINT_DEFAULT_ERROR_POLICY>
class SafeInt;

Parameters

TEMPLATE DESCRIPTION

T The type of integer or Boolean parameter that SafeInt

replaces.

E An enumerated data type that defines the error handling
policy.

U The type of integer or Boolean parameter for the secondary
operand.

PARAMETER DESCRIPTION

rhs [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

i [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

bits [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

Members
Public Constructors

NAME DESCRIPTION

SafeInt::SafeInt Default constructor.

Assignment Operators

Extends the integer primitives to help prevent integer overflow and lets you compare different types of integers.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/safeint/safeint-class.md
https://github.com/dcleblanc/SafeInt

NAME SYNTAX

= template<typename U>

SafeInt<T,E>& operator= (const U& rhs)

= SafeInt<T,E>& operator= (const T& rhs) throw()

= template<typename U>

SafeInt<T,E>& operator= (const SafeInt<U, E>& rhs)

= SafeInt<T,E>& operator= (const SafeInt<T,E>& rhs)
throw()

Casting Operators

NAME SYNTAX

bool operator bool() throw()

char operator char() const

signed char operator signed char() const

unsigned char operator unsigned char() const

__int16 operator __int16() const

unsigned __int16 operator unsigned __int16() const

__int32 operator __int32() const

unsigned __int32 operator unsigned __int32() const

long operator long() const

unsigned long operator unsigned long() const

__int64 operator __int64() const

unsigned __int64 operator unsigned __int64() const

wchar_t operator wchar_t() const

Comparison Operators

NAME SYNTAX

< template<typename U>

bool operator< (U rhs) const throw()

< bool operator< (SafeInt<T,E> rhs) const throw()

>= template<typename U>

bool operator>= (U rhs) const throw()

>= Bool operator>= (SafeInt<T,E> rhs) const throw()

> template<typename U>

bool operator> (U rhs) const throw()

> Bool operator> (SafeInt<T,E> rhs) const throw()

<= template<typename U>

bool operator<= (U rhs) const throw()

<= bool operator<= (SafeInt<T,E> rhs) const throw()

== template<typename U>

bool operator== (U rhs) const throw()

== bool operator== (bool rhs) const throw()

== bool operator== (SafeInt<T,E> rhs) const throw()

!= template<typename U>

bool operator!= (U rhs) const throw()

!= bool operator!= (bool b) const throw()

!= bool operator!= (SafeInt<T,E> rhs) const throw()

NAME SYNTAX

Arithmetic Operators

NAME SYNTAX

+ const SafeInt<T,E>& operator+ () const throw()

- SafeInt<T,E> operator- () const

++ SafeInt<T,E>& operator++ ()

-- SafeInt<T,E>& operator-- ()

% template<typename U>

SafeInt<T,E> operator% (U rhs) const

% SafeInt<T,E> operator% (SafeInt<T,E> rhs) const

%= template<typename U>

SafeInt<T,E>& operator%= (U rhs)

%= template<typename U>

SafeInt<T,E>& operator%= (SafeInt<U, E> rhs)

* template<typename U>

SafeInt<T,E> operator* (U rhs) const

* SafeInt<T,E> operator* (SafeInt<T,E> rhs) const

= SafeInt<T,E>& operator= (SafeInt<T,E> rhs)

*= template<typename U>

SafeInt<T,E>& operator*= (U rhs)

*= template<typename U>

SafeInt<T,E>& operator*= (SafeInt<U, E> rhs)

/ template<typename U>

SafeInt<T,E> operator/ (U rhs) const

/ SafeInt<T,E> operator/ (SafeInt<T,E> rhs) const

/= SafeInt<T,E>& operator/= (SafeInt<T,E> i)

/= template<typename U>

SafeInt<T,E>& operator/= (U i)

/= template<typename U>

SafeInt<T,E>& operator/= (SafeInt<U, E> i)

+ SafeInt<T,E> operator+ (SafeInt<T,E> rhs) const

+ template<typename U>

SafeInt<T,E> operator+ (U rhs) const

+= SafeInt<T,E>& operator+= (SafeInt<T,E> rhs)

+= template<typename U>

SafeInt<T,E>& operator+= (U rhs)

NAME SYNTAX

+= template<typename U>

SafeInt<T,E>& operator+= (SafeInt<U, E> rhs)

- template<typename U>

SafeInt<T,E> operator- (U rhs) const

- SafeInt<T,E> operator- (SafeInt<T,E> rhs) const

-= SafeInt<T,E>& operator-= (SafeInt<T,E> rhs)

-= template<typename U>

SafeInt<T,E>& operator-= (U rhs)

-= template<typename U>

SafeInt<T,E>& operator-= (SafeInt<U, E> rhs)

NAME SYNTAX

Logical Operators

NAME SYNTAX

! bool operator !() const throw()

~ SafeInt<T,E> operator~ () const throw()

<< template<typename U>

SafeInt<T,E> operator<< (U bits) const throw()

<< template<typename U>

SafeInt<T,E> operator<< (SafeInt<U, E> bits) const
throw()

<<= template<typename U>

SafeInt<T,E>& operator<<= (U bits) throw()

<<= template<typename U>

SafeInt<T,E>& operator<<= (SafeInt<U, E> bits)
throw()

>> template<typename U>

SafeInt<T,E> operator>> (U bits) const throw()

>> template<typename U>

SafeInt<T,E> operator>> (SafeInt<U, E> bits) const
throw()

>>= template<typename U>

SafeInt<T,E>& operator>>= (U bits) throw()

>>= template<typename U>

SafeInt<T,E>& operator>>= (SafeInt<U, E> bits)
throw()

& SafeInt<T,E> operator& (SafeInt<T,E> rhs) const
throw()

& template<typename U>

SafeInt<T,E> operator& (U rhs) const throw()

&= SafeInt<T,E>& operator&= (SafeInt<T,E> rhs) throw()

&= template<typename U>

SafeInt<T,E>& operator&= (U rhs) throw()

&= template<typename U>

SafeInt<T,E>& operator&= (SafeInt<U, E> rhs) throw()

^ SafeInt<T,E> operator^ (SafeInt<T,E> rhs) const
throw()

^ template<typename U>

SafeInt<T,E> operator^ (U rhs) const throw()

^= SafeInt<T,E>& operator^= (SafeInt<T,E> rhs) throw()

^= template<typename U>

SafeInt<T,E>& operator^= (U rhs) throw()

^= template<typename U>

SafeInt<T,E>& operator^= (SafeInt<U, E> rhs) throw()

| SafeInt<T,E> operator| (SafeInt<T,E> rhs) const
throw()

| template<typename U>

SafeInt<T,E> operator| (U rhs) const throw()

NAME SYNTAX

|= SafeInt<T,E>& operator|= (SafeInt<T,E> rhs)
throw()

|= template<typename U>

SafeInt<T,E>& operator|= (U rhs) throw()

|= template<typename U>

SafeInt<T,E>& operator|= (SafeInt<U, E> rhs)
throw()

NAME SYNTAX

Remarks

NOTE

The SafeInt class protects against integer overflow in mathematical operations. For example, consider adding
two 8-bit integers: one has a value of 200 and the second has a value of 100. The correct mathematical operation
would be 200 + 100 = 300. However, because of the 8-bit integer limit, the upper bit will be lost and the compiler
will return 44 (300 - 2) as the result. Any operation that depends on this mathematical equation will generate
unexpected behavior.

8

The SafeInt class checks whether an arithmetic overflow occurs or whether the code tries to divide by zero. In
both cases, the class calls the error handler to warn the program of the potential problem.

This class also lets you compare two different types of integers as long as they are SafeInt objects. Typically,
when you perform a comparison, you must first convert the numbers to be the same type. Casting one number to
another type often requires checks to make sure that there is no loss of data.

The Operators table in this topic lists the mathematical and comparison operators supported by the SafeInt

class. Most mathematical operators return a SafeInt object of type T .

Comparison operations between a SafeInt and an integral type can be performed in either direction. For
example, both SafeInt<int>(x) < y and y> SafeInt<int>(x) are valid and will return the same result.

Many binary operators do not support using two different SafeInt types. One example of this is the & operator.
SafeInt<T, E> & int is supported, but SafeInt<T, E> & SafeInt<U, E> is not. In the latter example, the compiler

does not know what type of parameter to return. One solution to this problem is to cast the second parameter
back to the base type. By using the same parameters, this can be done with SafeInt<T, E> & (U)SafeInt<U, E> .

For any bitwise operations, the two different parameters should be the same size. If the sizes differ, the compiler will throw
an ASSERT exception. The results of this operation cannot be guaranteed to be accurate. To resolve this issue, cast the
smaller parameter until it is the same size as the larger parameter.

For the shift operators, shifting more bits than exist for the template type will throw an ASSERT exception. This
will have no effect in release mode. Mixing two types of SafeInt parameters is possible for the shift operators
because the return type is the same as the original type. The number on the right side of the operator only
indicates the number of bits to shift.

When you perform a logical comparison with a SafeInt object, the comparison is strictly arithmetic. For example,
consider these expressions:

SafeInt<uint>((uint)~0) > -1

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/reference/diagnostic-services

Int x = flag ? SafeInt<unsigned int>(y) : -1;

Int x = flag ? SafeInt<unsigned int>(y) : SafeInt<unsigned int>(-1);

Int x = flag ? (int) SafeInt<unsigned int>(y) : -1;

NOTE

NOTE

Inheritance Hierarchy

Requirements

((uint)~0) > -1

The first statement resolves to true, but the second statement resolves to false . The bitwise negation of 0 is
0xFFFFFFFF. In the second statement, the default comparison operator compares 0xFFFFFFFF to 0xFFFFFFFF
and considers them to be equal. The comparison operator for the SafeInt class realizes that the second
parameter is negative whereas the first parameter is unsigned. Therefore, although the bit representation is
identical, the SafeInt logical operator realizes that the unsigned integer is larger than -1.

Be careful when you use the SafeInt class together with the ?: ternary operator. Consider the following line of
code.

The compiler converts it to this:

If flag is false , the compiler throws an exception instead of assigning the value of -1 to x . Therefore, to avoid
this behavior, the correct code to use is the following line.

T and U can be assigned a Boolean type, character type, or integer type. The integer types can be signed or
unsigned and any size from 8 bits to 64 bits.

Although the SafeInt class accepts any kind of integer, it performs more efficiently with unsigned types.

E is the error handling mechanism that SafeInt uses. Two error handling mechanisms are provided with the
SafeInt library. The default policy is SafeIntErrorPolicy_SafeIntException , which throws a SafeIntException Class
exception when an error occurs. The other policy is SafeIntErrorPolicy_InvalidParameter , which stops the
program if an error occurs.

There are two options to customize the error policy. The first option is to set the parameter E when you create a
SafeInt . Use this option when you want to change the error handling policy for just one SafeInt . The other

option is to define _SAFEINT_DEFAULT_ERROR_POLICY to be your customized error-handling class before you
include the SafeInt library. Use this option when you want to change the default error handling policy for all
instances of the SafeInt class in your code.

A customized class that handles errors from the SafeInt library should not return control to the code that called the error
handler. After the error handler is called, the result of the SafeInt operation cannot be trusted.

SafeInt

 SafeInt::SafeInt

SafeInt() throw

SafeInt (
 const T& i
) throw ()

SafeInt (
 bool b
) throw ()

template <typename U>
SafeInt (
 const SafeInt <U, E>& u
)

I template <typename U>
SafeInt (
 const U& i
)

Parameters

Remarks

Header: safeint.h

Namespace: msl::utilities

Constructs a SafeInt object.

i
[in] The value for the new SafeInt object. This must be a parameter of type T or U, depending on the constructor.

b
[in] The Boolean value for the new SafeInt object.

u
[in] A SafeInt of type U. The new SafeInt object will have the same value as u, but will be of type T.

U The type of data stored in the SafeInt . This can be either a Boolean, character, or integer type. If it is an integer
type, it can be signed or unsigned and be between 8 and 64 bits.

The input parameter for the constructor, i or u, must be a Boolean, character, or integer type. If it is another type of
parameter, the SafeInt class calls static_assert to indicate an invalid input parameter.

The constructors that use the template type U automatically convert the input parameter to the type specified by
T . The SafeInt class converts the data without any loss of data. It reports to the error handler E if it cannot

convert the data to type T without data loss.

If you create a SafeInt from a Boolean parameter, you need to initialize the value immediately. You cannot
construct a SafeInt using the code SafeInt<bool> sb; . This will generate a compile error.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-assert

SafeInt Functions
4/1/2019 • 5 minutes to read • Edit Online

NOTE

In This Section
FUNCTION DESCRIPTION

SafeAdd Adds two numbers and protects against overflow.

SafeCast Casts one type of parameter to another type.

SafeDivide Divides two numbers and protects against dividing by zero.

SafeEquals, SafeGreaterThan, SafeGreaterThanEquals,
SafeLessThan, SafeLessThanEquals, SafeNotEquals

Compares two numbers. These functions enable you to
compare two different types of numbers without changing
their types.

SafeModulus Performs the modulus operation on two numbers.

SafeMultiply Multiplies two numbers together and protects against
overflow.

SafeSubtract Subtracts two numbers and protects against overflow.

Related Sections
SECTION DESCRIPTION

SafeInt The SafeInt class.

SafeIntException The exception class specific to the SafeInt library.

SafeAdd

The SafeInt library provides several functions that you can use without creating an instance of the SafeInt class. If
you want to protect a single mathematical operation from integer overflow, you can use these functions. If you
want to protect multiple mathematical operations, you should create SafeInt objects. It is more efficient to create
SafeInt objects than to use these functions multiple times.

These functions enable you to compare or perform mathematical operations on two different types of parameters
without having to convert them to the same type first.

Each of these functions has two template types: T and U . Each of these types can be a Boolean, character, or
integral type. Integral types can be signed or unsigned and any size from 8 bits to 64 bits.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/safeint/safeint-functions.md
https://github.com/dcleblanc/SafeInt

template<typename T, typename U>
inline bool SafeAdd (
 T t,
 U u,
 T& result
) throw ();

Parameters

Return Value

SafeCast

template<typename T, typename U>
inline bool SafeCast (
 const T From,
 U& To
);

Parameters

Return Value

SafeDivide

template<typename T, typename U>
inline bool SafeDivide (
 T t,
 U u,
 T& result
) throw ();

Parameters

Adds two numbers in a way that protects against overflow.

t
[in] The first number to add. This must be of type T.

u
[in] The second number to add. This must be of type U.

result
[out] The parameter where SafeAdd stores the result.

true if no error occurs; false if an error occurs.

Casts one type of number to another type.

From
[in] The source number to convert. This must be of type T .

To
[out] A reference to the new number type. This must be of type U .

true if no error occurs; false if an error occurs.

Divides two numbers in a way that protects against dividing by zero.

t

Return Value

SafeEquals

template<typename T, typename U>
inline bool SafeEquals (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

SafeGreaterThan

template<typename T, typename U>
inline bool SafeGreaterThan (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

[in] The divisor. This must be of type T.

u
[in] The dividend. This must be of type U.

result
[out] The parameter where SafeDivide stores the result.

true if no error occurs; false if an error occurs.

Compares two numbers to determine whether they are equal.

t
[in] The first number to compare. This must be of type T.

u
[in] The second number to compare. This must be of type U.

true if t and u are equal; otherwise false.

The method enhances == because SafeEquals enables you to compare two different types of numbers.

Compares two numbers.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is greater than u; otherwise false.

SafeGreaterThan extends the regular comparison operator by enabling you to compare two different types of

SafeGreaterThanEquals

template <typename T, typename U>
inline bool SafeGreaterThanEquals (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

SafeLessThan

template<typename T, typename U>
inline bool SafeLessThan (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

SafeLessThanEquals

numbers.

Compares two numbers.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is greater than or equal to u; otherwise false.

SafeGreaterThanEquals enhances the standard comparison operator because it enables you to compare two
different types of numbers.

Determines whether one number is less than another.

t
[in] The first number. This must be of type T .

u
[in] The second numer. This must be of type U .

true if t is less than u; otherwise false.

This method enhances the standard comparison operator because SafeLessThan enables you to compare two
different types of number.

Compares two numbers.

template <typename T, typename U>
inline bool SafeLessThanEquals (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

SafeModulus

template<typename T, typename U>
inline bool SafeModulus (
 const T t,
 const U u,
 T& result
) throw ();

Parameters

Return Value

SafeMultiply

template<typename T, typename U>
inline bool SafeMultiply (
 T t,
 U u,
 T& result
) throw ();

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is less than or equal to u; otherwise false.

SafeLessThanEquals extends the regular comparison operator by enabling you to compare two different types of
numbers.

Performs the modulus operation on two numbers.

t
[in] The divisor. This must be of type T .

u
[in] The dividend. This must be of type U .

result
[out] The parameter where SafeModulus stores the result.

true if no error occurs; false if an error occurs.

Multiplies two numbers together in a way that protects against overflow.

Parameters

Return Value

SafeNotEquals

template<typename T, typename U>
inline bool SafeNotEquals (
 const T t,
 const U u
) throw ();

Parameters

Return Value

Remarks

SafeSubtract

template<typename T, typename U>
inline bool SafeSubtract (
 T t,
 U u,
 T& result
) throw ();

Parameters

t
[in] The first number to multiply. This must be of type T .

u
[in] The second number to multiply. This must be of type U .

result
[out] The parameter where SafeMultiply stores the result.

true if no error occurs; false if an error occurs.

Determines if two numbers are not equal.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t and u are not equal; otherwise false.

The method enhances != because SafeNotEquals enables you to compare two different types of numbers.

Subtracts two numbers in a way that protects against overflow.

t
[in] The first number in the subtraction. This must be of type T .

u
[in] The number to subtract from t. This must be of type U .

result

Return Value

[out] The parameter where SafeSubtract stores the result.

true if no error occurs; false if an error occurs.

SafeIntException Class
4/1/2019 • 2 minutes to read • Edit Online

NOTE

Syntax
class SafeIntException;

Members
Public Constructors

NAME DESCRIPTION

SafeIntException::SafeIntException Creates a SafeIntException object.

Remarks

Inheritance Hierarchy

Requirements

SafeIntException::SafeIntException

SafeIntException();

SafeIntException(
 SafeIntError code
);

Parameters

The SafeInt class uses SafeIntException to identify why a mathematical operation cannot be completed.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

The SafeInt class is the only class that uses the SafeIntException class.

SafeIntException

Header: safeint.h

Namespace: msl::utilities

Creates a SafeIntException object.

code
[in] An enumerated data value that describes the error that occurred.

https://github.com/Microsoft/cpp-docs/blob/master/docs/safeint/safeintexception-class.md
https://github.com/dcleblanc/SafeInt

Remarks
The possible values for code are defined in the file Safeint.h. For convenience, the possible values are also listed
here.

SafeIntNoError

SafeIntArithmeticOverflow

SafeIntDivideByZero

OpenMP in Visual C++
4/22/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

The OpenMP C and C++ application program interface lets you write applications that effectively use multiple
processors. Visual C++ supports the OpenMP 2.0 standard.

Library Reference
Provides links to constructs used in the OpenMP API.

C and C++ Application Program Interface
Discusses the OpenMP C and C++ API, as documented in the version 2.0 specification from the OpenMP
Architecture Review Board.

/openmp (Enable OpenMP 2.0 Support)
Causes the compiler to process #pragma omp .

Predefined Macros
Names the predefined ANSI C and Microsoft C++ implementation macros. See the _OPENMP macro.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/openmp/openmp-in-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/openmp-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/openmp-c-and-cpp-application-program-interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/openmp-enable-openmp-2-0-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros

MFC and ATL
5/15/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

MFC Desktop Applications Microsoft Foundation Classes provide a thin object-oriented
wrapper over Win32 to enable rapid development of GUI
applications in C++.

ATL COM Desktop Components ATL provides class templates and other use constructs to
simplify creation of COM objects in C++.

ATL/MFC Shared Classes References for CStringT Class and other classes that are
shared by MFC and ATL.

Working with Resource Files The resource editor lets you edit UI resources such as strings,
images, and dialog boxes.

C++ in Visual Studio Parent topic for all C++ content in the MSDN library.

The Microsoft Foundation Classes (MFC) provide a C++ object-oriented wrapper over Win32 for rapid
development of native desktop applications. The Active Template Library (ATL) is a wrapper library that simplifies
COM development and is used extensively for creating ActiveX controls.

You can create MFC or ATL programs with Visual Studio Community Edition or higher. The Express editions do not
support MFC or ATL.

In Visual Studio 2015, Visual C++ is an optional component, and MFC and ATL components are optional sub-
components under Visual C++. If you do not select these components when you first install Visual Studio, you will
be prompted to install them the first time you attempt to create or open an MFC or ATL project.

In Visual Studio 2017 and later, MFC and ATL are optional sub-components under the Desktop development
with C++ workload in the Visual Studio Installer program. You can install ATL support without MFC, or combined
MFC and ATL support (MFC depends on ATL). For more information about workloads and components, see Install
Visual Studio.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-and-atl.md
https://docs.microsoft.com/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl-mfc-shared/atl-mfc-shared-classes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl-mfc-shared/reference/cstringt-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/working-with-resource-files

Parallel Programming in Visual C++
5/15/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Auto-Parallelization and Auto-Vectorization Compiler optimizations that speed up code.

Concurrency Runtime Classes that simplify the writing of programs that use data
parallelism or task parallelism.

C++ AMP (C++ Accelerated Massive Parallelism) Classes that enable the use of modern graphics processors for
general purpose programming.

Multithreading Support for Older Code (Visual C++) Older technologies that may be useful in older applications.
For new apps, use the Concurrency Runtime or C++ AMP.

OpenMP The Microsoft implementation of the OpenMP API.

C++ in Visual Studio This section of the documentation contains information about
most of the features of Visual C++.

Visual C++ provides the following technologies to help you create multi-threaded and parallel programs that take
advantage of multiple cores and use the GPU for general purpose programming.

https://github.com/Microsoft/cpp-docs/blob/master/docs/parallel/parallel-programming-in-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/auto-parallelization-and-auto-vectorization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/concurrency-runtime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp

Data Access in Visual C++
5/15/2019 • 2 minutes to read • Edit Online

In This Section

Related Topics

Virtually all database products, SQL and NoSQL, provide an interface for native C++ applications. The industry
standard interface is ODBC which is supported by all major SQL database products and many NoSQL products.
For non-Microsoft products, consult the vendor for more information. Third-party libraries with various license
terms are also available.

Since 2011 Microsoft has aligned on ODBC as the standard for native applications to connecting to Microsoft
SQL Server databases, both on-premises and in the cloud. For more information, see Data Access Programming
(MFC-ATL). C++/CLI libraries can use either the native ODBC drivers or ADO.NET. For more information, see
Data Access Using ADO.NET (C++/CLI) and Accessing data in Visual Studio.

Data Access Programming (MFC/ATL)
Describes legacy data access programming with Visual C++, where the preferred way is to use one of the class
libraries such as the Active Template Class Library (ATL) or Microsoft Foundation Class (MFC) Library, which
simplify working with the database APIs.

Open Database Connectivity (ODBC)
The Microsoft Foundation Classes (MFC) library supplies classes for programming with Open Database
Connectivity (ODBC).

OLE DB Programming
A mostly legacy interface which is still required in some scenarios, specifically when you are programming against
linked servers.

Connect to SQL Database using C and C++
Connect to Azure SQL Database from C or C++ applications.

Microsoft Azure Storage Client Library for C++
Azure Storage is a cloud storage solution for modern applications that rely on durability, availability, and scalability
to meet the needs of their customers. Connect to Azure Storage from C++ by using the Azure Storage Client
Library for C++.

ODBC Driver for SQL Server
The latest ODBC driver provides robust data access to Microsoft SQL Server and Microsoft Azure SQL Database
for C/C++ based applications. Provides support for features including always encrypted, Azure Active Directory,
and AlwaysOn Availability Groups. Also available for MacOS and Linux.

OLE DB Driver for SQL Server
The latest OLE DB driver is a stand-alone data access application programming interface (API) that supports
Microsoft SQL Server and Microsoft Azure SQL Database.

Microsoft Azure C and C++ Developer Center
Azure makes it easy to build C++ applications with increased flexibility, scalability and reliability using tools you
love.

How to use Blob Storage from C++

https://github.com/Microsoft/cpp-docs/blob/master/docs/data/data-access-in-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/data-access-using-adonet-cpp-cli
https://docs.microsoft.com/visualstudio/data-tools/accessing-data-in-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/open-database-connectivity-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-programming
https://docs.microsoft.com/azure/sql-database/sql-database-develop-cplusplus-simple
https://github.com/Azure/azure-storage-cpp
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/sql/connect/odbc/microsoft-odbc-driver-for-sql-server
https://docs.microsoft.com/sql/connect/oledb/oledb-driver-for-sql-server
https://azure.microsoft.com/develop/cpp/
https://docs.microsoft.com/azure/storage/storage-c-plus-plus-how-to-use-blobs

See also

Azure Blob storage is a service that stores unstructured data in the cloud as objects/blobs. Blob storage can store
any type of text or binary data, such as a document, media file, or application installer. Blob storage is also referred
to as object storage.

ODBC Programmer's Reference
The ODBC interface is designed for use with the C programming language. Use of the ODBC interface spans
three areas: SQL statements, ODBC function calls, and C programming.

C++ in Visual Studio

https://docs.microsoft.com/sql/odbc/reference/odbc-programmer-s-reference

	Cover Page
	C++ in Visual Studio
	Overview of C++ development in Visual Studio
	What's new for C++ in Visual Studio
	C++ conformance improvements in Visual Studio
	Microsoft C++ language conformance
	Supported platforms
	Visual C++ Tools and Features in Visual Studio Editions
	Samples
	Help and community
	How to report a problem with the Visual C++ toolset

	Visual C++ Tutorials
	Install C++ support in Visual Studio
	Create a C++ console app project
	Build and run a C++ console app project

	Projects and Build Systems
	Writing and refactoring code
	Windows desktop development
	UWP development
	Game development
	Linux development
	Cross-platform Mobile Development
	.NET development with C++/CLI
	Cloud and Web programming
	Port and upgrade C++ code
	Security best practices for C++
	Running as a member of the users group
	How User Account Control (UAC) affects your application
	C++ developer guidance for speculative execution side channels

	Reference
	Languages
	C language
	C++ language
	C/C++ preprocessor
	Compiler intrinsics and assembly language
	C Runtime Library
	Component extensions for .NET and UWP
	C++ attributes for COM and .NET

	Libraries
	C Runtime Library
	C++ Standard Library
	SafeInt library
	SafeInt Class
	SafeInt Functions
	SafeIntException Class

	OpenMP
	MFC/ATL
	Parallel libraries
	Data access libraries

