
ContentsContents

 C/C++ Preprocessor Reference
 Preprocessor

 Phases of Translation
 Preprocessor Directives

 #define Directive (C/C++)
 #error Directive (C/C++)
 #if, #elif, #else, and #endif Directives (C/C++)
 #ifdef and #ifndef Directives (C/C++)
 #import Directive (C++)

 #import Attributes (C++)
 auto_rename
 auto_search
 embedded_idl
 exclude (#import)
 high_method_prefix
 high_property_prefixes
 implementation_only
 include()
 inject_statement
 named_guids
 no_auto_exclude
 no_dual_interfaces
 no_implementation
 no_namespace
 no_registry
 no_search_namespace
 no_smart_pointers
 raw_dispinterfaces
 raw_interfaces_only

 raw_method_prefix
 raw_native_types
 raw_property_prefixes
 rename (#import)
 rename_namespace
 rename_search_namespace
 tlbid

 #include Directive (C/C++)
 #line Directive (C/C++)
 Null Directive
 #undef Directive (C/C++)
 #using Directive (C++)

 Preprocessor Operators
 Stringizing Operator (#)
 Charizing Operator (#@)
 Token-Pasting Operator (##)

 Macros (C/C++)
 Macros and C++
 Variadic Macros
 Predefined Macros

 Grammar Summary (C/C++)
 Definitions for the Grammar Summary
 Conventions
 Preprocessor Grammar

 Pragma Directives and the __Pragma Keyword
 alloc_text
 auto_inline
 bss_seg
 check_stack
 code_seg
 comment (C/C++)
 component

 conform
 const_seg
 data_seg
 deprecated (C/C++)
 detect_mismatch
 execution_character_set
 fenv_access
 float_control
 fp_contract
 function (C/C++)
 hdrstop
 include_alias
 init_seg
 inline_depth
 inline_recursion
 intrinsic
 loop
 make_public
 managed, unmanaged
 message
 omp
 once
 optimize
 pack
 pointers_to_members
 pop_macro
 push_macro
 region, endregion
 runtime_checks
 section
 setlocale
 strict_gs_check

 vtordisp
 warning

 Compiler Warnings That Are Off by Default

C/C++ Preprocessor Reference
5/7/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

The C/C++ Preprocessor Reference explains the preprocessor as it is implemented in Microsoft C/C++. The
preprocessor performs preliminary operations on C and C++ files before they are passed to the compiler. You can
use the preprocessor to conditionally compile code, insert files, specify compile-time error messages, and apply
machine-specific rules to sections of code.

Preprocessor Directives
Describes directives, typically used to make source programs easy to change and easy to compile in different
execution environments.

Preprocessor Operators
Discusses the four preprocessor-specific operators used in the context of the #define directive.

Predefined Macros
Discusses predefined macros as specified by ANSI and Microsoft C++.

Pragmas
Discusses pragmas, which offer a way for each compiler to offer machine- and operating system-specific features
while retaining overall compatibility with the C and C++ languages.

C++ Language Reference
Provides reference material for the Microsoft implementation of the C++ language.

C Language Reference
Provides reference material for the Microsoft implementation of the C language.

Building a C/C++ Program
Provides links to topics discussing compiler and linker options.

Visual Studio Projects - C++
Describes the user interface in Visual Studio that enables you to specify the directories that the project system will
search to locate files for your C++ project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/c-cpp-preprocessor-reference.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/preprocessor-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/preprocessor-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pragma-directives-and-the-pragma-keyword
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-language-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-language-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-cpp-building-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-and-managing-visual-cpp-projects

Preprocessor
4/4/2019 • 2 minutes to read • Edit Online

Special Terminology

See also

The preprocessor is a text processor that manipulates the text of a source file as part of the first phase of
translation. The preprocessor does not parse the source text, but it does break it up into tokens for the purpose of
locating macro calls. Although the compiler ordinarily invokes the preprocessor in its first pass, the preprocessor
can also be invoked separately to process text without compiling.

The reference material on the preprocessor includes the following sections:

Preprocessor directives

Preprocessor operators

Predefined macros

Pragmas

Microsoft Specific

You can obtain a listing of your source code after preprocessing by using the /E or /EP compiler option. Both
options invoke the preprocessor and output the resulting text to the standard output device, which, in most cases,
is the console. The difference between the two options is that /E includes #line directives and /EP strips these
directives out.

END Microsoft Specific

In the preprocessor documentation, the term "argument" refers to the entity that is passed to a function. In some
cases, it is modified by "actual" or "formal," which describes the argument expression specified in the function call
and the argument declaration specified in the function definition, respectively.

The term "variable" refers to a simple C-type data object. The term "object" refers to both C++ objects and
variables; it is an inclusive term.

C/C++ Preprocessor Reference
Phases of Translation

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/preprocessor.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/e-preprocess-to-stdout
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ep-preprocess-to-stdout-without-hash-line-directives

Phases of Translation
4/4/2019 • 2 minutes to read • Edit Online

C and C++ programs consist of one or more source files, each of which contains some of the text of the program.
A source file, together with its include files (files that are included using the #include preprocessor directive) but
not including sections of code removed by conditional-compilation directives such as #if , is called a "translation
unit."

Source files can be translated at different times — in fact, it is common to translate only out-of-date files. The
translated translation units can be processed into separate object files or object-code libraries. These separate,
translated translation units are then linked to form an executable program or a dynamic-link library (DLL). For
more information about files that can be used as input to the linker, see L INK Input Files.

Translation units can communicate using:

Calls to functions that have external linkage.

Calls to class member functions that have external linkage.

Direct modification of objects that have external linkage.

Direct modification of files.

Interprocess communication (for Microsoft Windows-based applications only).

The following list describes the phases in which the compiler translates files:

Character mapping
Characters in the source file are mapped to the internal source representation. Trigraph sequences are converted to
single-character internal representation in this phase.

Line splicing
All lines ending in a backslash (\) and immediately followed by a newline character are joined with the next line in
the source file forming logical lines from the physical lines. Unless it is empty, a source file must end in a newline
character that is not preceded by a backslash.

Tokenization
The source file is broken into preprocessing tokens and white-space characters. Comments in the source file are
replaced with one space character each. Newline characters are retained.

Preprocessing
Preprocessing directives are executed and macros are expanded into the source file. The #include statement
invokes translation starting with the preceding three translation steps on any included text.

Character-set mapping
All source character set members and escape sequences are converted to their equivalents in the execution
character set. For Microsoft C and C++, both the source and the execution character sets are ASCII.

String concatenation
All adjacent string and wide-string literals are concatenated. For example, "String " "concatenation" becomes
"String concatenation" .

Translation
All tokens are analyzed syntactically and semantically; these tokens are converted into object code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/phases-of-translation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/link-input-files

See also

Linkage
All external references are resolved to create an executable program or a dynamic-link library.

The compiler issues warnings or errors during phases of translation in which it encounters syntax errors.

The linker resolves all external references and creates an executable program or DLL by combining one or more
separately processed translation units along with standard libraries.

Preprocessor

Preprocessor Directives
10/31/2018 • 2 minutes to read • Edit Online

#define #error #import #undef

#elif #if #include #using

#else #ifdef #line #endif

#ifndef #pragma

See also

Preprocessor directives, such as #define and #ifdef , are typically used to make source programs easy to
change and easy to compile in different execution environments. Directives in the source file tell the preprocessor
to perform specific actions. For example, the preprocessor can replace tokens in the text, insert the contents of
other files into the source file, or suppress compilation of part of the file by removing sections of text.
Preprocessor lines are recognized and carried out before macro expansion. Therefore, if a macro expands into
something that looks like a preprocessor command, that command is not recognized by the preprocessor.

Preprocessor statements use the same character set as source file statements, with the exception that escape
sequences are not supported. The character set used in preprocessor statements is the same as the execution
character set. The preprocessor also recognizes negative character values.

The preprocessor recognizes the following directives:

The number sign (#) must be the first nonwhite-space character on the line containing the directive; white-space
characters can appear between the number sign and the first letter of the directive. Some directives include
arguments or values. Any text that follows a directive (except an argument or value that is part of the directive)
must be preceded by the single-line comment delimiter (//) or enclosed in comment delimiters (/* */). Lines
containing preprocessor directives can be continued by immediately preceding the end-of-line marker with a
backslash (\).

Preprocessor directives can appear anywhere in a source file, but they apply only to the remainder of the source
file.

Preprocessor Operators
Predefined Macros
C/C++ Preprocessor Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/preprocessor-directives.md

#define Directive (C/C++)
4/4/2019 • 4 minutes to read • Edit Online

Syntax

Remarks

The #define creates a macro, which is the association of an identifier or parameterized identifier with a token
string. After the macro is defined, the compiler can substitute the token string for each occurrence of the identifier
in the source file.

#define identifier token-stringopt

#define identifier (identifier , ... , identifier) token-stringopt opt opt

The #define directive causes the compiler to substitute token-string for each occurrence of identifier in the source
file. The identifier is replaced only when it forms a token. That is, identifier is not replaced if it appears in a
comment, in a string, or as part of a longer identifier. For more information, see Tokens.

The token-string argument consists of a series of tokens, such as keywords, constants, or complete statements.
One or more white-space characters must separate token-string from identifier. This white space is not considered
part of the substituted text, nor is any white space that follows the last token of the text.

A #define without a token-string removes occurrences of identifier from the source file. The identifier remains
defined and can be tested by using the #if defined and #ifdef directives.

The second syntax form defines a function-like macro with parameters. This form accepts an optional list of
parameters that must appear in parentheses. After the macro is defined, each subsequent occurrence of identifier(
identifier , ..., identifier) is replaced with a version of the token-string argument that has actual arguments
substituted for formal parameters.

opt opt

Formal parameter names appear in token-string to mark the locations where actual values are substituted. Each
parameter name can appear multiple times in token-string, and the names can appear in any order. The number of
arguments in the call must match the number of parameters in the macro definition. Liberal use of parentheses
guarantees that complex actual arguments are interpreted correctly.

The formal parameters in the list are separated by commas. Each name in the list must be unique, and the list must
be enclosed in parentheses. No spaces can separate identifier and the opening parenthesis. Use line concatenation
— place a backslash (\) immediately before the newline character — for long directives on multiple source lines.
The scope of a formal parameter name extends to the new line that ends token-string.

When a macro has been defined in the second syntax form, subsequent textual instances followed by an argument
list indicate a macro call. The actual arguments that follows an instance of identifier in the source file are matched
to the corresponding formal parameters in the macro definition. Each formal parameter in token-string that is not
preceded by a stringizing (#), charizing (#@), or token-pasting (##) operator, or not followed by a ## operator,
is replaced by the corresponding actual argument. Any macros in the actual argument are expanded before the
directive replaces the formal parameter. (The operators are described in Preprocessor Operators.)

The following examples of macros with arguments illustrate the second form of the #define syntax:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-define-directive-c-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/tokens-cpp

// Macro to define cursor lines
#define CURSOR(top, bottom) (((top) << 8) | (bottom))

// Macro to get a random integer with a specified range
#define getrandom(min, max) \
 ((rand()%(int)(((max) + 1)-(min)))+ (min))

#define multiply(f1, f2) (f1 * f2)
#define multiply(a1, a2) (a1 * a2)

#define multiply(f1, f2) (f1 * f2)
#define multiply(a1, a2) (b1 * b2)

#define WIDTH 80
#define LENGTH (WIDTH + 10)

var = LENGTH * 20;

Arguments with side effects sometimes cause macros to produce unexpected results. A given formal parameter
may appear more than one time in token-string. If that formal parameter is replaced by an expression with side
effects, the expression, with its side effects, may be evaluated more than one time. (See the examples under Token-
Pasting Operator (##).)

The #undef directive causes an identifier's preprocessor definition to be forgotten. See The #undef Directive for
more information.

If the name of the macro being defined occurs in token-string (even as a result of another macro expansion), it is
not expanded.

A second #define for a macro with the same name generates a warning unless the second token sequence is
identical to the first.

Microsoft Specific

Microsoft C/C++ lets you redefine a macro if the new definition is syntactically identical to the original definition.
In other words, the two definitions can have different parameter names. This behavior differs from ANSI C, which
requires that the two definitions be lexically identical.

For example, the following two macros are identical except for the parameter names. ANSI C does not allow such
a redefinition, but Microsoft C/C++ compiles it without error.

On the other hand, the following two macros are not identical and will generate a warning in Microsoft C/C++.

END Microsoft Specific

This example illustrates the #define directive:

The first statement defines the identifier WIDTH as the integer constant 80 and defines LENGTH in terms of WIDTH

and the integer constant 10. Each occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each occurrence of
WIDTH + 10 is replaced by the expression (80 + 10). The parentheses around WIDTH + 10 are important because

they control the interpretation in statements such as the following:

After the preprocessing stage the statement becomes:

var = (80 + 10) * 20;

var = 80 + 10 * 20;

See also

which evaluates to 1800. Without parentheses, the result is:

which evaluates to 280.

Microsoft Specific

Defining macros and constants with the /D compiler option has the same effect as using a #define preprocessing
directive at the start of your file. Up to 30 macros can be defined by using the /D option.

END Microsoft Specific

Preprocessor Directives

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/d-preprocessor-definitions

#error Directive (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#errortoken-string

Remarks

#if !defined(__cplusplus)
#error C++ compiler required.
#endif

See also

The #error directive emits a user-specified error message at compile time and then terminates the compilation.

The error message that this directive emits includes the token-string parameter. The token-string parameter is not
subject to macro expansion. This directive is most useful during preprocessing for notifying the developer of a
program inconsistency or the violation of a constraint. The following example demonstrates error processing
during preprocessing:

Preprocessor Directives

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-error-directive-c-cpp.md

#if, #elif, #else, and #endif Directives (C/C++)
4/4/2019 • 5 minutes to read • Edit Online

Grammar

The #if directive, with the #elif, #else, and #endif directives, controls compilation of portions of a source file. If
the expression you write (after the #if) has a nonzero value, the line group immediately following the #if directive
is retained in the translation unit.

conditional :
 if-part elif-parts else-part endif-lineopt opt

if-part :
 if-line text

if-line :
 #if constant-expression
 #ifdef identifier
 #ifndef identifier

elif-parts :
 elif-line text
 elif-parts elif-line text

elif-line :
 #elif constant-expression

else-part :
 else-line text

else-line :
 #else

endif-line :
 #endif

Each #if directive in a source file must be matched by a closing #endif directive. Any number of #elif directives
can appear between the #if and #endif directives, but at most one #else directive is allowed. The #else directive,
if present, must be the last directive before #endif.

The #if, #elif, #else, and #endif directives can nest in the text portions of other #if directives. Each nested #else,
#elif, or #endif directive belongs to the closest preceding #if directive.

All conditional-compilation directives, such as #if and #ifdef, must be matched with closing #endif directives
prior to the end of file; otherwise, an error message is generated. When conditional-compilation directives are
contained in include files, they must satisfy the same conditions: There must be no unmatched conditional-
compilation directives at the end of the include file.

Macro replacement is performed within the part of the command line that follows an #elif command, so a macro
call can be used in the constant-expression.

The preprocessor selects one of the given occurrences of text for further processing. A block specified in text can
be any sequence of text. It can occupy more than one line. Usually text is program text that has meaning to the
compiler or the preprocessor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-if-hash-elif-hash-else-and-hash-endif-directives-c-cpp.md

defined

#if defined(CREDIT)
 credit();
#elif defined(DEBIT)
 debit();
#else
 printerror();
#endif

The preprocessor processes the selected text and passes it to the compiler. If text contains preprocessor directives,
the preprocessor carries out those directives. Only text blocks selected by the preprocessor are compiled.

The preprocessor selects a single text item by evaluating the constant expression following each #if or #elif
directive until it finds a true (nonzero) constant expression. It selects all text (including other preprocessor
directives beginning with #) up to its associated #elif, #else, or #endif.

If all occurrences of constant-expression are false, or if no #elif directives appear, the preprocessor selects the text
block after the #else clause. If the #else clause is omitted and all instances of constant-expression in the #if block
are false, no text block is selected.

The constant-expression is an integer constant expression with these additional restrictions:

Expressions must have integral type and can include only integer constants, character constants, and the
defined operator.

The expression cannot use sizeof or a type-cast operator.

The target environment may not be able to represent all ranges of integers.

The translation represents type int the same as type long, and unsigned int the same as unsigned long.

The translator can translate character constants to a set of code values different from the set for the target
environment. To determine the properties of the target environment, check values of macros from
LIMITS.H in an application built for the target environment.

The expression must not perform any environmental inquiries and must remain insulated from
implementation details on the target computer.

The preprocessor operator defined can be used in special constant expressions, as shown by the following
syntax:

defined(identifier)

defined identifier

This constant expression is considered true (nonzero) if the identifier is currently defined; otherwise, the condition
is false (0). An identifier defined as empty text is considered defined. The defined directive can be used in an #if
and an #elif directive, but nowhere else.

In the following example, the #if and #endif directives control compilation of one of three function calls:

The function call to credit is compiled if the identifier CREDIT is defined. If the identifier DEBIT is defined, the
function call to debit is compiled. If neither identifier is defined, the call to printerror is compiled. Note that
CREDIT and credit are distinct identifiers in C and C++ because their cases are different.

The conditional compilation statements in the following example assume a previously defined symbolic constant
named DLEVEL .

#if DLEVEL > 5
 #define SIGNAL 1
 #if STACKUSE == 1
 #define STACK 200
 #else
 #define STACK 100
 #endif
#else
 #define SIGNAL 0
 #if STACKUSE == 1
 #define STACK 100
 #else
 #define STACK 50
 #endif
#endif
#if DLEVEL == 0
 #define STACK 0
#elif DLEVEL == 1
 #define STACK 100
#elif DLEVEL > 5
 display(debugptr);
#else
 #define STACK 200
#endif

#elif DLEVEL > 5
display(debugptr);

/* EXAMPLE.H - Example header file */
#if !defined(EXAMPLE_H)
#define EXAMPLE_H

class Example
{
...
};

#endif // !defined(EXAMPLE_H)

__has_include

The first #if block shows two sets of nested #if, #else, and #endif directives. The first set of directives is
processed only if DLEVEL > 5 is true. Otherwise, the statements after #else are processed.

The #elif and #else directives in the second example are used to make one of four choices, based on the value of
DLEVEL . The constant STACK is set to 0, 100, or 200, depending on the definition of DLEVEL . If DLEVEL is greater

than 5, then the statement

is compiled and STACK is not defined.

A common use for conditional compilation is to prevent multiple inclusions of the same header file. In C++,
where classes are often defined in header files, constructs like the following can be used to prevent multiple
definitions:

The preceding code checks to see if the symbolic constant EXAMPLE_H is defined. If so, the file has already been
included and need not be reprocessed. If not, the constant EXAMPLE_H is defined to mark EXAMPLE.H as already
processed.

Visual Studio 2017 version 15.3 and later: Determines whether a library header is available for inclusion:

#ifdef __has_include
if __has_include(<filesystem>)
include <filesystem>
define have_filesystem 1
elif __has_include(<experimental/filesystem>)
include <experimental/filesystem>
define have_filesystem 1
define experimental_filesystem
else
define have_filesystem 0
endif
#endif

See also
Preprocessor Directives

#ifdef and #ifndef Directives (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#ifdef identifier
#ifndef identifier

// equivalent to
#if defined identifier
#if !defined identifier

Remarks

// ifdef_ifndef.CPP
// compile with: /Dtest /c
#ifndef test
#define final
#endif

See also

The #ifdef and #ifndef directives perform the same task as the #if directive when it is used with defined(
identifier).

You can use the #ifdef and #ifndef directives anywhere #if can be used. The #ifdef identifier statement is
equivalent to #if 1 when identifier has been defined, and it is equivalent to #if 0 when identifier has not been
defined or has been undefined with the #undef directive. These directives check only for the presence or absence
of identifiers defined with #define , not for identifiers declared in the C or C++ source code.

These directives are provided only for compatibility with previous versions of the language. The defined(
identifier) constant expression used with the #if directive is preferred.

The #ifndef directive checks for the opposite of the condition checked by #ifdef. If the identifier has not been
defined (or its definition has been removed with #undef), the condition is true (nonzero). Otherwise, the condition
is false (0).

Microsoft Specific

The identifier can be passed from the command line using the /D option. Up to 30 macros can be specified with
/D .

This is useful for checking whether a definition exists, because a definition can be passed from the command line.
For example:

END Microsoft Specific

Preprocessor Directives

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-ifdef-and-hash-ifndef-directives-c-cpp.md

#import Directive (C++)
4/4/2019 • 6 minutes to read • Edit Online

Syntax
#import "filename" [attributes]
#import <filename> [attributes]

ParametersParameters

#import "..\drawctl\drawctl.tlb" no_namespace, raw_interfaces_only

C++ Specific

Used to incorporate information from a type library. The content of the type library is converted into C++
classes, mostly describing the COM interfaces.

filename
Specifies the type library to import. filename can be one of the following:

#import "progid:my.prog.id.1.5"

#import "libid:12341234-1234-1234-1234-123412341234" version("4.0") lcid("9")

The name of a file that contains a type library, such as an .olb, .tlb, or .dll file. The keyword, file:, can
precede each filename.

The progid of a control in the type library. The keyword, progid:, can precede each progid. For example:

For more on progids, see Specifying the Localization ID and Version Number.

Note that when compiling with a cross compiler on a 64-bit operating system, the compiler will be able
to read only the 32-bit registry hive. You might want to use the native 64-bit compiler to build and
register a 64-bit type library.

The library ID of the type library. The keyword, libid:, can precede each library ID. For example:

If you do not specify version or lcid, the rules that are applied to progid: are also applied to libid:.

An executable (.exe) file.

A library (.dll) file containing a type library resource (such as .ocx).

A compound document holding a type library.

Any other file format that can be understood by the LoadTypeLib API.

attributes
One or more #import attributes. Separate attributes with either a space or comma. For example:

-or-

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-import-directive-cpp.md

#import "..\drawctl\drawctl.tlb" no_namespace raw_interfaces_only

Remarks

Search Order for filename

SYNTAX FORM ACTION

Quoted form Instructs the preprocessor to look for type library files first
in the directory of the file that contains the #import
statement, and then in the directories of whatever files that
include (#include) that file. The preprocessor then
searches along the paths shown below.

Angle-bracket form Instructs the preprocessor to search for type library files
along the following paths:

1. The PATH environment variable path list
2. The LIB environment variable path list
3. The path specified by the /I (additional include directories)
compiler option, except it the compiler is searching for a
type library that was referenced from another type library
with the no_registry attribute.

Specifying the Localization ID and Version Number

#import "progid:my.prog.id" lcid("0") version("4.0)

Header Files Created by Import

filename is optionally preceded by a directory specification. The file name must name an existing file. The
difference between the two syntax forms is the order in which the preprocessor searches for the type library
files when the path is incompletely specified.

When you specify a progid, you can also specify the localization ID and version number of the progid. For
example:

If you do not specify a localization ID, a progid is chosen according to the following rules:

If there is only one localization ID, that one is used.

If there is more than one localization ID, the first one with version number 0, 9, or 409 is used.

If there is more than one localization ID and none of them are 0, 9, or 409, the last one is used.

If you do not specify a version number, the most recent version is used.

#import creates two header files that reconstruct the type library contents in C++ source code. The primary
header file is similar to that produced by the Microsoft Interface Definition Language (MIDL) compiler, but with
additional compiler-generated code and data. The primary header file has the same base name as the type
library, plus a .TLH extension. The secondary header file has the same base name as the type library, with a .TLI
extension. It contains the implementations for compiler-generated member functions, and is included (
#include) in the primary header file.

If importing a dispinterface property that uses byref parameters, #import will not generate

 Primary Type Library Header FilePrimary Type Library Header File

__declspec(property) statement for the function.

Both header files are placed in the output directory specified by the /Fo (name object file) option. They are then
read and compiled by the compiler as if the primary header file was named by a #include directive.

The following compiler optimizations come with the #import directive:

The header file, when created, is given the same timestamp as the type library.

When #import is processed, the compiler first checks if the header exists and is up to date. If yes, then it
does not need to be re-created.

The #import directive also participates in minimal rebuild and can be placed in a precompiled header file. See
Creating Precompiled Header Files for more information.

The primary type library header file consists of seven sections:

_COM_SMARTPTR_TYPEDEF(IMyInterface, __uuidof(IMyInterface));

typedef _com_ptr_t<_com_IIID<IMyInterface, __uuidof(IMyInterface)> > IMyInterfacePtr;

Heading boilerplate: Consists of comments, #include statement for COMDEF.H (which defines some
standard macros used in the header), and other miscellaneous setup information.

Forward references and typedefs: Consists of structure declarations such as struct IMyInterface and
typedefs.

Smart pointer declarations: The template class _com_ptr_t is a smart-pointer implementation that
encapsulates interface pointers and eliminates the need to call AddRef , Release , QueryInterface

functions. In addition, it hides the CoCreateInstance call in creating a new COM object. This section uses
macro statement _COM_SMARTPTR_TYPEDEF to establish typedefs of COM interfaces to be template
specializations of the _com_ptr_t template class. For example, for interface IMyInterface , the .TLH file
will contain:

which the compiler will expand to:

Type IMyInterfacePtr can then be used in place of the raw interface pointer IMyInterface* .
Consequently, there is no need to call the various IUnknown member functions

Typeinfo declarations: Primarily consists of class definitions and other items exposing the individual
typeinfo items returned by ITypeLib:GetTypeInfo . In this section, each typeinfo from the type library is
reflected in the header in a form dependent on the TYPEKIND information.

Optional old-style GUID definition: Contains initializations of the named GUID constants. These are
names of the form CLSID_CoClass and IID_Interface , similar to those generated by the MIDL compiler.

#include statement for the secondary type library header.

Footer boilerplate: Currently includes #pragma pack(pop) .

All sections, except the heading boilerplate and footer boilerplate section, are enclosed in a namespace with its
name specified by the library statement in the original IDL file. You can use the names from the type library
header either by an explicit qualification with the namespace name or by including the following statement:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/property-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/creating-precompiled-header-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/com-ptr-t-class

using namespace MyLib;

//
// Cross-referenced type libraries:
//
// #import "c:\path\typelib0.tlb"
//

#import Attributes

#import "test.lib" no_namespace \
 rename("OldName", "NewName")

See also

immediately after the #import statement in the source code.

The namespace can be suppressed by using the no_namespace) attribute of the #import directive. However,
suppressing the namespace may lead to name collisions. The namespace can also be renamed by the
rename_namespace attribute.

The compiler provides the full path to any type library dependency required by the type library it is currently
processing. The path is written, in the form of comments, into the type library header (.TLH) that the compiler
generates for each processed type library.

If a type library includes references to types defined in other type libraries, then the .TLH file will include
comments of the following sort:

The actual filename in the #import comment is the full path of the cross-referenced type library, as stored in
the registry. If you encounter errors that are due to missing type definitions, check the comments at the head of
the .TLH to see which dependent type libraries may need to be imported first. Likely errors are syntax errors
(for example, C2143, C2146, C2321), C2501 (missing decl-specifiers), or C2433 ('inline' not permitted on data
declaration) while compiling the .TLI file.

You must determine which of the dependency comments are not otherwise provided for by system headers
and then provide an #import directive at some point before the #import directive of the dependent type
library to resolve the errors.

#import can optionally include one or more attributes. These attributes tell the compiler to modify the contents
of the type-library headers. A backslash (\) symbol can be used to include additional lines in a single #import
statement. For example:

For more information, see #import Attributes.

END C++ Specific

Preprocessor Directives
Compiler COM Support

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/compiler-com-support

#import Attributes (C++)
4/4/2019 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

auto_rename Renames C++ reserved words by appending two
underscores (__) to the variable name to resolve potential
name conflicts.

auto_search Specifies that, when a type library is referenced with #import
and itself references another type library, the compiler can
do an implicit #import for the other type library.

embedded_idl Specifies that the type library is written to the .tlh file with
the attribute-generated code preserved.

exclude Excludes items from the type library header files being
generated.

high_method_prefix Specifies a prefix to be used in naming high-level properties
and methods.

high_property_prefixes Specifies alternate prefixes for three property methods.

implementation_only Suppresses the generation of the .tlh header file (the
primary header file).

include() Disables automatic exclusion.

inject_statement Inserts its argument as source text into the type-library
header.

named_guids Tells the compiler to define and initialize GUID variables in
old style, of the form LIBID_MyLib , CLSID_MyCoClass ,
IID_MyInterface , and DIID_MyDispInterface .

no_auto_exclude Disables automatic exclusion.

no_dual_interfaces Changes the way the compiler generates wrapper functions
for dual interface methods.

no_implementation Suppresses the generation of the .tli header, which contains
the implementations of the wrapper member functions.

no_namespace Specifies that the namespace name is not generated by the
compiler.

Provides links to attributes used with the #import directive.

Microsoft Specific

The following attributes are available to the #import directive.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-import-attributes-cpp.md

no_registry Tells the compiler not to search the registry for type
libraries.

no_search_namespace Has the same functionality as the no_namespace attribute
but is used on type libraries that you use the #import
directive with the auto_search attribute.

no_smart_pointers Suppresses the creation of smart pointers for all interfaces in
the type library.

raw_dispinterfaces Tells the compiler to generate low-level wrapper functions
for dispinterface methods and properties that call
IDispatch::Invoke and return the HRESULT error code.

raw_interfaces_only Suppresses the generation of error-handling wrapper
functions and property declarations that use those wrapper
functions.

raw_method_prefix Specifies a different prefix to avoid name collisions.

raw_native_types Disables the use of COM support classes in the high-level
wrapper functions and forces the use of low-level data types
instead.

raw_property_prefixes Specifies alternate prefixes for three property methods.

rename Works around name collision problems.

rename_namespace Renames the namespace that contains the contents of the
type library.

rename_search_namespace Has the same functionality as the rename_namespace
attribute but is used on type libraries that you use the
#import directive with the auto_search attribute.

tlbid Allows for loading libraries other than the primary type
library.

ATTRIBUTE DESCRIPTION

See also

END Microsoft Specific

#import Directive

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/property-cpp

auto_rename
4/4/2019 • 2 minutes to read • Edit Online

Syntax
auto_rename

Remarks

See also

C++ Specific

Renames C++ reserved words by appending two underscores (__) to the variable name to resolve potential name
conflicts.

This attribute is used when importing a type library that uses one or more C++ reserved words (keywords or
macros) as variable names.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/auto-rename.md

auto_search
4/4/2019 • 2 minutes to read • Edit Online

Syntax
auto_search

Remarks

See also

C++ Specific

Specifies that, when a type library is referenced with #import and itself references another type library, the
compiler can do an implicit #import for the other type library.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/auto-search.md

embedded_idl
4/4/2019 • 2 minutes to read • Edit Online

Syntax
embedded_idl[("param")]

ParametersParameters

Example
// import_embedded_idl.cpp
// compile with: /LD
#include <windows.h>
[module(name="MyLib2")];
#import "\school\bin\importlib.tlb" embedded_idl("no_emitidl")

Remarks

See also

C++ Specific

Specifies that the type library is written to the .tlh file with the attribute-generated code preserved.

param
Can be one of two values:

emitidl: Type information imported from the typelib will be present in the IDL generated for the attributed
project. This is the default and will be in effect if you do not specify a parameter to embedded_idl .

no_emitidl: Type information imported from the typelib will not be present in the IDL generated for the
attributed project.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/embedded-idl.md

exclude (#import)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
exclude("Name1"[, "Name2",...])

ParametersParameters

Remarks

See also

C++ Specific

Excludes items from the type library header files being generated.

Name1
First item to be excluded.

Name2
Second item to be excluded (if necessary).

Type libraries may include definitions of items defined in system headers or other type libraries. This attribute can
take any number of arguments, each being a top-level type library item to be excluded.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/exclude-hash-import.md

high_method_prefix
4/4/2019 • 2 minutes to read • Edit Online

Syntax
high_method_prefix("Prefix")

ParametersParameters

Remarks

See also

C++ Specific

Specifies a prefix to be used in naming high-level properties and methods.

Prefix
Prefix to be used.

By default, high-level error-handling properties and methods are exposed by member functions named without a
prefix. The names are from the type library.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/high-method-prefix.md

high_property_prefixes
4/4/2019 • 2 minutes to read • Edit Online

Syntax
high_property_prefixes("GetPrefix","PutPrefix","PutRefPrefix")

ParametersParameters

Remarks

See also

C++ Specific

Specifies alternate prefixes for three property methods.

GetPrefix
Prefix to be used for the propget methods.

PutPrefix
Prefix to be used for the propput methods.

PutRefPrefix
Prefix to be used for the propputref methods.

By default, high-level error-handling propget , propput , and propputref methods are exposed by member
functions named with prefixes Get , Put , and PutRef , respectively.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/high-property-prefixes.md

implementation_only
4/4/2019 • 2 minutes to read • Edit Online

Syntax
implementation_only

Remarks

NOTENOTE

See also

C++ Specific

Suppresses the generation of the .tlh header file (the primary header file).

This file contains all the declarations used to expose the type-library contents. The .tli header file, with the
implementations of the wrapper member functions, will be generated and included in the compilation.

When this attribute is specified, the content of the .tli header is in the same namespace as the one normally used in
the .tlh header. In addition, the member functions are not declared as inline.

The implementation_only attribute is intended for use in conjunction with the no_implementation attribute as a
way of keeping the implementations out of the precompiled header (PCH) file. An #import statement with the
no_implementation attribute is placed in the source region used to create the PCH. The resulting PCH is used by a

number of source files. An #import statement with the implementation_only attribute is then used outside the
PCH region. You are required to use this statement only once in one of the source files. This will generate all the
required wrapper member functions without additional recompilation for each source file.

The implementation_only attribute in one #import statement must be use in conjunction with another #import

statement, of the same type library, with the no_implementation attribute. Otherwise, compiler errors will be generated.
This is because wrapper class definitions generated by the #import statement with the no_implementation attribute are
required to compile the implementations generated by the implementation_only attribute.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/implementation-only.md

include()
4/4/2019 • 2 minutes to read • Edit Online

Syntax
include("Name1"[,"Name2", ...])

ParametersParameters

Remarks

See also

C++ Specific

Disables automatic exclusion.

Name1
First item to be forcibly included.

Name2
Second item to be forcibly included (if necessary).

Type libraries may include definitions of items defined in system headers or other type libraries. #import attempts
to avoid multiple definition errors by automatically excluding such items. If items have been excluded, as indicated
by Compiler Warning (level 3) C4192, and they should not have been, this attribute can be used to disable the
automatic exclusion. This attribute can take any number of arguments, each being the name of the type-library
item to be included.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/include-parens.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4192

inject_statement
4/4/2019 • 2 minutes to read • Edit Online

Syntax
inject_statement("source_text")

ParametersParameters

Remarks

See also

C++ Specific

Inserts its argument as source text into the type-library header.

source_text
Source text to be inserted into the type library header file.

The text is placed at the beginning of the namespace declaration that wraps the type-library contents in the header
file.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/inject-statement.md

named_guids
4/4/2019 • 2 minutes to read • Edit Online

Syntax
named_guids

Remarks

See also

C++ Specific

Tells the compiler to define and initialize GUID variables in old style, of the form LIBID_MyLib , CLSID_MyCoClass ,
IID_MyInterface , and DIID_MyDispInterface .

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/named-guids.md

no_auto_exclude
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_auto_exclude

Remarks

See also

C++ Specific

Disables automatic exclusion.

Type libraries may include definitions of items defined in system headers or other type libraries. #import attempts
to avoid multiple definition errors by automatically excluding such items. When this is done, Compiler Warning
(level 3) C4192 will be issued for each item to be excluded. You can disable this automatic exclusion by using this
attribute.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-auto-exclude.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4192

no_dual_interfaces
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_dual_interfaces

Remarks

See also

C++ Specific

Changes the way the compiler generates wrapper functions for dual interface methods.

Normally, the wrapper will call the method through the virtual function table for the interface. With
no_dual_interfaces, the wrapper instead calls IDispatch::Invoke to invoke the method.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-dual-interfaces.md

no_implementation
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_implementation

Remarks

See also

C++ Specific

Suppresses the generation of the .tli header, which contains the implementations of the wrapper member
functions.

If this attribute is specified, the .tlh header, with the declarations to expose type-library items, will be generated
without an #include statement to include the .tli header file.

This attribute is used in conjunction with implementation_only.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-implementation.md

no_namespace
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_namespace

Remarks

See also

C++ Specific

Specifies that the namespace name is not generated by the compiler.

The type-library contents in the #import header file are normally defined in a namespace. The namespace name
is specified in the library statement of the original IDL file. If the no_namespace attribute is specified, then this
namespace is not generated by the compiler.

If you want to use a different namespace name, then use the rename_namespace attribute instead.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-namespace.md

no_registry
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#import filename no_registry

ParametersParameters

Remarks

See also

no_registry tells the compiler not to search the registry for type libraries imported with #import .

filename
A type library.

If a referenced type library is not found in the include directories, the compilation will fail even if the type library is
in the registry. no_registry propagates to other type libraries implicitly imported with auto_search .

The compiler will never search the registry for type libraries that are specified by file name and passed directly to
#import .

When auto_search is specified, the additional #import s will be generated with the no_registry setting of the
initial #import (if the initial #import directive was no_registry, an auto_search -generated #import is also
no_registry.)

no_registry is useful if you want to import cross referenced type libraries without the risk of the compiler finding
an older version of the file in the registry. no_registry is also useful if the type library is not registered.

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-registry.md

no_search_namespace
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_search_namespace

Remarks

See also

C++ Specific

Has the same functionality as the no_namespace attribute but is used on type libraries that you use the #import

directive with the auto_search attribute.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-search-namespace.md

no_smart_pointers
4/4/2019 • 2 minutes to read • Edit Online

Syntax
no_smart_pointers

Remarks

See also

C++ Specific

Suppresses the creation of smart pointers for all interfaces in the type library.

By default, when you use #import , you get a smart pointer declaration for all interfaces in the type library. These
smart pointers are of type _com_ptr_t Class.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/no-smart-pointers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/com-ptr-t-class

raw_dispinterfaces
4/4/2019 • 2 minutes to read • Edit Online

Syntax
raw_dispinterfaces

Remarks

See also

C++ Specific

Tells the compiler to generate low-level wrapper functions for dispinterface methods and properties that call
IDispatch::Invoke and return the HRESULT error code.

If this attribute is not specified, only high-level wrappers are generated, which throw C++ exceptions in case of
failure.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/raw-dispinterfaces.md

raw_interfaces_only
4/4/2019 • 2 minutes to read • Edit Online

Syntax
raw_interfaces_only

Remarks

See also

C++ Specific

Suppresses the generation of error-handling wrapper functions and property declarations that use those wrapper
functions.

The raw_interfaces_only attribute also causes the default prefix used in naming the non-property functions to be
removed. Normally, the prefix is raw_. If this attribute is specified, the function names are directly from the type
library.

This attribute allows you to expose only the low-level contents of the type library.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/raw-interfaces-only.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/property-cpp

raw_method_prefix
4/4/2019 • 2 minutes to read • Edit Online

Syntax
raw_method_prefix("Prefix")

ParametersParameters

Remarks

NOTENOTE

See also

C++ Specific

Specifies a different prefix to avoid name collisions.

Prefix
The prefix to be used.

Low-level properties and methods are exposed by member functions named with a default prefix of raw_ to avoid
name collisions with the high-level error-handling member functions.

The effects of the raw_method_prefix attribute will not be changed by the presence of the raw_interfaces_only attribute.
The raw_method_prefix always takes precedence over raw_interfaces_only in specifying a prefix. If both attributes are
used in the same #import statement, then the prefix specified by the raw_method_prefix attribute is used.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/raw-method-prefix.md

raw_native_types
4/4/2019 • 2 minutes to read • Edit Online

Syntax
raw_native_types

Remarks

See also

C++ Specific

Disables the use of COM support classes in the high-level wrapper functions and forces the use of low-level data
types instead.

By default, the high-level error-handling methods use the COM support classes _bstr_t and _variant_t in place of
the BSTR and VARIANT data types and raw COM interface pointers. These classes encapsulate the details of
allocating and deallocating memory storage for these data types, and greatly simplify type casting and conversion
operations.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/raw-native-types.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/bstr-t-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/variant-t-class

raw_property_prefixes
4/4/2019 • 2 minutes to read • Edit Online

Syntax
raw_property_prefixes("GetPrefix","PutPrefix","PutRefPrefix")

ParametersParameters

Remarks

See also

C++ Specific

Specifies alternate prefixes for three property methods.

GetPrefix
Prefix to be used for the propget methods.

PutPrefix
Prefix to be used for the propput methods.

PutRefPrefix
Prefix to be used for the propputref methods.

By default, low-level propget , propput , and propputref methods are exposed by member functions named with
prefixes of get_, put_, and putref_ respectively. These prefixes are compatible with the names used in the header
files generated by MIDL.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/raw-property-prefixes.md

rename (#import)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
rename("OldName","NewName")

ParametersParameters

Remarks

NOTENOTE

rename("MyParent","MyParentX")

rename("GetMyParent","GetMyParentX")

See also

C++ Specific

Works around name collision problems.

OldName
Old name in the type library.

NewName
Name to be used instead of the old name.

If this attribute is specified, the compiler replaces all occurrences of OldName in a type library with the user-
supplied NewName in the resulting header files.

This attribute can be used when a name in the type library coincides with a macro definition in the system header
files. If this situation is not resolved, then various syntax errors will be generated, such as Compiler Error C2059
and Compiler Error C2061.

The replacement is for a name used in the type library, not for a name used in the resulting header file.

For example, suppose a property named MyParent exists in a type library, and a macro GetMyParent is defined in a
header file and used before #import . Since GetMyParent is the default name of a wrapper function for the error-
handling get property, a name collision will occur. To work around the problem, use the following attribute in the
#import statement:

which renames the name MyParent in the type library. An attempt to rename the GetMyParent wrapper name will
fail:

This is because the name GetMyParent only occurs in the resulting type library header file.

END C++ Specific

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/rename-hash-import.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/compiler-error-c2059
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/compiler-error-c2061

#import Attributes
#import Directive

rename_namespace
4/4/2019 • 2 minutes to read • Edit Online

Syntax
rename_namespace("NewName")

ParametersParameters

Remarks

See also

C++ Specific

Renames the namespace that contains the contents of the type library.

NewName
The new name of the namespace.

It takes a single argument, NewName, which specifies the new name for the namespace.

To remove the namespace, use the no_namespace attribute instead.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/rename-namespace.md

rename_search_namespace
4/4/2019 • 2 minutes to read • Edit Online

Syntax
rename_search_namespace("NewName")

ParametersParameters

Remarks

See also

C++ Specific

Has the same functionality as the rename_namespace attribute but is used on type libraries that you use the
#import directive with the auto_search attribute.

NewName
The new name of the namespace.

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/rename-search-namespace.md

tlbid
4/4/2019 • 2 minutes to read • Edit Online

Syntax
tlbid(number)

ParametersParameters

Remarks

#import <MyResource.dll> tlbid(2)

LoadTypeLib("MyResource.dll\\2");

See also

C++ Specific

Allows for loading libraries other than the primary type library.

number
The number of the type library in filename .

If multiple type libraries are built into a single DLL, it possible to load libraries other than the primary type library
by using tlbid.

For example:

is equivalent to:

END C++ Specific

#import Attributes
#import Directive

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/tlbid.md

#include Directive (C/C++)
4/4/2019 • 4 minutes to read • Edit Online

Syntax
#include "path-spec"
#include <path-spec>

Remarks

SYNTAX FORM ACTION

Quoted form The preprocessor searches for include files in this order:

1) In the same directory as the file that contains the #include
statement.

2) In the directories of the currently opened include files, in
the reverse order in which they were opened. The search
begins in the directory of the parent include file and continues
upward through the directories of any grandparent include
files.

3) Along the path that's specified by each /I compiler option.

4) Along the paths that are specified by the INCLUDE
environment variable.

Angle-bracket form The preprocessor searches for include files in this order:

1) Along the path that's specified by each /I compiler option.

2) When compiling occurs on the command line, along the
paths that are specified by the INCLUDE environment variable.

Tells the preprocessor to treat the contents of a specified file as if they appear in the source program at the point
where the directive appears.

You can organize constant and macro definitions into include files and then use #include directives to add them to
any source file. Include files are also useful for incorporating declarations of external variables and complex data
types. The types may be defined and named only once in an include file created for that purpose.

The path-spec is a file name that may optionally be preceded by a directory specification. The file name must name
an existing file. The syntax of the path-spec depends on the operating system on which the program is compiled.

For information about how to reference assemblies in a C++ application that's compiled by using /clr, see #using.

Both syntax forms cause that directive to be replaced by the entire contents of the specified include file. The
difference between the two forms is the order in which the preprocessor searches for header files when the path is
incompletely specified. The following table shows the difference between the two syntax forms.

The preprocessor stops searching as soon as it finds a file that has the given name. If you enclose a complete,
unambiguous path specification for the include file between double quotation marks (" "), the preprocessor

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-include-directive-c-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation

#include <stdio.h>

#include "defs.h"

CL /ID:\MSVC\INCLUDE MYPROG.C

searches only that path specification and ignores the standard directories.

If the file name that's enclosed in double quotation marks is an incomplete path specification, the preprocessor first
searches the "parent" file's directory. A parent file is the file that contains the #include directive. For example, if
you include a file named file2 in a file named file1, file1 is the parent file.

Include files can be "nested"; that is, an #include directive can appear in a file that's named by another #include
directive. For example, file2 could include file3. In this case, file1 would still be the parent of file2, but it would be
the "grandparent" of file3.

When include files are nested and when compiling occurs on the command line, directory searching begins with
the directories of the parent file and then proceeds through the directories of any grandparent files. That is,
searching begins relative to the directory that contains the source that's currently being processed. If the file is not
found, the search moves to directories that are specified by the /I (Additional include directories) compiler option.
Finally, the directories that are specified by the INCLUDE environment variable are searched.

From the Visual Studio development environment, the INCLUDE environment variable is ignored. For information
about how to set the directories that are searched for include files—this also applies to the L IB environment
variable—see VC++ Directories Property Page.

This example shows file inclusion by using angle brackets:

This example adds the contents of the file named STDIO.H to the source program. The angle brackets cause the
preprocessor to search the directories that are specified by the INCLUDE environment variable for STDIO.H, after
it searches directories that are specified by the /I compiler option.

The next example shows file inclusion by using the quoted form:

This example adds the contents of the file that's specified by DEFS.H to the source program. The quotation marks
mean that the preprocessor first searches the directory that contains the parent source file.

Nesting of include files can continue up to 10 levels. When the nested #include is processed, the preprocessor
continues to insert the enclosing include file into the original source file.

Microsoft Specific

To locate includable source files, the preprocessor first searches the directories that are specified by the /I compiler
option. If the /I option is not present or fails, the preprocessor uses the INCLUDE environment variable to find any
include files within angle brackets. The INCLUDE environment variable and /I compiler option can contain
multiple paths, separated by semicolons (;). If more than one directory appears as part of the /I option or within
the INCLUDE environment variable, the preprocessor searches them in the order in which they appear.

For example, the command

causes the preprocessor to search the directory D:\MSVC\INCLUDE\ for include files such as STDIO.H. The
commands

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/i-additional-include-directories
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/vcpp-directories-property-page

SET INCLUDE=D:\MSVC\INCLUDE
CL MYPROG.C

See also

have the same effect. If both sets of searches fail, a fatal compiler error is generated.

If the file name is fully specified for an include file that has a path that includes a colon (for example,
F:\MSVC\SPECIAL\INCL\TEST.H), the preprocessor follows the path.

For include files that are specified as #include "path-spec" , directory searching begins with the directory of the
parent file and then proceeds through the directories of any grandparent files. That is, searching begins relative to
the directory that contains the source file that contains the #include directive that's being processed. If there is no
grandparent file and the file has not been found, the search continues as if the file name were enclosed in angle
brackets.

END Microsoft Specific

Preprocessor Directives
/I (Additional include directories)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/i-additional-include-directories

#line Directive (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

Syntax

Remarks

#line 151 "copy.c"

#define ASSERT(cond) if(!(cond))\
{printf("assertion error line %d, file(%s)\n", \
__LINE__, __FILE__);}

See also

The #line directive tells the preprocessor to change the compiler's internally stored line number and filename to a
given line number and filename.

#line digit-sequence ["filename"]

The compiler uses the line number and optional filename to refer to errors that it finds during compilation. The line
number usually refers to the current input line, and the filename refers to the current input file. The line number is
incremented after each line is processed.

The digit-sequence value can be any integer constant. Macro replacement can be performed on the preprocessing
tokens, but the result must evaluate to the correct syntax. The filename can be any combination of characters and
must be enclosed in double quotation marks (" "). If filename is omitted, the previous filename remains
unchanged.

You can alter the source line number and filename by writing a #line directive. The translator uses the line number
and filename to determine the values of the predefined macros __FILE__ and __LINE__ . You can use these macros
to insert self-descriptive error messages into the program text. For more information on these predefined macros,
see Predefined Macros.

The __FILE__ macro expands to a string whose contents are the filename, surrounded by double quotation marks
(" ").

If you change the line number and filename, the compiler ignores the previous values and continues processing
with the new values. The #line directive is typically used by program generators to cause error messages to refer
to the original source file instead of to the generated program.

The following examples illustrate #line and the __LINE__ and __FILE__ macros.

In this statement, the internally stored line number is set to 151 and the filename is changed to copy.c.

In this example, the macro ASSERT uses the predefined macros __LINE__ and __FILE__ to print an error message
about the source file if a given assertion is not true.

Preprocessor Directives

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-line-directive-c-cpp.md

Null Directive
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#

See also

The null preprocessor directive is a single number sign (#) alone on a line. It has no effect.

Preprocessor Directives

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/null-directive.md

#undef Directive (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#undef
identifier

Remarks

#define WIDTH 80
#define ADD(X, Y) ((X) + (Y))
.
.
.
#undef WIDTH
#undef ADD

See also

Removes (undefines) a name previously created with #define .

The #undef directive removes the current definition of identifier. Consequently, subsequent occurrences of
identifier are ignored by the preprocessor. To remove a macro definition using #undef, give only the macro
identifier ; do not give a parameter list.

You can also apply the #undef directive to an identifier that has no previous definition. This ensures that the
identifier is undefined. Macro replacement is not performed within #undef statements.

The #undef directive is typically paired with a #define directive to create a region in a source program in which
an identifier has a special meaning. For example, a specific function of the source program can use manifest
constants to define environment-specific values that do not affect the rest of the program. The #undef directive
also works with the #if directive to control conditional compilation of the source program. See The #if, #elif,
#else, and #endif Directives for more information.

In the following example, the #undef directive removes definitions of a symbolic constant and a macro. Note that
only the identifier of the macro is given.

Microsoft Specific

Macros can be undefined from the command line using the /U option, followed by the macro names to be
undefined. The effect of issuing this command is equivalent to a sequence of #undef macro-name statements at
the beginning of the file.

END Microsoft Specific

Preprocessor Directives

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-undef-directive-c-cpp.md

#using Directive (C++/CLI)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#using file [as_friend]

ParametersParameters

Remarks

NOTENOTE

Imports metadata into a program compiled with /clr.

file
An MSIL .dll, .exe, .netmodule, or .obj. For example,

#using <MyComponent.dll>

as_friend
Specifies that all types in file are accessible. For more information, see Friend Assemblies (C++).

file can be a Microsoft intermediate language (MSIL) file that you import for its managed data and managed
constructs. If a .dll file contains an assembly manifest, then all the .dlls referenced in the manifest are imported and
the assembly you are building will list file in the metadata as an assembly reference.

If file does not contain an assembly (if file is a module) and if you do not intend to use type information from the
module in the current (assembly) application, you have the option of just indicating that the module is part the
assembly; use /ASSEMBLYMODULE. The types in the module would then be available to any application that
referenced the assembly.

An alternative to use #using is the /FU compiler option.

.exe assemblies passed to #using should be compiled by using one of the .NET Visual Studio compilers (Visual
Basic or Visual C#, for example). Attempting to import metadata from an .exe assembly compiled with /clr will
result in a file load exception.

A component that is referenced with #using can be run with a different version of the file imported at compile time, causing
a client application to give unexpected results.

In order for the compiler to recognize a type in an assembly (not a module), it needs to be forced to resolve the
type, which you can do, for example, by defining an instance of the type. There are other ways to resolve type
names in an assembly for the compiler, for example, if you inherit from a type in an assembly, the type name will
then become known to the compiler.

When importing metadata built from source code that used __declspec(thread), the thread semantics are not
persisted in metadata. For example, a variable declared with __declspec(thread), compiled in a program that is
build for the .NET Framework common language runtime, and then imported via #using, will no longer have
__declspec(thread) semantics on the variable.

All imported types (both managed and native) in a file referenced by #using are available, but the compiler treats

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hash-using-directive-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/friend-assemblies-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/assemblymodule-add-a-msil-module-to-the-assembly
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fu-name-forced-hash-using-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/thread

Example

// using_assembly_A.cpp
// compile with: /clr /LD
public ref class A {};

Example
// using_assembly_B.cpp
// compile with: /clr /LD
#using "using_assembly_A.dll"
public ref class B {
public:
 void Test(A a) {}
 void Test() {}
};

Example

// using_assembly_C.cpp
// compile with: /clr
#using "using_assembly_B.dll"
int main() {
 B b;
 b.Test();
}

See also

native types as declarations not definitions.

mscorlib.dll is automatically referenced when compiling with /clr .

The LIBPATH environment variable specifies the directories that will be searched when the compiler tries to
resolve file names passed to #using.

The compiler will search for references along the following path:

A path specified in the #using statement.

The current directory.

The .NET Framework system directory.

Directories added with the /AI compiler option.

Directories on LIBPATH environment variable.

If you build an assembly (C) and reference an assembly (B) that itself references another assembly (A), you will not
have to explicitly reference assembly A unless you explicitly use one of A's types in C.

In the following sample, there is no compiler error for not referencing using_assembly_A.dll because the program
does not use any of the types defined in using_assembly_A.cpp.

Preprocessor Directives

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ai-specify-metadata-directories

Preprocessor Operators
4/4/2019 • 2 minutes to read • Edit Online

OPERATOR ACTION

Stringizing operator (#) Causes the corresponding actual argument to be enclosed in
double quotation marks

Charizing operator (#@) Causes the corresponding argument to be enclosed in single
quotation marks and to be treated as a character (Microsoft
Specific)

Token-pasting operator (##) Allows tokens used as actual arguments to be concatenated
to form other tokens

defined operator Simplifies the writing of compound expressions in certain
macro directives

See also

Four preprocessor-specific operators are used in the context of the #define directive (see the following list for a
summary of each). The stringizing, charizing, and token-pasting operators are discussed in the next three sections.
For information on the defined operator, see The #if, #elif, #else, and #endif Directives.

Preprocessor Directives
Predefined Macros
C/C++ Preprocessor Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/preprocessor-operators.md

Stringizing Operator (#)
4/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Examples

int main() {
 printf_s("In quotes in the printf function call\n" "\n");
 printf_s("\"In quotes when printed to the screen\"\n" "\n");
 printf_s("\"This: \\\" prints an escaped double quote\"" "\n");
}

// stringizer.cpp
#include <stdio.h>
#define stringer(x) printf_s(#x "\n")
int main() {
 stringer(In quotes in the printf function call);
 stringer("In quotes when printed to the screen");
 stringer("This: \" prints an escaped double quote");
}

The number-sign or "stringizing" operator (#) converts macro parameters to string literals without expanding the
parameter definition. It is used only with macros that take arguments. If it precedes a formal parameter in the
macro definition, the actual argument passed by the macro invocation is enclosed in quotation marks and treated
as a string literal. The string literal then replaces each occurrence of a combination of the stringizing operator and
formal parameter within the macro definition.

The Microsoft C (versions 6.0 and earlier) extension to the ANSI C standard that previously expanded macro formal
arguments appearing inside string literals and character constants is no longer supported. Code that relied on this extension
should be rewritten using the stringizing (#) operator.

White space preceding the first token of the actual argument and following the last token of the actual argument is
ignored. Any white space between the tokens in the actual argument is reduced to a single white space in the
resulting string literal. Thus, if a comment occurs between two tokens in the actual argument, it is reduced to a
single white space. The resulting string literal is automatically concatenated with any adjacent string literals from
which it is separated only by white space.

Further, if a character contained in the argument usually requires an escape sequence when used in a string literal
(for example, the quotation mark (") or backslash (\) character), the necessary escape backslash is automatically
inserted before the character.

The Visual C++ stringizing operator does not behave correctly when it is used with strings that include escape
sequences. In this situation, the compiler generates Compiler Error C2017.

The following example shows a macro definition that includes the stringizing operator and a main function that
invokes the macro:

Such invocations would be expanded during preprocessing, producing the following code:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/stringizing-operator-hash.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-errors-1/compiler-error-c2017

In quotes in the printf function call
"In quotes when printed to the screen"
"This: \" prints an escaped double quote"

// stringizer_2.cpp
// compile with: /E
#define F abc
#define B def
#define FB(arg) #arg
#define FB1(arg) FB(arg)
FB(F B)
FB1(F B)

See also

The following sample shows how you can expand a macro parameter:

Preprocessor Operators

Charizing Operator (#@)
4/4/2019 • 2 minutes to read • Edit Online

#define makechar(x) #@x

a = makechar(b);

a = 'b';

See also

Microsoft Specific

The charizing operator can be used only with arguments of macros. If #@ precedes a formal parameter in the
definition of the macro, the actual argument is enclosed in single quotation marks and treated as a character when
the macro is expanded. For example:

causes the statement

to be expanded to

The single-quotation character cannot be used with the charizing operator.

END Microsoft Specific

Preprocessor Operators

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/charizing-operator-hash-at.md

Token-Pasting Operator (##)
4/4/2019 • 2 minutes to read • Edit Online

#define paster(n) printf_s("token" #n " = %d", token##n)
int token9 = 9;

paster(9);

printf_s("token" "9" " = %d", token9);

printf_s("token9 = %d", token9);

Example
// preprocessor_token_pasting.cpp
#include <stdio.h>
#define paster(n) printf_s("token" #n " = %d", token##n)
int token9 = 9;

int main()
{
 paster(9);
}

token9 = 9

The double-number-sign or "token-pasting" operator (##), which is sometimes called the "merging" operator, is
used in both object-like and function-like macros. It permits separate tokens to be joined into a single token and
therefore cannot be the first or last token in the macro definition.

If a formal parameter in a macro definition is preceded or followed by the token-pasting operator, the formal
parameter is immediately replaced by the unexpanded actual argument. Macro expansion is not performed on the
argument prior to replacement.

Then, each occurrence of the token-pasting operator in token-string is removed, and the tokens preceding and
following it are concatenated. The resulting token must be a valid token. If it is, the token is scanned for possible
replacement if it represents a macro name. The identifier represents the name by which the concatenated tokens
will be known in the program before replacement. Each token represents a token defined elsewhere, either within
the program or on the compiler command line. White space preceding or following the operator is optional.

This example illustrates use of both the stringizing and token-pasting operators in specifying program output:

If a macro is called with a numeric argument like

the macro yields

which becomes

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/token-pasting-operator-hash-hash.md

See also
Preprocessor Operators

Macros (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

See also

Preprocessing expands macros in all lines that are not preprocessor directives (lines that do not have a # as the
first non-white-space character) and in parts of some directives that are not skipped as part of a conditional
compilation. "Conditional compilation" directives allow you to suppress compilation of parts of a source file by
testing a constant expression or identifier to determine which text blocks are passed on to the compiler and which
text blocks are removed from the source file during preprocessing.

The #define directive is typically used to associate meaningful identifiers with constants, keywords, and
commonly used statements or expressions. Identifiers that represent constants are sometimes called "symbolic
constants" or "manifest constants." Identifiers that represent statements or expressions are called "macros." In this
preprocessor documentation, only the term "macro" is used.

When the name of the macro is recognized in the program source text or in the arguments of certain other
preprocessor commands, it is treated as a call to that macro. The macro name is replaced by a copy of the macro
body. If the macro accepts arguments, the actual arguments following the macro name are substituted for formal
parameters in the macro body. The process of replacing a macro call with the processed copy of the body is called
"expansion" of the macro call.

In practical terms, there are two types of macros. "Object-like" macros take no arguments, whereas "function-like"
macros can be defined to accept arguments so that they look and act like function calls. Because macros do not
generate actual function calls, you can sometimes make programs run faster by replacing function calls with
macros. (In C++, inline functions are often a preferred method.) However, macros can create problems if you do
not define and use them with care. You may have to use parentheses in macro definitions with arguments to
preserve the proper precedence in an expression. Also, macros may not correctly handle expressions with side
effects. See the getrandom example in The #define Directive for more information.

Once you have defined a macro, you cannot redefine it to a different value without first removing the original
definition. However, you can redefine the macro with exactly the same definition. Thus, the same definition can
appear more than once in a program.

The #undef directive removes the definition of a macro. Once you have removed the definition, you can redefine
the macro to a different value. The #define Directive and The #undef Directive discuss the #define and #undef

directives, respectively.

For more information, see,

Macros and C++

Variadic Macros

Predefined Macros

C/C++ Preprocessor Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/macros-c-cpp.md

Macros and C++
4/4/2019 • 2 minutes to read • Edit Online

See also

C++ offers new capabilities, some of which supplant those offered by the ANSI C preprocessor. These new
capabilities enhance the type safety and predictability of the language:

In C++, objects declared as const can be used in constant expressions. This allows programs to declare
constants that have type and value information, and enumerations that can be viewed symbolically with the
debugger. Using the preprocessor #define directive to define constants is not as precise. No storage is
allocated for a const object unless an expression that takes its address is found in the program.

The C++ inline function capability supplants function-type macros. The advantages of using inline functions
over macros are:

Type safety. Inline functions are subject to the same type checking as normal functions. Macros are
not type safe.

Correct handling of arguments that have side effects. Inline functions evaluate the expressions
supplied as arguments prior to entering the function body. Therefore, there is no chance that an
expression with side effects will be unsafe.

For more information on inline functions, see inline, __inline, __forceinline.

For backward compatibility, all preprocessor facilities that existed in ANSI C and in earlier C++ specifications are
preserved for Microsoft C++.

Predefined Macros
Macros (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/macros-and-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inline-functions-cpp

Variadic Macros
4/4/2019 • 2 minutes to read • Edit Online

Remarks

Example
// variadic_macros.cpp
#include <stdio.h>
#define EMPTY

#define CHECK1(x, ...) if (!(x)) { printf(__VA_ARGS__); }
#define CHECK2(x, ...) if ((x)) { printf(__VA_ARGS__); }
#define CHECK3(...) { printf(__VA_ARGS__); }
#define MACRO(s, ...) printf(s, __VA_ARGS__)

int main() {
 CHECK1(0, "here %s %s %s", "are", "some", "varargs1(1)\n");
 CHECK1(1, "here %s %s %s", "are", "some", "varargs1(2)\n"); // won't print

 CHECK2(0, "here %s %s %s", "are", "some", "varargs2(3)\n"); // won't print
 CHECK2(1, "here %s %s %s", "are", "some", "varargs2(4)\n");

 // always invokes printf in the macro
 CHECK3("here %s %s %s", "are", "some", "varargs3(5)\n");

 MACRO("hello, world\n");

 MACRO("error\n", EMPTY); // would cause error C2059, except VC++
 // suppresses the trailing comma
}

here are some varargs1(1)
here are some varargs2(4)
here are some varargs3(5)
hello, world
error

See also

Variadic macros are function-like macros that contain a variable number of arguments.

To use variadic macros, the ellipsis may be specified as the final formal argument in a macro definition, and the
replacement identifier __VA_ARGS__ may be used in the definition to insert the extra arguments. __VA_ARGS__ is
replaced by all of the arguments that match the ellipsis, including commas between them.

The C Standard specifies that at least one argument must be passed to the ellipsis, to ensure that the macro does
not resolve to an expression with a trailing comma. The Visual C++ implementation will suppress a trailing comma
if no arguments are passed to the ellipsis.

Macros (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/variadic-macros.md

Predefined Macros
4/8/2019 • 12 minutes to read • Edit Online

Standard predefined identifier

Standard predefined macros

The Microsoft C/C++ compiler (MSVC) predefines certain preprocessor macros, depending on the language (C
or C++), the compilation target, and the chosen compiler options.

MSVC supports the predefined preprocessor macros required by the ANSI/ISO C99 standard and the ISO
C++14 and C++17 standards. The implementation also supports several more Microsoft-specific preprocessor
macros. Some macros are defined only for specific build environments or compiler options. Except where noted,
the macros are defined throughout a translation unit as if they were specified as /D compiler option arguments.
When defined, the macros are expanded to the specified values by the preprocessor before compilation. The
predefined macros take no arguments and can't be redefined.

The compiler supports this predefined identifier specified by ISO C99 and ISO C++11.

void example(){
 printf("%s\n", __func__);
} // prints "example"

__func__ The unqualified and unadorned name of the enclosing function as a function-local static const
array of char.

The compiler supports these predefined macros specified by the ISO C99 and ISO C++17 standards.

__cplusplus Defined as an integer literal value when the translation unit is compiled as C++. Otherwise,
undefined.

__DATE__ The compilation date of the current source file. The date is a constant length string literal of the
form Mmm dd yyyy. The month name Mmm is the same as the abbreviated month name generated by the
C Runtime Library (CRT) asctime function. The first character of date dd is a space if the value is less than
10. This macro is always defined.

__FILE__ The name of the current source file. __FILE__ expands to a character string literal. To ensure that
the full path to the file is displayed, use /FC (Full Path of Source Code File in Diagnostics). This macro is
always defined.

__LINE__ Defined as the integer line number in the current source file. The value of the __LINE__ macro
can be changed by using a #line directive. This macro is always defined.

__STDC__ Defined as 1 only when compiled as C and if the /Za compiler option is specified. Otherwise,
undefined.

__STDC_HOSTED__ Defined as 1 if the implementation is a hosted implementation, one that supports
the entire required standard library. Otherwise, defined as 0.

__STDCPP_THREADS__ Defined as 1 if and only if a program can have more than one thread of
execution, and compiled as C++. Otherwise, undefined.

__TIME__ The time of translation of the preprocessed translation unit. The time is a character string literal

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/predefined-macros.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-wasctime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fc-full-path-of-source-code-file-in-diagnostics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

Microsoft-specific predefined macros

of the form hh:mm:ss, the same as the time returned by the CRT asctime function. This macro is always
defined.

MSVC supports these additional predefined macros.

// clr_ver.cpp
// compile with: /clr
using namespace System;
int main() {
 Console::WriteLine(__CLR_VER);
}

__ATOM__ Defined as 1 when the /favor:ATOM compiler option is set and the compiler target is x86 or
x64. Otherwise, undefined.

__AVX__ Defined as 1 when the /arch:AVX or /arch:AVX2 compiler options are set and the compiler target
is x86 or x64. Otherwise, undefined.

__AVX2__ Defined as 1 when the /arch:AVX2 compiler option is set and the compiler target is x86 or x64.
Otherwise, undefined.

_CHAR_UNSIGNED Defined as 1 if the default char type is unsigned. This value is defined when the /J
(Default char Type Is unsigned) compiler option is set. Otherwise, undefined.

__CLR_VER Defined as an integer literal that represents the version of the Common Language Runtime
(CLR) used to compile the app. The value is encoded in the form Mmmbbbbb , where M is the major version
of the runtime, mm is the minor version of the runtime, and bbbbb is the build number. __CLR_VER is
defined if the /clr compiler option is set. Otherwise, undefined.

_CONTROL_FLOW_GUARD Defined as 1 when the /guard:cf (Enable Control Flow Guard) compiler
option is set. Otherwise, undefined.

__COUNTER__ Expands to an integer literal that starts at 0. The value is incremented by 1 every time it's
used in a source file, or in included headers of the source file. __COUNTER__ remembers its state when
you use precompiled headers. This macro is always defined.

This example uses __COUNTER__ to assign unique identifiers to three different objects of the same type. The
exampleClass constructor takes an integer as a parameter. In main , the application declares three objects

of type exampleClass , using __COUNTER__ as the unique identifier parameter :

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-wasctime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/favor-optimize-for-architecture-specifics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-x86
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-x86
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-x86
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/j-default-char-type-is-unsigned
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/guard-enable-control-flow-guard

// macro__COUNTER__.cpp
// Demonstration of __COUNTER__, assigns unique identifiers to
// different objects of the same type.
// Compile by using: cl /EHsc /W4 macro__COUNTER__.cpp
#include <stdio.h>

class exampleClass {
 int m_nID;
public:
 // initialize object with a read-only unique ID
 exampleClass(int nID) : m_nID(nID) {}
 int GetID(void) { return m_nID; }
};

int main()
{
 // __COUNTER__ is initially defined as 0
 exampleClass e1(__COUNTER__);

 // On the second reference, __COUNTER__ is now defined as 1
 exampleClass e2(__COUNTER__);

 // __COUNTER__ is now defined as 2
 exampleClass e3(__COUNTER__);

 printf("e1 ID: %i\n", e1.GetID());
 printf("e2 ID: %i\n", e2.GetID());
 printf("e3 ID: %i\n", e3.GetID());

 // Output
 // ------------------------------
 // e1 ID: 0
 // e2 ID: 1
 // e3 ID: 2

 return 0;
}

// cplusplus_cli.cpp
// compile by using /clr
#include "stdio.h"
int main() {
 #ifdef __cplusplus_cli
 printf("%d\n", __cplusplus_cli);
 #else
 printf("not defined\n");
 #endif
}

__cplusplus_cli Defined as the integer literal value 200406 when compiled as C++ and a /clr compiler
option is set. Otherwise, undefined. When defined, __cplusplus_cli is in effect throughout the translation
unit.

__cplusplus_winrt Defined as the integer literal value 201009 when compiled as C++ and the /ZW
(Windows Runtime Compilation) compiler option is set. Otherwise, undefined.

_CPPRTTI Defined as 1 if the /GR (Enable Run-Time Type Information) compiler option is set. Otherwise,
undefined.

_CPPUNWIND Defined as 1 if one or more of the /GX (Enable Exception Handling), /clr (Common
Language Runtime Compilation), or /EH (Exception Handling Model) compiler options are set. Otherwise,
undefined.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zw-windows-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gr-enable-run-time-type-information
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gx-enable-exception-handling
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

// Demonstrates functionality of __FUNCTION__, __FUNCDNAME__, and __FUNCSIG__ macros
void exampleFunction()
{
 printf("Function name: %s\n", __FUNCTION__);
 printf("Decorated function name: %s\n", __FUNCDNAME__);
 printf("Function signature: %s\n", __FUNCSIG__);

 // Sample Output
 // ---
 // Function name: exampleFunction
 // Decorated function name: ?exampleFunction@@YAXXZ
 // Function signature: void __cdecl exampleFunction(void)
}

// integral_max_bits.cpp
#include <stdio.h>
int main() {
 printf("%d\n", _INTEGRAL_MAX_BITS);
}

_DEBUG Defined as 1 when the /LDd, /MDd, or /MTd compiler option is set. Otherwise, undefined.

_DLL Defined as 1 when the /MD or /MDd (Multithreaded DLL) compiler option is set. Otherwise,
undefined.

__FUNCDNAME__ Defined as a string literal that contains the decorated name of the enclosing function.
The macro is defined only within a function. The __FUNCDNAME__ macro isn't expanded if you use the
/EP or /P compiler option.

This example uses the __FUNCDNAME__ , __FUNCSIG__ , and __FUNCTION__ macros to display function
information.

__FUNCSIG__ Defined as a string literal that contains the signature of the enclosing function. The macro is
defined only within a function. The __FUNCSIG__ macro isn't expanded if you use the /EP or /P compiler
option. When compiled for a 64-bit target, the calling convention is __cdecl by default. For an example of
usage, see the __FUNCDNAME__ macro.

__FUNCTION__ Defined as a string literal that contains the undecorated name of the enclosing function.
The macro is defined only within a function. The __FUNCTION__ macro isn't expanded if you use the /EP
or /P compiler option. For an example of usage, see the __FUNCDNAME__ macro.

_INTEGRAL_MAX_BITS Defined as the integer literal value 64, the maximum size (in bits) for a non-
vector integral type. This macro is always defined.

__INTELLISENSE__ Defined as 1 during an IntelliSense compiler pass in the Visual Studio IDE.
Otherwise, undefined. You can use this macro to guard code the IntelliSense compiler doesn't understand,
or use it to toggle between the build and IntelliSense compiler. For more information, see Troubleshooting
Tips for IntelliSense Slowness.

_ISO_VOLATILE Defined as 1 if the /volatile:iso compiler option is set. Otherwise, undefined.

_KERNEL_MODE Defined as 1 if the /kernel (Create Kernel Mode Binary) compiler option is set.
Otherwise, undefined.

_M_AMD64 Defined as the integer literal value 100 for compilations that target x64 processors.
Otherwise, undefined.

_M_ARM Defined as the integer literal value 7 for compilations that target ARM processors. Otherwise,
undefined.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/decorated-names
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ep-preprocess-to-stdout-without-hash-line-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/p-preprocess-to-a-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ep-preprocess-to-stdout-without-hash-line-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/p-preprocess-to-a-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ep-preprocess-to-stdout-without-hash-line-directives
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/p-preprocess-to-a-file
https://devblogs.microsoft.com/cppblog/troubleshooting-tips-for-intellisense-slowness/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/volatile-volatile-keyword-interpretation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/kernel-create-kernel-mode-binary

_M_ARM_ARMV7VE Defined as 1 when the /arch:ARMv7VE compiler option is set for compilations that
target ARM processors. Otherwise, undefined.

_M_ARM_FP Defined as an integer literal value that indicates which /arch compiler option was set for
ARM processor targets. Otherwise, undefined.

A value in the range 30-39 if no /arch ARM option was specified, indicating the default
architecture for ARM was set (VFPv3).

A value in the range 40-49 if /arch:VFPv4 was set.

For more information, see /arch (ARM).

_M_ARM64 Defined as 1 for compilations that target 64-bit ARM processors. Otherwise, undefined.

_M_CEE Defined as 001 if any /clr (Common Language Runtime Compilation) compiler option is set.
Otherwise, undefined.

_M_CEE_PURE Deprecated beginning in Visual Studio 2015. Defined as 001 if the /clr :pure compiler
option is set. Otherwise, undefined.

_M_CEE_SAFE Deprecated beginning in Visual Studio 2015. Defined as 001 if the /clr :safe compiler
option is set. Otherwise, undefined.

_M_FP_EXCEPT Defined as 1 if the /fp:except or /fp:strict compiler option is set. Otherwise, undefined.

_M_FP_FAST Defined as 1 if the /fp:fast compiler option is set. Otherwise, undefined.

_M_FP_PRECISE Defined as 1 if the /fp:precise compiler option is set. Otherwise, undefined.

_M_FP_STRICT Defined as 1 if the /fp:strict compiler option is set. Otherwise, undefined.

_M_IX86 Defined as the integer literal value 600 for compilations that target x86 processors. This macro
isn't defined for x64 or ARM compilation targets.

_M_IX86_FP Defined as an integer literal value that indicates the /arch compiler option that was set, or the
default. This macro is always defined when the compilation target is an x86 processor. Otherwise,
undefined. When defined, the value is:

0 if the /arch:IA32 compiler option was set.

1 if the /arch:SSE compiler option was set.

2 if the /arch:SSE2 , /arch:AVX , or /arch:AVX2 compiler option was set. This value is the default if
an /arch compiler option wasn't specified. When /arch:AVX is specified, the macro __AVX__ is
also defined. When /arch:AVX2 is specified, both __AVX__ and __AVX2__ are also defined.

For more information, see /arch (x86).

_M_X64 Defined as the integer literal value 100 for compilations that target x64 processors. Otherwise,
undefined.

_MANAGED Defined as 1 when the /clr compiler option is set. Otherwise, undefined.

_MSC_BUILD Defined as an integer literal that contains the revision number element of the compiler's
version number. The revision number is the fourth element of the period-delimited version number. For
example, if the version number of the Microsoft C/C++ compiler is 15.00.20706.01, the _MSC_BUILD
macro evaluates to 1. This macro is always defined.

_MSC_EXTENSIONS Defined as 1 if the on-by-default /Ze (Enable Language Extensions) compiler
option is set. Otherwise, undefined.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-arm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-arm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-arm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-arm
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/arch-x86
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

VISUAL STUDIO VERSION _MSC_VER

Visual Studio 6.0 1200

Visual Studio .NET 2002 (7.0) 1300

Visual Studio .NET 2003 (7.1) 1310

Visual Studio 2005 (8.0) 1400

Visual Studio 2008 (9.0) 1500

Visual Studio 2010 (10.0) 1600

Visual Studio 2012 (11.0) 1700

Visual Studio 2013 (12.0) 1800

Visual Studio 2015 (14.0) 1900

Visual Studio 2017 RTW (15.0) 1910

Visual Studio 2017 version 15.3 1911

Visual Studio 2017 version 15.5 1912

Visual Studio 2017 version 15.6 1913

Visual Studio 2017 version 15.7 1914

Visual Studio 2017 version 15.8 1915

Visual Studio 2017 version 15.9 1916

Visual Studio 2019 RTW (16.0) 1920

_MSC_FULL_VER Defined as an integer literal that encodes the major, minor, and build number elements
of the compiler's version number. The major number is the first element of the period-delimited version
number, the minor number is the second element, and the build number is the third element. For example,
if the version number of the Microsoft C/C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro
evaluates to 150020706. Enter cl /? at the command line to view the compiler's version number. This
macro is always defined.

_MSC_VER Defined as an integer literal that encodes the major and minor number elements of the
compiler's version number. The major number is the first element of the period-delimited version number
and the minor number is the second element. For example, if the version number of the Microsoft C/C++
compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Enter cl /? at the command line to
view the compiler's version number. This macro is always defined.

To test for compiler releases or updates in a given version of Visual Studio or after, use the >= operator.
You can use it in a conditional directive to compare _MSC_VER against that known version. If you have
several mutually exclusive versions to compare, order your comparisons in descending order of version
number. For example, this code checks for compilers released in Visual Studio 2017 and later. Next, it

#if _MSC_VER >= 1910
// . . .
#elif _MSC_VER >= 1900
// . . .
#else
// . . .
#endif

// _OPENMP_dir.cpp
// compile with: /openmp
#include <stdio.h>
int main() {
 printf("%d\n", _OPENMP);
}

checks for compilers released in or after Visual Studio 2015. Then it checks for all compilers released
before Visual Studio 2015:

For more information, see Visual C++ Compiler Version in the Microsoft C++ Team Blog.

_MSVC_LANG Defined as an integer literal that specifies the C++ language standard targeted by the
compiler. It's set only in code compiled as C++. The macro is the integer literal value 201402L by default,
or when the /std:c++14 compiler option is specified. The macro is set to 201703L if the /std:c++17
compiler option is specified. It's set to a higher, unspecified value when the /std:c++latest option is
specified. Otherwise, the macro is undefined. The _MSVC_LANG macro and /std (Specify Language
Standard Version) compiler options are available beginning in Visual Studio 2015 Update 3.

__MSVC_RUNTIME_CHECKS Defined as 1 when one of the /RTC compiler options is set. Otherwise,
undefined.

_MT Defined as 1 when /MD or /MDd (Multithreaded DLL) or /MT or /MTd (Multithreaded) is specified.
Otherwise, undefined.

_NATIVE_WCHAR_T_DEFINED Defined as 1 when the /Zc:wchar_t compiler option is set. Otherwise,
undefined.

_OPENMP Defined as integer literal 200203, if the /openmp (Enable OpenMP 2.0 Support) compiler
option is set. This value represents the date of the OpenMP specification implemented by MSVC.
Otherwise, undefined.

PREFAST Defined as 1 when the /analyze compiler option is set. Otherwise, undefined.

__TIMESTAMP__ Defined as a string literal that contains the date and time of the last modification of the
current source file, in the abbreviated, constant length form returned by the CRT asctime function, for
example, Fri 19 Aug 13:32:58 2016 . This macro is always defined.

_VC_NODEFAULTLIB Defined as 1 when the /Zl (Omit Default Library Name) compiler option is set.
Otherwise, undefined.

_WCHAR_T_DEFINED Defined as 1 when the default /Zc:wchar_t compiler option is set. The
_WCHAR_T_DEFINED macro is defined but has no value if the /Zc:wchar_t- compiler option is set, and
wchar_t is defined in a system header file included in your project. Otherwise, undefined.

_WIN32 Defined as 1 when the compilation target is 32-bit ARM, 64-bit ARM, x86, or x64. Otherwise,
undefined.

_WIN64 Defined as 1 when the compilation target is 64-bit ARM or x64. Otherwise, undefined.

_WINRT_DLL Defined as 1 when compiled as C++ and both /ZW (Windows Runtime Compilation) and

https://devblogs.microsoft.com/cppblog/visual-c-compiler-version/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/std-specify-language-standard-version
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/rtc-run-time-error-checks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/openmp-enable-openmp-2-0-support
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/analyze-code-analysis
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-wasctime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zl-omit-default-library-name
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-wchar-t-wchar-t-is-native-type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zw-windows-runtime-compilation

See also

/LD or /LDd compiler options are set. Otherwise, undefined.

No preprocessor macros that identify the ATL or MFC library version are predefined by the compiler. ATL and
MFC library headers define these version macros internally. They're undefined in preprocessor directives made
before the required header is included.

_ATL_VER Defined in <atldef.h> as an integer literal that encodes the ATL version number.

_MFC_VER Defined in <afxver_.h> as an integer literal that encodes the MFC version number.

Macros (C/C++)
Preprocessor Operators
Preprocessor Directives

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library

Grammar Summary (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

See also

This section describes the formal grammar of the preprocessor. It covers the syntax of preprocessing directives and
operators discussed in The Preprocessor and in Pragma Directives.

The following topics are included:

Definitions

Conventions

Preprocessor Grammar

C/C++ Preprocessor Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/grammar-summary-c-cpp.md

Definitions for the Grammar Summary
4/4/2019 • 2 minutes to read • Edit Online

See also

Terminals are endpoints in a syntax definition. No other resolution is possible. Terminals include the set of reserved
words and user-defined identifiers.

Nonterminals are placeholders in the syntax. Most are defined elsewhere in this syntax summary. Definitions can
be recursive. The following nonterminals are defined in the Lexical Conventions section of the C++ Language
Reference:

constant , constant-expression, identifier, keyword, operator , punctuator

An optional component is indicated by the subscripted . For example, the following indicates an optional
expression enclosed in curly braces:

opt

{ expression }opt

Grammar Summary (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/definitions-for-the-grammar-summary.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lexical-conventions

Conventions
4/4/2019 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

nonterminal Italic type indicates nonterminals.

#include Terminals in bold type are literal reserved words and symbols
that must be entered as shown. Characters in this context are
always case sensitive.

opt Nonterminals followed by are always optional.

default typeface Characters in the set described or listed in this typeface can be
used as terminals in statements.

See also

The conventions use different font attributes for different components of the syntax. The symbols and fonts are as
follows:

opt

A colon (:) following a nonterminal introduces its definition. Alternative definitions are listed on separate lines.

Grammar Summary (C/C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/conventions.md

Preprocessor Grammar
4/4/2019 • 2 minutes to read • Edit Online

control-line:
 #define identifier token-string
 #define identifier(identifier , ... , identifier) token-string
 #include " path-spec "
 #include < path-spec >
 #line digit-sequence " filename "
 #undef identifier
 #error token-string
 #pragma token-string

opt

opt opt opt

opt

constant-expression:
 defined(identifier)
 defined identifier
 any other constant expression

conditional :
 if-part elif-parts else-part endif-lineopt opt

if-part :
 if-line text

if-line :
 #if constant-expression
 #ifdef identifier
 #ifndef identifier

elif-parts :
 elif-line text
 elif-parts elif-line text

elif-line :
 #elif constant-expression

else-part :
 else-line text

else-line :
 #else

endif-line :
 #endif

digit-sequence :
 digit
 digit-sequence digit

digit : one of
 0 1 2 3 4 5 6 7 8 9

token-string :
 String of tokens

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/preprocessor-grammar.md

NOTENOTE

See also

token :
 keyword
 identifier
 constant
 operator
 punctuator

filename :
 Legal operating system filename

path-spec :
 Legal file path

text :
 Any sequence of text

The following nonterminals are expanded in the Lexical Conventions section of the C++ Language Reference: constant,
constant-expression, identifier, keyword, operator, and punctuator.

Grammar Summary (C/C++)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lexical-conventions

Pragma Directives and the __Pragma Keyword
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma token-string
__pragma(token-string)

Remarks

alloc_text auto_inline bss_seg

check_stack code_seg comment

component conform const_seg

data_seg deprecated detect_mismatch

fenv_access float_control fp_contract

function hdrstop include_alias

init_seg inline_depth inline_recursion

intrinsic loop make_public

Pragma directives specify machine- or operating-specific compiler features. The __pragma keyword, which
is specific to the Microsoft compiler, enables you to code pragma directives within macro definitions.

Each implementation of C and C++ supports some features unique to its host machine or operating system.
Some programs, for example, must exercise precise control over the memory areas where data is put or to
control the way certain functions receive parameters. The #pragma directives offer a way for each compiler
to offer machine- and operating system-specific features while retaining overall compatibility with the C and
C++ languages.

Pragmas are machine- or operating system-specific by definition, and are usually different for every
compiler. Pragmas can be used in conditional statements, to provide new preprocessor functionality, or to
provide implementation-defined information to the compiler.

The token-string is a series of characters that gives a specific compiler instruction and arguments, if any.
The number sign (#) must be the first non-white-space character on the line that contains the pragma; white-
space characters can separate the number sign and the word "pragma". Following #pragma, write any text
that the translator can parse as preprocessing tokens. The argument to #pragma is subject to macro
expansion.

If the compiler finds a pragma that it does not recognize, it issues a warning and continues compilation.

The Microsoft C and C++ compilers recognize the following pragmas:

1

1

1

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/pragma-directives-and-the-pragma-keyword.md

managed message

omp once

optimize pack pointers_to_members

pop_macro push_macro region, endregion

runtime_checks section setlocale

strict_gs_check unmanaged vtordisp

warning

Pragmas and Compiler Options

cl /Zp8 ...

<file> - packing is 8
// ...
#pragma pack(push, 1) - packing is now 1
// ...
#pragma pack(pop) - packing is 8
</file>

The __pragma() Keyword

1

1

 Supported only by the C++ compiler.1

Some pragmas provide the same functionality as compiler options. When a pragma is encountered in source
code, it overrides the behavior specified by the compiler option. For example, if you specified /Zp8, you can
override this compiler setting for specific sections of the code with pack:

Microsoft specific

The compiler also supports the __pragma keyword, which has the same functionality as the #pragma
directive, but can be used inline in a macro definition. The #pragma directive cannot be used in a macro
definition because the compiler interprets the number sign character ('#') in the directive to be the stringizing
operator (#).

The following code example demonstrates how the __pragma keyword can be used in a macro. This code is
excerpted from the mfcdual.h header in the ACDUAL sample in "Compiler COM Support Samples":

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment

#define CATCH_ALL_DUAL \
CATCH(COleException, e) \
{ \
_hr = e->m_sc; \
} \
AND_CATCH_ALL(e) \
{ \
__pragma(warning(push)) \
__pragma(warning(disable:6246)) /*disable _ctlState prefast warning*/ \
AFX_MANAGE_STATE(pThis->m_pModuleState); \
__pragma(warning(pop)) \
_hr = DualHandleException(_riidSource, e); \
} \
END_CATCH_ALL \
return _hr; \

See also

End Microsoft specific

C/C++ Preprocessor Reference
C Pragmas
Keywords

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-language/c-pragmas
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/keywords-cpp

alloc_text
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma alloc_text("
textsection
", function1, ...)

Remarks

See also

Names the code section where the specified function definitions are to reside. The pragma must occur between a
function declarator and the function definition for the named functions.

The alloc_text pragma does not handle C++ member functions or overloaded functions. It is applicable only to
functions declared with C linkage — that is, functions declared with the extern "C" linkage specification. If you
attempt to use this pragma on a function with C++ linkage, a compiler error is generated.

Since function addressing using __based is not supported, specifying section locations requires the use of the
alloc_text pragma. The name specified by textsection should be enclosed in double quotation marks.

The alloc_text pragma must appear after the declarations of any of the specified functions and before the
definitions of these functions.

Functions referenced in an alloc_text pragma should be defined in the same module as the pragma. If this is not
done and an undefined function is later compiled into a different text section, the error may or may not be caught.
Although the program will usually run correctly, the function will not be allocated in the intended sections.

Other limitations on alloc_text are as follows:

It cannot be used inside a function.

It must be used after the function has been declared, but before the function has been defined.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/alloc-text.md

auto_inline
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma auto_inline([{on | off}])

Remarks

See also

Excludes any functions defined within the range where off is specified from being considered as candidates for
automatic inline expansion.

To use the auto_inline pragma, place it before and immediately after (not in) a function definition. The pragma
takes effect at the first function definition after the pragma is seen.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/auto-inline.md

bss_seg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#pragma bss_seg([[{ push | pop },] [identifier,]] ["segment-name" [, "segment-class"])

ParametersParameters

Remarks

Example

Specifies the segment where uninitialized variables are stored in the .obj file.

push
(Optional) Puts a record on the internal compiler stack. A push* can have an identifier and segment-name.

pop
(Optional) Removes a record from the top of the internal compiler stack.

identifier
(Optional) When used with push, assigns a name to the record on the internal compiler stack. identifier enables
multiple records to be popped with a single pop command. When used with pop, the directive pops records off
the internal stack until identifier is removed; if identifier is not found on the internal stack, nothing is popped.

"segment-name"
(Optional) The name of a segment. When used with pop, the stack is popped and segment-name becomes the
active segment name.

"segment-class"
(Optional) Included for compatibility with C++ prior to version 2.0. It is ignored.

.Obj files can be viewed with the dumpbin application. The default segment in the .obj file for uninitialized data is

.bss. In some cases use of bss_seg can speed load times by grouping uninitialized data into one section.

bss_seg with no parameters resets the segment to .bss.

Data allocated using the bss_seg pragma does not retain any information about its location.

You can also specify sections for initialized data (data_seg), functions (code_seg), and const variables (const_seg).

See /SECTION for a list of names you should not use when creating a section.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/bss-seg.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dumpbin-command-line
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes

// pragma_directive_bss_seg.cpp
int i; // stored in .bss
#pragma bss_seg(".my_data1")
int j; // stored in .my_data1

#pragma bss_seg(push, stack1, ".my_data2")
int l; // stored in .my_data2

#pragma bss_seg(pop, stack1) // pop stack1 from stack
int m; // stored in .my_data1

int main() {
}

See also
Pragma Directives and the __Pragma Keyword

check_stack
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma check_stack([{on | off}])
#pragma check_stack{+ | -}

Remarks

Using the check_stack PragmaUsing the check_stack Pragma

SYNTAX

COMPILED WITH

/GS OPTION? ACTION

#pragma check_stack() or

#pragma check_stack

Yes Turns off stack checking for functions
that follow

#pragma check_stack() or

#pragma check_stack

No Turns on stack checking for functions
that follow

#pragma check_stack(on)

or #pragma check_stack +

Yes or No Turns on stack checking for functions
that follow

#pragma check_stack(off)

or #pragma check_stack -

Yes or No Turns off stack checking for functions
that follow

See also

Instructs the compiler to turn off stack probes if off (or -) is specified, or to turn on stack probes if on (or +) is
specified.

If no argument is given, stack probes are treated according to the default. This pragma takes effect at the first
function defined after the pragma is seen. Stack probes are neither a part of macros nor of functions that are
generated inline.

If you don't give an argument for the check_stack pragma, stack checking reverts to the behavior specified on the
command line. For more information, see Compiler Reference. The interaction of the #pragma check_stack and the
/Gs option is summarized in the following table.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/check-stack.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-options
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-control-stack-checking-calls

code_seg
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma code_seg([[{ push | pop },] [identifier,]] ["segment-name" [, "segment-class"])

ParametersParameters

Remarks

Example

Specifies the text segment where functions are stored in the .obj file.

push
(Optional) Puts a record on the internal compiler stack. A push can have an identifier and segment-name.

pop
(Optional) Removes a record from the top of the internal compiler stack.

identifier
(Optional) When used with push, assigns a name to the record on the internal compiler stack. When used with
pop, pops records off the internal stack until identifier is removed; if identifier is not found on the internal stack,
nothing is popped.

identifier enables multiple records to be popped with just one pop command.

"segment-name"
(Optional) The name of a segment. When used with pop, the stack is popped and segment-name becomes the
active text segment name.

"segment-class"
(Optional) Ignored, but included for compatibility with versions of C++ earlier than version 2.0.

The code_seg pragma directive does not control placement of object code generated for instantiated templates,
nor code generated implicitly by the compiler—for example, special member functions. We recommend that you
use the __declspec(code_seg(...)) attribute instead because it gives you control over placement of all object code.
This includes compiler-generated code.

A segment in an .obj file is a named block of data that's loaded into memory as a unit. A text segment is a segment
that contains executable code. In this article, the terms segment and section are used interchangeably.

The code_seg pragma directive tells the compiler to put all subsequent object code from the translation unit into
a text segment named segment-name. By default, the text segment used for functions in an .obj file is named .text.

A code_seg pragma directive without parameters resets the text segment name for the subsequent object code to
.text.

You can use the DUMPBIN.EXE application to view .obj files. Versions of DUMPBIN for each supported target
architecture are included with Visual Studio.

This example shows how to use the code_seg pragma directive to control where object code is put:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/code-seg.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/code-seg-declspec
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dumpbin-command-line

// pragma_directive_code_seg.cpp
void func1() { // stored in .text
}

#pragma code_seg(".my_data1")
void func2() { // stored in my_data1
}

#pragma code_seg(push, r1, ".my_data2")
void func3() { // stored in my_data2
}

#pragma code_seg(pop, r1) // stored in my_data1
void func4() {
}

int main() {
}

See also

For a list of names that should not be used to create a section, see /SECTION.

You can also specify sections for initialized data (data_seg), uninitialized data (bss_seg), and const variables
(const_seg).

code_seg (__declspec)
Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/code-seg-declspec

comment (C/C++)
4/4/2019 • 3 minutes to read • Edit Online

Syntax
#pragma comment(comment-type [,"commentstring"])

Remarks

compilercompiler

exestrexestr

liblib

linkerlinker

#pragma comment(linker, "/include:__mySymbol")

Places a comment record into an object file or executable file.

The comment-type is one of the predefined identifiers, described below, that specifies the type of comment record.
The optional commentstring is a string literal that provides additional information for some comment types.
Because commentstring is a string literal, it obeys all the rules for string literals with respect to escape characters,
embedded quotation marks ("), and concatenation.

Places the name and version number of the compiler in the object file. This comment record is ignored by the
linker. If you supply a commentstring parameter for this record type, the compiler generates a warning.

Places commentstring in the object file. At link time this string is placed in the executable file. The string is not
loaded into memory when the executable file is loaded; however, it can be found with a program that finds
printable strings in files. One use for this comment-record type is to embed a version number or similar
information in an executable file.

exestr is deprecated and will be removed in a future release; the linker does not process the comment record.

Places a library-search record in the object file. This comment type must be accompanied by a commentstring
parameter containing the name (and possibly the path) of the library that you want the linker to search. The library
name follows the default library-search records in the object file; the linker searches for this library just as if you
had named it on the command line provided that the library is not specified with /nodefaultlib. You can place
multiple library-search records in the same source file; each record appears in the object file in the same order in
which it is encountered in the source file.

If the order of the default library and an added library is important, compiling with the /Zl switch will prevent the
default library name from being placed in the object module. A second comment pragma then can be used to
insert the name of the default library after the added library. The libraries listed with these pragmas will appear in
the object module in the same order they are found in the source code.

Places a linker option in the object file. You can use this comment-type to specify a linker option instead of passing
it to the command line or specifying it in the development environment. For example, you can specify the /include
option to force the inclusion of a symbol:

Only the following (comment-type) linker options are available to be passed to the linker identifier:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/comment-c-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/nodefaultlib-ignore-libraries
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zl-omit-default-library-name
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/linker-options

useruser

#pragma comment(lib, "emapi")

#pragma comment(compiler)

NOTENOTE

#pragma comment(user, "Compiled on " __DATE__ " at " __TIME__)

See also

/DEFAULTLIB

/EXPORT

/INCLUDE

/MANIFESTDEPENDENCY

/MERGE

/SECTION

Places a general comment in the object file. The commentstring parameter contains the text of the comment. This
comment record is ignored by the linker.

The following pragma causes the linker to search for the EMAPI.L IB library while linking. The linker searches first
in the current working directory and then in the path specified in the L IB environment variable.

The following pragma causes the compiler to place the name and version number of the compiler in the object file:

For comments that take a commentstring parameter, you can use a macro in any place where you would use a string literal,
provided that the macro expands to a string literal. You can also concatenate any combination of string literals and macros
that expand to string literals. For example, the following statement is acceptable:

Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/defaultlib-specify-default-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/export-exports-a-function
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/include-force-symbol-references
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/manifestdependency-specify-manifest-dependencies
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/merge-combine-sections
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes

component
4/9/2019 • 2 minutes to read • Edit Online

Syntax

Remarks
BrowserBrowser

#pragma component(browser, off)

NOTENOTE

#pragma component(browser, off, references)

#pragma component(browser, off, references, DWORD)

#pragma component(browser, on, references, DWORD)

Controls the collection of browse information or dependency information from within source files.

#pragma component(browser, { on | off }[, references [, name]])
#pragma component(minrebuild, on | off)
#pragma component(mintypeinfo, on | off)

You can turn collecting on or off, and you can specify particular names to be ignored as information is collected.

Using on or off controls the collection of browse information from the pragma forward. For example:

stops the compiler from collecting browse information.

To turn on the collecting of browse information with this pragma, browse information must first be enabled.

The references option can be used with or without the name argument. Using references without name turns
on or off the collecting of references (other browse information continues to be collected, however). For example:

stops the compiler from collecting reference information.

Using references with name and off prevents references to name from appearing in the browse information
window. Use this syntax to ignore names and types you are not interested in and to reduce the size of browse
information files. For example:

ignores references to DWORD from that point forward. You can turn collecting of references to DWORD back on
by using on :

This is the only way to resume collecting references to name; you must explicitly turn on any name that you have
turned off.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/component.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/building-browse-information-files-overview

#pragma component(browser, off, references, "NULL")

Minimal RebuildMinimal Rebuild

Reduce Type InformationReduce Type Information

LINK : warning LNK4018: too many type indexes in PDB "filename", discarding subsequent type information

See also

To prevent the preprocessor from expanding name (such as expanding NULL to 0), put quotes around it:

The deprecated /Gm (Enable Minimal Rebuild) feature requires the compiler to create and store C++ class
dependency information, which takes disk space. To save disk space, you can use
#pragma component(minrebuild, off) whenever you don't need to collect dependency information, for instance, in

unchanging header files. Insert #pragma component(minrebuild, on) after unchanging classes to turn dependency
collection back on.

The mintypeinfo option reduces the debugging information for the region specified. The volume of this
information is considerable, impacting .pdb and .obj files. You cannot debug classes and structures in the
mintypeinfo region. Use of the mintypeinfo option can be helpful to avoid the following warning:

For more information, see the /Gm (Enable Minimal Rebuild) compiler option.

Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gm-enable-minimal-rebuild
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gm-enable-minimal-rebuild

conform
4/4/2019 • 2 minutes to read • Edit Online

Syntax

ParametersParameters

Example
// pragma_directive_conform.cpp
// compile with: /W1
// C4811 expected
#pragma conform(forScope, show)
#pragma conform(forScope, push, x, on)
#pragma conform(forScope, push, x1, off)
#pragma conform(forScope, push, x2, off)
#pragma conform(forScope, push, x3, off)
#pragma conform(forScope, show)
#pragma conform(forScope, pop, x1)
#pragma conform(forScope, show)

int main() {}

C++ Specific

Specifies the run-time behavior of the /Zc:forScope compiler option.

#pragma conform(name [, show] [, { on | off }] [[, { push | pop }] [, identifier]])

name
Specifies the name of the compiler option to be modified. The only valid name is forScope .

show
(Optional) Causes the current setting of name (true or false) to be displayed by means of a warning message
during compilation. For example, #pragma conform(forScope, show) .

on, off
(Optional) Setting name to on enables the /Zc:forScope compiler option. The default is off.

push
(Optional) Pushes the current value of name onto the internal compiler stack. If you specify identifier, you can
specify the on or off value for name to be pushed onto the stack. For example,
#pragma conform(forScope, push, myname, on) .

pop
(Optional) Sets the value of name to the value at the top of the internal compiler stack and then pops the stack. If
identifier is specified with pop, the stack will be popped back until it finds the record with identifier, which will also
be popped; the current value for name in the next record on the stack becomes the new value for name. If you
specify pop with an identifier that is not in a record on the stack, the pop is ignored.

identifier
(Optional) Can be included with a push or pop command. If identifier is used, then an on or off specifier can also
be used.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/conform.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-forscope-force-conformance-in-for-loop-scope
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zc-forscope-force-conformance-in-for-loop-scope

See also
Pragma Directives and the __Pragma Keyword

const_seg
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma const_seg ([[{ push | pop},] [identifier,]] ["segment-name" [, "segment-class"])

ParametersParameters

Remarks

Example

Specifies the segment where const variables are stored in the .obj file.

push
(Optional) Puts a record on the internal compiler stack. A push can have an identifier and segment-name.

pop
(Optional) Removes a record from the top of the internal compiler stack.

identifier
(Optional) When used with push, assigns a name to the record on the internal compiler stack. When used with
pop, pops records off the internal stack until identifier is removed; if identifier is not found on the internal stack,
nothing is popped.

Using identifier enables multiple records to be popped with a single pop command.

"segment-name"
(Optional) The name of a segment. When used with pop, the stack is popped and segment-name becomes the
active segment name.

"segment-class"
(Optional) Included for compatibility with C++ prior to version 2.0. It is ignored.

The meaning of the terms segment and section are interchangeable in this topic.

OBJ files can be viewed with the dumpbin application. The default segment in the .obj file for const variables is
.rdata. Some const variables, such as scalars, are automatically inlined into the code stream. Inlined code will not
appear in .rdata.

Defining an object requiring dynamic initialization in a const_seg results in undefined behavior.

#pragma const_seg with no parameters resets the segment to .rdata.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/const-seg.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dumpbin-command-line

// pragma_directive_const_seg.cpp
// compile with: /EHsc
#include <iostream>

const int i = 7; // inlined, not stored in .rdata
const char sz1[]= "test1"; // stored in .rdata

#pragma const_seg(".my_data1")
const char sz2[]= "test2"; // stored in .my_data1

#pragma const_seg(push, stack1, ".my_data2")
const char sz3[]= "test3"; // stored in .my_data2

#pragma const_seg(pop, stack1) // pop stack1 from stack
const char sz4[]= "test4"; // stored in .my_data1

int main() {
 using namespace std;
 // const data must be referenced to be put in .obj
 cout << sz1 << endl;
 cout << sz2 << endl;
 cout << sz3 << endl;
 cout << sz4 << endl;
}

test1
test2
test3
test4

Comments

See also

See /SECTION for a list of names you should not use when creating a section.

You can also specify sections for initialized data (data_seg), uninitialized data (bss_seg), and functions (code_seg).

Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes

data_seg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#pragma data_seg([[{ push | pop },] [identifier,]] ["segment-name" [, "segment-class"])

ParametersParameters

Remarks

Example

Specifies the data segment where initialized variables are stored in the .obj file.

push
(Optional) Puts a record on the internal compiler stack. A push can have an identifier and segment-name.

pop
(Optional) Removes a record from the top of the internal compiler stack.

identifier
(Optional) When used with push, assigns a name to the record on the internal compiler stack. When used with
pop, pops records off the internal stack until identifier is removed; if identifier is not found on the internal stack,
nothing is popped.

identifier enables multiple records to be popped with a single pop command.

"segment-name"
(Optional) The name of a segment. When used with pop, the stack is popped and segment-name becomes the
active segment name.

"segment-class"
(Optional) Included for compatibility with C++ prior to version 2.0. It is ignored.

The meaning of the terms segment and section are interchangeable in this topic.

OBJ files can be viewed with the dumpbin application. The default segment in the .obj file for initialized variables
is .data. Variables that are uninitialized are considered to be initialized to zero and are stored in .bss.

data_seg with no parameters resets the segment to .data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/data-seg.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dumpbin-command-line

// pragma_directive_data_seg.cpp
int h = 1; // stored in .data
int i = 0; // stored in .bss
#pragma data_seg(".my_data1")
int j = 1; // stored in .my_data1

#pragma data_seg(push, stack1, ".my_data2")
int l = 2; // stored in .my_data2

#pragma data_seg(pop, stack1) // pop stack1 off the stack
int m = 3; // stored in .my_data1

int main() {
}

See also

Data allocated using data_seg does not retain any information about its location.

See /SECTION for a list of names you should not use when creating a section.

You can also specify sections for const variables (const_seg), uninitialized data (bss_seg), and functions (code_seg).

Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes

deprecated (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
#pragma deprecated(identifier1 [,identifier2, ...])

Remarks

Example
// pragma_directive_deprecated.cpp
// compile with: /W3
#include <stdio.h>
void func1(void) {
}

void func2(void) {
}

int main() {
 func1();
 func2();
 #pragma deprecated(func1, func2)
 func1(); // C4995
 func2(); // C4995
}

The deprecated pragma lets you indicate that a function, type, or any other identifier may no longer be supported
in a future release or should no longer be used.

For information about the C++14 [[deprecated]] attribute, and guidance on when to use that attribute vs the Microsoft
declspec or pragma, see C++ Standard Attributes attribute.

When the compiler encounters an identifier specified by a deprecated pragma, it issues compiler warning C4995.

You can deprecate macro names. Place the macro name in quotes or else macro expansion will occur.

Because the deprecated pragma works on all matching identifiers, and does not take signatures into account, it is
not the best option for deprecating specific versions of overloaded functions. Any matching function name that is
brought into scope triggers the warning.

We recommend you use the C++14 [[deprecated]] attribute, when possible, instead of the deprecated pragma.
The Microsoft-specific __declspec(deprecated) declaration modifier is also a better choice in many cases than the
deprecated pragma. The [[deprecated]] attribute and __declspec(deprecated) modifier allow you to specify
deprecated status for particular forms of overloaded functions. The diagnostic warning only appears on references
to the specific overloaded function the attribute or modifier applies to.

The following sample shows how to deprecate a class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/deprecated-c-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4995
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/deprecated-cpp

// pragma_directive_deprecated2.cpp
// compile with: /W3
#pragma deprecated(X)
class X { // C4995
public:
 void f(){}
};

int main() {
 X x; // C4995
}

See also
Pragma Directives and the __Pragma Keyword

detect_mismatch
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma detect_mismatch("name", "value")

Remarks

Example

// pragma_directive_detect_mismatch_a.cpp
#pragma detect_mismatch("myLib_version", "9")
int main ()
{
 return 0;
}

// pragma_directive_detect_mismatch_b.cpp
#pragma detect_mismatch("myLib_version", "1")

See also

Places a record in an object. The linker checks these records for potential mismatches.

When you link the project, the linker throws a LNK2038 error if the project contains two objects that have the same
name but each has a different value . Use this pragma to prevent inconsistent object files from linking.

Both name and value are string literals and obey the rules for string literals with respect to escape characters and
concatenation. They are case-sensitive and cannot contain a comma, equal sign, quotation marks, or the null
character.

This example creates two files that have different version numbers for the same version label.

If you compile both of these files by using the command line
cl pragma_directive_detect_mismatch_a.cpp pragma_directive_detect_mismatch_b.cpp , you will receive the error
LNK2038 .

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/detect-mismatch.md

execution_character_set
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma execution_character_set("target")

ParametersParameters

Remarks

See also

Specifies the execution character set used for string and character literals. This directive is not needed for literals
marked with the u8 prefix.

target
Specifies the target execution character set. Currently the only target execution set supported is "utf-8".

This compiler directive is obsolete starting in Visual Studio 2015 Update 2. We recommend that you use the
/execution-charset:utf-8 or /utf-8 compiler options together with using the u8 prefix on narrow character and

string literals that contain extended characters. For more information about the u8 prefix, see String and Character
Literals. For more information about the compiler options, see /execution-charset (Set Execution Character Set)
and /utf-8 (Set Source and Executable character sets to UTF-8).

The #pragma execution_character_set("utf-8") directive tells the compiler to encode narrow character and narrow
string literals in your source code as UTF-8 in the executable. This output encoding is independent of the source file
encoding used.

By default, the compiler encodes narrow characters and narrow strings by using the current code page as the
execution character set. This means that Unicode or DBCS characters in a literal that are outside the range of the
current code page are converted to the default replacement character in the output. Unicode and DBCS characters
are truncated to their low-order byte. This is almost certainly not what you intend. You can specify UTF-8 encoding
for literals in the source file by using a u8 prefix. The compiler passes these UTF-8 encoded strings to the output
unchanged. Narrow character literals prefixed by using u8 must fit in one byte, or they are truncated on output.

By default, Visual Studio uses the current code page as the source character set used to interpret your source code
for output. When a file is read in, Visual Studio interprets it according to the current code page unless the file code
page was set, or unless a byte-order mark (BOM) or UTF-16 characters are detected at the beginning of the file.
Because UTF-8 can't be set as the current code page, when the automatic detection encounters source files
encoded as UTF-8 without a BOM, Visual Studio assumes that they are encoded by using the current code page.
Characters in the source file that are outside the range of the specified or automatically detected code page can
cause compiler warnings and errors.

Pragma Directives and the __Pragma Keyword
/execution-charset (Set Execution Character Set)
/utf-8 (Set Source and Executable character sets to UTF-8)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/execution-character-set.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/string-and-character-literals-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/execution-charset-set-execution-character-set
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/utf-8-set-source-and-executable-character-sets-to-utf-8
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/execution-charset-set-execution-character-set
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/utf-8-set-source-and-executable-character-sets-to-utf-8

fenv_access
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

Examples

Disables (on) or enables (off) optimizations that could change floating-point environment flag tests and mode
changes.

#pragma fenv_access ({ on | off })

By default, fenv_access is off. If the compiler can assume that your code does not access or manipulate the
floating-point environment, then it can perform many floating-point code optimizations. Set fenv_access to on to
inform the compiler that your code accesses the floating-point environment to test status flags, exceptions, or to
set control mode flags. The compiler disables these optimizations so that your code can access the floating-point
environment consistently.

For more information on floating-point behavior, see /fp (Specify Floating-Point Behavior).

The kinds of optimizations that are subject to fenv_access are:

Global common subexpression elimination

Code motion

Constant folding

Other floating-point pragmas include:

float_control

fp_contract

This example sets fenv_access to on to set the floating-point control register for 24-bit precision:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/fenv-access.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior

// pragma_directive_fenv_access_x86.cpp
// compile with: /O2
// processor: x86
#include <stdio.h>
#include <float.h>
#include <errno.h>
#pragma fenv_access (on)

int main() {
 double z, b = 0.1, t = 0.1;
 unsigned int currentControl;
 errno_t err;

 err = _controlfp_s(¤tControl, _PC_24, _MCW_PC);
 if (err != 0) {
 printf_s("The function _controlfp_s failed!\n");
 return -1;
 }
 z = b * t;
 printf_s ("out=%.15e\n",z);
}

out=9.999999776482582e-003

// pragma_directive_fenv_access_2.cpp
// compile with: /O2
#include <stdio.h>
#include <float.h>

int main() {
 double z, b = 0.1, t = 0.1;
 unsigned int currentControl;
 errno_t err;

 err = _controlfp_s(¤tControl, _PC_24, _MCW_PC);
 if (err != 0) {
 printf_s("The function _controlfp_s failed!\n");
 return -1;
 }
 z = b * t;
 printf_s ("out=%.15e\n",z);
}

out=1.000000000000000e-002

See also

If you comment out #pragma fenv_access (on) from the previous sample, note that the output is different because
the compiler does compile-time evaluation, which does not use the control mode.

Pragma Directives and the __Pragma Keyword

float_control
4/4/2019 • 2 minutes to read • Edit Online

Syntax

Options

Remarks

#pragma float_control(except, off)
#pragma fenv_access(off)
#pragma float_control(precise, off)

#pragma float_control(precise, on)
#pragma fenv_access(on)
#pragma float_control(except, on)

Specifies floating-point behavior for a function.

#pragma float_control [([value , setting [, push]] | [push | pop])]

value, setting [, push]
Specifies floating-point behavior. value can be precise, strict, or except. For more information, see /fp (Specify
Floating-Point Behavior). The setting can either be on or off.

If value is strict, the settings for both strict and except are specified by setting. except can only be set to on
when precise or strict is also set to on.

If the optional push token is added, the current setting for value is pushed on to the internal compiler stack.

push
Push the current float_control setting on to the internal compiler stack

pop
Removes the float_control setting from the top of the internal compiler stack and makes that the new
float_control setting.

You cannot use float_control to turn precise off when except is on. Similarly, precise cannot be turned off when
fenv_access is on. To go from strict model to a fast model by using the float_control pragma, use the following
code:

To go from fast model to a strict model with the float_control pragma, use the following code:

If no options are specified, float_control has no effect.

Other floating-point pragmas include:

fenv_access

fp_contract

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/float-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior

Example

// pragma_directive_float_control.cpp
// compile with: /EHa
#include <stdio.h>
#include <float.h>

double func() {
 return 1.1e75;
}

#pragma float_control (except, on)

int main() {
 float u[1];
 unsigned int currentControl;
 errno_t err;

 err = _controlfp_s(¤tControl, ~_EM_OVERFLOW, _MCW_EM);
 if (err != 0)
 printf_s("_controlfp_s failed!\n");

 try {
 u[0] = func();
 printf_s ("Fail");
 return(1);
 }

 catch (...) {
 printf_s ("Pass");
 return(0);
 }
}

Pass

See also

The following sample shows how to catch an overflow floating-point exception by using pragma float_control.

Pragma Directives and the __Pragma Keyword

fp_contract
10/31/2018 • 2 minutes to read • Edit Online

Syntax

Remarks

Example

// pragma_directive_fp_contract.cpp
// on x86 and x64 compile with: /O2 /fp:fast /arch:AVX2
// other platforms compile with: /O2

#include <stdio.h>

// remove the following line to enable FP contractions
#pragma fp_contract (off)

int main() {
 double z, b, t;

 for (int i = 0; i < 10; i++) {
 b = i * 5.5;
 t = i * 56.025;

 z = t * i + b;
 printf("out = %.15e\n", z);
 }
}

Determines whether floating-point contraction takes place. A floating-point contraction is an instruction such as
FMA (Fused-Multiply-Add) that combines two separate floating point operations into a single instruction. Use of
these instructions can affect floating-point precision, because instead of rounding after each operation, the
processor may round only once after both operations.

#pragma fp_contract ({ on | off })

By default, fp_contract is on. This tells the compiler to use floating-point contraction instructions where possible.
Set fp_contract to off to preserve individual floating-point instructions.

For more information on floating-point behavior, see /fp (Specify Floating-Point Behavior).

Other floating-point pragmas include:

fenv_access

float_control

The code generated from this sample does not use a fused-multiply-add instruction even when it is available on
the target processor. If you comment out #pragma fp_contract (off) , the generated code may use a fused-
multiply-add instruction if it is available.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/fp-contract.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior

out = 0.000000000000000e+00
out = 6.152500000000000e+01
out = 2.351000000000000e+02
out = 5.207249999999999e+02
out = 9.184000000000000e+02
out = 1.428125000000000e+03
out = 2.049900000000000e+03
out = 2.783725000000000e+03
out = 3.629600000000000e+03
out = 4.587525000000000e+03

See also
Pragma Directives and the __Pragma Keyword

function (C/C++)
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma function(function1 [, function2, ...])

Remarks

Example

Specifies that calls to functions specified in the pragma's argument list be generated.

If you use the intrinsic pragma (or /Oi) to tell the compiler to generate intrinsic functions (intrinsic functions are
generated as inline code, not as function calls), you can use the function pragma to explicitly force a function call.
Once a function pragma is seen, it takes effect at the first function definition containing a specified intrinsic
function. The effect continues to the end of the source file or to the appearance of an intrinsic pragma specifying
the same intrinsic function. The function pragma can be used only outside of a function — at the global level.

For lists of the functions that have intrinsic forms, see #pragma intrinsic.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/function-c-cpp.md

// pragma_directive_function.cpp
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// use intrinsic forms of memset and strlen
#pragma intrinsic(memset, strlen)

// Find first word break in string, and set remaining
// chars in string to specified char value.
char *set_str_after_word(char *string, char ch) {
 int i;
 int len = strlen(string); /* NOTE: uses intrinsic for strlen */

 for(i = 0; i < len; i++) {
 if (isspace(*(string + i)))
 break;
 }

 for(; i < len; i++)
 *(string + i) = ch;

 return string;
}

// do not use strlen intrinsic
#pragma function(strlen)

// Set all chars in string to specified char value.
char *set_str(char *string, char ch) {
 // Uses intrinsic for memset, but calls strlen library function
 return (char *) memset(string, ch, strlen(string));
}

int main() {
 char *str = (char *) malloc(20 * sizeof(char));

 strcpy_s(str, sizeof("Now is the time"), "Now is the time");
 printf("str is '%s'\n", set_str_after_word(str, '*'));
 printf("str is '%s'\n", set_str(str, '!'));
}

str is 'Now************'
str is '!!!!!!!!!!!!!!!'

See also
Pragma Directives and the __Pragma Keyword

hdrstop
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma hdrstop [("filename")]

Remarks

#pragma hdrstop("c:\\projects\\include\\myinc.pch")

#define INCLUDE_PATH "c:\\progra~`1\\devstsu~1\\vc\\include\\"
#define PCH_FNAME "PROG.PCH"
.
.
.
#pragma hdrstop(INCLUDE_PATH PCH_FNAME)

Gives you additional control over precompilation file names and over the location at which the compilation state is
saved.

The filename is the name of the precompiled header file to use or create (depending on whether /Yu or /Yc is
specified). If filename does not contain a path specification, the precompiled header file is assumed to be in the
same directory as the source file.

If a C or C++ file contains a hdrstop pragma when compiled with /Yc , the compiler saves the state of the
compilation up to the location of the pragma. The compiled state of any code that follows the pragma is not saved.

Use filename to name the precompiled header file in which the compiled state is saved. A space between hdrstop
and filename is optional. The file name specified in the hdrstop pragma is a string and is therefore subject to the
constraints of any C or C++ string. In particular, you must enclose it in quotation marks and use the escape
character (backslash) to specify directory names. For example:

The name of the precompiled header file is determined according to the following rules, in order of precedence:

1. The argument to the /Fp compiler option

2. The filename argument to #pragma hdrstop

3. The base name of the source file with a .PCH extension

For the /Yc and /Yu options, if neither of the two compilation options nor the hdrstop pragma specifies a file
name, the base name of the source file is used as the base name of the precompiled header file.

You can also use preprocessing commands to perform macro replacement as follows:

The following rules govern where the hdrstop pragma can be placed:

It must appear outside any data or function declaration or definition.

It must be specified in the source file, not within a header file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/hdrstop.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/yu-use-precompiled-header-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/yc-create-precompiled-header-file

Example
#include <windows.h> // Include several files
#include "myhdr.h"

__inline Disp(char *szToDisplay) // Define an inline function
{
 ... // Some code to display string
}
#pragma hdrstop

See also

In this example, the hdrstop pragma appears after two files have been included and an inline function has been
defined. This might, at first, seem to be an odd placement for the pragma. Consider, however, that using the
manual precompilation options, /Yc and /Yu , with the hdrstop pragma makes it possible for you to precompile
entire source files — even inline code. The Microsoft compiler does not limit you to precompiling only data
declarations.

Pragma Directives and the __Pragma Keyword

include_alias
4/4/2019 • 2 minutes to read • Edit Online

Syntax

Remarks

// First eight characters of these two files not unique.
#pragma include_alias("AppleSystemHeaderQuickdraw.h", "quickdra.h")
#pragma include_alias("AppleSystemHeaderFruit.h", "fruit.h")

#pragma include_alias("GraphicsMenu.h", "gramenu.h")

#include "AppleSystemHeaderQuickdraw.h"
#include "AppleSystemHeaderFruit.h"
#include "GraphicsMenu.h"

#pragma include_alias("mymath.h", "math.h")
#include "./mymath.h"
#include "sys/mymath.h"

#include <AppleSystemHeaderStop.h>

Specifies that when alias_filename is found in a #include directive, the compiler substitutes actual_filename in its
place.

#pragma include_alias("alias_filename", "actual_filename") #pragma include_alias(<alias_filename>,
<actual_filename>)

The include_alias pragma directive allows you to substitute files that have different names or paths for the file
names included by source files. For example, some file systems allow longer header filenames than the 8.3 FAT file
system limit. The compiler cannot simply truncate the longer names to 8.3, because the first eight characters of the
longer header filenames may not be unique. Whenever the compiler encounters the alias_filename string, it
substitutes actual_filename, and looks for the header file actual_filename instead. This pragma must appear before
the corresponding #include directives. For example:

The alias being searched for must match the specification exactly, in case as well as in spelling and in use of double
quotation marks or angle brackets. The include_alias pragma performs simple string matching on the filenames;
no other filename validation is performed. For example, given the following directives,

no aliasing (substitution) is performed, since the header file strings do not match exactly. Also, header filenames
used as arguments to the /Yu and /Yc compiler options, or the hdrstop pragma, are not substituted. For
example, if your source file contains the following directive,

the corresponding compiler option should be

/YcAppleSystemHeaderStop.h

You can use the include_alias pragma to map any header filename to another. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/include-alias.md

#pragma include_alias("api.h", "c:\version1.0\api.h")
#pragma include_alias(<stdio.h>, <newstdio.h>)
#include "api.h"
#include <stdio.h>

#include <api.h>
#include "stdio.h"

#pragma include_alias(<header.h>, "header.h") // Error

#pragma include_alias("VERYLONGFILENAME.H", "myfile.h")
#include "VERYLONGFILENAME.H"

myfile.h(15) : error C2059 : syntax error

#pragma include_alias("one.h", "two.h")
#pragma include_alias("two.h", "three.h")
#include "one.h"

See also

Do not mix filenames enclosed in double quotation marks with filenames enclosed in angle brackets. For example,
given the above two #pragma include_alias directives, the compiler performs no substitution on the following
#include directives:

Furthermore, the following directive generates an error:

Note that the filename reported in error messages, or as the value of the predefined __FILE__ macro, is the name
of the file after the substitution has been performed. For example, see the output after the following directives:

An error in VERYLONGFILENAME.H produces the following error message:

Also note that transitivity is not supported. Given the following directives,

the compiler searches for the file two.h rather than three.h.

Pragma Directives and the __Pragma Keyword

init_seg
4/4/2019 • 3 minutes to read • Edit Online

Syntax
#pragma init_seg({ compiler | lib | user | "section-name" [, func-name]})

Remarks

int __cdecl myexit (void (__cdecl *pf)(void))

C++ Specific

Specifies a keyword or code section that affects the order in which startup code is executed.

The meaning of the terms segment and section are interchangeable in this topic.

Because initialization of global static objects can involve executing code, you must specify a keyword that defines
when the objects are to be constructed. It is particularly important to use the init_seg pragma in dynamic-link
libraries (DLLs) or libraries requiring initialization.

The options to the init_seg pragma are:

compiler
Reserved for Microsoft C run-time library initialization. Objects in this group are constructed first.

lib
Available for third-party class-library vendors' initializations. Objects in this group are constructed after those
marked as compiler but before any others.

user
Available to any user. Objects in this group are constructed last.

section-name Allows explicit specification of the initialization section. Objects in a user-specified section-name are
not implicitly constructed; however, their addresses are placed in the section named by section-name.

The section name you give will contain pointers to helper functions that will construct the global objects declared
in that module after the pragma.

For a list of names you should not use when creating a section, see /SECTION.

func-name Specifies a function to be called in place of atexit when the program exits. This helper function also
calls atexit with a pointer to the destructor for the global object. If you specify a function identifier in the pragma of
the form,

then your function will be called instead of the C run-time library's atexit . This allows you to build a list of the
destructors that will need to be called when you are ready to destroy the objects.

If you need to defer initialization (for example, in a DLL) you may choose to specify the section name explicitly. You
must then call the constructors for each static object.

There are no quotes around the identifier for the atexit replacement.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/init-seg.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/atexit

Example
// pragma_directive_init_seg.cpp
#include <stdio.h>
#pragma warning(disable : 4075)

typedef void (__cdecl *PF)(void);
int cxpf = 0; // number of destructors we need to call
PF pfx[200]; // pointers to destructors.

int myexit (PF pf) {
 pfx[cxpf++] = pf;
 return 0;
}

struct A {
 A() { puts("A()"); }
 ~A() { puts("~A()"); }
};

// ctor & dtor called by CRT startup code
// because this is before the pragma init_seg
A aaaa;

// The order here is important.
// Section names must be 8 characters or less.
// The sections with the same name before the $
// are merged into one section. The order that
// they are merged is determined by sorting
// the characters after the $.
// InitSegStart and InitSegEnd are used to set
// boundaries so we can find the real functions
// that we need to call for initialization.

#pragma section(".mine$a", read)
__declspec(allocate(".mine$a")) const PF InitSegStart = (PF)1;

#pragma section(".mine$z",read)
__declspec(allocate(".mine$z")) const PF InitSegEnd = (PF)1;

// The comparison for 0 is important.
// For now, each section is 256 bytes. When they
// are merged, they are padded with zeros. You
// can't depend on the section being 256 bytes, but
// you can depend on it being padded with zeros.

void InitializeObjects () {
 const PF *x = &InitSegStart;
 for (++x ; x < &InitSegEnd ; ++x)
 if (*x) (*x)();
}

Your objects will still be placed in the sections defined by the other XXX_seg pragmas.

The objects that are declared in the module will not be automatically initialized by the C run-time. You will need to
do that yourself.

By default, init_seg sections are read only. If the section name is .CRT, the compiler will silently change the
attribute to read only, even if it is marked as read, write.

You cannot specify init_seg more than once in a translation unit.

Even if your object does not have a user-defined constructor, a constructor not explicitly defined in code, the
compiler may generate one (for example to bind v-table pointers). Therefore, your code will have to call the
compiler-generated constructor.

void DestroyObjects () {
 while (cxpf>0) {
 --cxpf;
 (pfx[cxpf])();
 }
}

// by default, goes into a read only section
#pragma init_seg(".mine$m", myexit)

A bbbb;
A cccc;

int main () {
 InitializeObjects();
 DestroyObjects();
}

A()
A()
A()
~A()
~A()
~A()

See also
Pragma Directives and the __Pragma Keyword

inline_depth
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma inline_depth([n])

Remarks

NOTENOTE

See also

Specifies the inline heuristic search depth, such that, no function will be inlined if it is at a depth (in the call graph)
greater than n.

This pragma controls the inlining of functions marked inline and __inline or inlined automatically under the /Ob2

option.

n can be a value between 0 and 255, where 255 means unlimited depth in the call graph, and zero inhibits inline
expansion. When n is not specified, the default (254) is used.

The inline_depth pragma controls the number of times a series of function calls can be expanded. For example, if
the inline depth is four, and if A calls B and B then calls C, all three calls will be expanded inline. However, if the
closest inline expansion is two, only A and B are expanded, and C remains as a function call.

To use this pragma, you must set the /Ob compiler option to 1 or 2. The depth set using this pragma takes effect
at the first function call after the pragma.

The inline depth can be decreased during expansion but not increased. If the inline depth is six and during
expansion the preprocessor encounters an inline_depth pragma with a value of eight, the depth remains six.

The inline_depth pragma has no effect on functions marked with __forceinline .

Recursive functions can be substituted inline to a maximum depth of 16 calls.

Pragma Directives and the __Pragma Keyword
inline_recursion

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/inline-depth.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inline-functions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inline-functions-cpp

inline_recursion
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma inline_recursion([{on | off}])

Remarks

See also

Controls the inline expansion of direct or mutually recursive function calls.

Use this pragma to control functions marked as inline and __inline or functions that the compiler automatically
expands under the /Ob2 option. Use of this pragma requires an /Ob compiler option setting of either 1 or 2. The
default state for inline_recursion is off. This pragma takes effect at the first function call after the pragma is seen
and does not affect the definition of the function.

The inline_recursion pragma controls how recursive functions are expanded. If inline_recursion is off, and if an
inline function calls itself (either directly or indirectly), the function is expanded only one time. If inline_recursion
is on, the function is expanded multiple times until it reaches the value set with the inline_depth pragma, the
default value for recursive functions that is defined by the inline_depth pragma, or a capacity limit.

Pragma Directives and the __Pragma Keyword
inline_depth
/Ob (Inline Function Expansion)

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/inline-recursion.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inline-functions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inline-functions-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ob-inline-function-expansion
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ob-inline-function-expansion

intrinsic
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#pragma intrinsic(function1 [, function2, ...])

Remarks

_disable _outp fabs strcmp

_enable _outpw labs strcpy

_inp _rotl memcmp strlen

_inpw _rotr memcpy

_lrotl _strset memset

_lrotr abs strcat

ExampleExample

Specifies that calls to functions specified in the pragma's argument list are intrinsic.

The intrinsic pragma tells the compiler that a function has known behavior. The compiler may call the function
and not replace the function call with inline instructions, if it will result in better performance.

The library functions with intrinsic forms are listed below. Once an intrinsic pragma is seen, it takes effect at the
first function definition containing a specified intrinsic function. The effect continues to the end of the source file or
to the appearance of a function pragma specifying the same intrinsic function. The intrinsic pragma can be used
only outside of a function definition — at the global level.

The following functions have intrinsic forms and the intrinsic forms are used when you specify /Oi:

Programs that use intrinsic functions are faster because they do not have the overhead of function calls but may
be larger due to the additional code generated.

x86 Specific

The _disable and _enable intrinsics generate kernel-mode instructions to disable/enable interrupts and could be
useful in kernel-mode drivers.

Compile the following code from the command line with cl -c -FAs sample.c and look at sample.asm to see that
they turn into x86 instructions CLI and STI:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/intrinsic.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/oi-generate-intrinsic-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/disable
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/outp-outpw-outpd
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fabs-fabsf-fabsl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcmp-wcscmp-mbscmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/enable
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/outp-outpw-outpd
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/abs-labs-llabs-abs64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcpy-wcscpy-mbscpy
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/inp-inpw-inpd
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/rotl-rotl64-rotr-rotr64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memcmp-wmemcmp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strlen-wcslen-mbslen-mbslen-l-mbstrlen-mbstrlen-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/inp-inpw-inpd
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/rotl-rotl64-rotr-rotr64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memcpy-wmemcpy
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/lrotl-lrotr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strset-strset-l-wcsset-wcsset-l-mbsset-mbsset-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memset-wmemset
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/lrotl-lrotr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/abs-labs-llabs-abs64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcat-wcscat-mbscat

// pragma_directive_intrinsic.cpp
// processor: x86
#include <dos.h> // definitions for _disable, _enable
#pragma intrinsic(_disable)
#pragma intrinsic(_enable)
void f1(void) {
 _disable();
 // do some work here that should not be interrupted
 _enable();
}
int main() {
}

acos cosh pow tanh

asin fmod sinh

atan exp log10 sqrt

atan2 log sin tan

cos

See also

End x86 Specific

The floating-point functions listed below do not have true intrinsic forms. Instead they have versions that pass
arguments directly to the floating-point chip rather than pushing them onto the program stack:

The floating-point functions listed below have true intrinsic forms when you specify /Oi, /Og, and /fp:fast (or any
option that includes /Og: /Ox, /O1, and /O2):

You can use /fp:strict or /Za to override generation of true intrinsic floating-point options. In this case, the
functions are generated as library routines that pass arguments directly to the floating-point chip instead of
pushing them onto the program stack.

See #pragma function for information and an example on how to enable/disable intrinsics for a block of source
text.

Pragma Directives and the __Pragma Keyword
Compiler Intrinsics

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/acos-acosf-acosl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/cosh-coshf-coshl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/pow-powf-powl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/tanh-tanhf-tanhl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asin-asinf-asinl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fmod-fmodf
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sinh-sinhf-sinhl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/oi-generate-intrinsic-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/og-global-optimizations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ox-full-optimization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/o1-o2-minimize-size-maximize-speed
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/atan-atanf-atanl-atan2-atan2f-atan2l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/exp-expf
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/log-logf-log10-log10f
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sqrt-sqrtf-sqrtl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/atan-atanf-atanl-atan2-atan2f-atan2l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/log-logf-log10-log10f
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sin-sinf-sinl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/tan-tanf-tanl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/cos-cosf-cosl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fp-specify-floating-point-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/intrinsics/compiler-intrinsics

loop
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma loop(hint_parallel(n))
#pragma loop(no_vector)
#pragma loop(ivdep)

ParametersParameters

Remarks

See also

Controls how loop code is to be considered by the auto-parallelizer, and/or excludes a loop from consideration by
the auto-vectorizer.

hint_parallel(n)
Hints to the compiler that this loop should be parallelized across n threads, where n is a positive integer literal or
zero. If n is zero, the maximum number of threads is used at run time. This is a hint to the compiler, not a
command, and there is no guarantee that the loop will be parallelized. If the loop has data dependencies, or
structural issues—for example, the loop stores to a scalar that's used beyond the loop body—then the loop will not
be parallelized.

The compiler ignores this option unless the /Qpar compiler switch is specified.

no_vector
By default, the auto-vectorizer is on and will attempt to vectorize all loops that it evaluates as benefitting from it.
Specify this pragma to disable the auto-vectorizer for the loop that follows it.

ivdep
Hints to the compiler to ignore vector dependencies for this loop. Use this in conjunction with hint_parallel.

To use the loop pragma, place it immediately before—not in—a loop definition. The pragma takes effect for the
scope of the loop that follows it. You can apply multiple pragmas to a loop, in any order, but you must state each
one in a separate pragma statement.

Auto-Parallelization and Auto-Vectorization
Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/loop.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/qpar-auto-parallelizer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/auto-parallelization-and-auto-vectorization

make_public
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma make_public(type)

ParametersParameters

Remarks

Examples

// make_public_pragma.h
struct Native_Struct_1 { int i; };
struct Native_Struct_2 { int i; };

// make_public_pragma.cpp
// compile with: /c /clr /W1
#pragma warning (default : 4692)
#include "make_public_pragma.h"
#pragma make_public(Native_Struct_1)

public ref struct A {
 void Test(Native_Struct_1 u) {u.i = 0;} // OK
 void Test(Native_Struct_2 u) {u.i = 0;} // C4692
};

See also

Indicates that a native type should have public assembly accessibility.

type is the name of the type you want to have public assembly accessibility.

make_public is useful for when the native type you want to reference is from a .h file that you cannot change. If
you want to use the native type in the signature of a public function in a type with public assembly visibility, the
native type must also have public assembly accessibility or the compiler will issue a warning.

make_public must be specified at global scope and is only in effect from the point at which it is declared through
to the end of the source code file.

The native type may be implicitly or explicitly private; see Type Visibility for more information.

The following sample is the contents of a .h file that contains the definitions for two native structs.

The following code sample consumes the header file and shows that unless you explicitly mark the native structs as
public, using make_public, the compiler will generate a warning when you attempt to use the native structs in the
signature of public function in a public managed type.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/make-public.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli

managed, unmanaged
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma managed
#pragma unmanaged
#pragma managed([push,] on | off)
#pragma managed(pop)

Remarks

Example

Enable function-level control for compiling functions as managed or unmanaged.

The /clr compiler option provides module-level control for compiling functions either as managed or unmanaged.

An unmanaged function will be compiled for the native platform, and execution of that portion of the program will
be passed to the native platform by the common language runtime.

Functions are compiled as managed by default when /clr is used.

When applying these pragmas:

Add the pragma preceding a function but not within a function body.

Add the pragma after #include statements. Do not use these pragmas before #include statements.

The compiler ignores the managed and unmanaged pragmas if /clr is not used in the compilation.

When a template function is instantiated, the pragma state at the time of definition for the template determines if it
is managed or unmanaged.

For more information, see Initialization of Mixed Assemblies.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/managed-unmanaged.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/initialization-of-mixed-assemblies

// pragma_directives_managed_unmanaged.cpp
// compile with: /clr
#include <stdio.h>

// func1 is managed
void func1() {
 System::Console::WriteLine("In managed function.");
}

// #pragma unmanaged
// push managed state on to stack and set unmanaged state
#pragma managed(push, off)

// func2 is unmanaged
void func2() {
 printf("In unmanaged function.\n");
}

// #pragma managed
#pragma managed(pop)

// main is managed
int main() {
 func1();
 func2();
}

In managed function.
In unmanaged function.

See also
Pragma Directives and the __Pragma Keyword

message
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma message(messagestring)

Remarks

// pragma_directives_message1.cpp
// compile with: /LD
#if _M_IX86 >= 500
#pragma message("_M_IX86 >= 500")
#endif

#pragma message("")

#pragma message("Compiling " __FILE__)
#pragma message("Last modified on " __TIMESTAMP__)

#pragma message("")

// with line number
#define STRING2(x) #x
#define STRING(x) STRING2(x)

#pragma message (__FILE__ "[" STRING(__LINE__) "]: test")

#pragma message("")

See also

Sends a string literal to the standard output without terminating the compilation.

A typical use of the message pragma is to display informational messages at compile time.

The messagestring parameter can be a macro that expands to a string literal, and you can concatenate such macros
with string literals in any combination.

If you use a predefined macro in the message pragma, the macro should return a string, else you will have to
convert the output of the macro to a string.

The following code fragment uses the message pragma to display messages during compilation:

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/message.md

omp
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma omp directive

Remarks

See also

Takes one or more OpenMP directives, along with any optional directive clauses.

See OpenMP Directives for more information.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/omp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/openmp/reference/openmp-directives

once
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma once

Remarks

// header.h
#pragma once
// Code placed here is included only once per translation unit

// header.h
// Demonstration of the #include guard idiom.
// Note that the defined symbol can be arbitrary.
#ifndef HEADER_H_ // equivalently, #if !defined HEADER_H_
#define HEADER_H_
// Code placed here is included only once per translation unit
#endif // HEADER_H_

Specifies that the file will be included (opened) only once by the compiler when compiling a source code file.

The use of #pragma once can reduce build times as the compiler will not open and read the file after the first
#include of the file in the translation unit. This is referred to as multiple-include optimization. It has an effect

similar to the #include guard idiom, which uses preprocessor macro definitions to prevent multiple inclusion of
the contents of the file. This also helps to prevent violations of the one definition rule—the requirement that all
templates, types, functions, and objects have no more than one definition in your code.

For example:

We recommend the #pragma once directive for new code because it doesn't pollute the global namespace with a
preprocessor symbol. It requires less typing, is less distracting, and can't cause symbol collisions—errors caused
when different header files use the same preprocessor symbol as the guard value. It is not part of the C++
Standard, but it is implemented portably by several common compilers.

There is no advantage to use of both the #include guard idiom and #pragma once in the same file. The compiler
recognizes the #include guard idiom and implements the multiple include optimization the same way as the
#pragma once directive if no non-comment code or preprocessor directive comes before or after the standard form

of the idiom:

We recommend the #include guard idiom when code must be portable to compilers that do not implement the
#pragma once directive, to maintain consistency with existing code, or when the multiple-include optimization is

impossible. This can occur in complex projects when file system aliasing or aliased include paths prevent the
compiler from identifying identical include files by canonical path.

Be careful not to use #pragma once or the #include guard idiom in header files that are designed to be included
multiple times, using preprocessor symbols to control their effects. For an example of this design, see the
<assert.h> header file. Also be careful to manage include paths to avoid creating multiple paths to included files,

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/once.md

See also

which can defeat the multiple-include optimization for both #include guard s and #pragma once .

Pragma Directives and the __Pragma Keyword

optimize
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma optimize("[optimization-list]", {on | off})

Remarks

Parameters of the optimize PragmaParameters of the optimize Pragma

PARAMETER(S) TYPE OF OPTIMIZATION

g Enable global optimizations.

s or t Specify short or fast sequences of machine code.

y Generate frame pointers on the program stack.

#pragma optimize("ts", on)

#pragma optimize("", off)
.
.
.
#pragma optimize("", on)

See also

Specifies optimizations to be performed on a function-by-function basis.

The optimize pragma must appear outside a function and takes effect at the first function defined after the
pragma is seen. The on and off arguments turn options specified in the optimization-list on or off.

The optimization-list can be zero or more of the parameters shown in the following table.

These are the same letters used with the /O compiler options. For example, the following pragma is equivalent to
the /Os compiler option:

Using the optimize pragma with the empty string ("") is a special form of the directive:

When you use the off parameter, it turns all the optimizations, g, s, t, and y, off.

When you use the on parameter, it resets the optimizations to those that you specified with the /O compiler option.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/optimize.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/o-options-optimize-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/o-options-optimize-code

pack
4/4/2019 • 3 minutes to read • Edit Online

Syntax
#pragma pack([show] | [push | pop] [, identifier] , n)

ParametersParameters

Remarks

Specifies packing alignment for structure, union, and class members.

show
(Optional) Displays the current byte value for packing alignment. The value is displayed by a warning message.

push
(Optional) Pushes the current packing alignment value on the internal compiler stack, and sets the current packing
alignment value to n. If n is not specified, the current packing alignment value is pushed.

pop
(Optional) Removes the record from the top of the internal compiler stack. If n is not specified with pop, then the
packing value associated with the resulting record on the top of the stack is the new packing alignment value. If n
is specified, for example, #pragma pack(pop, 16) , n becomes the new packing alignment value. If you pop with
identifier, for example, #pragma pack(pop, r1) , then all records on the stack are popped until the record that has
identifier is found. That record is popped and the packing value associated with the resulting record on the top of
is the stack the new packing alignment value. If you pop with an identifier that is not found in any record on the
stack, then the pop is ignored.

identifier
(Optional) When used with push, assigns a name to the record on the internal compiler stack. When used with
pop, pops records off the internal stack until identifier is removed; if identifier is not found on the internal stack,
nothing is popped.

n
(Optional) Specifies the value, in bytes, to be used for packing. If the compiler option /Zp is not set for the module,
the default value for n is 8. Valid values are 1, 2, 4, 8, and 16. The alignment of a member will be on a boundary
that is either a multiple of n or a multiple of the size of the member, whichever is smaller.

#pragma pack(pop, identifier, n) is undefined.

To pack a class is to place its members directly after each other in memory, which can mean that some or all
members can be aligned on a boundary smaller than the default alignment the target architecture. pack gives
control at the data-declaration level. This differs from compiler option /Zp, which only provides module-level
control. pack takes effect at the first struct, union, or class declaration after the pragma is seen. pack has no
effect on definitions. Calling pack with no arguments sets n to the value set in the compiler option /Zp . If the
compiler option is not set, the default value is 8.

If you change the alignment of a structure, it may not use as much space in memory, but you may see a decrease
in performance or even get a hardware-generated exception for unaligned access. You can modify this exception
behavior by using SetErrorMode.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/pack.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zp-struct-member-alignment
https://msdn.microsoft.com/library/windows/desktop/ms680621

Examples

// pragma_directives_pack.cpp
#include <stddef.h>
#include <stdio.h>

struct S {
 int i; // size 4
 short j; // size 2
 double k; // size 8
};

#pragma pack(2)
struct T {
 int i;
 short j;
 double k;
};

int main() {
 printf("%zu ", offsetof(S, i));
 printf("%zu ", offsetof(S, j));
 printf("%zu\n", offsetof(S, k));

 printf("%zu ", offsetof(T, i));
 printf("%zu ", offsetof(T, j));
 printf("%zu\n", offsetof(T, k));
}

0 4 8
0 4 6

For more information about how to modify alignment, see these topics:

WARNINGWARNING

__alignof

align

__unaligned

Examples of Structure Alignment (x64 specific)

Note that in Visual Studio 2015 and later you can use the standard alignas and alignof operators which, unlike
__alignof and declspec(align) are portable across compilers. The C++ standard does not address packing,

so you must still use pack (or the corresponding extension on other compilers) to specify alignments smaller than
the target architecture’s word size.

The following sample shows how to use the pack pragma to change the alignment of a structure.

The following sample shows how to use the push, pop, and show syntax.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/alignof-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/align-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/unaligned
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/x64-software-conventions

// pragma_directives_pack_2.cpp
// compile with: /W1 /c
#pragma pack() // n defaults to 8; equivalent to /Zp8
#pragma pack(show) // C4810
#pragma pack(4) // n = 4
#pragma pack(show) // C4810
#pragma pack(push, r1, 16) // n = 16, pushed to stack
#pragma pack(show) // C4810
#pragma pack(pop, r1, 2) // n = 2 , stack popped
#pragma pack(show) // C4810

See also
Pragma Directives and the __Pragma Keyword

pointers_to_members
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma pointers_to_members(pointer-declaration, [most-general-representation])

Remarks

ARGUMENT COMMENTS

full_generality Generates safe, sometimes nonoptimal code. You use
full_generality if any pointer to a member is declared before
the associated class definition. This argument always uses the
pointer representation specified by the most-general-
representation argument. Equivalent to /vmg.

best_case Generates safe, optimal code using best-case representation
for all pointers to members. Requires defining the class before
declaring a pointer to a member of the class. The default is
best_case.

ARGUMENT COMMENTS

single_inheritance The most general representation is single-inheritance, pointer
to a member function. Causes an error if the inheritance
model of a class definition for which a pointer to a member is
declared is ever either multiple or virtual.

multiple_inheritance The most general representation is multiple-inheritance,
pointer to a member function. Causes an error if the
inheritance model of a class definition for which a pointer to a
member is declared is virtual.

C++ Specific

Specifies whether a pointer to a class member can be declared before its associated class definition and is used to
control the pointer size and the code required to interpret the pointer.

You can place a pointers_to_members pragma in your source file as an alternative to using the /vmx compiler
options or the inheritance keywords.

The pointer-declaration argument specifies whether you have declared a pointer to a member before or after the
associated function definition. The pointer-declaration argument is one of the following two symbols:

The most-general-representation argument specifies the smallest pointer representation that the compiler can
safely use to reference any pointer to a member of a class in a translation unit. The argument can be one of the
following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/pointers-to-members.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/vmb-vmg-representation-method
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/inheritance-keywords

virtual_inheritance The most general representation is virtual-inheritance, pointer
to a member function. Never causes an error. This is the
default argument when
#pragma pointers_to_members(full_generality) is used.

ARGUMENT COMMENTS

C a u t i o nC a u t i o n

Example
// Specify single-inheritance only
#pragma pointers_to_members(full_generality, single_inheritance)

END C++ Specific

See also

We advise you to put the pointers_to_members pragma only in the source code file that you want to affect, and
only after any #include directives. This practice lessens the risk that the pragma will affect other files, and that you
will accidently specify multiple definitions for the same variable, function, or class name.

Pragma Directives and the __Pragma Keyword

pop_macro
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma pop_macro("
macro_name
")

Remarks

Example
// pragma_directives_pop_macro.cpp
// compile with: /W1
#include <stdio.h>
#define X 1
#define Y 2

int main() {
 printf("%d",X);
 printf("\n%d",Y);
 #define Y 3 // C4005
 #pragma push_macro("Y")
 #pragma push_macro("X")
 printf("\n%d",X);
 #define X 2 // C4005
 printf("\n%d",X);
 #pragma pop_macro("X")
 printf("\n%d",X);
 #pragma pop_macro("Y")
 printf("\n%d",Y);
}

1
2
1
2
1
3

See also

Sets the value of the macro_name macro to the value on the top of the stack for this macro.

You must first issue a push_macro for macro_name before you can do a pop_macro.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/pop-macro.md

push_macro
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma push_macro("
macro_name
")

Remarks

See also

Saves the value of the macro_name macro on the top of the stack for this macro.

You can retrieve the value for macro_name with pop_macro .

See pop_macro for a sample.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/push-macro.md

region, endregion
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma region name
#pragma endregion comment

ParametersParameters

Remarks

Example
// pragma_directives_region.cpp
#pragma region Region_1
void Test() {}
void Test2() {}
void Test3() {}
#pragma endregion Region_1

int main() {}

See also

#pragma region lets you specify a block of code that you can expand or collapse when using the outlining feature
of the Visual Studio Code Editor.

comment
(Optional) A comment that will display in the code editor.

name
(Optional) The name of the region. This name will display in the code editor.

#pragma endregion marks the end of a #pragma region block.

A #region block must be terminated with #pragma endregion .

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/region-endregion.md
https://docs.microsoft.com/visualstudio/ide/outlining

runtime_checks
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma runtime_checks("[runtime_checks]", {restore | off})

Remarks

Parameters of the runtime_checks PragmaParameters of the runtime_checks Pragma

PARAMETER(S) TYPE OF RUN-TIME CHECK

s Enables stack (frame) verification.

c Reports when a value is assigned to a smaller data type that
results in a data loss.

u Reports when a variable is used before it is defined.

#pragma runtime_checks("sc", restore)

#pragma runtime_checks("", off)
.
.
.
#pragma runtime_checks("", restore)

See also

Disables or restores the /RTC settings.

You cannot enable a run-time check that was not enabled with a compiler option. For example, if you do not specify
/RTCs , specifying #pragma runtime_checks("s", restore) will not enable stack frame verification.

The runtime_checks pragma must appear outside a function and takes effect at the first function defined after the
pragma is seen. The restore and off arguments turn options specified in the runtime_checks on or off.

The runtime_checks can be zero or more of the parameters shown in the following table.

These are the same letters used with the /RTC compiler option. For example:

Using the runtime_checks pragma with the empty string ("") is a special form of the directive:

When you use the off parameter, it turns the run-time error checks, listed in the table above, off.

When you use the restore parameter, it resets the run-time error checks to those that you specified with the
/RTC compiler option.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/runtime-checks.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/rtc-run-time-error-checks

section
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma section("section-name" [, attributes])

Remarks

ATTRIBUTE DESCRIPTION

read Allows read operations on data.

write Allows write operations on data.

execute Allows code to be executed.

shared Shares the section among all processes that load the image.

nopage Marks the section as not pageable; useful for Win32 device
drivers.

nocache Marks the section as not cacheable; useful for Win32 device
drivers.

discard Marks the section as discardable; useful for Win32 device
drivers.

remove Marks the section as not memory-resident; virtual device
drivers (VxD) only.

Example

Creates a section in an .obj file.

The meaning of the terms segment and section are interchangeable in this topic.

Once a section is defined, it remains valid for the remainder of the compilation. However, you must use
__declspec(allocate) or nothing will be placed in the section.

section-name is a required parameter that will be the name of the section. The name must not conflict with any
standard section names. See /SECTION for a list of names you should not use when creating a section.

attributes is an optional parameter consisting of one or more comma-separated attributes that you want to assign
to the section. Possible attributes are:

If you do not specify attributes, the section will have read and write attributes.

In the following example, the first instruction identifies the section and its attributes. The integer j is not put into
mysec because it was not declared with __declspec(allocate) ; j goes into the data section. The integer i does

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/section.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/allocate
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/section-specify-section-attributes

// pragma_section.cpp
#pragma section("mysec",read,write)
int j = 0;

__declspec(allocate("mysec"))
int i = 0;

int main(){}

See also

go into mysec as a result of its __declspec(allocate) storage-class attribute.

Pragma Directives and the __Pragma Keyword

setlocale
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma setlocale("[locale-string]")

Remarks

#pragma setlocale("dutch")

See also

Defines the locale (Country/Region and language) to be used when translating wide-character constants and string
literals.

Because the algorithm for converting multibyte characters to wide characters may vary by locale or the
compilation may take place in a different locale from where an executable file will be run, this pragma provides a
way to specify the target locale at compile time. This guarantees that the wide-character strings will be stored in
the correct format.

The default locale-string is "".

The "C" locale maps each character in the string to its value as a wchar_t (unsigned short). Other values that are
valid for setlocale are those entries that are found in the Language Strings list. For example, you could issue:

The ability to issue a language string depends on the code page and language ID support on your computer.

Pragma Directives and the __Pragma Keyword

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/setlocale.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/language-strings

strict_gs_check
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma strict_gs_check([push,] on)
#pragma strict_gs_check([push,] off)
#pragma strict_gs_check(pop)

Remarks

Example

This pragma provides enhanced security checking.

Instructs the compiler to insert a random cookie in the function stack to help detect some categories of stack-based
buffer overrun. By default, the /GS (Buffer Security Check) compiler option does not insert a cookie for all
functions. For more information, see /GS (Buffer Security Check).

You must compile with /GS (Buffer Security Check) to enable strict_gs_check.

Use this pragma in code modules that are exposed to potentially harmful data. This pragma is very aggressive, and
is applied to functions that might not need this defense, but is optimized to minimize its effect on the performance
of the resulting application.

Even if you use this pragma, you should strive to write secure code. That is, make sure that your code has no buffer
overruns. strict_gs_check might protect your application from buffer overruns that do remain in your code.

In the following code a buffer overrun occurs when we copy an array to a local array. When you compile this code
with /GS , no cookie is inserted in the stack, because the array data type is a pointer. Adding the strict_gs_check
pragma forces the stack cookie into the function stack.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/strict-gs-check.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-buffer-security-check

// pragma_strict_gs_check.cpp
// compile with: /c

#pragma strict_gs_check(on)

void ** ReverseArray(void **pData,
 size_t cData)
{
 // *** This buffer is subject to being overrun!! ***
 void *pReversed[20];

 // Reverse the array into a temporary buffer
 for (size_t j = 0, i = cData; i ; --i, ++j)
 // *** Possible buffer overrun!! ***
 pReversed[j] = pData[i];

 // Copy temporary buffer back into input/output buffer
 for (size_t i = 0; i < cData ; ++i)
 pData[i] = pReversed[i];

 return pData;
}

See also
Pragma Directives and the __Pragma Keyword
/GS (Buffer Security Check)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/gs-buffer-security-check

vtordisp
4/4/2019 • 2 minutes to read • Edit Online

Syntax
#pragma vtordisp([push,] n)
#pragma vtordisp(pop)
#pragma vtordisp()
#pragma vtordisp([push,] {on | off})

ParametersParameters

Remarks

C++ Specific

Controls the addition of the hidden vtordisp construction/destruction displacement member.

push
Pushes the current vtordisp setting on the internal compiler stack and sets the new vtordisp setting to n. If n is not
specified, the current vtordisp setting is not changed.

pop
Removes the top record from the internal compiler stack and restores the vtordisp setting to the removed value.

n
Specifies the new value for the vtordisp setting. Possible values are 0, 1 or 2, corresponding to the /vd0 , /vd1 ,
and /vd2 compiler options. For more information, see /vd (Disable Construction Displacements).

on
Equivalent to #pragma vtordisp(1) .

off
Equivalent to #pragma vtordisp(0) .

The vtordisp pragma is applicable only to code that uses virtual bases. If a derived class overrides a virtual
function that it inherits from a virtual base class, and if a constructor or destructor for the derived class calls that
function using a pointer to the virtual base class, the compiler might introduce additional hidden vtordisp fields
into classes with virtual bases.

The vtordisp pragma affects the layout of classes that follow it. The /vd0 , /vd1 , and /vd2 options specify the
same behavior for complete modules. Specifying 0 or off suppresses the hidden vtordisp members. Turn off
vtordisp only if there is no possibility that the class's constructors and destructors call virtual functions on the
object pointed to by the this pointer.

Specifying 1 or on, the default, enables the hidden vtordisp members where they are necessary.

Specifying 2 enables the hidden vtordisp members for all virtual bases with virtual functions. vtordisp(2) might
be necessary to ensure correct performance of dynamic_cast on a partially-constructed object. For more
information, see Compiler Warning (level 1) C4436.

#pragma vtordisp() , with no arguments, restores the vtordisp setting to its initial setting.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/vtordisp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/vd-disable-construction-displacements
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4436

#pragma vtordisp(push, 2)
class GetReal : virtual public VBase { ... };
#pragma vtordisp(pop)

See also

END C++ Specific

Pragma Directives and the __Pragma Keyword

warning Pragma
4/4/2019 • 3 minutes to read • Edit Online

Syntax
#pragma warning(
 warning-specifier : warning-number-list [; warning-specifier : warning-number-list...])
#pragma warning(push[,n])
#pragma warning(pop)

Remarks

WARNING-SPECIFIER MEANING

1, 2, 3, 4 Apply the given level to the specified warning(s). This also
turns on a specified warning that is off by default.

default Reset warning behavior to its default value. This also turns on
a specified warning that is off by default. The warning will be
generated at its default, documented, level.

For more information, see Compiler Warnings That Are Off by
Default.

disable Do not issue the specified warning message(s).

error Report the specified warnings as errors.

once Display the specified message(s) only one time.

suppress Pushes the current state of the pragma on the stack, disables
the specified warning for the next line, and then pops the
warning stack so that the pragma state is reset.

#pragma warning(disable : 4507 34; once : 4385; error : 164)

Enables selective modification of the behavior of compiler warning messages.

The following warning-specifier parameters are available.

The following code statement illustrates that a warning-number-list parameter can contain multiple warning
numbers, and that multiple warning-specifier parameters can be specified in the same pragma directive.

This is functionally equivalent to the following code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/warning.md

// Disable warning messages 4507 and 4034.
#pragma warning(disable : 4507 34)

// Issue warning 4385 only once.
#pragma warning(once : 4385)

// Report warning 4164 as an error.
#pragma warning(error : 164)

// pragma_warning.cpp
// compile with: /W1
#pragma warning(disable:4700)
void Test() {
 int x;
 int y = x; // no C4700 here
 #pragma warning(default:4700) // C4700 enabled after Test ends
}

int main() {
 int x;
 int y = x; // C4700
}

Push and Pop

#pragma warning(push)
#pragma warning(disable : 4705)
#pragma warning(disable : 4706)
#pragma warning(disable : 4707)
// Some code
#pragma warning(pop)

The compiler adds 4000 to any warning number that is between 0 and 999.

For warning numbers in the range 4700-4999, which are the ones associated with code generation, the state of the
warning in effect when the compiler encounters the open curly brace of a function will be in effect for the rest of
the function. Using the warning pragma in the function to change the state of a warning that has a number larger
than 4699 will only take effect after the end of the function. The following example shows the correct placement of
warning pragmas to disable a code-generation warning message, and then to restore it.

Notice that throughout a function body, the last setting of the warning pragma will be in effect for the whole
function.

The warning pragma also supports the following syntax, where n represents a warning level (1 through 4).

#pragma warning(push [, n])

#pragma warning(pop)

The pragma warning(push) stores the current warning state for every warning. The pragma warning(push, n)

stores the current state for every warning and sets the global warning level to n.

The pragma warning(pop) pops the last warning state pushed onto the stack. Any changes that you made to the
warning state between push and pop are undone. Consider this example:

At the end of this code, pop restores the state of every warning (includes 4705, 4706, and 4707) to what it was at
the start of the code.

When you write header files, you can use push and pop to guarantee that warning-state changes made by a user

#pragma warning(push, 3)
// Declarations/definitions
#pragma warning(pop)

See also

do not prevent the headers from compiling correctly. Use push at the start of the header and pop at the end. For
example, if you have a header that does not compile cleanly at warning level 4, the following code would change
the warning level to 3 and then restore the original warning level at the end of the header.

For more information about compiler options that help you suppress warnings, see /FI and /w.

Pragma Directives and the __Pragma Keyword

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fi-name-forced-include-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-option-warning-level

Compiler warnings that are off by default
4/4/2019 • 10 minutes to read • Edit Online

Enable warnings that are off by default

Warnings that are off by default

C4061 (level 4) enumerator 'identifier' in a switch of enum 'enumeration' is
not explicitly handled by a case label

C4062 (level 4) enumerator 'identifier' in a switch of enum 'enumeration' is
not handled

C4165 (level 1) 'HRESULT' is being converted to 'bool'; are you sure this is
what you want?

C4191 (level 3) 'operator': unsafe conversion from 'type_of_expression' to
'type_required'

C4242 (level 4) 'identifier': conversion from 'type1' to 'type2', possible loss of
data

The compiler supports warnings that are turned off by default, because most developers don't find them useful. In
some cases, they warn about a stylistic choice, or about common idioms in older code. Other warnings are about
use of a Microsoft extension to the language. In other cases, they indicate an area where programmers often make
incorrect assumptions, which may lead to unexpected or undefined behavior. If enabled, some of these warnings
may appear many times in library headers. The C runtime libraries and the C++ standard libraries are intended to
emit no warnings only at warning level /W4.

You can enable warnings that are normally off by default by using one of the following options:

#pragma warning(default : warning_number)

The specified warning (warning_number) is enabled at its default level. Documentation for the warning
contains the default level of the warning.

#pragma warning(warning_level : warning_number)

The specified warning (warning_number) is enabled at the specified level (warning_level).

/Wall

/Wall enables all warnings that are off by default. If you use this option, you can turn off individual
warnings by using the /wd option.

/wLnnnn

This option enables warning nnnn at level L.

The following warnings are turned off by default in Visual Studio 2015 and later versions:

https://github.com/Microsoft/cpp-docs/blob/master/docs/preprocessor/compiler-warnings-that-are-off-by-default.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4061
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4062
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4165
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4191
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4242

C4254 (level 4) 'operator': conversion from 'type1' to 'type2', possible loss of
data

C4255 (level 4) 'function': no function prototype given: converting '()' to
'(void)'

C4263 (level 4) 'function': member function does not override any base class
virtual member function

C4264 (level 1) 'virtual_function': no override available for virtual member
function from base 'class'; function is hidden

C4265 (level 3) 'class': class has virtual functions, but destructor is not virtual

C4266 (level 4) 'function': no override available for virtual member function
from base 'type'; function is hidden

C4287 (level 3) 'operator': unsigned/negative constant mismatch

C4289 (level 4) nonstandard extension used : 'var' : loop control variable
declared in the for-loop is used outside the for-loop scope

C4296 (level 4) 'operator': expression is always false

C4339 (level 4) 'type' : use of undefined type detected in CLR meta-data - use
of this type may lead to a runtime exception

C4342 (level 1) behavior change: 'function' called, but a member operator was
called in previous versions

C4350 (level 1) behavior change: 'member1' called instead of 'member2'

C4355 'this' : used in base member initializer list

C4365 (level 4) 'action': conversion from 'type_1' to 'type_2', signed/unsigned
mismatch

C4370 (level 3) layout of class has changed from a previous version of the
compiler due to better packing

C4371 (level 3) 'classname': layout of class may have changed from a
previous version of the compiler due to better packing of
member 'member'

C4388 (level 4) signed/unsigned mismatch

C4412 (level 2) 'function': function signature contains type 'type'; C++ objects
are unsafe to pass between pure code and mixed or native

C4426 (level 1) optimization flags changed after including header, may be due
to #pragma optimize()

C4435 (level 4) 'class1' : Object layout under /vd2 will change due to virtual
base 'class2'

14.1

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4254
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4255
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4263
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4264
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4265
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4266
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4287
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4289
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4296
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4339
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4342
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4350
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-c4355
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4365
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/c4371
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-2-c4412
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4435

C4437 (level 4) dynamic_cast from virtual base 'class1' to 'class2' could fail in
some contexts

C4444 (level 3) top level '__unaligned' is not implemented in this context

C4464 (level 4) relative include path contains '..'

C4471 (level 4) a forward declaration of an unscoped enumeration must have
an underlying type (int assumed)

C4472 (level 1) 'identifier' is a native enum: add an access specifier
(private/public) to declare a managed enum

C4514 (level 4) 'function': unreferenced inline function has been removed

C4536 (level 4) 'type name': type-name exceeds meta-data limit of 'limit'
characters

C4545 (level 1) expression before comma evaluates to a function which is
missing an argument list

C4546 (level 1) function call before comma missing argument list

C4547 (level 1) 'operator': operator before comma has no effect; expected
operator with side-effect

C4548 (level 1) expression before comma has no effect; expected expression
with side-effect

C4549 (level 1) 'operator1': operator before comma has no effect; did you
intend 'operator2'?

C4555 (level 1) expression has no effect; expected expression with side-effect

C4557 (level 3) '__assume' contains effect 'effect'

C4571 (level 4) informational: catch(...) semantics changed since Visual C++
7.1; structured exceptions (SEH) are no longer caught

C4574 (level 4) 'identifier' is defined to be '0': did you mean to use '#if
identifier'?

C4577 (level 1) 'noexcept' used with no exception handling mode specified;
termination on exception is not guaranteed. Specify /EHsc

C4582 (level 4) 'type': constructor is not implicitly called

C4583 (level 4) 'type': destructor is not implicitly called

Perm

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4437
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/C4464
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4471
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4514
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4536
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4545
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4546
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4547
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4548
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4549
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4555
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4557
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4571

C4587 (level 1) 'anonymous_structure': behavior change: constructor is no
longer implicitly called

C4588 (level 1) 'anonymous_structure': behavior change: destructor is no
longer implicitly called

C4596 (level 4) 'identifier': illegal qualified name in member declaration

C4598 (level 1 and level 3) '#include "header"': header number number in the
precompiled header does not match current compilation at
that position

C4599 (level 3) 'option path': command-line argument number number does
not match pre-compiled header

C4605 (level 1) '/Dmacro' specified on current command line, but was not
specified when precompiled header was built

C4608 (level 3) 'union_member' has already been initialized by another union
member in the initializer list, 'union_member'

C4619 (level 3) #pragma warning: there is no warning number 'number'

C4623 (level 4) 'derived class': default constructor could not be generated
because a base class default constructor is inaccessible

C4625 (level 4) 'derived class': copy constructor could not be generated
because a base class copy constructor is inaccessible

C4626 (level 4) 'derived class': assignment operator could not be generated
because a base class assignment operator is inaccessible

C4628 (level 1) digraphs not supported with -Ze. Character sequence
'digraph' not interpreted as alternate token for 'char'

C4640 (level 3) 'instance': construction of local static object is not thread-safe

C4643 (level 4) Forward declaring 'identifier' in namespace std is not
permitted by the C++ Standard.

C4647 (level 3) behavior change: __is_pod(type) has different value in previous
versions

C4654 (level 4) Code placed before include of precompiled header line will be
ignored. Add code to precompiled header.

C4668 (level 4) 'symbol' is not defined as a preprocessor macro, replacing
with '0' for 'directives'

C4682 (level 4) 'symbol' : no directional parameter attribute specified,
defaulting to [in]

14.3

Perm

14.3

14.3

Perm

15.8

14.1

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4608
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4619
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4623
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4625
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4626
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4628
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4640
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4668
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4682

C4686 (level 3) 'user-defined type': possible change in behavior, change in
UDT return calling convention

C4692 (level 1) 'function': signature of non-private member contains
assembly private native type 'native_type'

C4710 (level 4) 'function': function not inlined

C4738 (level 3) storing 32-bit float result in memory, possible loss of
performance

C4746 volatile access of 'expression' is subject to /volatile:<iso|ms>
setting; consider using __iso_volatile_load/store intrinsic
functions

C4749 (level 4) conditionally supported: offsetof applied to non-standard-
layout type 'type'

C4767 (level 4) section name 'symbol' is longer than 8 characters and will be
truncated by the linker

C4768 (level 3) __declspec attributes before linkage specification are ignored

C4774 (level 4) 'string' : format string expected in argument number is not a
string literal

C4777 (level 4) 'function' : format string 'string' requires an argument of type
'type1', but variadic argument number has type 'type2'

C4786 (level 3) 'symbol' : object name was truncated to 'number' characters
in the debug information

C4800 (level 4) Implicit conversion from 'type' to bool. Possible information
loss

C4820 (level 4) 'bytes' bytes padding added after construct 'member_name'

C4822 (level 1) 'member': local class member function does not have a body

C4826 (level 2) Conversion from 'type1' to 'type2' is sign-extended. This may
cause unexpected runtime behavior.

C4837 (level 4) trigraph detected: '??character' replaced by 'character'

C4841 (level 4) non-standard extension used: compound member designator
used in offsetof

C4842 (level 4) the result of 'offsetof' applied to a type using multiple
inheritance is not guaranteed to be consistent between
compiler releases

C4868 (level 4) 'file(line_number)' compiler may not enforce left-to-right
evaluation order in braced initialization list

16.0

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4686
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4692
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4710
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4738
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-c4746
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-3-c4800
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4820
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4822
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-c4868

C4905 (level 1) wide string literal cast to 'LPSTR'

C4906 (level 1) string literal cast to 'LPWSTR'

C4917 (level 1) 'declarator': a GUID can only be associated with a class,
interface, or namespace

C4928 (level 1) illegal copy-initialization; more than one user-defined
conversion has been implicitly applied

C4931 (level 4) we are assuming the type library was built for number-bit
pointers

C4946 (level 1) reinterpret_cast used between related classes: 'class1' and
'class2'

C4962 'function': profile-guided optimizations disabled because
optimizations caused profile data to become inconsistent

C4986 (level 4) 'symbol': exception specification does not match previous
declaration

C4987 (level 4) nonstandard extension used: 'throw (...)'

C4988 (level 4) 'symbol': variable declared outside class/function scope

C5022 'type': multiple move constructors specified

C5023 'type': multiple move assignment operators specified

C5024 (level 4) 'type': move constructor was implicitly defined as deleted

C5025 (level 4) 'type': move assignment operator was implicitly defined as
deleted

C5026 (level 1 and level 4) 'type': move constructor was implicitly defined as deleted

C5027 (level 1 and level 4) 'type': move assignment operator was implicitly defined as
deleted

C5029 (level 4) nonstandard extension used: alignment attributes in C++
apply to variables, data members and tag types only

C5031 (level 4) #pragma warning(pop): likely mismatch, popping warning
state pushed in different file

C5032 (level 4) detected #pragma warning(push) with no corresponding
#pragma warning(pop)

C5034 use of intrinsic 'intrinsic' causes function function to be
compiled as guest code

14.1

14.1

15.3

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4905
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4906
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4917
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4928
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4931
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4946
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-c4986

C5035 use of feature 'feature' causes function function to be
compiled as guest code

C5036 (level 1) varargs function pointer conversion when compiling with
/hybrid:x86arm64 'type1' to 'type2'

C5038 (level 4) data member 'member1' will be initialized after data member
'member2'

C5039 (level 4) 'function': pointer or reference to potentially throwing
function passed to extern C function under -EHc. Undefined
behavior may occur if this function throws an exception.

C5042 (level 3) 'function': function declarations at block scope cannot be
specified 'inline' in standard C++; remove 'inline' specifier

C5045 Compiler will insert Spectre mitigation for memory load if
/Qspectre switch specified

Warnings off by default in earlier versions

C4302 (level 2) 'conversion': truncation from 'type1' to 'type2'

C4311 (level 1) 'variable' : pointer truncation from 'type' to 'type'

C4312 (level 1) 'operation' : conversion from 'type1' to 'type2' of greater size

C4319 (level 1) 'operator': zero extending 'type1' to 'type2' of greater size

C4431 (level 4) missing type specifier - int assumed. Note: C no longer
supports default-int

See also

15.3

15.3

15.3

15.5

15.5

15.7

 This warning is available starting in Visual Studio 2015 Update 1.
 This warning is available starting in Visual Studio 2015 Update 3.
 This warning is available starting in Visual Studio 2017 version 15.3.
 This warning is available starting in Visual Studio 2017 version 15.5.
 This warning is available starting in Visual Studio 2017 version 15.7.
 This warning is available starting in Visual Studio 2017 version 15.8.

14.1

14.3

15.3

15.5

15.7

15.8

 This warning is available starting in Visual Studio 2019 RTM.16.0

 This warning is off unless the /permissive- compiler option is set.Perm

These warnings were off by default in versions of the compiler before Visual Studio 2015:

This warning was off by default in versions of the compiler before Visual Studio 2012:

warning

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/c5038
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/c5045
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/permissive-standards-conformance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-2-c4302
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4311
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4312
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-1-c4319
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/error-messages/compiler-warnings/compiler-warning-level-4-c4431

	Cover Page
	C/C++ Preprocessor Reference
	Preprocessor
	Phases of Translation
	Preprocessor Directives
	#define Directive (C/C++)
	#error Directive (C/C++)
	#if, #elif, #else, and #endif Directives (C/C++)
	#ifdef and #ifndef Directives (C/C++)
	#import Directive (C++)
	#import Attributes (C++)
	auto_rename
	auto_search
	embedded_idl
	exclude (#import)
	high_method_prefix
	high_property_prefixes
	implementation_only
	include()
	inject_statement
	named_guids
	no_auto_exclude
	no_dual_interfaces
	no_implementation
	no_namespace
	no_registry
	no_search_namespace
	no_smart_pointers
	raw_dispinterfaces
	raw_interfaces_only
	raw_method_prefix
	raw_native_types
	raw_property_prefixes
	rename (#import)
	rename_namespace
	rename_search_namespace
	tlbid

	#include Directive (C/C++)
	#line Directive (C/C++)
	Null Directive
	#undef Directive (C/C++)
	#using Directive (C++)

	Preprocessor Operators
	Stringizing Operator (#)
	Charizing Operator (#@)
	Token-Pasting Operator (##)

	Macros (C/C++)
	Macros and C++
	Variadic Macros
	Predefined Macros

	Grammar Summary (C/C++)
	Definitions for the Grammar Summary
	Conventions
	Preprocessor Grammar

	Pragma Directives and the __Pragma Keyword
	alloc_text
	auto_inline
	bss_seg
	check_stack
	code_seg
	comment (C/C++)
	component
	conform
	const_seg
	data_seg
	deprecated (C/C++)
	detect_mismatch
	execution_character_set
	fenv_access
	float_control
	fp_contract
	function (C/C++)
	hdrstop
	include_alias
	init_seg
	inline_depth
	inline_recursion
	intrinsic
	loop
	make_public
	managed, unmanaged
	message
	omp
	once
	optimize
	pack
	pointers_to_members
	pop_macro
	push_macro
	region, endregion
	runtime_checks
	section
	setlocale
	strict_gs_check
	vtordisp
	warning
	Compiler Warnings That Are Off by Default

