
 1

Introduction. ...1

What's New in the Second Edition 2

What's On the CD . .. 4

From Me to You (and You to Me) 4

PART Ⅰ: Fundamental of Windows and MFC6
Chapter 1. Hello, MFC..6

1.1. The Windows Programming Model . .. 7
1.1.1. Messages, Messages, and More Messages. ...9
1.1.2. Windows Programming, SDK-Style . ..11
1.1.3. Hungarian Notation and Windows Data Types.16
1.1.4. SDK Programming in Perspective17

1.2. Introducing MFC. .. 18
1.2.1. The Benefits of Using C++ and MFC. ..19
1.2.2. The MFC Design Philosophy. ...20
1.2.3. The Document/View Architecture21
1.2.4. The MFC Class Hierarchy ...22
1.2.5. AFX Functions...23

1.3. Your First MFC Application. .. 23
1.3.1. The Application Object..26
1.3.2. How MFC Uses the Application Object . ..29
1.3.3. The Frame Window Object..31
1.3.4. Painting the Window..34
1.3.5. The Message Map ..37
1.3.6. How Message Maps Work...39
1.3.7. Windows, Character Sets, and the _T Macro. ...42
1.3.8. Building the Application..44
1.3.9. The Big Picture ..45

Chapter 2. Drawing in a Window ...48

2.1. The Windows GDI . .. 49
2.1.2. The MFC Device Context Classes50
2.1.3. Device Context Attributes..54
2.1.4. The Drawing Mode ..56
2.1.5. The Mapping Mode..58

2.2. Drawing with the GDI . .. 68
2.2.1. Drawing Lines and Curves...69
2.2.2. Drawing Ellipses, Polygons, and Other Shapes73
2.2.3. GDI Pens and the CPen Class . ..76
2.2.4. GDI Brushes and the CBrush Class81
2.2.5. Drawing Text..85
2.2.6. GDI Fonts and the CFont Class88
2.2.7. Raster Fonts vs. TrueType Fonts . ..91
2.2.8. Rotated Text ...91
2.2.9. Stock Objects ...93
2.2.10. Deleting GDI Objects...95
2.2.11. Deselecting GDI Objects ...96
2.2.12. The Ruler Application..98

2.3. Seeing What You've Drawn. .. 101
2.3.1. Adding a Scroll Bar to a Window . ..102
2.3.2. Setting a Scroll Bar's Range, Position, and Page Size.103
2.3.3. Synchronizing the Thumb Size and the Window Size106
2.3.4. Processing Scroll Bar Messages...107
2.3.5. Scrolling a Window..109

 2

2.3.6. The Accel Application . ..111

2.4. Loose Ends ...120

Chapter 3. The Mouse and the Keyboard. ..122

3.1. Getting Input from the Mouse123
3.1.1. More About the TicTac Window. .. 146
3.1.2. The PostNcDestroy Function. ... 148
3.1.3. Nonclient-Area Mouse Messages . .. 149
3.1.4. The WM_NCHITTEST Message . .. 152
3.1.5. The WM_MOUSELEAVE and WM_MOUSEHOVER Messages 153

3.2. Getting Input from the Keyboard. ..173
3.2.1. The Input Focus. ... 173
3.2.2. Keystroke Messages . .. 175
3.2.3. Virtual Key Codes 178
3.2.4. Shift States and Toggles. ... 180
3.2.5. Character Messages 182
3.2.6. Dead-Key Messages . .. 185
3.2.7. The Caret 186

3.3. The VisualKB Application . ..190
3.3.1. Handling the Caret. ... 202
3.3.2. Entering and Editing Text. .. 206
3.3.3. Other Points of Interest. .. 207

Chapter 4. Menus209

4.1. Menu Basics ...210
4.1.1. Creating a Menu211
4.1.2. Loading and Displaying a Menu 214
4.1.3. Responding to Menu Commands . .. 217
4.1.4. Command Ranges. .. 218
4.1.5. Updating the Items in a Menu 220
4.1.6. Update Ranges. ... 224
4.1.7. Keyboard Accelerators . .. 225

4.2. The Shapes Application ..228
4.2.1. Running the MFC AppWizard. ... 245
4.2.2. Analyzing AppWizard's Output. ... 248
4.2.3. Beyond AppWizard 252
4.2.4. The Process in Review . .. 258

4.3. Menu Magic ...259
4.3.1. Creating Menus Programmatically . .. 259
4.3.2. Modifying Menus Programmatically. ... 260
4.3.3. The System Menu. .. 262
4.3.4. Owner-Draw Menus . .. 265
4.3.5. OnMenuChar Processing. ... 269
4.3.6. Cascading Menus. ... 271
4.3.7. Context Menus . .. 272
4.3.8. The TPM_RETURNCMD Flag. ... 276

4.4. The Colors Application ...277
4.4.1. The Context Menu. ... 302
4.4.2. On Your Own. ... 304

Chapter 5. The MFC Collection Classes307

5.1. Arrays. ..307
5.1.1. The MFC Array Classes . .. 308
5.1.2. Dynamic Array Sizing 312
5.1.3. Creating Type-Safe Array Classes with CArray 315

 3

5.2. Lists . .. 317
5.2.1. The MFC List Classes..318
5.2.2. Creating Type-Safe List Classes with CList. ...322

5.3. Maps. ... 324
5.3.1. The MFC Map Classes...324
5.3.2. How Maps Work ..326
5.3.3. Optimizing Lookup Efficiency . ..328
5.3.4. Creating Type-Safe Map Classes with CMap330

5.4. The Typed Pointer Classes 331

Chapter 6. File I/O and Serialization ...335

6.1. The CFile Class 335
6.1.1. Opening, Closing, and Creating Files . ..336
6.1.2. Reading and Writing ..339
6.1.3. CFile Derivatives ...341
6.1.4. Enumerating Files and Folders. ...343

6.2. Serialization and the CArchive Class . .. 346
6.2.1. Serialization Basics ..347
6.2.2. Writing Serializable Classes. ...349
6.2.3. Versioning Serializable Classes: Versionable Schemas.351
6.2.4. How Serialization Works ...354
6.2.5. Serializing CObjects ..360

Chapter 7. Controls . ..363

7.1. The Classic Controls. ... 364
7.1.1. The CButton Class ...367
7.1.2. The CListBox Class..373
7.1.3. The CStatic Class ...382
7.1.4. The FontView Application ...386
7.1.5. The CEdit Class ...395
7.1.6. The CComboBox Class . ..411
7.1.7. The CScrollBar Class...416

7.2. Advanced Control Programming . .. 417
7.2.1. Numeric Edit Controls ...418
7.2.2. Owner-Draw List Boxes ..419
7.2.3. Graphical Push Buttons..430
7.2.4. Customizing a Control's Colors431
7.2.5. Message Reflection ..439

Chapter 8. Dialog Boxes and Property Sheets.443

8.1. Modal Dialog Boxes and the CDialog Class. 444
8.1.1. The Dialog Box Template ..444
8.1.2. The CDialog Class ...452
8.1.3. Creating a Modal Dialog Box ..456
8.1.4. Dialog Data Exchange and Dialog Data Validation458
8.1.5. Interacting with the Controls in a Dialog466
8.1.6. The DlgDemo1 Application468

8.2. Modeless Dialog Boxes 480
8.2.1. The DlgDemo2 Application480

8.3. Using a Dialog Box as a Main Window. ... 494
8.3.1. Processing Keyboard Messages507
8.3.2. Preprocessing WM_COMMAND Messages509

8.4. Property Sheets 510
8.4.1. The PropDemo Application514

 4

8.5. The Common Dialogs..529
8.5.1. Modifying the Common Dialogs. ... 531
8.5.2. The Phones Application. ... 533

PART Ⅱ: The Documents/View Architecture.549
Chapter 9. Documents, Views, and the Single Document Interface .549

9.1. Document/View Fundamentals . ..550
9.1.1. The InitInstance Function Revisited. .. 552
9.1.2. The Document Object. .. 554
9.1.3. The View Object. .. 560
9.1.4. The Frame Window Object. .. 564
9.1.5. Dynamic Object Creation . .. 564
9.1.6. More on the SDI Document Template 566
9.1.7. Registering Document Types with the Operating System Shell 568
9.1.8. Command Routing. ... 569
9.1.9. Predefined Command IDs and Command Handlers............................. 572

9.2. Your First Document/View Application . ..575
9.2.1. The SdiSquares Application . .. 575
9.2.2. SdiSquares Step by Step . .. 595

9.3. Doc + View = Less Work for You597

Chapter 10. Scroll Views, HTML Views, and Other View Types599

10.1. Scroll Views ..600
10.1.1. CScrollView Basics. .. 600
10.1.2. CScrollView Operations. ... 605
10.1.3. Optimizing Scrolling Performance . .. 605
10.1.4. The ScrollDemo Application 607
10.1.5. Converting an Ordinary View into a Scroll View................................. 615

10.2. HTML Views ..615
10.2.1. CHtmlView Operations . .. 616
10.2.2. CHtmlView Overridables 618
10.2.3. Utilizing DHTML in CHtmlView-Based Applications 620

10.3. Tree Views ..626
10.3.1. Initializing a Tree View 627
10.3.2. Tree View Member Functions and Notifications.................................. 630
10.3.3. The DriveTree Application . .. 632

10.4. List Views ...644
10.4.1. Initializing a List View . .. 645
10.4.2. Changing the Presentation Style. .. 648
10.4.3. Sorting in a List View. .. 649
10.4.4. Hit-Testing in a List View. .. 650
10.4.5. The WinDir Application . .. 651

10.5. Do-It-Yourself Control Views665

Chapter 11. Multiple Documents and Multiple Views.669

11.1. MFC and the Multiple Document Interface.669
11.1.1. Synchronizing Multiple Views of a Document. 672
11.1.2. The MdiSquares Application 675
11.1.3. Supporting Multiple Document Types. ... 694
11.1.4. Alternatives to MDI. ... 695

11.2. Splitter Windows ...696
11.2.1. Dynamic Splitter Windows. .. 698
11.2.2. The Sketch Application 700
11.2.3. Static Splitter Windows 718

 5

11.2.4. The Wanderer Application ...719
11.2.5. Custom Command Routing..749
11.2.6. Three-Way Splitter Windows. ...751
11.2.7. Dynamic Splitter Windows with Multiple View Types.753

Chapter 12. Toolbars, Status Bars, and Rebars755

12.1. Toolbars 755
12.1.1. Creating and Initializing a Toolbar. ...756
12.1.2. Docking and Floating...762
12.1.3. Controlling a Toolbar's Visibility766
12.1.4. Keeping Toolbar Buttons in Sync with Your Application768
12.1.5. Adding ToolTips and Flyby Text770
12.1.6. Adding Non-Push-Button Controls to a Toolbar.774
12.1.7. Updating Non-Push-Button Controls775
12.1.8. Making Toolbar Settings Persistent. ..777
12.1.9. Toolbar Support in AppWizard . ..777

12.2. Status Bars 778
12.2.1. Creating and Initializing a Status Bar . ..779
12.2.2. Providing Context-Sensitive Help for Menu Items.782
12.2.3. Creating Custom Status Bar Panes. ...783
12.2.4. Status Bar Support in AppWizard . ..786

12.3. Putting It All Together: The MyWord Application................... 787
12.3.1. The Main Toolbar...807
12.3.2. The Style Bar ...808
12.3.3. More About CRichEditView ...813

12.4. Rebars . .. 814

Chapter 13. Printing and Print Previewing817

13.1. Printing with Documents and Views 817
13.1.1. The Windows Print Architecture. ..818
13.1.2. The MFC Print Architecture . ..825
13.1.3. Print Previewing...834

13.2. A Bare-Bones Printing Application 835
13.2.1. Black-and-White Print Previews. ..841

13.3. A More Complex Printing Application 842
13.3.1. A Unique Approach to Serialization . ..856

13.4. Printing Tips and Tricks. ... 857
13.4.1. Using the Print Dialog's Selection Button. ..857
13.4.2. Assume Nothing—And Test Thoroughly!858
13.4.3. Adding Default Pagination Support861
13.4.4. Enumerating Printers..862

PART Ⅲ: Beyong the Basics865
Chapter 14. Timers and Idle Processing ...865

14.1. Timer. .. 865
14.1.1. Setting a Timer: Method 1 ...866
14.1.2. Responding to WM_TIMER Messages869
14.1.3. Setting a Timer: Method 2 ...872
14.1.4. Stopping a Timer..874

14.2. The Clock Application . .. 875
14.2.1. Processing Timer Messages885
14.2.2. Getting the Current Time:The CTime Class887
14.2.3. Using the MM_ISOTROPIC Mapping Mode.888
14.2.4. Hiding and Displaying the Title Bar . ..890

 6

14.2.5. Implementing Client-Area Drag. .. 892
14.2.6. Using the System Menu as a Context Menu. .. 893
14.2.7. Topmost Windows 895
14.2.8. Making Configuration Settings Persistent 896
14.2.9. Controlling the Window Size: The WM_GETMINMAXINFO Message

903

14.3. Idle Processing ...904
14.3.1. Using OnIdle 906
14.3.2. Idle Processing vs. Multithreading . .. 909

Chapter 15. Bitmaps, Palettes, and Regions 911

15.1. Palettes..912
15.1.1. How Windows Uses Color . .. 912
15.1.2. Logical Palettes and the CPalette Class. ... 914
15.1.3. Creating a Logical Palette. .. 915
15.1.4. Realizing a Logical Palette . .. 919
15.1.5. Drawing with Palette Colors. .. 920
15.1.6. The WM_QUERYNEWPALETTE and WM_PALETTECHANGED Msg

921
15.1.7. Determining Whether a Logical Palette Is Needed. 924
15.1.8. The PaletteDemo Application. .. 926
15.1.9. Palette Animation . .. 932
15.1.10. The ::SetSystemPaletteUse Function . .. 937

15.2. Bitmaps...938
15.2.1. DDBs and the CBitmap Class. .. 938
15.2.2. Blitting Bitmaps to Screens and Other Devices.................................... 940
15.2.3. Bitmap Resources. .. 943
15.2.4. DIBs and DIB Sections 945
15.2.5. Blits, Raster Operations, and Color Mapping....................................... 947
15.2.6. The BitmapDemo Application. ... 950
15.2.7. Writing a BMP File Viewer 965
15.2.8. More on the ::LoadImage Function. ... 981

15.3. Regions ...982
15.3.1. Regions and the CRgn Class. .. 983
15.3.2. The RegionDemo Application 988

Chapter 16. The Common Controls993

16.1. Common Control Fundamentals. ..994
16.1.1. Creating a Common Control. .. 997
16.1.2. Processing Notifications: The WM_NOTIFY Message 1000

16.2. Slider, Spin Button, and ToolTip Controls1004
16.2.1. Slider Controls. ... 1004
16.2.2. Spin Button Controls 1009
16.2.3. ToolTip Controls. .. 1013
16.2.4. The GridDemo Application 1018

16.3. Image Lists and ComboBoxEx Controls1028
16.3.1. Image Lists . .. 1029
16.3.2. ComboBoxEx Controls 1032
16.3.3. The PathList Application 1036

16.4. Progress Controls and Animation Controls1045
16.4.1. Progress Controls. ... 1046
16.4.2. Animation Controls 1048

16.5. IP Address Controls and Other Data-Entry Controls1050
16.5.1. IP Address Controls 1050
16.5.2. Hotkey Controls. ... 1052

 7

16.5.3. Month Calendar Controls...1053
16.5.4. Date-Time Picker Controls ..1057

Chapter 17. Threads and Thread Synchronization.........................1061

17.1. Threads . .. 1062
17.1.1. Creating a Worker Thread ..1063
17.1.2. Creating a UI Thread..1066
17.1.3. Suspending and Resuming Threads1067
17.1.4. Putting Threads to Sleep ..1068
17.1.5. Terminating a Thread ...1069
17.1.6. Autodeleting CWinThreads..1070
17.1.7. Terminating Another Thread ..1072
17.1.8. Threads, Processes, and Priorities . ..1075
17.1.9. Using C Run-Time Functions in Multithreaded Applications.1080
17.1.10. Calling MFC Member Functions Across Thread Boundaries1081
17.1.11. Your First Multithreaded Application . ..1085

17.2. Thread Synchronization 1093
17.2.1. Critical Sections ...1094
17.2.2. Mutexes. ...1096
17.2.3. Events. ..1098
17.2.4. Semaphores . ..1102
17.2.5. The CSingleLock and CMultiLock Classes . ..1104
17.2.6. Writing Thread-Safe Classes. ..1107
17.2.7. The ImageEdit Application . ..1109

17.3. Odds and Ends1132
17.3.1. Message Pumps. ..1132
17.3.2. Launching Other Processes . ..1134
17.3.3. File Change Notifications . ..1136

PART Ⅳ: COM, OLE and ActiveX.. 1139
Chapter 18. MFC and the Component Object Model..................... 1139

18.1. The Component Object Model1140
18.1.1. Instantiating a COM Object1142
18.1.2. Object Lifetimes. ...1144
18.1.3. Acquiring Interface Pointers . ..1145
18.1.4. COM Servers1146
18.1.5. Location Transparency. ...1148
18.1.6. Object Linking and Embedding1149
18.1.7. Active Documents. ..1152
18.1.8. ActiveX. ..1153

18.2. MFC and COM . ..1154
18.2.1. Multiple Inheritance. ...1155
18.2.2. Nested Classes1157
18.2.3. MFC and Nested Classes1161
18.2.4. How MFC Implements IUnknown. ...1163
18.2.5. Interface Maps1165
18.2.6. MFC and Aggregation. ..1166
18.2.7. MFC and Class Factories1169
18.2.8. Putting It All in Perspective1171

Chapter 19. The Clipboard and OLE Drag-and-Drop 1173

19.1. The Legacy Clipboard1174
19.1.1. Clipboard Formats1176
19.1.2. Private Clipboard Formats1181
19.1.3. Providing Data in Multiple Formats . ..1182
19.1.4. Querying for Available Data Formats . ..1183

 8

19.1.5. Delayed Rendering1185
19.1.6. Building a Reusable Clipboard Class1189

19.2. The OLE Clipboard . .. 1189
19.2.1. OLE Clipboard Basics. ..1190
19.2.2. MFC, Global Memory, and the OLE Clipboard1196
19.2.3. Using Alternative Storage Media. ..1198
19.2.4. Treating the OLE Clipboard as a CFile 1200
19.2.5. Multiple Formats and Multiple Storage Media. 1202
19.2.6. Checking Data Availability. .. 1203
19.2.7. Delayed Rendering with COleDataSource . .. 1204
19.2.8. COleDataSource and COleDataObject in Review............................. 1208

19.3. OLE Drag-and-Drop ...1209
19.3.1. Anatomy of a Drop Source. ...1211
19.3.2. Anatomy of a Drop Target 1215
19.3.3. MFC Support for OLE Drag-and-Drop 1218
19.3.4. Drop Target Scrolling . .. 1221

19.4. Putting It All Together: The Widget Application.1221
19.4.1. The AfxOleInit Function 1245

Chapter 20. Automation1247

20.1. Automation Basics ...1248
20.1.1. IDispatch: The Root of All Automation. ... 1250
20.1.2. Automation Data Types 1252
20.1.3. Late Binding vs. Early Binding 1259
20.1.4. Dual Interfaces . .. 1260
20.1.5. Type Libraries. .. 1261

20.2. MFC Automation Servers. ...1263
20.2.1. MFC, IDispatch, and Dispatch Maps . .. 1264
20.2.2. Writing an Automation Server. ... 1266
20.2.3. Automation Hierarchies. ... 1274
20.2.4. A More Complex Automation Server . .. 1276

20.3. MFC Automation Clients. ..1302
20.3.1. The PieClient Application 1303
20.3.2. Connecting to a Running Automation Server 1316

Chapter 21. ActiveX Controls1319

21.1. ActiveX Control Basics1321

21.2. Building ActiveX Controls . ..1333

21.3. Using ActiveX Controls in MFC Applications1375

21.4. Advanced Topics ..1386

Programming Windows With MFC

 1

Introduction
Like many of my colleagues in this industry, I learned
Windows programming from Charles Petzold's Programming
Windows—a classic programming text that is the bible to an
entire generation of Windows programmers. When I set out to
become an MFC programmer in 1994, I went shopping for an
MFC equivalent to Programming Windows. After searching in
vain for such a book and spending a year learning MFC the
old-fashioned way, I decided to write one myself. It's the book
you hold in your hands. And it's the book I would like to have
had when I was learning to program Windows the MFC way.

MFC, as you probably already know, is Microsoft's C++ class
library for Windows programming. Programming Windows
with MFC isn't a book about C++; rather, it's a book about
writing 32-bit Windows applications in C++ using MFC rather
than the Windows API as the chief means of accessing the
operating system's essential features and services. It was
written with two kinds of people in mind:

x Windows API programmers who want to learn MFC
x Programmers who have never before programmed

Windows

Whichever camp you fall into, I assume that you know the C++
programming language already and are comfortable with basic
C++ idioms such as derived classes and virtual functions. If
these assumptions are true, you're ready to begin climbing the
hill that is MFC programming.

Even veteran Windows programmers frequently find MFC code
confusing the first time they see it, in part because of the
presence of code created by the MFC code-generating wizards
in Visual C++ and in part because of the countless lines of code
hidden away in MFC classes such as CFrameWnd, CDocument,
and CView. That's why this book takes a rather unusual
approach to teaching MFC. It begins by having you write MFC
code by hand (without the wizards) and by utilizing MFC
1.0-style application architectures—that is, applications that use
neither documents nor views. Only after you've mastered the
fundamentals and become acquainted with basic MFC classes
such as CWnd and CWinApp do I introduce the wizards and

Programming Windows With MFC

 2

teach you how to take advantage of MFC's document/view
architecture. Along the way, you build a understanding from
the ground up of the message-oriented nature of Windows and
of key components of Windows itself, such as the Graphics
Device Interface (GDI). I believe that this approach makes
learning MFC not only less intimidating, but also more
enjoyable. I think that you'll agree once you've worked your
way through the book and can look back on the learning
experience from the standpoint of a knowledgeable Windows
programmer.

Programming Windows with MFC is divided into four parts.
Part I introduces the core tenets of MFC and Windows
programming, beginning with a simple "Hello, MFC"
application and introducing, one by one, menus, controls,
dialog boxes, and other application building blocks. Part II
builds on the foundation laid in Part I with a detailed look at the
document/view architecture. In particular, Chapters 9, 10, and
11 reveal much of the "magic" behind documents and views
and explain not only how to write basic document/view
applications but also how to implement some not so basic
features such as split-window views of a document and print
previews. Part III covers some of the more advanced features of
Windows and MFC—features such as color palettes, bitmap
handling, and multiple threads of execution. In Part IV, you'll
learn how MFC wraps its arms around COM, OLE, and
ActiveX and how to write COM-enabled applications and
software components. By the time you're finished with Chapter
21, you'll be well versed in the art of 32-bit Windows
programming using MFC. And you'll have prodigious amounts
of sample code to draw from when it's time to strike out on
your own and write your first great Windows application.

What's New in the Second Edition

Those of you who read the first edition of this book will notice
two rather obvious changes in the second edition. First, this
edition contains seven new chapters. One is devoted to the
MFC view classes; another covers the MFC collection classes;
one introduces MFC file I/O and serialization mechanisms; and
four cover the relationship between MFC and COM. MFC is
not the general-purpose COM framework that the Active
Template Library (ATL) is, but MFC makes certain types of

Programming Windows With MFC

 3

COM programming exceptionally easy. For example, MFC
greatly simplifies the task of writing ActiveX controls, and it
makes writing Automation servers—programs that use COM to
expose their functionality to scripting clients—a breeze.

The second major change in this edition has to do with wizards.
The first edition didn't cover the MFC wizards at all. The
second edition uses hand-generated code in Chapters 1 through
3 but then shifts gears and begins using AppWizard and
ClassWizard in Chapter 4. Why the change of heart? I still
believe that code-generating wizards are an impediment to
learning and should be used only by knowledgeable
programmers, but I've also come to realize that in the real world,
MFC programmers use the wizards. For certain tasks—writing
ActiveX controls, for example—it doesn't make sense not to
use the wizards. So after much deliberation, I decided I would
be remiss not to cover them.

Despite the new material regarding wizards, however, this is
not—and never will be—a book about clicking buttons in
AppWizard. After introducing a fundamental skill, such as how
to write a message handler with ClassWizard, I thereafter let
the source code do the talking and assume that you can figure
out how the source code was created. Keep in mind that the
wizards never do anything you can't do yourself, so it's
perfectly feasible to type in every source code listing by hand if
you'd like to.

The downside to using wizards in a book that teaches MFC
programming is that they produce code that isn't fit to publish.
The first edition of this book included printed listings for each
and every source code file. This one does not. It contains
printed copies of relevant source code files and provides the
others on CD. Why? Because printing a source code file that's
50 percent meat and 50 percent fat adds bulk to a book without
adding content. Some of the code produced by the MFC
AppWizard in Visual C++ 6.0 won't even compile. (For details,
see Chapter 4.) I'm not very proud of the parts of my book that
the wizards created, because those portions are littered with
arbitrary blank lines, comments that lack consistent style, and
unnecessary functions. For someone who takes pride in writing
concise, readable sample code, wizard output is a bitter pill to
swallow.

Programming Windows With MFC

 4

Nevertheless, wizards represent the new world order in
Windows programming, and they're something that you, I, and
everyone else must get used to. It's a shame that the Visual C++
team won't give us real wizards to play with instead of the toys
that they pass off as wizards today. Until they do, we must
make do with what we have.

What's On the CD

The CD that accompanies this book contains source code and
executables for all the sample programs presented in the book.
All samples were written and compiled with Visual C++ 6.0
and MFC 6.0 and tested on various Win32 platforms. Unless
otherwise noted, all are compatible with Windows 98,
Windows NT 4.0, and Windows 2000. Most are also
compatible with Windows 95 and Windows NT 3.51.

You can copy the contents of the CD to your hard disk by
running the setup program found in the CD's root directory, or
you can retrieve the files directly from the CD's \Code directory.
The \Code directory contains one subdirectory for each chapter
of the book—Chap01, Chap02, and so on. Inside these
subdirectories you'll find the sample programs. Each set of
source code files is accompanied by a release-build EXE as
well as a Visual C++ workspace (DSW) file that you can open
with Visual C++'s Open Workspace command.

From Me to You (and You to Me)

From the day in 1995 when I began writing the first edition of
Programming Windows with MFC, my goal has been to
provide C++ programmers with the same kind of timeless,
irreplaceable resource that Programming Windows is to C
programmers. Whether I've achieved that goal, I'll let you be
the judge.

I want to know what you think about Programming Windows
with MFC, and I particularly want to hear from you if you find
mistakes. You can reach me by sending mail to
jeffpro@msn.com or by visiting my Web site at
www.prosise.com. At that site you'll find up-to-date
information regarding the book, a list of errata, and information
about other projects that I'm working on. Later this year, I plan

Programming Windows With MFC

 5

to post a brand new chapter on MFC DLLs that you can read
and comment on online.

With the huge volume of computer books vying for buyers'
attention in bookstores today, I know that you could have
chosen any number of MFC books besides this one. I thank you
for purchasing Programming Windows with MFC, and I
sincerely hope you conclude that your money was well spent.
Enjoy!

Jeff Prosise
March 12, 1999

Programming Windows With MFC

 6

PART Ⅰ: Fundamental of
Windows and MFC
Chapter 1. Hello, MFC
A few short years ago, the person learning to program
Microsoft Windows for the first time had a limited number of
programming tools to choose from. C was the language spoken
by the Windows Software Development Kit (SDK), and
alternative Windows programming environments such as
Microsoft Visual Basic hadn't arrived on the scene. Most
Windows applications were written in C, and the fledgling
Windows programmer faced the daunting task not only of
learning the ins and outs of a new operating system but also of
getting acquainted with the hundreds of different application
programming interface (API) functions that Windows supports.

Today many Windows programs are still written in C. But the
variety of Windows programming environments available
means that commercial-quality Windows programs can be
written in C, C++, Pascal, BASIC, and a number of other
languages. Moreover, C++ has all but replaced C as the
professional Windows programmer's language of choice
because the sheer complexity of Windows, coupled with the
wide-ranging scope of the Windows API, cries out for an
object-oriented programming language. Many Windows
programmers have concluded that C++ offers a compelling
alternative to C that, combined with a class library that
abstracts the API and encapsulates the basic behavior of
windows and other objects in reusable classes, makes Windows
programming simpler. And an overwhelming majority of C++
programmers have settled on the Microsoft Foundation Class
library, better known by the acronym MFC, as their class
library of choice. Other Windows class libraries are available,
but only MFC was written by the company that writes the
operating system. MFC is continually updated to incorporate
the latest changes to Windows itself, and it provides a
comprehensive set of classes representing everything from
windows to ActiveX controls in order to make the job of
writing Windows applications easier.

Programming Windows With MFC

 7

If you're coming to MFC from a traditional Windows
programming environment such as C and the Windows SDK,
you're already familiar with many of the concepts you need to
know to understand Windows programming with MFC. But if
you're coming from a character-oriented environment such as
MS-DOS or UNIX, you'll find that Windows programming is
fundamentally different from anything you've done before. This
chapter begins with an overview of the Windows programming
model and a peek under the hood at how Windows applications
work. It continues with an introduction to MFC. After the
preliminaries are out of the way, you'll develop your very first
Windows application—one that uses MFC to create a
resizeable window containing the message "Hello, MFC."

1.1. The Windows Programming Model

Programs written for traditional operating environments use a
procedural programming model in which programs execute
from top to bottom in an orderly fashion. The path taken from
start to finish may vary with each invocation of the program
depending on the input it receives or the conditions under
which it is run, but the path remains fairly predictable. In a C
program, execution begins with the first line in the function
named main and ends when main returns. In between, main
might call other functions and these functions might call even
more functions, but ultimately it is the program—not the
operating system—that determines what gets called and when.

Windows programs operate differently. They use the
event-driven programming model illustrated in Figure 1-1, in
which applications respond to events by processing messages
sent by the operating system. An event could be a keystroke, a
mouse click, or a command for a window to repaint itself,
among other things. The entry point for a Windows program is
a function named WinMain, but most of the action takes place
in a function known as the window procedure. The window
procedure processes messages sent to the window. WinMain
creates that window and then enters a message loop, alternately
retrieving messages and dispatching them to the window
procedure. Messages wait in a message queue until they are
retrieved. A typical Windows application performs the bulk of
its processing in response to the messages it receives, and in

Programming Windows With MFC

 8

between messages, it does little except wait for the next
message to arrive.

The message loop ends when a WM_QUIT message is
retrieved from the message queue, signaling that it's time for
the application to end. This message usually appears because
the user selected Exit from the File menu, clicked the close
button (the small button with an X in the window's upper right
corner), or selected Close from the window's system menu.
When the message loop ends, WinMain returns and the
application terminates.

The window procedure typically calls other functions to help
process the messages it receives. It can call functions local to
the application, or it can call API functions provided by
Windows. API functions are contained in special modules
known as dynamic-link libraries, or DLLs. The Win32 API
includes hundreds of functions that an application can call to
perform various tasks such as creating a window, drawing a
line, and performing file input and output. In C, the window
procedure is typically implemented as a monolithic function
containing a large switch statement with cases for individual
messages. The code provided to process a particular message is
known as a message handler. Messages that an application
doesn't process are passed on to an API function named
DefWindowProc, which provides default responses to
unprocessed messages.

Programming Windows With MFC

 9

Figure 1-1. The Windows programming model.

1.1.1. Messages, Messages, and More Messages

Where do messages come from, and what kinds of information
do they convey? Windows defines hundreds of different
message types. Most messages have names that begin with the
letters "WM" and an underscore, as in WM_CREATE and
WM_PAINT. These messages can be classified in various ways,
but for the moment classification is not nearly as important as
realizing the critical role messages play in the operation of an
application. The following table shows 10 of the most common
messages. A window receives a WM_PAINT message, for
example, when its interior needs repainting. One way to
characterize a Windows program is to think of it as a collection
of message handlers. To a large extent, it is a program's unique
way of responding to messages that gives it its personality.

Programming Windows With MFC

 10

Common Windows Messages

Message Sent When

WM_CHAR A character is input from the keyboard.

WM_COMMAND The user selects an item from a menu, or a
control sends a notification to its parent.

WM_CREATE A window is created.

WM_DESTROY A window is destroyed.

WM_LBUTTONDOWN The left mouse button is pressed.

WM_LBUTTONUP The left mouse button is released.

WM_MOUSEMOVE The mouse pointer is moved.

WM_PAINT A window needs repainting.

WM_QUIT The application is about to terminate.

WM_SIZE A window is resized.

A message manifests itself in the form of a call to a window's
window procedure. Bundled with the call are four input
parameters: the handle of the window to which the message is
directed, a message ID, and two 32-bit parameters known as
wParam and lParam. The window handle is a 32-bit value that
uniquely identifies a window. Internally, the value references a
data structure in which Windows stores relevant information
about the window such as its size, style, and location on the
screen. The message ID is a numeric value that identifies the
message type: WM_CREATE, WM_PAINT, and so on.
wParam and lParam contain information specific to the
message type. When a WM_LBUTTONDOWN message
arrives, for example, wParam holds a series of bit flags
identifying the state of the Ctrl and Shift keys and of the mouse
buttons. lParam holds two 16-bit values identifying the location
of the mouse pointer when the click occurred. Together, these
parameters provide the window procedure with all the
information it needs to process the WM_LBUTTONDOWN
message.

Programming Windows With MFC

 11

1.1.2. Windows Programming, SDK-Style

If you haven't programmed Windows in C before, it's
instructive to see what the source code for a simple program
looks like. The program listed in Figure 1-2 creates a window
and responds to WM_PAINT messages by drawing an ellipse
in the window's upper left corner. This code is similar to the
source code you'll find in books such as Charles Petzold's
Programming Windows (1998, Microsoft Press) and other
books that teach Windows programming in C.

Figure 1-2. C source code for a simple Windows program.

#include <windows.h>

LONG WINAPI WndProc (HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 WNDCLASS wc;

 HWND hwnd;

 MSG msg;

 wc.style = 0; // Class style

 wc.lpfnWndProc = (WNDPROC) WndProc; // Window
procedure address

 wc.cbClsExtra = 0; // Class extra bytes

 wc.cbWndExtra = 0; // Window extra
bytes

 wc.hInstance = hInstance; // Instance handle

 wc.hIcon = LoadIcon (NULL, IDI_WINLOGO); // Icon handle

Programming Windows With MFC

 12

 wc.hCursor = LoadCursor (NULL, IDC_ARROW); // Cursor handle

 wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1); // Background
color

 wc.lpszMenuName = NULL; // Menu name

 wc.lpszClassName = "MyWndClass"; // WNDCLASS
name

 RegisterClass (&wc);

 hwnd = CreateWindow (

 "MyWndClass", // WNDCLASS name

 "SDK Application", // Window title

 WS_OVERLAPPEDWINDOW, // Window style

 CW_USEDEFAULT, // Horizontal position

 CW_USEDEFAULT, // Vertical position

 CW_USEDEFAULT, // Initial width

 CW_USEDEFAULT, // Initial height

 HWND_DESKTOP, // Handle of parent window

 NULL, // Menu handle

 hInstance, // Application's instance handle

 NULL // Window-creation data

);

 ShowWindow (hwnd, nCmdShow);

 UpdateWindow (hwnd);

Programming Windows With MFC

 13

 while (GetMessage (&msg, NULL, 0, 0)) {

 TranslateMessage (&msg);

 DispatchMessage (&msg);

 }

 return msg.wParam;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM
wParam,

 LPARAM lParam)

{

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message) {

 case WM_PAINT:

 hdc = BeginPaint (hwnd, &ps);

 Ellipse (hdc, 0, 0, 200, 100);

 EndPaint (hwnd, &ps);

 return 0;

 case WM_DESTROY:

 PostQuitMessage (0);

 return 0;

 }

Programming Windows With MFC

 14

 return DefWindowProc (hwnd, message, wParam, lParam);

}

WinMain begins by calling the API function RegisterClass to
register a window class. The window class defines important
characteristics of a window such as its window procedure
address, its default background color, and its icon. These and
other properties are defined by filling in the fields of a
WNDCLASS structure, which is subsequently passed to
RegisterClass. An application must specify a window class
when it creates a window, and a class must be registered before
it can be used. That's why RegisterClass is called at the outset
of the program. Keep in mind that a WNDCLASS-type window
class is not the same as a C++ window class. To avoid
confusion, I'll use the term WNDCLASS throughout this book
to refer to classes registered with RegisterClass. The term
window class will refer to C++ classes derived from MFC's
CWnd class.

Once the WNDCLASS is registered, WinMain calls the
all-important CreateWindow function to create the application's
window. The first parameter to CreateWindow is the name of
the WNDCLASS from which the window will be created. The
second parameter is the text that will appear in the window's
title bar. The third specifies the window style.
WS_OVERLAPPEDWINDOW is a commonly used style that
creates a top-level window with a resizing border, a title bar, a
system menu, and buttons for minimizing, maximizing, and
closing the window.

The next four parameters specify the window's initial position
and size. CW_USEDEFAULT tells Windows to use default
values for both. The final four parameters specify, in order, the
handle of the window's parent window (HWND_DESKTOP for
an application's main window); the handle of the menu
associated with the window, if any; the application's instance
handle (a value that lets the programmer differentiate between
the program itself and the modules—that is, DLLs—that it
loads); and a pointer to application-specific window-creation
data. I could easily devote a section of this book to
CreateWindow and its parameters, but as you'll see later, MFC
hides much of this detail inside the class library. A typical MFC

Programming Windows With MFC

 15

application doesn't have a WinMain function (at least not one
you can see), and it doesn't call RegisterClass or
CreateWindow.

The window that CreateWindow creates is not initially visible
on the screen because it was not created with the WS_VISIBLE
style. (Had it been used, WS_VISIBLE would have been
combined with WS_OVERLAPPEDWINDOW in the call to
CreateWindow.) Therefore, WinMain follows CreateWindow
with calls to ShowWindow and UpdateWindow, which make
the window visible and ensure that its WM_PAINT handler is
called immediately.

Next comes the message loop. In order to retrieve and dispatch
messages, WinMain executes a simple while loop that calls the
GetMessage, TranslateMessage, and DispatchMessage API
functions repeatedly. GetMessage checks the message queue. If
a message is available, it is removed from the queue and copied
to msg; otherwise, GetMessage blocks on the empty message
queue until a message is available. msg is an instance of the
structure MSG, whose fields contain pertinent message
parameters such as the message ID and the time at which the
message was placed in the queue. TranslateMessage converts a
keyboard message denoting a character key to an easier-to-use
WM_CHAR message, and DispatchMessage dispatches the
message to the window procedure. The message loop executes
until GetMessage returns 0, which happens only when a
WM_QUIT message is retrieved from the message queue.
When this occurs, WinMain ends and the program terminates.

Messages dispatched with DispatchMessage generate calls to
the window procedure WndProc. The sample program in Figure
1-2 processes just two message types, WM_PAINT and
WM_DESTROY; all other messages are passed to
DefWindowProc for default processing. A switch-case block
inspects the message ID passed in the message parameter and
executes the appropriate message handler. The WM_PAINT
handler calls the BeginPaint API function to obtain a device
context handle before painting begins and the EndPaint API
function to release the handle when painting is finished. In
between, the Ellipse API function draws an ellipse that is 200
pixels wide and 100 pixels high. A device context handle is the

Programming Windows With MFC

 16

"magic cookie" that permits a Windows application to draw on
the screen. Without it, functions such as Ellipse won't work.

The WM_DESTROY handler calls the PostQuitMessage API
function to post a WM_QUIT message to the message queue
and ultimately cause the program to terminate. The
WM_DESTROY message is sent to a window just before it is
destroyed. A top-level window must call PostQuitMessage
when it receives a WM_DESTROY message, or else the
message loop will not fall through and the program will never
end.

1.1.3. Hungarian Notation and Windows Data
Types

Another aspect of Figure 1-2 that deserves mentioning is the
variable naming convention that it uses. Veteran Windows
programmers know it as Hungarian notation, in which each
variable name begins with one or more lowercase characters
identifying the variable's type: h for handle, n for integer, and
so on. The table below lists some of the commonly used
Hungarian prefixes. Prefixes are often combined to form other
prefixes, as when p and sz are joined to form psz, which stands
for "pointer to zero-terminated string."

Many of the data types shown in this table aren't standard
C/C++ data types but rather are "special" data types defined in
the Windows header files. COLORREF, for example, is the
Windows data type for 24-bit RGB color values. A BOOL is a
Boolean data type that stores TRUE/FALSE values, while a
DWORD is a 32-bit unsigned integer. Over time, you'll come to
know these data types as well as you know your compiler's
native data types.

Common Hungarian Notation Prefixes

Prefix Data Type

b BOOL

c or ch char

clr COLORREF

cx, cy Horizontal or vertical distance

Programming Windows With MFC

 17

dw DWORD

h Handle

l LONG

n int

p Pointer

sz Zero-terminated string

w WORD

Most MFC programmers use Hungarian notation, too. Glance
through the source code for a typical MFC program and you'll
see hundreds of hs and lps and other familiar prefixes as well as
prefixes representing MFC's own data types (for example, wnd
for CWnd variables). It's also common to prefix member
variables with m_ so that it's obvious whether a variable is a
member of a class. A temporary CString variable created on the
stack might have the name strWndClass, but if it's a member
variable it will probably be called m_strWndClass. You don't
have to abide by these rules yourself, of course, but observing
established naming conventions will make your code more
readable to other programmers who do.

1.1.4. SDK Programming in Perspective

All this is a lot to digest if you've never programmed Windows
before, but it brings to light a few very important concepts.
First, Windows is an event-driven, message-based operating
system. Messages are the key to everything that goes on in the
system, and for an application, very few things happen that
aren't the direct result of receiving a message. Second, there are
many different API functions and many different message types,
which complicates application development and makes it hard
to predict all of the scenarios an application might encounter.
Third, seeing how Windows programming is done the hard way
provides a baseline for evaluating MFC and other class libraries.
MFC is not the panacea some of its proponents would have you
believe, but it undeniably makes certain aspects of Windows
programming easier. And the higher order it lends to Windows
programs frees programmers to spend more time developing
the structural components of a program and less time worrying
about the style bits passed to CreateWindow and other nuances

Programming Windows With MFC

 18

of the API. If you haven't given MFC a look, now is the time to
consider it. Windows programming isn't getting any easier, and
MFC lets you benefit from tens of thousands of lines of code
already written and tested by Microsoft.

1.2. Introducing MFC

MFC is the C++ class library Microsoft provides to place an
object-oriented wrapper around the Windows API. Version 6
contains about 200 classes, some of which you'll use directly
and others of which will serve primarily as base classes for
classes of your own. Some MFC classes are exceedingly simple,
such as the CPoint class that represents a point (a location
defined by x and y coordinates). Others are more complex, such
as the CWnd class that encapsulates the functionality of a
window. In an MFC program, you don't often call the Windows
API directly. Instead, you create objects from MFC classes and
call member functions belonging to those objects. Many of the
hundreds of member functions defined in the class library are
thin wrappers around the Windows API and even have the
same names as the corresponding API functions. An obvious
benefit of this naming convention is that it speeds the transition
for C programmers making the move to MFC. Want to move a
window? A C programmer would probably call the
SetWindowPos API function. Look up SetWindowPos in an
MFC reference, and you'll find that MFC supports
SetWindowPos, too. It's a member of the CWnd class, which
makes sense when you think of a window as an object and
SetWindowPos as an operation you might want to perform on
that object.

MFC is also an application framework. More than merely a
collection of classes, MFC helps define the structure of an
application and handles many routine chores on the
application's behalf. Starting with CWinApp, the class that
represents the application itself, MFC encapsulates virtually
every aspect of a program's operation. The framework supplies
the WinMain function, and WinMain in turn calls the
application object's member functions to make the program go.
One of the CWinApp member functions called by
WinMain—Run—provides the message loop that pumps
messages to the application's window. The framework also
provides abstractions that go above and beyond what the

Programming Windows With MFC

 19

Windows API has to offer. For example, MFC's document/view
architecture builds a powerful infrastructure on top of the API
that separates a program's data from graphical representations,
or views, of that data. Such abstractions are totally foreign to
the API and don't exist outside the framework of MFC or a
similar class library.

1.2.1. The Benefits of Using C++ and MFC

The fact that you're reading this book means you've probably
already heard the traditional arguments in favor of using an
object-oriented design methodology: reusability, tighter binding
of code and data, and so on. And you should already be familiar
with common object-oriented programming (OOP) terms such
as object, inheritance, and encapsulation, particularly as they
pertain to the C++ language. But without a good class library to
serve as a starting point, OOP does little to reduce the amount
of code you write.

That's where MFC comes in. Want to add a toolbar to your
application—one that can be docked to different sides of a
window or floated in a window of its own? No problem: MFC
provides a CToolBar class that does the bulk of the work for
you. Need a linked list or a resizeable array? That's easy, too:
CList, CArray, and other MFC collection classes provide
canned containers for your data. And don't forget about COM,
OLE, and ActiveX. Few among us have the desire or the
know-how to write an ActiveX control from scratch. MFC
simplifies the development of ActiveX controls by providing
the bulk of the code you need in classes such as COleControl
and COlePropertyPage.

Another advantage to using MFC is that the framework uses a
lot of tricks to make Windows objects such as windows, dialog
boxes, and controls behave like C++ objects. Suppose you want
to write a reusable list box class that displays a navigable list of
drives and directories on the host PC. Unless you create a
custom control to do the job, you can't implement such a list
box in C because clicking an item in the list box sends a
notification to the list box's parent (the window or the dialog
box in which the list box appears), and it's up to the parent to
process that notification. In other words, the list box control

Programming Windows With MFC

 20

doesn't control its own destiny; it's the parent's job to update the
list box's contents when a drive or a directory is changed.

Not so with MFC. In an MFC application, windows and dialog
boxes reflect unprocessed notifications back to the controls that
sent them. You can create a self-contained and highly reusable
list box class that responds to its own click notifications by
deriving your own list box class from CListBox. The resulting
list box implements its own behavior and can be ported to
another application with little more than a #include statement in
a source code file. That's what reusability is all about.

1.2.2. The MFC Design Philosophy

When the programmers at Microsoft set out to create MFC,
they had a vision of the future that included a pair of key design
goals:

x MFC should provide an object-oriented interface to the
Windows operating system that supports reusability,
self-containment, and other tenets of OOP.

x It should do so without imposing undue overhead on the
system or unnecessarily adding to an application's
memory requirements.

The first goal was accomplished by writing classes to
encapsulate windows, dialog boxes, and other objects and by
including key virtual functions that can be overridden to alter
the behavior of derived classes. The second goal required the
architects of MFC to make some choices early on about how
windows, menus, and other objects would be wrapped by MFC
classes such as CWnd and CMenu. Efficient use of memory was
important then and it's important today, because nobody likes a
class library that produces bloated code.

One of the ways in which the designers of MFC minimized the
overhead added by the class library is manifested in the
relationship between MFC objects and Windows objects. In
Windows, information about the characteristics and current
state of a window is stored in memory owned by the operating
system. This information is hidden from applications, which
deal exclusively with window handles, or HWNDs. Rather than
duplicate all the information associated with an HWND in the

Programming Windows With MFC

 21

data members of the CWnd class, MFC wraps a window in a
CWnd by storing the HWND in a public CWnd data member
named m_hWnd. As a rule, if Windows exposes an object
through a handle of some type, the corresponding MFC class
will contain a data member for that handle. This knowledge can
be useful if you want to call an API function that requires a
handle but you have, say, a CWnd or CWnd pointer instead of
an HWND.

1.2.3. The Document/View Architecture

The cornerstone of MFC's application framework is the
document/view architecture, which defines a program structure
that relies on document objects to hold an application's data and
on view objects to render views of that data. MFC provides the
infrastructure for documents and views in the classes
CDocument and CView. CWinApp , CFrameWnd, and other
classes work in conjunction with CDocument and CView to
bind all the pieces together. It's a little early to discuss the
details of the document/view architecture, but you should at
least be familiar with the term document/view because it
inevitably comes up in any discussion of MFC.

The reason documents and views are so important is that
document/view applications derive the greatest benefit from the
application framework. You can write MFC programs that don't
use documents and views (and we'll do a lot of that in this book,
especially in Chapters 1 through 8), but to get the most out of
the framework and take advantage of some of MFC's most
advanced features, you must use the document/view
architecture. That's not as restricting as it sounds, because
almost any program that relies on documents of some type can
be cast in the document/view mold. Don't let the term document
mislead you into thinking that the document/view architecture
is useful only for writing word processors and spreadsheet
programs. A document is simply an abstract representation of a
program's data. A document could just as easily be a byte array
that stores board positions in a computerized game of chess as
it could be a spreadsheet.

What kinds of support does MFC provide to document/view
applications? Among other things, the document/view
architecture vastly simplifies printing and print previewing, the

Programming Windows With MFC

 22

mechanics of saving documents to disk and reading them back
again, and converting applications into Active document
servers whose documents can be opened in Microsoft Internet
Explorer. You'll learn all about the document/view architecture
in Part II of this book, but only after you've done some
programming without documents and views so that you can get
to know MFC without having too much heaped on your plate at
once.

1.2.4. The MFC Class Hierarchy

MFC provides a variety of classes designed to serve a wide
range of needs. You'll find a handy diagram of the MFC 6.0
class hierarchy inside the front cover of this book.

The majority of MFC classes are derived, either directly or
indirectly, from CObject. CObject provides three important
features to classes that inherit from it:

x Serialization support
x Run-time class information support
x Diagnostic and debugging support

Serialization is the process of streaming an object's persistent
data to or from a storage medium such as a disk file. By using
CObject as a base class, you can write serializable classes
whose instances are easily saved and re-created. Run-time class
information (RTCI) lets you retrieve an object's class name and
other information about the object at run time. RTCI is
implemented apart from the run-time type information (RTTI)
mechanism in C++ because it predated RTTI by a number of
years. Diagnostic and debugging support built into CObject let
you perform validity checks on instances of CObject-derived
classes and dump state information to a debugging window.

CObject provides other benefits to its derived classes as well.
For example, it overloads the new and delete operators to
provide protection against memory leaks. If you create an
object from a CObject-derived class and fail to delete it before
the application terminates, MFC will warn you by writing a
message to the debug output window. The overarching
importance of this most basic of MFC classes will become
increasingly clear as you grow more familiar with MFC.

Programming Windows With MFC

 23

1.2.5. AFX Functions

Not all of the functions that MFC offers are members of classes.
MFC provides an API of sorts all its own in the form of global
functions whose names begin with Afx. Class member functions
can be called only in the context of the objects to which they
belong, but AFX functions are available anytime and anywhere.

The following table lists some of the more commonly used
AFX functions. AfxBeginThread simplifies the process of
creating threads of execution. AfxMessageBox is the global
equivalent of the Windows MessageBox function and, unlike
CWnd::MessageBox, can be called just as easily from a
document class as from a window class. AfxGetApp and
AfxGetMainWnd return pointers to the application object and
the application's main window and are useful when you want to
access a function or data member of those objects but don't
have a pointer readily available. AfxGetInstanceHandle is
handy when you need an instance handle to pass to a Windows
API function. (Even MFC programs call API functions every
now and then!)

Commonly Used AFX Functions

Function Name Description

AfxAbort Unconditionally terminates an application; usually
called when an unrecoverable error occurs

AfxBeginThread Creates a new thread and begins executing it

AfxEndThread Terminates the thread that is currently executing

AfxMessageBox Displays a Windows message box

AfxGetApp Returns a pointer to the application object

AfxGetAppName Returns the name of the application

AfxGetMainWnd Returns a pointer to the application's main window

AfxGetInstanceHandle Returns a handle identifying the current application
instance

AfxRegisterWndClass Registers a custom WNDCLASS for an MFC
application

1.3. Your First MFC Application

Programming Windows With MFC

 24

It's time to build your first MFC application. And what better
place to start than with one that displays "Hello, MFC" in a
window? Based on the classic "Hello, world" program
immortalized in Brian Kernighan and Dennis Ritchie's The C
Programming Language (1988, Prentice-Hall), this very
minimal program, which I'll call Hello, demonstrates the
fundamental principles involved in using MFC to write a
Windows application. Among other things, you'll get a close-up
look at MFC's CWinApp and CFrameWnd classes and see
firsthand how classes are derived from them and plugged into
the application. You'll also learn about the all-important
CPaintDC class, which serves as the conduit through which
text and graphics are drawn in a window in response to
WM_PAINT messages. Finally, you'll be introduced to
message mapping, the mechanism MFC uses to correlate the
messages your application receives with the member functions
you provide to handle those messages.

Figure 1-3 lists the source code for Hello. Hello.h contains the
declarations for two derived classes. Hello.cpp contains the
implementations of those classes. Among C++ programmers,
it's traditional to put class definitions in .h files and source code
in .cpp files. We'll honor that tradition here and throughout the
rest of this book. For large applications containing tens or
perhaps hundreds of classes, it's also beneficial to put class
declarations and implementations in separate source code files.
That's overkill for the programs in the first few chapters of this
book, but later on, when we begin working with documents and
views, we'll give each class its own .h and .cpp files. On the CD
in the back of the book, in the folder named Chap01, you'll find
a folder with copies of Hello.h and Hello.cpp as well as a folder
containing a copy of the compiled executable (Hello.exe).

Figure 1-3. The Hello application.

Hello.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
public:

Admin
Highlight

Admin
Highlight

Programming Windows With MFC

 25

 CMainWindow ();

protected:
 afx_msg void OnPaint ();

DECLARE_MESSAGE_MAP ()
}
Hello.cpp
#include <afxwin.h>
#include "Hello.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;

 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_PAINT ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("The Hello Application"));
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 CRect rect;
 GetClientRect (&rect);

 dc.DrawText (_T ("Hello, MFC"), -1, &rect,
 DT_SINGLELINE ¦ DT_CENTER ¦ DT_VCENTER);
}

Figure 1-4 shows the output from Hello. When you run the
application, notice that the window is entirely functional; you
can move it, resize it, minimize it, maximize it, and close it.
And when the window is resized, "Hello, MFC" is redrawn in
the center of the window.

Admin
Highlight

Admin
Highlight

Programming Windows With MFC

 26

Most of Hello's functionality comes from Windows. Windows,
for example, draws the exterior, or nonclient area, of the
window: the title bar, the buttons on the title bar, and the
window's border. It's your responsibility to create the window
and process WM_PAINT messages indicating that all or part of
the window's interior, or client area, needs updating. Let's
examine the source code to see how Hello works.

Figure 1-4. The Hello window.

1.3.1. The Application Object

The heart of an MFC application is an application object based
on the CWinApp class. CWinApp provides the message loop
that retrieves messages and dispatches them to the application's
window. It also includes key virtual functions that can be
overridden to customize the application's behavior. CWinApp
and other MFC classes are brought into your application when
you include the header file Afxwin.h. An MFC application can
have one—and only one—application object, and that object
must be declared with global scope so that it will be instantiated
in memory at the very outset of the program.

Hello's application class is named CMyApp. It is instantiated in
Hello.cpp with the statement

CMyApp myApp;

CMyApp's class declaration appears in Hello.h:

Admin
Highlight

Programming Windows With MFC

 27

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

CMyApp declares no data members and overrides just one
function inherited from CWinApp. InitInstance is called early in
the application's lifetime, right after the application starts
running but before the window is created. In fact, unless
InitInstance creates a window, the application doesn't have a
window. That's why even a minimal MFC application must
derive a class from CWinApp and override
CWinApp::InitInstance.

The InitInstance Function

CWinApp::InitInstance is a virtual function whose default
implementation contains just one statement:

return TRUE;

The purpose of InitInstance is to provide the application with
the opportunity to initialize itself. The value returned by
InitInstance determines what the framework does next.
Returning FALSE from InitInstance shuts down the application.
If initialization goes as planned, InitInstance should return
TRUE in order to allow the program to proceed. InitInstance is
the perfect place to perform initializations that need to be done
each time the program starts. At the very least, this means
creating the window that will represent the application on the
screen.

CMyApp's implementation of InitInstance, which appears in
Hello.cpp, creates the Hello window by instantiating Hello's
CMainWindow class. The statement

m_pMainWnd = new CMainWindow;

constructs a CMainWindow object and copies its address to the
application object's m_pMainWnd data member. After the
window is created, InitInstance displays it—remember, a
window is not initially visible unless it is created with a

Programming Windows With MFC

 28

WS_VISIBLE attribute—by calling ShowWindow and
UpdateWindow through the CMainWindow pointer:

m_pMainWnd->ShowWindow (m_nCmdShow);
m_pMainWnd->UpdateWindow ();

ShowWindow and UpdateWindow are CWnd member functions
common to all window objects, including objects of the
CFrameWnd class from which CMainWindow is derived. These
functions are little more than wrappers around the API
functions of the same name. To call a regular Windows API
function from an MFC program, make it a practice to preface
the function name with the global scope resolution operator ::,
as in

::UpdateWindow (hwnd);

This notation will ensure that the API function is called even if
the object that makes the call has a member function with the
same name. In the remainder of this book, Windows API
functions will be prefaced with :: to distinguish them from
MFC member functions.

ShowWindow accepts just one parameter: an integer that
specifies whether the window should initially be shown
minimized, maximized, or neither minimized nor maximized.
In accordance with Windows programming protocol, Hello
passes ShowWindow the value stored in the application object's
m_nCmdShow variable, which holds the nCmdShow parameter
passed to WinMain. The m_nCmdShow value is usually
SW_SHOWNORMAL, indicating that the window should be
displayed in its normal unmaximized and unminimized state.
However, depending on how the user starts an application,
Windows will occasionally slip in a value such as
SW_SHOWMAXIMIZED or SW_SHOWMINIMIZED.
Unless there is a specific reason for it to do otherwise,
InitInstance should always pass the m_nCmdShow variable
instead of a hardcoded SW_ value to ShowWindow.

UpdateWindow completes the job that ShowWindow started by
forcing an immediate repaint. Its work done, InitInstance
returns TRUE to allow the application to proceed.

Programming Windows With MFC

 29

Other CWinApp Overridables

InitInstance is just one of several virtual CWinApp member
functions you can override to customize the behavior of the
application object. Look up the CWinApp overridables in your
MFC documentation and you'll see a list of more than a dozen
others with names such as WinHelp and
ProcessWndProcException. Many of these functions are
seldom overridden, but they're handy to have around
nonetheless. For example, you can use ExitInstance to clean up
when an application terminates. If you use InitInstance to
allocate memory or other resources, ExitInstance is the perfect
place to free those resources. The default implementation of
ExitInstance performs some routine cleanup chores required by
the framework, so you should be sure to call the base class
version if you've overridden ExitInstance. Ultimately, the value
returned by ExitInstance is the exit code returned by WinMain.

Other interesting CWinApp overridables include OnIdle, Run,
and PreTranslateMessage. OnIdle is handy for performing
background processing chores such as garbage collection.
Because OnIdle is called when an application is "idle"—that is,
when there are no messages waiting to be processed—it
provides an excellent mechanism for performing low-priority
background tasks without spawning a separate thread of
execution. OnIdle is discussed at length in Chapter 14. You can
override Run to customize the message loop, replacing it with a
message loop of your own. If you just want to perform some
specialized preprocessing on certain messages before they are
dispatched, you can override PreTranslateMessage and save
yourself the trouble of writing a whole new message loop.

1.3.2. How MFC Uses the Application Object

To someone who has never seen an MFC application's source
code, one of the more remarkable aspects of Hello will be that
it contains no executable code outside of the classes it defines.
It has no main or WinMain function, for example; the only
statement in the entire program that has global scope is the
statement that instantiates the application object. So what
actually starts the program running, and when does the
application object come into the picture?

Programming Windows With MFC

 30

The best way to understand what goes on under the hood is to
look at the framework's source code. One of the source code
files provided with MFC—Winmain.cpp—contains an
AfxWinMain function that is MFC's equivalent of WinMain.
(That's right: when you purchase Visual C++, you get the
source code for MFC, too.) AfxWinMain makes extensive use
of the application object, which is why the application object
must be declared globally. Global variables and objects are
created before any code is executed, and the application object
must be extant in memory before AfxWinMain starts.

Right after starting, AfxWinMain calls a function named
AfxWinInit to initialize the framework and copy hInstance,
nCmdShow, and other AfxWinMain function parameters to data
members of the application object. Then it calls InitApplication
and InitInstance. In 16-bit versions of MFC, InitApplication is
called only if the hPrevInstance parameter passed to
AfxWinMain is NULL, indicating that this is the only instance
of the application currently running. In the Win32 environment,
hPrevInstance is always NULL, so the framework doesn't
bother to check it. A 32-bit application could just as easily use
InitApplication to initialize itself as InitInstance, but
InitApplication is provided for compatibility with previous
versions of MFC and should not be used in 32-bit Windows
applications. If AfxWinInit, InitApplication, or InitInstance
returns 0, AfxWinMain terminates instead of proceeding further
and the application is shut down.

Only if all of the aforementioned functions return nonzero
values does AfxWinMain perform the next critical step. The
statement

pThread->Run();

calls the application object's Run function, which executes the
message loop and begins pumping messages to the application's
window. The message loop repeats until a WM_QUIT message
is retrieved from the message queue, at which point Run breaks
out of the loop, calls ExitInstance, and returns to AfxWinMain.
After doing some last-minute cleaning up, AfxWinMain
executes a return to end the application.

Programming Windows With MFC

 31

1.3.3. The Frame Window Object

MFC's CWnd class and its derivatives provide object-oriented
interfaces to the window or windows an application creates.
Hello's window class, CMainWindow, is derived from MFC's
CFrameWnd class, which is derived from CWnd. CFrameWnd
models the behavior of frame windows. For now, you can think
of a frame window as a top-level window that serves as an
application's primary interface to the outside world. In the
greater context of the document/view architecture, frame
windows play a larger role as intelligent containers for views,
toolbars, status bars, and other user-interface (UI) objects.

An MFC application creates a window by creating a window
object and calling its Create or CreateEx function. Hello
creates a CMainWindow object in CMyApp::InitInstance.
CMainWindow's constructor creates the window you see on the
screen:

Create (NULL, _T ("The Hello Application"));

_T is a macro that's used to make string literals character set
neutral. It's discussed later in this chapter. Create is a
CMainWindow member function that's inherited from
CFrameWnd. It's one of approximately 20 member functions
that CFrameWnd defines in addition to the functions it inherits
from CWnd. CFrameWnd::Create is prototyped as follows:

BOOL Create (LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle = WS_OVERLAPPEDWINDOW,
 const RECT& rect = rectDefault,
 CWnd* pParentWnd = NULL,
 LPCTSTR lpszMenuName = NULL,
 DWORD dwExStyle = 0,
 CCreateContext* pContext = NULL)

Default values are defined for six of the eight parameters
Create accepts. Hello does the minimum amount of work
required, specifying values for the function's first two
parameters and accepting the defaults for the remaining six.
The first parameter—lpszClassName—specifies the name of
the WNDCLASS that the window is based on. Specifying

Programming Windows With MFC

 32

NULL for this parameter creates a default frame window based
on a WNDCLASS registered by the framework. The
lpszWindowName parameter specifies the text that will appear
in the window's title bar.

The dwStyle parameter specifies the window style. The default
is WS_OVERLAPPEDWINDOW. You can change the
window style by specifying an alternative style or combination
of styles in the call to Create. You'll find a complete list of
window styles in the documentation for CFrameWnd::Create.
Two of the styles frequently used with frame windows are
WS_HSCROLL and WS_VSCROLL, which add horizontal
and vertical scroll bars to the bottom and right edges of the
window's client area. The statement

Create (NULL, _T ("Hello"), WS_OVERLAPPEDWINDOW ¦
WS_VSCROLL);

creates an overlapped window that contains a vertical scroll bar.
As this example illustrates, multiple styles may be combined
using the C++ ¦ operator. WS_OVERLAPPEDWINDOW
combines the WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_MINIMIZEBOX,
WS_MAXIMIZEBOX, and WS_THICKFRAME styles, so if
you'd like to create a window that looks just like a
WS_OVERLAPPEDWINDOW window but lacks the
maximize button in the title bar, you could call Create this way:

Create (NULL, _T ("Hello"), WS_OVERLAPPED ¦ WS_CAPTION ¦
 WS_SYSMENU ¦ WS_MINIMIZEBOX ¦ WS_THICKFRAME);

An alternative way to specify a window style is to override the
virtual PreCreateWindow function that a window inherits from
CWnd and modify the style field of the CREATESTRUCT
structure passed to PreCreateWindow. This capability is handy
to have when the framework creates your application's main
window for you, as is frequently the case in document/view
applications, but it's not necessary when your code calls Create
directly and therefore controls the parameters passed to it. Later
in this book, you'll see examples demonstrating when and how
PreCreateWindow is used.

Programming Windows With MFC

 33

Additional window styles known as extended styles can be
specified in CFrameWnd::Create's dwExStyle parameter.
Window styles are divided into standard and extended styles for
a historical reason: Windows 3.1 added support for additional
window styles by introducing the ::CreateWindowEx API
function. ::CreateWindowEx is similar to ::CreateWindow, but
its argument list includes an additional parameter specifying the
window's extended style. Windows 3.1 supported just five
extended styles. More recent versions of Windows offer a much
greater selection that includes the WS_EX_WINDOWEDGE
and WS_EX_CLIENTEDGE styles, which give window
borders a more pronounced 3D look. MFC automatically adds
these two styles to frame windows for you, so you rarely need
to specify them yourself.

After the dwStyle parameter comes rect, which is a C++
reference to a CRect object or a C-style RECT structure
specifying the window's initial screen position and size. The
default is rectDefault, which is a static member of the
CFrameWnd class that simply tells Windows to choose the
window's default initial position and size. If you want to, you
can specify the initial position and size by initializing a CRect
object with coordinates describing a rectangle on the screen and
passing it to Create. The following statement creates a standard
overlapped window whose upper left corner is located 32 pixels
to the right of and 64 pixels down from the upper left corner of
the screen and whose initial width and height are 320 and 240
pixels, respectively:

Create (NULL, _T ("Hello"), WS_OVERLAPPEDWINDOW,
 CRect (32, 64, 352, 304));

Note that the window's width and height are determined by the
difference between the first and third parameters and the second
and fourth parameters rather than by the absolute values of the
third and fourth parameters. In other words, the CRect object
specifies the rectangular region of the screen that the window
will occupy. The four parameters passed to CRect's constructor
specify, in order, the rectangle's left, top, right, and bottom
screen coordinates.

The pParentWnd parameter to Create identifies the window's
parent or owner. Don't worry for now about parents and owners.

Programming Windows With MFC

 34

This parameter is always NULL for top-level windows because
top-level windows have neither parents nor owners. (Actually,
specifying NULL for pParentWnd makes the desktop
window—the window that forms the backdrop for the
screen—the window's owner. But that's an implementation
detail that matters only to Windows.)

Create's lpszMenuName parameter identifies the menu
associated with the window. NULL indicates that the window
has no menu. We'll begin using menus in Chapter 4.

The final parameter to CFrameWnd::Create, pContext,
contains a pointer to a CCreateContext structure that is used by
the framework when it initializes frame windows in
document/view applications. Outside the document/view
architecture, this parameter is meaningless and should be set to
NULL.

Create offers a tremendous variety of options to the
programmer. The number of choices might seem overwhelming
at this early stage, especially if you haven't programmed for
Windows before, but experience will teach you how and when
to exercise the options available to you. Meanwhile, the class
library's use of default function arguments hides much of the
complexity when a standard CFrameWnd-type window is all
you need. This is one example of the ways in which MFC
makes Windows programming just a little bit easier.

1.3.4. Painting the Window

Hello doesn't draw to the screen just whenever it wants to.
Instead, it draws in response to WM_PAINT messages from
Windows signaling that it's time to update the window.

WM_PAINT messages can be generated for a variety of
reasons. A WM_PAINT message might be sent because
another window was moved, exposing a part of Hello's window
that was previously obscured, or it could be sent because the
window was resized. Whatever the stimulus, it is the
application's responsibility to paint the client area of its window
in response to WM_PAINT messages. Windows draws the
nonclient area so that all applications will have a consistent
look, but if the application doesn't implement its own drawing

Programming Windows With MFC

 35

routines for the client area, the interior of the window will be
blank.

In Hello, WM_PAINT messages are processed by
CMainWindow::OnPaint, which is called anytime a
WM_PAINT message arrives. OnPaint's job is to draw "Hello,
MFC" in the center of the window's client area. It begins by
constructing a CPaintDC object named dc:

CPaintDC dc (this);

MFC's CPaintDC class is derived from MFC's more generic
CDC class, which encapsulates a Windows device context and
includes dozens of member functions for drawing to screens,
printers, and other devices. In Windows, all graphical output is
performed through device context objects that abstract the
physical destinations for output. CPaintDC is a special case of
CDC that is used only in WM_PAINT message handlers.
Before drawing in response to a WM_PAINT message, an
application must call the Windows ::BeginPaint API function
to obtain a device context and prepare the device context for
painting. When it's finished painting, the application must
call ::EndPaint to release the device context and inform
Windows that painting is complete. If an application fails to
call ::BeginPaint and ::EndPaint when it processes a
WM_PAINT message, the message will not be removed from
the message queue. Not surprisingly, CPaintDC
calls ::BeginPaint from its constructor and ::EndPaint from its
destructor to ensure that this doesn't happen.

In MFC, you'll always draw to the screen with a CDC object of
some type, but you must use a CPaintDC object only inside
OnPaint handlers. Furthermore, it's good practice to create
CPaintDC objects on the stack so that their destructors will be
called automatically when OnPaint ends. You can instantiate a
CPaintDC object with the new operator if you want to, but then
it becomes critical to delete that object before OnPaint ends.
Otherwise, ::EndPaint won't be called, and your application
won't redraw properly.

After creating a CPaintDC object, OnPaint constructs a CRect
object representing a rectangle and calls CWnd::GetClientRect

Programming Windows With MFC

 36

to initialize the rectangle with the coordinates of the window's
client area:

CRect rect;
GetClientRect (&rect);

OnPaint then calls CDC::DrawText to display "Hello, MFC" in
the window's client area:

dc.DrawText (_T ("Hello, MFC"), -1, &rect,
 DT_SINGLELINE ¦ DT_CENTER ¦ DT_VCENTER);

DrawText is a powerful general-purpose function for outputting
text. It accepts four parameters: a pointer to the string to display,
the number of characters in the string (or -1 if the string is
terminated with a NULL character), the address of a RECT
structure or CRect object specifying the formatting rectangle
(the rectangle in which the string is displayed), and flags
specifying output options. In Hello, CMainWindow::OnPaint
combines the DT_SINGLELINE, DT_CENTER, and
DT_VCENTER flags to display a single line of text that is
centered both horizontally and vertically in the formatting
rectangle. rect describes the window's client area, so the
resulting output is perfectly centered in the window.

Conspicuously missing from DrawText's argument list are
parameters specifying basic properties of the output such as the
font and text color. These and other characteristics of the output
are attributes of the device context and are controlled with CDC
member functions such as SelectObject and SetTextColor.
Because Hello didn't change any of the device context's
attributes, the default font and default text color (black) were
used. DrawText also fills a small rectangle surrounding the text
it outputs with the device context's current background color.
The default is white, so you don't see it if your system's default
window background color also happens to be white. But change
the window background color to gray and the white text
background will stick out like a sore thumb.

In Chapter 2, you'll learn how to customize the output from
DrawText and other CDC drawing functions by modifying
device context attributes. Once you know how to do it, it's

Programming Windows With MFC

 37

simple to change the text color or tell DrawText to paint the
text background with "transparent" pixels.

1.3.5. The Message Map

How is it that a WM_PAINT message from Windows turns into
a call to CMainWindow::OnPaint? The answer lies in the
message map. A message map is a table that correlates
messages and member functions. When Hello's frame window
receives a message, MFC scans the window's message map,
sees that a handler exists for WM_PAINT messages, and calls
OnPaint. The message map is MFC's way of avoiding the
lengthy vtables that would be required if every class had a
virtual function for every possible message it might receive.
Any class derived from CCmdTarget can contain a message
map. What MFC does internally to implement message maps is
hidden behind some rather complex macros, but using a
message map is exceedingly simple. Here's all you have to do
to add a message map to a class:

1. Declare the message map by adding a DECLARE_MESSAGE_MAP
statement to the class declaration.

2. Implement the message map by placing macros identifying the messages
that the class will handle between calls to BEGIN_MESSAGE_MAP
and END_MESSAGE_MAP.

3. Add member functions to handle the messages.

Hello's CMainWindow class handles just one message type,
WM_PAINT, so its message map is implemented as follows:

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_PAINT ()
END_MESSAGE_MAP ()

BEGIN_MESSAGE_MAP begins the message map and
identifies both the class to which the message map belongs and
the base class. (Message maps are passed by inheritance just as
other class members are. The base class name is required so
that the framework can find the base class's message map when
necessary.) END_MESSAGE_MAP ends the message map. In
between BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP are the message map entries.
ON_WM_PAINT is a macro defined in the MFC header file
Afxmsg_.h. It adds an entry for WM_PAINT messages to the

Programming Windows With MFC

 38

message map. The macro accepts no parameters because it is
hardcoded to link WM_PAINT messages to the class member
function named OnPaint. MFC provides macros for more than
100 Windows messages, ranging from WM_ACTIVATE to
WM_WININICHANGE. You can get the name of the message
handler that corresponds to a given ON_WM macro from the
MFC documentation, but it's fairly easy to deduce the name
yourself by replacing WM_ with On and converting all the
remaining letters except those at the beginning of the word to
lowercase. Thus, WM_PAINT becomes OnPaint,
WM_LBUTTONDOWN becomes OnLButtonDown, and so on.

You'll need to consult the MFC documentation to determine
what kinds of arguments a message handler receives and what
type of value it returns. OnPaint takes no arguments and returns
no value, but OnLButtonDown is prototyped like this:

afx_msg void OnLButtonDown (UINT nFlags, CPoint point)

nFlags contains bit flags specifying the state of the mouse
buttons and the Ctrl and Shift keys, and point identifies the
location at which the click occurred. The arguments passed to a
message handler come from the wParam and lParam
parameters that accompanied the message. But whereas
wParam and lParam are of necessity generic, the parameters
passed to an MFC message handler are both specific and
type-safe.

What happens if you want to process a message for which MFC
doesn't provide a message-map macro? You can create an entry
for the message using the generic ON_MESSAGE macro,
which accepts two parameters: the message ID and the address
of the corresponding class member function. The following
statement maps WM_SETTEXT messages to a member
function named OnSetText:

ON_MESSAGE (WM_SETTEXT, OnSetText)

OnSetText would be declared like this:

afx_msg LRESULT OnSetText (WPARAM wParam, LPARAM lParam);

Programming Windows With MFC

 39

Other special-purpose message-map macros provided by MFC
include ON_COMMAND, which maps menu selections and
other UI events to class member functions, and
ON_UPDATE_COMMAND_UI, which connects menu items
and other UI objects to "update handlers" that keep them in
sync with the internal state of the application. You'll be
introduced to these and other message-map macros in the
chapters that follow.

Getting back to Hello for a moment, CMainWindow's OnPaint
function and message map are declared with the following
statements in Hello.h:

afx_msg void OnPaint ();
DECLARE_MESSAGE_MAP ()

afx_msg is a visual reminder that OnPaint is a message handler.
You can omit it if you'd like because it reduces to white space
when compiled. The term afx_msg is meant to connote a
function that behaves as if it were a virtual function but does so
without requiring a vtable entry. DECLARE_MESSAGE_MAP
is usually the final statement in the class declaration because it
uses C++ keywords to specify the visibility of its members.
You can follow DECLARE_MESSAGE_MAP with statements
declaring other class members, but if you do, you should also
lead off with a public, protected, or private keyword to ensure
the visibility you want for those members.

1.3.6. How Message Maps Work

You can find out how message maps work by examining the
DECLARE_MESSAGE_MAP, BEGIN_MESSAGE_MAP,
and END_MESSAGE_MAP macros in Afxwin.h and the code
for CWnd::WindowProc in Wincore.cpp. Here's a synopsis of
what goes on under the hood when you use message-mapping
macros in your code, and how the framework uses the code and
data generated by the macros to convert messages into calls to
corresponding class member functions.

MFC's DECLARE_MESSAGE_MAP macro adds three
members to the class declaration: a private array of
AFX_MSGMAP_ENTRY structures named _messageEntries
that contains information correlating messages and message

Programming Windows With MFC

 40

handlers; a static AFX_MSGMAP structure named
messageMap that contains a pointer to the class's
_messageEntries array and a pointer to the base class's
messageMap structure; and a virtual function named
GetMessageMap that returns messageMap's address. (The
macro implementation is slightly different for an MFC
application that's dynamically rather than statically linked to
MFC, but the principle is the same.) BEGIN_MESSAGE_MAP
contains the implementation for the GetMessageMap function
and code to initialize the messageMap structure. The macros
that appear between BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP fill in the _messageEntries array, and
END_MESSAGE_MAP marks the end of the array with a
NULL entry. For the statements

// In the class declaration
DECLARE_MESSAGE_MAP ()

// In the class implementation
BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_PAINT ()
END_MESSAGE_MAP ()

the compiler's preprocessor generates this:

// In the class declaration
private:
 static const AFX_MSGMAP_ENTRY _messageEntries[];
protected:
 static const AFX_MSGMAP messageMap;
 virtual const AFX_MSGMAP* GetMessageMap() const;

// In the class implementation
const AFX_MSGMAP* CMainWindow::GetMessageMap() const
 { return &CMainWindow::messageMap; }

const AFX_MSGMAP CMainWindow::messageMap = {
 &CFrameWnd::messageMap,
 &CMainWindow::_messageEntries[0]
};

const AFX_MSGMAP_ENTRY CMainWindow::_messageEntries[] = {
 { WM_PAINT, 0, 0, 0, AfxSig_vv,
 (AFX_PMSG)(AFX_PMSGW)(void (CWnd::*)(void))OnPaint },
 {0, 0, 0, 0, AfxSig_end, (AFX_PMSG)0 }
};

With this infrastructure in place, the framework can call
GetMessageMap to get a pointer to CMainWindow's

Programming Windows With MFC

 41

messageMap structure. It can then scan the _messageEntries
array to see if CMainWindow has a handler for the message,
and if necessary it can grab a pointer to CFrameWnd's
messageMap structure and scan the base class's message map,
too.

That's a pretty good description of what happens when a
message for CMainWindow arrives. To dispatch the message,
the framework calls the virtual WindowProc function that
CMainWindow inherits from CWnd. WindowProc calls
OnWndMsg, which in turn calls GetMessageMap to get a
pointer to CMainWindow::messageMap and searches
CMainWindow::_messageEntries for an entry whose message
ID matches the ID of the message that is currently awaiting
processing. If the entry is found, the corresponding
CMainWindow function (whose address is stored in the
_messageEntries array along with the message ID) is called.
Otherwise, OnWndMsg consults CMainWindow::messageMap
for a pointer to CFrameWnd::messageMap and repeats the
process for the base class. If the base class doesn't have a
handler for the message, the framework ascends another level
and consults the base class's base class, systematically working
its way up the inheritance chain until it finds a message handler
or passes the message to Windows for default processing.
Figure 1-5 illustrates CMainWindow's message map
schematically and shows the route that the framework travels as
it searches for a handler to match a given message ID,
beginning with the message map entries for CMainWindow.

What MFC's message-mapping mechanism amounts to is a
very efficient way of connecting messages to message handlers
without using virtual functions. Virtual functions are not
space-efficient because they require vtables, and vtables
consume memory even if the functions in them are not
overridden. The amount of memory used by a message map, in
contrast, is proportional to the number of entries it contains.
Since it's extremely rare for a programmer to implement a
window class that includes handlers for all of the different
message types, message mapping conserves a few hundred
bytes of memory just about every time a CWnd is wrapped
around an HWND.

Programming Windows With MFC

 42

Figure 1-5. Message-map processing.

1.3.7. Windows, Character Sets, and the _T Macro

Microsoft Windows 98 and Microsoft Windows NT use two
different character sets to form characters and strings. Windows
98 and its predecessors use the 8-bit ANSI character set, which
is similar to the ASCII character set familiar to many
programmers. Windows NT and Windows 2000 use the 16-bit
Unicode character set, which is a superset of the ANSI
character set. Unicode is ideal for applications sold in
international markets because it contains a rich assortment of
characters from non-U.S. alphabets. Programs compiled with
ANSI characters will run on Windows NT and Windows 2000,
but Unicode programs run slightly faster because Windows NT
and Windows 2000 don't have to perform an ANSI-to-Unicode
conversion on every character. Unicode applications won't run
on Windows 98, period, unless you convert every character
string passed to Windows from Unicode to ANSI format.

When an application is compiled, it is compiled to use either
ANSI or Unicode characters. If your application will be
deployed on both Windows 98 and Windows 2000, it may
behoove you to make strings character set neutral. Then, by
making a simple change to the project's build settings or adding

Programming Windows With MFC

 43

a #define to a header file, you can tell the compiler whether to
produce an ANSI build or a Unicode build. If you encode a
string literal like this:

"Hello"

the compiler forms the string from ANSI characters. If you declare the
string like this:

L"Hello"

the compiler uses Unicode characters. But if you use MFC's _T macro,
like this:

_T ("Hello")

the compiler will emit Unicode characters if the preprocessor
symbol _UNICODE is defined, and ANSI characters if it is not.
If all your string literals are declared with _T macros, you can
produce a special Windows NT_only build of your application
by defining _UNICODE. Defining this symbol implicitly
defines a related symbol named UNICODE (no underscore),
which selects the Unicode versions of the numerous Windows
API functions that come in both ANSI and Unicode versions.
Of course, if you'd like the same executable to run on either
platform and you're not concerned about the performance hit an
ANSI application incurs under Windows NT, you can forget
about the _T macro. I'll use _T throughout this book to make
the sample code character set neutral.

Is wrapping string literals in _T macros sufficient to make an
application completely agnostic with regard to character sets?
Not quite. You must also do the following:

x Declare characters to be of type TCHAR rather than char. If the
_UNICODE symbol is defined, TCHAR evaluates to wchar_t, which is a
16-bit Unicode character. If _UNICODE is not defined, TCHAR
becomes plain old char.

x Don't use char* or wchar_t* to declare pointers to TCHAR strings.
Instead, use TCHAR* or, better yet, the LPTSTR (pointer to TCHAR
string) and LPCTSTR (pointer to const TCHAR string) data types.

x Never assume that a character is only 8 bits wide. To convert a buffer
length expressed in bytes to a buffer size in characters, divide the buffer
length by sizeof(TCHAR).

Programming Windows With MFC

 44

x Replace calls to string functions in the C run-time library (for example,
strcpy) with the corresponding macros in the Windows header file
Tchar.h (for example, _tcscpy).

Consider the following code snippet, which uses the ANSI
character set:

char szMsg[256];
pWnd->GetWindowText (szMsg, sizeof (szMsg));
strcat (szMsg, " is the window title");
MessageBox (szMsg);

Here's what the same code would look like if it were revised to
be character set neutral:

TCHAR szMsg[256];
pWnd->GetWindowText (szMsg, sizeof (szMsg) / sizeof (TCHAR));
_tcscat (szMsg, _T (" is the window title"));
MessageBox (szMsg);

The revised code uses the generic TCHAR data type, it makes
no assumptions about the size of a character, and it uses the
TCHAR-compatible string-concatenation function _tcscat in
lieu of the more common but ANSI character set_dependent
strcat.

There's more that could be said about ANSI/Unicode
compatibility, but these are the essentials. For additional
information, refer to the online documentation that comes with
Visual C++ or to Jeffrey Richter's Advanced Windows (1997,
Microsoft Press), which contains an excellent chapter on
Unicode and a handy table listing the string macros defined in
Tchar.h and their C run-time counterparts.

1.3.8. Building the Application

The CD in the back of this book contains everything you need
to use the Hello program in Visual C++. The folder named
\Chap01\Hello contains the program's source code as well as
the files that make up a Visual C++ project. To open the project,
simply select Open Workspace from Visual C++'s File menu
and open Hello.dsw. If you modify the application and want to
rebuild it, select Build Hello.exe from the Build menu.

Programming Windows With MFC

 45

You don't have to use the Hello files on the CD. If you'd prefer,
you can create your own project and type in the source code.
Here are step-by-step instructions for creating a new project in
Visual C++ 6:

1. Select New from the Visual C++ File menu, and click the Projects tab to
go to the Projects page.

2. Select Win32 Application, and enter a project name in the Project Name
text box. If desired, you can change the path name—the drive and folder
where the project and its source code will be stored—in the Location text
box. Then click OK.

3. In the Win32 Application window, select An Empty Project and then
click Finish.

4. Add source code files to the project. To enter a source code file from
scratch, select New from the File menu, select the file type, and enter the
file name. Be sure the Add To Project box is checked so that the file will
be added to the project. Then click OK, and edit the file as you see fit. To
add an existing source code file to a project, go to the Project menu,
select Add To Project and then Files, and pick the file.

5. Select Settings from the Project menu. In the Project Settings dialog box,
be sure that the project name is selected in the left pane and then click
the General tab if the General page isn't already displayed. Select Use
MFC In A Shared DLL from the drop-down list labeled Microsoft
Foundation Classes, and then click OK to register the change with Visual
C++.

Choosing Use MFC In A Shared DLL minimizes your
application's executable file size by allowing MFC to be
accessed from a DLL. If you choose Use MFC In A Static
Library instead, Visual C++ links MFC code into your
application's EXE file and the file size grows considerably.
Static linking uses disk space less efficiently than dynamic
linking because a hard disk containing 10 statically linked MFC
applications contains 10 copies of the same MFC library code.
On the other hand, an application that is statically linked can be
run on any PC, whether or not the MFC DLL is present. It's
your call whether to link to MFC statically or dynamically, but
remember that if you distribute a dynamically linked EXE,
you'll need to distribute the DLL that houses MFC, too. For a
release-build MFC application created with Visual C++ version
6, that DLL is named Mfc42.dll if the program uses ANSI
characters and Mfc42u.dll if it uses Unicode characters.

1.3.9. The Big Picture

Before we move on, let's pause for a moment and review some
of the important concepts learned from the Hello application.
The very first thing that happens when the application is started

Programming Windows With MFC

 46

is that a globally scoped application object is created. MFC's
AfxWinMain function calls the application object's InitInstance
function. InitInstance constructs a window object, and the
window object's constructor creates the window that appears on
the screen. After the window is created, InitInstance calls the
window's ShowWindow function to make it visible and
UpdateWindow to send it its first WM_PAINT message. Then
InitInstance returns, and AfxWinMain calls the application
object's Run function to start the message loop. WM_PAINT
messages are converted by MFC's message-mapping
mechanism into calls to CMainWindow::OnPaint, and OnPaint
draws the text "Hello, MFC" in the window's client area by
creating a CPaintDC object and calling its DrawText function.

If you're coming to MFC straight from the Windows SDK, this
probably seems like a pretty strange way to do business.
Two-step window creation? Application objects? No more
WinMain? It's definitely different from the way Windows used
to be programmed. But compare Hello's source code to the C
program listing back in Figure 1-2, and you'll find that MFC
undeniably simplifies things. MFC doesn't necessarily make the
source code easier to understand—after all, Windows
programming is still Windows programming—but by moving a
lot of the boilerplate stuff out of the source code and into the
class library, MFC reduces the amount of code you have to
write. That, combined with the fact that you can modify the
behavior of any MFC class by deriving from it a class of your
own, makes MFC an effective tool for programming Windows.
The benefits will really become apparent when you begin
tapping into some of the more sophisticated features of
Windows or building ActiveX controls and other
Windows-based software components. With MFC, you can get
an ActiveX control up and running in nothing flat. Without
it—well, good luck.

Hello lacks many of the elements that characterize a full-blown
Windows program, but it's still a good first step on the road to
becoming an MFC programmer. In subsequent chapters, you'll
learn about menus, dialog boxes, and other components of an
application's user interface. You'll also see how Windows
programs read input from the mouse and keyboard and learn
more about drawing in a window. Chapter 2 leads off by
introducing some additional CDC drawing functions and

Programming Windows With MFC

 47

demonstrating how to add scroll bars to a frame window so that
you can view a workspace larger than the window's client area.
Both are essential next steps in building the knowledge base
required to become a Windows programmer.

Programming Windows With MFC

 48

Chapter 2. Drawing in a Window
If you've been around PCs for a while, you probably remember
what graphics programming was like before Microsoft
Windows came along. If you were lucky, you had a decent
graphics library with routines like DrawLine and DrawCircle to
draw graphics primitives for you. If you weren't so lucky, you
probably spent a lot of time writing your own output routines
and tweaking them to shave off a few microseconds here and
there. And whether it was your code or someone else's doing
the drawing, you knew that when a new graphics standard
emerged—in those days, that meant whenever IBM introduced
a new graphics adapter like the EGA or the VGA—you'd be
scrambling to support the latest hardware. That invariably
meant buying an updated version of the graphics library, adding
new code to your own routines, or writing a driver for the new
video card. For the graphics programmer, the platform was a
moving target that never seemed to stand still for very long.
And even if you did manage to draw a bead on the video
hardware, you still had plenty of work to do to adapt your code
to work with printers and other output devices.

Windows changed all that by bringing to the PC platform
something it sorely needed: a device-independent graphics
output model. In Windows, the graphics code you write will
work on any video adapter for which a Windows driver is
available. These days, that's just about every adapter on the
planet. And to a large extent, the same code that sends output to
the screen will also work with printers and other hardcopy
devices. This one-size-fits-all approach to graphics
programming has a number of advantages, chief among them
the fact that programmers can now spend their time developing
code for their applications rather than code for the hardware
their applications will run on. Moreover, you no longer need
third-party graphics libraries in order to do your work because
Windows provides a wide assortment of graphics API functions
that do everything from draw lines to create complex clipping
regions that serve as stencils for other output routines.

The part of Windows responsible for graphics output is the
Graphics Device Interface, or GDI. The GDI provides a number
of services that an application can call. Together, these services

Programming Windows With MFC

 49

constitute a powerful and robust graphics programming
language whose richness rivals that of some third-party
graphics libraries. MFC works on top of the graphics API and
codifies the interface with C++ classes that represent the
various components of the Windows GDI.

Now that you know how to create a window, it's time to do
something with that window. The Hello application in Chapter
1 used CDC::DrawText to output text to a window. DrawText
is just one of many member functions that the CDC class
provides for text and graphics output. This chapter looks at the
CDC class and its derivative classes in more detail and
introduces three of the most commonly used GDI primitives:
pens, brushes, and fonts. It also demonstrates how to add scroll
bars to a window.

2.1. The Windows GDI

In a single-tasking environment such as MS-DOS, the name of
the game when it comes to screen output is "anything goes." A
running application is free to do just about whatever it wants
whenever it wants, whether that involves drawing a line on the
screen, reprogramming the adapter's color palette, or switching
to another video mode. In a windowed, multitasking
environment such as Windows, programs can't be afforded such
freedom because the output from program A must be protected
from the output of program B. First and foremost, this means
that each program's output must be restricted to its own window.
The GDI uses a simple mechanism to make sure every program
that draws in a window plays by the rules. That mechanism is
the device context.

When a Windows program draws to a screen, a printer, or any
other output device, it doesn't output pixels directly to the
device. Instead, it draws to a logical "display surface"
represented by a device context (DC). A device context is a
data structure deep inside Windows that contains fields
describing everything the GDI needs to know about the display
surface, including the physical device with which it is
associated and assorted state information. Before it draws
anything on the screen, a Windows program acquires a device
context handle from the GDI. It then passes that handle back to
the GDI each time it calls a GDI output function. Without a

Programming Windows With MFC

 50

valid device context handle, the GDI won't draw the first pixel.
And through the device context, the GDI can make sure that
everything the program draws is clipped to a particular area of
the screen. Device contexts play a huge role in making the GDI
device-independent because, given a handle to a device context,
the same GDI functions can be used to draw to a diverse
assortment of output devices.

When you program Windows with MFC, the device context has
even greater significance. In addition to serving as the key that
unlocks the door to output devices, a device context object
encapsulates the GDI functions that programs use to generate
output. In MFC, you don't grab a handle to a device context and
call GDI output functions, at least not directly; instead, you
create a device context object and call its member functions to
do your drawing. MFC's CDC class wraps a Windows device
context and the GDI functions that require a device context
handle into one convenient package, and CDC-derived classes
such as CPaintDC and CClientDC represent the different types
of device contexts that Windows applications use.

2.1.2. The MFC Device Context Classes

One way to get a device context in an MFC application is to
call CWnd::GetDC, which returns a pointer to a CDC object
representing a Windows device context. A device context
pointer acquired with CWnd::GetDC should be released with
CWnd::ReleaseDC when drawing is completed. The following
code gets a CDC pointer from GetDC, does some drawing, and
calls ReleaseDC to release the device context:

CDC* pDC = GetDC ();
// Do some drawing
ReleaseDC (pDC);

If the same code were to appear in an OnPaint handler, you
would use CWnd::BeginPaint and CWnd::EndPaint in place of
GetDC and ReleaseDC to ensure proper handling of the
WM_PAINT message:

PAINTSTRUCT ps;
CDC* pDC = BeginPaint (&ps);
// Do some drawing

Programming Windows With MFC

 51

EndPaint (&ps);

The GDI also supports metafiles, which store sequences of GDI
commands that can be "played back" to produce physical
output. To acquire a device context for a metafile's output, you
would use yet another set of functions to obtain and release the
CDC pointer. And to acquire a CDC pointer for a device
context that permits drawing anywhere in the window (as
opposed to one that permits drawing only in the window's client
area), you would call CWnd::GetWindowDC rather than GetDC
and release the device context with ReleaseDC.

To save you the trouble of having to remember which functions
to call to acquire and release a device context (and to help
ensure that a device context is properly released when the
message handler that uses the device context ends), MFC
provides the CDC-derived classes listed in the following table.

Special-Purpose Device Context Classes

Class Name Description

CPaintDC For drawing in a window's client area (OnPaint handlers only)

CClientDC For drawing in a window's client area (anywhere but OnPaint)

CWindowDC For drawing anywhere in a window, including the nonclient
area

CMetaFileDC For drawing to a GDI metafile

These classes are designed to be instantiated directly. Each
class's constructor and destructor call the appropriate functions
to get and release the device context so that using a device
context is no more complicated than this:

CPaintDC dc (this);
// Do some drawing

The pointer passed to the class constructor identifies the
window that the device context pertains to.

When a device context object is constructed on the stack, its
destructor is called automatically when the object goes out of
scope. And when the destructor is called, the device context is

Programming Windows With MFC

 52

released back to Windows. The only time you need to be
concerned about releasing one of these device contexts yourself
is when (and if) you create a device context object on the heap
with new, as shown here:

CPaintDC* pDC = new CPaintDC (this);

In this case, it's important to execute a

delete pDC;

statement before the function that created the device context
ends so that the object's destructor will be called and the device
context will be released. On some occasions, it's useful to
create a device context on the heap rather than on the stack, but
generally you're a lot better off creating device context objects
on the stack and letting the compiler do the deleting for you.

The CPaintDC Class

MFC's CPaintDC class lets you paint in a window's client area
in response to WM_PAINT messages. You should use it only
in OnPaint handlers and never anywhere else. WM_PAINT
messages are different from all other Windows messages in one
very important respect: If the handler fails to call the
Windows ::BeginPaint and ::EndPaint functions (or the MFC
equivalents, CWnd::BeginPaint and CWnd::EndPaint), the
message will not be removed from the message queue no
matter how much drawing you do. Consequently, the
application will get stuck processing the same WM_PAINT
message over and over. CPaintDC virtually ensures that this
won't happen by calling ::BeginPaint and ::EndPaint from its
constructor and destructor, respectively.

The CClientDC and CWindowDC Classes

Windows programs don't always limit their painting to OnPaint.
If you write an application that draws a circle on the screen
whenever a mouse button is clicked, you'll probably want to
paint the circle immediately—when you receive the
button-click message—rather than wait for the next
WM_PAINT message.

Programming Windows With MFC

 53

That's what MFC's CClientDC class is for. CClientDC creates a
client-area device context that can be used outside OnPaint.
The following message handler uses CClientDC and two CDC
member functions to draw an X connecting the corners of the
window's client area when the left mouse button is clicked:

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 CRect rect;
 GetClientRect (&rect);

 CClientDC dc (this);
 dc.MoveTo (rect.left, rect.top);
 dc.LineTo (rect.right, rect.bottom);
 dc.MoveTo (rect.right, rect.top);
 dc.LineTo (rect.left, rect.bottom);
}

left, right, top, and bottom are public member variables defined
in MFC's CRect class. They store the coordinates of the
rectangle's four sides. MoveTo and LineTo are line-drawing
functions that CClientDC inherits from CDC. You'll learn more
about these two functions in a moment.

For the rare occasions on which you'd like to paint not only the
window's client area but also the nonclient area (the title bar,
the window border, and so on), MFC provides the
CWindowDC class. CWindowDC is similar to CClientDC, but
the device context it represents encompasses everything within
the window's borders. Programmers sometimes use
CWindowDC for unusual effects such as custom-drawn title
bars and windows with rounded corners. In general, you won't
need CWindowDC very often. If you do want to do your own
painting in a window's nonclient area, you can trap
WM_NCPAINT messages with an OnNcPaint handler to
determine when the nonclient area needs to be painted. Unlike
OnPaint, an OnNcPaint handler need not (and should not) call
BeginPaint and EndPaint.

For the even rarer occasions on which a program requires
access to the entire screen, you can create a CClientDC or
CWindowDC object and pass its constructor a NULL pointer.
The statements

Programming Windows With MFC

 54

CClientDC dc (NULL);
dc.Ellipse (0, 0, 100, 100);

draw a circle in the upper left corner of the screen. Screen
capture programs frequently use full-screen DCs to access the
whole screen. Needless to say, drawing outside your own
window is a very unfriendly thing to do unless you have a
specific reason for doing so.

2.1.3. Device Context Attributes

When you draw to the screen with CDC output functions,
certain characteristics of the output aren't specified in the
function call but are obtained from the device context itself.
When you call CDC::DrawText, for example, you specify the
text string and the rectangle in which the string will appear, but
you don't specify the text color or the font because both are
attributes of the device context. The following table lists some
of the most useful device context attributes and the CDC
functions used to access them.

Key Device Context Attributes

Attribute Default Set with Get with

Text color Black CDC::SetTextColor CDC::GetTextColor

Background
color

White CDC::SetBkColor CDC::GetBkColor

Background
mode

OPAQUE CDC::SetBkMode CDC::GetBkMode

Mapping
mode

MM_TEXT CDC::SetMapMode CDC::GetMapMode

Drawing
mode

R2_COPYPEN CDC::SetROP2 CDC::GetROP2

Current
position

(0,0) CDC::MoveTo CDC::GetCurrentPosition

Current pen BLACK_PEN CDC::SelectObject CDC::SelectObject

Current
brush

WHITE_BRUSH CDC::SelectObject CDC::SelectObject

Current
font

SYSTEM_FONT CDC::SelectObject CDC::SelectObject

Programming Windows With MFC

 55

Different CDC output functions use device context attributes in
different ways. For example, when you draw a line with LineTo,
the current pen determines the line's color, width, and style
(solid, dotted, dashed, and so on). Similarly, when you draw a
rectangle with the Rectangle function, the GDI borders the
rectangle with the current pen and fills the rectangle with the
current brush. All text output functions use the current font.
The text color and the background color control the colors used
when text is output. The text color determines the color of the
characters, and the background color determines what color is
used to fill behind them. The background color is also used to
fill the gaps between line segments when dotted or dashed lines
are drawn with the LineTo function and to fill the open areas
between hatch marks painted by a hatch brush. If you'd like the
background color to be ignored entirely, you can set the
background mode to "transparent," like this:

dc.SetBkMode (TRANSPARENT);

Inserting this statement before the call to DrawText in Chapter
1's Hello program eliminates the white rectangle surrounding
"Hello, MFC" that's visible when the window background color
is nonwhite.

The CDC function you'll use more than any other to modify the
attributes of a device context is SelectObject. The following six
items are GDI objects that can be selected into a device context
with SelectObject:

x Pens
x Brushes
x Fonts
x Bitmaps
x Palettes
x Regions

In MFC, pens, brushes, and fonts are represented by the classes
CPen, CBrush, and CFont. (Bitmaps, palettes, and regions are
discussed in Chapter 15.) Unless you call SelectObject to
change the current pen, brush, or font, the GDI uses the device
context's defaults. The default pen draws solid black lines 1
pixel wide. The default brush paints solid white. The default
font is a rather plain proportional font with a height of roughly
12 points. You can create pens, brushes, and fonts of your own

Programming Windows With MFC

 56

and select them into a device context to change the attributes of
the output. To draw a solid red circle with a 10-pixel-wide
black border, for example, you can create a black pen 10 pixels
wide and a red brush and select them into the device context
with SelectObject before calling Ellipse. If pPen is a pointer to
a CPen object, pBrush is a pointer to a CBrush object, and dc
represents a device context, the code might look like this:

dc.SelectObject (pPen);
dc.SelectObject (pBrush);
dc.Ellipse (0, 0, 100, 100);

SelectObject is overloaded to accept pointers to objects of
various types. Its return value is a pointer to the object of the
same type that was previously selected into the device context.

Each time you acquire a device context from Windows, its
attributes are reset to the defaults. Consequently, if you want to
use a red pen and a blue brush to paint your window in
response to WM_PAINT messages, you must select them into
the device context each time OnPaint is called and a new
CPaintDC object is created. Otherwise, the default pen and
brush will be used. If you'd like to avoid reinitializing a device
context every time you use it, you can save its state with the
CDC::SaveDC function and restore it the next time around with
CDC::RestoreDC. Another option is to register a custom
WNDCLASS that includes the CS_OWNDC style, which
causes Windows to allocate to each instance of your application
its own private device context that retains its settings. (A
related but seldom used WNDCLASS style, CS_CLASSDC,
allocates a "semiprivate" device context that is shared by all
windows created from the same WNDCLASS.) If you select a
red pen and a blue brush into a private device context, they
remain selected until they're explicitly replaced.

2.1.4. The Drawing Mode

When the GDI outputs pixels to a logical display surface, it
doesn't simply output pixel colors. Rather, it combines the
colors of the pixels that it's outputting with the colors of the
pixels at the destination using a combination of Boolean
operations. The logic that's employed depends on the device
context's current drawing mode, which you can change with

Programming Windows With MFC

 57

CDC::SetROP2 (short for "Set Raster Operation To"). The
default drawing mode is R2_COPYPEN, which does, in fact,
copy pixels to the display surface. But there are 15 other
drawing modes to choose from, as shown in the table below.
Together, these drawing modes represent all the possible
operations that can be performed by combining the Boolean
primitives AND, OR, XOR, and NOT.

Why would you ever need to change the drawing mode?
Suppose you want to draw a line not by copying pixels to the
display surface but by inverting the colors of the pixels already
there. It's easy to do; you just set the drawing mode to R2_NOT
before drawing the line:

dc.SetROP2 (R2_NOT);
dc.MoveTo (0, 0);
dc.LineTo (100, 100);

This little trick might be more useful than you think, because
it's a great way to rubber-band lines and rectangles. You'll see
an example of what I mean in Chapter 3.

GDI Drawing Modes

Drawing Mode Operation(s) Performed

R2_NOP dest = dest

R2_NOT dest = NOT dest

R2_BLACK dest = BLACK

R2_WHITE dest = WHITE

R2_COPYPEN dest = src

R2_NOTCOPYPEN dest = NOT src

R2_MERGEPENNOT dest = (NOT dest) OR src

R2_MASKPENNOT dest = (NOT dest) AND src

R2_MERGENOTPEN dest = (NOT src) OR dest

R2_MASKNOTPEN dest = (NOT src) AND dest

R2_MERGEPEN dest = dest OR src

R2_NOTMERGEPEN dest = NOT (dest OR src)

R2_MASKPEN dest = dest AND src

Programming Windows With MFC

 58

R2_NOTMASKPEN dest = NOT (dest AND src)

R2_XORPEN dest = src XOR dest

R2_NOTXORPEN dest = NOT (src XOR dest)

2.1.5. The Mapping Mode

Without a doubt, the aspect of GDI programming that new
Windows programmers find the most confusing is the mapping
mode. Simply put, the mapping mode is the attribute of the
device context that governs how logical coordinates are
translated into device coordinates. Logical coordinates are the
coordinates you pass to CDC output functions. Device
coordinates are the corresponding pixel positions within a
window. When you call the Rectangle function like this:

dc.Rectangle (0, 0, 200, 100);

you're not necessarily telling the GDI to draw a rectangle that's
200 pixels wide and 100 pixels tall; you're telling it to draw a
rectangle that's 200 units wide and 100 units tall. In the default
mapping mode, MM_TEXT, it just so happens that 1 unit
equals 1 pixel. But in other mapping modes, logical units are
translated into device units differently. In the
MM_LOENGLISH mapping mode, for example, 1 unit equals
1/100 of an inch. Therefore, drawing a rectangle that measures
200 units by 100 units in the MM_LOENGLISH mapping
mode produces a 2-inch by 1-inch rectangle. Using a
non-MM_TEXT mapping mode is a convenient way to scale
your output so that sizes and distances are independent of the
output device's physical resolution.

Windows supports eight different mapping modes. Their
properties are summarized in the following table.

GDI Mapping Modes

Mapping Mode Distance Corresponding to One
Logical Unit

Orientation of
the x and y
Axes

Programming Windows With MFC

 59

MM_TEXT 1 pixel

MM_LOMETRIC 0.1 mm

MM_HIMETRIC 0.01 mm

MM_LOENGLISH 0.01 in.

MM_HIENGLISH 0.001 in.

MM_TWIPS 1/1440 in. (0.0007 in.)

MM_ISOTROPIC User-defined (x and y scale
identically) User-defined

MM_ANISOTROPIC User-defined (x and y scale
independently) User-defined

When you draw in the MM_TEXT mapping mode, you're using
the coordinate system shown in Figure 2-1. The origin is in the
upper left corner of the window, the positive x axis points to the
right, the positive y axis points downward, and 1 unit equals 1
pixel. If you switch to one of the "metric" mapping
modes—MM_LOENGLISH, MM_HIENGLISH,
MM_LOMETRIC, MM_HIMETRIC, or MM_TWIPS—the y
axis flips so that positive y points upward and logical units are
scaled to represent real distances rather than raw pixel counts.
The origin, however, remains in the upper left corner. One
thing to remember when using a metric mapping mode is that
you must use negative y values if you want to see your output.
The statement

Programming Windows With MFC

 60

dc.Rectangle (0, 0, 200, 100);

draws a 200-pixel by 100-pixel rectangle in the MM_TEXT
mapping mode. The same statement produces no output in the
MM_LOENGLISH mapping mode because positive y
coordinates lie outside the visible part of the window. To make
the rectangle visible, you must negate the y coordinates, as
shown here:

dc.Rectangle (0, 0, 200, -100);

If you switch to a non-MM_TEXT mapping mode and
suddenly your application's output is no longer visible, check
the sign of your y coordinates. Positive y coordinates will be
the problem almost every time.

Figure 2-1. The MM_TEXT coordinate system.

The default mapping mode is MM_TEXT. If you want to use
one of the other mapping modes, you must call
CDC::SetMapMode to change the mapping mode. The
following statements switch to the MM_LOMETRIC mapping
mode and draw an ellipse whose major axis is 5 centimeters
long and whose minor axis measures 3 centimeters:

dc.SetMapMode (MM_LOMETRIC);
dc.Ellipse (0, 0, 500, -300);

You can see that there's really nothing tricky about mapping
modes. Things get slightly more complicated when you use the
MM_ISOTROPIC and MM_ANISOTROPIC modes and when
you do hit-testing on objects drawn in non-MM_TEXT
mapping modes, but even that doesn't have to be difficult. The

Programming Windows With MFC

 61

MM_ISOTROPIC and MM_ANISOTROPIC mapping modes
are discussed in the next section.

One thing to keep in mind when you use the metric mapping
modes is that on display screens, 1 logical inch usually doesn't
equal 1 physical inch. In other words, if you draw a line that's
100 units long in the MM_LOENGLISH mapping mode, the
line probably won't be exactly 1 inch long. The reason?
Windows doesn't know the physical resolution of your
monitor—the number of dots per inch (dpi) it's capable of
displaying horizontally and vertically. (This might change in a
future version of Windows.) The same is not true of printers
and other hardcopy devices, however. The printer driver knows
that a 600 dpi laser printer can print exactly 600 dots per inch,
so a 100-unit line drawn in the MM_LOENGLISH mapping
mode will measure exactly 1 inch on the printed page.

Programmable Mapping Modes

The MM_ISOTROPIC and MM_ANISOTROPIC mapping
modes differ from the other mapping modes in one important
respect: It's you, not Windows, who determines how logical
coordinates are converted into device coordinates. For this
reason, these mapping modes are sometimes called the
"roll-your-own" or "programmable" mapping modes. Want a
mapping mode in which 1 unit equals 1 centimeter? No
problem: Just use the MM_ANISOTROPIC mapping mode and
set its scaling parameters accordingly.

The most common use for the MM_ISOTROPIC and
MM_ANISOTROPIC mapping modes is for drawing output
that automatically scales to match the window size. The
following code fragment uses the MM_ANISOTROPIC
mapping mode to draw an ellipse that touches all four borders
of the window in which it is drawn:

CRect rect;
GetClientRect (&rect);
dc.SetMapMode (MM_ANISOTROPIC);
dc.SetWindowExt (500, 500);
dc.SetViewportExt (rect.Width (), rect.Height ());
dc.Ellipse (0, 0, 500, 500);

Programming Windows With MFC

 62

See how it works? No matter what physical size the window is,
you've told Windows that the window's logical size is 500 units
by 500 units. Therefore, a bounding box that stretches from (0,0)
to (500,500) encompasses the entire window. Initializing a
device context in this way places the origin at the upper left
corner of the window and orients the axes so that positive x
points to the right and positive y points downward. If you'd
rather have the y axis point upward (as it does in the metric
mapping modes), you can reverse its direction by negating the y
value passed to either SetWindowExt or SetViewportExt:

CRect rect;
GetClientRect (&rect);
dc.SetMapMode (MM_ANISOTROPIC);
dc.SetWindowExt (500, -500);
dc.SetViewportExt (rect.Width (), rect.Height ());
dc.Ellipse (0, 0, 500, -500);

Now you must use negative y coordinates to draw in the
window. Only the MM_ISOTROPIC and
MM_ANISOTROPIC mapping modes allow the directions of
the x and y axes to be reversed. That's why the table in the
previous section listed these two mapping modes' axis
orientations as user defined.

The only difference between the MM_ISOTROPIC and
MM_ANISOTROPIC mapping modes is that in the former, the
scaling factors for the x and y directions are always the same.
In other words, 100 horizontal units equals the same physical
distance as 100 vertical units. Isotropic means "equal in all
directions." The MM_ISOTROPIC mapping mode is ideal for
drawing circles and squares. The following code draws a circle
that spans the width or height of a window, whichever is
smaller:

CRect rect;
GetClientRect (&rect);
dc.SetMapMode (MM_ISOTROPIC);
dc.SetWindowExt (500, 500);
dc.SetViewportExt (rect.Width (), rect.Height ());
dc.Ellipse (0, 0, 500, 500);

As far as Windows is concerned, the window's logical size is
once again 500 units by 500 units. But now the GDI takes the

Programming Windows With MFC

 63

output device's aspect ratio into consideration when converting
logical units to device units. Chapter 14's Clock program uses
the MM_ISOTROPIC mapping mode to draw a round clock
face and to automatically scale the clock size to the window
size. Without the MM_ISOTROPIC mapping mode, Clock
would have to do all of the scaling manually.

Let's talk a bit about the SetWindowExt and SetViewportExt
functions. Officially, SetWindowExt sets the "window extents"
and SetViewportExt sets the "viewport extents." Think of a
window as something whose size is measured in logical units
and a viewport as something whose size is measured in device
units, or pixels. When Windows converts between logical
coordinates and device coordinates, it uses a pair of formulas
that factor in the window's logical dimensions (the window
extents) and its physical dimensions (the viewport extents) as
well as the location of the origin. When you set the window
extents and viewport extents, you're effectively programming in
your own scaling parameters. Generally, the viewport extents
are simply the size (in pixels) of the window you're drawing in
and the window extents are the window's desired size in logical
units.

One caveat regarding the use of SetWindowExt and
SetViewportExt is that in the MM_ISOTROPIC mapping mode,
you should call SetWindowExt first. Otherwise, a portion of the
window's client area might fall outside the window's logical
extents and become unusable. In the MM_ANISOTROPIC
mapping mode, it doesn't matter which are set first—the
window extents or the viewport extents.

Coordinate Conversions

You can translate logical coordinates to device coordinates
using the CDC::LPtoDP function. Conversely, you can
translate device coordinates to logical coordinates with
CDC::DPtoLP.

Let's say you want to know where the center of a window is in
device coordinates. All you have to do is halve the window's
pixel width and height. CWnd::GetClientRect returns a
window's pixel dimensions.

Programming Windows With MFC

 64

CRect rect;
GetClientRect (&rect);
CPoint point (rect.Width () / 2, rect.Height () / 2);

If you want to know where the center point is in
MM_LOENGLISH units, however, you need DPtoLP:

CRect rect;
GetClientRect (&rect);
CPoint point (rect.Width () / 2, rect.Height () / 2);
CClientDC dc (this);
dc.SetMapMode (MM_LOENGLISH);
dc.DPtoLP (&point);

When DPtoLP returns, point holds the coordinates of the center
point in logical (that is, MM_LOENGLISH) coordinates. If, on
the other hand, you want to know the pixel coordinates of the
point whose MM_LOENGLISH coordinates are (100,100), you
use LPtoDP:

CPoint point (100, 100);
CClientDC dc (this);
dc.SetMapMode (MM_LOENGLISH);
dc.LPtoDP (&point);

One situation in which LPtoDP and DPtoLP are indispensable
is when you're performing hit-testing in response to mouse
clicks. Mouse clicks are always reported in device coordinates,
so if you've drawn a rectangle in MM_LOENGLISH
coordinates and you want to know whether a mouse click
occurred inside that rectangle, you must either convert the
rectangle's coordinates to device coordinates or convert the
click coordinates to logical coordinates. Otherwise, you'll be
comparing apples and oranges.

Moving the Origin

By default, a device context's origin is in the upper left corner
of the display surface. Even if you change the mapping mode,
the origin remains in the upper left corner. But just as you can
change the mapping mode, you can also move the origin.
MFC's CDC class provides two functions for moving the origin.
CDC::SetWindowOrg moves the window origin, and

Programming Windows With MFC

 65

CDC::SetViewportOrg moves the viewport origin. You'll
normally use one but not both. Using both can be very
confusing.

Suppose you'd like to move the origin to the center of the
window so that you can center what you draw by centering
your output around the point (0,0). Assuming that dc is a device
context object, here's one way to do it:

CRect rect;
GetClientRect (&rect);
dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);

Here's another way to accomplish the same thing, assuming that
you're working in the MM_LOENGLISH mapping mode:

CRect rect;
GetClientRect (&rect);
CPoint point (rect.Width () / 2, rect.Height () / 2);
dc.SetMapMode (MM_LOENGLISH);
dc.DPtoLP (&point);
dc.SetWindowOrg (-point.x, -point.y);

It's easy to get SetViewportOrg and SetWindowOrg confused,
but the distinction between them is actually quite clear.
Changing the viewport origin to (x,y) with SetViewportOrg
tells Windows to map the logical point (0,0) to the device point
(x,y). Changing the window origin to (x,y) with
SetWindowOrg does essentially the reverse, telling Windows to
map the logical point (x,y) to the device point (0,0)—the upper
left corner of the display surface. In the MM_TEXT mapping
mode, the only real difference between the two functions is the
signs of x and y. In other mapping modes, there's more to it
than that because SetViewportOrg deals in device coordinates
and SetWindowOrg deals in logical coordinates. You'll see
examples of how both functions are used later in this chapter.

As a final example, suppose you're drawing in the
MM_HIMETRIC mapping mode, where 1 unit equals 1/100 of
a millimeter, positive x points to the right, and positive y points
upward, and you'd like to move the origin to the lower left
corner of the window. Here's an easy way to do it:

Programming Windows With MFC

 66

CRect rect;
GetClientRect (&rect);
dc.SetViewportOrg (0, rect.Height ());

Now you can draw with positive x and y values using
coordinates relative to the window's lower left corner.

A Final Word on Coordinate Systems

When you talk about mapping modes, window origins,
viewport origins, and other idioms related to the GDI's handling
of coordinates, it's easy to get tangled up in the terminology.
Understanding the difference between the device coordinate
system and the logical coordinate system might help clear some
of the cobwebs.

In the device coordinate system, distances are measured in
pixels. The device point (0,0) is always in the upper left corner
of the display surface, and the positive x and y axes always
point right and downward. The logical coordinate system is
altogether different. The origin can be placed anywhere, and
both the orientation of the x and y axes and the scaling factor
(the number of pixels that correspond to 1 logical unit) vary
with the mapping mode. To be precise, they vary with the
window extents and the viewport extents. You can change these
extents in the MM_ISOTROPIC and MM_ANISOTROPIC
mapping modes but not in the other mapping modes.

You'll sometimes hear Windows programmers talk about
"client coordinates" and "screen coordinates." Client
coordinates are simply device coordinates relative to the upper
left corner of a window's client area. Screen coordinates are
device coordinates relative to the upper left corner of the screen.
You can convert from client coordinates to screen coordinates
and vice versa using the CWnd::ClientToScreen and
CWnd::ScreenToClient functions. Why these functions are
useful will become apparent to you the first time you call a
Windows function that returns screen coordinates and you pass
them to a function that requires client coordinates, or vice
versa.

Getting Information About a Device

Programming Windows With MFC

 67

Sometimes it's helpful to get information about a device before
you send output to it. The CDC::GetDeviceCaps function lets
you retrieve all kinds of information about a device, from the
number of colors it supports to the number of pixels it can
display horizontally and vertically. The following code
initializes cx and cy to the width and height of the screen, in
pixels:

CClientDC dc (this);
int cx = dc.GetDeviceCaps (HORZRES);
int cy = dc.GetDeviceCaps (VERTRES);

If the screen resolution is 1,024 by 768, cx and cy will be set to
1,024 and 768, respectively.

The table below lists some of the parameters you can pass to
GetDeviceCaps to acquire information about the physical
output device associated with a device context. How you
interpret the results depends somewhat on the device type. For
example, calling GetDeviceCaps with a HORZRES parameter
for a screen DC returns the screen width in pixels. Make the
same call to a printer DC and you get back the width of the
printable page, once more in pixels. As a rule, values that imply
any kind of scaling (for example, LOGPIXELSX and
LOGPIXELSY) return physically correct values for printers
and other hardcopy devices but not for screens. For a 600 dpi
laser printer, both LOGPIXELSX and LOGPIXELSY return
600. For a screen, both will probably return 96, regardless of
the physical screen size or resolution.

Interpreting the color information returned by the
NUMCOLORS, BITSPIXEL, and PLANES parameters of
GetDeviceCaps is a bit tricky. For a printer or a plotter, you can
usually find out how many colors the device is capable of
displaying from the NUMCOLORS parameter. For a
monochrome printer, NUMCOLORS returns 2.

Useful GetDeviceCaps Parameters

Parameter Returns

HORZRES Width of the display surface in pixels

VERTRES Height of the display surface in pixels

Programming Windows With MFC

 68

HORZSIZE Width of the display surface in millimeters

VERTSIZE Height of the display surface in millimeters

LOGPIXELSX Number of pixels per logical inch horizontally

LOGPIXELSY Number of pixels per logical inch vertically

NUMCOLORS For a display device, the number of static colors; for a printer
or plotter, the number of colors supported

BITSPIXEL Number of bits per pixel

PLANES Number of bit planes

RASTERCAPS Bit flags detailing certain characteristics of the device, such
as whether it is palettized and whether it can display
bitmapped images

TECHNOLOGY Bit flags identifying the device type—screen, printer, plotter,
and so on

However, the color resolution of the screen (the number of
colors that can be displayed onscreen simultaneously) is
computed by multiplying BITSPIXEL and PLANES and
raising 2 to the power of the result, as demonstrated here:

CClientDC dc (this);
int nPlanes = dc.GetDeviceCaps (PLANES);
int nBPP = dc.GetDeviceCaps (BITSPIXEL);
int nColors = 1 << (nPlanes * nBPP);

If this code is executed on a PC equipped with a 256-color
video adapter, nColors equals 256. Calling GetDeviceCaps with
a NUMCOLORS parameter, meanwhile, returns not 256 but
20—the number of "static colors" that Windows programs into
the video adapter's color palette. I'll have more to say about the
color characteristics of screens and video adapters and also
about static colors in Chapter 15.

I'll use GetDeviceCaps several times in this book to adapt the
sample programs' output to the physical attributes of the output
device. The first use will come later in this chapter, when the
screen's LOGPIXELSX and LOGPIXELSY parameters are
used to draw rectangles 1 logical inch long and 1/4 logical inch
tall in the MM_TEXT mapping mode.

2.2. Drawing with the GDI

Programming Windows With MFC

 69

Enough of the preliminaries. By now, you probably feel as if
you asked for the time and got an explanation of watchmaking.
Everything you've learned so far in this chapter will come in
handy sooner or later—trust me. But now let's talk about
functions for outputting pixels to the screen.

The functions discussed in the next several sections are by no
means all of the available GDI output functions. A full
treatment of every one would require a chapter much larger
than this one. When you finish reading this chapter, look at the
complete list of CDC member functions in your MFC
documentation. Doing so will give you a better feel for the
wide-ranging scope of the Windows GDI and let you know
where to go when you need help.

2.2.1. Drawing Lines and Curves

MFC's CDC class includes a number of member functions that
you can use to draw lines and curves. The following table lists
the key functions. There are others, but these paint a pretty
good picture of the range of available line-drawing and
curve-drawing functions.

CDC Functions for Drawing Lines and Curves

Function Description

MoveTo Sets the current position in preparation for drawing

LineTo Draws a line from the current position to a specified position and
moves the current position to the end of the line

Polyline Connects a set of points with line segments

PolylineTo Connects a set of points with line segments beginning with the
current position and moves the current position to the end of the
polyline

Arc Draws an arc

ArcTo Draws an arc and moves the current position to the end of the arc

PolyBezier Draws one or more Bézier splines

PolyBezierTo Draws one or more Bézier splines and moves the current
position to the end of the final spline

PolyDraw Draws a series of line segments and Bézier splines through a set
of points and moves the current position to the end of the final
line segment or spline

Programming Windows With MFC

 70

Drawing a straight line is simple. You just set the current
position to one end of the line and call LineTo with the
coordinates of the other:

dc.MoveTo (0, 0);
dc.LineTo (0, 100);

To draw another line that's connected to the previous one, you
call LineTo again. There's no need to call MoveTo a second
time because the first call to LineTo sets the current position to
the end of the line:

dc.MoveTo (0, 0);
dc.LineTo (0, 100);
dc.LineTo (100, 100);

You can draw several lines in one fell swoop using Polyline or
PolylineTo. The only difference between the two is that
PolylineTo uses the device context's current position and
Polyline does not. The following statements draw a box that
measures 100 units to a side from a set of points describing the
box's vertices:

POINT aPoint[5] = { 0, 0, 0, 100, 100, 100, 100, 0, 0, 0 };
dc.Polyline (aPoint, 5);

These statements draw the same box using PolylineTo:

dc.MoveTo (0, 0);
POINT aPoint[4] = { 0, 100, 100, 100, 100, 0, 0, 0 };
dc.PolylineTo (aPoint, 4);

When PolylineTo returns, the current position is set to the
endpoint of the final line segment—in this case, (0,0). If
Polyline is used instead, the current position is not altered.

Charles Petzold's Programming Windows contains an excellent
example showing how and why polylines can be useful. The
following OnPaint function, which is basically just an MFC
adaptation of Charles's code, uses CDC::Polyline to draw a sine
wave that fills the interior of a window:

Programming Windows With MFC

 71

#include <math.h>
#define SEGMENTS 500
#define PI 3.1415926

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);
 int nWidth = rect.Width ();
 int nHeight = rect.Height ();

 CPaintDC dc (this);
 CPoint aPoint[SEGMENTS];

 for (int i=0; i<SEGMENTS; i++) {
 aPoint[i].x = (i * nWidth) / SEGMENTS;
 aPoint[i].y = (int) ((nHeight / 2) *
 (1 - (sin ((2 * PI * i) / SEGMENTS))));
 }
 dc.Polyline (aPoint, SEGMENTS);
}

You can see the results for yourself by substituting this code for
the OnPaint function in Chapter 1's Hello program. Note the
use of the CRect functions Width and Height to compute the
width and height of the window's client area.

An arc is a curve taken from the circumference of a circle or an
ellipse. You can draw arcs quite easily with CDC::Arc. You
just pass it a rectangle whose borders circumscribe the ellipse
and a pair of points that specify the endpoints of two imaginary
lines drawn outward from the center of the ellipse. The points
at which the lines intersect the ellipse are the starting and
ending points of the arc. (The lines must be long enough to at
least touch the circumference of the ellipse; otherwise, the
results won't be what you expect.) The following code draws an
arc representing the upper left quadrant of an ellipse that is 200
units wide and 100 units high:

CRect rect (0, 0, 200, 100);
CPoint point1 (0, -500);
CPoint point2 (-500, 0);
dc.Arc (rect, point1, point2);

To reverse the arc and draw the upper right, lower right, and
lower left quadrants of the ellipse, simply reverse the order in
which point1 and point2 are passed to the Arc function. If you'd
like to know where the arc ended (an item of information that's

Programming Windows With MFC

 72

useful when using lines and arcs to draw three-dimensional pie
charts), use ArcTo instead of Arc and then use
CDC::GetCurrentPosition to locate the endpoint. Be careful,
though. In addition to drawing the arc itself, ArcTo draws a line
from the old current position to the arc's starting point. What's
more, ArcTo is one of a handful of GDI functions that's not
implemented in Windows 98. If you call it on a platform other
than Windows NT or Windows 2000, nothing will be output.

If splines are more your style, the GDI can help out there, too.
CDC::PolyBezier draws Bézier splines—smooth curves defined
by two endpoints and two intermediate points that exert "pull."
Originally devised to help engineers build mathematical models
of car bodies, Bézier splines, or simply "Béziers," as they are
more often known, are used today in everything from fonts to
warhead designs. The following code fragment uses two Bézier
splines to draw a figure that resembles the famous Nike
"swoosh" symbol. (See Figure 2-2.)

POINT aPoint1[4] = { 120, 100, 120, 200, 250, 150, 500, 40 };
POINT aPoint2[4] = { 120, 100, 50, 350, 250, 200, 500, 40 };
dc.PolyBezier (aPoint1, 4);
dc.PolyBezier (aPoint2, 4);

The curves drawn here are independent splines that happen to
join at the endpoints. To draw a continuous curve by joining
two or more splines, add three points to the POINT array for
each additional spline and increase the number of points
specified in PolyBezier's second parameter accordingly.

Programming Windows With MFC

 73

Figure 2-2. A famous shoe logo drawn with Bézier splines.

One peculiarity of all GDI line-drawing and curve-drawing
functions is that the final pixel is never drawn. If you draw a
line from (0,0) to (100,100) with the statements

dc.MoveTo (0, 0);
dc.LineTo (100, 100);

the pixel at (0,0) is set to the line color, as are the pixels at (1,1),
(2,2), and so on. But the pixel at (100,100) is still the color it
was before. If you want the line's final pixel to be drawn, too,
you must draw it yourself. One way to do that is to use the
CDC::SetPixel function, which sets a single pixel to the color
you specify.

2.2.2. Drawing Ellipses, Polygons, and Other Shapes

The GDI doesn't limit you to simple lines and curves. It also
lets you draw ellipses, rectangles, pie-shaped wedges, and other
closed figures. MFC's CDC class wraps the associated GDI
functions in handy class member functions that you can call on
a device context object or through a pointer to a device context
object. The following table lists a few of those functions.

CDC Functions for Drawing Closed Figures

Programming Windows With MFC

 74

Function Description

Chord Draws a closed figure bounded by the intersection of an ellipse and
a line

Ellipse Draws a circle or an ellipse

Pie Draws a pie-shaped wedge

Polygon Connects a set of points to form a polygon

Rectangle Draws a rectangle with square corners

RoundRect Draws a rectangle with rounded corners

GDI functions that draw closed figures take as a parameter the
coordinates of a "bounding box." When you draw a circle with
the Ellipse function, for example, you don't specify a center
point and a radius; instead, you specify the circle's bounding
box. You can pass the coordinates explicitly, like this:

dc.Ellipse (0, 0, 100, 100);

or pass them in a RECT structure or a CRect object, like this:

CRect rect (0, 0, 100, 100);
dc.Ellipse (rect);

When this circle is drawn, it touches the x=0 line at the left of
the bounding box and the y=0 line at the top, but it falls 1 pixel
short of the x=100 line at the right and 1 pixel short of the
y=100 line at the bottom. In other words, figures are drawn
from the left and upper limits of the bounding box up to (but
not including) the right and lower limits. If you call the
CDC::Rectangle function, like this:

dc.Rectangle (0, 0, 8, 4);

you get the output shown in Figure 2-3. Observe that the right
and lower limits of the rectangle fall at x=7 and y=3, not x=8
and y=4.

Programming Windows With MFC

 75

Figure 2-3. A rectangle drawn with the statement dc.Rectangle (0, 0, 8,
4).

Rectangle and Ellipse are about as straightforward as they come.
You provide the bounding box, and Windows does the drawing.
If you want to draw a rectangle that has rounded corners, use
RoundRect instead of Rectangle.

The Pie and Chord functions merit closer scrutiny, however.
Both are syntactically identical to the Arc function discussed in
the previous section. The difference is in the output. (See
Figure 2-4.) Pie draws a closed figure by drawing straight lines
connecting the ends of the arc to the center of the ellipse. Chord
closes the figure by connecting the arc's endpoints. The
following OnPaint handler uses Pie to draw a pie chart that
depicts four quarterly revenue values:

#include <math.h>
#define PI 3.1415926

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);
 int nRevenues[4] = { 125, 376, 252, 184 };

 CRect rect;
 GetClientRect (&rect);
 dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);

 int nTotal = 0;
 for (int i=0; i<4; i++)
 nTotal += nRevenues[i];

 int x1 = 0;
 int y1 = -1000;
 int nSum = 0;

Programming Windows With MFC

 76

 for (i=0; i<4; i++) {
 nSum += nRevenues[i];
 double rad = ((double) (nSum * 2 * PI) / (double) nTotal) + PI;
 int x2 = (int) (sin (rad) * 1000);
 int y2 = (int) (cos (rad) * 1000 * 3) / 4;
 dc.Pie (-200, -150, 200, 150, x1, y1, x2, y2);
 x1 = x2;
 y1 = y2;
 }
}

Note that the origin is moved to the center of the window with
SetViewportOrg before any drawing takes place so that the
chart will also be centered.

Figure 2-4. Output from the Arc, Chord, and Pie functions.

2.2.3. GDI Pens and the CPen Class

Windows uses the pen that is currently selected into the device
context to draw lines and curves and also to border figures
drawn with Rectangle, Ellipse, and other shape-drawing
functions. The default pen draws solid black lines that are 1
pixel wide. To change the way lines are drawn, you must create
a GDI pen and select it into the device context with
CDC::SelectObject.

MFC represents GDI pens with the class CPen. The simplest
way to create a pen is to construct a CPen object and pass it the
parameters defining the pen:

CPen pen (PS_SOLID, 1, RGB (255, 0, 0));

Programming Windows With MFC

 77

A second way to create a GDI pen is to construct an
uninitialized CPen object and call CPen::CreatePen:

CPen pen;
pen.CreatePen (PS_SOLID, 1, RGB (255, 0, 0));

Yet a third method is to construct an uninitialized CPen object,
fill in a LOGPEN structure describing the pen, and then call
CPen::CreatePenIndirect to create the pen:

CPen pen;
LOGPEN lp;
lp.lopnStyle = PS_SOLID;
lp.lopnWidth.x = 1;
lp.lopnColor = RGB (255, 0, 0);
pen.CreatePenIndirect (&lp);

LOGPEN's lopnWidth field is a POINT data structure. The
structure's x data member specifies the pen width. The y data
member is not used.

CreatePen and CreatePenIndirect return TRUE if a pen is
successfully created, FALSE if it is not. If you allow CPen's
constructor to create the pen, an exception of type
CResourceException is thrown if the pen can't be created. This
should happen only if Windows is critically low on memory.

A pen has three defining characteristics: style, width, and color.
The examples above create a pen whose style is PS_SOLID,
whose width is 1, and whose color is bright red. The first of the
three parameters passed to CPen::CPen and CPen::CreatePen
specifies the pen style, which defines the type of line the pen
draws. PS_SOLID creates a pen that draws solid, unbroken
lines. Other pen styles are shown in Figure 2-5.

Programming Windows With MFC

 78

Figure 2-5. Pen styles.

The special PS_INSIDEFRAME style draws solid lines that
stay within the bounding rectangle, or "inside the frame," of the
figure being drawn. If you use any of the other pen styles to
draw a circle whose diameter is 100 units using a PS_SOLID
pen that is 20 units wide, for example, the actual diameter of
the circle, measured across the circle's outside edge, is 120
units, as shown in Figure 2-6. Why? Because the border drawn
by the pen extends 10 units outward on either side of the
theoretical circle. Draw the same circle with a
PS_INSIDEFRAME pen, and the diameter is exactly 100 units.
The PS_INSIDEFRAME style does not affect lines drawn with
LineTo and other functions that don't use a bounding rectangle.

Figure 2-6. The PS_INSIDEFRAME pen style.

Programming Windows With MFC

 79

The pen style PS_NULL creates what Windows programmers
refer to as a "NULL pen." Why would you ever want to create a
NULL pen? Believe it or not, there are times when a NULL pen
can come in handy. Suppose, for example, that you want to
draw a solid red circle with no border. If you draw the circle
with MFC's CDC::Ellipse function, Windows automatically
borders the circle with the pen currently selected into the device
context. You can't tell the Ellipse function that you don't want a
border, but you can select a NULL pen into the device context
so that the circle will have no visible border. NULL brushes are
used in a similar way. If you want the circle to have a border
but want the interior of the circle to be transparent, you can
select a NULL brush into the device context before you draw.

The second parameter passed to CPen's pen-create functions
specifies the width of the lines drawn with the pen. Pen widths
are specified in logical units whose physical meanings depend
on the current mapping mode. You can create PS_SOLID,
PS_NULL, and PS_INSIDEFRAME pens of any logical width,
but PS_DASH, PS_DOT, PS_DASHDOT, and
PS_DASHDOTDOT pens must be 1 logical unit wide.
Specifying a pen width of 0 in any style creates a pen that is 1
pixel wide, no matter what the mapping mode.

The third and final parameter specified when a pen is created is
the pen's color. Windows uses a 24-bit RGB color model in
which each possible color is defined by red, green, and blue
color values from 0 through 255. The higher the value, the
brighter the corresponding color component. The RGB macro
combines values that specify the three independent color
components into one COLORREF value that can be passed to
the GDI. The statement

CPen pen (PS_SOLID, 1, RGB (255, 0, 0));

creates a bright red pen, and the statement

CPen pen (PS_SOLID, 1, RGB (255, 255, 0));

creates a bright yellow pen by combining red and green. If the
display adapter doesn't support 24-bit color, Windows
compensates by dithering colors that it can't display directly. Be

Programming Windows With MFC

 80

aware, however, that only PS_INSIDEFRAME pens greater
than 1 logical unit in width can use dithered colors. For the
other pen styles, Windows maps the color of the pen to the
nearest solid color that can be displayed. You can be reasonably
certain of getting the exact color you want on all adapters by
sticking to the "primary" colors shown in the table below.
These colors are part of the basic palette that Windows
programs into the color registers of every video adapter to
ensure that a common subset of colors is available to all
programs.

Primary GDI Colors

Color R G B Color R G B

Black 0 0 0 Light gray 192 192 192

Blue 0 0 192 Bright blue 0 0 255

Green 0 192 0 Bright green 0 255 0

Cyan 0 192 192 Bright cyan 0 255 255

Red 192 0 0 Bright red 255 0 0

Magenta 192 0 192 Bright magenta 255 0 255

Yellow 192 192 0 Bright yellow 255 255 0

Dark gray 128 128 128 White 255 255 255

How do you use a pen once it's created? Simple: You select it
into a device context. The following code snippet creates a red
pen that's 10 units wide and draws an ellipse with it:

CPen pen (PS_SOLID, 10, RGB (255, 0, 0));
CPen* pOldPen = dc.SelectObject (&pen);
dc.Ellipse (0, 0, 100, 100);

The ellipse is filled with the color or pattern of the current
brush, which defaults to white. To change the default, you need
to create a GDI brush and select it into the device context
before calling Ellipse. I'll demonstrate how to do that in just a
moment.

Extended Pens

Programming Windows With MFC

 81

If none of the basic pen styles suits your needs, you can use a
separate class of pens known as "extended" pens, which the
Windows GDI and MFC's CPen class support. These pens offer
a greater variety of output options. For example, you can create
an extended pen that draws a pattern described by a bitmap
image or uses a dithered color. You can also exercise precise
control over endpoints and joins by specifying the end cap style
(flat, round, or square) and join style (beveled, mitered, or
rounded). The following code creates an extended pen 16 units
wide that draws solid green lines with flat ends. Where two
lines meet, the adjoining ends are rounded to form a smooth
intersection:

LOGBRUSH lb;
lb.lbStyle = BS_SOLID;
lb.lbColor = RGB (0, 255, 0);
CPen pen (PS_GEOMETRIC ¦ PS_SOLID ¦ PS_ENDCAP_FLAT ¦
 PS_JOIN_ROUND, 16, &lb);

Windows places several restrictions on the use of extended
pens, not the least of which is that endpoint joins will work
only if the figure is first drawn as a "path" and is then rendered
with CDC::StrokePath or a related function. You define a path
by enclosing drawing commands between calls to
CDC::BeginPath and CDC::EndPath, as shown here:

dc.BeginPath (); // Begin the path definition
dc.MoveTo (0, 0); // Create a triangular path
dc.LineTo (100, 200);
dc.LineTo (200, 100);
dc.CloseFigure ();
dc.EndPath (); // End the path definition
dc.StrokePath (); // Draw the triangle

Paths are a powerful feature of the GDI that you can use to
create all sorts of interesting effects. We'll look more closely at
paths—and at the CDC functions that use them—in Chapter
15.

2.2.4. GDI Brushes and the CBrush Class

By default, closed figures drawn with Rectangle, Ellipse, and
other CDC output functions are filled with white pixels. You

Programming Windows With MFC

 82

can change the fill color by creating a GDI brush and selecting
it into the device context prior to drawing.

MFC's CBrush class encapsulates GDI brushes. Brushes come
in three basic varieties: solid, hatch, and pattern. Solid brushes
paint with solid colors. If the display hardware won't allow a
solid brush color to be displayed directly, Windows simulates
the color by dithering colors that can be displayed. A hatch
brush paints with one of six predefined crosshatch patterns that
are similar to ones commonly found in engineering and
architectural drawings. A pattern brush paints with a bitmap.
The CBrush class provides a constructor for each different
brush style.

You can create a solid brush in one step by passing a
COLORREF value to the CBrush constructor:

CBrush brush (RGB (255, 0, 0));

Or you can create a solid brush in two steps by creating an
uninitialized CBrush object and calling
CBrush::CreateSolidBrush:

CBrush brush;
brush.CreateSolidBrush (RGB (255, 0, 0));

Both examples create a solid brush that paints in bright red.
You can also create a brush by initializing a LOGBRUSH
structure and calling CBrush::CreateBrushIndirect. As with
CPen constructors, all CBrush constructors that create a brush
for you throw a resource exception if the GDI is low on
memory and a brush can't be created.

Hatch brushes are created by passing CBrush's constructor both
a hatch index and a COLORREF value or by calling
CBrush::CreateHatchBrush. The statement

CBrush brush (HS_DIAGCROSS, RGB (255, 0, 0));

creates a hatch brush that paints perpendicular crosshatch lines
oriented at 45-degree angles, as do these statements:

Programming Windows With MFC

 83

CBrush brush;
brush.CreateHatchBrush (HS_DIAGCROSS, RGB (255, 0, 0));

HS_DIAGCROSS is one of six hatch styles you can choose
from. (See Figure 2-7.) When you paint with a hatch brush,
Windows fills the space between hatch lines with the default
background color (white) unless you change the device
context's current background color with CDC::SetBkColor or
turn off background fills by changing the background mode
from OPAQUE to TRANSPARENT with CDC::SetBkMode.
The statements

CBrush brush (HS_DIAGCROSS, RGB (255, 255, 255));
dc.SelectObject (&brush);
dc.SetBkColor (RGB (192, 192, 192));
dc.Rectangle (0, 0, 100, 100);

draw a rectangle 100 units square and fill it with white
crosshatch lines drawn against a light gray background. The
statements

CBrush brush (HS_DIAGCROSS, RGB (0, 0, 0));
dc.SelectObject (&brush);
dc.SetBkMode (TRANSPARENT);
dc.Rectangle (0, 0, 100, 100);

draw a black crosshatched rectangle against the existing
background.

Figure 2-7. Hatch brush styles.

The Brush Origin

Programming Windows With MFC

 84

One attribute of a device context that you should be aware of
when using dithered brush colors or hatch brushes is the brush
origin. When Windows fills an area with a hatched or dithered
brush pattern, it tiles an 8-pixel by 8-pixel pattern horizontally
and vertically within the affected area. By default, the origin for
this pattern, better known as the brush origin, is the device
point (0,0)—the screen pixel in the upper left corner of the
window. This means that a pattern drawn in a rectangle that
begins 100 pixels to the right of and below the origin will be
aligned somewhat differently with respect to the rectangle's
border than a pattern drawn in a rectangle positioned a few
pixels to the left or right, as shown in Figure 2-8. In many
applications, it doesn't matter; the user isn't likely to notice
minute differences in brush alignment. However, in some
situations it matters a great deal.

Figure 2-8. Brush alignment.

Suppose you're using a hatch brush to fill a rectangle and you're
animating the motion of that rectangle by repeatedly erasing it
and redrawing it 1 pixel to the right or the left. If you don't reset
the brush origin to a point that stays in the same position
relative to the rectangle before each redraw, the hatch pattern
will "walk" as the rectangle moves.

The solution? Before selecting the brush into the device context
and drawing the rectangle, call CGdiObject::UnrealizeObject
on the brush object to permit the brush origin to be moved.
Then call CDC::SetBrushOrg to align the brush origin with the
rectangle's upper left corner, as shown here:

CPoint point (x1, y1);
dc.LPtoDP (&point);
point.x %= 8;

Programming Windows With MFC

 85

point.y %= 8;
brush.UnrealizeObject ();
dc.SetBrushOrg (point);
dc.SelectObject (&brush);
dc.Rectangle (x1, y1, x2, y2);

In this example, point is a CPoint object that holds the logical
coordinates of the rectangle's upper left corner. LPtoDP is
called to convert logical coordinates into device coordinates
(brush origins are always specified in device coordinates), and
a modulo-8 operation is performed on the resulting values
because coordinates passed to SetBrushOrg should fall within
the range 0 through 7. Now the hatch pattern will be aligned
consistently no matter where in the window the rectangle is
drawn.

2.2.5. Drawing Text

You've already seen one way to output text to a window. The
CDC::DrawText function writes a string of text to a display
surface. You tell DrawText where to draw its output by
specifying both a formatting rectangle and a series of option
flags indicating how the text is to be positioned within the
rectangle. In Chapter 1's Hello program, the statement

dc.DrawText (_T ("Hello, MFC"), -1, &rect,
 DT_SINGLELINE ¦ DT_CENTER ¦ DT_VCENTER);

drew "Hello, MFC" so that it was centered in the window. rect
was a rectangle object initialized with the coordinates of the
window's client area, and the DT_CENTER and
DT_VCENTER flags told DrawText to center its output in the
rectangle both horizontally and vertically.

DrawText is one of several text-related functions that are
members of MFC's CDC class. Some of the others are listed in
the table below. One of the most useful is TextOut, which
outputs text like DrawText but accepts an x-y coordinate pair
that specifies where the text will be output and also uses the
current position if it is asked to. The statement

dc.TextOut (0, 0, CString (_T ("Hello, MFC")));

Programming Windows With MFC

 86

writes "Hello, MFC" to the upper left of the display surface
represented by dc. A related function named TabbedTextOut
works just like TextOut except that it expands tab characters
into white space. (If a string passed to TextOut contains tabs,
the characters show up as rectangles in most fonts.) Tab
positions are specified in the call to TabbedTextOut. A related
function named ExtTextOut gives you the added option of
filling a rectangle surrounding the output text with an opaque
background color. It also gives the programmer precise control
over intercharacter spacing.

By default, the coordinates passed to TextOut, TabbedTextOut,
and ExtTextOut specify the location of the upper left corner of
the text's leftmost character cell. However, the relationship
between the coordinates passed to TextOut and the characters
in the output string, a property known as the text alignment, is
an attribute of the device context. You can change it with
CDC::SetTextAlign. For example, after a

dc.SetTextAlign (TA_RIGHT);

statement is executed, the x coordinate passed to TextOut
specifies the rightmost position in the character cell—perfect
for drawing right-aligned text.

You can also call SetTextAlign with a TA_UPDATECP flag to
instruct TextOut to ignore the x and y arguments passed to it
and use the device context's current position instead. When the
text alignment includes TA_UPDATECP, TextOut updates the
x component of the current position each time a string is output.
One use for this feature is to achieve proper spacing between
two or more character strings that are output on the same line.

CDC Text Functions

Function Description

DrawText Draws text in a formatting rectangle

TextOut Outputs a line of text at the current or specified position

TabbedTextOut Outputs a line of text that includes tabs

ExtTextOut Outputs a line of text and optionally fills a rectangle with
a background color or varies the intercharacter spacing

Programming Windows With MFC

 87

GetTextExtent Computes the width of a string in the current font

GetTabbedTextExtent Computes the width of a string with tabs in the current
font

GetTextMetrics Returns font metrics (character height, average character
width, and so on) for the current font

SetTextAlign Sets alignment parameters for TextOut and other output
functions

SetTextJustification Specifies the added width that is needed to justify a
string of text

SetTextColor Sets the device context's text output color

SetBkColor Sets the device context's background color, which
determines the fill color used behind characters that are
output to a display surface

Two functions—GetTextMetrics and GetTextExtent—let you
retrieve information about the font that is currently selected into
the device context. GetTextMetrics fills a TEXTMETRIC
structure with information on the characters that make up the
font. GetTextExtent returns the width of a given string, in
logical units, rendered in that font. (Use GetTabbedTextExtent
if the string contains tab characters.) One use for GetTextExtent
is to gauge the width of a string prior to outputting it in order to
compute how much space is needed between words to fully
justify the text. If nWidth is the distance between left and right
margins, the following code outputs the text "Now is the time"
and justifies the output to both margins:

CString string = _T ("Now is the time");
CSize size = dc.GetTextExtent (string);
dc.SetTextJustification (nWidth - size.cx, 3);
dc.TextOut (0, y, string);

The second parameter passed to SetTextJustification specifies
the number of break characters in the string. The default break
character is the space character. After SetTextJustification is
called, subsequent calls to TextOut and related text output
functions distribute the space specified in the
SetTextJustification's first parameter evenly between all the
break characters.

Programming Windows With MFC

 88

2.2.6. GDI Fonts and the CFont Class

All CDC text functions use the font that is currently selected
into the device context. A font is a group of characters of a
particular size (height) and typeface that share common
attributes such as character weight—for example, normal or
boldface. In classical typography, font sizes are measured in
units called points. One point equals about 1/72 inch. Each
character in a 12-point font is nominally 1/6 inch tall, but in
Windows, the actual height can vary somewhat depending on
the physical characteristics of the output device. The term
typeface describes a font's basic style. Times New Roman is
one example of a typeface; Courier New is another.

A font is a GDI object, just as a pen or a brush is. In MFC,
fonts are represented by objects of the CFont class. Once a
CFont object is constructed, you create the underlying GDI font
by calling the CFont object's CreateFont, CreateFontIndirect,
CreatePointFont, or CreatePointFontIndirect function. Use
CreateFont or CreateFontIndirect if you want to specify the font
size in pixels, and use CreatePointFont and
CreatePointFontIndirect to specify the font size in points.
Creating a 12-point Times New Roman screen font with
CreatePointFont requires just two lines of code:

CFont font;
font.CreatePointFont (120, _T ("Times New Roman"));

Doing the same with CreateFont requires you to query the
device context for the logical number of pixels per inch in the
vertical direction and to convert points to pixels:

CClientDC dc (this);
int nHeight = -((dc.GetDeviceCaps (LOGPIXELSY) * 12) / 72);
CFont font;
font.CreateFont (nHeight, 0, 0, 0, FW_NORMAL, 0, 0, 0,
 DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
CLIP_CHARACTER_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH ¦ FF_DONTCARE,
 _T ("Times New Roman"));

Incidentally, the numeric value passed to CreatePointFont is the
desired point size times 10. This allows you to control the font

Programming Windows With MFC

 89

size down to 1/10 point—plenty accurate enough for most
applications, considering the relatively low resolution of most
screens and other commonly used output devices.

The many parameters passed to CreateFont specify, among
other things, the font weight and whether characters in the font
are italicized. You can't create a bold, italic font with
CreatePointFont, but you can with CreatePointFontIndirect.
The following code creates a 12-point bold, italic Times New
Roman font using CreatePointFontIndirect.

LOGFONT lf;
::ZeroMemory (&lf, sizeof (lf));
lf.lfHeight = 120;
lf.lfWeight = FW_BOLD;
lf.lfItalic = TRUE;
::lstrcpy (lf.lfFaceName, _T ("Times New Roman"));

CFont font;
font.CreatePointFontIndirect (&lf);

LOGFONT is a structure whose fields define all the
characteristics of a font. ::ZeroMemory is an API function that
zeroes a block of memory, and ::lstrcpy is an API function that
copies a text string from one memory location to another. You
can use the C run time's memset and strcpy functions instead
(actually, you should use _tcscpy in lieu of strcpy so the call
will work with ANSI or Unicode characters), but using
Windows API functions frequently makes an executable
smaller by reducing the amount of statically linked code.

After creating a font, you can select it into a device context and
draw with it using DrawText, TextOut, and other CDC text
functions. The following OnPaint handler draws "Hello, MFC"
in the center of a window. But this time the text is drawn using
a 72-point Arial typeface, complete with drop shadows. (See
Figure 2-9.)

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);

 CFont font;

Programming Windows With MFC

 90

 font.CreatePointFont (720, _T ("Arial"));

 CPaintDC dc (this);
 dc.SelectObject (&font);
 dc.SetBkMode (TRANSPARENT);

 CString string = _T ("Hello, MFC");

 rect.OffsetRect (16, 16);
 dc.SetTextColor (RGB (192, 192, 192));
 dc.DrawText (string, &rect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);

 rect.OffsetRect (-16, -16);
 dc.SetTextColor (RGB (0, 0, 0));
 dc.DrawText (string, &rect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);
}

Figure 2-9. "Hello, MFC" rendered in 72-point Arial with drop shadows.

The shadow effect is achieved by drawing the text string
twice—once a few pixels to the right of and below the center of
the window, and once in the center. MFC's CRect::OffsetRect
function makes it a snap to "move" rectangles by offsetting
them a specified distance in the x and y directions.

What happens if you try to create, say, a Times New Roman
font on a system that doesn't have Times New Roman installed?
Rather than fail the call, the GDI will pick a similar typeface
that is installed. An internal font-mapping algorithm is called to
pick the best match, and the results aren't always what one
might expect. But at least your application won't output text

Programming Windows With MFC

 91

just fine on one system and mysteriously output nothing on
another.

2.2.7. Raster Fonts vs. TrueType Fonts

Most GDI fonts fall into one of two categories: raster fonts and
TrueType fonts. Raster fonts are stored as bitmaps and look
best when they're displayed in their native sizes. One of the
most useful raster fonts provided with Windows is MS Sans
Serif, which is commonly used (in its 8-point size) on push
buttons, radio buttons, and other dialog box controls. Windows
can scale raster fonts by duplicating rows and columns of pixels,
but the results are rarely pleasing to the eye due to
stair-stepping effects.

The best fonts are TrueType fonts because they scale well to
virtually any size. Like PostScript fonts, TrueType fonts store
character outlines as mathematical formulas. They also include
"hint" information that's used by the GDI's TrueType font
rasterizer to enhance scalability. You can pretty much bank on
the fact that any system your application runs on will have the
following TrueType fonts installed, because all four are
provided with Windows:

x Times New Roman
x Arial
x Courier New
x Symbol

In Chapter 7, you'll learn how to query the system for font
information and how to enumerate the fonts that are installed.
Such information can be useful if your application requires
precise character output or if you want to present a list of
installed fonts to the user.

2.2.8. Rotated Text

One question that's frequently asked about GDI text output is
"How do I display rotated text?" There are two ways to do it,
one of which works only in Microsoft Windows NT and
Windows 2000. The other method is compatible with all 32-bit
versions of Windows, so it's the one I'll describe here.

Programming Windows With MFC

 92

The secret is to create a font with CFont::CreateFontIndirect or
CFont::CreatePointFontIndirect and to specify the desired
rotation angle (in degrees) times 10 in the LOGFONT
structure's lfEscapement and lfOrientation fields. Then you
output the text in the normal manner—for example, using
CDC::TextOut. Conventional text has an escapement and
orientation of 0; that is, it has no slant and is drawn on a
horizontal. Setting these values to 450 rotates the text
counterclockwise 45 degrees. The following OnPaint handler
increments lfEscapement and lfOrientation in units of 15
degrees and uses the resulting fonts to draw the radial text array
shown in Figure 2-10:

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);

 CPaintDC dc (this);
 dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);
 dc.SetBkMode (TRANSPARENT);

 for (int i=0; i<3600; i+=150) {
 LOGFONT lf;
 ::ZeroMemory (&lf, sizeof (lf));
 lf.lfHeight = 160;
 lf.lfWeight = FW_BOLD;
 lf.lfEscapement = i;
 lf.lfOrientation = i;
 ::lstrcpy (lf.lfFaceName, _T ("Arial"));

 CFont font;
 font.CreatePointFontIndirect (&lf);

 CFont* pOldFont = dc.SelectObject (&font);
 dc.TextOut (0, 0, CString (_T (" Hello, MFC")));
 dc.SelectObject (pOldFont);
 }
}

This technique works great with TrueType fonts, but it doesn't
work at all with raster fonts.

Programming Windows With MFC

 93

Figure 2-10. Rotated text.

2.2.9. Stock Objects

Windows predefines a handful of pens, brushes, fonts, and
other GDI objects that can be used without being explicitly
created. Called stock objects, these GDI objects can be selected
into a device context with the CDC::SelectStockObject function
or assigned to an existing CPen, CBrush, or other object with
CGdiObject::CreateStockObject. CGdiObject is the base class
for CPen, CBrush, CFont, and other MFC classes that represent
GDI objects.

The following table shows a partial list of the available stock
objects. Stock pens go by the names WHITE_PEN,
BLACK_PEN, and NULL_PEN. WHITE_PEN and
BLACK_PEN draw solid lines that are 1 pixel wide.
NULL_PEN draws nothing. The stock brushes include one
white brush, one black brush, and three shades of gray.
HOLLOW_BRUSH and NULL_BRUSH are two different
ways of referring to the same thing—a brush that paints nothing.
SYSTEM_FONT is the font that's selected into every device
context by default.

Commonly Used Stock Objects

Object Description

NULL_PEN Pen that draws nothing

BLACK_PEN Black pen that draws solid lines 1 pixel wide

Programming Windows With MFC

 94

WHITE_PEN White pen that draws solid lines 1 pixel wide

NULL_BRUSH Brush that draws nothing

HOLLOW_BRUSH Brush that draws nothing (same as NULL_BRUSH)

BLACK_BRUSH Black brush

DKGRAY_BRUSH Dark gray brush

GRAY_BRUSH Medium gray brush

LTGRAY_BRUSH Light gray brush

WHITE_BRUSH White brush

ANSI_FIXED_FONT Fixed-pitch ANSI font

ANSI_VAR_FONT Variable-pitch ANSI font

SYSTEM_FONT Variable-pitch system font

SYSTEM_FIXED_FONT Fixed-pitch system font

Suppose you want to draw a light gray circle with no border.
How do you do it? Here's one way:

CPen pen (PS_NULL, 0, (RGB (0, 0, 0)));
dc.SelectObject (&pen);
CBrush brush (RGB (192, 192, 192));
dc.SelectObject (&brush);
dc.Ellipse (0, 0, 100, 100);

But since NULL pens and light gray brushes are stock objects,
here's a better way:

dc.SelectStockObject (NULL_PEN);
dc.SelectStockObject (LTGRAY_BRUSH);
dc.Ellipse (0, 0, 100, 100);

The following code demonstrates a third way to draw the circle.
This time the stock objects are assigned to a CPen and a
CBrush rather than selected into the device context directly:

CPen pen;
pen.CreateStockObject (NULL_PEN);
dc.SelectObject (&pen);

CBrush brush;
brush.CreateStockObject (LTGRAY_BRUSH);

Programming Windows With MFC

 95

dc.SelectObject (&brush);

dc.Ellipse (0, 0, 100, 100);

Which of the three methods you use is up to you. The second
method is the shortest, and it's the only one that's guaranteed
not to throw an exception since it doesn't create any GDI
objects.

2.2.10. Deleting GDI Objects

Pens, brushes, and other objects created from
CGdiObject-derived classes are resources that consume space
in memory, so it's important to delete them when you no longer
need them. If you create a CPen, CBrush, CFont, or other
CGdiObject on the stack, the associated GDI object is
automatically deleted when CGdiObject goes out of scope. If
you create a CGdiObject on the heap with new, be sure to
delete it at some point so that its destructor will be called. The
GDI object associated with a CGdiObject can be explicitly
deleted by calling CGdiObject::DeleteObject. You never need
to delete stock objects, even if they are "created" with
CreateStockObject.

In 16-bit Windows, GDI objects frequently contributed to the
problem of resource leakage, in which the Free System
Resources figure reported by Program Manager gradually
decreased as applications were started and terminated because
some programs failed to delete the GDI objects they created.
All 32-bit versions of Windows track the resources a program
allocates and deletes them when the program ends. However,
it's still important to delete GDI objects when they're no longer
needed so that the GDI doesn't run out of memory while a
program is running. Imagine an OnPaint handler that creates 10
pens and brushes every time it's called but neglects to delete
them. Over time, OnPaint might create thousands of GDI
objects that occupy space in system memory owned by the
Windows GDI. Pretty soon, calls to create pens and brushes
will fail, and the application's OnPaint handler will
mysteriously stop working.

In Visual C++, there's an easy way to tell whether you're failing
to delete pens, brushes, and other resources: Simply run a

Programming Windows With MFC

 96

debug build of your application in debugging mode. When the
application terminates, resources that weren't freed will be
listed in the debugging window. MFC tracks memory
allocations for CPen, CBrush, and other CObject-derived
classes so that it can notify you when an object hasn't been
deleted. If you have difficulty ascertaining from the debug
messages which objects weren't deleted, add the statement

#define new DEBUG_NEW

to your application's source code files after the statement that
includes Afxwin.h. (In AppWizard-generated applications, this
statement is included automatically.) Debug messages for
unfreed objects will then include line numbers and file names
to help you pinpoint leaks.

2.2.11. Deselecting GDI Objects

It's important to delete the GDI objects you create, but it's
equally important to never delete a GDI object while it's
selected into a device context. Code that attempts to paint with
a deleted object is buggy code. The only reason it doesn't crash
is that the Windows GDI is sprinkled with error-checking code
to prevent such crashes from occurring.

Abiding by this rule isn't as easy as it sounds. The following
OnPaint handler allows a brush to be deleted while it's selected
into a device context. Can you figure out why?

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);
 CBrush brush (RGB (255, 0, 0));
 dc.SelectObject (&brush);
 dc.Ellipse (0, 0, 200, 100);
}

Here's the problem. A CPaintDC object and a CBrush object
are created on the stack. Since the CBrush is created second, its
destructor gets called first. Consequently, the associated GDI
brush is deleted before dc goes out of scope. You could fix this
by creating the brush first and the DC second, but code whose
robustness relies on stack variables being created in a particular

Programming Windows With MFC

 97

order is bad code indeed. As far as maintainability goes, it's a
nightmare.

The solution is to select the CBrush out of the device context
before the CPaintDC object goes out of scope. There is no
UnselectObject function, but you can select an object out of a
device context by selecting in another object. Most Windows
programmers make it a practice to save the pointer returned by
the first call to SelectObject for each object type and then use
that pointer to reselect the default object. An equally viable
approach is to select stock objects into the device context to
replace the objects that are currently selected in. The first of
these two methods is illustrated by the following code:

CPen pen (PS_SOLID, 1, RGB (255, 0, 0));
CPen* pOldPen = dc.SelectObject (&pen);
CBrush brush (RGB (0, 0, 255));
CBrush* pOldBrush = dc.SelectObject (&brush);

dc.SelectObject (pOldPen);
dc.SelectObject (pOldBrush);

The second method works like this:

CPen pen (PS_SOLID, 1, RGB (255, 0, 0));
dc.SelectObject (&pen);
CBrush brush (RGB (0, 0, 255));
dc.SelectObject (&brush);

dc.SelectStockObject (BLACK_PEN);
dc.SelectStockObject (WHITE_BRUSH);

The big question is why this is necessary. The simple truth is
that it's not. In modern versions of Windows, there's no harm in
allowing a GDI object to be deleted a split second before a
device context is released, especially if you're absolutely sure
that no drawing will be done in the interim. Still, cleaning up a
device context by deselecting the GDI objects you selected in is
a common practice in Windows programming. It's also
considered good form, so it's something I'll do throughout this
book.

Incidentally, GDI objects are occasionally created on the heap,
like this:

Programming Windows With MFC

 98

CPen* pPen = new CPen (PS_SOLID, 1, RGB (255, 0, 0));
CPen* pOldPen = dc.SelectObject (pPen);

At some point, the pen must be selected out of the device
context and deleted. The code to do it might look like this:

dc.SelectObject (pOldPen);
delete pPen;

Since the SelectObject function returns a pointer to the object
selected out of the device context, it might be tempting to try to
deselect the pen and delete it in one step:

delete dc.SelectObject (pOldPen);

But don't do this. It works fine with pens, but it might not work
with brushes. Why? Because if you create two identical
CBrushes, 32-bit Windows conserves memory by creating just
one GDI brush and you'll wind up with two CBrush pointers
that reference the same HBRUSH. (An HBRUSH is a handle
that uniquely identifies a GDI brush, just as an HWND
identifies a window and an HDC identifies a device context. A
CBrush wraps an HBRUSH and stores the HBRUSH handle in
its m_hObject data member.) Because CDC::SelectObject uses
an internal table maintained by MFC to convert the HBRUSH
handle returned by SelectObject to a CBrush pointer and
because that table assumes a one-to-one mapping between
HBRUSHes and CBrushes, the CBrush pointer you get back
might not match the CBrush pointer returned by new. Be sure
you pass delete the pointer returned by new. Then both the GDI
object and the C++ object will be properly destroyed.

2.2.12. The Ruler Application

The best way to get acquainted with the GDI and the MFC
classes that encapsulate it is to write code. Let's start with a
very simple application. Figure 2-12 contains the source code
for Ruler, a program that draws a 12-inch ruler on the screen.
Ruler's output is shown in Figure 2-11.

Programming Windows With MFC

 99

Figure 2-11. The Ruler window.

Figure 2-12. The Ruler application.

Ruler.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
public:
 CMainWindow ();

protected:
 afx_msg void OnPaint ();

DECLARE_MESSAGE_MAP ()
}
Ruler.cpp
#include <afxwin.h>
#include "Ruler.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)

Programming Windows With MFC

 100

 ON_WM_PAINT ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("Ruler"));
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 //
 // Initialize the device context.
 //
 dc.SetMapMode (MM_LOENGLISH);
 dc.SetTextAlign (TA_CENTER ¦ TA_BOTTOM);
 dc.SetBkMode (TRANSPARENT);

 //
 // Draw the body of the ruler.
 //

 CBrush brush (RGB (255, 255, 0));
 CBrush* pOldBrush = dc.SelectObject (&brush);
 dc.Rectangle (100, -100, 1300, -200);
 dc.SelectObject (pOldBrush);

 //
 // Draw the tick marks and labels.
 //
 for (int i=125; i<1300; i+=25) {
 dc.MoveTo (i, -192);
 dc.LineTo (i, -200);
 }

 for (i=150; i<1300; i+=50) {
 dc.MoveTo (i, -184);
 dc.LineTo (i, -200);
 }

 for (i=200; i<1300; i+=100) {
 dc.MoveTo (i, -175);
 dc.LineTo (i, -200);

 CString string;
 string.Format (_T ("%d"), (i / 100) - 1);
 dc.TextOut (i, -175, string);
 }

}

The structure of Ruler is similar to that of the Hello application
presented in Chapter 1. The CMyApp class represents the
application itself. CMyApp::InitInstance creates a frame

Programming Windows With MFC

 101

window by constructing a CMainWindow object, and
CMainWindow's constructor calls Create to create the window
you see on the screen. CMainWindow::OnPaint handles all the
drawing. The body of the ruler is drawn with CDC::Rectangle,
and the hash marks are drawn with CDC::LineTo and
CDC::MoveTo. Before the rectangle is drawn, a yellow brush is
selected into the device context so that the body of the ruler
will be painted yellow. Numeric labels are drawn with
CDC::TextOut and positioned over the tick marks by calling
SetTextAlign with TA_CENTER and TA_BOTTOM flags and
passing TextOut the coordinates of the top of each tick mark.
Before TextOut is called for the first time, the device context's
background mode is set to TRANSPARENT. Otherwise, the
numbers on the face of the ruler would be drawn with white
backgrounds.

Rather than hardcode the strings passed to TextOut, Ruler uses
CString::Format to generate text on the fly. CString is the
MFC class that represents text strings. CString::Format works
like C's printf function, converting numeric values to text and
substituting them for placeholders in a formatting string.
Windows programmers who work in C frequently use
the ::wsprintf API function for text formatting. Format does the
same thing for CString objects without requiring an external
function call. And unlike ::wsprintf, Format supports the full
range of printf formatting codes, including codes for
floating-point and string variable types.

Ruler uses the MM_LOENGLISH mapping mode to scale its
output so that 1 inch on the ruler corresponds to 1 logical inch
on the screen. Hold a real ruler up to the screen and on most
PCs you'll find that 1 logical inch equals a little more than 1
physical inch. If the ruler is output to a printer instead, logical
inches and physical inches will match exactly.

2.3. Seeing What You've Drawn

Unfortunately, there is one small problem with Ruler's output:
Unless you're running the program on a very high resolution
video adapter, you can't see everything it draws. Even on a
1,280-pixel by 1,204-pixel screen, the window can't be
stretched wide enough to make all the output visible. What
doesn't fit inside the window's client area is clipped by the GDI.

Programming Windows With MFC

 102

You could modify the sample program to make the ruler shorter,
but that still wouldn't do much for someone running Windows
on a 640-by-480 screen. No, there's a better solution, one that's
entirely independent of the screen resolution. That solution is a
scroll bar.

2.3.1. Adding a Scroll Bar to a Window

A scroll bar is a window with an arrow at each end and a
traveling "thumb" in between that can be dragged with the
mouse. Scroll bars can be oriented horizontally or vertically,
but never at an angle. When the user clicks one of the scroll bar
arrows, moves the thumb, or clicks the scroll bar shaft, the
scroll bar informs the window it's attached to by sending it a
message. It's up to the window to decide what, if anything, to
do with that message because a scroll bar does very little on its
own. It doesn't, for example, magically scroll the window's
contents. What it does do is provide a very intuitive and
universally recognized mechanism for scrolling backward and
forward over a virtual landscape that's too large to fit within the
physical confines of a window.

Adding a scroll bar to a window is one of the easiest things
you'll ever do in a Windows program. To add a vertical scroll
bar, create the window with the WS_VSCROLL style. To add a
horizontal scroll bar, use the WS_HSCROLL style. To add
horizontal and vertical scroll bars, use both WS_VSCROLL
and WS_HSCROLL. Recall from Chapter 1 that the third
parameter passed to CFrameWnd::Create is the window style,
and that the default is WS_OVERLAPPEDWINDOW. An
application that creates a conventional frame window with the
statement

Create (NULL, _T ("My Application"));

can create a frame window containing a vertical scroll bar with the
statement

Create (NULL, _T ("My Application"),
WS_OVERLAPPEDWINDOW ¦ WS_VSCROLL);

Accordingly, Windows provides a scroll bar that extends the
height of the window's client area from top to bottom on the

Programming Windows With MFC

 103

right side. If you'd rather have the scroll bar appear on the left,
include a WS_EX_LEFTSCROLLBAR flag in Create's
optional dwExStyle (seventh) parameter.

2.3.2. Setting a Scroll Bar's Range, Position, and
Page Size

After you create a scroll bar, you should initialize it with a
range, position, and page size. The range is a pair of integers
that define the upper and lower limits of the scroll bar's travel.
The position is an integer value that specifies the current
location within that range; its value is reflected in the position
of the scroll bar thumb. The page size sets the size of the thumb
to provide a visual representation of the relationship between
the size of the window and the size of the scrollable view. For
example, if the scroll bar range is 0 to 100 and the page size is
50, the thumb size is half the scroll bar length. If you don't set
the page size, Windows picks a default, nonproportional thumb
size for you.

One way to set a scroll bar's range and position is with the
CWnd::SetScrollRange and CWnd::SetScrollPos functions. The
statement

SetScrollRange (SB_VERT, 0, 100, TRUE);

sets a vertical scroll bar's range to 0 through 100, while the
statement

SetScrollPos (SB_VERT, 50, TRUE);

sets the current position to 50 and consequently moves the
thumb to the middle of the scroll bar. (For horizontal scroll bars,
use SB_HORZ instead of SB_VERT.) A scroll bar maintains a
record of its current range and position internally. You can
query for those values at any time with CWnd::GetScrollRange
and CWnd::GetScrollPos.

The TRUE parameter passed to SetScrollRange and
SetScrollPos specifies that the scroll bar should be redrawn to
reflect the change. You can prevent redraws by specifying
FALSE. If you specify neither TRUE nor FALSE, both

Programming Windows With MFC

 104

SetScrollRange and SetScrollPos default to TRUE. You
generally want a scroll bar to redraw itself after one of these
functions is called, but not if both are called in quick succession.
Redrawing a scroll bar twice in a very short period of time
produces an undesirable flashing effect. If you're setting the
range and the position together, do it like this:

SetScrollRange (SB_VERT, 0, 100, FALSE);
SetScrollPos (SB_VERT, 50, TRUE);

SetScrollPos and SetScrollRange date back to the very first
version of Windows. In today's versions, the preferred way to
set a scroll bar's range and position is with the
CWnd::SetScrollInfo function. In addition to allowing the range
and the position to be set with a single function call,
SetScrollInfo also provides a means—the only means, as it
turns out—for setting the page size. SetScrollInfo accepts three
parameters:

x An SB_VERT or SB_HORZ parameter that specifies whether the scroll
bar is vertical or horizontal (or SB_BOTH if you want to initialize two
scroll bars at once)

x A pointer to a SCROLLINFO structure
x A BOOL value (TRUE or FALSE) that specifies whether the scroll bar

should be redrawn

SCROLLINFO is defined as follows in Winuser.h:

typedef struct tagSCROLLINFO
{
 UINT cbSize;
 UINT fMask;
 int nMin;
 int nMax;
 UINT nPage;
 int nPos;
 int nTrackPos;
} SCROLLINFO, FAR *LPSCROLLINFO;

cbSize specifies the size of the structure, nMin and nMax
specify the scroll bar range, nPage specifies the page size, and
nPos specifies the position. nTrackPos is not used in calls to
SetScrollInfo, but it returns the scroll bar's thumb position when
the complementary GetScrollInfo function is called to retrieve
information about the scroll bar while the thumb is being

Programming Windows With MFC

 105

dragged. The fMask field holds a combination of one or more
of the following bit flags:

x SIF_DISABLENOSCROLL, which disables the scroll bar
x SIF_PAGE, which indicates that nPage holds the page size
x SIF_POS, which indicates that nPos holds the scroll bar position
x SIF_RANGE, which indicates that nMin and nMax hold the scroll bar

range
x SIF_ALL, which is equivalent to SIF_PAGE ¦ SIF_POS ¦ SIF_RANGE.

SetScrollInfo ignores fields for which bit flags are not specified.
The statements

SCROLLINFO si;
si.fMask = SIF_POS;
si.nPos = 50;
SetScrollInfo (SB_VERT, &si, TRUE);

set the position while leaving the range and page size
unaffected, and

SCROLLINFO si;
si.fMask = SIF_RANGE ¦ SIF_POS ¦ SIF_PAGE; // Or SIF_ALL
si.nMin = 0;
si.nMax = 99;
si.nPage = 25;
si.nPos = 50;
SetScrollInfo (SB_VERT, &si, TRUE);

sets the range, page size, and position in one operation. You
don't need to initialize cbSize before calling SetScrollInfo or
GetScrollInfo because MFC initializes it for you.

You can make a scroll bar disappear by setting the upper limit
of its range equal to the lower limit. The scroll bar doesn't go
away entirely; it's still there, even though you can't see it,
and—more important—you can bring it back by making the
range upper and lower limits different again. This turns out to
be quite a useful trick if you want to hide the scroll bar because
the window has been enlarged to the point that a scroll bar is no
longer required. SetScrollInfo's SIF_DISABLENOSCROLL
flag prevents a scroll bar from accepting further input, but it
doesn't make the scroll bar disappear. Having a disabled scroll
bar visible inside a window can be confusing to users, who are
apt to wonder why the scroll bar is there if it can't be used.

Programming Windows With MFC

 106

When you set a scroll bar's range, page size, and position, here's
a convenient model to keep in mind. Suppose your window's
client area is 100 units high and the workspace you want to
cover with a vertical scroll bar is 400 units high. Set the scroll
bar range to 0-399 and the page size to 100. Accordingly,
Windows will draw the scroll bar thumb so that it is one-fourth
the height of the scroll bar. When the scroll bar position is 0,
the thumb is positioned at the top of the scroll bar. As the
thumb is scrolled down, scroll the contents of your window up
an amount proportional to the distance the thumb was moved. If
you limit the scroll bar's maximum position to 300 (the
difference between the magnitude of the scroll bar range and
the page size), the bottom of the thumb will reach the bottom of
the scroll bar at the same time that the bottom of the workspace
scrolls into view at the bottom of the window.

2.3.3. Synchronizing the Thumb Size and the
Window Size

Since a scroll bar's thumb size reflects the relative size of the
window compared to the width or the height of the virtual
workspace, you should update the thumb size when the window
size changes. It's easy to do: Just call SetScrollInfo with an
SIF_PAGE flag each time your window receives a WM_SIZE
message. The first WM_SIZE message comes when a window
is created. Subsequent WM_SIZE messages arrive whenever
the window's size changes. In MFC, an ON_WM_SIZE entry
in a class's message map directs WM_SIZE messages to a
handler named OnSize. The handler is prototyped as follows:

afx_msg void OnSize (UINT nType, int cx, int cy)

The nType parameter informs the window whether it has been
minimized, maximized, or simply resized by using the code
SIZE_MINIMIZED, SIZE_MAXIMIZED, or
SIZE_RESTORED, respectively. cx and cy are the client area's
new width and height in pixels. If you know the dimensions of
your application's virtual workspace, you can set the thumb size
accordingly.

Programming Windows With MFC

 107

2.3.4. Processing Scroll Bar Messages

A scroll bar notifies its owner (the window to which it is
attached) of scroll bar events by sending messages. A
horizontal scroll bar sends WM_HSCROLL messages, and a
vertical scroll bar sends WM_VSCROLL messages. In MFC,
these messages are directed to a window's OnHScroll and
OnVScroll functions by ON_WM_HSCROLL and
ON_WM_VSCROLL entries in the window's message map.
Scroll bar message handlers are prototyped like this:

afx_msg void OnHScroll (UINT nCode, UINT nPos, CScrollBar*
pScrollBar)
afx_msg void OnVScroll (UINT nCode, UINT nPos, CScrollBar*
pScrollBar)

nCode identifies the type of event that precipitated the message;
nPos contains the latest thumb position if the thumb is being
dragged or was just dragged and released; and, for a scroll bar
that was created by adding a WS_HSCROLL or
WS_VSCROLL style bit to a window, pScrollBar is NULL.

There are seven different event notifications that an application
might receive in OnVScroll's nCode parameter, as shown in the
table below.

Event Code Sent When

SB_LINEUP The arrow at the top of the scroll bar is clicked.

SB_LINEDOWN The arrow at the bottom of the scroll bar is clicked.

SB_PAGEUP The scroll bar shaft is clicked between the up arrow
and the thumb.

SB_PAGEDOWN The scroll bar shaft is clicked between the thumb and
down arrow.

SB_ENDSCROLL The mouse button is released, and no more
SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, or
SB_PAGEDOWN notifications are forthcoming.

SB_THUMBTRACK The scroll bar thumb is dragged.

SB_THUMBPOSITION The thumb is released after being dragged.

Horizontal scroll bars send the same notifications as vertical scroll bars,
but the notifications have slightly different meanings. For a horizontal
scroll bar, SB_LINEUP signifies that the left arrow was clicked,

Programming Windows With MFC

 108

SB_LINEDOWN means the right arrow was clicked, SB_PAGEUP
means the scroll bar was clicked between the left arrow and the thumb,
and SB_PAGEDOWN means the scroll bar was clicked between the
thumb and the right arrow. If you prefer, you can use SB_LINELEFT,
SB_LINERIGHT, SB_PAGELEFT, and SB_PAGERIGHT rather than
SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, and SB_PAGEDOWN.
The discussions in the remainder of this chapter deal exclusively with
vertical scroll bars, but keep in mind that anything said about vertical
scroll bars also applies to horizontal scroll bars.

If the user clicks a scroll bar or scroll bar arrow and leaves the mouse
button pressed, a series of SB_LINEUP, SB_LINEDOWN, SB_PAGEUP,
or SB_PAGEDOWN notifications will arrive in rapid succession—similar
to the stream of typematic key codes generated when a key is held down.
SB_ENDSCROLL terminates a stream of UP or DOWN notifications and
indicates that the mouse button has been released. Even a single click
of a scroll bar or scroll bar arrow generates an UP or a DOWN
notification followed by an SB_ENDSCROLL notification.
Similarly, a window is bombarded with SB_THUMBTRACK
notifications that report new thumb positions as a scroll bar
thumb is dragged, and it receives an SB_THUMBPOSITION
notification when the thumb is released. When an
SB_THUMBTRACK or SB_THUMBPOSITION notification
arrives, the message's nPos parameter holds the latest thumb
position. For other event codes, the value of nPos is undefined.

How your program responds to scroll bar event messages is up
to you. Most programs that use scroll bars disregard
SB_ENDSCROLL messages and respond to SB_LINEUP,
SB_LINEDOWN, SB_PAGEUP, and SB_PAGEDOWN
messages instead. A typical response to SB_LINEUP and
SB_LINEDOWN messages is to scroll the contents of the
window up or down one line and call SetScrollPos or
SetScrollInfo to set the new scroll bar position and update the
thumb location. "Line" can have whatever physical meaning
you want it to have; it might mean 1 pixel, or it might mean the
height of one line of text. Similarly, the usual response to
SB_PAGEUP and SB_PAGEDOWN messages is to scroll up
or down a distance equal to or slightly less than one "page,"
which is typically defined as the height of the window's client
area or slightly less, and to call SetScrollInfo to set the new
scroll position. In any event, it's your responsibility to update
the scroll bar position. The scroll bar doesn't do that by itself.

Programming Windows With MFC

 109

Another, though less common, approach to processing UP and
DOWN notifications is to continually move the scroll bar
thumb by calling SetScrollPos or SetScrollInfo but to defer
scrolling the window until an SB_ENDSCROLL notification
arrives. I once used this technique in a multimedia application
that was relatively slow to respond to positional changes so that
the latency of commands sent to a CD-ROM drive wouldn't
impede the smooth movement of the scroll bar thumb.

SB_THUMBTRACK and SB_THUMBPOSITION
notifications are handled a little differently. Since
SB_THUMBTRACK notifications are liable to come fast and
furious when the thumb is dragged, some Windows
applications ignore SB_THUMBTRACK notifications and
respond only to SB_THUMBPOSITION notifications. In this
case, the window doesn't scroll until the thumb is released. If
you can scroll the contents of your window quickly enough to
keep up with SB_THUMBTRACK notifications, you can make
your program more responsive to user input by scrolling as the
thumb is dragged. It's still up to you to update the scroll bar
position each time you scroll the window. Windows animates
the movement of the scroll bar thumb as it's dragged up and
down, but if you fail to call SetScrollPos or SetScrollInfo in
response to SB_THUMBTRACK or SB_THUMBPOSITION
notifications, the thumb will snap back to its original position
the moment it's released.

2.3.5. Scrolling a Window

Now that you understand how a scroll bar works, it's time to
think about how to scroll the contents of a window in response
to scroll bar messages.

The simplest approach is to change the scroll bar position each
time a scroll bar message arrives and to call CWnd::Invalidate
to force a repaint. The window's OnPaint handler can query the
scroll bar for its current position and factor that information
into its output. Unfortunately, scrolling a window this way is
slow—very slow, for that matter. If the user clicks the up arrow
to scroll the window contents up one line, it's wasteful to
redraw the entire window because most of the information you
want to display is already there, albeit in the wrong location. A
more efficient approach to processing SB_LINEUP messages is

Programming Windows With MFC

 110

to copy everything currently displayed in the window down one
line using a fast block copy and then to draw just the new top
line. That's what CWnd::ScrollWindow is for.

ScrollWindow scrolls the contents of a window's client area—in
whole or in part—up or down, left or right, by 1 or more pixels
using a fast block pixel transfer. Moreover, it invalidates only
the part of the window contents that is "uncovered" by the
scrolling operation so that the next WM_PAINT message
doesn't have to repaint the entire window. If ScrollWindow is
called to scroll a window downward by 10 pixels, it performs
the scroll by doing a block copy. Then it invalidates the
window's top 10 rows. This activates OnPaint and causes only
the top 10 rows to be redrawn. Even if OnPaint tries to redraw
the contents of the entire client area, performance is improved
because most of the output is clipped. A smart OnPaint handler
can further boost performance by restricting its GDI calls to
those that affect pixels in the window's invalid rectangle. You'll
see sample programs in Chapters 10 and 13 that use this
technique to optimize scrolling performance.

ScrollWindow accepts four parameters. Two are required and
two are optional. The function is prototyped as follows:

void ScrollWindow (int xAmount, int yAmount,
 LPCRECT lpRect = NULL, LPCRECT lpClipRect = NULL)

xAmount and yAmount are signed integers that specify the number of
pixels to scroll horizontally and vertically. Negative values scroll left and
up, while positive values scroll right and down. lpRect points to a CRect
object or a RECT structure that specifies the part of the client area to
scroll, and lpClipRect points to a CRect object or a RECT structure that
specifies a clipping rectangle. Specifying NULL for lpRect and lpClipRect
scrolls the contents of the entire client area. The statement

ScrollWindow (0, 10);

scrolls everything in a window's client area downward by 10
pixels and prompts a redraw of the first 10 rows.

You can use ScrollWindow whether your application displays
text, graphics, or both. In Windows all things are
graphical—including text.

Programming Windows With MFC

 111

2.3.6. The Accel Application

Let's put this newfound knowledge to work by writing an
application that scrolls. Accel draws a window that resembles
Microsoft Excel. (See Figure 2-13.) The spreadsheet depicted
in the window is 26 columns wide and 99 rows high—much
too large to be displayed all at once. However, scroll bars allow
the user to view all parts of the spreadsheet. In addition to
providing a hands-on look at the principles discussed in the
preceding sections, Accel demonstrates another way that a
program can scale its output. Rather than use a non-MM_TEXT
mapping mode, it uses CDC::GetDeviceCaps to query the
display device for the number of pixels per inch displayed
horizontally and vertically. Then it draws each spreadsheet cell
so that it's 1 inch wide and ¼ inch tall using raw pixel counts.

Figure 2-13. The Accel window.

Figure 2-14. The Accel application.

Accel.h
#define LINESIZE 8

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

Programming Windows With MFC

 112

class CMainWindow : public CFrameWnd
{
protected:
 int m_nCellWidth; // Cell width in pixels
 int m_nCellHeight; // Cell height in pixels
 int m_nRibbonWidth; // Ribbon width in pixels
 int m_nViewWidth; // Workspace width in pixels
 int m_nViewHeight; // Workspace height in pixels
 int m_nHScrollPos; // Horizontal scroll position
 int m_nVScrollPos; // Vertical scroll position
 int m_nHPageSize; // Horizontal page size
 int m_nVPageSize; // Vertical page size

public:
 CMainWindow ();
protected:
 afx_msg void OnPaint ();
 afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSize (UINT nType, int cx, int cy);
 afx_msg void OnHScroll (UINT nCode, UINT nPos,
 CScrollBar* pScrollBar);
 afx_msg void OnVScroll (UINT nCode, UINT nPos,
 CScrollBar* pScrollBar);

 DECLARE_MESSAGE_MAP ()
};

Accel.cpp
#include <afxwin.h>
#include "Accel.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()
 ON_WM_SIZE ()
 ON_WM_PAINT ()
 ON_WM_HSCROLL ()

Programming Windows With MFC

 113

 ON_WM_VSCROLL ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("Accel"),
 WS_OVERLAPPEDWINDOW ¦ WS_HSCROLL ¦ WS_VSCROLL);
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpCreateStruct)
{

 if (CFrameWnd::OnCreate (lpCreateStruct) == -1)
 return -1;

 CClientDC dc (this);
 m_nCellWidth = dc.GetDeviceCaps (LOGPIXELSX);
 m_nCellHeight = dc.GetDeviceCaps (LOGPIXELSY) / 4;
 m_nRibbonWidth = m_nCellWidth / 2;
 m_nViewWidth = (26 * m_nCellWidth) + m_nRibbonWidth;
 m_nViewHeight = m_nCellHeight * 100;
 return 0;
}

void CMainWindow::OnSize (UINT nType, int cx, int cy)
{
 CFrameWnd::OnSize (nType, cx, cy);

 //
 // Set the horizontal scrolling parameters.
 //
 int nHScrollMax = 0;
 m_nHScrollPos = m_nHPageSize = 0;

 if (cx < m_nViewWidth) {
 nHScrollMax = m_nViewWidth - 1;
 m_nHPageSize = cx;
 m_nHScrollPos = min (m_nHScrollPos, m_nViewWidth -
 m_nHPageSize - 1);
 }

 SCROLLINFO si;
 si.fMask = SIF_PAGE ¦ SIF_RANGE ¦ SIF_POS;
 si.nMin = 0;
 si.nMax = nHScrollMax;
 si.nPos = m_nHScrollPos;
 si.nPage = m_nHPageSize;

 SetScrollInfo (SB_HORZ, &si, TRUE);

 //
 // Set the vertical scrolling parameters.
 //
 int nVScrollMax = 0;

Programming Windows With MFC

 114

 m_nVScrollPos = m_nVPageSize = 0;

 if (cy < m_nViewHeight) {
 nVScrollMax = m_nViewHeight - 1;
 m_nVPageSize = cy;
 m_nVScrollPos = min (m_nVScrollPos, m_nViewHeight -
 m_nVPageSize - 1);
 }

 si.fMask = SIF_PAGE ¦ SIF_RANGE ¦ SIF_POS;
 si.nMin = 0;
 si.nMax = nVScrollMax;
 si.nPos = m_nVScrollPos;
 si.nPage = m_nVPageSize;

 SetScrollInfo (SB_VERT, &si, TRUE);
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 //
 // Set the window origin to reflect the current scroll positions.
 //
 dc.SetWindowOrg (m_nHScrollPos, m_nVScrollPos);

 //
 // Draw the grid lines.
 //

 CPen pen (PS_SOLID, 0, RGB (192, 192, 192));
 CPen* pOldPen = dc.SelectObject (&pen);

 for (int i=0; i<99; i++) {
 int y = (i * m_nCellHeight) + m_nCellHeight;
 dc.MoveTo (0, y);
 dc.LineTo (m_nViewWidth, y);
 }

 for (int j=0; j<26; j++) {
 int x = (j * m_nCellWidth) + m_nRibbonWidth;
 dc.MoveTo (x, 0);
 dc.LineTo (x, m_nViewHeight);
 }

 dc.SelectObject (pOldPen);

 //
 // Draw the bodies of the rows and the column headers.
 //
 CBrush brush;
 brush.CreateStockObject (LTGRAY_BRUSH);

Programming Windows With MFC

 115

 CRect rcTop (0, 0, m_nViewWidth, m_nCellHeight);
 dc.FillRect (rcTop, &brush);
 CRect rcLeft (0, 0, m_nRibbonWidth, m_nViewHeight);
 dc.FillRect (rcLeft, &brush);

 dc.MoveTo (0, m_nCellHeight);
 dc.LineTo (m_nViewWidth, m_nCellHeight);
 dc.MoveTo (m_nRibbonWidth, 0);
 dc.LineTo (m_nRibbonWidth, m_nViewHeight);

 dc.SetBkMode (TRANSPARENT);

 //
 // Add numbers and button outlines to the row headers.
 //
 for (i=0; i<99; i++) {
 int y = (i * m_nCellHeight) + m_nCellHeight;
 dc.MoveTo (0, y);
 dc.LineTo (m_nRibbonWidth, y);

 CString string;
 string.Format (_T ("%d"), i + 1);

 CRect rect (0, y, m_nRibbonWidth, y + m_nCellHeight);
 dc.DrawText (string, &rect, DT_SINGLELINE ¦

 DT_CENTER ¦ DT_VCENTER);

 rect.top++;
 dc.Draw3dRect (rect, RGB (255, 255, 255),
 RGB (128, 128, 128));
 }

 //
 // Add letters and button outlines to the column headers.
 //

 for (j=0; j<26; j++) {
 int x = (j * m_nCellWidth) + m_nRibbonWidth;
 dc.MoveTo (x, 0);
 dc.LineTo (x, m_nCellHeight);

 CString string;
 string.Format (_T ("%c"), j + `A');

 CRect rect (x, 0, x + m_nCellWidth, m_nCellHeight);
 dc.DrawText (string, &rect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);

 rect.left++;
 dc.Draw3dRect (rect, RGB (255, 255, 255),
 RGB (128, 128, 128));
 }
}

Programming Windows With MFC

 116

void CMainWindow::OnHScroll (UINT nCode, UINT nPos, CScrollBar*
pScrollBar)
{
 int nDelta;

 switch (nCode) {

 case SB_LINELEFT:
 nDelta = -LINESIZE;
 break;

 case SB_PAGELEFT:
 nDelta = -m_nHPageSize;
 break;

 case SB_THUMBTRACK:
 nDelta = (int) nPos - m_nHScrollPos;
 break;

 case SB_PAGERIGHT:
 nDelta = m_nHPageSize;
 break;

 case SB_LINERIGHT:
 nDelta = LINESIZE;
 break;
 default: // Ignore other scroll bar messages
 return;
 }

 int nScrollPos = m_nHScrollPos + nDelta;
 int nMaxPos = m_nViewWidth - m_nHPageSize;

 if (nScrollPos < 0)
 nDelta = -m_nHScrollPos;
 else if (nScrollPos > nMaxPos)
 nDelta = nMaxPos - m_nHScrollPos;

 if (nDelta != 0) {
 m_nHScrollPos += nDelta;
 SetScrollPos (SB_HORZ, m_nHScrollPos, TRUE);
 ScrollWindow (-nDelta, 0);
 }
}

void CMainWindow::OnVScroll (UINT nCode, UINT nPos, CScrollBar*
pScrollBar)
{
 int nDelta;

 switch (nCode) {

 case SB_LINEUP:
 nDelta = -LINESIZE;
 break;

Programming Windows With MFC

 117

 case SB_PAGEUP:
 nDelta = -m_nVPageSize;
 break;

 case SB_THUMBTRACK:
 nDelta = (int) nPos - m_nVScrollPos;
 break;

 case SB_PAGEDOWN:
 nDelta = m_nVPageSize;
 break;

 case SB_LINEDOWN:
 nDelta = LINESIZE;
 break;

 default: // Ignore other scroll bar messages
 return;
 }

 int nScrollPos = m_nVScrollPos + nDelta;
 int nMaxPos = m_nViewHeight - m_nVPageSize;

 if (nScrollPos < 0)
 nDelta = -m_nVScrollPos;
 else if (nScrollPos > nMaxPos)
 nDelta = nMaxPos - m_nVScrollPos;

 if (nDelta != 0) {
 m_nVScrollPos += nDelta;
 SetScrollPos (SB_VERT, m_nVScrollPos, TRUE);
 ScrollWindow (0, -nDelta);
 }
}

GetDeviceCaps is called from CMainWindow's OnCreate
handler, which is called upon receipt of a WM_CREATE
message. WM_CREATE is the first message a window
receives. It is sent just once, and it arrives very early in the
window's lifetime—before the window is even visible on the
screen. An ON_WM_CREATE entry in the window's message
map connects WM_CREATE messages to the member function
named OnCreate. OnCreate is the ideal place to initialize
member variables whose values can only be determined at run
time. It is prototyped as follows:

afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct)

lpCreateStruct is a pointer to a structure of type
CREATESTRUCT, which contains useful information about a

Programming Windows With MFC

 118

window such as its initial size and location on the screen. The
value returned by OnCreate determines what Windows does
next. If all goes as planned, OnCreate returns 0, signaling to
Windows that the window was properly initialized. If OnCreate
returns -1, Windows fails the attempt to create the window. A
prototype OnCreate handler looks like this:

int CMainWindow::OnCreate (LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate (lpCreateStruct) == -1)
 return -1;

 return 0;
}

OnCreate should always call the base class's OnCreate handler
to give the framework the opportunity to execute its own
window-creation code. This is especially important when you
write document/view applications, because it is a function
called by CFrameWnd::OnCreate that creates the view that
goes inside a frame window.

You'll find the code that does the scrolling in the window's
OnHScroll and OnVScroll handlers. switch-case logic converts
the notification code passed in nCode into a signed nDelta
value that represents the number of pixels the window should
be scrolled. Once nDelta is computed, the scroll position is
adjusted by nDelta pixels and the window is scrolled with the
statements

m_nVScrollPos += nDelta;
SetScrollPos (SB_VERT, m_nVScrollPos, TRUE);
ScrollWindow (0, -nDelta);

for the vertical scroll bar and

m_nHScrollPos += nDelta;
SetScrollPos (SB_HORZ, m_nHScrollPos, TRUE);
ScrollWindow (-nDelta, 0);

for the horizontal scroll bar.

Programming Windows With MFC

 119

How are the scroll positions stored in m_nHScrollPos and
m_nVScrollPos factored into the program's output? When
OnPaint is called to paint the part of the workspace that was
exposed by the scrolling operation, it repositions the window
origin with the statement

dc.SetWindowOrg (m_nHScrollPos, m_nVScrollPos);

Recall that CDC::SetWindowOrg tells Windows to map the
logical point (x,y) to the device point (0,0), which, for a
client-area device context, corresponds to the upper left corner
of the window's client area. The statement above moves the
origin of the coordinate system left m_nHScrollPos pixels and
upward m_nVScrollPos pixels. If OnPaint tries to paint the
pixel at (0,0), the coordinate pair is transparently transformed
by the GDI into (_m_nHScrollPos,_m_nVScrollPos). If the
scroll position is (0,100), the first 100 rows of pixels are
clipped from the program's output and the real output—the
output the user can see—begins with the 101st row.
Repositioning the origin in this manner is a simple and
effective way to move a scrollable window over a virtual
display surface.

If you could enlarge the window enough to see the entire
spreadsheet, you would see the scroll bars disappear. That's
because CMainWindow::OnSize sets the scroll bar range to 0 if
the window size equals or exceeds the size of the virtual
workspace. The OnSize handler also updates the scrolling
parameters whenever the window size changes so that the
thumb size accurately reflects the relative proportions of the
window and the virtual workspace.

And with that, all the pieces are in place. The user clicks a
scroll bar or drags a scroll bar thumb; OnHScroll or OnVScroll
receives the message and responds by updating the scroll
position and scrolling the window; and OnPaint redraws the
window, using SetWindowOrg to move the drawing origin an
amount that equals the current scroll position. The program's
entire workspace is now accessible, despite the physical
limitations that the window size imposes on the output. And all
for less than 100 additional lines of code. How could it be any
easier?

Programming Windows With MFC

 120

Funny you should ask. Because that's exactly what MFC's
CScrollView class is for: to make scrolling easier. CScrollView
is an MFC class that encapsulates the behavior of a scrolling
window. You tell CScrollView how large a landscape you wish
to view, and it handles everything else. Among other things,
CScrollView processes WM_VSCROLL and WM_HSCROLL
messages for you, scrolls the window in response to scroll bar
events, and updates the thumb size when the window size
changes.

While it's perfectly possible to wire a CScrollView into an
application like Accel, CScrollView was designed primarily for
document/view applications. Chapter 10 examines CScrollView
more closely and also introduces some of the other view classes
that MFC provides.

2.4. Loose Ends

Before we close out the chapter, we need to tie up one loose
end. All the programs presented thus far have created a window
with the statement

m_pMainWnd = new CMainWindow;

in InitInstance. Since the object is instantiated with new, it
remains in memory after InitInstance ends and, in fact, will not
go away until it is deleted with a delete statement. Yet nowhere
in the programs' source code will you find such a statement. On
the surface, this would seem to be a problem. After all, every
C++ programmer knows that every new must be countered with
a delete or objects will be left behind in memory. So what
gives?

As you probably suspected, the class library deletes the object
for you. To be more precise, the object deletes itself. The key to
this little trick is that the very last message a window receives
before it goes away for good is WM_NCDESTROY. If you
look at the source code for CWnd::OnNcDestroy, you'll see that
it calls a virtual function named PostNcDestroy. CFrameWnd
overrides PostNcDestroy and executes a

delete this;

Programming Windows With MFC

 121

statement. Therefore, when a frame window is destroyed, the
object associated with that window is automatically deleted, too.
A frame window is destroyed when the user closes the
application.

It's worth noting that CWnd's own implementation of
PostNcDestroy does not delete the associated window object.
Therefore, if you derive your own window class directly from
CWnd, you also need to override PostNcDestroy in the derived
class and execute a delete this statement. Otherwise, the CWnd
object will not be properly deleted. You'll see what I mean in
the next chapter.

Programming Windows With MFC

 122

Chapter 3. The Mouse and the
Keyboard

If life were like the movies, traditional input devices would
have given way long ago to speech-recognition units, 3D
headsets, and other human-machine interface gadgets. At
present, however, the two most common input devices remain
the mouse and the keyboard. Microsoft Windows handles some
mouse and keyboard input itself, automatically dropping down
a menu, for example, when the user clicks an item on the menu
bar, and sending the application a WM_COMMAND message
when an item is selected from the menu. It's entirely possible to
write a full-featured Windows program that processes no
mouse or keyboard input directly, but as an application
developer, you'll eventually discover the need to read input
from the mouse and keyboard directly. And when you do, you'll
need to know about the mouse and keyboard interfaces that
Windows provides.

Not surprisingly, mouse and keyboard input comes in the form
of messages. Device drivers process mouse and keyboard
interrupts and place the resultant event notifications in a
systemwide queue known as the raw input queue. Entries in the
raw input queue have WM_ message identifiers just as
conventional messages do, but the data in them requires further
processing before it is meaningful to an application. A
dedicated thread owned by the operating system monitors the
raw input queue and transfers each message that shows up there
to the appropriate thread message queue. The "cooking" of the
message data is performed later, in the context of the receiving
application, and the message is ultimately retrieved and
dispatched just as any other message is.

This input model differs from that of 16-bit Windows, which
stored mouse and keyboard messages in a single systemwide
input queue until they were retrieved by an application. This
arrangement proved to be an Achilles' heel of sorts because it
meant that an application that failed to dispose of input
messages in a timely manner could prevent other applications
from doing the same. Win32's asynchronous input model solves
this problem by using the raw input queue as a temporary

Programming Windows With MFC

 123

holding buffer and moving input messages to thread message
queues at the earliest opportunity. (In 32-bit Windows, each
thread that calls certain Windows API functions is given its
own message queue, so a multithreaded application can have
not one, but many, message queues.) A 32-bit application that
goes too long without checking the message queue responds
sluggishly to user input, but it doesn't affect the responsiveness
of other applications running on the system.

Learning to respond to mouse and keyboard input in a
Windows application is largely a matter of learning about
which messages to process. This chapter introduces mouse and
keyboard messages and the various functions, both in MFC and
the API, that are useful for processing them. We'll apply the
concepts presented here to the real world by developing three
sample applications:

x TicTac, a tic-tac-toe game that demonstrates how to respond to mouse
clicks

x MouseCap, a simple drawing program that demonstrates how mouse
capturing works and how nonclient-area mouse messages are processed

x VisualKB, a typing program that brings mouse and keyboard handlers
together under one roof and lists the keyboard messages it receives

We have a lot of ground to cover, so let's get started.

3.1. Getting Input from the Mouse

Windows uses a number of different messages—more than 20
in all—to report input events involving the mouse. These
messages fall into two rather broad categories: client-area
mouse messages, which report events that occur in a window's
client area, and nonclient-area mouse messages, which pertain
to events in a window's nonclient area. An "event" can be any
of the following:

x The press or release of a mouse button
x The double click of a mouse button
x The movement of the mouse

You'll typically ignore events in the nonclient area of your
window and allow Windows to handle them. If your program
processes mouse input, it's client-area mouse messages you'll
probably be concerned with.

Admin
Underline

Programming Windows With MFC

 124

Client-Area Mouse Messages

Windows reports mouse events in a window's client area using
the messages shown in the following table.

Client-Area Mouse Messages

Message Sent When

WM_LBUTTONDOWN The left mouse button is pressed.

WM_LBUTTONUP The left mouse button is released.

WM_LBUTTONDBLCLK The left mouse button is double-clicked.

WM_MBUTTONDOWN The middle mouse button is pressed.

WM_MBUTTONUP The middle mouse button is released.

WM_MBUTTONDBLCLK The middle mouse button is double-clicked.

WM_RBUTTONDOWN The right mouse button is pressed.

WM_RBUTTONUP The right mouse button is released.

WM_RBUTTONDBLCLK The right mouse button is double-clicked.

WM_MOUSEMOVE The cursor is moved over the window's client
area.

Messages that begin with WM_LBUTTON pertain to the left
mouse button, WM_MBUTTON messages to the middle mouse
button, and WM_RBUTTON messages to the right mouse
button. An application won't receive WM_MBUTTON
messages if the mouse has only two buttons. (This rule has one
important exception: mice that have mouse wheels. Mouse
wheels are discussed later in this chapter.) An application won't
receive WM_RBUTTON messages if the mouse has just one
button. The vast majority of PCs running Windows have
two-button mice, so it's reasonably safe to assume that the right
mouse button exists. However, if you'd like to be certain (or if
you'd like to determine whether there is a third button, too), you
can use the Windows ::GetSystemMetrics API function:

int nButtonCount = ::GetSystemMetrics (SM_CMOUSEBUTTONS);

The return value is the number of mouse buttons, or it is 0 in
the unlikely event that a mouse is not installed.

Programming Windows With MFC

 125

WM_xBUTTONDOWN and WM_xBUTTONUP messages
report button presses and releases. A WM_LBUTTONDOWN
message is normally followed by a WM_LBUTTONUP
message, but don't count on that being the case. Mouse
messages go to the window under the cursor (the Windows
term for the mouse pointer), so if the user clicks the left mouse
button over a window's client area and then moves the cursor
outside the window before releasing the button, the window
receives a WM_LBUTTONDOWN message but not a
WM_LBUTTONUP message. Many programs react only to
button-down messages and ignore button-up messages, in
which case the pairing of the two isn't important. If pairing is
essential, a program can "capture" the mouse on receipt of a
button-down message and release it when a button-up message
arrives. In between, all mouse messages, even those pertaining
to events outside the window, are directed to the window that
performed the capture. This ensures that a button-up message is
received no matter where the cursor is when the button is
released. Mouse capturing is discussed later in this chapter.

When two clicks of the same button occur within a very short
period of time, the second button-down message is replaced by
a WM_xBUTTONDBLCLK message. Significantly, this
happens only if the window's WNDCLASS includes the class
style CS_DBLCLKS. The default WNDCLASS that MFC
registers for frame windows has this style, so frame windows
receive double-click messages by default. For a
CS_DBLCLKS-style window, two rapid clicks of the left
mouse button over the window's client area produce the
following sequence of messages:

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDBLCLK
WM_LBUTTONUP

If the window is not registered to be notified of double clicks,
however, the same two button clicks produce the following
sequence of messages:

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDOWN

Programming Windows With MFC

 126

WM_LBUTTONUP

How your application responds to these messages—or whether
it responds to them at all—is up to you. You should, however,
steer away from having clicks and double clicks of the same
mouse button carry out two unrelated tasks. A double-click
message is always preceded by a single-click message, so the
actions that generate the two messages are not easily divorced.
Applications that process single and double clicks of the same
button typically select an object on the first click and take some
action upon that object on the second click. When you
double-click a folder in the right pane of the Windows Explorer,
for example, the first click selects the folder and the second
click opens it.

WM_MOUSEMOVE messages report that the cursor has
moved within the window's client area. As the mouse is moved,
the window under the cursor receives a flurry of
WM_MOUSEMOVE messages reporting the latest cursor
position. Windows has an interesting way of delivering
WM_MOUSEMOVE messages that prevents slow applications
from being overwhelmed by messages reporting every position
in the cursor's path. Rather than stuff a WM_MOUSEMOVE
message into the message queue each time the mouse is moved,
Windows simply sets a flag in an internal data structure. The
next time the application retrieves a message, Windows, seeing
that the flag is set, manufactures a WM_MOUSEMOVE
message with the current cursor coordinates. Therefore, an
application receives WM_MOUSEMOVE messages only as
often as it can handle them. If the cursor is moved very slowly,
every point in its journey is reported unless the application is
busy doing other things. But if the cursor is whisked very
rapidly across the screen, most applications receive only a
handful of WM_MOUSEMOVE messages.

In an MFC program, message-map entries route mouse
messages to class member functions that are provided to handle
those messages. The following table lists the message-map
macros and message handler names for client-area mouse
messages.

Message-Map Macros and Message Handlers for
Client-Area Mouse Messages

Programming Windows With MFC

 127

Message Message-Map Macro Handling
Function

WM_LBUTTONDOWN ON_WM_LBUTTONDOWN OnLButtonDown

WM_LBUTTONUP ON_WM_LBUTTONUP OnLButtonUp

WM_LBUTTONDBLCLK ON_WM_LBUTTONDBLCLK OnLButtonDblClk

WM_MBUTTONDOWN ON_WM_MBUTTONDOWN OnMButtonDown

WM_MBUTTONUP ON_WM_MBUTTONUP OnMButtonUp

WM_MBUTTONDBLCLK ON_WM_MBUTTONDBLCLK OnMButtonDblClk

WM_RBUTTONDOWN ON_WM_RBUTTONDOWN OnRButtonDown

WM_RBUTTONUP ON_WM_RBUTTONUP OnRButtonUp

WM_RBUTTONDBLCLK ON_WM_RBUTTONDBLCLK OnRButtonDblClk

WM_MOUSEMOVE ON_WM_MOUSEMOVE OnMouseMove

OnLButtonDown and other client-area mouse message handlers
are prototyped as follows:

afx_msg void OnMsgName (UINT nFlags, CPoint point)

point identifies the location of the cursor. In
WM_xBUTTONDOWN and WM_xBUTTONDBLCLK
messages, point specifies the location of the cursor when the
button was pressed. In WM_xBUTTONUP messages, point
specifies the location of the cursor when the button was
released. And in WM_MOUSEMOVE messages, point specifies
the latest cursor position. In all cases, positions are reported in device
coordinates relative to the upper left corner of the window's client area. A
WM_LBUTTONDOWN message with point.x equal to 32 and point.y
equal to 64 means the left mouse button was clicked 32 pixels to the right
of and 64 pixels below the client area's upper left corner. If necessary,
these coordinates can be converted to logical coordinates using MFC's
CDC::DPtoLP function.

The nFlags parameter specifies the state of the mouse buttons and of the
Shift and Ctrl keys at the time the message was generated. You can find
out from this parameter whether a particular button or key is up or down
by testing for the bit flags listed in the following table.

The nFlags Parameter

Mask Meaning If Set

Programming Windows With MFC

 128

MK_LBUTTON The left mouse button is pressed.

MK_MBUTTON The middle mouse button is pressed.

MK_RBUTTON The right mouse button is pressed.

MK_CONTROL The Ctrl key is pressed.

MK_SHIFT The Shift key is pressed.

The expression

nFlags & MK_LBUTTON

is nonzero if and only if the left mouse button is pressed, while

nFlags & MK_CONTROL

is nonzero if the Ctrl key was held down when the event
occurred. Some programs respond differently to mouse events
if the Shift or Ctrl key is held down. For example, a drawing
program might constrain the user to drawing only horizontal or
vertical lines if the Ctrl key is pressed as the mouse is moved
by checking the MK_CONTROL bit in the nFlags parameter
accompanying WM_MOUSEMOVE messages. At the
conclusion of a drag-and-drop operation, the Windows shell
interprets the MK_CONTROL bit to mean that the objects
involved in the drop should be copied rather than moved.

The TicTac Application

To show how easy it is to process mouse messages, let's look at
a sample application that takes input from the mouse. TicTac,
whose output is shown in Figure 3-1, is a tic-tac-toe program
that responds to three types of client-area mouse events: left
button clicks, right button clicks, and left button double
clicks. Clicking the left mouse button over an empty square
places an X in that square. Clicking the right mouse button
places an O in an empty square. (The program prevents
cheating by making sure that Xs and Os are alternated.)
Double-clicking the left mouse button over the thick black lines
that separate the squares clears the playing grid and starts a new
game. After each X or O is placed, the program checks to see if
there's a winner or the game has been played to a draw. A draw

Programming Windows With MFC

 129

is declared when all nine squares are filled and neither player
has managed to claim three squares in a row horizontally,
vertically, or diagonally.

Figure 3-1. The TicTac window.

In addition to providing a hands-on demonstration of
mouse-message processing, TicTac also introduces some handy
new MFC functions such as CWnd::MessageBox, which
displays a message box window, and CRect::PtInRect, which
quickly tells you whether a point lies inside a rectangle
represented by a CRect object. TicTac's source code appears in
Figure 3-2.

Figure 3-2. The TicTac application.

TicTac.h

#define EX 1
#define OH 2

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CWnd
{
protected:
 static const CRect m_rcSquares[9]; // Grid coordinates
 int m_nGameGrid[9]; // Grid contents

Programming Windows With MFC

 130

 int m_nNextChar; // Next character (EX or OH)
 int GetRectID (CPoint point);
 void DrawBoard (CDC* pDC);
 void DrawX (CDC* pDC, int nPos);
 void DrawO (CDC* pDC, int nPos);
 void ResetGame ();
 void CheckForGameOver ();
 int IsWinner ();
 BOOL IsDraw ();

public:
 CMainWindow ();

protected:
 virtual void PostNcDestroy ();

 afx_msg void OnPaint ();
 afx_msg void OnLButtonDown (UINT nFlags, CPoint point);
 afx_msg void OnLButtonDblClk (UINT nFlags, CPoint point);
 afx_msg void OnRButtonDown (UINT nFlags, CPoint point);

 DECLARE_MESSAGE_MAP ()
};

TicTac.cpp
#include <afxwin.h>
#include "TicTac.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CWnd)
 ON_WM_PAINT ()
 ON_WM_LBUTTONDOWN ()
 ON_WM_LBUTTONDBLCLK ()
 ON_WM_RBUTTONDOWN ()
END_MESSAGE_MAP ()

const CRect CMainWindow::m_rcSquares[9] = {
 CRect (16, 16, 112, 112),
 CRect (128, 16, 224, 112),
 CRect (240, 16, 336, 112),
 CRect (16, 128, 112, 224),

Programming Windows With MFC

 131

 CRect (128, 128, 224, 224),
 CRect (240, 128, 336, 224),
 CRect (16, 240, 112, 336),
 CRect (128, 240, 224, 336),
 CRect (240, 240, 336, 336)
};

CMainWindow::CMainWindow ()
{
 m_nNextChar = EX;
 ::ZeroMemory (m_nGameGrid, 9 * sizeof (int));

 //
 // Register a WNDCLASS.
 //
 CString strWndClass = AfxRegisterWndClass (
 CS_DBLCLKS, // Class
style
 AfxGetApp ()->LoadStandardCursor (IDC_ARROW), // Class
cursor
 (HBRUSH) (COLOR_3DFACE + 1), //
Background brush
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO) // Class
icon
);

 //
 // Create a window.
 //
 CreateEx (0, strWndClass, _T ("Tic-Tac-Toe"),
 WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION |
WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT,
 NULL, NULL);

 //
 // Size the window.
 //
 CRect rect (0, 0, 352, 352);
 CalcWindowRect (&rect);
 SetWindowPos (NULL, 0, 0, rect.Width (), rect.Height (),
 SWP_NOZORDER | SWP_NOMOVE | SWP_NOREDRAW);
}

void CMainWindow::PostNcDestroy ()
{
 delete this;
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);
 DrawBoard (&dc);
}

Programming Windows With MFC

 132

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 //
 // Do nothing if it's O's turn, if the click occurred outside the
 // tic-tac-toe grid, or if a nonempty square was clicked.
 //
 if (m_nNextChar != EX)
 return;

 int nPos = GetRectID (point);
 if ((nPos == -1) || (m_nGameGrid[nPos] != 0))
 return;

 //
 // Add an X to the game grid and toggle m_nNextChar.
 //
 m_nGameGrid[nPos] = EX;
 m_nNextChar = OH;

 //
 // Draw an X on the screen and see if either player has won.
 //
 CClientDC dc (this);
 DrawX (&dc, nPos);
 CheckForGameOver ();
}

void CMainWindow::OnRButtonDown (UINT nFlags, CPoint point)
{
 //
 // Do nothing if it's X's turn, if the click occurred outside the
 // tic-tac-toe grid, or if a nonempty square was clicked.
 //
 if (m_nNextChar != OH)
 return;

 int nPos = GetRectID (point);
 if ((nPos == -1) || (m_nGameGrid[nPos] != 0))
 return;

 //
 // Add an O to the game grid and toggle m_nNextChar.
 //
 m_nGameGrid[nPos] = OH;
 m_nNextChar = EX;

 //
 // Draw an O on the screen and see if either player has won.
 //
 CClientDC dc (this);
 DrawO (&dc, nPos);
 CheckForGameOver ();
}

void CMainWindow::OnLButtonDblClk (UINT nFlags, CPoint point)
{

Programming Windows With MFC

 133

 //
 // Reset the game if one of the thick black lines defining the game
 // grid is double-clicked with the left mouse button.
 //
 CClientDC dc (this);
 if (dc.GetPixel (point) == RGB (0, 0, 0))
 ResetGame ();
}

int CMainWindow::GetRectID (CPoint point)
{
 //
 // Hit-test each of the grid's nine squares and return a rectangle ID
 // (0-8) if (point.x, point.y) lies inside a square.
 //
 for (int i=0; i<9; i++) {
 if (m_rcSquares[i].PtInRect (point))
 return i;
 }
 return -1;
}

void CMainWindow::DrawBoard (CDC* pDC)
{
 //
 // Draw the lines that define the tic-tac-toe grid.
 //
 CPen pen (PS_SOLID, 16, RGB (0, 0, 0));
 CPen* pOldPen = pDC->SelectObject (&pen);

 pDC->MoveTo (120, 16);
 pDC->LineTo (120, 336);

 pDC->MoveTo (232, 16);
 pDC->LineTo (232, 336);

 pDC->MoveTo (16, 120);
 pDC->LineTo (336, 120);

 pDC->MoveTo (16, 232);
 pDC->LineTo (336, 232);

 //
 // Draw the Xs and Os.
 //
 for (int i=0; i<9; i++) {
 if (m_nGameGrid[i] == EX)
 DrawX (pDC, i);
 else if (m_nGameGrid[i] == OH)
 DrawO (pDC, i);
 }
 pDC->SelectObject (pOldPen);
}

void CMainWindow::DrawX (CDC* pDC, int nPos)
{

Programming Windows With MFC

 134

 CPen pen (PS_SOLID, 16, RGB (255, 0, 0));
 CPen* pOldPen = pDC->SelectObject (&pen);

 CRect rect = m_rcSquares[nPos];
 rect.DeflateRect (16, 16);
 pDC->MoveTo (rect.left, rect.top);
 pDC->LineTo (rect.right, rect.bottom);
 pDC->MoveTo (rect.left, rect.bottom);
 pDC->LineTo (rect.right, rect.top);

 pDC->SelectObject (pOldPen);
}
void CMainWindow::DrawO (CDC* pDC, int nPos)
{
 CPen pen (PS_SOLID, 16, RGB (0, 0, 255));
 CPen* pOldPen = pDC->SelectObject (&pen);
 pDC->SelectStockObject (NULL_BRUSH);

 CRect rect = m_rcSquares[nPos];
 rect.DeflateRect (16, 16);
 pDC->Ellipse (rect);

 pDC->SelectObject (pOldPen);
}

void CMainWindow::CheckForGameOver ()
{
 int nWinner;

 //
 // If the grid contains three consecutive Xs or Os, declare a winner
 // and start a new game.
 //
 if (nWinner = IsWinner ()) {
 CString string = (nWinner == EX) ?
 _T ("X wins!") : _T ("O wins!");
 MessageBox (string, _T ("Game Over"), MB_ICONEXCLAMATION
| MB_OK);
 ResetGame ();
 }

 //
 // If the grid is full, declare a draw and start a new game.
 //
 else if (IsDraw ()) {
 MessageBox (_T ("It's a draw!"), _T ("Game Over"),
 MB_ICONEXCLAMATION | MB_OK);
 ResetGame ();
 }
}

int CMainWindow::IsWinner ()
{
 static int nPattern[8][3] = {
 0, 1, 2,
 3, 4, 5,

Programming Windows With MFC

 135

 6, 7, 8,
 0, 3, 6,
 1, 4, 7,
 2, 5, 8,
 0, 4, 8,
 2, 4, 6
 };

 for (int i=0; i<8; i++) {
 if ((m_nGameGrid[nPattern[i][0]] == EX) &&
 (m_nGameGrid[nPattern[i][1]] == EX) &&
 (m_nGameGrid[nPattern[i][2]] == EX))
 return EX;

 if ((m_nGameGrid[nPattern[i][0]] == OH) &&
 (m_nGameGrid[nPattern[i][1]] == OH) &&
 (m_nGameGrid[nPattern[i][2]] == OH))
 return OH;
 }
 return 0;
}

BOOL CMainWindow::IsDraw ()
{
 for (int i=0; i<9; i++) {
 if (m_nGameGrid[i] == 0)
 return FALSE;
 }
 return TRUE;
}

void CMainWindow::ResetGame ()
{
 m_nNextChar = EX;
 ::ZeroMemory (m_nGameGrid, 9 * sizeof (int));
 Invalidate ();
}

The first step in processing mouse input is to add entries for the
messages you want to handle to the message map.
CMainWindow's message map in TicTac.cpp contains the
following message-map entries:

ON_WM_LBUTTONDOWN ()
ON_WM_LBUTTONDBLCLK ()
ON_WM_RBUTTONDOWN ()

These three statements correlate WM_LBUTTONDOWN,
WM_LBUTTONDBLCLK, and WM_RBUTTONDOWN
messages to the CMainWindow member functions

Programming Windows With MFC

 136

OnLButtonDown, OnLButtonDblClk, and OnRButtonDown.
When the messages start arriving, the fun begins.

The OnLButtonDown handler processes clicks of the left mouse
button in CMainWindow's client area. After checking
m_nNextChar to verify that it's X's turn and not O's (and
returning without doing anything if it's not), OnLButtonDown
calls the protected member function GetRectID to determine
whether the click occurred in one of the nine rectangles
corresponding to squares in the tic-tac-toe grid. The rectangles'
coordinates are stored in the static array of CRect objects
named CMainWindow::m_rcSquares. GetRectID uses a for
loop to determine whether the cursor location passed to it by
the message handler lies inside any of the squares:

for (int i=0; i<9; i++) {
 if (m_rcSquares[i].PtInRect (point))
 return i;
}
return -1;

CRect::PtInRect returns a nonzero value if the point passed to it
lies within the rectangle represented by the CRect object, or 0 if
it does not. If PtInRect returns nonzero for any of the rectangles
in the m_rcSquares array, GetRectID returns the rectangle ID.
The ID is an integer from 0 through 8, with 0 representing the
square in the upper left corner of the grid, 1 the square to its
right, 2 the square in the upper right corner, 3 the leftmost
square in the second row, and so on. Each square has a
corresponding element in the m_nGameGrid array, which
initially holds all zeros representing empty squares. If none of
the calls to PtInRect returns TRUE, GetRectID returns -1 to
indicate that the click occurred outside the squares and
OnLButtonDown ignores the mouse click. If, however,
GetRectID returns a valid ID and the corresponding square is
empty, OnLButtonDown records the X in the m_nGameGrid
array and calls CMainWindow::DrawX to draw an X in the
square. DrawX creates a red pen 16 pixels wide and draws two
perpendicular lines oriented at 45-degree angles.

OnRButtonDown works in much the same way as
OnLButtonDown, except that it draws an O instead of an X.
The routine that does the drawing is CMainWindow::DrawO.

Programming Windows With MFC

 137

Before it draws an O with the CDC::Ellipse function, DrawO
selects a NULL brush into the device context:

pDC->SelectStockObject (NULL_BRUSH);

This prevents the interior of the O from being filled with the
device context's default white brush. (As an alternative, we
could have created a brush whose color matched the window's
background color and selected it into the device context. But
drawing with a NULL brush is slightly faster because it
produces no physical screen output.) The O is then drawn with
the statements

CRect rect = m_rcSquares[nPos];
rect.DeflateRect (16, 16);
pDC->Ellipse (rect);

The first statement copies the rectangle representing the grid
square to a local CRect object named rect; the second uses
CRect::DeflateRect to "deflate" the rectangle by 16 pixels in
each direction and form the circle's bounding box; and the third
draws the circle. The result is a nicely formed O that's centered
in the square in which it is drawn.

Double-clicking the grid lines separating the squares clears the
Xs and Os and begins a new game. While this is admittedly a
poor way to design a user interface, it does provide an excuse to
write a double-click handler. (A better solution would be a push
button control with the words New Game stamped on it or a
New Game menu item, but since we haven't covered menus and
controls yet, the perfect user interface will just have to wait.)
Left mouse button double clicks are processed by
CMainWindow::OnLButtonDblClk, which contains these
simple statements:

CClientDC dc (this);
if (dc.GetPixel (point) == RGB (0, 0, 0))
 ResetGame ();

To determine whether the double click occurred over the thick
black strokes separating the squares in the playing grid,
OnLButtonDblClk calls CDC::GetPixel to get the color of the
pixel under the cursor and compares it to black (RGB (0, 0, 0)).

Programming Windows With MFC

 138

If there's a match, ResetGame is called to reset the game.
Otherwise, OnLButtonDblClk returns and the double click is
ignored. Testing the color of the pixel under the cursor is an
effective technique for hit-testing irregularly shaped areas, but
be wary of using nonprimary colors that a display driver is
likely to dither. Pure black (RGB (0, 0, 0)) and pure white
(RGB (255, 255, 255)) are supported on every PC that runs
Windows, so you can safely assume that neither of these colors
will be dithered.

To be consistent with published user interface guidelines,
applications should not use the right mouse button to carry out
application-specific tasks as TicTac does. Instead, they should
respond to right mouse clicks by popping up context menus.
When a WM_RBUTTONUP message is passed to the system
for default processing, Windows places a
WM_CONTEXTMENU message in the message queue. You'll
learn more about this feature of the operating system in the next
chapter.

Message Boxes

Before returning, TicTac's OnLButtonDown and
OnRButtonDown handlers call
CMainWindow::CheckForGameOver to find out if the game
has been won or played to a draw. If either player has managed
to align three Xs or Os in a row or if no empty squares remain,
CheckForGameOver calls CMainWindow's MessageBox
function to display a message box announcing the outcome, as
shown in Figure 3-3. MessageBox is a function that all window
classes inherit from CWnd. It is an extraordinarily useful tool to
have at your disposal because it provides a one-step means for
displaying a message on the screen and optionally obtaining a
response.

Figure 3-3. A Windows message box.

Programming Windows With MFC

 139

CWnd::MessageBox is prototyped as follows:

int MessageBox (LPCTSTR lpszText, LPCTSTR lpszCaption =
NULL,
 UINT nType = MB_OK)

lpszText specifies the text in the body of the message box,
lpszCaption specifies the caption for the message box's title bar,
and nType contains one or more bit flags defining the message
box's style. The return value identifies the button that was
clicked to dismiss the message box. lpszText and lpszCaption
can be CString objects or pointers to conventional text strings.
(Because the CString class overloads the LPCTSTR operator,
you can always pass a CString to a function that accepts an
LPCTSTR data type.) A NULL lpszCaption value displays the
caption "Error" in the title bar.

The simplest use for MessageBox is to display a message and
pause until the user clicks the message box's OK button:

MessageBox (_T ("Click OK to continue"), _T ("My Application"));

Accepting the default value for nType (MB_OK) means the
message box will have an OK button but no other buttons.
Consequently, the only possible return value is IDOK. But if
you want to use a message box to ask the user whether to save a
file before exiting the application, you can use the
MB_YESNOCANCEL style:

MessageBox (_T ("Your document contains unsaved data. Save it?"),
 _T ("My Application"), MB_YESNOCANCEL);

Now the message box contains three buttons—Yes, No, and
Cancel—and the value returned from the MessageBox function
is IDYES, IDNO, or IDCANCEL. The program can then test
the return value and save the data before closing (IDYES),
close without saving (IDNO), or return to the application
without shutting down (IDCANCEL). The table below lists the
six message box types and the corresponding return values,
with the default push button—the one that's "clicked" if the
user presses the Enter key—highlighted in boldface type.

Message Box Types

Programming Windows With MFC

 140

Type Buttons Possible Return Codes

MB_ABORTRETRYIGNORE Abort, Retry,
Ignore

IDABORT, IDRETRY,
IDIGNORE

MB_OK OK IDOK

MB_OKCANCEL OK, Cancel IDOK, IDCANCEL

MB_RETRYCANCEL Retry, Cancel IDRETRY, IDCANCEL

MB_YESNO Yes, No IDYES, IDNO

MB_YESNOCANCEL Yes, No, Cancel IDYES, IDNO,
IDCANCEL

In message boxes with multiple buttons, the first (leftmost)
button is normally the default push button. You can make the
second or third button the default by ORing
MB_DEFBUTTON2 or MB_DEFBUTTON3 into the value
that specifies the message box type. The statement

MessageBox (_T ("Your document contains unsaved data. Save it?"),
 _T ("My Application"), MB_YESNOCANCEL ¦
MB_DEFBUTTON3);

displays the same message box as before but makes Cancel the
default action.

By default, message boxes are application modal, which means
the application that called the MessageBox function is disabled
until the message box is dismissed. You can add
MB_SYSTEMMODAL to the nType parameter and make the
message box system modal. In 16-bit Windows, system-modal
means that input to all applications is suspended until the
message box is dismissed. In the Win32 environment,
Windows makes the message box a topmost window that stays
on top of other windows, but the user is still free to switch to
other applications. System-modal message boxes should be
used only for serious errors that demand immediate attention.

You can add an artistic touch to your message boxes by using
MB_ICON identifiers. MB_ICONINFORMATION displays a
small text balloon with an "i" for "information" in it in the
upper left corner of the message box. The "i" is generally used
when information is provided to the user but no questions are
being asked, as in

Programming Windows With MFC

 141

MessageBox (_T ("No errors found. Click OK to continue"),
 _T ("My Application"), MB_ICONINFORMATION ¦ MB_OK);

MB_ICONQUESTION displays a question mark instead of an
"i" and is normally used for queries such as "Save before
closing?" MB_ICONSTOP displays a red circle with an X and
usually indicates that an unrecoverable error has occurred—for
example, an out-of-memory error is forcing the program to
terminate prematurely. Finally, MB_ICONEXCLAMATION
displays a yellow triangle containing an exclamation mark. (See
Figure 3-3.)

MFC provides an alternative to CWnd::MessageBox in the
form of the global AfxMessageBox function. The two are
similar, but AfxMessageBox can be called from application
classes, document classes, and other non-window classes. One
situation in which AfxMessageBox is irreplaceable is when you
want to report an error in the application object's InitInstance
function. MessageBox requires a valid CWnd pointer and
therefore can't be called until after a window is created.
AfxMessageBox, on the other hand, can be called at any time.

What? No Frame Window?

TicTac differs from the sample programs in Chapters 1 and 2 in
one important respect: Rather than using a frame window for its
main window, it derives its own window class from CWnd. It's
not that a CFrameWnd wouldn't work; it's that CWnd has
everything TicTac needs and more. CWnd is the root of all
window classes in MFC. Depending on what kinds of
applications you write, deriving from CWnd is something you
might need to do often or not at all. Still, it's something every
MFC programmer should know how to do, and seeing a
window class derived from CWnd also helps to underscore the
point that MFC programs don't have to use frame windows.

Creating your own CWnd-derived window class is simple. For
starters, you derive the window class from CWnd instead of
from CFrameWnd. In the BEGIN_MESSAGE_MAP macro, be
sure to specify CWnd, not CFrameWnd, as the base class. Then,
in the window's constructor, use AfxRegisterWndClass to
register a WNDCLASS and call CWnd::CreateEx to create the
window. Remember the beginning of Chapter 1, where we

Programming Windows With MFC

 142

looked at the C source code for an SDK-style Windows
application? Before creating a window, WinMain initialized a
WNDCLASS structure with values describing the window's
class attributes and then called ::RegisterClass to register the
WNDCLASS. Normally you don't register a WNDCLASS in
an MFC program because MFC registers one for you.
Specifying NULL in the first parameter to
CFrameWnd::Create accepts the default WNDCLASS. When
you derive from CWnd, however, you must register your own
WNDCLASS because CWnd::CreateEx does not accept a
NULL WNDCLASS name.

The AfxRegisterWndClass Function

MFC makes WNDCLASS registration easy with its global
AfxRegisterWndClass function. If you use ::RegisterClass or
MFC's AfxRegisterClass to register a WNDCLASS, you must
initialize every field in the WNDCLASS structure. But
AfxRegisterWndClass fills in most of the fields for you, leaving
you to specify values for just the four that MFC applications are
typically concerned with. AfxRegisterWndClass is prototyped
as follows:

LPCTSTR AfxRegisterWndClass (UINT nClassStyle, HCURSOR
hCursor = 0,
 HBRUSH hbrBackground = 0, HICON hIcon = 0)

The value returned by AfxRegisterWndClass is a pointer to a
null-terminated string containing the WNDCLASS name.
Before seeing how TicTac uses AfxRegisterWndClass, let's take
a closer look at the function itself and the parameters it accepts.

nClassStyle specifies the class style, which defines certain
behavioral characteristics of a window. nClassStyle is a
combination of zero or more of the bit flags shown in the
following table.

WNDCLASS Style Flags

Class Style Description

CS_BYTEALIGNCLIENT Ensures that a window's client area is always
aligned on a byte boundary in the video buffer to
speed drawing operations.

Programming Windows With MFC

 143

CS_BYTEALIGNWINDOW Ensures that the window itself is always aligned
on a byte boundary in the video buffer to speed
moving and resizing operations.

CS_CLASSDC Specifies that the window should share a device
context with other windows created from the
same WNDCLASS.

CS_DBLCLKS Specifies that the window should be notified of
double clicks with WM_xBUTTONDBLCLK
messages.

CS_GLOBALCLASS Registers the WNDCLASS globally so that all
applications can use it. (By default, only the
application that registers a WNDCLASS can
create windows from it.) Used primarily for
child window controls.

CS_HREDRAW Specifies that the entire client area should be
invalidated when the window is resized
horizontally.

CS_NOCLOSE Disables the Close command on the system
menu and the close button on the title bar.

CS_OWNDC Specifies that each window created from this
WNDCLASS should have its own device
context. Helpful when optimizing repaint
performance because an application doesn't have
to reinitialize a private device context each time
the device context is acquired.

CS_PARENTDC Specifies that a child window should inherit the
device context of its parent.

CS_SAVEBITS Specifies that areas of the screen covered by
windows created from this WNDCLASS should
be saved in bitmap form for quick repainting.
Used primarily for menus and other windows
with short life spans.

CS_VREDRAW Specifies that the entire client area should be
invalidated when the window is resized
vertically.

The CS_BYTEALIGNCLIENT and
CS_BYTEALIGNWINDOW styles were useful back in the
days of dumb frame buffers and monochrome video systems,
but they are largely obsolete today. CS_CLASSDC,
CS_OWNDC, and CS_PARENTDC are used to implement
special handling of device contexts. You'll probably use
CS_GLOBALCLASS only if you write custom controls to
complement list boxes, push buttons, and other built-in control
types. The CS_HREDRAW and CS_VREDRAW styles are

Programming Windows With MFC

 144

useful for creating resizeable windows whose content scales
with the window size.

hCursor identifies the "class cursor" for windows created from
this WNDCLASS. When the cursor moves over a window's
client area, Windows retrieves the class cursor's handle from
the window's WNDCLASS and uses it to draw the cursor
image. You can create custom cursors using an icon editor, or
you can use the predefined system cursors that Windows
provides. CWinApp::LoadStandardCursor loads a system
cursor. The statement

AfxGetApp ()->LoadStandardCursor (IDC_ARROW);

returns the handle of the arrow cursor that most Windows
applications use. For a complete list of system cursors, see the
documentation for CWinApp::LoadStandardCursor or
the ::LoadCursor API function. Generally speaking, only the
IDC_ARROW, IDC_IBEAM, and IDC_CROSS cursors are
useful as class cursors.

The hbrBackground parameter passed to AfxRegisterWndClass
defines the window's default background color. Specifically,
hbrBackground identifies the GDI brush that is used to erase
the window's interior each time a WM_ERASEBKGND
message arrives. A window receives a WM_ERASEBKGND
message when it calls ::BeginPaint in response to a
WM_PAINT message. If you don't process
WM_ERASEBKGND messages yourself, Windows processes
them for you by retrieving the class background brush and
using it to fill the window's client area. (You can create custom
window backgrounds—for example, backgrounds formed from
bitmap images—by processing WM_ERASEBKGND
messages yourself and returning a nonzero value. The nonzero
return prevents Windows from painting the background and
overwriting what you wrote.) You can either provide a brush
handle for hbrBackground or specify one of the predefined
Windows system colors with the value 1 added to it, as in
COLOR_WINDOW+1 or COLOR_APPWORKSPACE+1. See
the documentation for the ::GetSysColor API function for a
complete list of system colors.

Programming Windows With MFC

 145

The final AfxRegisterWndClass parameter, hIcon, specifies the
handle of the icon that Windows uses to represent the
application on the desktop, in the taskbar, and elsewhere. You
can create a custom icon for your application and load it with
CWinApp::LoadIcon, or you can load a predefined system icon
with CWinApp::LoadStandardIcon. You can even load icons
from other executable files using the ::ExtractIcon API
function.

Here's what the code to register a custom WNDCLASS looks
like in TicTac.cpp:

CString strWndClass = AfxRegisterWndClass (
 CS_DBLCLKS,
 AfxGetApp ()->LoadStandardCursor (IDC_ARROW),
 (HBRUSH) (COLOR_3DFACE + 1),
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO)
);

The class style CS_DBLCLKS registers the TicTac window to
receive double-click messages. IDC_ARROW tells Windows to
display the standard arrow when the cursor is over the TicTac
window, and IDI_WINLOGO is one of the standard icons that
Windows makes available to all applications.
COLOR_3DFACE+1 assigns the TicTac window the same
background color as push buttons, dialog boxes, and other 3D
display elements. COLOR_3DFACE defaults to light gray, but
you can change the color by using the system's Display
Properties property sheet. Using COLOR_3DFACE for the
background color gives your window the same 3D look as a
dialog box or message box and enables it to adapt to changes in
the Windows color scheme.

AfxRegisterWndClass and Frame Windows

The AfxRegisterWndClass function isn't only for applications
that derive window classes from CWnd; you can also use it to
register custom WNDCLASSes for frame windows. The
default WNDCLASS that MFC registers for frame windows
has the following attributes:

x nClassStyle = CS_DBLCLKS ¦ CS_HREDRAW ¦ CS_VREDRAW
x hCursor = The handle of the predefined cursor IDC_ARROW
x hbrBackground = COLOR_WINDOW+1

Programming Windows With MFC

 146

x hIcon = The handle of the icon whose resource ID is
AFX_IDI_STD_FRAME or AFX_IDI_STD_MDIFRAME, or the
system icon ID IDI_APPLICATION if no such resource is defined

Suppose you want to create a CFrameWnd frame window that
lacks the CS_DBLCLKS style, that uses the IDI_WINLOGO
icon, and that uses COLOR_APPWORKSPACE as its default
background color. Here's how to create a frame window that
meets these qualifications:

CString strWndClass = AfxRegisterWndClass (
 CS_HREDRAW ¦ CS_VREDRAW,
 AfxGetApp ()->LoadStandardCursor (IDC_ARROW),
 (HBRUSH) (COLOR_APPWORKSPACE + 1),
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO)
);

Create (strWndClass, _T ("My Frame Window"));

These statements replace the

Create (NULL, _T ("My Frame Window"));

statement that normally appears in a frame window's
constructor.

3.1.1. More About the TicTac Window

After registering a WNDCLASS, TicTac creates its main
window with a call to CWnd::CreateEx:

CreateEx (0, strWndClass, _T ("Tic-Tac-Toe"),
 WS_OVERLAPPED ¦ WS_SYSMENU ¦ WS_CAPTION ¦
WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL);

The first parameter specifies the extended window style and is
a combination of zero or more WS_EX flags. TicTac requires
no extended window styles, so this parameter is 0. The second
parameter is the WNDCLASS name returned by
AfxRegisterWndClass, and the third is the window title. The
fourth is the window style. The combination of

Programming Windows With MFC

 147

WS_OVERLAPPED, WS_SYSMENU, WS_CAPTION, and
WS_MINIMIZEBOX creates a window that resembles a
WS_OVERLAPPEDWINDOW-style window but lacks a
maximize button and can't be resized. What is it about the
window that makes it nonresizeable? Look up the definition of
WS_OVERLAPPEDWINDOW in Winuser.h (one of several
large header files that comes with Visual C++), and you'll see
something like this:

#define WS_OVERLAPPEDWINDOW (WS_OVERLAPPED ¦ WS_CAPTION
¦ \
 WS_SYSMENU ¦ WS_THICKFRAME ¦ WS_MINIMIZE ¦
WS_MAXIMIZE)

The WS_THICKFRAME style adds a resizing border whose
edges and corners can be grabbed and dragged with the mouse.
TicTac's window lacks this style, so the user can't resize it.

The next four parameters passed to CWnd::CreateEx specify
the window's initial position and size. TicTac uses
CW_USEDEFAULT for all four so that Windows will pick the
initial position and size. Yet clearly the TicTac window is not
arbitrarily sized; it is sized to match the playing grid. But how?
The statements following the call to CreateEx hold the answer:

CRect rect (0, 0, 352, 352);
CalcWindowRect (&rect);

SetWindowPos (NULL, 0, 0, rect.Width (), rect.Height (),
 SWP_NOZORDER ¦ SWP_NOMOVE ¦ SWP_NOREDRAW);

The first of these statements creates a CRect object that holds
the desired size of the window's client area—352 by 352 pixels.
It wouldn't do to pass these values directly to CreateEx because
CreateEx's sizing parameters specify the size of the entire
window, not just its client area. Since the sizes of the various
elements in the window's nonclient area (for example, the
height of the title bar) vary with different video drivers and
display resolutions, we must calculate the size of the window
rectangle from the client rectangle and then size the window to
fit.

MFC's CWnd::CalcWindowRect is the perfect tool for the job.
Given a pointer to a CRect object containing the coordinates of

Programming Windows With MFC

 148

a window's client area, CalcWindowRect calculates the
corresponding window rectangle. The width and height of that
rectangle can then be passed to CWnd::SetWindowPos to effect
the proper window size. The only catch is that
CalcWindowRect must be called after the window is created so
that it can factor in the dimensions of the window's nonclient
area.

3.1.2. The PostNcDestroy Function

Something you must consider when you derive your
own window class from CWnd is that once created, the
window object must somehow be deleted. As described
in Chapter 2, the last message a window receives
before it is destroyed is WM_NCDESTROY. MFC's
CWnd class includes a default OnNcDestroy handler
that performs some routine cleanup chores and then, as
its very last act, calls a virtual function named
PostNcDestroy. CFrameWnd objects delete themselves
when the windows they are attached to are destroyed;
they do this by overriding PostNcDestroy and
executing a delete this statement.
CWnd::PostNcDestroy does not perform a delete this,
so a class derived from CWnd should provide its own
version of PostNcDestroy that does. TicTac includes a
trivial PostNcDestroy function that destroys the
CMainWindow object just before the program
terminates:

void CMainWindow::PostNcDestroy ()
{
 delete this;
}

The question of "who deletes it" is something you
should think about whenever you derive a window
class from CWnd. One alternative to overriding
CWnd::PostNcDestroy is to override
CWinApp::ExitInstance and call delete on the pointer
stored in m_pMainWnd.

Programming Windows With MFC

 149

3.1.3. Nonclient-Area Mouse Messages

When the mouse is clicked inside or moved over a
window's nonclient area, Windows sends the window a
nonclient-area mouse message. The following table
lists the nonclient-area mouse messages.

Nonclient-Area Mouse Messages

Message Sent When

WM_NCLBUTTONDOWN The left mouse button is pressed.

WM_NCLBUTTONUP The left mouse button is released.

WM_NCLBUTTONDBLCLK The left mouse button is double-clicked.

WM_NCMBUTTONDOWN The middle mouse button is pressed.

WM_NCMBUTTONUP The middle mouse button is released.

WM_NCMBUTTONDBLCLK The middle mouse button is double-clicked.

WM_NCRBUTTONDOWN The right mouse button is pressed.

WM_NCRBUTTONUP The right mouse button is released.

WM_NCRBUTTONDBLCLK The right mouse button is double-clicked.

WM_NCMOUSEMOVE The cursor is moved over the window's
nonclient area.

Notice the parallelism between the client-area mouse
messages shown in the table below and the
nonclient-area mouse messages; the only difference is
the letters NC in the message ID. Unlike double-click
messages in a window's client area,
WM_NCxBUTTONDBLCLK messages are
transmitted regardless of whether the window was
registered with the CS_DBLCLKS style.

As with client-area mouse messages, message-map
entries route messages to the appropriate class member
functions. The following table lists the message-map
macros and message handlers for nonclient-area mouse
messages.

Programming Windows With MFC

 150

Message-Map Macros and Message Handlers for Nonclient-Area
Mouse Messages

Message Message-Map Macro Handling
Function

WM_NCLBUTTONDOW
N

ON_WM_NCLBUTTONDOW
N

OnNcLButtonDow
n

WM_NCLBUTTONUP ON_WM_NCLBUTTONUP OnNcLButtonUp

WM_NCLBUTTONDBLC
LK

ON_WM_NCLBUTTONDBLC
LK

OnNcLButtonDblC
lk

WM_NCMBUTTONDOW
N

ON_WM_NCMBUTTONDOW
N

OnNcMButtonDow
n

WM_NCMBUTTONUP ON_WM_NCMBUTTONUP OnNcMButtonUp

WM_NCMBUTTONDBLC
LK

ON_WM_NCMBUTTONDBL
CLK

OnNcMButtonDbl
Clk

WM_NCRBUTTONDOW
N

ON_WM_NCRBUTTONDOW
N

OnNcRButtonDow
n

WM_NCRBUTTONUP ON_WM_NCRBUTTONUP OnNcRButtonUp

WM_NCRBUTTONDBLC
LK

ON_WM_NCRBUTTONDBLC
LK

OnNcRButtonDblC
lk

WM_NCMOUSEMOVE ON_WM_NCMOUSEMOVE OnNcMouseMove

Message handlers for nonclient-area mouse messages
are prototyped this way:

afx_msg void OnMsgName (UINT nHitTest, CPoint point)

Once again, the point parameter specifies the location
in the window at which the event occurred. But for
nonclient-area mouse messages, point.x and point.y
contain screen coordinates rather than client
coordinates. In screen coordinates, (0,0) corresponds to
the upper left corner of the screen, the positive x and y
axes point to the right and down, and one unit in any
direction equals one pixel. If you want, you can convert
screen coordinates to client coordinates with
CWnd::ScreenToClient. The nHitTest parameter
contains a hit-test code that identifies where in the

Programming Windows With MFC

 151

window's nonclient area the event occurred. Some of
the most interesting hit-test codes are shown in the
following table. You'll find a complete list of hit-test
codes in the documentation for WM_NCHITTEST or
CWnd::OnNcHitTest.

Commonly Used Hit-Test Codes

Value Corresponding Location

HTCAPTION The title bar

HTCLOSE The close button

HTGROWBOX The restore button (same as HTSIZE)

HTHSCROLL The window's horizontal scroll bar

HTMENU The menu bar

HTREDUCE The minimize button

HTSIZE The restore button (same as HTGROWBOX)

HTSYSMENU The system menu box

HTVSCROLL The window's vertical scroll bar

HTZOOM The maximize button

Programs don't usually process nonclient-area mouse
messages; they allow Windows to process them instead.
Windows provides appropriate default responses that
frequently result in still more messages being sent to
the window. For example, when Windows processes a
WM_NCLBUTTONDBLCLK message with a hit-test
value equal to HTCAPTION, it sends the window a
WM_SYSCOMMAND message with wParam equal to
SC_MAXIMIZE or SC_RESTORE to maximize or
unmaximize the window. You can prevent double
clicks on a title bar from affecting a window by
including the following message handler in the window
class:

// In CMainWindow's message map
ON_WM_NCLBUTTONDBLCLK ()

Programming Windows With MFC

 152

void CMainWindow::OnNcLButtonDblClk (UINT nHitTest, CPoint
point)
{
 if (nHitTest != HTCAPTION)
 CWnd::OnNcLButtonDblClk (nHitTest, point);
}

Calling the base class's OnNcLButtonDblClk handler
passes the message to Windows and allows default
processing to take place. Returning without calling the
base class prevents Windows from knowing that the
double click occurred. You can use other hit-test values
to customize the window's response to other
nonclient-area mouse events.

3.1.4. The WM_NCHITTEST Message

Before a window receives a client-area or
nonclient-area mouse message, it receives a
WM_NCHITTEST message accompanied by the
cursor's screen coordinates. Most applications don't
process WM_NCHITTEST messages, instead electing
to let Windows process them. When Windows
processes a WM_NCHITTEST message, it uses the
cursor coordinates to determine what part of the
window the cursor is over and then generates either a
client-area or nonclient-area mouse message.

One clever use of an OnNcHitTest handler is for
substituting the HTCAPTION hit-test code for
HTCLIENT, which creates a window that can be
dragged by its client area:

// In CMainWindow's message map
ON_WM_NCHITTEST ()

UINT CMainWindow::OnNcHitTest (CPoint point)
{

Programming Windows With MFC

 153

 UINT nHitTest = CFrameWnd::OnNcHitTest (point);
 if (nHitTest == HTCLIENT)
 nHitTest = HTCAPTION;
 return nHitTest;
}

As this example demonstrates, WM_NCHITTEST
messages that you don't process yourself should be
forwarded to the base class so that other aspects of the
program's operation aren't affected.

3.1.5. The WM_MOUSELEAVE and
WM_MOUSEHOVER Messages

It's easy to tell when the cursor enters a window or
moves over it because the window receives
WM_MOUSEMOVE messages.
The ::TrackMouseEvent function, which debuted in
Windows NT 4.0 and is also supported in Windows 98,
makes it equally easy to determine when the cursor
leaves a window or hovers motionlessly over the top of
it. With ::TrackMouseEvent, an application can register
to receive WM_MOUSELEAVE messages when the
cursor leaves a window and WM_MOUSEHOVER
messages when the cursor hovers over a window.

::TrackMouseEvent accepts just one parameter: a
pointer to a TRACKMOUSEEVENT structure. The
structure is defined this way in Winuser.h:

typedef struct tagTRACKMOUSEEVENT {
 DWORD cbSize;
 DWORD dwFlags;
 HWND hwndTrack;
 DWORD dwHoverTime;
} TRACKMOUSEEVENT;

cbSize holds the size of the structure. dwFlags holds bit
flags specifying what the caller wants to do: register to
receive WM_MOUSELEAVE messages

Programming Windows With MFC

 154

(TME_LEAVE), register to receive
WM_MOUSEHOVER messages (TME_HOVER),
cancel WM_MOUSELEAVE and
WM_MOUSEHOVER messages (TME_CANCEL), or
have the system fill the TRACKMOUSEEVENT
structure with the current ::TrackMouseEvent settings
(TME_QUERY). hwndTrack is the handle of the
window for which WM_MOUSELEAVE and
WM_MOUSEHOVER messages are generated.
dwHoverTime is the length of time in milliseconds that
the cursor must pause before a WM_MOUSEHOVER
message is sent to the underlying window. You can
accept the system default of 400 milliseconds by setting
dwHoverTime equal to HOVER_DEFAULT.

The cursor doesn't have to be perfectly still for the
system to generate a WM_MOUSEHOVER message.
If the cursor stays within a rectangle whose width and
height equal the values returned
by ::SystemParametersInfo when it's called with
SPI_GETMOUSEHOVERWIDTH and
SPI_GETMOUSEHOVERHEIGHT values, and if it
stays there for the number of milliseconds returned
by ::SystemParametersInfo when it's called with an
SPI_GETMOUSEHOVERTIME value, a
WM_MOUSEHOVER message ensues. If you want,
you can change these parameters by
calling ::SystemParametersInfo with
SPI_SETMOUSEHOVERWIDTH,
SPI_SETMOUSEHOVERHEIGHT, and
SPI_SETMOUSEHOVERTIME values.

One of the more interesting aspects
of ::TrackMouseEvent is that its effects are cancelled
when a WM_MOUSELEAVE or
WM_MOUSEHOVER message is generated. This
means that if you want to receive these message
anytime the cursor exits or pauses over a window, you

Programming Windows With MFC

 155

must call ::TrackMouseEvent again whenever a
WM_MOUSELEAVE or WM_MOUSEHOVER
message is received. To illustrate, the following code
snippet writes "Mouse enter," "Mouse leave," or
"Mouse hover" to the debug output window anytime
the mouse enters, leaves, or pauses over a window.
m_bMouseOver is a BOOL CMainWindow member
variable. It should be set to FALSE in the class
constructor:

// In the message map
ON_WM_MOUSEMOVE ()
ON_MESSAGE (WM_MOUSELEAVE, OnMouseLeave)
ON_MESSAGE (WM_MOUSEHOVER, OnMouseHover)

void CMainWindow::OnMouseMove (UINT nFlags, CPoint point)
{
 if (!m_bMouseOver) {
 TRACE (_T ("Mouse enter\n"));
 m_bMouseOver = TRUE;

 TRACKMOUSEEVENT tme;
 tme.cbSize = sizeof (tme);
 tme.dwFlags = TME_HOVER | TME_LEAVE;
 tme.hwndTrack = m_hWnd;
 tme.dwHoverTime = HOVER_DEFAULT;
 ::TrackMouseEvent (&tme);
 }
}

LRESULT CMainWindow::OnMouseLeave (WPARAM wParam, LPARAM
lParam)
{
 TRACE (_T ("Mouse leave\n"));
 m_bMouseOver = FALSE;
 return 0;
}

LRESULT CMainWindow::OnMouseHover (WPARAM wParam, LPARAM
lParam)
{
 TRACE (_T ("Mouse hover (x=%d, y=%d)\n"),
 LOWORD (lParam), HIWORD (lParam));

 TRACKMOUSEEVENT tme;
 tme.cbSize = sizeof (tme);
 tme.dwFlags = TME_HOVER | TME_LEAVE;
 tme.hwndTrack = m_hWnd;
 tme.dwHoverTime = HOVER_DEFAULT;
 ::TrackMouseEvent (&tme);

Programming Windows With MFC

 156

 return 0;
}

MFC doesn't provide type-specific message-mapping
macros for WM_MOUSELEAVE and
WM_MOUSEHOVER messages, so as this example
demonstrates, you must use the ON_MESSAGE macro
to link these messages to class member functions. The
lParam value accompanying a WM_MOUSEHOVER
message holds the cursor's x coordinate in its low word
and the cursor's y coordinate in its high word. wParam
is unused. Both wParam and lParam are unused in
WM_MOUSELEAVE messages.

One final note regarding ::TrackMouseEvent: In order
to use it, you must include the following #define in
your source code:

#define _WIN32_WINNT 0x0400

Be sure to include this line before the line that
#includes Afxwin.h. Otherwise, it will have no effect.

The Mouse Wheel

Many of the mice used with Windows today include a
wheel that can be used to scroll a window without
clicking the scroll bar. When the wheel is rolled, the
window with the input focus receives
WM_MOUSEWHEEL messages. MFC's CScrollView
class provides a default handler for these messages that
automatically scrolls the window, but if you want
mouse wheel messages to scroll a non-CScrollView
window, you must process WM_MOUSEWHEEL
messages yourself.

MFC's ON_WM_MOUSEWHEEL macro maps
WM_MOUSEWHEEL messages to the message

Programming Windows With MFC

 157

handler OnMouseWheel. OnMouseWheel is prototyped
like this:

BOOL OnMouseWheel (UINT nFlags, short zDelta, CPoint point)

The nFlags and point parameters are identical to those passed
to OnLButtonDown. zDelta is the distance the wheel was
rotated. A zDelta equal to WHEEL_DELTA (120) means the
wheel was rotated forward one increment, or notch, and
_WHEEL_DELTA means the wheel was rotated backward one
notch. If the wheel is rotated forward five notches, the window
will receive five WM_MOUSEWHEEL messages, each with a
zDelta of WHEEL_DELTA. OnMouseWheel should return a
nonzero value if it scrolled the window, or zero if it did not.

A simple way to respond to a WM_MOUSEWHEEL message
is to scroll the window one line up (if zDelta is positive) or one
line down (if zDelta is negative) for every WHEEL_DELTA
unit. The recommended approach, however, is slightly more
involved. First you ask the system for the number of lines that
corresponds to WHEEL_DELTA units. In Windows NT 4.0
and higher and in Windows 98, you can get this value by
calling ::SystemParametersInfo with a first parameter equal to
SPI_GETWHEELSCROLLLINES. Then you multiply the
result by zDelta and divide by WHEEL_DELTA to determine
how many lines to scroll. You can modify the Accel program
presented in Chapter 2 to respond to WM_MOUSEWHEEL
messages in this manner by adding the following message-map
entry and message handler to CMainWindow:

// In the message map
ON_WM_MOUSEWHEEL ()

BOOL CMainWindow::OnMouseWheel (UINT nFlags, short zDelta, CPoint
point)
{
 BOOL bUp = TRUE;
 int nDelta = zDelta;

 if (zDelta < 0) {
 bUp = FALSE;
 nDelta = -nDelta;
 }

 UINT nWheelScrollLines;

Programming Windows With MFC

 158

 ::SystemParametersInfo (SPI_GETWHEELSCROLLLINES, 0,
 &nWheelScrollLines, 0);

 if (nWheelScrollLines == WHEEL_PAGESCROLL) {
 SendMessage (WM_VSCROLL,
 MAKEWPARAM (bUp ? SB_PAGEUP : SB_PAGEDOWN, 0),
0);
 }
 else {
 int nLines = (nDelta * nWheelScrollLines) / WHEEL_DELTA;
 while (nLines--)
 SendMessage (WM_VSCROLL,
 MAKEWPARAM (bUp ? SB_LINEUP : SB_LINEDOWN,
0), 0);
 }
 return TRUE;
}

Dividing zDelta by WHEEL_DELTA ensures that the
application won't scroll too quickly if, in the future, it's used
with a mouse that has a wheel granularity less than 120 units.
WHEEL_PAGESCROLL is a special value that indicates the
application should simulate a click of the scroll bar shaft—in
other words, perform a page-up or page-down. Both
WHEEL_DELTA and WHEEL_PAGESCROLL are defined in
Winuser.h.

One issue to be aware of regarding this code sample is that it's
not compatible with Windows 95. Why? Because
calling ::SystemParametersInfo with an
SPI_GETWHEELSCROLLLINES value does nothing in
Windows 95. If you want to support Windows 95, you can
either assume that ::SystemParametersInfo would return 3 (the
default) or resort to more elaborate means to obtain the user's
preference. MFC uses an internal function named
_AfxGetMouseScrollLines to get this value.
_AfxGetMouseScrollLines is platform-neutral; it uses various
methods to attempt to obtain a scroll line count and defaults to
3 if none of those methods work. See the MFC source code file
Viewscrl.cpp if you'd like to mimic that behavior in your code.

If the mouse wheel is clicked rather than rotated, the window
under the cursor generally receives middle-button mouse
messages—WM_MBUTTONDOWN messages when the
wheel is pressed, WM_MBUTTONUP messages when the
wheel is released. (I say "generally" because this is the default
behavior; it can be changed through the Control Panel.) Some

Programming Windows With MFC

 159

applications respond to wheel clicks in a special way. Microsoft
Word 97, for example, scrolls the currently displayed document
when it receives WM_MOUSEMOVE messages with the
wheel held down. Knowing that the mouse wheel produces
middle-button messages, you can customize your applications
to respond to mouse wheel events any way you see fit.

Capturing the Mouse

One problem that frequently crops up in programs that process
mouse messages is that the receipt of a button-down message
doesn't necessarily mean that a button-up message will follow.
Suppose you've written a drawing program that saves the point
parameter passed to OnLButtonDown and uses it as an anchor
point to draw a line whose other endpoint follows the
cursor—an action known as "rubber-banding" a line. When a
WM_LBUTTONUP message arrives, the application erases the
rubber-band line and draws a real line in its place. But what
happens if the user moves the mouse outside the window's
client area before releasing the mouse button? The application
never gets that WM_LBUTTONUP message, so the
rubber-band line is left hanging in limbo and the real line isn't
drawn.

Windows provides an elegant solution to this problem by
allowing an application to "capture" the mouse upon receiving
a button-down message and to continue receiving mouse
messages no matter where the cursor goes on the screen until
the button is released or the capture is canceled. (In the Win32
environment, to prevent applications from monopolizing the
mouse, the system stops sending mouse messages to a window
that owns the capture if the button is released.) The mouse is
captured with CWnd::SetCapture and released
with ::ReleaseCapture. Calls to these functions are normally
paired in button-down and button-up handlers, as shown here:

// In CMainWindow's message map
ON_WM_LBUTTONDOWN ()
ON_WM_LBUTTONUP ()

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 SetCapture ();

Programming Windows With MFC

 160

}

void CMainWindow::OnLButtonUp (UINT nFlags, CPoint point)
{
 ::ReleaseCapture ();
}

In between, CMainWindow receives WM_MOUSEMOVE
messages that report the cursor position even if the cursor
leaves it. Client-area mouse messages continue to report cursor
positions in client coordinates, but coordinates can now go
negative and can also exceed the dimensions of the window's
client area.

A related function, CWnd::GetCapture, returns a CWnd pointer
to the window that owns the capture. In the Win32 environment,
GetCapture returns NULL if the mouse is not captured or if it's
captured by a window belonging to another thread. The most
common use of GetCapture is for determining whether your
own window has captured the mouse. The statement

if (GetCapture () == this)

is true if and only if the window identified by this currently has
the mouse captured.

How does capturing the mouse solve the problem with the
rubber-banded line? By capturing the mouse in response to a
WM_LBUTTONDOWN message and releasing it when a
WM_LBUTTONUP message arrives, you're guaranteed to get
the WM_LBUTTONUP message when the mouse button is
released. The sample program in the next section illustrates the
practical effect of this technique.

Mouse Capturing in Action

The MouseCap application shown in Figure 3-4 is a
rudimentary paint program that lets the user draw lines with the
mouse. To draw a line, press the left mouse button anywhere in
the window's client area and drag the cursor with the button
held down. As the mouse is moved, a thin line is rubber-banded
between the anchor point and the cursor. When the mouse
button is released, the rubber-band line is erased and a red line

Programming Windows With MFC

 161

16 pixels wide is drawn in its place. Because the mouse is
captured while the button is depressed, rubber-banding works
even if the mouse is moved outside the window. And no matter
where the cursor is when the mouse button is released, a red
line is drawn between the anchor point and the endpoint.
MouseCap's source code appears in Figure 3-5.

Figure 3-4. The MouseCap window.

Figure 3-5. The MouseCap application.

MouseCap.h

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
protected:
 BOOL m_bTracking; // TRUE if rubber banding
 BOOL m_bCaptureEnabled; // TRUE if capture enabled
 CPoint m_ptFrom; // "From" point for rubber banding
 CPoint m_ptTo; // "To" point for rubber banding

 void InvertLine (CDC* pDC, CPoint ptFrom, CPoint ptTo);

public:
 CMainWindow ();

protected:
 afx_msg void OnLButtonDown (UINT nFlags, CPoint point);
 afx_msg void OnLButtonUp (UINT nFlags, CPoint point);
 afx_msg void OnMouseMove (UINT nFlags, CPoint point);
 afx_msg void OnNcLButtonDown (UINT nHitTest, CPoint point);

Programming Windows With MFC

 162

 DECLARE_MESSAGE_MAP ()
};

MouseCap.cpp

#include <afxwin.h>
#include "MouseCap.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);

m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_LBUTTONDOWN ()
 ON_WM_LBUTTONUP ()
 ON_WM_MOUSEMOVE ()
 ON_WM_NCLBUTTONDOWN ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 m_bTracking = FALSE;
 m_bCaptureEnabled = TRUE;

 //
 // Register a WNDCLASS.
 //

 CString strWndClass = AfxRegisterWndClass (
 0,
 AfxGetApp ()->LoadStandardCursor (IDC_CROSS),
 (HBRUSH) (COLOR_WINDOW + 1),
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO)
);

 //
 // Create a window.
 //
 Create (strWndClass, _T ("Mouse Capture Demo (Capture Enabled)"));

Programming Windows With MFC

 163

}

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 //
 // Record the anchor point and set the tracking flag.
 //
 m_ptFrom = point;
 m_ptTo = point;
 m_bTracking = TRUE;

 //
 // If capture is enabled, capture the mouse.
 //
 if (m_bCaptureEnabled)
 SetCapture ();
}

void CMainWindow::OnMouseMove (UINT nFlags, CPoint point)
{
 //
 // If the mouse is moved while we're "tracking" (that is, while a
 // line is being rubber-banded), erase the old rubber-band line and
 // draw a new one.
 //
 if (m_bTracking) {
 CClientDC dc (this);
 InvertLine (&dc, m_ptFrom, m_ptTo);
 InvertLine (&dc, m_ptFrom, point);
 m_ptTo = point;
 }
}

void CMainWindow::OnLButtonUp (UINT nFlags, CPoint point)
{
 //
 // If the left mouse button is released while we're tracking, release
 // the mouse if it's currently captured, erase the last rubber-band
 // line, and draw a thick red line in its place.
 //
 if (m_bTracking) {
 m_bTracking = FALSE;
 if (GetCapture () == this)
 ::ReleaseCapture ();

 CClientDC dc (this);
 InvertLine (&dc, m_ptFrom, m_ptTo);

 CPen pen (PS_SOLID, 16, RGB (255, 0, 0));
 dc.SelectObject (&pen);

 dc.MoveTo (m_ptFrom);
 dc.LineTo (point);
 }
}
void CMainWindow::OnNcLButtonDown (UINT nHitTest, CPoint point)

Programming Windows With MFC

 164

{
 //
 // When the window's title bar is clicked with the left mouse button,
 // toggle the capture flag on or off and update the window title.
 //
 if (nHitTest == HTCAPTION) {
 m_bCaptureEnabled = m_bCaptureEnabled ? FALSE : TRUE;
 SetWindowText (m_bCaptureEnabled ?
 _T ("Mouse Capture Demo (Capture Enabled)") :
 _T ("Mouse Capture Demo (Capture Disabled)"));
 }
 CFrameWnd::OnNcLButtonDown (nHitTest, point);
}

void CMainWindow::InvertLine (CDC* pDC, CPoint ptFrom, CPoint ptTo)
{
 //
 //Invert a line of pixels by drawing a line in the R2_NOT drawing mode.
 //
 int nOldMode = pDC->SetROP2 (R2_NOT);
 pDC->MoveTo (ptFrom);
 pDC->LineTo (ptTo);

 pDC->SetROP2 (nOldMode);
}

Most of the action takes place in the program's
OnLButtonDown, OnMouseMove, and OnLButtonUp handlers.
OnLButtonDown starts the drawing process by initializing a trio
of variables that are members of the CMainWindow class:

m_ptFrom = point;
m_ptTo = point;
m_bTracking = TRUE;

m_ptFrom and m_ptTo are the starting and ending points for
the rubber-band line. m_ptTo is continually updated by the
OnMouseMove handler as the mouse is moved. m_bTracking,
which is TRUE when the left button is down and FALSE when
it is not, is a flag that tells OnMouseMove and OnLButtonUp
whether a line is being rubber-banded. OnLButtonDown's only
other action is to capture the mouse if m_bCaptureEnabled is
TRUE:

if (m_bCaptureEnabled)
 SetCapture ();

Programming Windows With MFC

 165

m_bCaptureEnabled is initialized to TRUE by CMainWindow's
constructor. It is toggled by the window's OnNcLButtonDown
handler so that you can turn mouse capturing on and off and see
the effect that mouse capturing has on the program's operation.
(More on this in a moment.)

OnMouseMove's job is to move the rubber-band line and update
m_ptTo with the new cursor position whenever the mouse is
moved. The statement

InvertLine (&dc, m_ptFrom, m_ptTo);

erases the previously drawn rubber-band line, and

InvertLine (&dc, m_ptFrom, point);

draws a new one. InvertLine is a member of CMainWindow. It
draws a line not by setting each pixel to a certain color, but by
inverting the existing pixel colors. This ensures that the line can
be seen no matter what background it is drawn against and that
drawing the line again in the same location will erase it by
restoring the original screen colors. The inversion is
accomplished by setting the device context's drawing mode to
R2_NOT with the statement

int nOldMode = pDC->SetROP2 (R2_NOT);

See Chapter 2 for a discussion of R2_NOT and other drawing
modes.

When the left mouse button is released,
CMainWindow::OnLButtonUp is called. After setting
m_bTracking to FALSE and releasing the mouse, it erases the
rubber-band line drawn by the last call to OnMouseMove:

CClientDC dc (this);
InvertLine (&dc, m_ptFrom, m_ptTo);

OnLButtonUp then creates a solid red pen 16 pixels wide,
selects it into the device context, and draws a thick red line:

Programming Windows With MFC

 166

CPen pen (PS_SOLID, 16, RGB (255, 0, 0));
dc.SelectObject (&pen);

dc.MoveTo (m_ptFrom);
dc.LineTo (point);

Its work done, OnLButtonUp returns, and the drawing
operation is complete. Figure 3-4 above shows what the
MouseCap window looks like after a few lines have been
drawn and as a new line is rubber-banded.

After you've played around with the program a bit, click the
title bar to activate the OnNcLButtonDown handler and toggle
the m_bCaptureEnabled flag from TRUE to FALSE. The
window title should change from "Mouse Capture Demo
(Capture Enabled)" to "Mouse Capture Demo (Capture
Disabled)." OnNcLButtonDown processes left button clicks in
the nonclient area and uses CWnd::SetWindowText to change
the window title if the hit-test code in nHitTest is equal to
HTCAPTION, indicating that the click occurred in the title bar.

Now draw a few lines with mouse capturing disabled. Observe
that if you move the mouse outside the window while
rubber-banding, the line freezes until the mouse reenters the
client area, and that if you release the mouse button outside the
window, the program gets out of sync. The rubber-band line
follows the mouse when you move it back to the interior of the
window (even though the mouse button is no longer pressed),
and it never gets erased. Click the title bar once again to
reenable mouse capturing, and the program will revert to its
normal self.

The Cursor

Rather than use the arrow-shaped cursor you see in most
Windows applications, MouseCap uses a crosshair cursor.
Arrows and crosshairs are just two of several predefined cursor
types that Windows places at your disposal, and if none of the
predefined cursors fits the bill, you can always create your own.
As usual, Windows gives programmers a great deal of latitude
in this area.

Programming Windows With MFC

 167

First, a bit of background on how cursors work. As you know,
every window has a corresponding WNDCLASS whose
characteristics are defined in a WNDCLASS structure. One of
the fields of the WNDCLASS structure is hCursor, which holds
the handle of the class cursor—the image displayed when the
cursor is over a window's client area. When the mouse is
moved, Windows erases the cursor from its old location by
redrawing the background behind it. Then it sends the window
under the cursor a WM_SETCURSOR message containing a
hit-test code. The system's default response to this message is
to call ::SetCursor to display the class cursor if the hit-test code
is HTCLIENT or to display an arrow if the hit-test code
indicates that the cursor is outside the client area. As a result,
the cursor is automatically updated as it is moved about the
screen. When you move the cursor into an edit control, for
example, it changes into a vertical bar or "I-beam" cursor. This
happens because Windows registers a special WNDCLASS for
edit controls and specifies the I-beam cursor as the class cursor.

It follows that one way to change the cursor's appearance is to
register a WNDCLASS and specify the desired cursor type as
the class cursor. In MouseCap, CMainWindow's constructor
registers a WNDCLASS whose class cursor is IDC_CROSS
and passes the WNDCLASS name to CFrameWnd::Create:

CString strWndClass = AfxRegisterWndClass (
 0,
 AfxGetApp ()->LoadStandardCursor (IDC_CROSS),
 (HBRUSH) (COLOR_WINDOW + 1),
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO)
);

Create (strWndClass, _T ("Mouse Capture Demo (Capture
Enabled)"));

Windows then displays a crosshair cursor anytime the mouse
pointer is positioned in CMainWindow's client area.

A second way to customize the cursor is to call the API
function ::SetCursor in response to WM_SETCURSOR
messages. The following OnSetCursor function displays the
cursor whose handle is stored in CMainWindow::m_hCursor
when the cursor is over CMainWindow's client area:

Programming Windows With MFC

 168

// In CMainWindow's message map
ON_WM_SETCURSOR ()

BOOL CMainWindow::OnSetCursor (CWnd* pWnd, UINT nHitTest,
 UINT message)
{
 if (nHitTest == HTCLIENT) {
 ::SetCursor (m_hCursor);
 return TRUE;
 }
 return CFrameWnd::OnSetCursor (pWnd, nHitTest, message);
}

Returning TRUE after calling ::SetCursor tells Windows that
the cursor has been set. WM_SETCURSOR messages
generated outside the window's client area are passed to the
base class so that the default cursor is displayed. The class
cursor is ignored because OnSetCursor never gives Windows
the opportunity to display it.

Why would you want to use OnSetCursor rather than just
registering m_hCursor as the class cursor? Suppose you want to
display an arrow cursor when the cursor is in the top half of the
window and an I-beam cursor when the cursor is in the bottom
half. A class cursor won't suffice in this case, but OnSetCursor
will do the job quite nicely. The following OnSetCursor
handler sets the cursor to either m_hCursorArrow or
m_hCursorIBeam when the cursor is in CMainWindow's client
area:

BOOL CMainWindow::OnSetCursor (CWnd* pWnd, UINT nHitTest,
 UINT message)
{
 if (nHitTest == HTCLIENT) {
 DWORD dwPos = ::GetMessagePos ();
 CPoint point (LOWORD (dwPos), HIWORD (dwPos));
 ScreenToClient (&point);
 CRect rect;
 GetClientRect (&rect);
 ::SetCursor ((point.y < rect.Height () / 2) ?
 m_hCursorArrow : m_hCursorIBeam);
 return TRUE;
 }
 return CFrameWnd::OnSetCursor (pWnd, nHitTest, message);
}

Programming Windows With MFC

 169

::GetMessagePos returns a DWORD value containing the
cursor's x and y screen coordinates at the moment the
WM_SETCURSOR message was retrieved from the message
queue. CWnd::ScreenToClient converts screen coordinates to
client coordinates. If the converted point's y coordinate is less
than half the height of the window's client area, the cursor is set
to m_hCursorArrow. But if y is greater than or equal to half the
client area height, the cursor is set to m_hCursorIBeam instead.
The VisualKB application presented later in this chapter uses a
similar technique to change the cursor to an I-beam when it
enters a rectangle surrounding a text-entry field.

Should the need ever arise, you can hide the cursor with the
statement

::ShowCursor (FALSE);

and display it again with

::ShowCursor (TRUE);

Internally, Windows maintains a display count that's
incremented each time ::ShowCursor (TRUE) is called and
decremented by each call to ::ShowCursor (FALSE). The count
is initially set to 0 if a mouse is installed and to -1 if no mouse
is present, and the cursor is displayed whenever the count is
greater than or equal to 0. Thus, if you call ::ShowCursor
(FALSE) twice to hide the cursor, you must call ::ShowCursor
(TRUE) twice to display it again.

The Hourglass Cursor

When an application responds to a message by undertaking a
lengthy processing task, it's customary to change the cursor to
an hourglass to remind the user that the application is "busy."
(While a message handler executes, no further messages are
retrieved from the message queue and the program is frozen to
input. In Chapter 17, you'll learn about ways to perform
background processing tasks while continuing to retrieve and
dispatch messages.)

Programming Windows With MFC

 170

Windows provides the hourglass cursor for you; its identifier is
IDC_WAIT. An easy way to display an hourglass cursor is to
declare a CWaitCursor variable on the stack, like this:

CWaitCursor wait;

CWaitCursor's constructor displays an hourglass cursor, and its
destructor restores the original cursor. If you'd like to restore
the cursor before the variable goes out of scope, simply call
CWaitCursor::Restore:

wait.Restore ();

You should call Restore before taking any action that would
allow a WM_SETCURSOR message to seep through and
destroy the hourglass—for example, before displaying a
message box or a dialog box.

You can change the cursor displayed by
CWaitCursor::CWaitCursor and BeginWaitCursor by
overriding CWinApp's virtual DoWaitCursor function. Use the
default implementation of CWinApp::DoWaitCursor found in
the MFC source code file Appui.cpp as a model for your own
implementations.

Mouse Miscellanea

As mentioned earlier, calling the ::GetSystemMetrics API
function with an SM_CMOUSEBUTTONS argument queries
the system for the number of mouse buttons. (There is no MFC
equivalent to ::GetSystemMetrics, so you must call it directly.)
The usual return value is 1, 2, or 3, but a 0 return means no
mouse is attached. You can also find out whether a mouse is
present by calling ::GetSystemMetrics this way:

::GetSystemMetrics (SM_MOUSEPRESENT)

The return value is nonzero if there is a mouse attached, 0 if
there is not. In the early days of Windows, programmers had to
consider the possibility that someone might be using Windows
without a mouse. Today that's rarely a concern, and a program

Programming Windows With MFC

 171

that queries the system to determine whether a mouse is present
is a rare program indeed.

Other mouse-related ::GetSystemMetrics parameters include
SM_CXDOUBLECLK and SM_CYDOUBLECLK, which
specify the maximum horizontal and vertical distances (in
pixels) that can separate the two halves of a double click, and
SM_SWAPBUTTON, which returns a nonzero value if the user
has swapped the left and right mouse buttons using the Control
Panel. When the mouse buttons are swapped, the left mouse
button generates WM_RBUTTON messages and the right
mouse button generates WM_LBUTTON messages. Generally
you don't need to be concerned about this, but if for some
reason your application wants to be sure that the left mouse
button really means the left mouse button, it can
use ::GetSystemMetrics to determine whether the buttons have
been swapped.

The API functions ::SetDoubleClickTime
and ::GetDoubleClickTime enable an application to set and
retrieve the mouse double-click time—the maximum amount of
time permitted between clicks when a mouse button is
double-clicked. The expression

::GetDoubleClickTime ()

returns the double-click time in milliseconds, while the
statement

::SetDoubleClickTime (250);

sets the double-click time to 250 milliseconds, or one quarter of
a second. When the same mouse button is clicked twice in
succession, Windows uses both the double-click time and the
SM_CXDOUBLECLK and SM_CYDOUBLECLK values
returned by ::GetSystemMetrics to determine whether to report
the second of the two clicks as a double click.

A function that processes mouse messages can determine which,
if any, mouse buttons are pressed by checking the nFlags
parameter passed to the message handler. It's also possible to
query the state of a mouse button outside a mouse message

Programming Windows With MFC

 172

handler by calling ::GetKeyState or ::GetAsyncKeyState with a
VK_LBUTTON, VK_MBUTTON, or VK_RBUTTON
parameter. ::GetKeyState should be called only from a
keyboard message handler because it returns the state of the
specified mouse button at the time the keyboard message was
generated. ::GetAsyncKeyState can be called anywhere,
anytime. It works in real time, returning the state of the button
at the moment the function is called. A negative return value
from

::GetKeyState (VK_LBUTTON)

or

::GetAsyncKeyState (VK_LBUTTON)

indicates that the left mouse button is pressed. Swapping the
mouse buttons does not affect ::GetAsyncKeyState, so if you
use this function, you should also use ::GetSystemMetrics to
determine whether the buttons have been swapped. The
expression

::GetAsyncKeyState (::GetSystemMetrics (SM_SWAPBUTTON) ?
 VK_RBUTTON : VK_LBUTTON)

checks the state of the left mouse button asynchronously and
automatically queries the right mouse button instead if the
buttons have been swapped.

Windows provides a pair of API functions
named ::GetCursorPos and ::SetCursorPos for getting and
setting the cursor position manually. ::GetCursorPos copies the
cursor coordinates to a POINT structure. A related function
named ::GetMessagePos returns a DWORD value containing a
pair of 16-bit coordinates specifying where the cursor was
when the last message was retrieved from the message queue.
You can extract those coordinates using the Windows
LOWORD and HIWORD macros:

DWORD dwPos = ::GetMessagePos ();
int x = LOWORD (dwPos);
int y = HIWORD (dwPos);

Programming Windows With MFC

 173

::GetCursorPos and ::GetMessagePos both report the cursor
position in screen coordinates. Screen coordinates can be
converted to client coordinates by calling a window's
ClientToScreen function.

Windows also provides a function named ::ClipCursor that
restricts the cursor to a particular area of the
screen. ::ClipCursor accepts a pointer to a RECT structure that
describes, in screen coordinates, the clipping rectangle. Since
the cursor is a global resource shared by all applications, an
application that uses ::ClipCursor must free the cursor by
calling

::ClipCursor (NULL);

before terminating, or else the cursor will remain locked into
the clipping rectangle indefinitely.

3.2. Getting Input from the Keyboard

A Windows application learns of keyboard events the same
way it learns about mouse events: through messages. A
program receives a message whenever a key is pressed or
released. If you want to know when the Page Up or Page Down
key is pressed so that your application can react accordingly,
you process WM_KEYDOWN messages and check for key
codes identifying the Page Up or Page Down key. If you'd
rather know when a key is released, you process WM_KEYUP
messages instead. For keys that produce printable characters,
you can ignore key-down and key-up messages and process
WM_CHAR messages that denote characters typed at the
keyboard. Relying on WM_CHAR messages instead of
WM_KEYUP/DOWN messages simplifies character
processing by enabling Windows to factor in events and
circumstances surrounding the keystroke, such as whether the
Shift key is pressed, whether Caps Lock is on or off, and
differences in keyboard layouts.

3.2.1. The Input Focus

Like the mouse, the keyboard is a global hardware resource
shared by all applications. Windows decides which window to
send mouse messages to by identifying the window under the

Programming Windows With MFC

 174

cursor. Keyboard messages are targeted differently. Windows
directs keyboard messages to the window with the "input
focus." At any given time, no more than one window has the
input focus. Often the window with the input focus is the main
window of the active application. However, the input focus
might belong to a child of the main window or to a control in a
dialog box. Regardless, Windows always sends keyboard
messages to the window that owns the focus. If your
application's window has no child windows, keyboard
processing is relatively straightforward: When your application
is active, its main window receives keyboard messages. If the
focus shifts to a child window, keyboard messages go to the
child window instead and the flow of messages to the main
window ceases.

Windows notifies a window that it is about to receive or lose
the input focus with WM_SETFOCUS and WM_KILLFOCUS
messages, which MFC programs process as shown here:

// In CMainWindow's message map
ON_WM_SETFOCUS ()
ON_WM_KILLFOCUS ()

void CMainWindow::OnSetFocus (CWnd* pOldWnd)
{
 // CMainWindow now has the input focus. pOldWnd
 // identifies the window that lost the input focus.
 // pOldWnd will be NULL if the window that lost the
 // focus was created by another thread.
}

void CMainWindow::OnKillFocus (CWnd* pNewWnd)
{
 // CMainWindow is about to lose the input focus.
 // pNewWnd identifies the window that will receive
 // the input focus. pNewWnd will be NULL if the
 // window that's receiving the focus is owned by
 // another thread.
}

An application can shift the input focus to another window with
CWnd::SetFocus:

pWnd->SetFocus ();

Programming Windows With MFC

 175

Or it can use the static CWnd::GetFocus function to find out
who currently has the input focus:

CWnd* pFocusWnd = CWnd::GetFocus ();

In the Win32 environment, GetFocus returns NULL if the
window that owns the focus was not created by the calling
thread. You can't use GetFocus to get a pointer to a window
created by another application, but you can use it to identify
windows that belong to your application.

3.2.2. Keystroke Messages

Windows reports key presses and releases by sending
WM_KEYDOWN and WM_KEYUP messages to the window
with the input focus. These messages are commonly referred to
as keystroke messages. When a key is pressed, the window with
the input focus receives a WM_KEYDOWN message with a
virtual key code identifying the key. When the key is released,
the window receives a WM_KEYUP message. If other keys are
pressed and released while the key is held down, the resultant
WM_KEYDOWN and WM_KEYUP messages separate the
WM_KEYDOWN and WM_KEYUP messages generated by
the key that's held down. Windows reports keyboard events as
they happen in the order in which they happen, so by
examining the stream of keystroke messages coming into your
application, you can tell exactly what was typed and when.

All keys but two generate WM_KEYDOWN and WM_KEYUP
messages. The two exceptions are Alt and F10, which are
"system" keys that have a special meaning to Windows. When
either of these keys is pressed and released, a window receives
a WM_SYSKEYDOWN message followed by a
WM_SYSKEYUP message. If other keys are pressed while the
Alt key is held down, they, too, generate
WM_SYSKEYDOWN and WM_SYSKEYUP messages
instead of WM_KEYDOWN and WM_KEYUP messages.
Pressing F10 puts Windows in a special modal state that treats
the next keypress as a menu shortcut. Pressing F10 followed by
the F key, for example, pulls down the File menu in most
applications.

Programming Windows With MFC

 176

An application processes keystroke messages by providing
message-map entries and message handling functions for the
messages it is interested in. WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, and WM_SYSKEYUP messages are
processed by a class's OnKeyDown, OnKeyUp, OnSysKeyDown,
and OnSysKeyUp member functions, respectively. The
corresponding message-map macros are
ON_WM_KEYDOWN, ON_WM_KEYUP,
ON_WM_SYSKEYDOWN, and ON_WM_SYSKEYUP.
When activated, a keystroke handler receives a wealth of
information about the keystroke, including a code identifying
the key that was pressed or released.

Keystroke message handlers are prototyped as follows:

afx_msg void OnMsgName (UINT nChar, UINT nRepCnt, UINT
nFlags)

nChar is the virtual key code of the key that was pressed or
released. nRepCnt is the repeat count—the number of
keystrokes encoded in the message. nRepCnt is usually equal to
1 for WM_KEYDOWN or WM_SYSKEYDOWN messages
and is always 1 for WM_KEYUP or WM_SYSKEYUP
messages. If key-down messages arrive so fast that your
application can't keep up, Windows combines two or more
WM_KEYDOWN or WM_SYSKEYDOWN messages into
one and increases the repeat count accordingly. Most programs
ignore the repeat count and treat combinatorial key-down
messages (messages in which nRepCnt is greater than 1) as a
single keystroke to prevent overruns—situations in which a
program continues to scroll or otherwise respond to keystroke
messages after the user's finger has released the key. In contrast
to the PC's keyboard BIOS, which buffers incoming keystrokes
and reports each one individually, the Windows method of
reporting consecutive presses of the same key to your
application provides a built-in hedge against keyboard
overruns.

The nFlags parameter contains the key's scan code and zero or
more of the bit flags described here:

Bit(s) Meaning Description

Programming Windows With MFC

 177

0_7 OEM scan code 8-bit OEM scan code

8 Extended key flag 1 if the key is an extended key, 0 if it is not

9_12 Reserved N/A

13 Context code 1 if the Alt key is pressed, 0 if it is not

14 Previous key state 1 if the key was previously pressed, 0 if it was up

15 Transition state 0 if the key is being pressed, 1 if it is being released

The extended key flag allows an application to differentiate
between the duplicate keys that appear on most keyboards. On
the 101-key and 102-key keyboards used with the majority of
IBM-compatible PCs, the extended key flag is set for the Ctrl
and Alt keys on the right side of the keyboard; the Home, End,
Insert, Delete, Page Up, Page Down, and arrow keys that are
clustered between the main part of the keyboard and the
numeric keypad; and the keypad's Enter and forward-slash (/)
keys. For all other keys, the extended key flag is 0. The OEM
scan code is an 8-bit value that identifies the key to the
keyboard BIOS. Most Windows applications ignore this field
because it is inherently hardware dependent. (If needed, scan
codes can be translated into virtual key codes with
the ::MapVirtualKey API function.) The transition state,
previous key state, and context code are generally disregarded
too, but they are occasionally useful. A previous key state value
equal to 1 identifies typematic keystrokes—keystrokes
generated when a key is pressed and held down for some length
of time. Holding down the Shift key for a second or so, for
instance, generates the following sequence of messages:

Message Virtual Key Code Previous Key State

WM_KEYDOWN VK_SHIFT 0

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

WM_KEYDOWN VK_SHIFT 1

Programming Windows With MFC

 178

WM_KEYDOWN VK_SHIFT 1

WM_KEYUP VK_SHIFT 1

If you want your application to disregard keystrokes generated
as a result of typematic action, simply have it ignore
WM_KEYDOWN messages with previous key state values
equal to 1. The transition state value is 0 for WM_KEYDOWN
and WM_SYSKEYDOWN messages and 1 for WM_KEYUP
and WM_SYSKEYUP messages. Finally, the context code
indicates whether the Alt key was pressed when the message
was generated. With certain (usually unimportant) exceptions,
the code is 1 for WM_SYSKEYDOWN and WM_SYSKEYUP
messages and 0 for WM_KEYDOWN and WM_KEYUP
messages.

In general, applications shouldn't process
WM_SYSKEYDOWN and WM_SYSKEYUP messages; they
should let Windows process them instead. If these messages
don't eventually find their way to ::DefWindowProc, system
keyboard commands such as Alt-Tab and Alt-Esc will stop
working. Windows puts a tremendous amount of power in your
hands by routing all mouse and keyboard messages through
your application first, even though many of these messages are
meaningful first and foremost to the operating system. As with
nonclient-area mouse messages, the improper handling of
system keystroke messages—in particular, the failure to pass
these messages on to the operating system—can result in all
sorts of quirky behavior.

3.2.3. Virtual Key Codes

The most important value by far that gets passed to a keystroke
message handler is the nChar value identifying the key that was
pressed or released. Windows identifies keys with the virtual
key codes shown in the table below so that applications won't
have to rely on hardcoded values or OEM scan codes that might
differ from keyboard to keyboard.

Conspicuously missing from this table are virtual key codes for
the letters A through Z and a through z and for the numerals 0
through 9. The virtual key codes for these keys are the same as
the corresponding characters' ANSI codes: 0x41 through 0x5A

Programming Windows With MFC

 179

for A through Z, 0x61 through 0x7A for a through z, and 0x30
through 0x39 for 0 through 9.

If you look inside Winuser.h, where the virtual key codes are
defined, you'll find a few key codes that aren't listed in the
following table, including VK_SELECT, VK_EXECUTE, and
VK_F13 through VK_F24. These codes are provided for use on
other platforms and can't be generated on conventional IBM
keyboards. Nonletter and nonnumeric keys for which Windows
does not provide virtual key codes—for example, the semicolon
(;) and square bracket ([]) keys—are best avoided when
processing key-down and key-up messages because their IDs
can vary on international keyboards. This doesn't mean that
your program can't process punctuation symbols and other
characters for which no VK_ identifiers exist; it simply means
that there's a better way to do it than relying on key-up and
key-down messages. That "better way" is WM_CHAR
messages, which we'll discuss in a moment.

Virtual Key Codes

Virtual Key Code(s) Corresponding Key(s)

VK_F1_VK_F12 Function keys F1_F12

VK_NUMPAD0_VK_NUMPAD9 Numeric keypad 0_9 with Num Lock on

VK_CANCEL Ctrl-Break

VK_RETURN Enter

VK_BACK Backspace

VK_TAB Tab

VK_CLEAR Numeric keypad 5 with Num Lock off

VK_SHIFT Shift

VK_CONTROL Ctrl

VK_MENU Alt

VK_PAUSE Pause

VK_ESCAPE Esc

VK_SPACE Spacebar

VK_PRIOR Page Up and PgUp

VK_NEXT Page Down and PgDn

Programming Windows With MFC

 180

VK_END End

VK_HOME Home

VK_LEFT Left arrow

VK_UP Up arrow

VK_RIGHT Right arrow

VK_DOWN Down arrow

VK_SNAPSHOT Print Screen

VK_INSERT Insert and Ins

VK_DELETE Delete and Del

VK_MULTIPLY Numeric keypad *

VK_ADD Numeric keypad +

VK_SUBTRACT Numeric keypad -

VK_DECIMAL Numeric keypad .

VK_DIVIDE Numeric keypad /

VK_CAPITAL Caps Lock

VK_NUMLOCK Num Lock

VK_SCROLL Scroll Lock

VK_LWIN Left Windows key

VK_RWIN Right Windows key

VK_APPS
Menu key ()

3.2.4. Shift States and Toggles

When you write handlers for WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, or WM_SYSKEYUP messages, you
might need to know whether the Shift, Ctrl, or Alt key is held
down before deciding what to do. Information about the shift
states of the Shift and Ctrl keys is not encoded in keyboard
messages as it is in mouse messages, so Windows provides
the ::GetKeyState function. Given a virtual key
code, ::GetKeyState reports whether the key in question is held
down. The expression

Programming Windows With MFC

 181

::GetKeyState (VK_SHIFT)

returns a negative value if the Shift key is held down or a
nonnegative value if it is not. Similarly, the expression

::GetKeyState (VK_CONTROL)

returns a negative value if the Ctrl key is held down. Thus, the
bracketed statements in the following code fragment taken from
an OnKeyDown handler are executed only when Ctrl-Left (the
left arrow key in combination with the Ctrl key) is pressed:

if ((nChar == VK_LEFT) && (::GetKeyState (VK_CONTROL) < 0))
{

}

To inquire about the Alt key, you can call ::GetKeyState with a
VK_MENU parameter or simply check the context code bit in
the nFlags parameter. Usually even that amount of effort isn't
necessary because if the Alt key is pressed, your window will
receive a WM_SYSKEYDOWN or WM_SYSKEYUP message
instead of a WM_KEYDOWN or WM_KEYUP message. In
other words, the message ID generally tells you all you need to
know about the Alt key. As a bonus, you can use the identifiers
VK_LBUTTON, VK_MBUTTON, and VK_RBUTTON in
conjunction with ::GetKeyState to determine if any of the
mouse buttons is held down.

An application can also use ::GetKeyState to determine
whether Num Lock, Caps Lock, and Scroll Lock are on or off.
While the high bit of the return code indicates whether a key is
currently pressed (yielding a negative number when the high bit
is 1), the low bit—bit 0—indicates the state of the toggle. The
expression

::GetKeyState (VK_NUMLOCK) & 0x01

evaluates to nonzero if Num Lock is on and evaluates to 0 if it
is not. The same technique works for the VK_CAPITAL (Caps
Lock) and VK_SCROLL (Scroll Lock) keys. It's important to
mask off all but the lowest bit of the return code before testing

Programming Windows With MFC

 182

because the high bit still indicates whether the key itself is up
or down.

In all cases, ::GetKeyState reports the state of the key or the
mouse button at the time the keyboard message was generated,
not at the precise moment that the function is called. This is a
feature, not a bug, because it means you don't have to worry
about a key being released before your message handler gets
around to inquiring about the key state. The ::GetKeyState
function should never be called outside a keyboard message
handler because the information it returns is valid only after a
keyboard message has been retrieved from the message queue.
If you really need to know the current state of a key or a mouse
button, or if you want to check a key or a mouse button outside
a keyboard message handler, use ::GetAsyncKeyState instead.

3.2.5. Character Messages

One problem you'll encounter if you rely exclusively on key-up
and key-down messages for keyboard input is shown in the
following scenario. Suppose you're writing a text editor that
turns messages reporting presses of the character keys into
characters on the screen. The A key is pressed, and a
WM_KEYDOWN message arrives with a virtual key code
equal to 0x41. Before you put an A on the screen, you
call ::GetKeyState to determine whether the Shift key is held
down. If it is, you output an uppercase "A"; otherwise, you
output a lowercase "a." So far, so good. But what if Caps Lock
is enabled too? Caps Lock undoes the effect of the Shift key,
converting "A" to "a" and "a" to "A." Now you have four
different permutations of the letter A to consider:

Virtual Key Code VK_SHIFT Caps Lock Result

0x41 No Off a

0x41 Yes Off A

0x41 No On A

0x41 Yes On a

While you might reasonably expect to overcome this problem
by writing code to sense all the possible shift and toggle states,
your work is complicated by the fact that the user might also

Programming Windows With MFC

 183

have the Ctrl key held down. And the problem is only
compounded when your application is run outside the United
States, where keyboard layouts typically differ from the U.S.
keyboard layout. A U.S. user presses Shift-0 to enter a right
parenthesis symbol. But Shift-0 produces an equal sign on most
international keyboards and an apostrophe on Dutch keyboards.
Users won't appreciate it much if the characters your program
displays don't match the characters they type.

That's why Windows provides the ::TranslateMessage API
function. ::TranslateMessage converts keystroke messages
involving character keys into WM_CHAR messages.The
message loop provided by MFC calls ::TranslateMessage for
you, so in an MFC application you don't have to do anything
special to translate keystroke messages into WM_CHAR
messages. When you use WM_CHAR messages for keyboard
input, you needn't worry about virtual key codes and shift states
because each WM_CHAR message includes a character code
that maps directly to a symbol in the ANSI character set
(Windows 98) or Unicode character set (Windows 2000).
Assuming that Caps Lock is not turned on, pressing Shift-A
produces the following sequence of messages:

Message Virtual Key Code Character Code

WM_KEYDOWN VK_SHIFT

WM_KEYDOWN 0x41

WM_CHAR 0x41 ("A")

WM_KEYUP 0x41

WM_KEYUP VK_SHIFT

Now you can safely ignore key-up and key-down messages
because everything you need to know about the keystroke is
encoded in the WM_CHAR message. If the Alt key had been
held down while Shift-A was pressed, your application would
have received a WM_SYSCHAR message instead:

Message Virtual Key Code Character Code

WM_SYSKEYDOWN VK_SHIFT

WM_SYSKEYDOWN 0x41

Programming Windows With MFC

 184

WM_SYSCHAR 0x41 ("A")

WM_SYSKEYUP 0x41

WM_SYSKEYUP VK_SHIFT

Since Alt-key combinations are generally used for special
purposes, most applications ignore WM_SYSCHAR messages
and process WM_CHAR messages instead.

Figure 3-6 shows the characters in the ANSI character set.
Since ANSI codes are only 8 bits wide, there are only 256
possible characters. Unicode uses 16-bit character codes,
expanding the possible character count to 65,536. Fortunately,
the first 256 characters in the Unicode character set and the 256
characters in the ANSI character set are identical. Thus, code
like this:

case _T (`a'):
case _T (`A'):

works fine with either character set.

Programming Windows With MFC

 185

Figure 3-6. The ANSI character set.

An ON_WM_CHAR entry in a class's message map routes
WM_CHAR messages to the member function OnChar, which
is prototyped as follows:

afx_msg void OnChar (UINT nChar, UINT nRepCnt, UINT nFlags)

nRepCnt and nFlags have the same meanings that they have in
keystroke messages. nChar holds an ANSI or Unicode
character code. The following code fragment traps presses of
the letter keys, the Enter key, and the Backspace key, all of
which produce WM_CHAR messages:

// In CMainWindow's message map
ON_WM_CHAR ()

void CMainWindow::OnChar (UINT nChar, UINT nRepCnt, UINT
nFlags)

{
 if (((nChar >= _T (`A')) && (nChar <= _T (`Z'))) ||
 ((nChar >= _T (`a')) && (nChar <= _T (`z')))) {
 // Display the character
 }
 else if (nChar == VK_RETURN) {
 // Process the Enter key
 }
 else if (nChar == VK_BACK) {
 // Process the Backspace key
 }
}

If it's unclear to you whether a particular key produces a
WM_CHAR message, there's an easy way to find out. Simply
run the VisualKB application that comes with this book and
press the key. If the key produces a WM_CHAR message, the
message will appear in VisualKB's window.

3.2.6. Dead-Key Messages

There are two keyboard messages I didn't mention because they
are rarely used by application programs. Many international
keyboard drivers allow users to enter a character accented with

Programming Windows With MFC

 186

a diacritic by typing a "dead key" representing the diacritic and
then typing the character itself. ::TranslateMessage translates
WM_KEYUP messages corresponding to dead keys into
WM_DEADCHAR messages, and it translates
WM_SYSKEYUP messages generated by dead keys into
WM_SYSDEADCHAR messages. Windows provides the logic
that combines these messages with character messages to
produce accented characters, so dead-key messages are usually
passed on for default processing. Some applications go the
extra mile by intercepting dead-key messages and displaying
the corresponding diacritics. The keystroke following the dead
key then replaces the diacritic with an accented character. This
provides visual feedback to the user and prevents dead keys
from having to be typed "blind."

You can process dead-key messages in an MFC application by
including an ON_WM_DEADCHAR or
ON_WM_SYSDEADCHAR entry in a message map and
supplying handling functions named OnDeadChar and
OnSysDeadChar. You'll find descriptions of these functions in
the MFC documentation.

3.2.7. The Caret

The flashing vertical bar that word processors and other
Windows applications use to mark the point where the next
character will be inserted is called the caret. The caret serves
the same purpose in a Windows application that the blinking
underscore cursor does in a character-mode application. MFC's
CWnd class provides the seven caret-handling functions shown
below. The one essential function missing from this
table, ::DestroyCaret, must be called directly from the
Windows API because there is no MFC equivalent.

CWnd Caret Handling Functions

Function Description

CreateCaret Creates a caret from a bitmap

CreateSolidCaret Creates a solid line caret or a block caret

CreateGrayCaret Creates a gray line caret or a block caret

GetCaretPos Retrieves the current caret position

Programming Windows With MFC

 187

SetCaretPos Sets the caret position

ShowCaret Displays the caret

HideCaret Hides the caret

The caret, like the mouse cursor, is a shared resource. However,
unlike the cursor, which is a global resource shared by
everyone, the caret is a per-thread resource that's shared by all
windows running on the same thread. To ensure proper
handling, applications that use the caret should follow these
simple rules:

x A window that uses the caret should "create" a caret when it receives the
input focus and should "destroy" the caret when it loses the input focus.
A caret is created with CreateCaret, CreateSolidCaret, or
CreateGrayCaret and is destroyed with ::DestroyCaret.

x Once a caret is created, it isn't visible until ShowCaret is called to make
it visible. The caret can be hidden again with a call to HideCaret. If calls
to HideCaret are nested—that is, if HideCaret is called twice or more in
succession—ShowCaret must be called an equal number of times to
make the caret visible again.

x When you draw in the area of a window that contains the caret outside
an OnPaint handler, you should hide the caret to avoid corrupting the
display. You can redisplay the caret after drawing is complete. You don't
need to hide and redisplay the caret in an OnPaint
handlerbecause ::BeginPaint and ::EndPaint do that for you.

x A program moves the caret by calling SetCaretPos. Windows doesn't
move the caret for you; it's your program's job to process incoming
keyboard messages (and perhaps mouse messages) and manipulate the
caret accordingly. GetCaretPos can be called to retrieve the caret's
current position.

As you know, a window receives a WM_SETFOCUS message
when it receives the input focus and a WM_KILLFOCUS
message when it loses the input focus. The following
WM_SETFOCUS handler creates a caret, positions it, and
displays it when a window gains the input focus:

void CMainWindow::OnSetFocus (CWnd* pWnd)
{
 CreateSolidCaret (2, m_cyChar);
 SetCaretPos (m_ptCaretPos);
 ShowCaret ();
}

And this WM_KILLFOCUS handler saves the caret position
and hides and destroys the caret when the input focus is lost:

Programming Windows With MFC

 188

void CMainWindow::OnKillFocus (CWnd* pWnd)
{
 HideCaret ();
 m_ptCaretPos = GetCaretPos ();
 ::DestroyCaret ();
}

In these examples, m_cyChar holds the caret height and
m_ptCaretPos holds the caret position. The caret position is
saved when the focus is lost, and it is restored when the focus is
regained. Since only one window can have the input focus at a
time and keyboard messages are directed to the window with
the input focus, this approach to caret handling ensures that the
window that "owns" the keyboard also owns the caret.

The caret-create functions serve two purposes: defining the
look of the caret and claiming ownership of the caret. The caret
is actually a bitmap, so you can customize its appearance by
supplying a bitmap to CWnd::CreateCaret. But more often than
not you'll find that the easier-to-use CreateSolidCaret function
(it's easier to use because it doesn't require a bitmap) does the
job nicely. CreateSolidCaret creates a solid block caret that,
depending on how you shape it, can look like a rectangle, a
horizontal or vertical line, or something in between. In the
OnSetFocus example above, the statement

CreateSolidCaret (2, m_cyChar);

creates a vertical-line caret 2 pixels wide whose height equals
the character height of the current font (m_cyChar). This is the
traditional way of creating a caret for use with a proportional
font, although some programs key the width of the caret to the
width of a window border. You can obtain the border width by
calling ::GetSystemMetrics with the value SM_CXBORDER.
For fixed-pitch fonts, you might prefer to use a block caret
whose width and height equal the width and height of one
character, as in

CreateSolidCaret (m_cxChar, m_cyChar);

A block caret doesn't make sense for a proportionally spaced
font because of the varying character widths. CWnd's

Programming Windows With MFC

 189

CreateGrayCaret function works just as CreateSolidCaret does
except that it creates a gray caret rather than a solid black caret.
Caret dimensions are expressed in logical units, so if you
change the mapping mode before creating a caret, the
dimensions you specify will be transformed accordingly.

As mentioned above, it's your job to move the caret.
CWnd::SetCaretPos repositions the caret, accepting a CPoint
object that contains the x and y client-area coordinates of the
new cursor position. Positioning the caret in a string of text is
fairly straightforward if you're using a fixed-pitch font because
you can calculate a new x offset into the string by multiplying
the character position by the character width. If the font is
proportionally spaced, you'll have to do a little more work.
MFC's CDC::GetTextExtent and CDC::GetTabbedTextExtent
functions enable an application to determine the width, in
logical units, of a string of characters rendered in a proportional
font. (Use GetTabbedTextExtent if the string contains tab
characters.) Given a character position n, you can compute the
corresponding caret position by calling GetTextExtent or
GetTabbedTextExtent to find the cumulative width of the first n
characters. If the string "Hello, world" is displayed at the
position specified by a CPoint object named point and dc is a
device context object, the following statements position the
caret between the "w" and "o" in "world":

CSize size = dc.GetTextExtent (_T ("Hello, w"), 8);
SetCaretPos (CPoint (point.x + size.cx, point.y));

GetTextExtent returns a CSize object whose cx and cy members
reflect the string's width and height.

Caret positioning gets slightly more complicated if you're using
a proportional font and don't have a character offset to work
with, which is exactly the situation you'll find yourself in when
you write an OnLButtonDown handler that repositions the caret
when the left mouse button is clicked. Suppose your application
maintains a variable named m_nCurrentPos that denotes the
current character position—the position within a string at which
the next typed character will be inserted. It's easy to calculate
the new caret position when the left or right arrow key is
pressed: You just decrement or increment m_nCurrentPos and
call GetTextExtent or GetTabbedTextExtent with the new

Programming Windows With MFC

 190

character position to compute a new offset. But what if the left
mouse button is clicked at some arbitrary location in the string?
There is no relationship between where the mouse click
occurred and m_nCurrentPos, so you must use the horizontal
difference between the cursor position and the beginning of the
string to work backward to a character position, and then
calculate the final caret position. This inevitably involves some
iteration since there is neither a Windows API function nor an
MFC class member function that accepts a string and a pixel
offset and returns the character at that offset. Fortunately, it's
not terribly difficult to write that function yourself. You'll see
how it's done in the next section.

3.3. The VisualKB Application

Let's put together everything we've learned in this chapter by
developing a sample application that accepts text input from the
keyboard, displays the text in a window, and lets the user
perform simple text-editing functions that include moving the
caret with the arrow keys and the mouse. For educational
purposes, let's add a scrolling display of the keyboard messages
that the program receives and the parameters bundled with
those messages, similar to the KEYLOOK program featured in
Charles Petzold's Programming Windows. In addition to
providing a hands-on lesson in mouse and keyboard handling,
the program, which I've called VisualKB, demonstrates some
techniques for handling proportionally spaced text. VisualKB
also provides a handy tool for examining the stream of
messages coming from the keyboard and experimenting to see
what messages result from specific keystrokes and key
combinations.

Figure 3-7 shows how VisualKB looks right after it's started
and the letters "MFC" are typed. The typed characters appear in
the text-entry rectangle (the "text box") at the top of the
window, and keyboard messages are displayed in the rectangle
below (the "message list"). The first and final messages were
generated when the Shift key was pressed and released. In
between, you see the WM_KEYDOWN, WM_CHAR, and
WM_KEYUP messages generated by the M, F, and C
keystrokes. To the right of each message name, VisualKB
displays the message parameters. "Char" is the virtual key code
or character code passed to the message handler in nChar.

Programming Windows With MFC

 191

"Rep" is the repeat count in nRepCnt. "Scan" is the OEM scan
code stored in bits 0 through 7 of the nFlags parameter, and
"Ext," "Con," "Prv," and "Tran" represent the extended key flag,
context code, previous key state, and transition state values.
VisualKB also displays WM_SYSKEYDOWN,
WM_SYSCHAR, and WM_SYSKEYUP messages, which you
can verify by pressing an Alt key combination such as Alt-S.

Figure 3-7. The VisualKB window after the letters MFC are typed.

Take a moment to play with VisualKB and see what happens
when you press various keys and combinations of keys. In
addition to typing in text, you can use the following editing
keys:

x The left and right arrow keys move the caret one character to the left and
right. Home and End move the caret to the beginning and end of the line.
The caret can also be moved with mouse clicks.

x The Backspace key deletes the character to the left of the caret and
moves the caret one position to the left.

x The Esc and Enter keys clear the text and reset the caret to the beginning
of the line.

Typed characters are entered in overstrike mode, so if the caret
isn't at the end of the line, the next character you type will
replace the character to the right. If you type beyond the end of
the line (about one character position to the left of the far right
end of the text box), the text is automatically cleared. I resisted

Programming Windows With MFC

 192

the urge to add features such as horizontal scrolling and insert
mode to keep the program from becoming unnecessarily
complicated. Besides, in the real world you can avoid writing a
lot of the code for a program like this one by using an edit
control, which provides similar text-entry capabilities and
includes support for cutting and pasting, scrolling, and much
more. Unless you're writing the world's next great word
processor, an edit control probably has everything you need.
Still, it's useful to see how text entry is done the hard way, not
only because it's instructive but also because you'll get a feel
for what's happening inside Windows when you start using edit
controls.

There is much to be learned from VisualKB's source code,
which is reproduced in Figure 3-8. The following sections point
out a few of the highlights.

Figure 3-8. The VisualKB application.

VisualKB.h

#define MAX_STRINGS 12

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CWnd
{
protected:
 int m_cxChar; // Average character width
 int m_cyChar; // Character height
 int m_cyLine; // Vertical line spacing in message box
 int m_nTextPos; // Index of current character in text box
 int m_nTabStops[7]; // Tab stop locations for tabbed output
 int m_nTextLimit; // Maximum width of text in text box
 int m_nMsgPos; // Current position in m_strMessages
array

 HCURSOR m_hCursorArrow; // Handle of arrow cursor
 HCURSOR m_hCursorIBeam; // Handle of I-beam cursor

 CPoint m_ptTextOrigin; // Origin for drawing input text
 CPoint m_ptHeaderOrigin; // Origin for drawing header text
 CPoint m_ptUpperMsgOrigin; // Origin of first line in message box
 CPoint m_ptLowerMsgOrigin; // Origin of last line in message box
 CPoint m_ptCaretPos; // Current caret position

 CRect m_rcTextBox; // Coordinates of text box

Programming Windows With MFC

 193

 CRect m_rcTextBoxBorder; // Coordinates of text box border
 CRect m_rcMsgBoxBorder; // Coordinates of message box border
 CRect m_rcScroll; // Coordinates of scroll rectangle

 CString m_strInputText; // Input text
 CString m_strMessages[MAX_STRINGS]; // Array of message strings

public:
 CMainWindow ();

protected:
 int GetNearestPos (CPoint point);
 void PositionCaret (CDC* pDC = NULL);
 void DrawInputText (CDC* pDC);
 void ShowMessage (LPCTSTR pszMessage, UINT nChar, UINT nRepCnt,
 UINT nFlags);
 void DrawMessageHeader (CDC* pDC);
 void DrawMessages (CDC* pDC);

protected:
 virtual void PostNcDestroy ();

 afx_msg int OnCreate (LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnPaint ();
 afx_msg void OnSetFocus (CWnd* pWnd);
 afx_msg void OnKillFocus (CWnd* pWnd);
 afx_msg BOOL OnSetCursor (CWnd* pWnd, UINT nHitTest, UINT
message);
 afx_msg void OnLButtonDown (UINT nFlags, CPoint point);
 afx_msg void OnKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnKeyUp (UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnSysKeyDown (UINT nChar, UINT nRepCnt, UINT
nFlags);
 afx_msg void OnSysKeyUp (UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnChar (UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnSysChar (UINT nChar, UINT nRepCnt, UINT nFlags);

 DECLARE_MESSAGE_MAP ()
};

 VisualKB.cpp

#include <afxwin.h>
#include "VisualKB.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;

Programming Windows With MFC

 194

}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CWnd)
 ON_WM_CREATE ()
 ON_WM_PAINT ()
 ON_WM_SETFOCUS ()
 ON_WM_KILLFOCUS ()
 ON_WM_SETCURSOR ()
 ON_WM_LBUTTONDOWN ()
 ON_WM_KEYDOWN ()
 ON_WM_KEYUP ()
 ON_WM_SYSKEYDOWN ()
 ON_WM_SYSKEYUP ()
 ON_WM_CHAR ()
 ON_WM_SYSCHAR ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 m_nTextPos = 0;
 m_nMsgPos = 0;

 //
 // Load the arrow cursor and the I-beam cursor and save their handles.
 //
 m_hCursorArrow = AfxGetApp ()->LoadStandardCursor (IDC_ARROW);
 m_hCursorIBeam = AfxGetApp ()->LoadStandardCursor (IDC_IBEAM);

 //
 // Register a WNDCLASS.
 //
 CString strWndClass = AfxRegisterWndClass (
 0,
 NULL,
 (HBRUSH) (COLOR_3DFACE + 1),
 AfxGetApp ()->LoadStandardIcon (IDI_WINLOGO)
);

 //
 // Create a window.
 //
 CreateEx (0, strWndClass, _T ("Visual Keyboard"),
 WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION |
WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT,
 NULL, NULL);
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpCreateStruct)
{
 if (CWnd::OnCreate (lpCreateStruct) == -1)
 return -1;

Programming Windows With MFC

 195

 //
 // Initialize member variables whose values are dependent upon screen
 // metrics.
 //
 CClientDC dc (this);

 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);
 m_cxChar = tm.tmAveCharWidth;
 m_cyChar = tm.tmHeight;
 m_cyLine = tm.tmHeight + tm.tmExternalLeading;

 m_rcTextBoxBorder.SetRect (16, 16, (m_cxChar * 64) + 16,
 ((m_cyChar * 3) / 2) + 16);

 m_rcTextBox = m_rcTextBoxBorder;
 m_rcTextBox.InflateRect (-2, -2);

 m_rcMsgBoxBorder.SetRect (16, (m_cyChar * 4) + 16,
 (m_cxChar * 64) + 16, (m_cyLine * MAX_STRINGS) +
 (m_cyChar * 6) + 16);

 m_rcScroll.SetRect (m_cxChar + 16, (m_cyChar * 6) + 16,
 (m_cxChar * 63) + 16, (m_cyLine * MAX_STRINGS) +
 (m_cyChar * 5) + 16);

 m_ptTextOrigin.x = m_cxChar + 16;
 m_ptTextOrigin.y = (m_cyChar / 4) + 16;
 m_ptCaretPos = m_ptTextOrigin;
 m_nTextLimit = (m_cxChar * 63) + 16;

 m_ptHeaderOrigin.x = m_cxChar + 16;
 m_ptHeaderOrigin.y = (m_cyChar * 3) + 16;

 m_ptUpperMsgOrigin.x = m_cxChar + 16;
 m_ptUpperMsgOrigin.y = (m_cyChar * 5) + 16;

 m_ptLowerMsgOrigin.x = m_cxChar + 16;
 m_ptLowerMsgOrigin.y = (m_cyChar * 5) +
 (m_cyLine * (MAX_STRINGS - 1)) + 16;

 m_nTabStops[0] = (m_cxChar * 24) + 16;
 m_nTabStops[1] = (m_cxChar * 30) + 16;
 m_nTabStops[2] = (m_cxChar * 36) + 16;
 m_nTabStops[3] = (m_cxChar * 42) + 16;
 m_nTabStops[4] = (m_cxChar * 46) + 16;
 m_nTabStops[5] = (m_cxChar * 50) + 16;
 m_nTabStops[6] = (m_cxChar * 54) + 16;

 //
 // Size the window.
 //

 CRect rect (0, 0, m_rcMsgBoxBorder.right + 16,
 m_rcMsgBoxBorder.bottom + 16);

Programming Windows With MFC

 196

 CalcWindowRect (&rect);

 SetWindowPos (NULL, 0, 0, rect.Width (), rect.Height (),
 SWP_NOZORDER | SWP_NOMOVE | SWP_NOREDRAW);
 return 0;
}

void CMainWindow::PostNcDestroy ()
{
 delete this;
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 //
 // Draw the rectangles surrounding the text box and the message list.
 //
 dc.DrawEdge (m_rcTextBoxBorder, EDGE_SUNKEN, BF_RECT);
 dc.DrawEdge (m_rcMsgBoxBorder, EDGE_SUNKEN, BF_RECT);

 //
 // Draw all the text that appears in the window.
 //
 DrawInputText (&dc);
 DrawMessageHeader (&dc);
 DrawMessages (&dc);
}

void CMainWindow::OnSetFocus (CWnd* pWnd)
{
 //
 // Show the caret when the VisualKB window receives the input focus.
 //
 CreateSolidCaret (max (2, ::GetSystemMetrics (SM_CXBORDER)),
 m_cyChar);
 SetCaretPos (m_ptCaretPos);
 ShowCaret ();
}

void CMainWindow::OnKillFocus (CWnd* pWnd)
{
 //
 // Hide the caret when the VisualKB window loses the input focus.
 //
 HideCaret ();
 m_ptCaretPos = GetCaretPos ();
 ::DestroyCaret ();
}

BOOL CMainWindow::OnSetCursor (CWnd* pWnd, UINT nHitTest, UINT
message)
{
 //
 // Change the cursor to an I-beam if it's currently over the text box,

Programming Windows With MFC

 197

 // or to an arrow if it's positioned anywhere else.
 //
 if (nHitTest == HTCLIENT) {
 DWORD dwPos = ::GetMessagePos ();
 CPoint point (LOWORD (dwPos), HIWORD (dwPos));
 ScreenToClient (&point);
 ::SetCursor (m_rcTextBox.PtInRect (point) ?
 m_hCursorIBeam : m_hCursorArrow);
 return TRUE;
 }
 return CWnd::OnSetCursor (pWnd, nHitTest, message);
}

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)

{
 //
 / Move the caret if the text box is clicked with the left mouse button.
 //
 if (m_rcTextBox.PtInRect (point)) {
 m_nTextPos = GetNearestPos (point);
 PositionCaret ();
 }
}

void CMainWindow::OnKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)
{
 ShowMessage (_T ("WM_KEYDOWN"), nChar, nRepCnt, nFlags);

 //
 // Move the caret when the left, right, Home, or End key is pressed.
 //
 switch (nChar) {
 case VK_LEFT:
 if (m_nTextPos != 0) {
 m_nTextPos--;
 PositionCaret ();
 }
 break;

 case VK_RIGHT:
 if (m_nTextPos != m_strInputText.GetLength ()) {
 m_nTextPos++;
 PositionCaret ();
 }
 break;

 case VK_HOME:
 m_nTextPos = 0;
 PositionCaret ();
 break;

 case VK_END:
 m_nTextPos = m_strInputText.GetLength ();
 PositionCaret ();
 break;

Programming Windows With MFC

 198

 }
}

void CMainWindow::OnChar (UINT nChar, UINT nRepCnt, UINT nFlags)
{
 ShowMessage (_T ("WM_CHAR"), nChar, nRepCnt, nFlags);

 CClientDC dc (this);

 //
 // Determine which character was just input from the keyboard.
 //
 switch (nChar) {

 case VK_ESCAPE:
 case VK_RETURN:
 m_strInputText.Empty ();
 m_nTextPos = 0;
 break;

 case VK_BACK:
 if (m_nTextPos != 0) {
 m_strInputText = m_strInputText.Left (m_nTextPos - 1) +

 m_strInputText.Right (m_strInputText.GetLength () -
 m_nTextPos);
 m_nTextPos--;
 }
 break;

 default:
 if ((nChar >= 0) && (nChar <= 31))
 return;

 if (m_nTextPos == m_strInputText.GetLength ()) {
 m_strInputText += nChar;
 m_nTextPos++;
 }
 else
 m_strInputText.SetAt (m_nTextPos++, nChar);

 CSize size = dc.GetTextExtent (m_strInputText,
 m_strInputText.GetLength ());

 if ((m_ptTextOrigin.x + size.cx) > m_nTextLimit) {
 m_strInputText = nChar;
 m_nTextPos = 1;
 }
 break;
 }

 //
 // Update the contents of the text box.
 //
 HideCaret ();
 DrawInputText (&dc);

Programming Windows With MFC

 199

 PositionCaret (&dc);
 ShowCaret ();
}

void CMainWindow::OnKeyUp (UINT nChar, UINT nRepCnt, UINT nFlags)
{
 ShowMessage (_T ("WM_KEYUP"), nChar, nRepCnt, nFlags);
 CWnd::OnKeyUp (nChar, nRepCnt, nFlags);
}

void CMainWindow::OnSysKeyDown (UINT nChar, UINT nRepCnt, UINT
nFlags)
{
 ShowMessage (_T ("WM_SYSKEYDOWN"), nChar, nRepCnt, nFlags);
 CWnd::OnSysKeyDown (nChar, nRepCnt, nFlags);
}
 void CMainWindow::OnSysChar (UINT nChar, UINT nRepCnt, UINT
nFlags)
{
 ShowMessage (_T ("WM_SYSCHAR"), nChar, nRepCnt, nFlags);
 CWnd::OnSysChar (nChar, nRepCnt, nFlags);
}

void CMainWindow::OnSysKeyUp (UINT nChar, UINT nRepCnt, UINT nFlags)
{
 ShowMessage (_T ("WM_SYSKEYUP"), nChar, nRepCnt, nFlags);
 CWnd::OnSysKeyUp (nChar, nRepCnt, nFlags);
}

void CMainWindow::PositionCaret (CDC* pDC)
{
 BOOL bRelease = FALSE;

 //
 // Create a device context if pDC is NULL.
 //
 if (pDC == NULL) {
 pDC = GetDC ();
 bRelease = TRUE;
 }

 //
 // Position the caret just right of the character whose 0-based
 // index is stored in m_nTextPos.
 //
 CPoint point = m_ptTextOrigin;
 CString string = m_strInputText.Left (m_nTextPos);
 point.x += (pDC->GetTextExtent (string, string.GetLength ())).cx;
 SetCaretPos (point);

 //
 // Release the device context if it was created inside this function.
 //
 if (bRelease)
 ReleaseDC (pDC);
}

Programming Windows With MFC

 200

int CMainWindow::GetNearestPos (CPoint point)
{
 //
 // Return 0 if (point.x, point.y) lies to the left of the text in
 // the text box.
 //
 if (point.x <= m_ptTextOrigin.x)
 return 0;

 //
 // Return the string length if (point.x, point.y) lies to the right
 // of the text in the text box.
 //
 CClientDC dc (this);
 int nLen = m_strInputText.GetLength ();
 if (point.x >= (m_ptTextOrigin.x +
 (dc.GetTextExtent (m_strInputText, nLen)).cx))
 return nLen;

 //
 // Knowing that (point.x, point.y) lies somewhere within the text
 // in the text box, convert the coordinates into a character index.
 //
 int i = 0;
 int nPrevChar = m_ptTextOrigin.x;
 int nNextChar = m_ptTextOrigin.x;

 while (nNextChar < point.x) {
 i++;
 nPrevChar = nNextChar;
 nNextChar = m_ptTextOrigin.x +
 (dc.GetTextExtent (m_strInputText.Left (i), i)).cx;
 }
 return ((point.x - nPrevChar) < (nNextChar - point.x)) ? i - 1: i;
}

void CMainWindow::DrawInputText (CDC* pDC)
{
 pDC->ExtTextOut (m_ptTextOrigin.x, m_ptTextOrigin.y,
 ETO_OPAQUE, m_rcTextBox, m_strInputText, NULL);
}

void CMainWindow::ShowMessage (LPCTSTR pszMessage, UINT nChar,
 UINT nRepCnt, UINT nFlags)
{
 //
 // Formulate a message string.
 //
 CString string;
 string.Format (_T ("%s\t %u\t %u\t %u\t %u\t %u\t %u\t %u"),
 pszMessage, nChar, nRepCnt, nFlags & 0xFF,
 (nFlags >> 8) & 0x01,
 (nFlags >> 13) & 0x01,
 (nFlags >> 14) & 0x01,
 (nFlags >> 15) & 0x01);

Programming Windows With MFC

 201

 //
 // Scroll the other message strings up and validate the scroll
 // rectangle to prevent OnPaint from being called.
 //
 ScrollWindow (0, -m_cyLine, &m_rcScroll);
 ValidateRect (m_rcScroll);

 //
 // Record the new message string and display it in the window.
 //
 CClientDC dc (this);
 dc.SetBkColor ((COLORREF) ::GetSysColor (COLOR_3DFACE));

 m_strMessages[m_nMsgPos] = string;
 dc.TabbedTextOut (m_ptLowerMsgOrigin.x, m_ptLowerMsgOrigin.y,
 m_strMessages[m_nMsgPos], m_strMessages[m_nMsgPos].GetLength
(),
 sizeof (m_nTabStops), m_nTabStops, m_ptLowerMsgOrigin.x);

 //
 // Update the array index that specifies where the next message
 // string will be stored.
 //
 if (++m_nMsgPos == MAX_STRINGS)
 m_nMsgPos = 0;
}

void CMainWindow::DrawMessageHeader (CDC* pDC)
{
 static CString string =
 _T ("Message\tChar\tRep\tScan\tExt\tCon\tPrv\tTran");

 pDC->SetBkColor ((COLORREF) ::GetSysColor (COLOR_3DFACE));
 pDC->TabbedTextOut (m_ptHeaderOrigin.x, m_ptHeaderOrigin.y,
 string, string.GetLength (), sizeof (m_nTabStops), m_nTabStops,
 m_ptHeaderOrigin.x);
}

void CMainWindow::DrawMessages (CDC* pDC)
{
 int nPos = m_nMsgPos;
 pDC->SetBkColor ((COLORREF) ::GetSysColor (COLOR_3DFACE));

 for (int i=0; i<MAX_STRINGS; i++) {
 pDC->TabbedTextOut (m_ptUpperMsgOrigin.x,
 m_ptUpperMsgOrigin.y + (m_cyLine * i),
 m_strMessages[nPos], m_strMessages[nPos].GetLength (),
 sizeof (m_nTabStops), m_nTabStops, m_ptUpperMsgOrigin.x);

 if (++nPos == MAX_STRINGS)
 nPos = 0;
 }
}

Programming Windows With MFC

 202

3.3.1. Handling the Caret

CMainWindow's OnSetFocus and OnKillFocus handlers create
a caret when the VisualKB window receives the input focus
and destroy the caret when the focus goes away. OnSetFocus
sets the caret width to 2 or the SM_CXBORDER value
returned by ::GetSystemMetrics, whichever is greater, so that
the caret is visible even on very high resolution displays:

void CMainWindow::OnSetFocus (CWnd* pWnd)
{
 CreateSolidCaret (max (2, ::GetSystemMetrics
(SM_CXBORDER)),
 m_cyChar);
 SetCaretPos (m_ptCaretPos);
 ShowCaret ();
}

OnKillFocus hides the caret, saves the current caret position so
that it can be restored the next time OnSetFocus is called, and
then destroys the caret:

void CMainWindow::OnKillFocus (CWnd* pWnd)
{
 HideCaret ();
 m_ptCaretPos = GetCaretPos ();
 ::DestroyCaret ();
}

m_ptCaretPos is initialized with the coordinates of the leftmost
character cell in CMainWindow::OnCreate. It is reinitialized
with the current caret position whenever the window loses the
input focus. Therefore, the call to SetCaretPos in OnSetFocus
sets the caret to the beginning of the text box when the program
is first activated and restores the caret to the position it
previously occupied in subsequent invocations.

The OnKeyDown handler moves the caret when the left arrow,
right arrow, Home key, or End key is pressed. None of these
keys generates WM_CHAR messages, so VisualKB processes
WM_KEYDOWN messages instead. A switch-case block
executes the appropriate handling routine based on the virtual
key code in nChar. The handler for the left arrow key (whose

Programming Windows With MFC

 203

virtual key code is VK_LEFT) consists of the following
statements:

case VK_LEFT:
 if (m_nTextPos != 0) {
 m_nTextPos—;
 PositionCaret ();
 }
 break;

m_nTextPos is the position at which the next character will be
inserted into the text string. The text string itself is stored in the
CString object m_strInputText. PositionCaret is a protected
CMainWindow member function that uses GetTextExtent to
find the pixel position in the text string that corresponds to the
character position stored in m_nTextPos and then moves the
caret to that position with SetCaretPos. After checking
m_nTextPos to make sure it hasn't run out of room to move the
caret further left, the VK_LEFT handler decrements
m_nTextPos and calls PositionCaret to move the caret. If
m_nTextPos is 0, which indicates that the caret is already
positioned at the left end of the entry field, the keystroke is
ignored. The other VK_ handlers are similarly straightforward.
The VK_END handler, for example, moves the caret to the end
of the text string with the statements

m_nTextPos = m_strInputText.GetLength ();
PositionCaret ();

GetLength is a CString member function that returns the
number of characters in the string. The use of a CString object
to hold the text entered into VisualKB makes text handling
much simpler than it would be if strings were handled simply as
arrays of characters. For example, all the OnChar handler has
to do to add a new character to the end of the string is

m_strInputText += nChar;

When it comes to string handling, it doesn't get much easier
than that. Browse through VisualKB.cpp and you'll see several
CString member functions and operators, including
CString::Left, which returns a CString object containing the
string's left n characters; CString::Right, which returns the

Programming Windows With MFC

 204

rightmost n characters; and CString::Format, which performs
printf-like string formatting.

It seemed a shame not to have VisualKB do anything with the
mouse when half of this chapter is devoted to mouse input, so I
added an OnLButtonDown handler, which allows the caret to be
moved with a click of the left mouse button in the text box. In
addition to adding a nice feature to the program, the
OnLButtonDown handler also lets us examine a function that
takes the point at which a mouse click occurred and returns the
corresponding character position within a text string. The
button handler itself is exceedingly simple:

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 if (m_rcTextBox.PtInRect (point)) {
 m_nTextPos = GetNearestPos (point);
 PositionCaret ();
 }
}

m_rcTextBox is the rectangle that bounds the text box. After
calling CRect::PtInRect to determine whether the click
occurred inside the rectangle (and returning without doing
anything if it didn't), OnLButtonDown computes a new value
for m_nTextPos with CMainWindow::GetNearestPos and calls
PositionCaret to reposition the caret. GetNearestPos first
checks to see if the mouse was clicked to the left of the
character string and returns 0 for the new character position if it
was:

if (point.x <= m_ptTextOrigin.x)
 return 0;

m_ptTextOrigin holds the coordinates of the character string's
upper left corner. GetNearestPos then returns an integer value
that equals the string length if the mouse was clicked beyond
the string's rightmost extent:

CClientDC dc (this);
int nLen = m_strInputText.GetLength ();
if (point.x >= (m_ptTextOrigin.x +
 (dc.GetTextExtent (m_strInputText, nLen)).cx))

Programming Windows With MFC

 205

 return nLen;

The result? If the mouse was clicked inside the text rectangle
but to the right of the rightmost character, the caret is moved to
the end of the string.

If GetNearestPos makes it beyond the return nLen statement,
we can conclude that the cursor was clicked inside the text box
somewhere between the character string's left and right extents.
GetNearestPos next initializes three variables and executes a
while loop that calls GetTextExtent repeatedly until nPrevChar
and nNextChar hold values that bracket the x coordinate of the
point at which the click occurred:

while (nNextChar < point.x) {
 i++;
 nPrevChar = nNextChar;
 nNextChar = m_ptTextOrigin.x +
 (dc.GetTextExtent (m_strInputText.Left (i), i)).cx;
}

When the loop falls through, i holds the number of the
character position to the right of where the click occurred, and
i-1 identifies the character position to the left. Finding the
character position is a simple matter of finding out whether
point.x is closer to nNextChar or nPrevChar and returning i or
i-1. This is accomplished with the following one-liner:

return ((point.x - nPrevChar) < (nNextChar - point.x)) ? i - 1: i;

That's it; given an arbitrary point in the window's client area,
GetNearestPos returns a matching character position in the
string m_strInputText. A small amount of inefficiency is built
into this process because the farther to the right the point lies,
the more times GetTextExtent is called. (The while loop starts
with the leftmost character in the string and moves right one
character at a time until it finds the character just to the right of
the point at which the click occurred.) A really smart
implementation of GetNearestPos could do better by using a
binary-halving approach, starting in the middle of the string and
iterating to the left or right by a number of characters equal to
half the area that hasn't already been covered until it zeroes in

Programming Windows With MFC

 206

on the characters to the left and right of the point at which the
click occurred. A character position in a string 128 characters
long could then be located with no more than 8 calls to
GetTextExtent. The brute force technique employed by
GetNearestPos could require as many as 127 calls.

3.3.2. Entering and Editing Text

The logic for entering and editing text is found in
CMainWindow::OnChar. OnChar's processing strategy can be
summarized in this way:

1. Echo the message to the screen.
2. Modify the text string using the character code in nChar.
3. Draw the modified text string on the screen.
4. Reposition the caret.

Step 1 is accomplished by calling
CMainWindow::ShowMessage, which is discussed in the next
section. How the text string is modified in step 2 depends on
what the character code in nChar is. If the character is an
escape or a return (VK_ESCAPE or VK_RETURN),
m_strInputText is cleared by a call to CString::Empty (another
handy member of the CString class) and m_nTextPos is set to 0.
If the character is a backspace (VK_BACK) and m_nTextPos
isn't 0, the character at m_nTextPos-1 is deleted and
m_nTextPos is decremented. If the character is any other value
between 0 and 31, inclusive, it is ignored. If nChar represents
any other character, it is added to m_strInputText at the current
character position and m_nTextPos is incremented accordingly.

With the character that was just entered now added to
m_strInputText, OnChar hides the caret and proceeds to step 3.
The modified string is output to the screen with
CMainWindow::DrawInputText, which in turn relies on
CDC::ExtTextOut to do its text output. ExtTextOut is similar to
TextOut, but it offers a few options that TextOut doesn't. One of
those options is an ETO_OPAQUE flag that fills a rectangle
surrounding the text with the device context's current
background color. Repainting the entire rectangle erases
artifacts left over from the previous text-output operation if the
string's new width is less than its previous width. The border
around the text box (and the border around the message list) is
drawn with the CDC::DrawEdge function, which calls through

Programming Windows With MFC

 207

to the ::DrawEdge API function. DrawEdge is the easy way to
draw 3D borders that conform to the specifications prescribed
in the Windows interface guidelines and that automatically
adapt to changes in the system colors used for highlights and
shadows. You can use a related CDC function, Draw3dRect, to
draw simple 3D rectangles in your choice of colors.

OnChar finishes up by calling PositionCaret to reposition the
caret using the value in m_nTextPos and then ShowCaret to
redisplay the caret. As an experiment, comment out OnChar's
calls to HideCaret and ShowCaret, recompile the program, and
type a few characters into the text-entry field. This simple
exercise will make clear why it's important to hide the caret
before painting text behind it.

3.3.3. Other Points of Interest

As you move the cursor around inside the VisualKB window,
notice that it changes from an arrow when it's outside the text
box to an I-beam when it's inside. CMainWindow's constructor
registers a WNDCLASS with a NULL class cursor and stores
the handles for the system's arrow and I-beam cursors in the
member variables m_hCursorArrow and m_hCursorIBeam.
Each time CMainWindow receives a WM_SETCURSOR
message, its OnSetCursor handler checks the current cursor
location and calls ::SetCursor to display the appropriate cursor.

VisualKB echoes keyboard messages to the screen by calling
CMainWindow::ShowMessage each time a message is received.
ShowMessage formulates a new output string with help from
CString::Format, copies the result to the least recently used
entry in the m_strMessages array, scrolls the message list up
one line, and calls CDC::TabbedTextOut to display the new
message string on the bottom line. TabbedTextOut is used in
lieu of TextOut so that columns will be properly aligned in the
output. (Without tab characters, it's virtually impossible to get
characters in a proportionally spaced font to line up in
columnar format.) The tab stop settings are initialized in
OnCreate using values based on the default font's average
character width and stored in the m_nTabStops array. Message
strings are saved in the m_strMessages array so the OnPaint
handler can repaint the message display when necessary. The
CMainWindow data member m_nMsgPos marks the current

Programming Windows With MFC

 208

position in the array—the index of the array element that the
next string will be copied to. m_nMsgPos is incremented each
time ShowMessage is called and wrapped around to 0 when it
reaches the array limit so that m_strMessages can maintain a
record of the last 12 keyboard messages received.

VisualKB's CMainWindow class includes OnKeyUp,
OnSysKeyDown, OnSysKeyUp, and OnSysChar handlers whose
only purpose is to echo keyboard messages to the screen. Each
message handler is careful to call the corresponding message
handler in the base class before returning, as shown here:

void CMainWindow::OnSysKeyDown (UINT nChar, UINT nRepCnt,
UINT nFlags)
{

 CWnd::OnSysKeyDown (nChar, nRepCnt, nFlags);
}

Nonclient-area mouse messages and system keyboard messages
are frequently catalysts for other messages, so it's important to
forward them to the base class to permit default processing to
take place.

Programming Windows With MFC

 209

Chapter 4. Menus
Up to now, the programs we've developed have lacked an
important feature found in nearly every Microsoft Windows
application: a menu. It's time to remedy that omission by
learning how to incorporate menus into our code.

Drop-down menus may be the most widely recognized user
interface element in the world. Nearly everyone who sits down
in front of a computer and sees a menu knows that clicking an
item in the menu bar displays a drop-down list of commands.
Even novice computer users quickly catch on once they see
menus demonstrated a time or two. Many computer users
remember what it was like to use a new MS-DOS
application—learning unintuitive key combinations and
memorizing obscure commands to carry out basic tasks. Menus,
which sprang out of research at Xerox's famed Palo Alto
Research Center (PARC) in the 1970s and were popularized by
the Apple Macintosh in the 1980s, make computers vastly more
approachable by making concise lists of commands readily
available and allowing users to select those commands through
the simple act of pointing and clicking. Menus aren't required
in Windows programs, but they contribute to ease of use. The
more complicated the program and its command structure, the
more likely it is to benefit from a menu-based user interface.

Because menus are such an important part of the user interface,
Windows provides a great deal of support to applications that
use them. The operating system does the bulk of the work
involved in managing menus, including displaying the menu
bar, dropping down a menu when an item on the menu bar is
clicked, and notifying the application when a menu item is
selected. MFC further enhances the menu processing model by
routing menu item commands to designated class member
functions, providing an update mechanism for keeping menu
items in sync with the state of the application, and more.

We'll begin this chapter by reviewing the fundamentals of
menu handling and building a rudimentary program that
features a menu. Then we'll move on to more advanced topics
and build a second application, one that offers a few bells and
whistles.

Programming Windows With MFC

 210

4.1. Menu Basics

Let's start by defining a few terms. The menu bar that appears
at the top of a window is an application's top-level menu, and
the commands in it are called top-level menu items. The menu
that appears when a top-level menu item is clicked is a
drop-down menu, and items in that menu are referred to as
menu items. Menu items are identified by integer values called
menu item IDs or command IDs. Windows also supports popup
menus that look like drop-down menus but can be popped up
anywhere on the screen. The context menu that appears when
you right-click an object in the Windows shell is an example of
a popup menu. Drop-down menus are actually popup menus
that are submenus of an application's top-level menu.

Most top-level windows also feature a system menu containing
commands for restoring, moving, sizing, minimizing,
maximizing, and closing the window. Windows provides this
menu, which you display by clicking the left mouse button on
the small icon in the window's title bar, clicking the right
mouse button in the body of the title bar, or pressing
Alt-Spacebar.

MFC encapsulates menus and the actions that can be performed
on them in the CMenu class. CMenu contains one public data
member—an HMENU named m_hMenu that holds the handle
of the corresponding menu—and several member functions that
provide object-oriented wrappers around functions in the
Windows API. CMenu::TrackPopupMenu, for example,
displays a context menu, and CMenu::EnableMenuItem enables
or disables a menu item. CMenu also contains a pair of virtual
functions named DrawItem and MeasureItem that you can
override if you want to create stylized menu items containing
bitmaps and other graphical user interface elements.

You can create a menu in an MFC application in three ways:

x You can create a menu programmatically, piecing it together using
CreateMenu, InsertMenu, and other CMenu functions.

x You can initialize a series of data structures defining the menu's contents
and create the menu with CMenu::LoadMenuIndirect.

x You can create a menu resource and load the resulting menu into the
application at run time.

Programming Windows With MFC

 211

The third method is far and away the most common because it
allows you to define a menu off line using a resource editor or,
if you'd prefer, a simple text editor. We'll focus on this method
in the first half of the chapter.

4.1.1. Creating a Menu

The easiest way to create a menu is to add a menu template to
your application's resource file. A resource file is a scriptlike
text file that defines an application's resources; by convention,
it is assigned the file name extension .rc and hence is often
referred to as an RC file. A resource is a binary object such as a
menu or an icon. Windows supports several types of resources,
including (but not limited to) menus, icons, bitmaps, and strings.
The resource compiler Rc.exe, which is provided with the
Windows Software Development Kit (SDK) and is also part of
Microsoft Visual C++, compiles the statements in an RC file
and links the resulting resources into the application's EXE file.
Every resource is identified by a string or an integer ID such as
"MyMenu" (string) or IDR_MYMENU (integer). Integer
resource IDs are given human-readable names such as
IDR_MYMENU by means of #define statements in a header
file. Once a resource is compiled and linked into an EXE, it can
be loaded with a simple function call.

A menu template contains all the information the resource
compiler needs to create a menu resource, including the menu's
resource ID, the names of the menu items, and the IDs of the
menu items. The menu template in Figure 4-1 comes from a
project created by Visual C++'s MFC AppWizard. It defines a
single menu resource consisting of a top-level menu and four
submenus—File, Edit, View, and Help. IDR_MAINFRAME is
the menu's resource ID. PRELOAD and DISCARDABLE are
resource attributes. PRELOAD tells Windows to load the menu
resource into memory when the application starts.
DISCARDABLE allows Windows to discard the resource if the
memory it occupies is needed for other purposes. (If it's needed
again, a discarded resource can be reloaded from the
application's EXE file.) PRELOAD and DISCARDABLE are
both artifacts of 16-bit Windows and have no impact on either
the performance or behavior of 32-bit applications.

Figure 4-1. A menu template generated by the MFC AppWizard.

Programming Windows With MFC

 212

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New\tCtrl+N", ID_FILE_NEW
 MENUITEM "&Open...\tCtrl+O", ID_FILE_OPEN
 MENUITEM "&Save\tCtrl+S", ID_FILE_SAVE
 MENUITEM "Save &As...", ID_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "Recent File",
ID_FILE_MRU_FILE1,GRAYED
 MENUITEM SEPARATOR
 MENUITEM "E&xit", ID_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", ID_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", ID_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", ID_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", ID_EDIT_PASTE
 END
 POPUP "&View"
 BEGIN
 MENUITEM "&Toolbar", ID_VIEW_TOOLBAR
 MENUITEM "&Status Bar", ID_VIEW_STATUS_BAR
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About MyApp...", ID_APP_ABOUT
 END
END

The statements between the opening and closing BEGIN and
END statements define the contents of the menu, with POPUP
statements defining top-level menu items and the associated
submenus. The BEGIN and END statements following POPUP
statements bracket MENUITEM statements defining the items
in the submenus. The special MENUITEM SEPARATOR
statement adds a thin horizontal line to the menu; it's used to
provide visual separation between groups of menu items. The
ampersands in the text of the menu items identify shortcut keys
the user can press in combination with the Alt key to display
submenus and select items from submenus. In this example, the
File-Exit command can be selected by pressing Alt-F and then
X. Windows underlines the F in "File" and the x in "Exit" so
that they're easily identifiable as shortcut keys. If two or more
items in the same menu are assigned the same shortcut key, the
shortcut cycles among the menu items and no selection is made
until the Enter key is pressed.

Programming Windows With MFC

 213

An ellipsis (...) in the text of a menu item indicates that further
input is required after the item is selected. If the user selects
Save, the document is saved immediately. But if the user
selects Save As, a dialog box is displayed instead. To be
consistent with other Windows applications, use an ellipsis for
any menu item whose action is deferred until subsequent input
is received from the user. If an item in the top-level menu
executes a command instead of displaying a submenu, the text
of the item should be followed with an exclamation mark, as in

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 [...]
 POPUP "&Edit"
 [...]
 POPUP "&View"
 [...]
 POPUP "&Help"
 [...]
 MENUITEM "E&xit!", ID_APP_EXIT
END

It's legal to include MENUITEM statements in top-level menus
this way, but these days it's considered bad form. And it's likely
to surprise your users, most of whom are accustomed to seeing
top-level menu items display submenus rather than take action
themselves.

The ID_ values following the menu item names in the
MENUITEM statements are command IDs. Every menu item
should be assigned a unique command ID because it is this
value that identifies the menu item to your application when the
user makes a selection. By convention, IDs are defined with
#define statements, and each is given the name ID_ or IDM_
followed by an item name spelled in capital letters. MFC's
Afxres.h header file defines ID_ values for commonly used
commands such as File-New and Edit-Paste. When you write
document/view applications, using the predefined IDs
automatically connects certain menu items to handling
functions the framework provides. In nondocument/view
applications, use of the predefined IDs is optional.

Valid values for menu item IDs range from 1 through 0xEFFF,
but MFC Technical Note #20 recommends restricting the range
to 0x8000 through 0xDFFF. IDs equal to 0xF000 and higher

Programming Windows With MFC

 214

are reserved for Windows—specifically, for items in the system
menu. The range 0xE000 to 0xEFFF is reserved for MFC. In
practice, it's perfectly safe to use values lower than 0x8000, and
in fact, restricting item IDs to the range 1 through 0x7FFF
sidesteps a nasty bug in Windows 95 that affects owner-draw
menu items. This bug is explained—and work-arounds are
presented—later in this chapter.

The text following the tab character in some of the menu items
(for example, the "Ctrl+O" in "Open…\tCtrl+O") identifies an
accelerator. An accelerator is a key or combination of keys that,
when pressed, has the same effect as selecting a menu item.
Commonly used accelerators include Ctrl-X for Edit-Cut,
Ctrl-C for Edit-Copy, and Ctrl-V for Edit-Paste. Text strings
denoting accelerator keys are preceded by tab characters for
alignment purposes. The default font used in menus is
proportionally spaced, so it's futile to try to align menu text
with spaces.

When you define a menu item with MENUITEM, you also
have the option of specifying the item's initial state. The
GRAYED keyword accompanying the File-Recent File
command in Figure 4-1 disables the menu item so that it can't
be selected. A disabled item is "grayed out" as a visual
reminder that it is disabled. Grayed menu text is displayed in
the system color COLOR_GRAYTEXT, which defaults to gray,
with a thin border added to provide a three-dimensional look.
Another optional keyword is CHECKED, which places a check
mark beside a menu item. Although common in Windows
applications written in C using the SDK, menu item state
specifiers are rarely used in MFC applications because the
framework provides a powerful mechanism for updating menu
items programmatically. You'll learn more about this
mechanism shortly.

4.1.2. Loading and Displaying a Menu

At run time, a menu resource needs to be loaded and attached to
a window. When the window is displayed, the menu will also
be displayed.

One way to attach a menu to a window is to pass the menu's
resource ID to CFrameWnd::Create. The following statement

Programming Windows With MFC

 215

creates a frame window and attaches the menu whose resource
ID is IDR_MAINFRAME:

Create (NULL, _T ("My Application"),
WS_OVERLAPPEDWINDOW,
 rectDefault, NULL, MAKEINTRESOURCE
(IDR_MAINFRAME));

The sixth argument to Create identifies the menu resource. The
MAKEINTRESOURCE macro converts an integer resource ID
to an LPTSTR data type ID compatible with functions that
expect string-based resource IDs. When the window appears on
the screen, the menu will be visible just below the title bar.

A second method involves the CFrameWnd::LoadFrame
function. Given a resource ID, LoadFrame creates a frame
window and attaches a menu, much like Create. The statement

LoadFrame (IDR_MAINFRAME, WS_OVERLAPPEDWINDOW,
NULL, NULL);

creates a window and attaches the menu IDR_MAINFRAME.
Some MFC programs—particularly wizard-generated
applications—use LoadFrame instead of Create because
LoadFrame will load icons and other resources, too.
MAKEINTRESOURCE isn't required in this example because
it's built into LoadFrame.

Yet another method for loading a top-level menu and attaching
it to a window is to construct a CMenu object, call
CMenu::LoadMenu to load the menu resource, and call
CWnd::SetMenu, like this:

CMenu menu;
menu.LoadMenu (IDR_MAINFRAME);
SetMenu (&menu);
menu.Detach ();

In this example, CMenu::Detach is called to detach the menu
from the CMenu object so that the menu won't be destroyed
prematurely when menu goes out of scope. The CMenu class
helps guard against resource leaks by calling
CMenu::DestroyMenu from its destructor. As a rule, a menu

Programming Windows With MFC

 216

loaded with LoadMenu should be destroyed with DestroyMenu
before the application that loaded the menu terminates.
However, a menu attached to a window is automatically
destroyed when the window is destroyed, so detaching a menu
from a CMenu object after attaching it to a window won't cause
a resource leak unless the menu is later detached from the
window without a subsequent call to DestroyMenu.

The SetMenu technique offers no advantage over simply
passing the menu ID to Create or LoadFrame when a program
contains just one menu, but it's very useful in programs that
contain two or more menus. Suppose you want to write an
application that allows the user to choose short or long menus.
Here's one way to go about it. First, create two menu
resources—one for the short menus, another for the long. At
startup, load the menu resources into CMenu data members
named m_menuLong and m_menuShort. Then choose the menu
type based on the value of a BOOL data member named
m_bShortMenu, which is TRUE if short menus are selected and
FALSE if they're not. Here's what the window's constructor
might look like:

Create (NULL, _T ("My Application"));
m_menuLong.LoadMenu (IDR_LONGMENU);
m_menuShort.LoadMenu (IDR_SHORTMENU);
SetMenu (m_bShortMenu ? &m_menuShort : &m_menuLong);

In response to a command from the user, the following code
would switch from long menus to short menus:

m_bShortMenu = TRUE;
SetMenu (&m_menuShort);
DrawMenuBar ();

And these statements would switch back to long menus:

m_bShortMenu = FALSE;
SetMenu (&m_menuLong);
DrawMenuBar ();

CWnd::DrawMenuBar redraws the menu bar to reflect the
change. You should always follow calls to SetMenu with calls
to DrawMenuBar unless the window isn't visible on the screen.

Programming Windows With MFC

 217

What about code to delete the menus, since only one will be
attached to a window when the application ends? If
m_menuLong and m_menuShort are data members of the frame
window class, their destructors will be called when the frame
window is destroyed and the menus associated with them will
also be deleted. Therefore, explicit calls to DestroyMenu aren't
required.

4.1.3. Responding to Menu Commands

When the user pulls down a menu, the window to which the
menu is attached receives a series of messages. Among the first
to arrive is a WM_INITMENU message notifying the window
that a top-level menu item was selected. Before a submenu is
displayed, the window receives a WM_INITMENUPOPUP
message. Windows programs sometimes take this opportunity
to update the submenu's menu items—for example, putting a
check mark next to the Toolbar item in the View menu if the
application's toolbar is displayed or unchecking the menu item
if the toolbar is currently hidden. As the highlight travels up
and down the menu, the window receives
WM_MENUSELECT messages reporting the latest position in
the menu. In SDK-style programs, WM_MENUSELECT
messages are sometimes used to display context-sensitive menu
help in a status bar.

The most important message of all is the WM_COMMAND
message sent when the user selects an item from the menu. The
low word of the message's wParam parameter holds the item's
command ID. SDK programmers often use switch-case logic to
vector execution to the appropriate handling routine, but MFC
provides a better way. An ON_COMMAND statement in the
message map links WM_COMMAND messages referencing a
particular menu item to the class member function, or command
handler, of your choice. The following message-map entry tells
MFC to call OnFileSave when the ID_FILE_SAVE menu item
is selected:

ON_COMMAND (ID_FILE_SAVE, OnFileSave)

Other items in the File menu might be mapped like this:

Programming Windows With MFC

 218

ON_COMMAND (ID_FILE_NEW, OnFileNew)
ON_COMMAND (ID_FILE_OPEN, OnFileOpen)
ON_COMMAND (ID_FILE_SAVE, OnFileSave)
ON_COMMAND (ID_FILE_SAVE_AS, OnFileSaveAs)
ON_COMMAND (ID_FILE_EXIT, OnFileExit)

Now OnFileNew will be activated when File-New is selected,
OnFileOpen will be called when File-Open is selected, and so
on.

Command handlers take no arguments and return no values.
The OnFileExit function, for example, is typically implemented
like this

void CMainWindow::OnFileExit ()
{
 PostMessage (WM_CLOSE, 0, 0);
}

This command handler terminates the application by posting a
WM_CLOSE message to the application's main window. This
message ultimately ends the application by causing a
WM_QUIT message to appear in the application's message
queue.

You can name command handlers whatever you like. There are
no naming criteria as there are for WM_ message handlers.
Handlers for WM_PAINT and WM_CREATE must be named
OnPaint and OnCreate unless you care to rewrite MFC's
ON_WM_PAINT and ON_WM_CREATE macros. But you
could just as easily have written the message-map entries for
our File menu like this:

ON_COMMAND (ID_FILE_NEW, CreateMeAFile)
ON_COMMAND (ID_FILE_OPEN, OpenMeAFile)
ON_COMMAND (ID_FILE_SAVE, SaveThisFile)
ON_COMMAND (ID_FILE_SAVE_AS,
SaveThisFileUnderAnotherName)
ON_COMMAND (ID_FILE_EXIT, KillThisAppAndDoItNow)

4.1.4. Command Ranges

Sometimes it's more efficient to process a group of menu item
IDs with a single command handler than to provide a separate

Programming Windows With MFC

 219

member function for each ID. Consider a drawing application
that contains a Color menu from which the user can choose red,
green, or blue. Selecting a color from the menu sets a member
variable named m_nCurrentColor to 0, 1, or 2 and subsequently
changes the color of what the user draws on the screen. The
message-map entries and command handlers for these menu
items might be implemented as follows:

// In CMainWindow's message map
ON_COMMAND (ID_COLOR_RED, OnColorRed)
ON_COMMAND (ID_COLOR_GREEN, OnColorGreen)
ON_COMMAND (ID_COLOR_BLUE, OnColorBlue)

void CMainWindow::OnColorRed ()
{
 m_nCurrentColor = 0;
}

void CMainWindow::OnColorGreen ()
{
 m_nCurrentColor = 1;
}

void CMainWindow::OnColorBlue ()
{
 m_nCurrentColor = 2;
}

This isn't a terribly efficient way to process messages from the
Color menu because each message handler does essentially the
same thing. And the inefficiency would be compounded if the
menu contained 10 or 20 different colors rather than just 3.

One way to reduce the redundancy in the command handlers
for the Color menu is to map all three items to the same
CMainWindow member function and retrieve the menu item ID
with CWnd::GetCurrentMessage, as shown below.

// In CMainWindow's message map
ON_COMMAND (ID_COLOR_RED, OnColor)
ON_COMMAND (ID_COLOR_GREEN, OnColor)
ON_COMMAND (ID_COLOR_BLUE, OnColor)

void CMainWindow::OnColor ()
{
 UINT nID = (UINT) LOWORD (GetCurrentMessage ()->wParam);
 m_nCurrentColor = nID _ ID_COLOR_RED;
}

Programming Windows With MFC

 220

This approach works just fine as long as the command IDs
constitute a contiguous range beginning with
ID_COLOR_RED, but it's an imperfect solution because it
relies on the value of wParam. If the meaning of the wParam
parameter accompanying WM_COMMAND messages changes
in a future release of Windows (as it did between Windows 3.1
and Windows 95), you might have to modify this code to get it
to work properly. And even though you've reduced the number
of command handlers from three to one, you're still adding
three separate entries to the class's message map at a cost of 24
bytes each.

A better solution is the MFC ON_COMMAND_RANGE
macro, which maps a range of contiguous command IDs to a
common handling function. Assuming ID_COLOR_RED is the
lowest value in the range and ID_COLOR_BLUE is the highest,
ON_COMMAND_RANGE allows you to rewrite the code for
the Color menu like this:

// In CMainWindow's message map
ON_COMMAND_RANGE (ID_COLOR_RED, ID_COLOR_BLUE, OnColor)

void CMainWindow::OnColor (UINT nID)
{
 m_nCurrentColor = nID _ ID_COLOR_RED;
}

When OnColor is called because the user chose an item from
the Color menu, nID contains ID_COLOR_RED,
ID_COLOR_GREEN, or ID_COLOR_BLUE. One simple
statement sets m_nCurrentColor to the proper value, no matter
which menu item was selected.

4.1.5. Updating the Items in a Menu

In many applications, menu items must be constantly updated
to reflect internal states of the application or its data. When a
color is selected from a Color menu, for example, the
corresponding menu item should be checked or bulleted to
indicate which color is currently selected. An application that
features an Edit menu with Cut, Copy, and Paste commands
should disable the Cut and Copy menu items when nothing is
selected and disable the Paste menu item when the clipboard is
empty. Menus are more than just lists of commands. Deployed

Programming Windows With MFC

 221

properly, they provide visual feedback to the user about the
current state of the application and make clear what commands
are (and are not) available at any given moment.

Windows programmers have traditionally taken one of two
approaches to keeping menu items up to date. The first
approach is illustrated by the following code sample, which is a
modified version of the OnColor function presented in the
previous section:

void CMainWindow::OnColor (UINT nID)
{
 CMenu* pMenu = GetMenu ();
 pMenu->CheckMenuItem (m_nCurrentColor + ID_COLOR_RED,
MF_UNCHECKED);
 pMenu->CheckMenuItem (nID, MF_CHECKED);
 m_nCurrentColor = nID _ ID_COLOR_RED;
}

In this example, the Color menu is updated the moment an item
is selected. First CMenu::CheckMenuItem is called with an
MF_UNCHECKED flag to uncheck the item that's currently
checked. Then CheckMenuItem is called with an
MF_CHECKED flag to place a check mark by the item that
was just selected. The next time the Color menu is pulled down,
the check mark will identify the current color.

The second approach is to move the code that updates the menu
to an OnInitMenuPopup handler that's activated in response to
WM_INITMENUPOPUP messages. This strategy positions the
check mark each time the Color menu is pulled down, just
before the menu is actually displayed. OnInitMenuPopup
receives three parameters: a CMenu pointer referencing the
submenu that's about to be displayed, a UINT value holding the
submenu's 0-based index in the top-level menu, and a BOOL
value that's nonzero if the message pertains to the system menu
instead of a submenu. Here's what an OnInitMenuPopup
handler for the Color menu might look like.
COLOR_MENU_INDEX is an index specifying the Color
menu's position in the top-level menu:

// In CMainWindow's message map
ON_WM_INITMENUPOPUP ()

Programming Windows With MFC

 222

void CMainWindow::OnInitMenuPopup (CMenu* pPopupMenu, UINT nIndex,
 BOOL bSysMenu)
{
 if (!bSysMenu && (nIndex == COLOR_MENU_INDEX)) {
 pPopupMenu->CheckMenuItem (ID_COLOR_RED,
MF_UNCHECKED);
 pPopupMenu->CheckMenuItem (ID_COLOR_GREEN,
MF_UNCHECKED);
 pPopupMenu->CheckMenuItem (ID_COLOR_BLUE,
MF_UNCHECKED);
 pPopupMenu->CheckMenuItem (m_nCurrentColor +
ID_COLOR_RED,
 MF_CHECKED);
 }
}

This method is more robust than the first because it decouples
the code that processes commands from the code that updates
the menu. Now any function anywhere in the application can
change the drawing color, and the menu will be updated
automatically the next time it's displayed.

MFC provides a similar but more convenient mechanism for
keeping menu items updated. Through
ON_UPDATE_COMMAND_UI macros in the message map,
you can designate selected member functions to serve as update
handlers for individual menu items. When the user pulls down
a menu, MFC traps the ensuing WM_INITMENUPOPUP
message and calls the update handlers for all the items in the
menu. Each update handler is passed a pointer to a CCmdUI
object whose member functions can be used to modify the
menu item. And because the CCmdUI class isn't specific to any
particular type of user interface (UI) element, the same update
handler that serves a menu item can serve toolbar buttons and
other UI objects, too. Abstracting UI updates in this way
simplifies the program logic and helps make an application
independent of the operating system it's written for.

Here's how to rewrite the code for the Color menu to take
advantage of update handlers:

// In CMainWindow's message map
ON_COMMAND_RANGE (ID_COLOR_RED, ID_COLOR_BLUE, OnColor)
ON_UPDATE_COMMAND_UI (ID_COLOR_RED, OnUpdateColorRed)
ON_UPDATE_COMMAND_UI (ID_COLOR_GREEN, OnUpdateColorGreen)
ON_UPDATE_COMMAND_UI (ID_COLOR_BLUE, OnUpdateColorBlue)

Programming Windows With MFC

 223

void CMainWindow::OnColor (UINT nID)
{
 m_nCurrentColor = nID _ ID_COLOR_RED;
}

void CMainWindow::OnUpdateColorRed (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nCurrentColor == 0);
}

void CMainWindow::OnUpdateColorGreen (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nCurrentColor == 1);
}

void CMainWindow::OnUpdateColorBlue (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nCurrentColor == 2);
}

ON_UPDATE_COMMAND_UI connects menu items to
update handlers just as ON_COMMAND connects menu items
to command handlers. Now selecting a color from the Color
menu will activate CMainWindow::OnColor, and before the
Color menu is displayed, each item's update handler will be
called. The handlers shown here do their updating by calling
CCmdUI::SetCheck to check or uncheck the corresponding
menu item. Called with a nonzero value, SetCheck adds a check
mark to the corresponding menu item; called with a 0, it
displays no check mark.

SetCheck is just one of the CCmdUI methods that you can use
to update a menu item. The following table shows a complete
list, along with a description of each function's effect on a menu
item.

Function Description

CCmdUI::Enable Enables or disables a menu item

CCmdUI::SetCheck Checks or unchecks a menu item

CCmdUI::SetRadio Bullets or unbullets a menu item

CCmdUI::SetText Changes the text of a menu item

SetRadio works like SetCheck but adds or removes a bullet
instead of a check mark. SetRadio is one of those MFC

Programming Windows With MFC

 224

functions that doesn't have a direct counterpart in the Windows
API; the framework does some work behind the scenes to allow
menu items to be bulleted rather than checked. Ideally, you'd
use a bullet to indicate which item in a group of mutually
exclusive menu items is currently selected and a check mark to
indicate whether a feature is on or off. (In practice, check marks
are frequently used for both.) Enable enables or disables a
menu item, and SetText allows you to change the text of the
menu item on the fly.

4.1.6. Update Ranges

For updating groups of menu items with a single update handler,
MFC provides the ON_UPDATE_COMMAND_UI_RANGE
macro, which is to ON_COMMAND_RANGE as
ON_UPDATE_COMMAND_UI is to ON_COMMAND. To
understand how ON_UPDATE_COMMAND_UI_RANGE is
used, let's revisit the Color menu and assume that it contains
eight color choices: black, blue, green, cyan, red, magenta,
yellow, and white, in that order. The corresponding menu item
IDs are ID_COLOR_BLACK through ID_COLOR_WHITE.
Let's also assume that we want to put a bullet by the current
color. Here's the most concise way to do it.

// In CMainWindow's message map
ON_COMMAND_RANGE (ID_COLOR_BLACK, ID_COLOR_WHITE,
OnColor)
ON_UPDATE_COMMAND_UI_RANGE (ID_COLOR_BLACK,
ID_COLOR_WHITE,
 OnUpdateColorUI)

void CMainWindow::OnColor (UINT nID)
{
 m_nCurrentColor = nID _ ID_COLOR_BLACK;
}

void CMainWindow::OnUpdateColorUI (CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (pCmdUI->m_nID - ID_COLOR_BLACK ==
 m_nCurrentColor);
}

m_nID is a public data member of CCmdUI that holds the ID of
the menu item for which the update handler was called. By
comparing m_nID minus ID_COLOR_BLACK to
m_nCurrentColor and passing the result to SetRadio, you can
ensure that only the current color is bulleted.

Programming Windows With MFC

 225

Just how useful is MFC's command-update mechanism? Later
in this chapter, we'll develop a sample program that uses two
identical Color menus—one that's invoked from a top-level
menu and another that's invoked from a right-click context
menu. The same command and update handler will serve both
menus, and no matter how a color is selected, both menus will
be updated to match—with one line of code no less. It's hard to
imagine how updating menu items could be any easier.

4.1.7. Keyboard Accelerators

As you design your application's menus, you have the option of
using keyboard accelerators to assign shortcut keys to any or all
of the menu items. An accelerator produces a
WM_COMMAND message just as making a menu selection
does. Adding keyboard accelerators to your application is
simplicity itself. You create an accelerator table resource—a
special resource that correlates menu item IDs to keys or
combinations of keys—and load the resource into your program
with a function call. If the application's main window is a frame
window, Windows and the framework do the rest,
automatically trapping presses of accelerator keys and notifying
your application with WM_COMMAND messages.

An accelerator table resource is defined by an
ACCELERATORS block in an RC file. Here is the general
format:

 ResourceID ACCELERATORS
BEGIN

END

ResourceID is the accelerator table's resource ID. The
statements between BEGIN and END identify the accelerator
keys and the corresponding menu item IDs. The MFC
AppWizard generates accelerator tables using the following
format:

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE
BEGIN
 "N", ID_FILE_NEW, VIRTKEY,CONTROL
 "O", ID_FILE_OPEN, VIRTKEY,CONTROL
 "S", ID_FILE_SAVE, VIRTKEY,CONTROL

Programming Windows With MFC

 226

 "Z", ID_EDIT_UNDO, VIRTKEY,CONTROL
 "X", ID_EDIT_CUT, VIRTKEY,CONTROL
 "C", ID_EDIT_COPY, VIRTKEY,CONTROL
 "V", ID_EDIT_PASTE, VIRTKEY,CONTROL
 VK_BACK, ID_EDIT_UNDO, VIRTKEY,ALT
 VK_DELETE, ID_EDIT_CUT, VIRTKEY,SHIFT
 VK_INSERT, ID_EDIT_COPY,
VIRTKEY,CONTROL
 VK_INSERT, ID_EDIT_PASTE, VIRTKEY,SHIFT
END

In this example, IDR_MAINFRAME is the accelerator table's
resource ID. PRELOAD and MOVEABLE are load options
that, like the equivalent keywords in MENU statements, have
no effect in the Win32 environment. Each line in the table
defines one accelerator. The first entry in each line defines the
accelerator key, and the second identifies the corresponding
menu item. The VIRTKEY keyword tells the resource compiler
that the first entry is a virtual key code, and the keyword
following it—CONTROL, ALT, or SHIFT—identifies an
optional modifier key. In this example, Ctrl-N is an accelerator
for File-New, Ctrl-O is an accelerator for File-Open, and so on.
The Edit menu's Undo, Cut, Copy, and Paste functions each
have two accelerators defined: Ctrl-Z and Alt-Backspace for
Undo, Ctrl-X and Shift-Del for Cut, Ctrl-C and Ctrl-Ins for
Copy, and Ctrl-V and Shift-Ins for Paste.

Like menus, keyboard accelerators must be loaded and attached
to a window before they'll do anything. For a frame window,
LoadAccelTable does the loading and attaching in one step:

LoadAccelTable (MAKEINTRESOURCE (IDR_MAINFRAME));

LoadFrame also does the job nicely. In fact, the same function
call that loads the menu also loads the accelerator table if the
two resources share the same ID:

LoadFrame (IDR_MAINFRAME, WS_OVERLAPPEDWINDOW, NULL,
NULL);

For accelerators to work, the message loop must include a call
to the API function ::TranslateAccelerator, as shown here:

while (GetMessage (&msg, NULL, 0, 0)) {

Programming Windows With MFC

 227

 if (!TranslateAccelerator (hwnd, hAccel, &msg)) {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
}

MFC's CFrameWnd class handles this part for you. Specifically,
it overrides the virtual PreTranslateMessage function that it
inherits from CWnd and calls ::TranslateAccelerator if it sees
an accelerator table has been loaded—that is, if the frame
window's m_hAccelTable data member contains a non-NULL
accelerator table handle. Not surprisingly, LoadAccelTable
loads an accelerator resource and copies the handle to
m_hAccelTable. LoadFrame does the same by calling
LoadAccelTable.

Accelerators must be handled differently when loaded for
nonframe windows that lack the accelerator support in
CFrameWnd. Suppose you derive a custom window class from
CWnd and want to use accelerators, too. Here's how you'd go
about it:

1. Add an m_hAccelTable data member (type HACCEL) to the derived
class.

2. Early in your application's lifetime, use the API
function ::LoadAccelerators to load the accelerator table. Copy the
handle returned by ::LoadAccelerators to m_hAccelTable.

3. In the window class, override PreTranslateMessage and
call ::TranslateAccelerator with the handle stored in m_hAccelTable.
Use the value returned by ::TranslateAccelerator as the return value for
PreTranslateMessage so that the message won't be translated and
dispatched if ::TranslateAccelerator has dispatched it already.

Here's how it looks in code:

// In CMainWindow's constructor
m_hAccelTable = ::LoadAccelerators (AfxGetInstanceHandle (),
 MAKEINTRESOURCE (IDR_ACCELERATORS));

// PreTranslateMessage override
BOOL CMainWindow::PreTranslateMessage (MSG* pMsg)
{
 if (CWnd::PreTranslateMessage (pMsg))
 return TRUE;
 return ((m_hAccelTable != NULL) &&
 ::TranslateAccelerator (m_hWnd, m_hAccelTable, pMsg));
}

Programming Windows With MFC

 228

With this framework in place, a CWnd-type window will use
accelerators just as a frame window does. Note that accelerators
loaded with ::LoadAccelerators (or LoadAccelTable) don't
need to be deleted before termination because Windows deletes
them automatically.

Using accelerators to provide shortcuts for commonly used
menu commands is preferable to processing keystroke
messages manually for two reasons. The first is that
accelerators simplify the programming logic. Why write
WM_KEYDOWN and WM_CHAR handlers if you don't have
to? The second is that if your application's window contains
child windows and a child window has the input focus,
keyboard messages will go to the child window instead of the
main window. (Child windows are discussed in Chapter 7.) As
you learned in Chapter 3, keyboard messages always go to the
window with the input focus. But when an accelerator is
pressed, Windows makes sure the resulting WM_COMMAND
message goes to the main window even if one of its children
has the input focus.

Accelerators are so useful for trapping keystrokes that they're
sometimes used apart from menus. If you want to be notified
any time the Ctrl-Shift-F12 combination is pressed, for example,
simply create an accelerator for that key combination with a
statement like this one:

VK_F12, ID_CTRL_SHIFT_F12, VIRTKEY, CONTROL, SHIFT

Then map the accelerator to a class member function by adding
an

ON_COMMAND (ID_CTRL_SHIFT_F12, OnCtrlShiftF12)

entry to the message map. Presses of Ctrl-Shift-F12 will
thereafter activate OnCtrlShiftF12, even if no menu item is
assigned the ID ID_CTRL_SHIFT_F12.

4.2. The Shapes Application

Let's put what we've learned so far to work by building an
application that uses menus and accelerators and also uses
MFC's UI update mechanism to keep menu items in sync with

Programming Windows With MFC

 229

data members whose values reflect internal application states.
For the first time, we'll use AppWizard to generate the initial
source code for the application and ClassWizard to write
message handlers. We'll also use ClassWizard to write
command handlers and update handlers for the application's
menu items. AppWizard and ClassWizard are MFC code
generators that conserve development time by reducing the
amount of code you have to write.

The application, which is named Shapes, is shown in Figure 4-2.
Shapes displays a polygon in the center of a frame window.
You can change the polygon's shape by selecting a command
from the Shape menu (Circle, Triangle, or Square) or pressing
the corresponding keyboard accelerator key (F7, F8, or F9).

Figure 4-2. The Shapes window.

The program's source code is reproduced in Figure 4-3. When
you write an application using the wizards, however, the source
code doesn't tell the whole story; it's just as important to
understand how the source code was created, and by whom.
Therefore, I'll begin with a step-by-step description of how to
create the initial source code for Shapes with the MFC
AppWizard. Then we'll pause to examine what AppWizard has
wrought.

Figure 4-3. The Shapes program.

Programming Windows With MFC

 230

Shapes.h

// Shapes.h : main header file for the SHAPES application
//

#if !defined(AFX_SHAPES_H__437C8B37_5C45_11D2_8E53_006008A82731__INCLUDED
_)
#define AFX_SHAPES_H__437C8B37_5C45_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CShapesApp:
// See Shapes.cpp for the implementation of this class
//

class CShapesApp : public CWinApp
{
public:
 CShapesApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CShapesApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

public:
 //{{AFX_MSG(CShapesApp)
 afx_msg void OnAppAbout();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_SHAPES_H__437C8B37_5C45_11D2_8E53_006008A82731__INCLUDED_)

Programming Windows With MFC

 231

Shapes.cpp

// Shapes.cpp : Defines the class behaviors for the application.
//
#include "stdafx.h"
"#include "Shapes.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CShapesApp

BEGIN_MESSAGE_MAP(CShapesApp, CWinApp)
 //{{AFX_MSG_MAP(CShapesApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CShapesApp construction

CShapesApp::CShapesApp()
{
}

///
// The one and only CShapesApp object

CShapesApp theApp;

///
// CShapesApp initialization

BOOL CShapesApp::InitInstance()
{
 // Standard initialization

 // Change the registry key under which our settings are stored.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 CMainFrame* pFrame = new CMainFrame;
 m_pMainWnd = pFrame;

 // create and load the frame with its resources

 pFrame->LoadFrame(IDR_MAINFRAME,
 WS_OVERLAPPEDWINDOW ¦ FWS_ADDTOTITLE,
NULL,
 NULL);

Programming Windows With MFC

 232

 pFrame->ShowWindow(SW_SHOW);
 pFrame->UpdateWindow();

 return TRUE;
}

///
// CShapesApp message handlers

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers

Programming Windows With MFC

 233

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CShapesApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CShapesApp message handlers

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
//

#if !defined(AFX_MAINFRM_H__437C8B3B_5C45_11D2_8E53_006008A82731__INCLUDED
_)
#define
AFX_MAINFRM_H__437C8B3B_5C45_11D2_8E53_006008A82731__INCLUDE
D_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();

Programming Windows With MFC

 234

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__437C8B3B_5C45_11D2_8E53_006008A82731__INCLUDED_
)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Shapes.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()

Programming Windows With MFC

 235

{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;

 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}
///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

Programming Windows With MFC

 236

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 {
 TRACE0("Failed to create view window\n");
 return -1;
 }
 return 0;
}

ChildView.h

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__437C8B3D_5C45_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__437C8B3D_5C45_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 int m_nShape;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();

Programming Windows With MFC

 237

 afx_msg void OnShapeCircle();
 afx_msg void OnShapeTriangle();
 afx_msg void OnShapeSquare();
 afx_msg void OnUpdateShapeCircle(CCmdUI* pCmdUI);
 afx_msg void OnUpdateShapeTriangle(CCmdUI* pCmdUI);
 afx_msg void OnUpdateShapeSquare(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_CHILDVIEW_H__437C8B3D_5C45_11D2_8E53_006008A82731__INCLUD
ED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "Shapes.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()

{
 m_nShape = 1; // Triangle
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_SHAPE_CIRCLE, OnShapeCircle)
 ON_COMMAND(ID_SHAPE_TRIANGLE, OnShapeTriangle)
 ON_COMMAND(ID_SHAPE_SQUARE, OnShapeSquare)
 ON_UPDATE_COMMAND_UI(ID_SHAPE_CIRCLE,
OnUpdateShapeCircle)

Programming Windows With MFC

 238

 ON_UPDATE_COMMAND_UI(ID_SHAPE_TRIANGLE,
OnUpdateShapeTriangle)
 ON_UPDATE_COMMAND_UI(ID_SHAPE_SQUARE,
OnUpdateShapeSquare)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPoint points[3];
 CPaintDC dc(this);

 CRect rcClient;
 GetClientRect (&rcClient);

 int cx = rcClient.Width () / 2;
 int cy = rcClient.Height () / 2;
 CRect rcShape (cx - 45, cy - 45, cx + 45, cy + 45);

 CBrush brush (RGB (255, 0, 0));
 CBrush* pOldBrush = dc.SelectObject (&brush);

 switch (m_nShape) {

 case 0: // Circle
 dc.Ellipse (rcShape);
 break;

 case 1: // Triangle
 points[0].x = cx - 45;
 points[0].y = cy + 45;
 points[1].x = cx;
 points[1].y = cy - 45;
 points[2].x = cx + 45;
 points[2].y = cy + 45;
 dc.Polygon (points, 3);
 break;

Programming Windows With MFC

 239

 case 2: // Square
 dc.Rectangle (rcShape);
 break;
 }
 dc.SelectObject (pOldBrush);
}

void CChildView::OnShapeCircle()
{
 m_nShape = 0;
 Invalidate ();
}

void CChildView::OnShapeTriangle()
{
 m_nShape = 1;
 Invalidate ();
}

void CChildView::OnShapeSquare()
{
 m_nShape = 2;
 Invalidate ();
}

void CChildView::OnUpdateShapeCircle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 0);
}

void CChildView::OnUpdateShapeTriangle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 1);
}

void CChildView::OnUpdateShapeSquare(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 2);
}

Resource.h

//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Shapes.rc
//
#define IDD_ABOUTBOX 100
#define IDR_MAINFRAME 128
#define IDR_SHAPESTYPE 129
#define ID_SHAPE_CIRCLE 32771
#define ID_SHAPE_TRIANGLE 32772
#define ID_SHAPE_SQUARE 32773

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED

Programming Windows With MFC

 240

#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 130
#define _APS_NEXT_COMMAND_VALUE 32774
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

Shapes.rc

//Microsoft Developer Studio generated resource script.
//
#include "resource.h"

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "afxres.h"

///
#undef APSTUDIO_READONLY_SYMBOLS

///
// English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32

#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//

1 TEXTINCLUDE DISCARDABLE
BEGIN
 "resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#include ""afxres.h""\r\n"
 "\0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN
 "#define _AFX_NO_SPLITTER_RESOURCES\r\n"
 "#define _AFX_NO_OLE_RESOURCES\r\n"
 "#define _AFX_NO_TRACKER_RESOURCES\r\n"
 "#define _AFX_NO_PROPERTY_RESOURCES\r\n"

Programming Windows With MFC

 241

 "\r\n"
 "#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)\r\n"
 "#ifdef _WIN32\r\n"
 "LANGUAGE 9, 1\r\n"
 "#pragma code_page(1252)\r\n"
 "#endif //_WIN32\r\n"
 "#include ""res\\Shapes.rc2"
 " // non-Microsoft Visual C++ edited resources\r\n"
 "#include ""afxres.rc"" // Standard components\r\n"
 "#endif\r\n"
 "\0"
END

#endif // APSTUDIO_INVOKED

///
//
// Icon
//

// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDR_MAINFRAME ICON DISCARDABLE
"res\\Shapes.ico"

///
//
// Menu
//

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", ID_APP_EXIT
 END
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Circle\tF7",
ID_SHAPE_CIRCLE
 MENUITEM "&Triangle\tF8",
ID_SHAPE_TRIANGLE
 MENUITEM "&Square\tF9",
ID_SHAPE_SQUARE
 END
END

///
//
// Accelerator
//

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE
BEGIN

Programming Windows With MFC

 242

 VK_F7, ID_SHAPE_CIRCLE, VIRTKEY,
NOINVERT
 VK_F8, ID_SHAPE_TRIANGLE, VIRTKEY,
NOINVERT
 VK_F9, ID_SHAPE_SQUARE, VIRTKEY,
NOINVERT
END

///
//
// Dialog
//

IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 235, 55
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_CAPTION ¦
WS_SYSMENU
CAPTION "About Shapes"
FONT 8, "MS Sans Serif"
BEGIN
 ICON IDR_MAINFRAME,IDC_STATIC,11,17,20,20
 LTEXT "Shapes Version
1.0",IDC_STATIC,40,10,119,8,SS_NOPREFIX
 LTEXT "Copyright (C) 1998",IDC_STATIC,40,25,119,8
 DEFPUSHBUTTON "OK",IDOK,178,7,50,14,WS_GROUP
END

#ifndef _MAC
///
//
// Version
//

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904B0"
 BEGIN
 VALUE "CompanyName", "\0"
 VALUE "FileDescription", "Shapes MFC Application\0"
 VALUE "FileVersion", "1, 0, 0, 1\0"
 VALUE "InternalName", "Shapes\0"
 VALUE "LegalCopyright", "Copyright (C) 1998\0"

Programming Windows With MFC

 243

 VALUE "LegalTrademarks", "\0"
 VALUE "OriginalFilename", "Shapes.EXE\0"
 VALUE "ProductName", "Shapes Application\0"
 VALUE "ProductVersion", "1, 0, 0, 1\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

#endif // !_MAC

///
//
// DESIGNINFO
//

#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
 IDD_ABOUTBOX, DIALOG
 BEGIN
 LEFTMARGIN, 7
 RIGHTMARGIN, 228
 TOPMARGIN, 7
 BOTTOMMARGIN, 48
 END
END
#endif // APSTUDIO_INVOKED

///
//
// String Table
//

STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 IDR_MAINFRAME "Shapes"
END

STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 AFX_IDS_APP_TITLE "Shapes"
 AFX_IDS_IDLEMESSAGE "Ready"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_INDICATOR_EXT "EXT"
 ID_INDICATOR_CAPS "CAP"
 ID_INDICATOR_NUM "NUM"
 ID_INDICATOR_SCRL "SCRL"

Programming Windows With MFC

 244

 ID_INDICATOR_OVR "OVR"
 ID_INDICATOR_REC "REC"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_APP_ABOUT "Display program information, version
number and copyright\nAbout"
 ID_APP_EXIT "Quit the application; prompts to save
documents\nExit"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_NEXT_PANE "Switch to the next window pane\nNext
Pane"
 ID_PREV_PANE "Switch back to the previous window
pane\nPrevious Pane"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_WINDOW_SPLIT "Split the active window into
panes\nSplit"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_EDIT_CLEAR "Erase the selection\nErase"
 ID_EDIT_CLEAR_ALL "Erase everything\nErase All"
 ID_EDIT_COPY "Copy the selection and put it on the
Clipboard\nCopy"
 ID_EDIT_CUT "Cut the selection and put it on the
Clipboard\nCut"
 ID_EDIT_FIND "Find the specified text\nFind"
 ID_EDIT_PASTE "Insert Clipboard contents\nPaste"
 ID_EDIT_REPEAT "Repeat the last action\nRepeat"
 ID_EDIT_REPLACE "Replace specific text with different
text\nReplace"
 ID_EDIT_SELECT_ALL "Select the entire document\nSelect All"
 ID_EDIT_UNDO "Undo the last action\nUndo"
 ID_EDIT_REDO "Redo the previously undone
action\nRedo"
END

STRINGTABLE DISCARDABLE
BEGIN
 AFX_IDS_SCSIZE "Change the window size"
 AFX_IDS_SCMOVE "Change the window position"
 AFX_IDS_SCMINIMIZE "Reduce the window to an icon"
 AFX_IDS_SCMAXIMIZE "Enlarge the window to full size"
 AFX_IDS_SCNEXTWINDOW "Switch to the next document
window"
 AFX_IDS_SCPREVWINDOW "Switch to the previous document
window"
 AFX_IDS_SCCLOSE "Close the active window and prompts to save the

Programming Windows With MFC

 245

documents"
END

STRINGTABLE DISCARDABLE
BEGIN
 AFX_IDS_SCRESTORE "Restore the window to normal size"
 AFX_IDS_SCTASKLIST "Activate Task List"
END

#endif // English (U.S.) resources
///

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//
#define _AFX_NO_SPLITTER_RESOURCES
#define _AFX_NO_OLE_RESOURCES
#define _AFX_NO_TRACKER_RESOURCES
#define _AFX_NO_PROPERTY_RESOURCES

#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE 9, 1
#pragma code_page(1252)
#endif //_WIN32
#include "res\Shapes.rc2" // non-Microsoft Visual C++ edited resources
#include "afxres.rc" // Standard components
#endif

///
#endif // not APSTUDIO_INVOKED

4.2.1. Running the MFC AppWizard

Shapes' source code is a combination of wizard-generated code
and handwritten code. The first step in creating it is to run the
MFC AppWizard. Here's how to get started:

1. Create a new Visual C++ project named Shapes. Select MFC AppWizard
(Exe) as the application type, as shown in Figure 4-4. This will start
AppWizard, which will ask you a series of questions before generating
the project.

Programming Windows With MFC

 246

Figure 4-4. Creating the Shapes project.

2. In AppWizard's Step 1 dialog box, select Single Document as the
application type and uncheck the box labeled Document/View
Architecture Support, as shown in Figure 4-5. The latter is a new option
in Visual C++ 6; it prevents AppWizard from generating an MFC
document/view application. The meaning of Single Document is
discussed in Chapter 8.

Figure 4-5. AppWizard's Step 1 dialog box.

3. In AppWizard's Step 2 dialog box, accept the defaults.
4. In AppWizard's Step 3 dialog box, uncheck the ActiveX Controls box.

When checked, this option adds infrastructure that allows MFC windows
to host ActiveX controls—a subject that we'll cover in Chapter 21.

Programming Windows With MFC

 247

5. In AppWizard's Step 4 dialog box, uncheck the Docking Toolbar, Initial
Status Bar, and 3D Controls check boxes, as shown in Figure 4-6. Accept
the defaults elsewhere in this dialog box.

6. Accept the defaults in the remaining AppWizard dialog boxes, and allow
AppWizard to create the project. You don't even have to see the Step 5
and Step 6 dialog boxes to accept the defaults in them; just click the
Finish button in the Step 4 dialog box.

After you click Finish, AppWizard will display a summary of
the code it is about to create. Click OK to affirm or click
Cancel and then use the Back and Next buttons to move
backward and forward through the dialog boxes, making
changes as needed.

Figure 4-6. AppWizard's Step 4 dialog box.

NOTE

Because of a bug in Visual C++ 6.0, the most important part of CMainFrame might
not appear in your source code if you follow the steps prescribed above. One of the
frame window's most important tasks is to create the view window. It's supposed to
do so with the following WM_CREATE handler:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 {

Programming Windows With MFC

 248

 TRACE0("Failed to create view window\n");
 return -1;
 }
 return 0;
}

Unfortunately, the Visual C++ 6.0 AppWizard erroneously omits this handler when
the toolbar and status bar options are turned off in the Step 4 dialog box. Therefore,
you must add it yourself. Don't forget to add an ON_WM_CREATE statement to the
message map, too.

4.2.2. Analyzing AppWizard's Output

So what exactly did AppWizard do? First, it created a new
project that includes all the build settings required for an MFC
application. Second, it derived several classes from MFC base
classes and inserted them into the project. Third, it created a set
of resources for the application to use and inserted them into
the project, too. A good way to familiarize yourself with
AppWizard's output is to look at the files that it generated. Note
that this output can vary widely depending on what options you
selected in the AppWizard dialog boxes. The following sections
provide a quick tour of the source code files that AppWizard
generated for the Shapes application and a brief look at some of
the important program elements found inside them.

StdAfx.h and StdAfx.cpp

AppWizard-generated projects speed program builds by taking
advantage of a feature of Visual C++ known as precompiled
headers. As a result of build settings implemented by
AppWizard, all header files that are #included in StdAfx.h are
precompiled into files named projectname.pch and StdAfx.obj
so that once compiled, they don't have to be compiled again.
AppWizard #includes StdAfx.h in the CPP files that it
generates, and inside StdAfx.h, it adds #includes for core MFC
header files such as Afxwin.h. You can add #includes of your
own for other MFC header files, for C run-time header files,
and for static header files of other types. Do not #include
header files that are subject to change as the application is
being developed, or you'll lose the benefits of using
precompiled headers.

An interesting aside to a discussion of precompiled headers is the fact that Visual
C++ effectively ignores statements that appear in a source code file before the
statement that #includes StdAfx.h. That means code like this will compile just

Programming Windows With MFC

 249

fine:

kjasdfj;oai4efj
#include "Stdafx.h"

Why is this fact important? Because more than one MFC
programmer has been bitten by code like this:

#include <math.h>
#include "Stdafx.h"

Put the #include for Math.h after the #include for StdAfx.h (or
better yet, put it inside StdAfx.h) to avoid this kind of error.

Resource.h and Shapes.rc

Among the source code files that AppWizard generates are an
RC file containing definitions for all the application's resources
and a header file (Resource.h) containing #defines for the
command IDs and other symbols the RC file uses. Look inside
the RC file and you'll find, among other things, a menu
template and an accelerator table. Rather than edit these
resources by hand, you can use Visual C++'s resource editor,
which allows you to edit menus, accelerators, icons, and other
resources visually and then applies your changes to the RC file.
To see the menu editor firsthand, click the ResourceView tab in
Visual C++'s workspace window and then double-click the
menu resource IDR_MAINFRAME. This will open the menu
in the menu editor, where making changes is as simple as
pointing and clicking and typing information into dialog boxes.
You can also edit the RC file directly, but if you decide to do this, be sure
to use the Open dialog box's Open As Text option to open the file as if it
were an ordinary text file.

Shapes.h and Shapes.cpp

You already know that every MFC application contains a
global instance of a CWinApp-derived class representing the
application itself. AppWizard has already derived an
application class named CShapesApp and placed the source
code in Shapes.h and Shapes.cpp. It has also declared a global
instance of the class by including the statement

CShapesApp theApp;

Programming Windows With MFC

 250

in Shapes.cpp.

CShapesApp::InitInstance looks a little different than the
InitInstance functions in Chapters 1, 2, and 3. It creates a frame
window by instantiating a class named CMainFrame and
calling LoadFrame on the resulting object:

CMainFrame* pFrame = new CMainFrame;
m_pMainWnd = pFrame;

pFrame->LoadFrame(IDR_MAINFRAME,
 WS_OVERLAPPEDWINDOW ¦ FWS_ADDTOTITLE, NULL,
 NULL);

CMainFrame is another AppWizard-generated class, one that
represents the application's top-level window. Like the
CMainWindow class featured in previous chapters,
CMainFrame's base class is CFrameWnd. Unlike
CMainWindow, CMainFrame's constructor doesn't call Create.
Therefore, it's up to InitInstance to create the frame window
object and the frame window that goes with it.

AppWizard's CShapesApp class also includes a command
handler named OnAppAbout:

// In the message map
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

void CShapesApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

This code will make more sense to you after you read about
dialog boxes in Chapter 8. Its purpose is to display an "About
box"—a dialog box containing information about the program,
such as its author and copyright. CAboutDlg is the class that
represents the About box; its source code is also found in
Shapes.h and Shapes.cpp. AppWizard inserts an About Shapes
command (ID=ID_APP_ABOUT) into the application's Help
menu in support of this feature. Selecting the Help-About

Programming Windows With MFC

 251

Shapes command executes CShapesApp::OnAppAbout and
displays a simple About box.

ChildView.h and ChildView.cpp

The greatest difference between the AppWizard-generated
Shapes application and the applications we built by hand in
earlier chapters is the addition of a new class named
CChildView. CChildView is a CWnd derivative that represents
the application's "view"—a special window that is sized to fit
the client area of the application's frame window and then
placed neatly over the top of it. What appears to be the frame
window's client area is actually the view window, which means
that we'll write our WM_PAINT handler in CChildView, not
CMainFrame. In fact, AppWizard has already included a
do-nothing OnPaint function in CChildView. It has also
overridden CWnd::PreCreateWindow and, in the override,
included code that registers a special WNDCLASS for the view
and adds WS_EX_CLIENTEDGE to the view's window style.
WS_EX_CLIENTEDGE gives the window a three-dimensional
look by making the view appear to be recessed inside the frame
window. MFC's CFrameWnd class includes code that keeps the
view glued to the frame window by automatically resizing the
view window whenever the frame window is resized.

In effect, AppWizard has created an application that uses a
view in much the same way that a document/view application
uses a view. The question is, Why? Is this an inherently better
way to architect an application? The primary reason
AppWizard inserts a view is that a view-based architecture
simplifies the task of managing space inside a frame
window that hosts toolbars and other UI objects. If you
were to draw directly to the client area of a frame window
that contains a toolbar, you'd have to subtract the toolbar
rectangle from the frame window's client-area rectangle to
compute an "effective" client area every time you called
GetClientRect. Such shenanigans aren't necessary in
view-based applications because MFC resizes the view to fit
the frame window's effective client area whenever the frame
window's size changes or a change occurs in the size, position,
or visibility of a toolbar or status bar. Call GetClientRect in a
view class and you get a precise measure of the space available
to you.

Programming Windows With MFC

 252

The effect that a view-based application architecture will have
on the code that you write can be summarized as follows:

x WM_PAINT messages should be processed in the view, not in the frame
window.

x Client-area mouse messages should be processed in the view, not in the
frame window. Because the view completely obscures the frame
window's client area, the frame window won't receive any client-area
mouse messages.

x Keyboard message handlers, too, should be processed in the view, not in
the frame window.

Writing view-based applications now will help prepare you to
write full-blown document/view MFC applications beginning
in Chapter 9.

MainFrm.h and MainFrm.cpp

These files contain the source code for the
AppWizard-generated frame window class named
CMainFrame. This frame window class differs from the
CMainWindow class we've been using in several respects:

x It overrides CFrameWnd::PreCreateWindow. Because CMainFrame
doesn't create a window in its class constructor, overriding
PreCreateWindow is the only way it can exercise control over the
window style and other window characteristics.

x It overrides AssertValid and Dump, two CObject functions used for
diagnostic testing.

x It includes a CChildView member variable named m_wndView that
represents the view window.

x It includes a WM_SETFOCUS handler that shifts the input focus to the
view anytime the frame window receives the input focus. This transfer is
important because it is the view, not the frame window, that is the
primary source of mouse and keyboard input. If the input focus were
given to the frame window and not transferred to the view, keyboard
message handlers in the view class wouldn't work.

x It overrides CFrameWnd::OnCmdMsg and routes commands to the view
and (indirectly) to the application object using a simplified form of the
command routing architecture used in document/view applications. The
practical effect is that command handlers and update handlers for the
program's menu items can be placed in the frame window class, the view
class, or the application class. Without OnCmdMsg, command and
update handlers would be restricted to the frame window. Command
routing is discussed in Chapters 9 and 11.

4.2.3. Beyond AppWizard

AppWizard generates a generic application skeleton. Once
AppWizard has run its course, it's up to you to write the code

Programming Windows With MFC

 253

that makes your application different from all the rest. You
don't have to write all that code by hand; you can use
ClassWizard to perform basic tasks such as adding message
handlers, command handlers, and update handlers. In effect,
ClassWizard writes the mundane code, so you can concentrate
on the application-specific code. With that thought in mind,
here are the steps required to duplicate the source code
presented in Figure 4-3:

1. With the Shapes project open in Visual C++, add a protected int member
variable named m_nShape to the CChildView class. You can add this
member variable manually, or you can add it visually. To add it visually,
click the ClassView tab in the workspace window, right-click
CChildView in ClassView, select Add Member Variable from the context
menu, and fill in the Add Member Variable dialog box as shown in
Figure 4-7.

Figure 4-7. The Add Member Variable dialog box.

2. Initialize m_nShape to 1 by adding the following statement to
CChildView's constructor:

m_nShape = 1; // Triangle

m_nShape will hold 0, 1, or 2, indicating that the shape drawn in the
view is a circle, a triangle, or a square, respectively. Initializing
m_nShape to 1 makes a triangle the default.

3. Modify the view's OnPaint handler so that it looks like the one in Figure
4-3. AppWizard has already added an empty OnPaint handler to the view
class; all you have to do is edit it.

4. Click the ResourceView tab at the bottom of the workspace window to
see a list of the resources that AppWizard created. Double-click the
IDR_MAINFRAME menu resource to open it for editing, and delete the
Edit and Help menus. Then add a Shape menu to the right of the File
menu, and add these three items to the Shape menu:

Menu Item Text Command ID

Programming Windows With MFC

 254

&Circle\tF7 ID_SHAPE_CIRCLE

&Triangle\tF8 ID_SHAPE_TRIANGLE

&Square\tF9 ID_SHAPE_SQUARE

To delete an item from a menu, click the item once to select it and then
press the Delete key. To add an item, double-click the empty rectangle that
appears in the menu and type the menu item text and command ID into the
Menu Item Properties dialog box. (See Figure 4-8.) Top-level menu items
don't need command IDs, so for them the ID box is disabled. For other
menu items, you can type in the command ID or let Visual C++ choose one
for you. If you dismiss the Menu Item Properties dialog box and the ID box
is blank, Visual C++ will generate a command ID of the form ID_ top_ item,
where top is the top-level menu item name and item is the text assigned to
the menu item. Regardless of how the command ID is generated, Visual
C++ adds a #define statement to Resource.h assigning the ID a numeric
value. The completed Shape menu is shown in Figure 4-9.

Figure 4-8. The Menu Item Properties dialog box.

Figure 4-9. The Shape menu.

5. Add command handlers to the view class for the Circle, Triangle, and
Square commands. Here's the finished code:

// In CChildView's message map
ON_COMMAND(ID_SHAPE_CIRCLE, OnShapeCircle)
ON_COMMAND(ID_SHAPE_TRIANGLE, OnShapeTriangle)
ON_COMMAND(ID_SHAPE_SQUARE, OnShapeSquare)

void CChildView::OnShapeCircle()
{
 m_nShape = 0;

Programming Windows With MFC

 255

 Invalidate ();
}

void CChildView::OnShapeTriangle()
{
 m_nShape = 1;
 Invalidate ();
}

void CChildView::OnShapeSquare()
{
 m_nShape = 2;
 Invalidate ();
}

You can add these command handlers by hand, or you can let
ClassWizard add them for you. To use ClassWizard to add a command
handler for the Circle command, click the ClassView tab at the bottom of
the workspace window, right-click CChildView in ClassView, and select
Add Windows Message Handler from the context menu to display the
New Windows Message And Event Handlers dialog box. (See Figure
4-10.) Find ID_SHAPE_CIRCLE in the Class Or Object To Handle list
box, and click it. Then double-click COMMAND in the New Windows
Messages/Events list box. When ClassWizard asks you for a function
name, accept the default— OnShapeCircle. COMMAND will move to
the Existing Message/Event Handlers list box, indicating that a
command handler now exists for the ID_SHAPE_CIRCLE menu item.
Finish up by clicking the Edit Existing button to go to the empty
command handler and adding the statements

m_nShape = 0;
Invalidate ();

to the function body. Repeat this process to write
command handlers for the Triangle and Square
commands, but set m_nShape to 1 and 2, respectively, in
their function bodies.

Programming Windows With MFC

 256

Figure 4-10. The New Windows Message And Event Handlers
dialog box.

6. Add update handlers to the view class for the Circle, Triangle, and
Square commands. Here's the completed code:

ON_UPDATE_COMMAND_UI(ID_SHAPE_CIRCLE, OnUpdateShapeCircle)
ON_UPDATE_COMMAND_UI(ID_SHAPE_TRIANGLE,
OnUpdateShapeTriangle)
ON_UPDATE_COMMAND_UI(ID_SHAPE_SQUARE,
OnUpdateShapeSquare)

void CChildView::OnUpdateShapeCircle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 0);
}

void CChildView::OnUpdateShapeTriangle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 1);
}

void CChildView::OnUpdateShapeSquare(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 2);
}

Once more, you can add these handlers by hand or you can add them
with ClassWizard. To write an update handler with ClassWizard, follow
the same procedure used to write a command handler, but double-click

Programming Windows With MFC

 257

UPDATE_COMMAND_UI rather than COMMAND in the New
Windows Messages/Events list box.

7. Click the ResourceView tab in the workspace window, and open the
accelerator resource IDR_MAINFRAME for editing. Add the following
accelerators to serve as shortcuts for the items in the Shape menu:

Shortcut Key Command ID

F7 ID_SHAPE_CIRCLE

F8 ID_SHAPE_TRIANGLE

F9 ID_SHAPE_SQUARE

To add an accelerator, double-click the empty rectangle at the bottom of the
edit window and define the accelerator in the Accel Properties dialog box.
(See Figure 4-11.) If you don't carry virtual key codes around in your head,
you can click the Next Key Typed button and press the shortcut key rather
than type the key code into the Key combo box. While you're at it, delete the
other accelerators (the ones that AppWizard created) since Shapes doesn't
use them. To delete an accelerator, simply click it once to select it and press
the Delete key.

Figure 4-11. The Accel Properties dialog box.

8. If CMainFrame doesn't include the OnCreate handler discussed in the
previous note, add it now. Rather than add the message handler by hand,
you can add it with ClassWizard. How? Right-click CMainFrame in the
ClassView window, select Add Windows Message Handler, double-click
WM_CREATE, and click Edit Existing. You'll find yourself in the empty
message handler body, poised to type in the finished code. ClassWizard
has already done everything else, including adding an
ON_WM_CREATE entry to the message map.

With that, you've successfully built the Shapes application
depicted in Figure 4-2. It's a simple application whose OnPaint
handler examines a member variable (m_nShape) and draws a
circle, a triangle, or a square. Command handlers for the items
in the Shape menu set m_nShape to 0, 1, or 2 and force a
repaint by calling CWnd::Invalidate. Update handlers place a

Programming Windows With MFC

 258

check mark by the shape that is currently selected. All painting
and processing of menu commands is done in the view class,
which serves as a proxy of sorts for the frame window's client
area. The function keys F7, F8, and F9 provide shortcuts for the
Circle, Triangle, and Square commands by virtue of the
accelerators that you added. Given this basis to work from, you
should be able to add menu items to any application and write
command and update handlers for them.

An interesting point to ponder regarding Shapes is that the
File-Exit command closes the application, yet nowhere in the
program's source code will you find a command handler for
File-Exit. The secret is the following statement in CWinApp's
message map, which is found in the MFC source code file
Appcore.cpp:

ON_COMMAND(ID_APP_EXIT, OnAppExit)

Remember that message maps are passed to derived classes by
inheritance just like function and data members. Even though
this entry doesn't appear in CShapesApp's message map, it's
there implicitly because CShapesApp derives from CWinApp.
Because AppWizard assigned the Exit command the ID
ID_APP_EXIT, selecting the command invokes OnAppExit,
which also comes to CShapesApp via inheritance. OnAppExit
sends a WM_CLOSE message to the application's main
window. You can view its source code in Appui.cpp.

4.2.4. The Process in Review

Building an application with AppWizard and ClassWizard is
altogether different than building an application by hand. It's
important to realize that the wizards do nothing you can't do
yourself; they're simply code-generating tools that make the
development process more efficient. It makes sense to use the
wizards if you understand the code that they generate. That's
why the first three chapters of this book didn't use the
wizards—to help build your fundamental knowledge of MFC.
As the applications that you build become more complex, the
code that the wizards generate will become more complex, too.
You'll see what I mean in the last few chapters of this book,
when we use MFC to build COM-enabled applications and a
few button clicks with the wizards will touch not just one or

Programming Windows With MFC

 259

two source code files, but several. The wizards never do
anything you can't do yourself, but they can save you a lot of
time and effort that you'd otherwise spend re-creating the basic
plumbing common to all Windows applications.

4.3. Menu Magic

The first half of this chapter covered probably 80 percent of
everything you'll ever need to know about menus. Occasionally,
however, you'll need to go beyond the basics and do something
extra. The following "something extras" are discussed in the
second half of the chapter:

x Techniques for creating and modifying menus on the fly
x The system menu and methods for customizing it
x Menus that display graphics instead of text (owner-draw menus)
x Cascading menus
x Context menus

We'll close out this chapter by revising the Shapes application
to include both an owner-draw Color menu and a right-click
context menu.

4.3.1. Creating Menus Programmatically

Loading a menu resource from your application's EXE file isn't
the only way to create a menu. You can also do it
programmatically using MFC's CMenu class and its member
functions. We've yet to explore CMenu in any depth because
basic menu support doesn't require a CMenu. CMenu comes in
handy when you want to create a menu on the fly, perhaps from
information that isn't available until run time, or when you want
to modify an existing menu (a subject we'll cover in the next
section). In situations such as these, CMenu will be your best
friend.

You create menus programmatically using a combination of
CMenu::CreateMenu, CMenu::CreatePopupMenu, and CMenu::AppendMenu.
You build a top-level menu and its submenus by creating a menu with
CreateMenu, creating the submenus with CreatePopupMenu, and attaching the
submenus to the top-level menu with AppendMenu. The following program
listing creates a menu identical to the one featured in the Shapes application and
attaches it to the frame window. The only difference is that the application, not
the resource editor, creates this menu:

CMenu menuMain;
menuMain.CreateMenu ();

Programming Windows With MFC

 260

CMenu menuPopup;
menuPopup.CreatePopupMenu ();
menuPopup.AppendMenu (MF_STRING, ID_FILE_EXIT, "E&xit");
menuMain.AppendMenu (MF_POPUP, (UINT) menuPopup.Detach (),
"&File");

menuPopup.CreatePopupMenu ();
menuPopup.AppendMenu (MF_STRING, ID_SHAPE_CIRCLE,
"&Circle\tF7");
menuPopup.AppendMenu (MF_STRING, ID_SHAPE_TRIANGLE,
"&Triangle\tF8");
menuPopup.AppendMenu (MF_STRING, ID_SHAPE_SQUARE,
"&Square\tF9");
menuMain.AppendMenu (MF_POPUP, (UINT) menuPopup.Detach (),
"&Shape");

SetMenu (&menuMain);
menuMain.Detach ();

The first two statements create a CMenu object named
menuMain that represents an empty top-level menu. The next
block of statements creates the File menu and attaches it to the
top-level menu. The MF_POPUP parameter passed to
AppendMenu tells Windows that the second parameter is a
menu handle, not a menu item ID, and Detach both detaches
the menu from the menuPopup object and retrieves the menu
handle. The third statement block creates the Shape menu and
attaches it to the top-level menu. Finally, the call to SetMenu
attaches the newly formed menu to the frame window, and
Detach disassociates the top-level menu and menuMain so the
top-level menu won't be destroyed as soon as the function ends.
If the window is visible when SetMenu is called,
DrawMenuBar should also be called to paint the menu on the
screen.

4.3.2. Modifying Menus Programmatically

In addition to creating menus dynamically, you can modify
existing menus. The following table lists the CMenu member
functions used to add, modify, and delete menu items.

Function Description

AppendMenu Adds an item to the end of a menu

InsertMenu Inserts an item into a menu at a specified location

ModifyMenu Changes the command ID, text, or other characteristics of a

Programming Windows With MFC

 261

menu item

DeleteMenu Deletes a menu item and the submenu associated with it, if any

RemoveMenu Deletes a menu item

The difference between RemoveMenu and DeleteMenu is that if
the item being removed has a submenu, DeleteMenu removes
the item and destroys the submenu, too. RemoveMenu removes
the item but leaves the submenu extant in memory. DeleteMenu
is the one you'll usually want to use, but RemoveMenu is useful
if you want to preserve the submenu for later use.

Before you can modify a menu by adding, changing, or deleting
menu items, you need a CMenu pointer referencing the menu.
MFC's CWnd::GetMenu function returns a CMenu pointer for a
window's top-level menu or NULL if the window doesn't have
a top-level menu. Let's say you want to delete the Shapes
application's Shape menu at run time. Here's the code to do it:

CMenu* pMenu = GetMenu ();
pMenu->DeleteMenu (1, MF_BYPOSITION);

The 1 passed to DeleteMenu is the Shape menu's 0-based index.
The File menu occupies position 0, the Shape menu position 1.
MF_BYPOSITION tells DeleteMenu that the first parameter is
a positional index and not a menu item ID. In this case, your
only choice is to identify the menu item by position because
Shape is a submenu that has no menu item ID.

To apply DeleteMenu and other CMenu functions to items in a
submenu, you need a pointer either to the main menu or to the
submenu. CMenu::GetSubMenu returns a pointer to a submenu.
The following code fragment uses GetMenu to get a pointer to
the main menu and GetSubMenu to get a pointer to the Shape
menu. It then deletes the Square and Circle commands.

CMenu* pMenu = GetMenu ()->GetSubMenu (1);
pMenu->DeleteMenu (2, MF_BYPOSITION); // Delete Square
pMenu->DeleteMenu (ID_SHAPE_CIRCLE, MF_BYCOMMAND); // Delete
Circle

The first call to DeleteMenu identifies the menu item by its
position in the menu; the second identifies it by its command

Programming Windows With MFC

 262

ID. The MF_BYPOSITION and MF_BYCOMMAND flags tell
Windows which means of identification you're using. If you
specify neither, the default is MF_BYCOMMAND. The lone
parameter passed to GetSubMenu is the 0-based index of the
submenu. Because you identified Circle by ID and not by
position, you could also delete it by calling DeleteMenu
through the pointer to the main menu, like this:

CMenu* pMenu = GetMenu ();
pMenu->DeleteMenu (ID_SHAPE_CIRCLE, MF_BYCOMMAND);

As long as a menu item is identified by ID, you can access it
through a pointer to the menu in which it appears or a pointer to
any higher-level menu. Don't try to use MF_BYPOSITION to
delete an item in a submenu with the pointer returned by
GetMenu—you might delete a submenu by mistake.

To change the characteristics of an existing menu item, use
CMenu::ModifyMenu. If pMenu refers to the Shape menu, the
statements

pMenu->ModifyMenu (ID_SHAPE_TRIANGLE, MF_STRING ¦
MF_BYCOMMAND,
 ID_SHAPE_TRIANGLE, "&Three-Sided Polygon");
pMenu->ModifyMenu (2, MF_STRING ¦ MF_BYPOSITION,
 ID_SHAPE_SQUARE, "&Four-Sided Polygon");

modify the Triangle and Square commands to read
"Three-Sided Polygon" and "Four-Sided Polygon," respectively.
The third parameter passed to the ModifyMenu function is the
menu item's new command ID, which should be the same as the
original if you don't want to change it. If the item you're
changing represents a submenu rather than an ordinary menu
item, the third parameter holds the menu handle instead of a
menu item ID. Given a CMenu pointer to a submenu, you can
always get the menu handle from the object's m_hMenu data
member.

4.3.3. The System Menu

Just as a window can call CWnd::GetMenu to obtain a CMenu
pointer to its top-level menu, it can call CWnd::GetSystemMenu
to obtain a pointer to its system menu. Most applications are
content to let Windows manage the system menu, but every

Programming Windows With MFC

 263

now and then the need to do something special arises, such as
adding an item of your own to the system menu or changing the
behavior of an existing item.

Suppose you want to add an About MyApp menu item to your
application's system menu. About commands are normally
placed in the Help menu, but maybe your application doesn't
have a Help menu. Or maybe your application is a small utility
program that doesn't have any menus at all, in which case
adding About MyApp to the system menu is more efficient than
loading an entire menu for the benefit of just one command.

The first step is to get a pointer to the system menu, like this:

CMenu* pSystemMenu = GetSystemMenu (FALSE);

The FALSE parameter tells GetSystemMenu that you want a
pointer to a copy of the system menu that you can modify.
(TRUE resets the system menu to its default state.)

The second step is to add "About MyApp" to the system menu:

pSystemMenu->AppendMenu (MF_SEPARATOR);
pSystemMenu->AppendMenu (MF_STRING, ID_SYSMENU_ABOUT,
 _T ("&About MyApp"));

The first call to AppendMenu adds a menu item separator to set
your menu item apart from other items in the system menu; the
second adds "About MyApp," whose ID is
ID_SYSMENU_ABOUT. A good place to put this code is in
the main window's OnCreate handler. Be aware that items
added to the system menu should be assigned IDs that are
multiples of 16 (16, 32, 48, and so on). Windows uses the lower
four bits of the system menu's command IDs for its own
purposes, so if you use any of those bits, you could receive
some unexpected results.

As it stands now, the new item will show up in the system
menu but it won't do anything. When the user picks an item
from the system menu, the window receives a
WM_SYSCOMMAND message with wParam equal to the
menu item ID. The following OnSysCommand handler inspects

Programming Windows With MFC

 264

the menu item ID and displays an About box if the ID equals
ID_SYSMENU_ABOUT:

// In CMainWindow's message map
ON_WM_SYSCOMMAND ()

void CMainWindow::OnSysCommand (UINT nID, LPARAM lParam)
{
 if ((nID & 0xFFF0) == ID_SYSMENU_ABOUT) {
 // Display the About box.
 return;
 }
 CFrameWnd::OnSysCommand (nID, lParam);
}

An nID value equal to ID_SYSMENU_ABOUT means that
"About MyApp" was selected. If nID equals anything else, you
must call the base class's OnSysCommand handler or else the
system menu (and other parts of the program, too) will cease to
function. Before you test the nID value passed to
OnSysCommand, be sure to AND it with 0xFFF0 to strip any
bits added by Windows.

You can also use OnSysCommand to modify the behavior of
items Windows places in the system menu. The following
message handler disables the system menu's Close command in
a frame window:

void CMainWindow::OnSysCommand (UINT nID, LPARAM lParam)
{
 if ((nID & 0xFFF0) != SC_CLOSE)
 CFrameWnd::OnSysCommand (nID, lParam);
}

This version of OnSysCommand tests nID and passes the
message to CFrameWnd only if nID represents an item other
than Close. Alternatives to disabling Close with an
OnSysCommand handler include disabling the menu item with
CMenu::EnableMenuItem or deleting it altogether with
CMenu::DeleteMenu, as shown here:

CMenu* pSystemMenu = GetSystemMenu (FALSE);
pSystemMenu->EnableMenuItem (SC_CLOSE, // Disable it.
 MF_BYCOMMAND ¦ MF_DISABLED);
pSystemMenu->DeleteMenu (SC_CLOSE, MF_BYCOMMAND); // Delete
it.

Programming Windows With MFC

 265

The command IDs for Close and other system menu items are
listed in the documentation for OnSysCommand.

4.3.4. Owner-Draw Menus

Menus that display strings of text are fine for most applications,
but some menus cry out for pictures instead of text. One
example is a Color menu containing Cyan and Magenta
commands. Many users won't know that cyan is a 50-50 mix of
blue and green, or that magenta is a mix of equal parts red and
blue. But if the menu contained color swatches instead of text,
the meanings of the menu items would be crystal clear.
Graphical menus are a little more work to put together than text
menus, but the reward can be well worth the effort.

The easiest way to do graphical menus is to create bitmaps
depicting the menu items and use them in calls to
CMenu::AppendMenu. MFC represents bitmapped images with
the class CBitmap, and one form of AppendMenu accepts a
pointer to a CBitmap object whose image then becomes the
menu item. Once a CBitmap object is appended to the menu,
Windows displays the bitmap when the menu is displayed. The
drawback to using bitmaps is that they're fixed in size and not
easily adapted to changes in screen metrics.

A more flexible way to replace text with graphics in a menu is
to use owner-draw menu items. When a menu containing an
owner-draw item is displayed, Windows sends the menu's
owner (the window to which the menu is attached) a
WM_DRAWITEM message saying, "It's time to draw the
menu item, and here's where I want you to draw it." Windows
even supplies a device context in which to do the drawing. The
WM_DRAWITEM handler might display a bitmap, or it could
use GDI functions to draw the menu item at the specified
location. Before a menu containing an owner-draw menu item
is displayed for the first time, Windows sends the menu's owner
a WM_MEASUREITEM message to inquire about the menu
item's dimensions. If a submenu contains, say, five owner-draw
menu items, the window that the menu is attached to will
receive five WM_MEASUREITEM messages and five
WM_DRAWITEM messages the first time the submenu is
displayed. Each time the submenu is displayed thereafter, the

Programming Windows With MFC

 266

window will receive five WM_DRAWITEM messages but no
further WM_MEASUREITEM messages.

The first step in implementing an owner-draw menu is to stamp
all the owner-draw items with the label MF_OWNERDRAW.
Unfortunately, MF_OWNERDRAW can't be specified in a
MENU template unless the template is manually changed to a
MENUEX resource, and the Visual C++ resource editor doesn't
support the owner-draw style, anyway. Therefore, the best way
to create MF_OWNERDRAW items in an MFC application is
to convert conventional items into owner-draw items
programmatically using CMenu::ModifyMenu.

The second step is adding an OnMeasureItem handler and
associated message-map entry to respond to
WM_MEASUREITEM messages. OnMeasureItem is
prototyped as follows:

afx_msg void OnMeasureItem (int nIDCtl, LPMEASUREITEMSTRUCT lpmis)

nIDCtl contains a control ID identifying the control to which
the message pertains and is meaningless for owner-draw menus.
(WM_MEASUREITEM messages are used for owner-draw
controls as well as owner-draw menus. When OnMeasureItem
is called for a control, nIDCtl identifies the control.) lpmis
points to a structure of type MEASUREITEMSTRUCT, which
has the following form:

typedef struct tagMEASUREITEMSTRUCT {
 UINT CtlType;
 UINT CtlID;
 UINT itemID;
 UINT itemWidth;
 UINT itemHeight;
 DWORD itemData;
} MEASUREITEMSTRUCT;

OnMeasureItem's job is to fill in the itemWidth and itemHeight
fields, informing Windows of the menu item's horizontal and
vertical dimensions, in pixels. An OnMeasureItem handler can
be as simple as this:

lpmis->itemWidth = 64;
lpmis->itemHeight = 16;

Programming Windows With MFC

 267

To compensate for differing video resolutions, a better
approach is to base the width and height of items in an
owner-draw menu on some standard such as the
SM_CYMENU value returned by ::GetSystemMetrics:

lpmis->itemWidth = ::GetSystemMetrics (SM_CYMENU) * 4;
lpmis->itemHeight = ::GetSystemMetrics (SM_CYMENU);

SM_CYMENU is the height of the menu bars the system draws
for top-level menus. By basing the height of owner-draw menu
items on this value and scaling the width accordingly, you can
ensure that owner-draw items have roughly the same
proportions as menu items drawn by Windows.

The CtlType field of the MEASUREITEMSTRUCT structure is
set to ODT_MENU if the message pertains to an owner-draw
menu and is used to differentiate between owner-draw UI
elements if a window contains owner-draw controls as well as
owner-draw menu items. CtlID and itemData are not used for
menus, but itemID contains the menu item ID. If the
owner-draw menu items your application creates are of
different heights and widths, you can use this field to determine
which menu item OnMeasureItem was called for.

The third and final step in implementing owner-draw menu
items is to provide an OnDrawItem handler for
WM_DRAWITEM messages. The actual drawing is done
inside OnDrawItem. The function is prototyped as follows:

afx_msg void OnDrawItem (int nIDCtl, LPDRAWITEMSTRUCT lpdis)

Once again, nIDCtl is undefined for owner-draw menu items.
lpdis points to a DRAWITEMSTRUCT structure, which
contains the following members:

typedef struct tagDRAWITEMSTRUCT {
 UINT CtlType;
 UINT CtlID;
 UINT itemID;
 UINT itemAction;
 UINT itemState;
 HWND hwndItem;
 HDC hDC;

Programming Windows With MFC

 268

 RECT rcItem;
 DWORD itemData;
} DRAWITEMSTRUCT;

As in MEASUREITEMSTRUCT, CtlType is set to
ODT_MENU if the message pertains to an owner-draw menu
item, itemID holds the menu item ID, and CtlID and itemData
are unused. hDC holds the handle of the device context in
which the menu item is drawn, and rcItem is a RECT structure
containing the coordinates of the rectangle in which the item
appears. The size of the rectangle described by rcItem is based
on the dimensions you provided to Windows in response to the
WM_MEASUREITEM message for this particular menu item.
Windows doesn't clip what you draw to the rectangle but
instead relies on your code to be "well-behaved" and stay
within the bounds described by rcItem. hwndItem holds the
handle of the menu to which the menu item belongs. This value
isn't often used because the other fields provide most or all of
the information that's needed.

DRAWITEMSTRUCT's itemAction and itemState fields
describe the drawing action required and the current state of the
menu item—checked or unchecked, enabled or disabled, and so
on. For an owner-draw item, itemAction contains one of two
values: ODA_DRAWENTIRE means that you should draw the
entire item, and ODA_SELECT means that you can optionally
redraw just the part of the item that changes when the item is
highlighted or unhighlighted. When the highlight bar is moved
from one owner-draw menu item to another, the menu's owner
receives a WM_DRAWITEM message without the
ODA_SELECT flag for the item that's losing the highlight and
another WM_DRAWITEM message with an ODA_SELECT
flag for the item that's becoming highlighted. Programs that use
owner-draw menus often ignore the value in itemAction and
redraw the menu item in its entirety no matter what the value of
itemAction, using itemState to decide whether the item should
be drawn with or without highlighting.

itemState contains zero or more of the bit flags shown in the
following table specifying the menu item's current state.

Value Meaning

Programming Windows With MFC

 269

ODS_CHECKED The menu item is currently checked.

ODS_DISABLED The menu item is currently disabled.

ODS_GRAYED The menu item is currently grayed out.

ODS_SELECTED The menu item is currently selected.

This state information is important because it tells you how you
should draw the menu item. Which of the bit flags you examine
depends on which states you allow the menu item to assume.
You should always check the ODS_SELECTED flag and
highlight the menu item if the flag is set. If your application
includes code to check and uncheck owner-draw menu items,
you should look for ODS_CHECKED and draw a check mark
next to the menu item if the flag is set. Similarly, if you allow
the item to be enabled and disabled, look for an
ODS_DISABLED flag and draw accordingly. By default, MFC
disables a menu item if you provide neither an
ON_COMMAND handler nor an
ON_UPDATE_COMMAND_UI handler for it, so it's possible
for menu items to become disabled even though your
application didn't explicitly disable them. You can disable this
feature of MFC for frame windows by setting
CFrameWnd::m_bAutoMenuEnable to FALSE.

An alternative method for implementing owner-draw menus is
to attach the menu to a CMenu object and override CMenu's
virtual MeasureItem and DrawItem functions to do the drawing.
This technique is useful for creating self-contained menu
objects that do their own drawing rather than rely on their
owners to do it for them. For cases in which a menu is loaded
from a resource and attached to a window without using a
CMenu object as an intermediary, however, it's just as easy to
let the window that owns the menu draw the menu items as
well. That's the approach we'll use when we modify Shapes to
include an owner-draw Color menu.

4.3.5. OnMenuChar Processing

One drawback to using owner-draw menus is that Windows
doesn't provide keyboard shortcuts such as Alt-C-R for
Color-Red. Even if you define the menu item text as "&Red"
before using ModifyMenu to change the menu item to

Programming Windows With MFC

 270

MF_OWNERDRAW, Alt-C-R will no longer work. Alt-C will
still pull down the Color menu, but the R key will do nothing.

Windows provides a solution to this problem in the form of
WM_MENUCHAR messages. A window receives a
WM_MENUCHAR message when a menu is displayed and a
key that doesn't correspond to a menu item is pressed. By
processing WM_MENUCHAR messages, you can add
keyboard shortcuts to owner-draw menu items. MFC's
CWnd::OnMenuChar function is prototyped as follows:

afx_msg LRESULT OnMenuChar (UINT nChar, UINT nFlags,
CMenu* pMenu)

When OnMenuChar is called, nChar contains the ANSI or
Unicode character code of the key that was pressed, nFlags
contains an MF_POPUP flag if the menu to which the message
pertains is a submenu, and pMenu identifies the menu itself.
The pointer stored in pMenu might be a temporary one created
by the framework and shouldn't be saved for later use.

The value returned by OnMenuChar tells Windows how to
respond to the keystroke. The high word of the return value
should be set to one of the following values:

x 0 if Windows should ignore the keystroke
x 1 if Windows should close the menu
x 2 if Windows should select one of the items displayed in the menu

If the high word of the return value is 2, the low word should
hold the ID of the corresponding menu item. Windows provides
a MAKELRESULT macro for setting the high and low words
of an LRESULT value. The following statement sets the high
word of an LRESULT value to 2 and the low word to
ID_COLOR_RED:

LRESULT lResult = MAKELRESULT (ID_COLOR_RED, 2);

Of course, you can always rely on keyboard accelerators
instead of keyboard shortcuts. They work just fine with
owner-draw menu items. But thanks to WM_MENUCHAR
messages, you have the option of providing conventional
keyboard shortcuts as well.

Programming Windows With MFC

 271

4.3.6. Cascading Menus

When you click the Start button in the taskbar, a popup menu
appears listing the various options for starting applications,
opening documents, changing system settings, and so on. Some
of the menu items have arrows next to them indicating that
clicking invokes another menu. And in some cases, these
menus are nested several levels deep. Click
Start-Programs-Accessories-Games, for example, and the
Games menu is the fourth in a series of menus cascaded across
the screen. This multitiered menu structure permits items in the
Start menu to be organized hierarchically and prevents
individual menus from being so cluttered that they become
practically useless.

Cascading menus aren't the sole property of the operating
system; application programs can use them, too. Creating a
cascading menu is as simple as inserting one menu into another
as if it were a menu item. Windows sweats the details, which
include drawing the arrow next to the item name and displaying
the cascaded menu without a button click if the cursor pauses
over the item. Here's how Shapes' top-level menu would be
defined if the Shape menu was nested inside an Options menu.

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", ID_APP_EXIT
 END
 POPUP "&Options"
 BEGIN
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Circle\tF7",
ID_SHAPE_CIRCLE
 MENUITEM "&Triangle\tF8",
ID_SHAPE_TRIANGLE
 MENUITEM "&Square\tF9",
ID_SHAPE_SQUARE
 END
 MENUITEM "&Color…",
ID_OPTIONS_COLOR
 MENUITEM "Si&ze…",
ID_OPTIONS_SIZE
 END
END

Programming Windows With MFC

 272

Figure 4-12 shows how the resulting menu would look.
Selecting Shape from the Options menu displays a cascading
menu. Moreover, the remainder of the program works as it did
before, so the command and update handlers associated with
the items in the Shape menu needn't change.

Figure 4-12. Cascading menus.

You don't have to edit menu resources by hand to create
cascading menus. Instead, you can create a nested menu in
Visual C++'s menu editor by checking the Pop-up check box in
the Menu Item Properties dialog box, as shown in Figure 4-13.

Figure 4-13. Creating a nested menu.

4.3.7. Context Menus

Windows uses right-click context menus extensively to make
objects displayed by the shell easier to manipulate.
Right-clicking the My Computer icon on the desktop, for

Programming Windows With MFC

 273

example, displays a context menu containing a concise list of
actions that can be performed on My Computer: Explore,
Rename, Map Network Drive, and so on. Right-clicking the
desktop produces an entirely different context menu.
Developers are encouraged to build context menus into their
applications to be consistent with the shell and to reinforce the
object-oriented UI paradigm. Windows makes it easy by
sending your application a WM_CONTEXTMENU message
when the right mouse button is clicked in a window and the
resulting right-button message isn't processed.

A context menu is nothing more than a submenu that isn't
attached to a top-level menu. MFC's CMenu::TrackPopupMenu
function displays such a menu. Here's the function prototype:

BOOL TrackPopupMenu (UINT nFlags, int x, int y, CWnd* pWnd,
 LPCRECT lpRect = NULL)

x and y identify the location on the screen (in screen
coordinates) at which the menu will appear. nFlags contains bit
flags specifying the menu's horizontal alignment relative to x
and which mouse button (or buttons) can be used to select items
from the menu. The alignment flags TPM_LEFTALIGN,
TPM_CENTERALIGN, and TPM_RIGHTALIGN tell
Windows that x specifies the location of the menu's left edge,
center, and right edge, respectively, and the
TPM_LEFTBUTTON and TPM_RIGHTBUTTON flags
specify whether menu selections will be made with the left or
the right mouse button. Only one of the alignment flags can be
specified, but either or both of the button flags can be used.
pWnd identifies the window that will receive messages
emanating from actions in the menu, and lpRect points to a
CRect object or RECT structure containing the screen
coordinates of the rectangle within which the user can click
without dismissing the menu. If lpRect is NULL, clicking
outside the menu dismisses it. Assuming pMenu is a CMenu
pointer that references a submenu, the statement

pMenu->TrackPopupMenu (TPM_LEFTALIGN ¦ TPM_LEFTBUTTON ¦
 TPM_RIGHTBUTTON, 32, 64, AfxGetMainWnd ());

displays the menu whose upper left corner is positioned 32
pixels right and 64 pixels down from the upper left corner of

Programming Windows With MFC

 274

the screen. The user can make selections from the menu with
either the left or the right mouse button. While the menu is
displayed, the application's main window receives messages
just as if the menu were part of a top-level menu. Once the
menu is dismissed, the messages will cease until the menu is
displayed again.

TrackPopupMenu is typically called in response to
WM_CONTEXTMENU messages. MFC's
ON_WM_CONTEXTMENU macro maps
WM_CONTEXTMENU messages to the message handler
OnContextMenu. OnContextMenu receives two parameters: a
CWnd pointer identifying the window in which the click
occurred and a CPoint containing the cursor's screen
coordinates:

afx_msg void OnContextMenu (CWnd* pWnd, CPoint point)

If necessary, you can translate the screen coordinates passed in
point into client coordinates with CWnd::ScreenToClient. It
might seem curious that OnContextMenu receives a pointer
identifying a window since mouse messages go to the window
under the cursor. However, there's a reason. Unlike other
messages, WM_CONTEXTMENU messages percolate upward
through the window hierarchy if a right-click occurs in a child
window (for example, a push button control) and the child
window doesn't process the message. Therefore, if a window
contains child windows, it could receive
WM_CONTEXTMENU messages with pWnd containing a
pointer to one of its children.

It's important for an OnContextMenu handler to call the base
class's OnContextMenu handler if it examines pWnd or point
and decides not to process the message. Otherwise,
WM_CONTEXTMENU messages won't percolate upward.
Worse, right-clicking the window's title bar will no longer
display the system menu. The following OnContextMenu
handler displays the context menu referenced by pContextMenu
if the button click occurs in the upper half of the window and
passes it to the base class if the click occurs elsewhere:

void CChildView::OnContextMenu (CWnd* pWnd, CPoint point)
{

Programming Windows With MFC

 275

 CPoint pos = point;
 ScreenToClient (&pos);

 CRect rect;
 GetClientRect (&rect);
 rect.bottom /= 2; // Divide the height by 2.

 if (rect.PtInRect (pos)) {
 pContextMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
 TPM_LEFTBUTTON ¦ TPM_RIGHTBUTTON, point.x, point.y,
 AfxGetMainWnd ());
 return;
 }
 CWnd::OnContextMenu (pWnd, point);
}

In a view-based application like Shapes, the
WM_CONTEXTMENU handler is typically placed in the view
class because that's where the objects that are subject to right
clicks are displayed.

How do you get a pointer to a context menu in order to display
it? One method is to construct a CMenu object and build the
menu with CMenu member functions. Another is to load the
menu from a resource in the same way that a top-level menu is
loaded. The following menu template defines a menu that
contains one submenu:

IDR_CONTEXTMENU MENU
BEGIN
 POPUP ""
 BEGIN
 MENUITEM "&Copy", ID_CONTEXT_COPY
 MENUITEM "&Rename", ID_CONTEXT_RENAME
 MENUITEM "&Delete", ID_CONTEXT_DELETE
 END
END

The following statements load the menu into a CMenu object
and display it as a context menu:

CMenu menu;
menu.LoadMenu (IDR_CONTEXTMENU);
CMenu* pContextMenu = menu.GetSubMenu (0);
pContextMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
 TPM_LEFTBUTTON ¦ TPM_RIGHTBUTTON, point.x, point.y,
 AfxGetMainWnd ());

Programming Windows With MFC

 276

If your application uses several context menus, you can define
each context menu as a separate submenu of
IDR_CONTEXTMENU and retrieve CMenu pointers by
varying the index passed to GetSubMenu. Or you can define
each one as a separate menu resource. In any event, attaching
the context menu to a CMenu object that resides on the stack
ensures that the menu will be destroyed when the object goes
out of scope. The menu is no longer needed after
TrackPopupMenu returns, so deleting it frees up memory that
can be put to other uses.

4.3.8. The TPM_RETURNCMD Flag

How do you process context menu commands? The same way
you process commands from conventional menus: by writing
command handlers. You can write update handlers for
commands in a context menu, too. In fact, it's perfectly legal to
assign a command in a conventional menu and a command in a
context menu the same command ID and let one command
handler (and, if you'd like, one update handler) service both of
them.

Occasionally, you'll want to get a return value from
TrackPopupMenu indicating which, if any, menu item was
selected and to process the command on the spot rather than
delegate to a command handler. That's why
TPM_RETURNCMD exists. Passed a TPM_RETURNCMD
flag in its first parameter, TrackPopupMenu returns the
command ID of the item selected from the menu. A 0 return
means that the menu was dismissed with no selection.
Assuming pContextMenu references the context menu used in
the example in the previous section, the following statements
demonstrate how to display the menu and act immediately on
the user's selection:

int nCmd = (int) pContextMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
 TPM_LEFTBUTTON ¦ TPM_RIGHTBUTTON ¦ TPM_RETURNCMD,
 point.x, point.y, AfxGetMainWnd ());

switch (nCmd) {
case ID_CONTEXT_COPY:
 // Copy the object.
 break;
case ID_CONTEXT_RENAME:
 // Rename the object.

Programming Windows With MFC

 277

 break;
case ID_CONTEXT_DELETE:
 // Delete the object.
 break;
}

A menu displayed this way still generates a WM_COMMAND
message when an item is selected. That's normally not a
problem, because if you don't provide a command handler for
the item, the message is passed harmlessly on to Windows. But
suppose you'd like to suppress such messages, perhaps because
you've used the same ID for an item in a conventional menu
and an item in a context menu and you want the item in the
context menu to behave differently than the one in the
conventional menu. To do it, simply include a
TPM_NONOTIFY flag in the call to TrackPopupMenu.

Don't forget that by default, MFC disables menu items for
which no command and update handlers are provided.
Therefore, if you use the TPM_RETURNCMD flag, you'll
probably find it necessary to set m_bAutoMenuEnable to
FALSE in your frame window.

4.4. The Colors Application

Let's close out this chapter by writing an application that uses
owner-draw menus and context menus. Colors is a souped-up
version of Shapes that features an owner-draw Color menu and
a context menu from which the user can select both shapes and
colors. The items in the context menu are functional duplicates
of the items in the Shape and Color menus and even share
command and update handlers. The context menu appears when
the user clicks the shape in the middle of the window with the
right mouse button, as seen in Figure 4-14.

Programming Windows With MFC

 278

Figure 4-14. The Colors window.

Colors' source code appears in Figure 4-15. To generate the
source code, I used AppWizard to create a new project named
Colors and then proceeded as if I were writing Shapes all over
again by implementing OnPaint, adding the Shape menu,
writing command and update handlers, and so on. I then added
the Color menu. Even though the menu items are assigned text
strings such as "&Red" and "&Blue," those strings are never
seen because the menu is owner-draw. The code that converts
the items in the menu into owner-draw items is found in
InitInstance:

CMenu* pMenu = pFrame->GetMenu ();
ASSERT (pMenu != NULL);

for (int i=0; i<5; i++)
 pMenu->ModifyMenu (ID_COLOR_RED + i,
MF_OWNERDRAW,
 ID_COLOR_RED + i);

The first statement initializes pMenu with a pointer to a CMenu
object representing the main menu. ModifyMenu is then called
five times in succession to tag the items in the Color menu with
the flag MF_OWNERDRAW.

Figure 4-15. The Colors program.

Programming Windows With MFC

 279

Colors.h

// Colors.h : main header file for the COLORS application
//

#if !defined(AFX_COLORS_H__1B036BE8_5C6F_11D2_8E53_006008A82731__
INCLUDED_)
#define
AFX_COLORS_H__1B036BE8_5C6F_11D2_8E53_006008A82731__INCLUDED
_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CColorsApp:
// See Colors.cpp for the implementation of this class
//

class CColorsApp : public CWinApp
{
public:
 CColorsApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CColorsApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

public:
 //{{AFX_MSG(CColorsApp)
 afx_msg void OnAppAbout();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_COLORS_H__1B036BE8_5C6F_11D2_8E53_006008A82731__INCLUDED_

Programming Windows With MFC

 280

)

Colors.cpp

// Colors.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "Colors.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CColorsApp

BEGIN_MESSAGE_MAP(CColorsApp, CWinApp)
 //{{AFX_MSG_MAP(CColorsApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CColorsApp construction

CColorsApp::CColorsApp()
{
}

///
// The one and only CColorsApp object

CColorsApp theApp;

///
// CColorsApp initialization

BOOL CColorsApp::InitInstance()
{
 // Standard initialization

 // Change the registry key under which our settings are stored.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 CMainFrame* pFrame = new CMainFrame;
 m_pMainWnd = pFrame;

 // create and load the frame with its resources

 pFrame->LoadFrame(IDR_MAINFRAME,
 WS_OVERLAPPEDWINDOW ¦ FWS_ADDTOTITLE, NULL,

Programming Windows With MFC

 281

 NULL);

 pFrame->ShowWindow(SW_SHOW);
 pFrame->UpdateWindow();

 //
 // Convert the items in the Color menu to owner-draw.
 //
 CMenu* pMenu = pFrame->GetMenu ();
 ASSERT (pMenu != NULL);

 for (int i=0; i<5; i++)
 pMenu->ModifyMenu (ID_COLOR_RED + i, MF_OWNERDRAW,
 ID_COLOR_RED + i);

 return TRUE;
}

///
// CColorsApp message handlers

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)

Programming Windows With MFC

 282

 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CColorsApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CColorsApp message handlers

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__1B036BEC_5C6F_11D2_8E53_006008A82
731__INCLUDED_)
#define
AFX_MAINFRM_H__1B036BEC_5C6F_11D2_8E53_006008A82731__INCL
UDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

Programming Windows With MFC

 283

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 afx_msg void OnMeasureItem (int nIDCtl, LPMEASUREITEMSTRUCT
lpmis);
 afx_msg void OnDrawItem (int nIDCtl, LPDRAWITEMSTRUCT lpdis);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__1B036BEC_5C6F_11D2_8E53_006008A827
31__INCLUDED_)

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Colors.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

Programming Windows With MFC

 284

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
 ON_WM_MEASUREITEM ()
 ON_WM_DRAWITEM ()
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window

Programming Windows With MFC

 285

 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 {
 TRACE0("Failed to create view window\n");
 return -1;
 }
 return 0;
}

void CMainFrame::OnMeasureItem (int nIDCtl, LPMEASUREITEMSTRUCT
lpmis)
{
 lpmis->itemWidth = ::GetSystemMetrics (SM_CYMENU) * 4;
 lpmis->itemHeight = ::GetSystemMetrics (SM_CYMENU);
}

void CMainFrame::OnDrawItem (int nIDCtl, LPDRAWITEMSTRUCT lpdis)
{
 BITMAP bm;
 CBitmap bitmap;
 bitmap.LoadOEMBitmap (OBM_CHECK);
 bitmap.GetObject (sizeof (bm), &bm);

 CDC dc;
 dc.Attach (lpdis->hDC);

 CBrush* pBrush = new CBrush (::GetSysColor ((lpdis->itemState &
 ODS_SELECTED) ? COLOR_HIGHLIGHT : COLOR_MENU));
 dc.FrameRect (&(lpdis->rcItem), pBrush);
 delete pBrush;

 if (lpdis->itemState & ODS_CHECKED) {
 CDC dcMem;
 dcMem.CreateCompatibleDC (&dc);
 CBitmap* pOldBitmap = dcMem.SelectObject (&bitmap);

Programming Windows With MFC

 286

 dc.BitBlt (lpdis->rcItem.left + 4, lpdis->rcItem.top +
 (((lpdis->rcItem.bottom - lpdis->rcItem.top) -
 bm.bmHeight) / 2), bm.bmWidth, bm.bmHeight, &dcMem,
 0, 0, SRCCOPY);

 dcMem.SelectObject (pOldBitmap);
 }

 UINT itemID = lpdis->itemID & 0xFFFF; // Fix for Win95 bug.
 pBrush = new CBrush (m_wndView.m_clrColors[itemID -
ID_COLOR_RED]);
 CRect rect = lpdis->rcItem;
 rect.DeflateRect (6, 4);
 rect.left += bm.bmWidth;
 dc.FillRect (rect, pBrush);
 delete pBrush;

 dc.Detach ();
}

ChildView.h

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__1B036BEE_5C6F_11D2_8E53_006008A82
731__INCLUDED_)
#define
AFX_CHILDVIEW_H__1B036BEE_5C6F_11D2_8E53_006008A82731__INCL
UDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:
 static const COLORREF m_clrColors[5];

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:

Programming Windows With MFC

 287

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 int m_nColor;
 int m_nShape;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnShapeCircle();
 afx_msg void OnShapeTriangle();
 afx_msg void OnShapeSquare();
 afx_msg void OnUpdateShapeCircle(CCmdUI* pCmdUI);
 afx_msg void OnUpdateShapeTriangle(CCmdUI* pCmdUI);
 afx_msg void OnUpdateShapeSquare(CCmdUI* pCmdUI);
 afx_msg void OnContextMenu(CWnd* pWnd, CPoint point);
 //}}AFX_MSG
 afx_msg void OnColor (UINT nID);
 afx_msg void OnUpdateColor (CCmdUI* pCmdUI);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
//!defined(AFX_CHILDVIEW_H__1B036BEE_5C6F_11D2_8E53_006008A82731__INCLUD
ED_)

ChildView.cpp
// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "Colors.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
 m_nShape = 1; // Triangle

Programming Windows With MFC

 288

 m_nColor = 0; // Red
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_SHAPE_CIRCLE, OnShapeCircle)
 ON_COMMAND(ID_SHAPE_TRIANGLE, OnShapeTriangle)
 ON_COMMAND(ID_SHAPE_SQUARE, OnShapeSquare)
 ON_UPDATE_COMMAND_UI(ID_SHAPE_CIRCLE,
OnUpdateShapeCircle)
 ON_UPDATE_COMMAND_UI(ID_SHAPE_TRIANGLE,
OnUpdateShapeTriangle)
 ON_UPDATE_COMMAND_UI(ID_SHAPE_SQUARE,
OnUpdateShapeSquare)
 ON_WM_CONTEXTMENU()
 //}}AFX_MSG_MAP
 ON_COMMAND_RANGE (ID_COLOR_RED, ID_COLOR_BLUE,
OnColor)
 ON_UPDATE_COMMAND_UI_RANGE (ID_COLOR_RED, ID_COLOR_BLUE,
OnUpdateColor)
END_MESSAGE_MAP()

const COLORREF CChildView::m_clrColors[5] = {
 RGB (255, 0, 0), // Red
 RGB (255, 255, 0), // Yellow
 RGB (0, 255, 0), // Green
 RGB (0, 255, 255), // Cyan
 RGB (0, 0, 255) // Blue
};

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPoint points[3];

Programming Windows With MFC

 289

 CPaintDC dc(this);

 CRect rcClient;
 GetClientRect (&rcClient);
 int cx = rcClient.Width () / 2;
 int cy = rcClient.Height () / 2;
 CRect rcShape (cx - 45, cy - 45, cx + 45, cy + 45);

 CBrush brush (m_clrColors[m_nColor]);
 CBrush* pOldBrush = dc.SelectObject (&brush);

 switch (m_nShape) {

 case 0: // Circle
 dc.Ellipse (rcShape);
 break;

 case 1: // Triangle
 points[0].x = cx - 45;
 points[0].y = cy + 45;
 points[1].x = cx;
 points[1].y = cy - 45;
 points[2].x = cx + 45;
 points[2].y = cy + 45;
 dc.Polygon (points, 3);
 break;

 case 2: // Square
 dc.Rectangle (rcShape);
 break;
 }
 dc.SelectObject (pOldBrush);
}

void CChildView::OnShapeCircle()
{
 m_nShape = 0;
 Invalidate ();
}

void CChildView::OnShapeTriangle()
{
 m_nShape = 1;
 Invalidate ();
}

void CChildView::OnShapeSquare()
{
 m_nShape = 2;
 Invalidate ();
}

void CChildView::OnUpdateShapeCircle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 0);
}

Programming Windows With MFC

 290

void CChildView::OnUpdateShapeTriangle(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 1);
}

void CChildView::OnUpdateShapeSquare(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_nShape == 2);
}

void CChildView::OnColor (UINT nID)
{
 m_nColor = nID - ID_COLOR_RED;
 Invalidate ();
}

void CChildView::OnUpdateColor (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck ((int) pCmdUI->m_nID - ID_COLOR_RED ==
m_nColor);
}

void CChildView::OnContextMenu(CWnd* pWnd, CPoint point)
{
 CRect rcClient;
 GetClientRect (&rcClient);

 int cx = rcClient.Width () / 2;
 int cy = rcClient.Height () / 2;
 CRect rcShape (cx - 45, cy - 45, cx + 45, cy + 45);

 CPoint pos = point;
 ScreenToClient (&pos);

 CPoint points[3];
 BOOL bShapeClicked = FALSE;
 int dx, dy;

 //
 // Hit test the shape.
 //
 switch (m_nShape) {
 case 0: // Circle
 dx = pos.x - cx;
 dy = pos.y - cy;
 if ((dx * dx) + (dy * dy) <= (45 * 45))
 bShapeClicked = TRUE;
 break;

 case 1: // Triangle
 if (rcShape.PtInRect (pos)) {
 dx = min (pos.x - rcShape.left, rcShape.right - pos.x);
 if ((rcShape.bottom - pos.y) < (2 * dx))
 bShapeClicked = TRUE;
 }

Programming Windows With MFC

 291

 break;

 case 2: // Square
 if (rcShape.PtInRect (pos))
 bShapeClicked = TRUE;
 break;
 }

 //
 // Display a context menu if the shape was clicked.
 //
 if (bShapeClicked) {
 CMenu menu;
 menu.LoadMenu (IDR_CONTEXTMENU);
 CMenu* pContextMenu = menu.GetSubMenu (0);

 for (int i=0; i<5; i++)
 pContextMenu->ModifyMenu (ID_COLOR_RED + i,
 MF_BYCOMMAND ¦ MF_OWNERDRAW,
ID_COLOR_RED + i);

 pContextMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
TPM_LEFTBUTTON ¦
 TPM_RIGHTBUTTON, point.x, point.y, AfxGetMainWnd ());
 return;
 }

 //
 // Call the base class if the shape was not clicked.
 //
 CWnd::OnContextMenu (pWnd, point);
}

Resource.h

//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Colors.rc
//
#define IDD_ABOUTBOX 100
#define IDR_MAINFRAME 128
#define IDR_COLORSTYPE 129
#define IDR_CONTEXTMENU 130
#define ID_SHAPE_CIRCLE 32771
#define ID_SHAPE_TRIANGLE 32772
#define ID_SHAPE_SQUARE 32773
#define ID_COLOR_RED 32774
#define ID_COLOR_YELLOW 32775
#define ID_COLOR_GREEN 32776
#define ID_COLOR_CYAN 32777
#define ID_COLOR_BLUE 32778

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS

Programming Windows With MFC

 292

#define _APS_NEXT_RESOURCE_VALUE 131
#define _APS_NEXT_COMMAND_VALUE 32779
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

Colors.rc

//Microsoft Developer Studio generated resource script.

//
#include "resource.h"

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "afxres.h"

///
#undef APSTUDIO_READONLY_SYMBOLS

///
// English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32

#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//

1 TEXTINCLUDE DISCARDABLE
BEGIN
 "resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#include ""afxres.h""\r\n"
 "\0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN
 "#define _AFX_NO_SPLITTER_RESOURCES\r\n"
 "#define _AFX_NO_OLE_RESOURCES\r\n"
 "#define _AFX_NO_TRACKER_RESOURCES\r\n"
 "#define _AFX_NO_PROPERTY_RESOURCES\r\n"

Programming Windows With MFC

 293

 "\r\n"
 "#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)\r\n"
 "#ifdef _WIN32\r\n"
 "LANGUAGE 9, 1\r\n"
 "#pragma code_page(1252)\r\n"
 "#endif //_WIN32\r\n"
 "#include ""res\\Colors.rc2"
 " // non-Microsoft Visual C++ edited resources\r\n"
 "#include ""afxres.rc"" // Standard components\r\n"
 "#endif\r\n"
 "\0"
END

#endif // APSTUDIO_INVOKED

///
//
// Icon
//

// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDR_MAINFRAME ICON DISCARDABLE
"res\\Colors.ico"

///
//
// Menu
//

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", ID_APP_EXIT
 END
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Circle\tF7",
ID_SHAPE_CIRCLE
 MENUITEM "&Triangle\tF8",
ID_SHAPE_TRIANGLE
 MENUITEM "&Square\tF9",
ID_SHAPE_SQUARE
 END
 POPUP "&Color"
 BEGIN
 MENUITEM "&Red",
ID_COLOR_RED
 MENUITEM "&Yellow",
ID_COLOR_YELLOW
 MENUITEM "&Green",
ID_COLOR_GREEN
 MENUITEM "&Cyan",
ID_COLOR_CYAN

Programming Windows With MFC

 294

 MENUITEM "&Blue",
ID_COLOR_BLUE
 END
END

IDR_CONTEXTMENU MENU DISCARDABLE
BEGIN
 POPUP "Top"
 BEGIN
 MENUITEM "&Circle\tF7",
ID_SHAPE_CIRCLE
 MENUITEM "&Triangle\tF8",
ID_SHAPE_TRIANGLE
 MENUITEM "&Square\tF9",
ID_SHAPE_SQUARE
 MENUITEM SEPARATOR
 MENUITEM "&Red",
ID_COLOR_RED
 MENUITEM "&Yellow",
ID_COLOR_YELLOW
 MENUITEM "&Green",
ID_COLOR_GREEN
 MENUITEM "&Cyan",
ID_COLOR_CYAN
 MENUITEM "&Blue",
ID_COLOR_BLUE
 END
END

///
//
// Accelerator
//

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE
BEGIN
 "B", ID_COLOR_BLUE, VIRTKEY,
CONTROL, NOINVERT
 "C", ID_COLOR_CYAN, VIRTKEY,
CONTROL, NOINVERT
 "G", ID_COLOR_GREEN, VIRTKEY,
CONTROL, NOINVERT
 "R", ID_COLOR_RED, VIRTKEY,
CONTROL, NOINVERT
 VK_F7, ID_SHAPE_CIRCLE, VIRTKEY,
NOINVERT
 VK_F8, ID_SHAPE_TRIANGLE, VIRTKEY,
NOINVERT
 VK_F9, ID_SHAPE_SQUARE, VIRTKEY,
NOINVERT
 "Y", ID_COLOR_YELLOW, VIRTKEY,
CONTROL, NOINVERT
END

Programming Windows With MFC

 295

///
//
// Dialog
//

IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 235, 55
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_CAPTION ¦
WS_SYSMENU
CAPTION "About Colors"
FONT 8, "MS Sans Serif"
BEGIN
 ICON IDR_MAINFRAME,IDC_STATIC,11,17,20,20
 LTEXT "Colors Version
1.0",IDC_STATIC,40,10,119,8,SS_NOPREFIX
 LTEXT "Copyright (C) 1998",IDC_STATIC,40,25,119,8
 DEFPUSHBUTTON "OK",IDOK,178,7,50,14,WS_GROUP
END

#ifndef _MAC
///
//
// Version
//

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904B0"
 BEGIN
 VALUE "CompanyName", "\0"
 VALUE "FileDescription", "Colors MFC Application\0"
 VALUE "FileVersion", "1, 0, 0, 1\0"
 VALUE "InternalName", "Colors\0"
 VALUE "LegalCopyright", "Copyright (C) 1998\0"
 VALUE "LegalTrademarks", "\0"
 VALUE "OriginalFilename", "Colors.EXE\0"
 VALUE "ProductName", "Colors Application\0"
 VALUE "ProductVersion", "1, 0, 0, 1\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200

Programming Windows With MFC

 296

 END
END

#endif // !_MAC

///
//
// DESIGNINFO
//

#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
 IDD_ABOUTBOX, DIALOG
 BEGIN
 LEFTMARGIN, 7
 RIGHTMARGIN, 228
 TOPMARGIN, 7
 BOTTOMMARGIN, 48
 END
END
#endif // APSTUDIO_INVOKED

///
//
// String Table
//

STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 IDR_MAINFRAME "Colors"
END

STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 AFX_IDS_APP_TITLE "Colors"
 AFX_IDS_IDLEMESSAGE "Ready"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_INDICATOR_EXT "EXT"
 ID_INDICATOR_CAPS "CAP"
 ID_INDICATOR_NUM "NUM"
 ID_INDICATOR_SCRL "SCRL"
 ID_INDICATOR_OVR "OVR"
 ID_INDICATOR_REC "REC"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_APP_ABOUT "Display program information, version
number and copyright\nAbout"
 ID_APP_EXIT "Quit the application; prompts to save
documents\nExit"

Programming Windows With MFC

 297

END

STRINGTABLE DISCARDABLE
BEGIN
 ID_NEXT_PANE "Switch to the next window pane\nNext
Pane"
 ID_PREV_PANE "Switch back to the previous window
pane\nPrevious Pane"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_WINDOW_SPLIT "Split the active window into
panes\nSplit"
END

STRINGTABLE DISCARDABLE
BEGIN
 ID_EDIT_CLEAR "Erase the selection\nErase"
 ID_EDIT_CLEAR_ALL "Erase everything\nErase All"
 ID_EDIT_COPY "Copy the selection and put it on the
Clipboard\nCopy"
 ID_EDIT_CUT "Cut the selection and put it on the
Clipboard\nCut"
 ID_EDIT_FIND "Find the specified text\nFind"
 ID_EDIT_PASTE "Insert Clipboard contents\nPaste"
 ID_EDIT_REPEAT "Repeat the last action\nRepeat"
 ID_EDIT_REPLACE "Replace specific text with different
text\nReplace"
 ID_EDIT_SELECT_ALL "Select the entire document\nSelect All"
 ID_EDIT_UNDO "Undo the last action\nUndo"
 ID_EDIT_REDO "Redo the previously undone
action\nRedo"
END

STRINGTABLE DISCARDABLE
BEGIN
 AFX_IDS_SCSIZE "Change the window size"
 AFX_IDS_SCMOVE "Change the window position"
 AFX_IDS_SCMINIMIZE "Reduce the window to an icon"
 AFX_IDS_SCMAXIMIZE "Enlarge the window to full size"
 AFX_IDS_SCNEXTWINDOW "Switch to the next document
window"
 AFX_IDS_SCPREVWINDOW "Switch to the previous document
window"
 AFX_IDS_SCCLOSE "Close the active window and prompts to
save the documents"
END

STRINGTABLE DISCARDABLE
BEGIN
 AFX_IDS_SCRESTORE "Restore the window to normal size"
 AFX_IDS_SCTASKLIST "Activate Task List"
END

#endif // English (U.S.) resources

Programming Windows With MFC

 298

///

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//
#define _AFX_NO_SPLITTER_RESOURCES
#define _AFX_NO_OLE_RESOURCES
#define _AFX_NO_TRACKER_RESOURCES
#define _AFX_NO_PROPERTY_RESOURCES

#if !defined(AFX_RESOURCE_DLL) ¦¦ defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE 9, 1
#pragma code_page(1252)
#endif //_WIN32
#include "res\Colors.rc2" // non-Microsoft Visual C++ edited resources
#include "afxres.rc" // Standard components
#endif

///
#endif // not APSTUDIO_INVOKED

Because the frame window is the menu's owner, the frame
window receives the WM_MEASUREITEM and
WM_DRAWITEM messages that the owner-draw items
generate. Therefore, the message handlers appear in the frame
window class. CMainFrame::OnMeasureItem contains just two
statements: one specifying the height of each menu item (the
SM_CYMENU value returned by ::GetSystemMetrics), the
other specifying the width (SM_CYMENU*4).
CMainFrame::OnDrawItem is a bit more complicated because
it's responsible for doing the actual drawing. After doing some
preliminary work involving a CBitmap object that we'll discuss
in a moment, OnDrawItem constructs an empty CDC object
and attaches to it the device context handle provided in the
DRAWITEMSTRUCT structure using CDC::Attach:

CDC dc;
dc.Attach (lpdis->hDC);

This converts dc into a valid device context object that wraps
the Windows-provided device context. That device context
should be returned to Windows in the same state in which it
was received. Objects selected into the device context should

Programming Windows With MFC

 299

be selected back out, and any changes made to the state of the
device context (for example, to the background mode or the
text color) should be undone before OnDrawItem ends.

Next, OnDrawItem creates a brush whose color is either
COLOR_MENU or COLOR_HIGHLIGHT, depending on
whether the ODS_SELECTED bit in the itemState field is set.
Then it outlines the menu item with a rectangle by calling
CDC::FrameRect with a pointer to the brush:

CBrush* pBrush = new CBrush (::GetSysColor ((lpdis->itemState &
 ODS_SELECTED) ? COLOR_HIGHLIGHT : COLOR_MENU));
dc.FrameRect (&(lpdis->rcItem), pBrush);
delete pBrush;

COLOR_MENU is the default menu background color;
COLOR_HIGHLIGHT is the color of a menu's highlight bar.
CDC::FrameRect uses the specified brush to draw a rectangle
with lines 1 pixel wide. The code above draws a rectangle
around the menu item in the background color if the item isn't
selected or in the highlight color if it is. This is the rectangle
you see when you pull down the Color menu and move the
mouse up and down. Drawing the rectangle in the background
color if the ODS_SELECTED bit is clear erases the selection
rectangle when the highlight passes from one item to another.

OnDrawItem's next task is to draw a check mark next to the
menu item if the ODS_CHECKED bit is set. Unfortunately,
drawing check marks is a detail you have to take care of
yourself when you use owner-draw menus. More unfortunate
still, neither MFC nor the Windows API has a DrawCheckMark
function that would make drawing a check mark easy. The
alternative is to create a bitmap depicting the check mark and
use CDC::BitBlt to "blit" the check mark to the screen. Blitting
is discussed in detail in Chapter 15, but even without that
background preparation, the OnDrawItem code that draws a
check mark if ODS_CHECKED is set is relatively easy to
understand:

CDC dcMem;
dcMem.CreateCompatibleDC (&dc);
CBitmap* pOldBitmap = dcMem.SelectObject (&bitmap);

dc.BitBlt (lpdis->rcItem.left + 4, lpdis->rcItem.top +

Programming Windows With MFC

 300

 (((lpdis->rcItem.bottom - lpdis->rcItem.top) -
 bm.bmHeight) / 2), bm.bmWidth, bm.bmHeight, &dcMem,
 0, 0, SRCCOPY);

dcMem.SelectObject (pOldBitmap);

dcMem represents a memory device context (DC)—a virtual
display surface in memory that can be drawn to as if it were a
screen or other output device. CreateCompatibleDC creates a
memory DC. Windows doesn't let you blit bitmaps directly to a
display surface, so instead you must select the bitmap into a
memory DC and copy it to the screen DC. In this example,
BitBlt copies the bitmap from the memory DC to a location
near the left end of the rectangle described by lpdis->rcItem in
the screen DC. When BitBlt returns, the bitmap is selected out
of the memory DC in preparation for the memory DC to be
destroyed when dcMem goes out of scope.

Where does the bitmap come from? The first four statements in
OnDrawItem create an empty CBitmap object, initialize it with
the bitmap that Windows uses to draw menu check marks, and
copy information about the bitmap (including its width and
height) to a BITMAP structure:

BITMAP bm;
CBitmap bitmap;
bitmap.LoadOEMBitmap (OBM_CHECK);
bitmap.GetObject (sizeof (bm), &bm);

OBM_CHECK is the bitmap ID; CBitmap::LoadOEMBitmap
copies the bitmap to a CBitmap object. CBitmap::GetObject
copies information about the bitmap to a BITMAP structure,
and the width and height values stored in the structure's
bmWidth and bmHeight fields are used in the call to BitBlt.
bmWidth is used again toward the end of OnDrawItem to indent
the left end of each color swatch by an amount that equals the
width of the check mark. For OBM_CHECK to be recognized,
the statement

#define OEMRESOURCE

must appear before the statement that includes Afxwin.h. In
Colors, you'll find the #define in StdAfx.h.

Programming Windows With MFC

 301

After the selection rectangle is drawn or erased and the check
mark is drawn if the ODS_CHECKED bit is set, OnDrawItem
draws the colored rectangle representing the menu item itself.
To do so, it creates a solid brush, creates a CRect object from
the rcItem structure passed in DRAWITEMSTRUCT, shrinks
the rectangle a few pixels, and paints the rectangle using
CDC::FillRect:

UINT itemID = lpdis->itemID & 0xFFFF; // Fix for Win95 bug.
pBrush = new CBrush (m_wndView.m_clrColors[itemID -
ID_COLOR_RED]);
CRect rect = lpdis->rcItem;
rect.DeflateRect (6, 4);
rect.left += bm.bmWidth;
dc.FillRect (rect, pBrush);
delete pBrush;

CDC::FillRect is yet another CDC rectangle function. It fills
the interior of the rectangle with a specified brush rather than
with the brush selected into the device context, and it doesn't
outline the rectangle with the current pen. Using FillRect rather
than Rectangle prevents us from having to select a pen and a
brush into the device context and select them back out again
when we're done. The color of the brush passed to FillRect is
determined by subtracting ID_COLOR_RED from the menu
item ID supplied in lpdis->itemID and using the result as an
index into the view object's m_clrColors array.

Speaking of lpdis->itemID: Observe that the code fragment in
the previous paragraph ANDs the item ID with 0xFFFF. This is
done to work around a bug in Windows 95. If you assign an
owner-draw menu item an ID equal to 0x8000 or higher,
Windows 95 unwittingly sign-extends the value when passing it
between the 16-bit and 32-bit halves of USER. The result? The
command ID 0x8000 becomes 0xFFFF8000, 0x8001 becomes
0xFFFF8001, and so on, and OnDrawItem won't recognize its
own command IDs unless it masks off the upper 16 bits. Using
ID values lower than 0x8000 fixes this problem by eliminating
the 1 in the upper bit, but it just so happens that when you allow
Visual C++ to pick your command IDs, it uses values greater
than 0x8000. Rather than manually change the IDs, I chose to
strip the bits instead. This problem doesn't exist in Windows
NT and is fixed in Windows 98.

Programming Windows With MFC

 302

OnDrawItem's final act is to detach dc from the device context
handle obtained from DRAWITEMSTRUCT. This final step is
important because it prevents dc's destructor from deleting the
device context when OnDrawItem ends. Normally you want a
device context to be deleted when a message handler returns,
but because this device context was borrowed from Windows,
only Windows should delete it. CDC::Detach disassociates a
CDC object and its device context so that the object can safely
go out of scope.

4.4.1. The Context Menu

Colors' context menu comes from the menu resource
IDR_CONTEXTMENU. The menu resource is defined as
follows in Colors.rc:

IDR_CONTEXTMENU MENU DISCARDABLE
BEGIN
 POPUP "Top"
 BEGIN
 MENUITEM "&Circle\tF7",
ID_SHAPE_CIRCLE
 MENUITEM "&Triangle\tF8",
ID_SHAPE_TRIANGLE
 MENUITEM "&Square\tF9",
ID_SHAPE_SQUARE
 MENUITEM SEPARATOR
 MENUITEM "&Red",
ID_COLOR_RED
 MENUITEM "&Yellow",
ID_COLOR_YELLOW
 MENUITEM "&Green",
ID_COLOR_GREEN
 MENUITEM "&Cyan",
ID_COLOR_CYAN
 MENUITEM "&Blue",
ID_COLOR_BLUE
 END
END

I created it by inserting a new menu resource into the
application with Visual C++'s Insert-Resource command. I
added items using the menu editor.

When the right mouse button is clicked in the view, the context
menu is loaded and displayed by CChildView::OnContextMenu.
Before loading the menu, OnContextMenu hit-tests the shape in
the window and passes the WM_CONTEXTMENU message to

Programming Windows With MFC

 303

the base class if the click occurred outside the shape. If it
determines that the click occurred over the circle, the triangle,
or the square, OnContextMenu loads the menu and converts the
items in it to owner-draw items before calling
TrackPopupMenu:

if (bShapeClicked) {
 CMenu menu;
 menu.LoadMenu (IDR_CONTEXTMENU);
 CMenu* pContextMenu = menu.GetSubMenu (0);

 for (int i=0; i<5; i++)
 pContextMenu->ModifyMenu (ID_COLOR_RED + i,
 MF_BYCOMMAND ¦ MF_OWNERDRAW, ID_COLOR_RED
+ i);

 pContextMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
TPM_LEFTBUTTON ¦
 TPM_RIGHTBUTTON, point.x, point.y, AfxGetMainWnd ());
 return;
}

The owner-draw conversion must be performed each time the
menu is loaded because when menu goes out of scope, the
menu is destroyed and the modifications made to it are lost.

The colors in the Color menu and the context menu are linked
to the command handler OnColor and the update handler
OnUpdateColor by the following entries in CChildView's
message map:

ON_COMMAND_RANGE (ID_COLOR_RED, ID_COLOR_BLUE, OnColor)
ON_UPDATE_COMMAND_UI_RANGE (ID_COLOR_RED,
ID_COLOR_BLUE, OnUpdateColor)

I added these entries to the source code manually because
ClassWizard doesn't support either ON_COMMAND_RANGE
or ON_UPDATE_COMMAND_UI_RANGE. ClassWizard's
lack of support for these macros is one very important reason
why MFC programmers shouldn't become too reliant on
code-generating wizards. The wizards are useful, but they
support only a subset of MFC's functionality. I could have used
ClassWizard to write separate command and update handlers
for every command, but hand-coding RANGE macros into the
message map is more efficient because it reduces what would
have been 10 separate command and update handlers to just 2.

Programming Windows With MFC

 304

Note that entries added to a message map manually should be
added outside the AFX_MSG_MAP comments generated by
AppWizard. The portion of the message map that lies between
these comments belongs to ClassWizard.

For these RANGE macros to work, the items in the Color menu
must be assigned contiguous command IDs, with
ID_COLOR_RED and ID_COLOR_BLUE bracketing the low
and high ends of the range, respectively. To ensure that these
conditions are met, you should either specify the command IDs
explicitly when creating the menu items in the menu editor or
edit them after the fact. You can specify a numeric command
ID when creating or editing a menu item by appending "=
value" to the command ID typed into the Menu Item Properties
dialog box's ID combo box, as shown in Figure 4-16. Or you
can edit Resource.h instead. I used the values 32774 through
32778 for ID_COLOR_RED through ID_COLOR_BLUE.

Figure 4-16. Assigning a numeric value to a menu item ID.

4.4.2. On Your Own

Here's an exercise you can try on your own. Go to
ResourceView and edit the icon resource IDR_MAINFRAME.
This resource, which was created by AppWizard, defines the
application icon. The icon contains two images: a large (32 by
32) image and a small (16 by 16) image. You should edit both
of them before you ship an application so that your application
will have a unique icon. You can pick the one you want to edit
by selecting Standard or Small from the icon editor's Device
drop-down list. You can see the large icon in the operating
system shell if you navigate to the folder containing Colors.exe
and select Large Icons as the view type. If you have Small
Icons, List, or Details selected instead, you'll see the small icon.
The small icon also appears in the frame window's title bar,

Programming Windows With MFC

 305

thanks to some code in CFrameWnd::LoadFrame that loads the
icon resource and associates it with the window.

Programming Windows With MFC

 306

Programming Windows With MFC

 307

Chapter 5. The MFC Collection
Classes

Many C++ programmers use the Standard Template Library
(STL) because of its convenient implementations of arrays,
linked lists, maps, and other containers. In the language of STL,
a container is an object that stores collections of data. But
before there was STL, there was MFC. MFC provides its own
implementations of arrays, linked lists, and maps in a family of
classes known as the MFC collection classes. Even though it's
perfectly safe to use STL classes in MFC applications, many
MFC programmers prefer MFC's collection classes to STL's,
either because they're more familiar with MFC's or because
they don't want to increase their applications' EXE size by
linking to two separate class libraries.

With the MFC collection classes to lend a hand, you might
never have to write a linked list from scratch again. This
chapter introduces the MFC collection classes and provides
provides key insights into their use and operation.

5.1. Arrays

One of the greatest weaknesses of C and C++ is that arrays are
not bounds-checked. Consider the following code, which
reflects one of the most common bugs found in C and C++
applications:

int array[10];
for (int i=0; i<=10; i++)
 array[i] = i + 1;

This code is buggy because the final iteration of the for loop
writes past the end of the array. When executed, it will cause an
access violation.

C++ programmers frequently combat such problems by writing
array classes that perform internal bounds checks. The
following array class features Get and Set functions that check
the array indexes passed to them and assert when passed an
invalid index:

Programming Windows With MFC

 308

class CArray
{
protected:
 int m_nSize; // Number of elements in the array.
 int* m_pData; // Where the array's elements are stored.

public:
 CArray (int nSize)
 {
 m_nSize = nSize;
 m_pData = new int[nSize];
 }
 ~CArray ()
 {
 m_nSize = 0;
 if (m_pData != NULL) {
 delete[] m_pData;
 m_pData = NULL;
 }
 }
 int Get (int nIndex)
 {
 assert (nIndex >= 0 && nIndex < m_nSize);
 return m_pData[nIndex];
 }
 void Set (int nIndex, int nVal)
 {
 assert (nIndex >= 0 && nIndex < m_nSize);
 m_pData[nIndex] = nVal;
 }
};

With this simple class serving as a container for an array of
integers, the following code will assert when Set is called for
the final time:

CArray array (10);
for (int i=0; i<=10; i++)
 array.Set (i, i + 1); // Asserts when i == 10.

Now the error will be caught before an access violation occurs.

5.1.1. The MFC Array Classes

You don't have to write array classes yourself because MFC
provides an assortment of them for you. First there's the generic
CArray class, which is actually a template class from which

Programming Windows With MFC

 309

you can create type-safe arrays for data of any type. CArray is
defined in the header file Afxtempl.h. Then there are the
nontemplatized array classes, each of which is designed to hold
a particular type of data. These classes are defined in Afxcoll.h.
The following table lists the nontemplatized MFC array classes
and the types of data that they store.

Type-Specific MFC Array Classes

Class Name Data Type

CByteArray 8-bit bytes (BYTEs)

CWordArray 16-bit words (WORDs)

CDWordArray 32-bit double words (DWORDs)

CUIntArray Unsigned integers (UINTs)

CStringArray CStrings

CPtrArray void pointers

CObArray CObject pointers

Once you learn to use one of these array classes, you can use
the others too, because all share a common set of member
functions. The following example declares an array of 10
UINTs and initializes it with the numbers 1 through 10:

CUIntArray array;
array.SetSize (10);
for (int i=0; i<10; i++)
 array[i] = i + 1;

You can use the same approach to declare an array of CStrings
and initialize it with textual representations of the integers 1
through 10:

CStringArray array;
array.SetSize (10);
for (int i=0; i<10; i++) {
 CString string;
 string.Format (_T ("%d"), i);
 array[i] = string;
}

Programming Windows With MFC

 310

In both cases, SetSize sizes the array to hold 10 elements. In
both cases, the overloaded [] operator calls the array's SetAt
function, which copies a value to an element at a specified
location in the array. And in both cases, the code asserts if the
array's bounds are violated. The bounds check is built into the
code for SetAt:

ASSERT(nIndex >= 0 && nIndex < m_nSize);

You can see this code for yourself in the MFC source code file
Afxcoll.inl.

You can insert items into an array without overwriting the
items that are already there by using the InsertAt function.
Unlike SetAt, which simply assigns a value to an existing array
element, InsertAt makes room for the new element by moving
elements above the insertion point upward in the array. The
following statements initialize an array with the numbers 1
through 4 and 6 through 10, and then insert a 5 between the 4
and the 6:

CUIntArray array;
array.SetSize (9);
for (int i=0; i<4; i++)
 array[i] = i + 1;
for (i=4; i<9; i++)
 array[i] = i + 2;
array.InsertAt (4, 5); // Insert a 5 at index 4.

You can also pass a third parameter to InsertAt specifying the
number of times the item should be inserted or pass a pointer to
another array object in parameter 2 to insert an entire array.
Note that this example sets the array size to 9, not 10, yet no
assertion occurs when InsertAt is called. That's because
InsertAt is one of a handful of array functions that
automatically grow the array as new items are added.
Dynamically sized arrays are discussed in the next section.

Values can be retrieved from an MFC array using standard
array addressing syntax. The following example reads back the
UINTs written to the CUIntArray in the previous example:

for (int i=0; i<10; i++)

Programming Windows With MFC

 311

 UINT nVal = array[i];

Used this way, the [] operator calls the array's GetAt function,
which retrieves a value from a specified position in the
array—with bounds checking, of course. If you'd prefer, you
can call GetAt directly rather than use the [] operator.

To find out how many elements an array contains, call the
array's GetSize function. You can also call GetUpperBound,
which returns the 0-based index of the array's upper
bound—the number of elements in the array minus 1.

MFC's array classes provide two functions for removing
elements from an array: RemoveAt and RemoveAll. RemoveAt
removes one or more items from the array and shifts down any
items above the ones that were removed. RemoveAll empties
the array. Both functions adjust the array's upper bounds to
reflect the number of items that were removed, as the following
example demonstrates:

// Add 10 items.
CUIntArray array;
array.SetSize (10);
for (int i=0; i<10; i++)
 array[i] = i + 1;

// Remove the item at index 0.
array.RemoveAt (0);
TRACE (_T ("Count = %d\n"), array.GetSize ()); // 9 left.

// Remove items 0, 1, and 2.
array.RemoveAt (0, 3);
TRACE (_T ("Count = %d\n"), array.GetSize ()); // 6 left.

// Empty the array.
array.RemoveAll ();
TRACE (_T ("Count = %d\n"), array.GetSize ()); // 0 left.

The Remove functions delete elements, but they don't delete the
objects that the elements point to if the elements are pointers. If
array is a CPtrArray or a CObArray and you want to empty the
array and delete the objects referenced by the deleted pointers,
rather than write

Programming Windows With MFC

 312

array.RemoveAll ();

you should write this:

int nSize = array.GetSize ();
for (int i=0; i<nSize; i++)
 delete array[i];
array.RemoveAll ();

Failure to delete the objects whose addresses are stored in a
pointer array will result in memory leaks. The same is true of
MFC lists and maps that store pointers.

5.1.2. Dynamic Array Sizing

Besides being bounds-checked, the MFC array classes also
support dynamic sizing. You don't have to predict ahead of
time how many elements a dynamically sized array should have
because the memory set aside to store array elements can be
grown as elements are added and shrunk as elements are
removed.

One way to dynamically grow an MFC array is to call SetSize.
You can call SetSize as often as needed to allocate additional
memory for storage. Suppose you initially size an array to hold
10 items but later find that it needs to hold 20. Simply call
SetSize a second time to make room for the additional items:

// Add 10 items.
CUIntArray array;
array.SetSize (10);
for (int i=0; i<10; i++)
 array[i] = i + 1;

// Add 10 more.
array.SetSize (20);
for (i=10; i<20; i++)
 array[i] = i + 1;

When an array is resized this way, the original items retain their
values. Thus, only the new items require explicit initialization
following a call to SetSize.

Programming Windows With MFC

 313

Another way to grow an array is to use SetAtGrow instead of
SetAt to add items. For example, the following code attempts to
use SetAt to add 10 items to an array of UINTs:

CUIntArray array;
for (int i=0; i<10; i++)
 array.SetAt (i, i + 1);

This code will assert the first time SetAt is called. Why?
Because the array's size is 0 (note the absence of a call to
SetSize), and SetAt doesn't automatically grow the array to
accommodate new elements. Change SetAt to SetAtGrow,
however, and the code works just fine:

CUIntArray array;
for (int i=0; i<10; i++)
 array.SetAtGrow (i, i + 1);

Unlike SetAt, SetAtGrow automatically grows the array's
memory allocation if necessary. So does Add, which adds an
item to the end of the array. The next example is functionally
identical to the previous one, but it uses Add instead of
SetAtGrow to add elements to the array:

CUIntArray array;
for (int i=0; i<10; i++)
 array.Add (i + 1);

Other functions that automatically grow an array to
accommodate new items include InsertAt, Append (which
appends one array to another), and Copy, which, as the name
implies, copies one array to another.

MFC grows an array by allocating a new memory buffer and
copying items from the old buffer to the new one. If a grow
operation fails because of insufficient memory, MFC throws an
exception. To trap such errors when they occur, wrap calls that
grow an array in a try block accompanied by a catch handler
for CMemoryExceptions:

try {
 CUIntArray array;
 array.SetSize (1000); // Might throw a CMemoryException.

Programming Windows With MFC

 314

}
catch (CMemoryException* e) {
 AfxMessageBox (_T ("Error: Insufficient memory"));
 e->Delete (); // Delete the exception object.
}

This catch handler displays an error message warning the user
that the system is low on memory. In real life, more extensive
measures might be required to recover gracefully from
out-of-memory situations.

Because a new memory allocation is performed every time an
array's size is increased, growing an array too frequently can
adversely impact performance and can also lead to memory
fragmentation. Consider the following code fragment:

CUIntArray array;
for (int i=0; i<100000; i++)
 array.Add (i + 1);

These statements look innocent enough, but they're inefficient
because they require thousands of separate memory allocations.
That's why MFC lets you specify a grow size in SetSize's
optional second parameter. The following code initializes the
array more efficiently because it tells MFC to allocate space for
10,000 new UINTs whenever more memory is required:

CUIntArray array;
array.SetSize (0, 10000);
for (int i=0; i<100000; i++)
 array.Add (i + 1);

Of course, this code would be even better if it allocated room
for 100,000 items up front. But very often it's impossible to
predict in advance how many elements the array will be asked
to hold. Large grow sizes are beneficial if you anticipate adding
many items to an array but can't determine just how big the
number will be up front.

If you don't specify a grow size, MFC picks one for you using a
simple formula based on the array size. The larger the array, the
larger the grow size. If you specify 0 as the array size or don't

Programming Windows With MFC

 315

call SetSize at all, the default grow size is 4 items. In the first of
the two examples in the previous paragraph, the for loop causes
memory to be allocated and reallocated no less than 25,000
times. Setting the grow size to 10,000 reduces the allocation
count to just 10.

The same SetSize function used to grow an array can also be
used to reduce the number of array elements. When it
downsizes an array, however, SetSize doesn't automatically
shrink the buffer in which the array's data is stored. No memory
is freed until you call the array's FreeExtra function, as
demonstrated here:

array.SetSize (50); // Allocate room for 50 elements.
array.SetSize (30); // Shrink the array size to 30 elements.
array.FreeExtra (); // Shrink the buffer to fit exactly 30 elements.

You should also call FreeExtra after RemoveAt and RemoveAll
if you want to shrink the array to the minimum size necessary
to hold the remaining elements.

5.1.3. Creating Type-Safe Array Classes with
CArray

CUIntArray, CStringArray, and other MFC array classes work
with specific data types. But suppose you need an array for
another data type—say, CPoint objects. Because there is no
CPointArray class, you must create your own from MFC's
CArray class. CArray is a template class used to build type-safe
array classes for arbitrary data types.

To illustrate, the following code sample declares a type-safe
array class for CPoint objects and then instantiates the class and
initializes it with an array of CPoints describing a line:

CArray<CPoint, CPoint&> array;

// Populate the array, growing it as needed.
for (int i=0; i<10; i++)
 array.SetAtGrow (i, CPoint (i*10, 0));

// Enumerate the items in the array.
int nCount = array.GetSize ();
for (i=0; i<nCount; i++) {

Programming Windows With MFC

 316

 CPoint point = array[i];
 TRACE (_T ("x=%d, y=%d\n"), point.x, point.y);
}

The first CArray template parameter specifies the type of data
stored in the array; the second specifies how the type is
represented in parameter lists. You could use CPoints instead
of CPoint references, but references are more efficient when
the size of the item exceeds the size of a pointer.

You can use data of any kind—even classes of your own
creation—in CArray's template parameters. The following
example declares a class that represents points in
three-dimensional space and fills an array with 10 class
instances:

class CPoint3D
{
public:
 CPoint3D ()
 {
 x = y = z = 0;
 }
 CPoint3D (int xPos, int yPos, int zPos)
 {
 x = xPos;
 y = yPos;
 z = zPos;
 }
 int x, y, z;
};

CArray<CPoint3D, CPoint3D&> array;

// Populate the array, growing it as needed.
for (int i=0; i<10; i++)
 array.SetAtGrow (i, CPoint3D (i*10, 0, 0));

// Enumerate the items in the array.
int nCount = array.GetSize ();
for (i=0; i<nCount; i++) {
 CPoint3D point = array[i];
 TRACE (_T ("x=%d, y=%d, z=%d\n"), point.x, point.y, point.z);
}

Programming Windows With MFC

 317

It's important to include default constructors in classes you use
with CArray and other template-based MFC collection classes
because MFC uses a class's default constructor to create new
items when functions such as InsertAt are called.

With CArray at your disposal, you can, if you want to, do
without the older (and nontemplatized) MFC array classes such
as CUIntArray and use templates exclusively. The following
typedef declares a CUIntArray data type that is functionally
equivalent to MFC's CUIntArray:

typedef CArray<UINT, UINT> CUIntArray;

Ultimately, the choice of which CUIntArray class to use is up
to you. However, the MFC documentation recommends that
you use the template classes whenever possible, in part because
doing so is more in keeping with modern C++ programming
practices.

5.2. Lists

The InsertAt and RemoveAt functions make it easy to add items
to an array and to take them away. But the ease with which
items are inserted and removed comes at a cost: when items are
inserted or removed in the middle of an array, items higher in
the array must be shifted upward or downward in memory. The
performance penalty incurred when manipulating large arrays
in this manner can be quite expensive.

A classic solution to the problem of maintaining ordered lists
that support fast item insertion and removal is the linked list. A
linked list is a collection of items that contain pointers to other
items. In a singly linked list, each item contains a pointer to the
next item in the list. Moving forward through a singly linked
list is fast because moving to the next item is a simple matter of
extracting that item's address from the current item. To support
fast forward and backward traversal, many lists are doubly
linked—that is, each item contains a pointer to the previous
item in the list as well as to the next item. Given the address of
the first item in the list (the head), it's a simple matter to
enumerate the items in the list using code like this:

Programming Windows With MFC

 318

item* pItem = GetHead ();
while (pItem != NULL)
 pItem = pItem->pNextItem;

Conversely, given the address of the final item in the list (the
tail), a doubly linked list can be traversed in reverse order, like
this:

item* pItem = GetTail ();
while (pItem != NULL)
 pItem = pItem->pPrevItem;

These examples assume that the list doesn't wrap around on
itself—that is, that the pNextItem pointer in the final item and
the pPrevItem pointer in the first item are equal to NULL.
Some linked lists form a circular chain of items by connecting
the first and last items.

How do linked lists solve the problem of fast item insertion and
removal? Inserting an item midway through the list doesn't
require any items to be shifted upward in memory; it simply
requires that the pointers stored in the items before and after the
insertion point be adjusted to reference the new item.
Removing an item is equally efficient, requiring nothing more
than the adjustment of two pointers. Compare this to inserting
an item into the middle of an array, which could require a
memcpy involving tens, hundreds, or perhaps thousands of
items to make room for one new item, and the benefits should
be obvious.

Nearly every programmer has, at some point in his or her career,
implemented a linked list. Everyone should do it once, but no
one should have to do it more than once. Fortunately, many
class libraries, including MFC, provide canned
implementations of linked lists. As an MFC programmer, you
can sleep well tonight knowing that you'll probably never have
to write a linked list from scratch again.

5.2.1. The MFC List Classes

The MFC template class CList implements a generic linked list
that can be customized to work with any data type. MFC also
provides the following nontemplatized list classes to deal with

Programming Windows With MFC

 319

specific data types. These classes are provided primarily for
compatibility with older versions of MFC and aren't used very
often in modern MFC applications.

Type-Specific MFC List Classes

Class Name Data Type

CObList CObject pointers

CPtrList void pointers

CStringList CStrings

MFC lists are doubly linked for fast forward and backward
traversal. Positions in the list are identified by abstract values
called POSITIONs. For a list, a POSITION is actually a pointer
to a CNode data structure representing one item in the list.
CNode contains three fields: a pointer to the next CNode
structure in the list, a pointer to the previous CNode structure,
and a pointer to the item data. Insertions at the head of the list,
the tail, or at a specified POSITION are fast and efficient. Lists
can also be searched, but because searches are performed by
traversing the list sequentially and examining its items one by
one, they can be time-consuming if the list is long.

I'll use CStringList to demonstrate how the list classes are used,
but keep in mind that the principles demonstrated here apply to
the other list classes as well. The following example creates a
CStringList object and adds 10 strings to it:

// Schools of the Southeastern Conference
const TCHAR szSchools[][20] = {
 _T ("Alabama"),
 _T ("Arkansas"),
 _T ("Florida"),
 _T ("Georgia"),
 _T ("Kentucky"),
 _T ("Mississippi"),
 _T ("Mississippi State"),
 _T ("South Carolina"),
 _T ("Tennessee"),
 _T ("Vanderbilt"),
};

CStringList list;
for (int i=0; i<10; i++)

Programming Windows With MFC

 320

 list.AddTail (szSchools[i]);

The AddTail function adds an item (or all the items in another
linked list) to the end of the list. To add items to the head of the
list, use the AddHead function instead. Removing an item from
the head or tail is as simple as calling RemoveHead or
RemoveTail. The RemoveAll function removes all the items in
one fell swoop.

Each time a string is added to a CStringList, MFC copies the
string to a CString and stores it in the corresponding CNode
structure. Therefore, it's perfectly acceptable to allow the
strings that you initialize a list with to go out of scope once the
list is built.

Once a list is created, you can iterate through it forward and
backward using the GetNext and GetPrev functions. Both
accept a POSITION value identifying the current position in the
list and return the item at that position. Each also updates the
POSITION value to reference the next or previous item. You
can retrieve the POSITION of the first or last item in the list
with GetHeadPosition or GetTailPosition. The following
statements enumerate the items in the list from first to last,
writing each string retrieved from the list to the debug output
window using MFC's TRACE macro:

POSITION pos = list.GetHeadPosition ();
while (pos != NULL) {
 CString string = list.GetNext (pos);
 TRACE (_T ("%s\n"), string);
}

Walking the list backward is equally simple:

POSITION pos = list.GetTailPosition ();
while (pos != NULL) {
 CString string = list.GetPrev (pos);
 TRACE (_T ("%s\n"), string);
}

If you simply want to retrieve the first or last item in the list,
you can use the list's GetHead or GetTail function. Neither

Programming Windows With MFC

 321

requires a POSITION value as input because the position is
implied in the call.

Given a POSITION value pos identifying a particular item, you
can use the list's At functions to retrieve, modify, or delete the
item:

CString string = list.GetAt (pos); // Retrieve the item.
list.SetAt (pos, _T ("Florida State")); // Change it.
list.RemoveAt (pos); // Delete it.

You can also use InsertBefore or InsertAfter to insert items into
the list:

list.InsertBefore (pos, _T ("Florida State")); // Insert at pos.
list.InsertAfter (pos, _T ("Florida State")); // Insert after pos.

Because of the nature of linked lists, insertions and removals
performed this way are fast.

MFC's list classes include two member functions that you can
use to perform searches. FindIndex accepts a 0-based index and
returns the POSITION of the item at the corresponding location
in the list. Find searches the list for an item matching an input
you specify and returns its POSITION. For string lists, Find
compares strings. For pointer lists, it compares pointers; it does
not dereference the pointers and compare the items that they
point to. Searching a string list for "Tennessee" requires just
one function call:

POSITION pos = list.Find (_T ("Tennessee"));

By default, Find searches the list from beginning to end. If
you'd like, you can specify an alternate starting point in the
function's second parameter. But be aware that if the item
you're looking for occurs before the starting POSITION, Find
won't find it because searches don't wrap around to the
beginning of the list.

You can find out how many elements a list contains with the
GetCount function. If GetCount returns 0, the list is empty. A
quick way to test for an empty list is to call IsEmpty.

Programming Windows With MFC

 322

5.2.2. Creating Type-Safe List Classes with CList

You can create type-safe list classes for the data types of your
choice from MFC's CList class. Here's an example involving a
linked list of CPoint objects:

CList<CPoint, CPoint&> list;

// Populate the list.
for (int i=0; i<10; i++)
 list.AddTail (CPoint (i*10, 0));

// Enumerate the items in the list.
POSITION pos = list.GetHeadPosition ();
while (pos != NULL) {
 CPoint point = list.GetNext (pos);
 TRACE (_T ("x=%d, y=%d\n"), point.x, point.y);
}

As with CArray, the first template parameter specifies the data
type (CPoint objects) and the second specifies how items are
passed in parameter lists (by reference).

If you use classes rather than primitive data types in a CList and
you call the list's Find function, your code won't compile unless
one of the following conditions is true:

x The class has an overloaded == operator that performs a comparison to a
like object.

x You override the template function CompareElements with a
type-specific version that compares two instances of the class.

The first method—overloading the == operator—is the more
common of the two and has already been done for you in MFC
classes such as CPoint and CString. If you write a class
yourself, you must do the operator overloading. Here's a
modified version of CPoint3D that overloads the comparison
operator for compatibility with CList::Find:

class CPoint3D
{
public:
 CPoint3D ()
 {
 x = y = z = 0;
 }

Programming Windows With MFC

 323

 CPoint3D (int xPos, int yPos, int zPos)
 {
 x = xPos;
 y = yPos;
 z = zPos;
 }
 operator== (CPoint3D point) const
 {
 return (x == point.x && y == point.y && z == point.z);
 }
 int x, y, z;
};

The alternative to overloading the comparison operator is to
override the global CompareElements function, as
demonstrated here:

class CPoint3D
{
public:
 CPoint3D ()
 {
 x = y = z = 0;
 }
 CPoint3D (int xPos, int yPos, int zPos)
 {
 x = xPos;
 y = yPos;
 z = zPos;
 }
 // Note: No operator==
 int x, y, z;
};

BOOL AFXAPI CompareElements (const CPoint3D* p1, const
CPoint3D* p2)
{
 return (p1->x == p2->x && p1->y == p2->y && p1->z ==
p2->z);
}

Overriding CompareElements eliminates the need for operator
overloading because the default implementation of
CompareElements, which is called by CList::Find, compares
items using the comparison operator. If you override
CompareElements and don't use == in the override, you don't
need to overload the == operator either.

Programming Windows With MFC

 324

5.3. Maps

Of all the MFC collection types, maps might be the most
interesting. A map, also known as a dictionary, is a table of
items keyed by other items. A simple example of a map is a list
of the 50 states keyed by each state's two-letter abbreviation.
Given a key such as CA, the corresponding state name
(California) can be retrieved with a simple function call. Maps
are designed so that given a key, the corresponding item can be
found in the table very quickly—often with just one lookup.
Maps are ideal containers for large amounts of data when
lookup performance is of paramount importance. MFC uses
maps to implement handle maps (tables that correlate HWNDs
to CWnds, HPENs to CPens, and so on) and other internal data
structures. It also makes its map classes public, so you can use
them to create maps of your own.

5.3.1. The MFC Map Classes

In addition to the template-based map class CMap, which can
be specialized to handle specific data types, MFC provides the
following type-specific (and non-template-based) map classes.
Each class includes member functions for adding and removing
items, retrieving items by key, and enumerating all the items in
the map.

Type-Specific MFC Map Classes

Class Name Description

CMapWordToPtr Stores void pointers keyed by WORDs

CMapPtrToWord Stores WORDs keyed by void pointers

CMapPtrToPtr Stores void pointers keyed by other void pointers

CMapWordToOb Stores CObject pointers keyed by WORDs

CMapStringToOb Stores CObject pointers keyed by strings

CMapStringToPtr Stores void pointers keyed by strings

CMapStringToString Stores strings keyed by other strings

To demonstrate the semantics of map usage, let's use
CMapStringToString to build a simple English-French

Programming Windows With MFC

 325

dictionary containing the names of the days in the week. The
following statements build the map.

CMapStringToString map;
map[_T ("Sunday")] = _T ("Dimanche");
map[_T ("Monday")] = _T ("Lundi");
map[_T ("Tuesday")] = _T ("Mardi");
map[_T ("Wednesday")] = _T ("Mercredi");
map[_T ("Thursday")] = _T ("Jeudi");
map[_T ("Friday")] = _T ("Vendredi");
map[_T ("Saturday")] = _T ("Samedi");

In this example, the items stored in the map are the French
names for the days of the week. Each item is keyed by a string
specifying its English-language equivalent. The [] operator
inserts an item and its key into the map. Because
CMapStringToString stores keys and items in CString objects,
inserting an item copies both its text and the key text to
CStrings.

With the map initialized like this, a simple lookup retrieves the
French word for Thursday. You perform lookups by calling the
map's Lookup function and specifying the key:

CString string;
if (map.Lookup (_T ("Thursday"), string))
 TRACE (_T ("Thursday in English = %s in French\n"), string);

A nonzero return from Lookup indicates that the item was
successfully retrieved. A 0 return means that no such item
exists—that is, that no item is keyed by the key specified in
Lookup's first parameter.

You can remove items from a map with RemoveKey and
RemoveAll. GetCount returns the number of items in the map,
and IsEmpty indicates whether the map contains any items at all.
GetStartPosition and GetNextAssoc permit you to enumerate
the map's contents item by item:

POSITION pos = map.GetStartPosition ();
while (pos != NULL) {
 CString strKey, strItem;
 map.GetNextAssoc (pos, strKey, strItem);
 TRACE (_T ("Key=%s, Item=%s\n"), strKey, strItem);

Programming Windows With MFC

 326

}

Run on the CMapStringToString object shown above, this code
produces the following output:

Key=Tuesday, Item=Mardi
Key=Saturday, Item=Samedi
Key=Wednesday, Item=Mercredi
Key=Thursday, Item=Jeudi
Key=Friday, Item=Vendredi
Key=Monday, Item=Lundi
Key=Sunday, Item=Dimanche

As this listing shows, items aren't necessarily stored in the
order in which they are added. This is a natural consequence of
the fact that maps are not designed to preserve order, but to
enable items to be retrieved as quickly as possible. Map
architecture is described in the next section.

Incidentally, if you insert an item into a map and that item has
the same key as an item that was previously inserted, the new
item will replace the old one. It's not possible for an MFC map
to contain two or more items identified by the same key.

5.3.2. How Maps Work

Maps wouldn't be very remarkable if it weren't for the fact that
lookups are so fast. The key to maximizing performance is
minimizing the number of items examined during the search.
Sequential searches are the worst, because if the map contains n
items, up to n individual lookups could be required. Binary
searches are better but require ordered items. The best
algorithm is one that can go directly to the requested item
without having to do any searching, regardless of the number of
items present. Sounds impossible? It's not. If a map is set up
properly, MFC's Lookup function can normally find any item
with a single lookup. Rarely, in fact, are more than two or three
lookups required. Here's why.

Soon after a map is created (usually at the moment the first
item is added, but occasionally before), it allocates memory for
a hash table, which is actually an array of pointers to CAssoc
structures. MFC uses CAssoc structures to represent the items

Programming Windows With MFC

 327

(and keys) that you add to a map. CAssoc is defined this way
for CMapStringToString:

struct CAssoc
{
 CAssoc* pNext;
 UINT nHashValue;
 CString key;
 CString value;
};

Whenever an item is added to the map, a new CAssoc structure
is created, a hash value is computed from the item's key, and a
pointer to the CAssoc structure is copied to the hash table at
index i, where i is computed using the following formula:

i = nHashValue % nHashTableSize

nHashValue is the hash value computed from the key;
nHashTableSize is the number of elements in the hash table.
The default hash table size is 17 entries; I'll discuss how (and
why) you change the size in just a moment. If perchance the
element at index i already holds a CAssoc pointer, MFC builds
a singly linked list of CAssoc structures. The address of the first
CAssoc structure in the list is stored in the hash table. The
address of the second CAssoc structure is stored in the first
CAssoc structure's pNext field, and so on. Figure 5-1 illustrates
how the hash table might look after 10 items are added. In this
example, five of the items' addresses are stored at unique
locations in the hash table, and five others are split between two
linked lists whose lengths are 2 and 3, respectively.

Programming Windows With MFC

 328

Figure 5-1. A hash table containing a combination of unique items and
linked lists.

When a map's Lookup function is called, MFC computes a hash
value from the input key, converts the hash into an index into
the hash table using the formula described in the previous
paragraph, and retrieves the CAssoc pointer from the
corresponding location in the hash table. Under ideal conditions,
there is just one CAssoc pointer at that location, and not a
linked list of CAssoc pointers. If that's the case, the item has
been found with just one lookup in the map, and its value is
retrieved from the CAssoc object. If the CAssoc pointer
retrieved from the hash table is the head of a linked list, MFC
walks the list until it finds the key it's looking for. A properly
built map will never have more than two or three items in a list
of CAssoc structures, which means a lookup should never
require more than two or three items to be examined.

5.3.3. Optimizing Lookup Efficiency

The efficiency with which lookups are performed depends on
two factors:

x The size of the hash table
x The hashing algorithm's ability to generate unique hash values from

arbitrary (and possibly similar) input keys

The hash table size is important. If a map contains 1,000 items
but the hash table has room for only 17 CAssoc pointers, the

Programming Windows With MFC

 329

best case is that each entry in the hash table stores the address
of the first CAssoc structure in a linked list of 58 or 59 CAssoc
structures. This arrangement greatly impedes lookup
performance. The hashing algorithm is important too, because
no matter how many CAssoc pointers the hash table can hold, if
the hashing algorithm generates only a handful of different hash
values (and therefore a handful of different hash table indexes),
lookup performance is similarly diminished.

The best way to optimize lookup efficiency is to make the hash
table as large as possible to minimize the number of collisions.
A collision occurs when dissimilar input keys yield the same
hash table index. Microsoft recommends setting the hash table
size to a value 10 to 20 percent larger than the number of items
in the map to strike a reasonable balance between memory
consumption and lookup efficiency. To specify the hash table
size, call the map's InitHashTable function:

// Assume the map will hold about 1,000 items.
map.InitHashTable (1200); // 1200 = 1000 + 20 percent

For statistical reasons, using a prime number for the hash table
size also helps to minimize collisions. Therefore, an even better
way to initialize a hash table for 1,000 items is to call
InitHashTable this way:

map.InitHashTable (1201);

You should call InitHashTable before adding any items to the
map. Attempting to resize the hash table when the map contains
one or more items causes an assertion error.

Although the algorithms that MFC uses to generate hash values
are adequate for most purposes, you can replace them with your
own if you want to. To hash an input key, MFC calls a global
template function named HashKey. For most data types,
HashKey is implemented this way:

AFX_INLINE UINT AFXAPI HashKey(ARG_KEY key)
{
 // default identity hash - works for most primitive values
 return ((UINT)(void*)(DWORD)key) >> 4;
}

Programming Windows With MFC

 330

For strings, however, it's implemented this way:
UINT AFXAPI HashKey(LPCWSTR key) // Unicode strings
{
 UINT nHash = 0;
 while (*key)
 nHash = (nHash<<5) + nHash + *key++;
 return nHash;
}

UINT AFXAPI HashKey(LPCSTR key) // ANSI strings
{
 UINT nHash = 0;
 while (*key)
 nHash = (nHash<<5) + nHash + *key++;
 return nHash;
}

To implement your own algorithm for a particular data type,
simply write a type-specific HashKey function. You can use the
string versions of HashKey shown above as a model.

5.3.4. Creating Type-Safe Map Classes with CMap

As you probably suspected, you can use MFC's CMap template
class to create maps for data types that aren't supported by the
type-specific map classes. The following example creates a
collection of CPoint objects keyed by CStrings and then
performs a lookup:

CMap<CString, CString&, CPoint, CPoint&> map;
map[CString (_T ("Vertex1"))] = CPoint (0, 0);
map[CString (_T ("Vertex2"))] = CPoint (100, 0);
map[CString (_T ("Vertex3"))] = CPoint (100, 100);
map[CString (_T ("Vertex4"))] = CPoint (0, 100);

CPoint point;
if (map.Lookup (CString (_T ("Vertex3")), point))
 TRACE (_T ("Vertex 3 = (%d,%d)\n"), point.x, point.y);

Because CString is used as a key, this code won't compile
unless you override HashKey with a version that is specifically
designed to hash CStrings. Here's one possibility:

UINT AFXAPI HashKey(CString& string)
{

Programming Windows With MFC

 331

 LPCTSTR key = (LPCTSTR) string;
 UINT nHash = 0;
 while (*key)
 nHash = (nHash<<5) + nHash + *key++;
 return nHash;
}

After converting the CString reference into a conventional
string pointer, this code hashes the string the same way MFC's
LPCSTR/LPCWSTR HashKey functions hash a string.

Like the CList class's Find function, CMap::Lookup uses the
CompareElements template function to compare elements.
Because CompareElements uses the == operator to perform
comparisons, the default implementation is fine for primitive
data types and classes that overload the == operator. If you use
classes of your own devising as keys in a map, however, you
must either overload the == operator in those classes or
override CompareElements for individual data types. Refer to
the section "Creating Type-Safe List Classes with CList" earlier
in this chapter for examples of how to do both.

5.4. The Typed Pointer Classes

The MFC collection classes with Ptr and Ob in their names (the
"Ptr" and "Ob" classes) provide convenient implementations of
containers that store generic (void) pointers and containers that
store pointers to MFC objects—that is, objects created from
classes derived from CObject. The problem with the Ptr and Ob
classes is that they're too generic. Using them typically requires
lots of type casting, which is anathema to many C++
programmers and poor programming practice besides.

MFC's typed pointer classes—a set of three template classes
designed to handle collections of pointers in a type-safe
manner—offer a convenient solution to the problem of storing
pointers without compromising type safety. The typed pointer
classes are listed in the following table.

Collection Classes for Pointers

Class Name Description

CTypedPtrArray Manages arrays of pointers

Programming Windows With MFC

 332

CTypedPtrList Manages linked lists of pointers

CTypedPtrMap Manages maps that use pointers as items or keys

Suppose you're writing a drawing program and you've written a
class named CLine that represents lines drawn on the screen.
Each time the user draws a line, you create a new CLine object.
You need somewhere to store CLine pointers, and because you
want to be able to add and delete pointers anywhere in the
collection without incurring a performance hit, you decide to
use a linked list. Because you derived CLine from CObject,
CObList would seem a natural fit.

CObList will do the job, but every time you retrieve a CLine
pointer from the list, you must cast it to CLine* because
CObList returns CObject pointers. CTypedPtrList offers a clean
alternative that requires no casting. Here's a code sample that
demonstrates this point:

CTypedPtrList<CObList, CLine*> list;

// Populate the list.
for (int i=0; i<10; i++) {
 int x = i * 10;
 CLine* pLine = new CLine (x, 0, x, 100);
 list.AddTail (pLine);
}

// Enumerate the items in the list.
POSITION pos = list.GetHeadPosition ();
while (pos != NULL)
 CLine* pLine = list.GetNext (pos); // No casting!

When you retrieve a CLine pointer with GetNext, you get back
a CLine pointer that requires no casting. That's type safety.

CTypedPtrList and the other typed pointer classes work by
deriving from the class whose name is specified in the first
template parameter. Inside the derived class are type-safe
member functions that wrap the corresponding member
functions in the base class. You can call any of the functions in
the base class or in the derived class, but where they overlap,
you'll normally use the type-safe versions instead. In general,
you should use Ob classes as base classes for collections that
hold pointers to objects derived from CObject, and Ptr classes

Programming Windows With MFC

 333

as base classes for collections that hold pointers to other types
of objects.

As is true of all MFC collection classes that store pointers,
deleting pointers from an array, a list, or a map doesn't delete
the items that the pointers point to. Therefore, before emptying
a list of CLine pointers, you'll probably find it necessary to
delete the CLines, too:

POSITION pos = list.GetHeadPosition ();
while (pos != NULL)
 delete list.GetNext (pos);
list.RemoveAll ();

Remember: If you don't delete the CLines, nobody will. Don't
assume that the collection classes will delete them for you.

Programming Windows With MFC

 334

Programming Windows With MFC

 335

Chapter 6. File I/O and
Serialization

File input and output (I/O) services are a staple of any operating
system. Not surprisingly, Microsoft Windows provides an
assortment of API functions for reading, writing, and
manipulating disk files. MFC casts these functions in an
object-oriented mold with its CFile class, which lets files be
viewed as objects that are operated on with CFile member
functions such as Read and Write. CFile has all the tools the
MFC programmer needs to perform low-level file I/O.

The most common reason for writing file I/O code is to support
document saving and loading. Although there's nothing wrong
with using CFile objects to write documents to disk and read
them back, most MFC applications don't do it that way; they
use CArchive objects instead. Thanks to some strategic operator
overloading performed by MFC, most data can be
serialized—that is, output as a byte stream—to a CArchive or
deserialized from a CArchive with syntactical ease. Moreover,
if a CArchive object is attached to a CFile object, data that is
serialized to the CArchive is transparently written to disk. You
can later reconstitute data archived in this manner by
deserializing it from a CArchive associated with the same file.

The ability to save and load documents by serializing them to
or from a CArchive is one of the fundamental building blocks
of MFC's document/view architecture. Although knowledge of
CArchive is of limited use for now, rest assured that it will
come in exceedingly handy when we begin writing
document/view applications in Chapter 9.

6.1. The CFile Class

CFile is a relatively simple class that encapsulates the portion
of the Win32 API that deals with file I/O. Among its 25-plus
member functions are functions for opening and closing files,
reading and writing file data, deleting and renaming files, and
retrieving file information. Its one public data member,
m_hFile, holds the handle of the file associated with a CFile
object. A protected CString data member named
m_strFileName holds the file name. The member functions

Programming Windows With MFC

 336

GetFilePath, GetFileName, and GetFileTitle can be used to
extract the file name, in whole or in part. For example, if the
full file name, path name included, is C:\Personal\File.txt,
GetFilePath returns the entire string, GetFileName returns
"File.txt," and GetFileTitle returns "File."

But to dwell on these functions is to disregard the features of
CFile that are the most important to programmers—that is, the
functions used to write data to disk and read it back. The next
several sections offer a brief tutorial in the use of CFile and its
rather peculiar way of letting you know when an error occurs.
(Hint: If you've never used C++ exception handling, now is a
good time to dust off the manual and brush up on it.)

6.1.1. Opening, Closing, and Creating Files

Files can be opened with CFile in either of two ways. The first
option is to construct an uninitialized CFile object and call
CFile::Open. The following code fragment uses this technique
to open a file named File.txt with read/write access. Because no
path name is provided in the function's first parameter, Open
will fail unless the file is located in the current directory:

CFile file;
file.Open (_T ("File.txt"), CFile::modeReadWrite);

CFile::Open returns a BOOL indicating whether the operation
was successful. The following example uses that return value to
verify that the file was successfully opened:

CFile file;
if (file.Open (_T ("File.txt"), CFile::modeReadWrite)) {
 // It worked!

}

A nonzero return value means the file was opened; 0 means it
wasn't. If CFile::Open returns 0 and you want to know why the
call failed, create a CFileException object and pass its address
to Open in the third parameter:

CFile file;
CFileException e;

Programming Windows With MFC

 337

if (file.Open (_T ("File.txt"), CFile::modeReadWrite, &e)) {
 // It worked!

}
else {
 // Open failed. Tell the user why.
 e.ReportError ();
}

If Open fails, it initializes the CFileException object with
information describing the nature of the failure. ReportError
displays an error message based on that information. You can
find out what caused the failure by examining the
CFileException's public m_cause data member. The
documentation for CFileException contains a complete list of
error codes.

The second option is to open the file using CFile's constructor.
Rather than construct an empty CFile object and call Open, you
can create a CFile object and open a file in one step like this:

CFile file (_T ("File.txt"), CFile::modeReadWrite);

If the file can't be opened, CFile's constructor throws a
CFileException. Therefore, code that opens files using
CFile::CFile normally uses try and catch blocks to trap errors:

try {
 CFile file (_T ("File.txt"), CFile::modeReadWrite);

}
catch (CFileException* e) {
 // Something went wrong.
 e->ReportError ();
 e->Delete ();
}

It's up to you to delete the CFileException objects MFC throws
to you. That's why this example calls Delete on the exception
object after processing the exception. The only time you don't
want to call Delete is the rare occasion when you use throw to
rethrow the exception.

Programming Windows With MFC

 338

To create a new file rather than open an existing one, include a
CFile::modeCreate flag in the second parameter to
CFile::Open or the CFile constructor:

CFile file (_T ("File.txt"), CFile::modeReadWrite ¦
CFile::modeCreate);

If a file created this way already exists, its length is truncated to
0. To create the file if it doesn't exist or to open it without
truncating it if it does exist, include a CFile::modeNoTruncate
flag as well:

CFile file (_T ("File.txt"), CFile::modeReadWrite ¦ CFile::modeCreate
¦
 CFile::modeNoTruncate);

An open performed this way almost always succeeds because
the file is automatically created for you if it doesn't already
exist.

By default, a file opened with CFile::Open or CFile::CFile is
opened for exclusive access, which means that no one else can
open the file. If desired, you can specify a sharing mode when
opening the file to explicitly grant others permission to access
the file, too. Here are the four sharing modes that you can
choose from:

Sharing Mode Description

CFile::shareDenyNone Opens the file nonexclusively

CFile::shareDenyRead Denies read access to other parties

CFile::shareDenyWrite Denies write access to other parties

CFile::shareExclusive Denies both read and write access to other parties
(default)

In addition, you can specify any one of the following three
types of read/write access:

Access Mode Description

CFile::modeReadWrite Requests read and write access

CFile::modeRead Requests read access only

Programming Windows With MFC

 339

CFile::modeWrite Requests write access only

A common use for these options is to allow any number of
clients to open a file for reading but to deny any client the
ability to write to it:

CFile file (_T ("File.txt"), CFile::modeRead ¦ CFile::shareDenyWrite);

If the file is already open for writing when this statement is
executed, the call will fail and CFile will throw a
CFileException with m_cause equal to
CFileException::sharingViolation.

An open file can be closed in two ways. To close a file
explicitly, call CFile::Close on the corresponding CFile object:

file.Close ();

If you'd prefer, you can let CFile's destructor close the file for
you. The class destructor calls Close if the file hasn't been
closed already. This means that a CFile object created on the
stack will be closed automatically when it goes out of scope. In
the following example, the file is closed the moment the brace
marking the end of the try block is reached:

try {
 CFile file (_T ("File.txt"), CFile::modeReadWrite);

 // CFile::~CFile closes the file.
}

One reason programmers sometimes call Close explicitly is to
close the file that is currently open so that they can open
another file using the same CFile object.

6.1.2. Reading and Writing

A file opened with read access can be read using CFile::Read.
A file opened with write access can be written with
CFile::Write. The following example allocates a 4-KB file I/O
buffer and reads the file 4 KB at a time. Error checking is
omitted for clarity.

Programming Windows With MFC

 340

BYTE buffer[0x1000];
CFile file (_T ("File.txt"), CFile::modeRead);
DWORD dwBytesRemaining = file.GetLength ();

while (dwBytesRemaining) {
 UINT nBytesRead = file.Read (buffer, sizeof (buffer));
 dwBytesRemaining -= nBytesRead;
}

A count of bytes remaining to be read is maintained in
dwBytesRemaining, which is initialized with the file size
returned by CFile::GetLength. After each call to Read, the
number of bytes read from the file (nBytesRead) is subtracted
from dwBytesRemaining. The while loop executes until
dwBytesRemaining reaches 0.

The following example builds on the code in the previous
paragraph by using ::CharLowerBuff to convert all the
uppercase characters read from the file to lowercase and using
CFile::Write to write the converted text back to the file. Once
again, error checking is omitted for clarity.

BYTE buffer[0x1000];
CFile file (_T ("File.txt"), CFile::modeReadWrite);
DWORD dwBytesRemaining = file.GetLength ();

while (dwBytesRemaining) {
 DWORD dwPosition = file.GetPosition ();
 UINT nBytesRead = file.Read (buffer, sizeof (buffer));
 ::CharLowerBuff ((LPTSTR)buffer, nBytesRead);
 file.Seek (dwPosition, CFile::begin);
 file.Write (buffer, nBytesRead);
 dwBytesRemaining -= nBytesRead;
}

This example uses the CFile functions GetPosition and Seek to
manipulate the file pointer—the offset into the file at which the
next read or write is performed—so that the modified data is
written over the top of the original. Seek's second parameter
specifies whether the byte offset passed in the first parameter is
relative to the beginning of the file (CFile::begin), the end of
the file (CFile::end), or the current position (CFile::current).
To quickly seek to the beginning or end of a file, use
CFile::SeekToBegin or CFile::SeekToEnd.

Programming Windows With MFC

 341

Read, Write, and other CFile functions throw a CFileException
if an error occurs during a file I/O operation.
CFileException::m_cause tells you why the error occurred. For
example, attempting to write to a disk that is full throws a
CFileException with m_cause equal to
CFileException::diskFull. Attempting to read beyond the end
of a file throws a CFileException with m_cause equal to
CFileException::endOfFile. Here's how the routine that
converts all the lowercase text in a file to uppercase might look
with error checking code included:

BYTE buffer[0x1000];
try {
 CFile file (_T ("File.txt"), CFile::modeReadWrite);
 DWORD dwBytesRemaining = file.GetLength ();
 while (dwBytesRemaining) {
 DWORD dwPosition = file.GetPosition ();
 UINT nBytesRead = file.Read (buffer, sizeof (buffer));
 ::CharLowerBuff ((LPTSTR)buffer, nBytesRead);
 file.Seek (dwPosition, CFile::begin);
 file.Write (buffer, nBytesRead);
 dwBytesRemaining -= nBytesRead;
 }
}
catch (CFileException* e) {
 e->ReportError ();
 e->Delete ();
}

If you don't catch exceptions thrown by CFile member
functions, MFC will catch them for you. MFC's default handler
for unprocessed exceptions uses ReportError to display a
descriptive error message. Normally, however, it's in your best
interest to catch file I/O exceptions to prevent critical sections
of code from being skipped.

6.1.3. CFile Derivatives

CFile is the root class for an entire family of MFC classes. The
members of this family and the relationships that they share
with one another are shown in Figure 6-1.

Programming Windows With MFC

 342

Figure 6-1. The CFile family.

Some members of the CFile family exist solely to provide
filelike interfaces to nonfile media. For example, CMemFile
and CSharedFile let blocks of memory be read and written as if
they were files. MFC's COleDataObject::GetFileData function,
which is discussed in Chapter 19, uses this handy abstraction to
allow OLE drop targets and users of the OLE clipboard to
retrieve data from memory with CFile::Read. CSocketFile
provides a similar abstraction for TCP/IP sockets. MFC
programmers sometimes place a CSocketFile object between a
CSocket object and a CArchive object so that C++'s insertion
and extraction operators can be used to write to and read from
an open socket. COleStreamFile makes a stream object—a
COM object that represents a byte stream—look like an
ordinary file. It plays an important role in MFC applications
that support object linking and embedding (OLE).

CStdioFile simplifies the programmatic interface to text files. It
adds just two member functions to those it inherits from CFile:

Programming Windows With MFC

 343

a ReadString function for reading lines of text and a
WriteString function for outputting lines of text. In
CStdioFile-speak, a line of text is a string of characters
delimited by a carriage return and line feed pair (0x0D and
0x0A). ReadString reads everything from the current file
position up to, and optionally including, the next carriage return.
WriteString outputs a text string and writes a carriage return
and line feed to the file, too. The following code fragment
opens a text file named File.txt and dumps its contents to the
debug output window:

try {
 CString string;
 CStdioFile file (_T ("File.txt"), CFile::modeRead);
 while (file.ReadString (string))
 TRACE (_T ("%s\n"), string);
}
catch (CFileException* e) {
 e->ReportError ();
 e->Delete ();
}

Like Read and Write, ReadString and WriteString throw
exceptions if an error prevents them from carrying out their
missions.

6.1.4. Enumerating Files and Folders

CFile includes a pair of static member functions named
Rename and Remove that can be used to rename and delete files.
It doesn't, however, include functions for enumerating files and
folders. For that, you must resort to the Windows API.

The key to enumerating files and folders is a pair of API
functions named ::FindFirstFile and ::FindNextFile. Given an
absolute or relative file name specification (for example,
"C:*.*" or "*.*"), ::FindFirstFile opens a find handle and
returns it to the caller. ::FindNextFile uses that handle to
enumerate file system objects. The general strategy is to
call ::FindFirstFile once to begin an enumeration and then to
call ::FindNextFile repeatedly until the enumeration is
exhausted. Each successful call to ::FindFirstFile
or ::FindNextFile—that is, a call to ::FindFirstFile that returns
any value other than INVALID_HANDLE_VALUE or a call

Programming Windows With MFC

 344

to ::FindNextFile that returns a non-NULL value—fills a
WIN32_FIND_DATA structure with information about one file
or directory. WIN32_FIND_DATA is defined this way in
ANSI code builds:

typedef struct _WIN32_FIND_DATAA {
 DWORD dwFileAttributes;
 FILETIME ftCreationTime;
 FILETIME ftLastAccessTime;
 FILETIME ftLastWriteTime;
 DWORD nFileSizeHigh;
 DWORD nFileSizeLow;
 DWORD dwReserved0;
 DWORD dwReserved1;
 CHAR cFileName[MAX_PATH];
 CHAR cAlternateFileName[14];
} WIN32_FIND_DATAA;

typedef WIN32_FIND_DATAA WIN32_FIND_DATA;

To determine whether the item represented by the
WIN32_FIND_DATA structure is a file or a directory, test the
dwFileAttributes field for a FILE_ATTRIBUTE_DIRECTORY
flag:

if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory.
}
else {
 // It's a file.
}

The cFileName and cAlternateFileName fields hold the file or
directory name. cFileName contains the long name;
cAlternateFileName contains the short (8.3 format) name.
When the enumeration is complete, you should close any
handles returned by ::FindFirstFile with ::FindClose.

To demonstrate, the following routine enumerates all the files
in the current directory and writes their names to the debug
output window:

WIN32_FIND_DATA fd;
HANDLE hFind = ::FindFirstFile (_T ("*.*"), &fd);

Programming Windows With MFC

 345

if (hFind != INVALID_HANDLE_VALUE) {
 do {
 if (!(fd.dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY))
 TRACE (_T ("%s\n"), fd.cFileName);
 } while (::FindNextFile (hFind, &fd));
 ::FindClose (hFind);
}

Enumerating all the subdirectories in the current directory
requires just one simple change:

WIN32_FIND_DATA fd;
HANDLE hFind = ::FindFirstFile (_T ("*.*"), &fd);

if (hFind != INVALID_HANDLE_VALUE) {
 do {
 if (fd.dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY)
 TRACE (_T ("%s\n"), fd.cFileName);
 } while (::FindNextFile (hFind, &fd));
 ::FindClose (hFind);
}

The more interesting case is how you can enumerate all the
directories in a given directory and its subdirectories. The
following function enumerates all the directories in the current
directory and its descendants, writing the name of each
directory to the debug output window. The secret? Whenever it
encounters a directory, EnumerateFolders descends into that
directory and calls itself recursively.

void EnumerateFolders ()
{
 WIN32_FIND_DATA fd;
 HANDLE hFind = ::FindFirstFile (_T ("*.*"), &fd);

 if (hFind != INVALID_HANDLE_VALUE) {
 do {
 if (fd.dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY) {
 CString name = fd.cFileName;
 if (name != _T (".") && name != _T ("..")) {
 TRACE (_T ("%s\n"), fd.cFileName);
 ::SetCurrentDirectory (fd.cFileName);
 EnumerateFolders ();

Programming Windows With MFC

 346

 ::SetCurrentDirectory (_T (".."));
 }
 }
 } while (::FindNextFile (hFind, &fd));
 ::FindClose (hFind);
 }
}

To use this function, navigate to the directory in which you
want the enumeration to begin and call EnumerateFolders. The
following statements enumerate all the directories on drive C:

::SetCurrentDirectory (_T ("C:\\"));
EnumerateFolders ();

We'll use a similar technique in Chapter 10 to populate a tree
view with items representing all the folders on a drive.

6.2. Serialization and the CArchive Class

Although MFC's CFile class makes reading and writing file
data rather easy, most MFC applications don't interact with
CFile objects directly. Instead, they do their reading and
writing through CArchive objects that in turn use CFile
functions to perform file I/O. MFC overloads the << and >>
operators used with CArchive to make serializing data to or
from a CArchive simple. The most common reason for
serializing to or from an archive is to save an application's
persistent data to disk or to read it back again.

Serialization is an important concept in MFC programming
because it is the basis for MFC's ability to open and save
documents in document/view applications. As you'll learn in
Chapter 9, when someone using a document/view application
selects Open or Save from the application's File menu, MFC
opens the file for reading or writing and passes the application a
reference to a CArchive object. The application, in turn,
serializes its persistent data to or from the archive and, by so
doing, saves a complete document to disk or reads it back again.
A document whose persistent data consists entirely of primitive
data types or serializable objects can often be serialized with
just a few lines of code. This is in contrast to the hundreds of

Programming Windows With MFC

 347

lines that might be required if the application were to query the
user for a file name, open the file, and do all the file I/O itself.

6.2.1. Serialization Basics

Assume that a CFile object named file represents an open file,
that the file was opened with write access, and that you want to
write a pair of integers named a and b to that file. One way to
accomplish this is to call CFile::Write once for each integer:

file.Write (&a, sizeof (a));
file.Write (&b, sizeof (b));

An alternative method is to create a CArchive object, associate
it with the CFile object, and use the << operator to serialize the
integers into the archive:

CArchive ar (&file, CArchive::store);
ar << a << b;

CArchive objects can be used for reading, too. Assuming file
once again represents an open file and that the file is open with
read access, the following code snippet attaches a CArchive
object to the file and reads, or deserializes, the integers from
the file:

CArchive ar (&file, CArchive::load);
ar >> a >> b;

MFC allows a wide variety of primitive data types to be
serialized this way, including BYTEs, WORDs, LONGs,
DWORDs, floats, doubles, ints, unsigned ints, shorts, and
chars.

MFC also overrides the << and >> operators so that CStrings
and certain other nonprimitive data types represented by MFC
classes can be serialized to or from an archive. If string is a
CString object and ar is a CArchive object, writing the string to
the archive is as simple as this:

ar << string;

Programming Windows With MFC

 348

Turning the operator around reads the string from the archive:

ar >> string;

Classes that can be serialized this way include CString, CTime,
CTimeSpan, COleVariant, COleCurrency, COleDateTime,
COleDateTimeSpan, CSize, CPoint, and CRect. Structures of
type SIZE, POINT, and RECT can be serialized, too.

Perhaps the most powerful aspect of MFC's serialization
mechanism is the fact that you can create serializable classes of
your own that work with CArchive's insertion and extraction
operators. And you don't have to do any operator overloading
of your own to make it work. Why? Because MFC overloads
the << and >> operators for pointers to instances of classes
derived from CObject.

To demonstrate, suppose you've written a drawing program that
represents lines drawn by the user with instances of a class
named CLine. Also suppose that CLine is a serializable class
that derives, either directly or indirectly, from CObject. If
pLines is an array of CLine pointers, nCount is an integer that
holds the number of pointers in the array, and ar is a CArchive
object, you could archive each and every CLine along with a
count of the number of CLines like this:

ar << nCount;
for (int i=0; i<nCount; i++)
 ar << pLines[i];

Conversely, you could re-create the CLines from the
information in the archive and initialize pLines with CLine
pointers with the statements

ar >> nCount;
for (int i=0; i<nCount; i++)
 ar >> pLines[i];

How do you write serializable classes like CLine? It's easy; the
next section describes how.

If an error occurs as data is serialized to or from an archive,
MFC throws an exception. The type of exception that's thrown

Programming Windows With MFC

 349

depends on the nature of the error. If a serialization request fails
because of a lack of memory (for example, if there's too little
memory to create an instance of an object that's being
deserialized from an archive), MFC throws a
CMemoryException. If a request fails because of a file I/O error,
MFC throws a CFileException. If any other error occurs, MFC
throws a CArchiveException. If you'd like, you can supply
catch handlers for exceptions of these types to enact your own
special processing regimen if and when errors occur.

6.2.2. Writing Serializable Classes

For an object to support serialization, it must be an instance of a
serializable class. You can write a serializable class by
following these five steps:

1. Derive the class, either directly or indirectly, from CObject.
2. Include MFC's DECLARE_SERIAL macro in the class declaration.

DECLARE_SERIAL accepts just one parameter: your class's name.
3. Override the base class's Serialize function, and serialize the derived

class's data members.
4. If the derived class doesn't have a default constructor (one that takes no

arguments), add one. This step is necessary because when an object is
deserialized, MFC creates it on the fly using the default constructor and
initializes the object's data members with values retrieved from the
archive.

5. In the class implementation, include MFC's IMPLEMENT_SERIAL
macro. The IMPLEMENT_SERIAL macro takes three parameters: the
class name, the name of the base class, and a schema number. The
schema number is an integer value that amounts to a version number.
You should change the schema number any time you modify the class's
serialized data format. Versioning of serializable classes is discussed in
the next section.

Suppose you've written a simple class named CLine to
represent lines. The class has two CPoint data members that
store the line's endpoints, and you'd like to add serialization
support. Originally, the class declaration looks like this:

class CLine
{
protected:
 CPoint m_ptFrom;
 CPoint m_ptTo;

public:
 CLine (CPoint from, CPoint to) { m_ptFrom = from; m_ptTo =
to; }

Programming Windows With MFC

 350

};

It's easy to make this class serializable. Here's how it looks after
serialization support is added:

class CLine : public CObject
{
DECLARE_SERIAL (CLine)

protected:
 CPoint m_ptFrom;
 CPoint m_ptTo;

public:
 CLine () {} // Required!
 CLine (CPoint from, CPoint to) { m_ptFrom = from; m_ptTo =
to; }
 void Serialize (CArchive& ar);
};

The Serialize function looks like this:

void CLine::Serialize (CArchive& ar)
{
 CObject::Serialize (ar);
 if (ar.IsStoring ())
 ar << m_ptFrom << m_ptTo;
 else // Loading, not storing
 ar >> m_ptFrom >> m_ptTo;
}

And somewhere in the class implementation the statement

IMPLEMENT_SERIAL (CLine, CObject, 1)

appears. With these modifications, the class is fully serializable.
The schema number is 1, so if you later add a persistent data
member to CLine, you should bump the schema number up to 2
so that the framework can distinguish between CLine objects
serialized to disk by different versions of your program.
Otherwise, a version 1 CLine on disk could be read into a
version 2 CLine in memory, with possibly disastrous
consequences.

Programming Windows With MFC

 351

When an instance of this class is asked to serialize or
deserialize itself, MFC calls the instance's CLine::Serialize
function. Before serializing its own data members,
CLine::Serialize calls CObject::Serialize to serialize the base
class's data members. In this example, the base class's Serialize
function doesn't do anything, but that might not be the case if
the class you're writing derives indirectly from CObject. After
the call to the base class returns, CLine::Serialize calls
CArchive::IsStoring to determine the direction of data flow. A
nonzero return means data is being serialized into the archive; 0
means data is being serialized out. CLine::Serialize uses the
return value to decide whether to write to the archive with the
<< operator or to read from it using the >> operator.

6.2.3. Versioning Serializable Classes: Versionable
Schemas

When you write a serializable class, MFC uses the schema
number that you assign to enact a crude form of version control.
MFC tags instances of the class with the schema number when
it writes them to the archive, and when it reads them back, it
compares the schema number recorded in the archive to the
schema number of the objects of that type in use within the
application. If the two numbers don't match, MFC throws a
CArchiveException with m_cause equal to
CArchiveException::badSchema. An unhandled exception of
this type prompts MFC to display a message box with the
warning "Unexpected file format." By incrementing the schema
number each time you revise an object's serialized storage
format, you create an effective safeguard against inadvertent
attempts to read an old version of an object stored on disk into a
new version that resides in memory.

One problem that frequently crops up in applications that use
serializable classes is one of backward compatibility—that is,
deserializing objects that were created with older versions of
the application. If an object's persistent storage format changes
from one version of the application to the next, you'll probably
want the new version to be able to read both formats. But as
soon as MFC sees the mismatched schema numbers, it throws
an exception. Because of the way MFC is architected, there's no
good way to handle the exception other than to do as MFC does
and abort the serialization process.

Programming Windows With MFC

 352

That's where versionable schemas come in. A versionable
schema is simply a schema number that includes a
VERSIONABLE_SCHEMA flag. This flag tells MFC that the
application can handle multiple serialized data formats for a
given class. It suppresses the CArchiveException and allows an
application to respond intelligently to different schema numbers.
An application that uses versionable schemas can provide the
backward compatibility that users expect.

Writing a serializable class that takes advantage of MFC's
versionable schema support involves two steps:

1. OR the value VERSIONABLE_SCHEMA into the schema number in
the IMPLEMENT_SERIAL macro.

2. Modify the class's Serialize function to call CArchive::GetObjectSchema
when loading an object from an archive and adapt its deserialization
routine accordingly. GetObjectSchema returns the schema number of the
object that's about to be deserialized.

You need to be aware of a few rules when you use
GetObjectSchema. First, it should be called only when an
object is being deserialized. Second, it should be called before
any of the object's data members are read from the archive. And
third, it should be called only once. If called a second time in
the context of the same call to Serialize, GetObjectSchema
returns -1.

Let's say that in version 2 of your application, you decide to
modify the CLine class by adding a member variable to hold a
line color. Here's the revised class declaration:

class CLine : public CObject
{
DECLARE_SERIAL (CLine)

protected:
 CPoint m_ptFrom;
 CPoint m_ptTo;
 COLORREF m_clrLine; // Line color (new in version 2)

public:
 CLine () {}
 CLine (CPoint from, CPoint to, COLORREF color)
 { m_ptFrom = from; m_ptTo = to; m_clrLine = color }
 void Serialize (CArchive& ar);
};

Programming Windows With MFC

 353

Because the line color is a persistent property (that is, a red line
saved to an archive should still be red when it is read back),
you want to modify CLine::Serialize to serialize m_clrLine in
addition to m_ptFrom and m_ptTo. That means you should
bump up CLine's schema number to 2. The original class
implementation invoked MFC's IMPLEMENT_SERIAL macro
like this:

IMPLEMENT_SERIAL (CLine, CObject, 1)

In the revised class, however, IMPLEMENT_SERIAL should
be called like this:

IMPLEMENT_SERIAL (CLine, CObject, 2 ¦
VERSIONABLE_SCHEMA)

When the updated program reads a CLine object whose schema
number is 1, MFC won't throw a CArchive exception because
of the VERSIONABLE_SCHEMA flag in the schema number.
But it will know that the two schemas are different because the
base schema number was increased from 1 to 2.

You're halfway there. The final step is to modify
CLine::Serialize so that it deserializes a CLine differently
depending on the value returned by GetObjectSchema. The
original Serialize function looked like this:

void CLine::Serialize (CArchive& ar)
{
 CObject::Serialize (ar);
 if (ar.IsStoring ())
 ar << m_ptFrom << m_ptTo;
 else // Loading, not storing
 ar >> m_ptFrom >> m_ptTo;
}

You should implement the new one like this:

void CLine::Serialize (CArchive& ar)
{
 CObject::Serialize (ar);
 if (ar.IsStoring ())
 ar << m_ptFrom << m_ptTo << m_clrLine;

Programming Windows With MFC

 354

 else {
 UINT nSchema = ar.GetObjectSchema ();
 switch (nSchema) {
 case 1: // Version 1 CLine
 ar >> m_ptFrom >> m_ptTo;
 m_clrLine = RGB (0, 0, 0); // Default color
 break;
 case 2: // Version 2 CLine
 ar >> m_ptFrom >> m_ptTo >> m_clrLine;
 break;
 default: // Unknown version
 AfxThrowArchiveException
(CArchiveException::badSchema);
 break;
 }
 }
}

See how it works? When a CLine object is written to the
archive, it's always formatted as a version 2 CLine. But when a
CLine is read from the archive, it's treated as a version 1 CLine
or a version 2 CLine, depending on the value returned by
GetObjectSchema. If the schema number is 1, the object is read
the old way and m_clrLine is set to a sensible default. If the
schema number is 2, all of the object's data members, including
m_clrLine, are read from the archive. Any other schema
number results in a CArchiveException indicating that the
version number is unrecognized. (If this occurs, you're probably
dealing with buggy code or a corrupted archive.) If, in the
future, you revise CLine again, you can bump the schema
number up to 3 and add a case block for the new schema.

6.2.4. How Serialization Works

Looking under the hood to see what happens when data is
serialized to or from an archive provides a revealing glimpse
into both the operation and the architecture of MFC. MFC
serializes primitive data types such as ints and DWORDs by
copying them directly to the archive. To illustrate, here's an
excerpt from the MFC source code file Arccore.cpp showing
how the CArchive insertion operator for DWORDs is
implemented:

CArchive& CArchive::operator<<(DWORD dw)

Programming Windows With MFC

 355

{
 if (m_lpBufCur + sizeof(DWORD) > m_lpBufMax)
 Flush();

 if (!(m_nMode & bNoByteSwap))
 _AfxByteSwap(dw, m_lpBufCur);
 else
 (DWORD)m_lpBufCur = dw;

 m_lpBufCur += sizeof(DWORD);
 return *this;
}

For performance reasons, CArchive objects store the data that is
written to them in an internal buffer. m_lpBufCur points to the
current location in that buffer. If the buffer is too full to hold
another DWORD, it is flushed before the DWORD is copied to
it. For a CArchive object that's attached to a CFile,
CArchive::Flush writes the current contents of the buffer to the
file.

CStrings, CRects, and other nonprimitive data types formed
from MFC classes are serialized differently. MFC serializes a
CString, for example, by outputting a character count followed
by the characters themselves. The writing is done with
CArchive::Write. Here's an excerpt from Arccore.cpp that
shows how a CString containing less than 255 characters is
serialized:

CArchive& AFXAPI operator<<(CArchive& ar, const CString&
string)
{

 if (string.GetData()->nDataLength < 255)
 {
 ar << (BYTE)string.GetData()->nDataLength;
 }

 ar.Write(string.m_pchData,
 string.GetData()->nDataLength*sizeof(TCHAR));
 return ar;
}

CArchive::Write copies a specified chunk of data to the
archive's internal buffer and flushes the buffer if necessary to
prevent overflows. Incidentally, if a CString serialized into an

Programming Windows With MFC

 356

archive with the << operator contains Unicode characters, MFC
writes a special 3-byte signature into the archive before the
character count. This enables MFC to identify a serialized
string's character type so that, if necessary, those characters can
be converted to the format that a client expects when the string
is deserialized from the archive. In other words, it's perfectly
acceptable for a Unicode application to serialize a string and for
an ANSI application to deserialize it, and vice versa.

The more interesting case is what happens when a CObject
pointer is serialized into an archive. Here's the relevant code
from Afx.inl:

_AFX_INLINE CArchive& AFXAPI operator<<(CArchive& ar,
 const CObject* pOb)
 { ar.WriteObject(pOb); return ar; }

As you can see, the << operator calls CArchive::WriteObject
and passes it the pointer that appears on the right side of the
insertion operator—for example, the pLine in

ar << pLine;

WriteObject ultimately calls the object's Serialize function to
serialize the object's data members, but before it does, it writes
additional information to the archive that identifies the class
from which the object was created.

For example, suppose the object being serialized is an instance
of CLine. The very first time it serializes a CLine to the archive,
WriteObject inserts a new class tag—a 16-bit integer whose
value is -1, or 0xFFFF—into the archive, followed by the
object's 16-bit schema number, a 16-bit value denoting the
number of characters in the class name, and finally the class
name itself. WriteObject then calls the CLine's Serialize
function to serialize the CLine's data members.

If a second CLine is written to the archive, WriteObject behaves
differently. When it writes a new class tag to the archive,
WriteObject adds the class name to an in-memory database
(actually, an instance of CMapPtrToPtr) and assigns the class a
unique identifier that is in reality an index into the database. If
no other classes have been written to the archive, the first

Programming Windows With MFC

 357

CLine written to disk is assigned an index of 1. When asked to
write a second CLine to the archive, WriteObject checks the
database, sees that CLine is already recorded, and instead of
writing redundant information to the archive, writes a 16-bit
value that consists of the class index ORed with an old class
tag (0x8000). It then calls the CLine's Serialize function as
before. Thus, the first instance of a class written to an archive is
marked with a new class tag, a schema number, and a class
name; subsequent instances are tagged with 16-bit values
whose lower 15 bits identify a previously recorded schema
number and class name.

Figure 6-2 shows a hex dump of an archive that contains two
serialized version 1 CLines. The CLines were written to the
archive with the following code fragment:

// Create two CLines and initialize an array of pointers.
CLine line1 (CPoint (0, 0), CPoint (50, 50));
CLine line2 (CPoint (50, 50), CPoint (100, 0));
CLine* pLines[2] = { &line1, &line2 };
int nCount = 2;

// Serialize the CLines and the CLine count.
ar << nCount;
for (int i=0; i<nCount; i++)
 ar << pLines[i];

The hex dump is broken down so that each line in the listing
represents one component of the archive. I've numbered the
lines for reference. Line 1 contains the object count (2) written
to the archive when the statement

ar << nCount;

was executed. Line 2 contains information written by
WriteObject defining the CLine class. The first 16-bit value is
the new class tag; the second is the class's schema number (1);
and the third holds the length of the class name (5). The final 5
bytes on line 2 hold the class name ("CLine"). Immediately
following the class information, in lines 3 through 6, is the first
serialized CLine: four 32-bit values that specify, in order, the x
component of the CLine's m_ptFrom data member, the y
component of m_ptFrom, the x component of m_ptTo, and the y
component of m_ptTo. Similar information for the second

Programming Windows With MFC

 358

CLine appears on lines 8 through 11, but in between—on line
7—is a 16-bit tag that identifies the data that follows as a
serialized CLine. CLine's class index is 1 because it was the
first class added to the archive. The 16-bit value 0x8001 is the
class index ORed with an old class tag.

Figure 6-2. Hex dump of an archive containing two CLines.

So far, so good. It's not difficult to understand what goes into
the archive. Now let's see what happens when the CLines are
read out of the archive. Assume that the CLines are deserialized
with the following code:

int nCount;
ar >> nCount;
CLine* pLines = new CLine[nCount];
for (int i=0; i<nCount; i++)
 ar >> pLines[i];

When the

ar >> nCount;

statement is executed, CArchive reaches into the archive,
retrieves 4 bytes, and copies them to nCount. That sets the stage
for the for loop that retrieves CLines from the archive. Each
time the

ar >> pLines[i];

statement is executed, the >> operator calls
CArchive::ReadObject and passes in a NULL pointer. Here's
the relevant code in Afx.inl:

Programming Windows With MFC

 359

_AFX_INLINE CArchive& AFXAPI operator>>(CArchive& ar, CObject*&
pOb)
 { pOb = ar.ReadObject(NULL); return ar; }
_AFX_INLINE CArchive& AFXAPI operator>>(CArchive& ar,
 const CObject*& pOb)
 { pOb = ar.ReadObject(NULL); return ar; }

ReadObject calls another CArchive function named ReadClass
to determine what kind of object it's about to deserialize. The
first time through the loop, ReadClass reads one word from the
archive, sees that it's a new class tag, and proceeds to read the
schema number and class name from the archive. ReadClass
then compares the schema number obtained from the archive to
the schema number stored in the CRuntimeClass structure
associated with the class whose name was just retrieved. (The
DECLARE_SERIAL and IMPLEMENT_SERIAL macros
create a static CRuntimeClass structure containing important
information about a class, including its name and schema
number. MFC maintains a linked list of CRuntimeClass
structures that can be searched to locate run-time information
for a particular class.) If the schemas are the same, ReadClass
returns the CRuntimeClass pointer to ReadObject. ReadObject,
in turn, calls CreateObject through the CRuntimeClass pointer
to create a new instance of the class and then calls the object's
Serialize function to load the data from the archive into the
object's data members. The pointer to the new class instance
returned by ReadClass is copied to the location specified by the
caller—in this case, the address of pLines[i].

As class information is read from the archive, ReadObject
builds a class database in memory just as WriteObject does.
When the second CLine is read from the archive, the 0x8001
tag preceding it tells ReadClass that it can get the
CRuntimeClass pointer requested by ReadObject from the
database.

That's basically what happens during the serialization process if
all goes well. I've skipped many of the details, including the
numerous error checks MFC performs and the special treatment
given to NULL object pointers and multiple references to the
same object.

What happens if the schema number read from the archive
doesn't match the schema number stored in the corresponding

Programming Windows With MFC

 360

CRuntimeClass? Enter versionable schemas. MFC first checks
for a VERSIONABLE_SCHEMA flag in the schema number
stored in the CRuntimeClass. If the flag is absent, MFC throws
a CArchiveException. At that point, the serialization process is
over; done; finis. There's very little you can do about it other
than display an error message, which MFC will do for you if
you don't catch the exception. If the
VERSIONABLE_SCHEMA flag is present, however, MFC
skips the call to AfxThrowArchiveException and stores the
schema number where the application can retrieve it by calling
GetObjectSchema. That's why VERSIONABLE_SCHEMA
and GetObjectSchema are the keys that open the door to
successful versioning of serializable classes.

6.2.5. Serializing CObjects

I'll close this chapter with a word of advice regarding the
serialization of CObjects. MFC overloads CArchive's insertion
and extraction operators for CObject pointers, but not for
CObjects. That means this will work:

CLine* pLine = new CLine (CPoint (0, 0), CPoint (100, 50));
ar << pLine;

But this won't:

CLine line (CPoint (0, 0), CPoint (100, 50));
ar << line;

In other words, CObjects can be serialized by pointer but not by
value. This normally isn't a problem, but it can be troublesome
if you write serializable classes that use other serializable
classes as embedded data members and you want to serialize
those data members.

One way to serialize CObjects by value instead of by pointer is
to do your serialization and deserialization like this:

// Serialize.
CLine line (CPoint (0, 0), CPoint (100, 50));
ar << &line;

// Deserialize.

Programming Windows With MFC

 361

CLine* pLine;
ar >> pLine;
CLine line = *pLine; // Assumes CLine has a copy constructor.
delete pLine;

The more common approach, however, is to call the other
class's Serialize function directly, as demonstrated here:

// Serialize.
CLine line (CPoint (0, 0), CPoint (100, 50));
line.Serialize (ar);

// Deserialize.
CLine line;
line.Serialize (ar);

Although calling Serialize directly is perfectly legal, you should
be aware that it means doing without versionable schemas for
the object that is being serialized. When you use the <<
operator to serialize an object pointer, MFC writes the object's
schema number to the archive; when you call Serialize directly,
it doesn't. If called to retrieve the schema number for an object
whose schema is not recorded, GetObjectSchema will return -1
and the outcome of the deserialization process will depend on
how gracefully Serialize handles unexpected schema numbers.

Programming Windows With MFC

 362

Programming Windows With MFC

 363

Chapter 7. Controls
One of the ingredients found in the recipe for nearly every
successful Microsoft Windows application is the control. A
control is a special kind of window designed to convey
information to the user or to acquire input. Most controls
appear in dialog boxes, but they work just fine in top-level
windows and other nondialog windows, too. The push button is
one example of a control; the edit control—a simple rectangle
for entering and editing text—is another.

Controls reduce the tedium of Windows programming and
promote a consistent user interface by providing canned
implementations of common user interface elements. Controls
are prepackaged objects that come complete with their own
window procedures. An application that uses a push button
control doesn't have to draw the push button on the screen and
process mouse messages to know when the push button is
clicked. Instead, it creates the push button with a simple
function call and receives notifications whenever the push
button is clicked. The control's WM_PAINT handler paints the
push button on the screen, and other message handlers inside
the control translate user input into notification messages.

Controls are sometimes referred to as child window controls
because of the parent-child relationships that they share with
other windows. Unlike top-level windows, which have no
parents, controls are child windows that are parented to other
windows. A child window moves when its parent moves, is
automatically destroyed when its parent is destroyed, and is
clipped to its parent's window rectangle. And when a control
transmits a notification message signifying an input event, its
parent is the recipient of that message.

Current versions of Windows come with more than 20 types of
controls. Six, which we'll refer to as the classic controls, have
been around since the first version of Windows and are
implemented in User.exe. The others, which are collectively
known as the common controls, are relatively new to Windows
(most debuted in Windows 95) and are implemented in
Comctl32.dll. This chapter introduces the classic controls and
the MFC classes that encapsulate them. The common controls
are covered in Chapter 16.

Programming Windows With MFC

 364

7.1. The Classic Controls

Windows makes the classic controls available to the application
programs that it hosts by registering six predefined
WNDCLASSes. The control types, their WNDCLASSes, and
the corresponding MFC classes are shown in the following
table.

The Classic Controls

Control Type WNDCLASS MFC Class

Buttons "BUTTON" CButton

List boxes "LISTBOX" CListBox

Edit controls "EDIT" CEdit

Combo boxes "COMBOBOX" CComboBox

Scroll bars "SCROLLBAR" CScrollBar

Static controls "STATIC" CStatic

A control is created by instantiating one of the MFC control
classes and calling the resulting object's Create function. If
m_wndPushButton is a CButton object, the statement

m_wndPushButton.Create (_T ("Start"), WS_CHILD ¦ WS_VISIBLE
¦
 BS_PUSHBUTTON, rect, this, IDC_BUTTON);

creates a push button control labeled "Start." The first
parameter is the text that appears on the button face. The
second is the button style, which is a combination of
conventional (WS_) window styles and button-specific (BS_)
window styles. Together, WS_CHILD, WS_VISIBLE, and
BS_PUSHBUTTON create a push button control that is a child
of the window identified in the fourth parameter and that is
visible on the screen. (If you omit WS_VISIBLE from the
window style, the control won't become visible until you call
ShowWindow on it.). rect is a RECT structure or a CRect object
specifying the control's size and location, in pixels, relative to
the upper left corner of its parent's client area. this identifies the
parent window, and IDC_BUTTON is an integer value that
identifies the control. This value is also known as the child

Programming Windows With MFC

 365

window ID or control ID. It's important to assign a unique ID to
each control you create within a given window so that you can
map the control's notification messages to member functions in
the parent window class.

List boxes and edit controls assume a "flat" look when they're
created with Create. To endow them with the contemporary
chiseled look that most users have grown accustomed to
(Figure 7-1), you need to create list boxes and edit controls
with CreateEx instead of Create and include a
WS_EX_CLIENTEDGE flag in the extended style specified in
the function's first parameter. If m_wndListBox is a CListBox
object, the following statement creates a list box with chiseled
edges and parents it to the window identified by the this
pointer:

m_wndListBox.CreateEx (WS_EX_CLIENTEDGE, _T
("LISTBOX"), NULL,
 WS_CHILD | WS_VISIBLE | LBS_STANDARD, rect, this,
IDC_LISTBOX);

As an alternative, you can derive your own class from CListBox,
override PreCreateWindow in the derived class, and apply
WS_EX_CLIENTEDGE to the window style in the
PreCreateWindow, as demonstrated here:

BOOL CMyListBox::PreCreateWindow (CREATESTRUCT& cs)
{
 if (!CListBox::PreCreateWindow (cs))
 return FALSE;

 cs.dwExStyle |= WS_EX_CLIENTEDGE;

 return TRUE;
}

With PreCreateWindow implemented like this, a CMyListBox
object will have chiseled borders regardless of how it's created.

Programming Windows With MFC

 366

Figure 7-1. A list box with flat edges (left) and chiseled edges (right).

A control sends notifications to its parent in the form of
WM_COMMAND messages. The kinds of notifications that
are sent vary with the control type, but in each case,
information encoded in the message's wParam and lParam
parameters identifies the control that sent the message and the
action that prompted the message. For example, the
WM_COMMAND message sent when a push button is clicked
contains the notification code BN_CLICKED in the upper 16
bits of wParam, the control ID in the lower 16 bits of wParam,
and the control's window handle in lParam.

Rather than process raw WM_COMMAND messages, most
MFC applications use message maps to link control
notifications to class member functions. For example, the
following message-map entry maps clicks of the push button
whose control ID is IDC_BUTTON to the member function
OnButtonClicked:

ON_BN_CLICKED (IDC_BUTTON, OnButtonClicked)

ON_BN_CLICKED is one of several control-related
message-map macros that MFC provides. For example, there
are ON_EN macros for edit controls and ON_LBN macros for
list box controls. There's also the generic ON_CONTROL
macro, which handles all notifications and all control types, and
ON_CONTROL_RANGE, which maps identical notifications
from two or more controls to a common notification handler.

Programming Windows With MFC

 367

Controls send messages to their parents, but it's no less
common for parents to send messages to controls. For example,
a check mark is placed in a check box control by sending the
control a BM_SETCHECK message with wParam equal to
BST_CHECKED. MFC simplifies message-based control
interfaces by building member functions into its control classes
that wrap BM_SETCHECK and other control messages. For
example, the statement

m_wndCheckBox.SetCheck (BST_CHECKED);

places a check mark inside a check box represented by a
CButton object named m_wndCheckBox.

Because a control is a window, some of the member functions
that the control classes inherit from CWnd are useful for control
programming. For example, the same SetWindowText function
that changes the text in a window's title bar inserts text into an
edit control, too. Other useful CWnd functions include
GetWindowText, which retrieves text from a control;
EnableWindow, which enables and disables a control; and
SetFont, which changes a control's font. If you want to do
something to a control and can't find an appropriate member
function in the control class, check CWnd's list of member
functions. You'll probably find the one you're looking for.

7.1.1. The CButton Class

CButton represents button controls based on the "BUTTON"
WNDCLASS. Button controls come in four flavors: push
buttons, check boxes, radio buttons, and group boxes. All four
button types are shown in Figure 7-2.

Figure 7-2. The four types of button controls.

Programming Windows With MFC

 368

When you create a button control, you specify which of the
four button types you want to create by including one of the
following flags in the button's window style:

Style Description

BS_PUSHBUTTON Creates a standard push button control

BS_DEFPUSHBUTTON Creates a default push button; used in dialog
boxes to identify the push button that's clicked if
Enter is pressed

BS_CHECKBOX Creates a check box control

BS_AUTOCHECKBOX Creates a check box control that checks and
unchecks itself when clicked

BS_3STATE Creates a three-state check box control

BS_AUTO3STATE Creates a three-state check box control that
cycles through three states—checked,
unchecked, and indeterminate—when clicked

BS_RADIOBUTTON Creates a radio button control

BS_AUTORADIOBUTTON Creates a radio button control that, when clicked,
checks itself and unchecks other radio buttons in
the group

BS_GROUPBOX Creates a group box control

In addition, you can OR one or more of the following values
into the window style to control the alignment of the text on the
button face:

Style Description

BS_LEFTTEXT Moves the text accompanying a radio button or check
box control from the button's right (the default) to its
left

BS_RIGHTBUTTON Same as BS_LEFTTEXT

BS_LEFT Left justifies the button text in the control rectangle

BS_CENTER Centers the button text in the control rectangle

BS_RIGHT Right justifies the button text in the control rectangle

BS_TOP Positions the button text at the top of the control
rectangle

BS_VCENTER Positions the button text in the center of the control
rectangle vertically

BS_BOTTOM Positions the button text at the bottom of the control

Programming Windows With MFC

 369

rectangle

BS_MULTILINE Allows text too long to fit on one line to be broken into
two or more lines

There are other button styles, but most of them are rarely used.
For example, BS_NOTIFY programs a button to send
BN_DOUBLECLICKED, BN_KILLFOCUS, and
BN_SETFOCUS notifications. BS_OWNERDRAW creates an
owner-draw button—one whose appearance is maintained by
the button's parent rather than the button itself. Owner-draw
buttons have been largely superseded by bitmap buttons and
icon buttons. You'll learn more about bitmap buttons and icon
buttons later in this chapter.

7.1.1.1. Push Buttons

A push button is a button control created with the style
BS_PUSHBUTTON. When clicked, a push button control
sends its parent a BN_CLICKED notification encapsulated in a
WM_COMMAND message. Absent the button style
BS_NOTIFY, a push button sends no other types of
notifications.

MFC's ON_BN_CLICKED macro links BN_CLICKED
notifications to member functions in the parent window class.
The message-map entry

ON_BN_CLICKED (IDC_BUTTON, OnButtonClicked)

connects OnButtonClicked to clicks of the push button whose
control ID is IDC_BUTTON. A trivial implementation of
OnButtonClicked looks like this:

void CMainWindow::OnButtonClicked ()
{
 MessageBox (_T ("I've been clicked!"));
}

Like command handlers for menu items, BN_CLICKED
handlers accept no parameters and return no values.

Programming Windows With MFC

 370

7.1.1.2. Check Boxes

Check boxes are buttons created with the style
BS_CHECKBOX, BS_AUTOCHECKBOX, BS_3STATE, or
BS_AUTO3STATE. BS_CHECKBOX and
BS_AUTOCHECKBOX check boxes can assume two states:
checked and unchecked. A check box is checked and
unchecked with CButton::SetCheck:

m_wndCheckBox.SetCheck (BST_CHECKED); // Check
m_wndCheckBox.SetCheck (BST_UNCHECKED); // Uncheck

To find out whether a check box is checked, use
CButton::GetCheck. A return value equal to BST_CHECKED
means the box is checked. BST_UNCHECKED means it's not.

Like push button controls, check boxes send BN_CLICKED
notifications to their parents when clicked. The check mark in a
BS_AUTOCHECKBOX check box toggles on and off
automatically in response to button clicks. The check mark in a
BS_CHECKBOX check box doesn't. Therefore,
BS_CHECKBOX-style check boxes are of little use unless you
write BN_CLICKED handlers to go with them. The following
BN_CLICKED handler toggles m_wndCheckBox's check mark
on and off:

void CMainWindow::OnCheckBoxClicked ()
{
 m_wndCheckBox.SetCheck (m_wndCheckBox.GetCheck () ==
 BST_CHECKED ? BST_UNCHECKED :
BST_CHECKED);
}

The BS_3STATE and BS_AUTO3STATE button styles create
a check box that can assume a third state in addition to the
checked and unchecked states. The third state is called the
indeterminate state and is entered when the user clicks a
BS_AUTO3STATE check box that is currently checked or
when SetCheck is called with a BST_INDETERMINATE
parameter:

m_wndCheckBox.SetCheck (BST_INDETERMINATE);

Programming Windows With MFC

 371

An indeterminate check box contains a grayed check mark. The
indeterminate state is used to indicate that something is neither
wholly on nor wholly off. For example, a word processing
program might set a check box labeled "Bold" to the
indeterminate state when the user selects a mix of normal and
boldface text.

7.1.1.3. Radio Buttons

A radio button is a button control with the style
BS_RADIOBUTTON or BS_AUTORADIOBUTTON. Radio
buttons normally come in groups, with each button representing
one in a list of mutually exclusive options. When clicked, a
BS_AUTORADIOBUTTON radio button checks itself and
unchecks the other radio buttons in the group. If you use the
BS_RADIOBUTTON style instead, it's up to you to do the
checking and unchecking using CButton::SetCheck.

Radio buttons send BN_CLICKED notifications to their
parents, just as push buttons and check boxes do. The following
BN_CLICKED handler checks the m_wndRadioButton1 radio
button and unchecks three other radio buttons in the same
group:

void CMainWindow::OnRadioButton1Clicked ()
{
 m_wndRadioButton1.SetCheck (BST_CHECKED);
 m_wndRadioButton2.SetCheck (BST_UNCHECKED);
 m_wndRadioButton3.SetCheck (BST_UNCHECKED);
 m_wndRadioButton4.SetCheck (BST_UNCHECKED);
}

Unchecking the other radio buttons maintains the exclusivity of
the selection. A BN_CLICKED handler isn't necessary for
BS_AUTORADIOBUTTON radio buttons, though you can
still provide one if you want to respond to changes in a radio
button's state at the instant the button is clicked.

For BS_AUTORADIOBUTTON radio buttons to properly
deselect the other buttons in the group, you must group the
buttons so that Windows knows which buttons belong to the
group. To create a group of BS_AUTORADIOBUTTON radio
buttons, follow this procedure:

Programming Windows With MFC

 372

1. In your application's code, create the buttons in sequence, one after
another; don't create any other controls in between.

2. To mark the beginning of the group, assign the style WS_GROUP to the
first radio button you create.

3. If you create additional controls after the last radio button is created,
assign the WS_GROUP style to the first additional control that you
create. This implicitly marks the previous control (the last radio button)
as the final one in the group. If there are no other controls after the radio
buttons but there are other controls in the window, mark the first control
with WS_GROUP to prevent the radio button group from wrapping
around.

The following example demonstrates how to create four
BS_AUTORADIOBUTTON radio buttons belonging to one
group and three belonging to another group, with a check box
control in between:

m_wndRadioButton1.Create (_T ("COM1"), WS_CHILD ¦
WS_VISIBLE ¦
 WS_GROUP ¦ BS_AUTORADIOBUTTON, rect1, this,
IDC_COM1);
m_wndRadioButton2.Create (_T ("COM2"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, rect2, this, IDC_COM2);
m_wndRadioButton3.Create (_T ("COM3"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, rect3, this, IDC_COM3);
m_wndRadioButton4.Create (_T ("COM4"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, rect4, this, IDC_COM4);
m_wndRadioButton1.SetCheck (BST_CHECKED);

m_wndCheckBox.Create (_T ("Save settings on exit"),
 WS_CHILD ¦ WS_VISIBLE ¦ WS_GROUP ¦
BS_AUTOCHECKBOX,
 rectCheckBox, this, IDC_SAVESETTINGS);

m_wndRadioButton5.Create (_T ("9600"), WS_CHILD ¦
WS_VISIBLE ¦
 WS_GROUP ¦ BS_AUTORADIOBUTTON, rect5, this,
IDC_9600);
m_wndRadioButton6.Create (_T ("14400"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, rect6, this, IDC_14400);
m_wndRadioButton7.Create (_T ("28800"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, rect7, this, IDC_28800);
m_wndRadioButton5.SetCheck (BST_CHECKED);

Programming Windows With MFC

 373

Because of the BS_AUTORADIOBUTTON styles and the
logical grouping provided by the WS_GROUP bits, checking
any of the first four radio buttons automatically unchecks the
other three in the group, and checking any radio button in the
second group automatically unchecks the other two.

For good form, the code above calls SetCheck to check a button
in each group. One of the buttons in a group of radio buttons
should always be checked, even if the user has yet to provide
any input. Radio buttons are never checked by default, so it's
your responsibility to do the initializing.

7.1.1.4. Group Boxes

A group box is a button control created with the style
BS_GROUPBOX. It is unlike other button controls in that it
never receives the input focus and never sends notifications to
its parent.

The sole function of the group box is to visually delineate
control groups. Enclosing groups of controls in group boxes
makes it apparent to the user which controls go together. Group
boxes have nothing to do with the logical grouping of controls,
so don't expect a series of radio buttons to function as a group
simply because there's a group box around them.

7.1.2. The CListBox Class

MFC's CListBox class encapsulates list box controls, which
display lists of text strings called items. A list box optionally
sorts the items that are added to it, and scrolling is built in so
that the number of items a list box can display isn't limited by
the physical dimensions of the list box window.

List boxes are extremely useful for presenting lists of
information and allowing users to select items from those lists.
When an item is clicked or double-clicked, most list boxes
(technically, those with LBS_NOTIFY in their window styles)
notify their parents with WM_COMMAND messages. MFC
simplifies the processing of these messages by providing
ON_LBN message-map macros that you can use to route list
box notifications to handling functions in the parent window
class.

Programming Windows With MFC

 374

A standard list box displays text strings in a vertical column
and allows only one item to be selected at a time. The currently
selected item is highlighted with the system color
COLOR_HIGHLIGHT. Windows supports a number of
variations on the standard list box, including multiple-selection
list boxes, multicolumn list boxes, and owner-draw list boxes
that display images instead of text.

7.1.2.1. Creating a List Box

The following statement creates a standard list box from a
CListBox object named m_wndListBox:

m_wndListBox.Create (WS_CHILD ¦ WS_VISIBLE ¦
LBS_STANDARD,
 rect, this, IDC_LISTBOX);

LBS_STANDARD combines the styles WS_BORDER,
WS_VSCROLL, LBS_NOTIFY, and LBS_SORT to create a
list box that has a border and a vertical scroll bar, that notifies
its parent when the selection changes or an item is
double-clicked, and that alphabetically sorts the strings that are
added to it. By default, the scroll bar is visible only when the
number of items in the list box exceeds the number that can be
displayed. To make the scroll bar visible at all times, include
the style LBS_DISABLENOSCROLL. A list box doesn't have
a vertical scroll bar unless the style WS_VSCROLL or
LBS_STANDARD is included. Similarly, it doesn't have a
border unless it is created with the style WS_BORDER or
LBS_STANDARD. You might want to omit the border if you
create a list box that encompasses the entire client area of its
parent. These and other styles used to customize a list box's
appearance and behavior are summarized in the table below.

List boxes have keyboard interfaces built in. When a
single-selection list box has the input focus, the up arrow, down
arrow, Page Up, Page Down, Home, and End keys move the
highlighted bar identifying the current selection. In addition,
pressing a character key moves the selection to the next item
beginning with that character. Keyboard input works in
multiple-selection list boxes, too, but it's the position of a
dotted focus rectangle, not the selection, that changes. Pressing

Programming Windows With MFC

 375

the spacebar toggles the selection state of the item with the
focus in a multiple-selection list box.

You can customize a list box's keyboard interface by including
the LBS_WANTKEYBOARDINPUT style and processing
WM_VKEYTOITEM and WM_CHARTOITEM messages. An
MFC application can map these messages to OnVKeyToItem
and OnCharToItem handlers using the
ON_WM_VKEYTOITEM and ON_WM_CHARTOITEM
macros. A derived list box class can handle these messages
itself by overriding the virtual CListBox::VKeyToItem and
CListBox::CharToItem functions. One use for this capability is
to create a self-contained list box class that responds to presses
of Ctrl-D by deleting the item that is currently selected.

List Box Styles

Style Description

LBS_STANDARD Creates a "standard" list box that has a
border and a vertical scroll bar, notifies its
parent window when the selection changes
or an item is double-clicked, and sorts
items alphabetically.

LBS_SORT Sorts items that are added to the list box.

LBS_NOSEL Creates a list box whose items can be
viewed but not selected.

LBS_NOTIFY Creates a list box that notifies its parent
when the selection changes or an item is
double-clicked.

LBS_DISABLENOSC ROLL Disables the list box's scroll bar when it
isn't needed. Without this style, an
unneeded scroll bar is hidden rather than
disabled.

LBS_MULTIPLESEL Creates a multiple-selection list box.

LBS_EXTENDEDSEL Adds extended selection support to a
multiple-selection list box.

LBS_MULTICOLUMN Creates a multicolumn list box.

LBS_OWNERDRAWVARIABLE Creates an owner-draw list box whose
items can vary in height.

LBS_OWNERDRAWFIXED Creates an owner-draw list box whose
items are the same height.

LBS_USETABSTOPS Configures the list box to expand tab

Programming Windows With MFC

 376

characters in item text.

LBS_NOREDRAW Creates a list box that doesn't automatically
redraw itself when an item is added or
removed.

LBS_HASSTRINGS Creates a list box that "remembers" the
strings added to it. Conventional list boxes
have this style by default; owner-draw list
boxes don't.

LBS_WANTKEYBOARDINPUT Creates a list box that sends its parent a
WM_VKEYTOITEM or
WM_CHARTOITEM message when a key
is pressed. This style is used to customize
the list box's response to keyboard input.

LBS_NOINTEGRALHEIGHT Allows a list box to assume any height. By
default, Windows sets a list box's height to
a multiple of the item height to prevent
items from being partially clipped.

Because the default font that Windows uses for list boxes is
proportionally spaced, it is virtually impossible to line up
columns of information in a list box by separating them with
space characters. One way to create a columnar list box display
is to use SetFont to apply a fixed-pitch font to the list box. A
better solution is to assign the list box the style
LBS_USETABSTOPS and separate columns of information
with tab characters. An LBS_USETABSTOPS list box treats
tab characters the way a word processor does, automatically
advancing to the next tab stop when a tab character is
encountered. By default, tab stops are evenly spaced about
eight character widths apart. You can change the default tab
stop settings with the CListBox::SetTabStops function.
SetTabStops measures distances in dialog units. One dialog unit
is approximately equal to one-fourth the width of a character in
the system font. The statement

m_wndListBox.SetTabStops (64);

sets the space between tab stops to 64 dialog units, and

int nTabStops[] = { 32, 48, 64, 128 };
m_wndListBox.SetTabStops (4, nTabStops);

Programming Windows With MFC

 377

places tab stops at 32, 48, 64, and 128 dialog units from the left
margin.

By default, a list box repaints itself whenever an item is added
or removed. Usually that's just what you want, but if you're
adding hundreds or perhaps thousands of items in rapid-fire
fashion, the repeated repaints produce an unsightly flashing
effect and slow down the insertion process. You can use
LBS_NOREDRAW to create a list box that doesn't
automatically repaint itself. Such a list box will be repainted
only when its client area is invalidated.

An alternative to using LBS_NOREDRAW is to disable
redraws before beginning a lengthy insertion process and to
reenable them after the last item is inserted. You can enable and
disable redraws programmatically by sending a list box
WM_SETREDRAW messages, as shown here:

m_wndListBox.SendMessage (WM_SETREDRAW, FALSE, 0); //
Disable redraws.

m_wndListBox.SendMessage (WM_SETREDRAW, TRUE, 0); //
Enable redraws.

A list box is automatically repainted when redraws are enabled
with WM_SETREDRAW, so it's not necessary to follow up
with a call to Invalidate.

Unless a list box is created with the style
LBS_MULTIPLESEL, only one item can be selected at a time.
In a single-selection list box, clicking an unselected item both
selects that item and deselects the one that was formerly
selected. In a multiple-selection list box, any number of items
can be selected. Most multiple-selection list boxes are also
created with the style LBS_EXTENDEDSEL, which enables
extended selections. In an extended-selection list box, the user
selects the first item by clicking it and selects subsequent items
by clicking with the Ctrl key pressed. In addition, the user can
select entire ranges of contiguous items by clicking the first
item in the range and then clicking the last item in the range
with the Shift key held down. The Ctrl and Shift keys can be
combined to select multiple items and ranges, the net result
being a handy interface for selecting arbitrary combinations of
items.

Programming Windows With MFC

 378

The LBS_MULTICOLUMN style creates a multicolumn list
box. Multicolumn list boxes are usually created with the
WS_HSCROLL style so that their contents can be scrolled
horizontally if not all the items can be displayed at once.
(Multicolumn list boxes can't be scrolled vertically.) You can
adjust the column width with the CListBox::SetColumnWidth
function. Normally, the column width should be based on the
average width of a character in the list box font. The default
column width is enough to display about 16 characters in the
default list box font, so if you'll be inserting strings longer than
that, you should expand the column width to prevent columns
from overlapping.

7.1.2.2. Adding and Removing Items

A list box is empty until items are added to it. Items are added
with CListBox::AddString and CListBox::InsertString. The
statement

m_wndListBox.AddString (string);

adds the CString object named string to the list box. If the list
box style includes LBS_SORT, the string is positioned
according to its lexical value; otherwise, it is added to the end
of the list. InsertString adds an item to the list box at a location
specified by a 0-based index. The statement

m_wndListBox.InsertString (3, string);

inserts string into the list box and makes it the fourth item.
LBS_SORT has no effect on strings added with InsertString.

Both AddString and InsertString return a 0-based index
specifying the string's position in the list box. If either function
fails, it returns LB_ERRSPACE to indicate that the list box is
full or LB_ERR to indicate that the insertion failed for other
reasons. You shouldn't see the LB_ERRSPACE return value
very often in 32-bit Windows because the capacity of a list box
is limited only by available memory. CListBox::GetCount
returns the number of items in a list box.

CListBox::DeleteString removes an item from a list box. It
takes a single parameter: the index of the item to be removed. It

Programming Windows With MFC

 379

returns the number of items remaining in the list box. To
remove all items from a list box at once, use
CListBox::ResetContent.

If desired, you can use CListBox::SetItemDataPtr or
CListBox::SetItemData to associate a 32-bit pointer or a
DWORD value with an item in a list box. A pointer or
DWORD associated with an item can be retrieved with
CListBox::GetItemDataPtr or CListBox::GetItemData. One use
for this feature is to associate extra data with the items in a list
box. For example, you could associate a data structure
containing an address and a phone number with a list box item
holding a person's name. Because GetItemDataPtr returns a
pointer to a void data type, you'll need to cast the pointer that it
returns.

Another technique programmers use to associate extra
data—particularly text-based data—with list box items is to
create an LBS_USETABSTOPS-style list box, set the first tab
stop to a position beyond the list box's right border, and append
a string consisting of a tab character followed by the extra data
to the list box item. The text to the right of the tab character
will be invisible, but CListBox::GetText will return the full text
of the list box item—additional text included.

7.1.2.3. Finding and Retrieving Items

The CListBox class also includes member functions for getting
and setting the current selection and for finding and retrieving
items. CListBox::GetCurSel returns the 0-based index of the
item that is currently selected. A return value equal to LB_ERR
means that nothing is selected. GetCurSel is often called
following a notification signifying that the selection changed or
an item was double-clicked. A program can set the current
selection with the SetCurSel function. Passing SetCurSel the
value -1 deselects all items, causing the bar highlighting the
current selection to disappear from the list box. To find out
whether a particular item is selected, use CListBox::GetSel.

SetCurSel identifies an item by its index, but items can also be
selected by content. CListBox::SelectString searches a
single-selection list box for an item that begins with a specified

Programming Windows With MFC

 380

text string and selects the item if a match is found. The
statement

m_wndListBox.SelectString (-1, _T ("Times"));

starts the search with the first item in the list box and highlights
the first item that begins with "Times"—for example, "Times
New Roman" or "Times Roman." The search is not
case-sensitive. The first parameter to SelectString specifies the
index of the item before the one at which the search begins; -1
instructs the list box to start with item 0. If the search is begun
anywhere else, the search will wrap around to the first item if
necessary so that all list box items are searched.

To search a list box for a particular item without changing the
selection, use CListBox::FindString or
CListBox::FindStringExact. FindString performs a string
search on a list box's contents and returns the index of the first
item whose text matches or begins with a specified string. A
return value equal to LB_ERR means that no match was found.
FindStringExact does the same but reports a match only if the
item text matches the search text exactly. Once you have an
item's index in hand, you can retrieve the text of the item with
CListBox::GetText. The following statements query the list box
for the currently selected item and copy the text of that item to
a CString named string:

CString string;
int nIndex = m_wndListBox.GetCurSel ();
if (nIndex != LB_ERR)
 m_wndListBox.GetText (nIndex, string);

An alternative form of GetText accepts a pointer to a character
array rather than a CString reference. You can use
CListBox::GetTextLen to determine how large the array should
be before calling the array version of GetText.

Selections in multiple-selection list boxes are handled
differently than selections in single-selection list boxes. In
particular, the GetCurSel, SetCurSel, and SelectString functions
don't work with multiple-selection list boxes. Instead, items are
selected (and deselected) with the SetSel and SelItemRange

Programming Windows With MFC

 381

functions. The following statements select items 0, 5, 6, 7, 8,
and 9 and deselect item 3:

m_wndListBox.SetSel (0);
m_wndListBox.SelItemRange (TRUE, 5, 9);
m_wndListBox.SetSel (3, FALSE);

CListBox also provides the GetSelCount function for getting a
count of selected items and the GetSelItems function for
retrieving the indexes of all selected items. In a
multiple-selection list box, the dotted rectangle representing the
item with the focus can be moved without changing the current
selection. The focus rectangle can be moved and queried with
SetCaretIndex and GetCaretIndex. Most other list box
functions, including GetText, GetTextLength, FindString, and
FindStringExact, work the same for multiple-selection list
boxes as they do for the single-selection variety.

7.1.2.4. List Box Notifications

A list box sends notifications to its parent window via
WM_COMMAND messages. In an MFC application, list box
notifications are mapped to class member functions with
ON_LBN message-map entries. The table below lists the six
notification types and the corresponding ON_LBN macros.
LBN_DBLCLK, LBN_SELCHANGE, and
LBN_SELCANCEL notifications are sent only if the list box
was created with the style LBS_NOTIFY or
LBS_STANDARD. The others are sent regardless of list box
style.

List Box Notifications

Notification Sent When Message-Map Macro LBS_NOTIFY
Required?

LBN_SETFOCUS The list box
gains the input
focus.

ON_LBN_SETFOCUS No

LBN_KILLFOCUS The list box
loses the input
focus.

ON_LBN_KILLFOCUS No

LBN_ERRSPACE An operation
failed because
of insufficient

ON_LBN_ERRSPACE No

Programming Windows With MFC

 382

memory.

LBN_DBLCLK An item is
double-clicked.

ON_LBN_DBLCLK Yes

LBN_SELCHANGE The selection
changes.

ON_LBN_SELCHANGE Yes

LBN_SELCANCEL The selection
is canceled.

ON_LBN_SELCANCEL Yes

The two list box notifications that programmers rely on most
are LBN_DBLCLK and LBN_SELCHANGE. LBN_DBLCLK
is sent when a list box item is double-clicked. To determine the
index of the item that was double-clicked in a single-selection
list box, use CListBox::GetCurSel. The following code
fragment displays the item in a message box:

// In CMainWindow's message map
ON_LBN_DBLCLK (IDC_LISTBOX, OnItemDoubleClicked)

void CMainWindow::OnItemDoubleClicked ()
{
 CString string;
 int nIndex = m_wndListBox.GetCurSel ();
 m_wndListBox.GetText (nIndex, string);
 MessageBox (string);
}

For a multiple-selection list box, use GetCaretIndex instead of
GetCurSel to determine which item was double-clicked.

A list box sends an LBN_SELCHANGE notification when the
user changes the selection, but not when the selection is
changed programmatically. A single-selection list box sends an
LBN_SELCHANGE notification when the selection moves
because of a mouse click or keystroke. A multiple-selection list
box sends an LBN_SELCHANGE notification when an item is
clicked, when an item's selection state is toggled with the
spacebar, and when the focus rectangle is moved.

7.1.3. The CStatic Class

CStatic, which represents static controls created from the
"STATIC" WNDCLASS, is the simplest of the MFC control
classes. At least it used to be: Windows 95 added so many new

Programming Windows With MFC

 383

features to static controls that CStatic now rivals CButton and
some of the other control classes for complexity.

Static controls come in three flavors: text, rectangles, and
images. Static text controls are often used to label other
controls. The following statement creates a static text control
that displays the string "Name":

m_wndStatic.Create (_T ("Name"), WS_CHILD ¦ WS_VISIBLE ¦
SS_LEFT,
 rect, this, IDC_STATIC);

SS_LEFT creates a static text control whose text is left-aligned.
If the control text is too long to fit on one line, it wraps around
to the next one. To prevent wrapping, use
SS_LEFTNOWORDWRAP instead of SS_LEFT. Text can be
centered horizontally or right-aligned in a static control by
substituting SS_CENTER or SS_RIGHT for SS_LEFT or
SS_LEFTNOWORDWRAP. Another alternative is the
little-used SS_SIMPLE style, which is similar to SS_LEFT but
creates a control whose text can't be altered with
CWnd::SetWindowText.

By default, the text assigned to a static text control is aligned
along the upper edge of the control rectangle. To center text
vertically in the control rectangle, OR an SS_CENTERIMAGE
flag into the control style. You can also draw a sunken border
around a static control by including the style SS_SUNKEN.

A second use for static controls is to draw rectangles. The
control style specifies the type of rectangle that is drawn. Here
are the styles you can choose from:

Style Description

SS_BLACKFRAME Hollow rectangle painted in the system color
COLOR_WINDOWFRAME (default = black)

SS_BLACKRECT Solid rectangle painted in the system color
COLOR_WINDOWFRAME (default = black)

SS_ETCHEDFRAME Hollow rectangle with etched borders

SS_ETCHEDHORZ Hollow rectangle with etched top and bottom borders

SS_ETCHEDVERT Hollow rectangle with etched left and right borders

Programming Windows With MFC

 384

SS_GRAYFRAME Hollow rectangle painted in the system color
COLOR_BACKGROUND (default = gray)

SS_GRAYRECT Solid rectangle painted in the system color
COLOR_BACKGROUND (default = gray)

SS_WHITEFRAME Hollow rectangle painted in the system color
COLOR_WINDOW (default = white)

SS_WHITERECT Solid rectangle painted in the system color
COLOR_WINDOW (default = white)

The statement

m_wndStatic.Create (_T (""), WS_CHILD ¦ WS_VISIBLE ¦
SS_ETCHEDFRAME,
 rect, this, IDC_STATIC);

creates a static control that resembles a group box. For best
results, you should draw etched rectangles on surfaces whose
color is the same as the default dialog box color (the system
color COLOR_3DFACE). A static rectangle control doesn't
display text, even if you specify a nonnull text string in the call
to Create.

A third use for static controls is to display images formed from
bitmaps, icons, cursors, or GDI metafiles. A static image
control uses one of the following styles:

Style Description

SS_BITMAP A static control that displays a bitmap

SS_ENHMETAFILE A static control that displays a metafile

SS_ICON A static control that displays an icon or a cursor

After creating an image control, you associate a bitmap,
metafile, icon, or cursor with it by calling its SetBitmap,
SetEnhMetaFile, SetIcon, or SetCursor function. The
statements

m_wndStatic.Create (_T (""), WS_CHILD ¦ WS_VISIBLE ¦
SS_ICON,
 rect, this, IDC_STATIC);
m_wndStatic.SetIcon (hIcon);

Programming Windows With MFC

 385

create a static control that displays an icon and assign it the
icon whose handle is hIcon. By default, the icon image is
positioned in the upper left corner of the control, and if the
image is larger than the control rectangle, the rectangle is
automatically expanded so the image won't be clipped. To
center the image in the control rectangle, OR
SS_CENTERIMAGE into the control style.
SS_CENTERIMAGE prevents the system from automatically
sizing the control rectangle if it's too small to show the entire
image, so if you use SS_CENTERIMAGE, be sure that the
control rectangle is large enough to display the image. Sizing
isn't an issue with SS_ENHMETAFILE-style controls because
metafile images scale to match the control size. For a neat
special effect, place a sunken border around an image control
by ORing SS_SUNKEN into the control style.

By default, a static control sends no notifications to its parent.
But a static control created with the SS_NOTIFY style sends
the four types of notifications listed in the following table.

Static Control Notifications

Notification Sent When Message-Map Macro

STN_CLICKED The control is clicked. ON_STN_CLICKED

STN_DBLCLK The control is double-clicked. ON_STN_DBLCLK

STN_DISABLE The control is disabled. ON_STN_DISABLE

STN_ENABLE The control is enabled. ON_STN_ENABLE

The STN_CLICKED and STN_DBLCLK notifications allow
you to create static controls that respond to mouse clicks. The
statements

// In CMainWindow's message map
ON_STN_CLICKED (IDC_STATIC, OnClicked)

// In CMainWindow::OnCreate
m_wndStatic.Create (_T ("Click me"), WS_CHILD ¦ WS_VISIBLE ¦
 SS_CENTER ¦ SS_CENTERIMAGE ¦ SS_NOTIFY ¦
SS_SUNKEN, rect,
 this, IDC_STATIC);

void CMainWindow::OnClicked ()
{

Programming Windows With MFC

 386

 m_wndStatic.PostMessage (WM_CLOSE, 0, 0);
}

create a static control that displays "Click me" in the center of a
sunken rectangle and disappears from the screen when clicked.
If a static control lacks the SS_NOTIFY style, mouse messages
go through to the underlying window because the control's
window procedure returns HTTRANSPARENT in response to
WM_NCHITTEST messages.

7.1.4. The FontView Application

Let's put what we've learned so far about buttons, list boxes,
and static controls to use in an application. The FontView
program shown in Figure 7-3 lists the names of all the fonts
installed on the host PC in a list box. When a font name is
selected, a sample is drawn in the group box at the bottom of
the window. The sample text is really a static control, so all
FontView has to do to display a font sample is call the control's
SetFont function. If the check box labeled Show TrueType
Fonts Only is checked, non-TrueType fonts are excluded from
the list. In addition to showing how push button, check box, list
box, group box, and static controls are used, FontView also
demonstrates a very important MFC programming
technique—the use of C++ member functions as callback
functions. The term callback function might not mean much to
you at the moment, but you'll learn all about it shortly.

Programming Windows With MFC

 387

Figure 7-3. The FontView window.

FontView's source code appears in Figure 7-4. The controls are
created one by one in CMainWindow::OnCreate. All but
one—the static control that displays the font sample—is
assigned an 8-point MS Sans Serif font. Rather than use raw
pixel counts to size and position the controls, FontView uses
distances based on the width and height of 8-point MS Sans
Serif characters to achieve independence from the physical
resolution of the display device. The character height and width
are measured by selecting the font into a device context and
calling CDC::GetTextMetrics with a pointer to a
TEXTMETRIC structure:

CFont* pOldFont = dc.SelectObject (&m_fontMain);
TEXTMETRIC tm;
dc.GetTextMetrics (&tm);
m_cxChar = tm.tmAveCharWidth;
m_cyChar = tm.tmHeight + tm.tmExternalLeading;

On return, the structure's tmAveCharWidth field holds the
average character width. (Actual character width can vary from
character to character in a proportionally spaced font.)
Summing the tmHeight and tmExternalLeading fields yields the
height of one line of text, including interline spacing.

Programming Windows With MFC

 388

Figure 7-4. The FontView application.

FontView.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CWnd
{
protected:
 int m_cxChar;
 int m_cyChar;

 CFont m_fontMain;
 CFont m_fontSample;

 CStatic m_wndLBTitle;
 CListBox m_wndListBox;
 CButton m_wndCheckBox;
 CButton m_wndGroupBox;
 CStatic m_wndSampleText;
 CButton m_wndPushButton;

 void FillListBox ();

public:
 CMainWindow ();

 static int CALLBACK EnumFontFamProc (ENUMLOGFONT* lpelf,
 NEWTEXTMETRIC* lpntm, int nFontType, LPARAM lParam);

protected:
 virtual void PostNcDestroy ();

 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg void OnPushButtonClicked ();
 afx_msg void OnCheckBoxClicked ();
 afx_msg void OnSelChange ();

 DECLARE_MESSAGE_MAP ()
};

FontView.cpp
#include <afxwin.h>
#include "FontView.h"

#define IDC_PRINT 100
#define IDC_CHECKBOX 101
#define IDC_LISTBOX 102
#define IDC_SAMPLE 103

CMyApp myApp;

Programming Windows With MFC

 389

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CWnd)
 ON_WM_CREATE ()
 ON_BN_CLICKED (IDC_PRINT, OnPushButtonClicked)
 ON_BN_CLICKED (IDC_CHECKBOX, OnCheckBoxClicked)
 ON_LBN_SELCHANGE (IDC_LISTBOX, OnSelChange)
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 CString strWndClass = AfxRegisterWndClass (
 0,
 myApp.LoadStandardCursor (IDC_ARROW),
 (HBRUSH) (COLOR_3DFACE + 1),
 myApp.LoadStandardIcon (IDI_WINLOGO)
);
 CreateEx (0, strWndClass, _T ("FontView"),
 WS_OVERLAPPED ¦ WS_SYSMENU ¦ WS_CAPTION ¦
WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT,
 NULL, NULL, NULL);

 CRect rect (0, 0, m_cxChar * 68, m_cyChar * 26);
 CalcWindowRect (&rect);

 SetWindowPos (NULL, 0, 0, rect.Width (), rect.Height (),
 SWP_NOZORDER ¦ SWP_NOMOVE ¦ SWP_NOREDRAW);
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CWnd::OnCreate (lpcs) == -1)
 return -1;

 //
 // Create an 8-point MS Sans Serif font to use in the controls.
 //
 m_fontMain.CreatePointFont (80, _T ("MS Sans Serif"));

 //
 // Compute the average width and height of a character in the font.

Programming Windows With MFC

 390

 //
 CClientDC dc (this);
 CFont* pOldFont = dc.SelectObject (&m_fontMain);
 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);
 m_cxChar = tm.tmAveCharWidth;
 m_cyChar = tm.tmHeight + tm.tmExternalLeading;
 dc.SelectObject (pOldFont);

 //
 // Create the controls that will appear in the FontView window.
 //
 CRect rect (m_cxChar * 2, m_cyChar, m_cxChar * 48, m_cyChar * 2);
 m_wndLBTitle.Create (_T ("Typefaces"), WS_CHILD ¦ WS_VISIBLE ¦
SS_LEFT,
 rect, this);

 rect.SetRect (m_cxChar * 2, m_cyChar * 2, m_cxChar * 48,
 m_cyChar * 18);
 m_wndListBox.CreateEx (WS_EX_CLIENTEDGE, _T ("listbox"), NULL,
 WS_CHILD ¦ WS_VISIBLE ¦ LBS_STANDARD, rect, this,
IDC_LISTBOX);

 rect.SetRect (m_cxChar * 2, m_cyChar * 19, m_cxChar * 48,
 m_cyChar * 20);
 m_wndCheckBox.Create (_T ("Show TrueType fonts only"),
WS_CHILD ¦
 WS_VISIBLE ¦ BS_AUTOCHECKBOX, rect, this,
IDC_CHECKBOX);

 rect.SetRect (m_cxChar * 2, m_cyChar * 21, m_cxChar * 66,
 m_cyChar * 25);

m_wndGroupBox.Create (_T ("Sample"), WS_CHILD ¦ WS_VISIBLE ¦
BS_GROUPBOX,

 rect, this, (UINT) -1);

 rect.SetRect (m_cxChar * 4, m_cyChar * 22, m_cxChar * 64,
 (m_cyChar * 99) / 4);
 m_wndSampleText.Create (_T (""), WS_CHILD ¦ WS_VISIBLE ¦
SS_CENTER, rect,
 this, IDC_SAMPLE);

 rect.SetRect (m_cxChar * 50, m_cyChar * 2, m_cxChar * 66,
 m_cyChar * 4);
 m_wndPushButton.Create (_T ("Print Sample"), WS_CHILD ¦
WS_VISIBLE ¦
 WS_DISABLED ¦ BS_PUSHBUTTON, rect, this, IDC_PRINT);

 //
 // Set each control's font to 8-point MS Sans Serif.
 //
 m_wndLBTitle.SetFont (&m_fontMain, FALSE);
 m_wndListBox.SetFont (&m_fontMain, FALSE);
 m_wndCheckBox.SetFont (&m_fontMain, FALSE);
 m_wndGroupBox.SetFont (&m_fontMain, FALSE);
 m_wndPushButton.SetFont (&m_fontMain, FALSE);

Programming Windows With MFC

 391

 //
 // Fill the list box with typeface names and return.
 //
 FillListBox ();
 return 0;
}

void CMainWindow::PostNcDestroy ()
{
 delete this;
}

void CMainWindow::OnPushButtonClicked ()
{
 MessageBox (_T ("This feature is currently unimplemented. Sorry!"),
 _T ("Error"), MB_ICONINFORMATION ¦ MB_OK);
}

void CMainWindow::OnCheckBoxClicked ()
{
 FillListBox ();
 OnSelChange ();
}

void CMainWindow::OnSelChange ()
{
 int nIndex = m_wndListBox.GetCurSel ();

 if (nIndex == LB_ERR) {
 m_wndPushButton.EnableWindow (FALSE);
 m_wndSampleText.SetWindowText (_T (""));
 }
 else {
 m_wndPushButton.EnableWindow (TRUE);
 if ((HFONT) m_fontSample != NULL)
 m_fontSample.DeleteObject ();

 CString strFaceName;
 m_wndListBox.GetText (nIndex, strFaceName);

 m_fontSample.CreateFont (-m_cyChar * 2, 0, 0, 0, FW_NORMAL,
 0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
 CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH ¦
 FF_DONTCARE, strFaceName);

 m_wndSampleText.SetFont (&m_fontSample);
 m_wndSampleText.SetWindowText (_T ("AaBbCcDdEeFfGg"));
 }
}

void CMainWindow::FillListBox ()
{
 m_wndListBox.ResetContent ();

Programming Windows With MFC

 392

 CClientDC dc (this);
 ::EnumFontFamilies ((HDC) dc, NULL, (FONTENUMPROC)
EnumFontFamProc,
 (LPARAM) this);
}

int CALLBACK CMainWindow::EnumFontFamProc (ENUMLOGFONT*
lpelf,
 NEWTEXTMETRIC* lpntm, int nFontType, LPARAM lParam)
{
 CMainWindow* pWnd = (CMainWindow*) lParam;

 if ((pWnd->m_wndCheckBox.GetCheck () == BST_UNCHECKED) ||
 (nFontType & TRUETYPE_FONTTYPE))
 pWnd->m_wndListBox.AddString (lpelf->elfLogFont.lfFaceName);
 return 1;
}

CMainWindow processes three types of control notifications:
BN_CLICKED notifications from the push button,
BN_CLICKED notifications from the check box, and
LBN_SELCHANGE notifications from the list box. The
corresponding message-map entries look like this:

ON_BN_CLICKED (IDC_PRINT, OnPushButtonClicked)
ON_BN_CLICKED (IDC_CHECKBOX, OnCheckBoxClicked)
ON_LBN_SELCHANGE (IDC_LISTBOX, OnSelChange)

OnPushButtonClicked is activated when the Print Sample
button is clicked. Because printing is a complex undertaking in
a Windows application, OnPushButtonClicked does nothing
more than display a message box. OnCheckBoxClicked handles
BN_CLICKED notifications from the check box. Since the
check box style includes a BS_AUTOCHECKBOX flag, the
check mark toggles on and off automatically in response to
button clicks. OnCheckBoxClicked's job is to refresh the
contents of the list box each time the check mark is toggled. To
do that, it calls CMainWindow::FillListBox to reinitialize the
list box and then calls CMainWindow::OnSelChange to update
the sample text.

OnSelChange is also called whenever the list box selection
changes. It calls GetCurSel to get the index of the currently
selected item. If GetCurSel returns LB_ERR, indicating that
nothing is selected, OnSelChange disables the push button and
erases the sample text. Otherwise, it enables the button,

Programming Windows With MFC

 393

retrieves the text of the selected item with CListBox::GetText,
and creates a font whose typeface name equals the string
returned by GetText. It then assigns the font to the static control
and sets the control text to "AaBbCcDdEeFfGg."

7.1.4.1. Font Enumerations and Callback Functions

The job of filling the list box with font names falls to
CMainWindow::FillListBox. FillListBox is called by OnCreate
to initialize the list box when the program is started. It is also
called by OnCheckBoxClicked to reinitialize the list box when
the Show TrueType Fonts Only check box is clicked.
FillListBox first clears the list box by calling
CListBox::ResetContent. It then enumerates all the fonts
installed in the system and adds the corresponding typeface
names to the list box.

FillListBox begins the enumeration process by constructing a
device context object named dc, using the CDC class's HDC
operator to extract a device context handle, and passing that
handle to the ::EnumFontFamilies function:

CClientDC dc (this);
::EnumFontFamilies ((HDC) dc, NULL, (FONTENUMPROC)
EnumFontFamProc,
 (LPARAM) this);

The NULL second parameter tells ::EnumFontFamilies to
enumerate all installed fonts. The next parameter is the address
of a callback function. A callback function is a function in your
application that Windows calls back with information you
requested. For each font that ::EnumFontFamilies enumerates,
Windows calls your callback function one time.
An ::EnumFontFamilies callback function must be prototyped
like this:

int CALLBACK EnumFontFamProc (ENUMLOGFONT* lpelf,
 NEWTEXTMETRIC* lpntm, int nFontType, LPARAM lParam)

lpelf is a pointer to an ENUMLOGFONT structure, which
contains a wealth of information about the font, including its
typeface name. lpntm is a pointer to a structure of type

Programming Windows With MFC

 394

NEWTEXTMETRIC, which contains font metrics—height,
average character width, and so on. nFontType specifies the
font type. TrueType fonts are identified by logically ANDing
nFontType with the value TRUETYPE_FONTTYPE. If the
result is nonzero, the font is a TrueType font. The fourth and
final parameter, lParam, is an optional 32-bit LPARAM value
passed to ::EnumFontFamilies. FillListBox passes the this
pointer referring to CMainWindow, for reasons I'll explain in a
moment.

FontView's callback function is a member of CMainWindow.
It's actually the callback function, not FillListBox, that adds the
typeface names to the list box. Each time
CMainWindow::EnumFontFamProc is called, it casts the
lParam value passed to it from FillListBox into a
CMainWindow pointer:

CMainWindow* pWnd = (CMainWindow*) lParam;

It then uses the pointer to add the typeface name to the list box,
but only if the Show TrueType Fonts Only check box is
unchecked or the font is a TrueType font:

if ((pWnd->m_wndCheckBox.GetCheck () == BST_UNCHECKED) ¦¦
 (nFontType & TRUETYPE_FONTTYPE))
 pWnd->m_wndListBox.AddString
(lpelf->elfLogFont.lfFaceName);
return 1;

The nonzero return value tells Windows to continue the
enumeration process. (The callback function can halt the
process at any time by returning 0, a handy option to have if
you've allocated a fixed amount of memory to store font
information and the memory fills up.) After Windows has
called EnumFontFamProc for the last time, the call that
FillListBox placed to ::EnumFontFamilies returns and the
enumeration process is complete.

Why does FillListBox pass a this pointer to the callback
function, and why does EnumFontFamProc cast the pointer to
a CMainWindow pointer when it, too, is a member of
CMainWindow? Look closely at the declaration for
CMainWindow in FontView.h, and you'll see that

Programming Windows With MFC

 395

EnumFontFamProc is a static member function.A static class
member function doesn't receive a this pointer, so it can't access
nonstatic members of its own class. To call m_wndCheckBox's
GetCheck function and m_wndListBox's AddString,
EnumFontFamProc needs pointers to m_wndCheckBox and
m_wndListBox or a pointer to the CMainWindow object to
which those objects belong. By casting the lParam value
passed to FillListBox to a CMainWindow pointer,
EnumFontFamProc is able to access nonstatic members of the
CMainWindow class just as if it were a nonstatic member
function.

EnumFontFamProc is static because callbacks require special
handling in C++ applications. Windows rigidly defines a
callback function's interface—the parameters passed to it
through its argument list. When a member function of a C++
class is declared, the compiler silently tacks on an extra
argument to hold the this pointer. Unfortunately, the added
parameter means that the callback function's argument list
doesn't match the argument list Windows expects, and all sorts
of bad things can happen as a result, including invalid memory
access errors, the nemeses of all Windows programmers. There
are several solutions to this problem, but declaring the callback
to be a static member function is among the simplest and most
direct. In C++, a static member function isn't passed a this
pointer, so its argument list is unaltered.

Callback functions are common in Windows, so the technique
demonstrated here is useful for more than just enumerating
fonts. Many Windows API functions that rely on callbacks
support an application-defined lParam value, which is perfect
for passing this pointers to statically declared callback
functions. Should you use an enumeration function that doesn't
support an application-defined lParam, you'll have to resort to
other means to make a pointer available. One alternative is to
make the this pointer visible to the callback function by
copying it to a global variable.

7.1.5. The CEdit Class

MFC's CEdit class encapsulates the functionality of edit
controls. Edit controls are used for text entry and editing and
come in two varieties: single-line and multiline. Single-line edit

Programming Windows With MFC

 396

controls are perfect for soliciting one-line text strings such as
names, passwords, and product IDs. (See Figure 7-5.) To see a
multiline edit control in action, start the Notepad applet that
comes with Windows. The client area of the Notepad window
is a multiline edit control.

Figure 7-5. A dialog box with two single-line edit controls.

An edit control is limited to about 60 KB of text. That's not
much of a restriction for single-line edit controls, but for a
multiline edit control it can be constraining. If you need to
handle large amounts of text, use the rich edit control
instead—an enhanced version of the standard edit control that
is part of the common controls library. Though designed to
handle richly formatted text of the type seen in word processors,
rich edit controls are quite capable of handling ordinary text,
too. The Windows WordPad applet uses a rich edit control for
text entry and editing. You'll use a rich edit control to build a
WordPad-like application of your own in Chapter 12.

7.1.5.1. Creating an Edit Control

If m_wndEdit is a CEdit object, the statement

m_wndEdit.Create (WS_CHILD ¦ WS_VISIBLE ¦ WS_BORDER ¦
 ES_AUTOHSCROLL, rect, this, IDC_EDIT);

creates a single-line edit control that automatically scrolls
horizontally when the caret moves beyond the control's border.
Including ES_MULTILINE in the window style creates a
multiline edit control instead:

m_wndEdit.Create (WS_CHILD ¦ WS_VISIBLE ¦ WS_BORDER ¦
 WS_HSCROLL ¦ WS_VSCROLL ¦ ES_MULTILINE, rect, this,
IDC_EDIT);

Programming Windows With MFC

 397

WS_HSCROLL and WS_VSCROLL add horizontal and
vertical scroll bars to the control. You can use CEdit::SetRect
or CEdit::SetRectNP to define the control's editable area
independent of the control's borders. One use for these
functions is to define a page size that remains constant even if
the control is resized. You can also use CEdit::SetMargins to
specify left and right margin widths in pixels. The default
margin widths are 0. The window styles listed in the table
below are specific to edit controls.

When it is first created, an edit control will accept only about
30,000 characters. You can raise or lower the limit with
CEdit::LimitText or the Win32-specific CEdit::SetLimitText.
The following statement sets the maximum number of
characters that an edit control will accept to 32:

m_wndEdit.SetLimitText (32);

When used with a multiline edit control, SetLimitText limits the
total amount of text entered into the control, not the length of
each line. There is no built-in way to limit the number of
characters per line in a multiline edit control, but there are ways
you can do it manually. One approach is to use SetFont to
switch the edit control font to a fixed-pitch font and
CEdit::SetRect to specify a formatting rectangle whose width is
slightly greater than the width of a character times the desired
number of characters per line.

Edit Control Styles

Style Description

ES_LEFT Left-aligns text in the control.

ES_CENTER Centers text in the control.

ES_RIGHT Right-aligns text in the control.

ES_AUTOHSCROLL Permits the edit control to scroll horizontally without a
horizontal scroll bar. To add a horizontal scroll bar,
include the style WS_HSCROLL.

ES_AUTOVSCROLL Permits the edit control to scroll vertically without a
vertical scroll bar. To add a vertical scroll bar, include
the style WS_VSCROLL.

ES_MULTILINE Creates a multiline edit control.

Programming Windows With MFC

 398

ES_LOWERCASE Displays all characters in lowercase.

ES_UPPERCASE Displays all characters in uppercase.

ES_PASSWORD Displays asterisks instead of typed characters.

ES_READONLY Creates an edit control whose text can't be edited.

ES_NOHIDESEL Prevents the edit control from hiding the selection when
the control loses the input focus.

ES_OEMCONVERT Performs an ANSI-to-OEM-to-ANSI conversion on all
characters typed into the control so that the application
won't get unexpected results if it performs an
ANSI-to-OEM conversion of its own. Obsolete.

ES_WANTRETURN Programs the Enter key to insert line breaks instead of
invoking the default push button for multiline edit
controls used in dialog boxes.

Another function sometimes used to initialize an edit control is
CEdit::SetTabStops, which sets the spacing between tab stops.
Default tab stops are set about 8 character widths apart. You
can space the tab stops however you like and can even vary the
spacing between stops. Like CListBox::SetTabStops,
CEdit::SetTabStops measures distances in dialog units.

7.1.5.2. Inserting and Retrieving Text

Text is inserted into an edit control with SetWindowText and
retrieved with GetWindowText. CEdit inherits both functions
from its base class, CWnd. The statement

m_wndEdit.SetWindowText (_T ("Hello, MFC"));

inserts the text string "Hello, MFC" into the edit control
m_wndEdit, and

m_wndEdit.GetWindowText (string);

retrieves the text into a CString object named string.
GetWindowText and SetWindowText work with both single-line
and multiline edit controls. Text inserted with SetWindowText
replaces existing text, and GetWindowText returns all the text in
the edit control, even if the text spans multiple lines. To erase
all the text in an edit control, call SetWindowText with a null
string:

Programming Windows With MFC

 399

m_wndEdit.SetWindowText (_T (""));

You can insert text into an edit control without erasing what's
already there with CEdit::ReplaceSel. If one or more characters
are selected when ReplaceSel is called, the inserted text
replaces the selected text; otherwise, the new text is inserted at
the current caret position.

A multiline edit control inserts line breaks automatically. If
you'd like to know where the line breaks fall in text retrieved
from a multiline edit control, use CEdit::FmtLines to enable
soft line breaks before calling GetWindowText:

m_wndEdit.FmtLines (TRUE);

With soft line breaks enabled, each line is delimited with two
carriage returns (13) followed by a line feed character (10). To
disable soft line breaks, call FmtLines with a FALSE
parameter:

m_wndEdit.FmtLines (FALSE);

Now line breaks won't be denoted in any special way. Hard
returns—line breaks inserted manually when the user presses
the Enter key—are signified by single carriage return/line feed
pairs regardless of the FmtLines setting. FmtLines doesn't affect
the appearance of the text in a multiline edit control. It affects
only the way in which the control stores text internally and the
format of text retrieved with GetWindowText.

To read just one line of text from a multiline edit control, use
CEdit::GetLine. GetLine copies the contents of a line to a
buffer whose address you provide. The line is identified with a
0-based index. The statement

m_wndEdit.GetLine (0, pBuffer, nBufferSize);

copies the first line of text in a multiline edit control to the
buffer pointed to by pBuffer. The third parameter is the buffer
size, in bytes (not characters). GetLine returns the number of
bytes copied to the buffer. You can determine how much buffer

Programming Windows With MFC

 400

space you need before retrieving a line with CEdit::LineLength.
And you can find out how many lines of text a multiline edit
control contains by calling CEdit::GetLineCount. Note that
GetLineCount never returns 0; the return value is 1 even if no
text has been entered.

7.1.5.3. Clear, Cut, Copy, Paste, and Undo

CEdit provides easy-to-use member functions that perform the
programmatic equivalents of the Clear, Cut, Copy, Paste, and
Undo items in the Edit menu. The statement

m_wndEdit.Clear ();

removes the selected text without affecting what's on the
clipboard. The statement

m_wndEdit.Cut ();

removes the selected text and copies it to the clipboard. And the
statement

m_wndEdit.Copy ();

copies the selected text to the clipboard without altering the
contents of the edit control.

You can query an edit control for the current selection by
calling CEdit::GetSel, which returns a DWORD value with two
packed 16-bit integers specifying the indexes of the beginning
and ending characters in the selection. An alternate form of
GetSel copies the indexes to a pair of integers whose addresses
are passed by reference. If the indexes are equal, no text is
currently selected. The following IsTextSelected function,
which you might add to an edit control class derived from
CEdit, returns a nonzero value if a selection exists and 0 if one
doesn't exist:

BOOL CMyEdit::IsTextSelected ()
{
 int nStart, nEnd;
 GetSel (nStart, nEnd);

Programming Windows With MFC

 401

 return (nStart != nEnd);
}

CEdit::Cut and CEdit::Copy do nothing if no text is selected.

Text can be selected programmatically with CEdit::SetSel. The
statement

m_wndEdit.SetSel (100, 150);

selects 50 characters beginning with the 101st (the character
whose 0-based index is 100) and scrolls the selection into view
if it isn't visible already. To prevent scrolling, include a third
parameter and set it equal to TRUE.

When programmatically selecting text in a multiline edit
control, you often need to convert a line number and possibly
an offset within that line into an index that can be passed to
SetSel. CEdit::LineIndex accepts a 0-based line number and
returns the index of the first character in that line. The next
example uses LineIndex to determine the index of the first
character in the eighth line of a multiline edit control,
LineLength to retrieve the line's length, and SetSel to select
everything on that line:

int nStart = m_wndEdit.LineIndex (7);
int nLength = m_wndEdit.LineLength (nStart);
m_wndEdit.SetSel (nStart, nStart + nLength);

CEdit also provides a function named LineFromChar for
computing a line number from a character index.

CEdit::Paste pastes text into an edit control. The following
statement pastes the text that currently resides in the Windows
clipboard into an edit control named m_wndEdit:

m_wndEdit.Paste ();

If the clipboard contains no text, CEdit::Paste does nothing. If
no text is selected when Paste is called, the clipboard text is
inserted at the current caret position. If a selection exists, the
text retrieved from the clipboard replaces the text selected in

Programming Windows With MFC

 402

the control. You can determine ahead of time whether the
clipboard contains text (and therefore whether the Paste
function will actually do anything) by
calling ::IsClipboardFormatAvailable. The statement

BOOL bCanPaste = ::IsClipboardFormatAvailable (CF_TEXT);

sets bCanPaste to nonzero if text is available from the
clipboard, and 0 if it isn't.

Edit controls also feature a built-in undo capability that "rolls
back" the previous editing operation. The statement

m_wndEdit.Undo ();

undoes the last operation, provided that the operation can be
undone. You can determine ahead of time whether calling
Undo will accomplish anything with CEdit::CanUndo. A
related function, CEdit::EmptyUndoBuffer, manually resets the
undo flag so that subsequent calls to Undo will do nothing (and
calls to CanUndo will return FALSE) until another editing
operation is performed.

7.1.5.4. Edit Control Notifications

Edit controls send notifications to their parents to report various
input events. In MFC applications, these notifications are
mapped to handling functions with ON_EN message map
macros. Edit control notifications and the corresponding
message map macros are summarized in the table below.

A common use for EN_CHANGE notifications is to
dynamically update other controls as text is entered into an edit
control. The following code updates a push button
(m_wndPushButton) as text is entered into an edit control
(m_wndEdit, ID=IDC_EDIT) so that the push button is enabled
if the edit control contains at least one character and disabled if
it doesn't:

// In CMainWindow's message map
ON_EN_CHANGE (IDC_EDIT, OnUpdatePushButton)

void CMainWindow::OnUpdatePushButton ()

Programming Windows With MFC

 403

{
 m_wndPushButton.EnableWindow (m_wndEdit.LineLength ());
}

Edit Control Notifications

Notification Sent When Message-Map Macro

EN_UPDATE The control's text is about to
change.

ON_EN_UPDATE

EN_CHANGE The control's text has changed. ON_EN_CHANGE

EN_KILLFOCUS The edit control loses the input
focus.

ON_EN_KILLFOCUS

EN_SETFOCUS The edit control receives the input
focus.

ON_EN_SETFOCUS

EN_HSCROLL The edit control is scrolled
horizontally using a scroll bar.

ON_EN_HSCROLL

EN_VSCROLL The edit control is scrolled
vertically using a scroll bar.

ON_EN_VSCROLL

EN_MAXTEXT A character can't be entered
because the edit control already
contains the number of characters
specified with CEdit::LimitText or
CEdit::SetLimitText. This
notification is also sent if a
character can't be entered because
the caret is at the right or the
bottom edge of the control's
formatting rectangle and the
control doesn't support scrolling.

ON_EN_MAXTEXT

EN_ERRSPACE An operation fails because of
insufficient memory.

ON_EN_ERRSPACE

Providing interactive feedback of this nature is generally
considered good user interface design. Most users would rather
see a button remain disabled until all of the required
information is entered than click a button and receive an error
message.

7.1.5.5. Presto! Instant Notepad

The MyPad application, portions of whose source code are
reproduced in Figure 7-6, uses a multiline edit control to create
a near clone of the Windows Notepad applet. As you can see
from the source code, the edit control does the bulk of the work.

Programming Windows With MFC

 404

CEdit functions such as Undo and Cut allow you to implement
commands in the Edit menu with just one line of code.

MyPad is a view-based application that I began by running the
MFC AppWizard but unchecking the Document/View
Architecture Support box in Step 1. To avoid unnecessary code,
I unchecked the ActiveX Controls box in AppWizard's Step 3
dialog, too. After running AppWizard, I added a New
command to the File menu and a Delete command to the Edit
menu using the Visual C++ resource editor. I also used the
resource editor to add an accelerator (Ctrl-N) for the New
command. I then used ClassWizard to add command handlers,
update handlers, and message handlers.

The view's WM_CREATE message handler creates the edit
control by calling Create on the CEdit data member named
m_wndEdit. OnCreate sets the control's width and height to 0,
but OnSize resizes the control to fill the view's client area
whenever the view receives a WM_SIZE message. The first
WM_SIZE message arrives before the view becomes visible on
the screen; subsequent WM_SIZE messages arrive anytime the
MyPad window (and consequently, the view) is resized. A
one-line WM_SETFOCUS handler in the view class shifts the
input focus to the edit control whenever the view receives the
input focus.

Figure 7-6. The MyPad application.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__0FA1D288_8471_11D2_8E53_006008A82731
__INCLUDED_)
#define
AFX_MAINFRM_H__0FA1D288_8471_11D2_8E53_006008A82731__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

Programming Windows With MFC

 405

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__0FA1D288_8471_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "MyPad.h"

#include "MainFrm.h"

Programming Windows With MFC

 406

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}
void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)

Programming Windows With MFC

 407

{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)

{

 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 {
 TRACE0("Failed to create view window\n");
 return -1;
 }
 return 0;
}

ChildView. H

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__0FA1D28A_8471_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__0FA1D28A_8471_11D2_8E53_006008A82731__INCLUDED
_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:

Programming Windows With MFC

 408

 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 BOOL IsTextSelected ();
 CEdit m_wndEdit;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnEditCut();
 afx_msg void OnEditCopy();
 afx_msg void OnEditPaste();
 afx_msg void OnEditDelete();
 afx_msg void OnEditUndo();
 afx_msg void OnUpdateEditCut(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditDelete(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditUndo(CCmdUI* pCmdUI);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSize(UINT nType, int cx, int cy);
 afx_msg void OnFileNew();
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_CHILDVIEW_H__0FA1D28A_8471_11D2_8E53_006008A82731__I
NCLUDED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class

Programming Windows With MFC

 409

//

#include "stdafx.h"
#include "MyPad.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_WM_CREATE()
 ON_WM_SIZE()
 ON_WM_SETFOCUS()
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_COMMAND(ID_EDIT_DELETE, OnEditDelete)
 ON_COMMAND(ID_EDIT_UNDO, OnEditUndo)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCut)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_DELETE,
OnUpdateEditDelete)
 ON_UPDATE_COMMAND_UI(ID_EDIT_UNDO, OnUpdateEditUndo)
 ON_COMMAND(ID_FILE_NEW, OnFileNew)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =

Programming Windows With MFC

 410

AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}
void CChildView::OnPaint()
{
 CPaintDC dc(this);
}

int CChildView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CWnd ::OnCreate(lpCreateStruct) == -1)
 return -1;

 m_wndEdit.Create (WS_CHILD ¦ WS_VISIBLE ¦ WS_VSCROLL ¦
ES_MULTILINE ¦
 ES_AUTOVSCROLL, CRect (0, 0, 0, 0), this, IDC_EDIT);
 return 0;
}

void CChildView::OnSize(UINT nType, int cx, int cy)
{
 CWnd ::OnSize(nType, cx, cy);
 m_wndEdit.MoveWindow (0, 0, cx, cy);
}

void CChildView::OnSetFocus(CWnd* pOldWnd)
{
 m_wndEdit.SetFocus ();
}

void CChildView::OnEditCut()
{
 m_wndEdit.Cut ();
 }

void CChildView::OnEditCopy()
{
 m_wndEdit.Copy ();
}

void CChildView::OnEditPaste()
{
 m_wndEdit.Paste ();
}

void CChildView::OnEditDelete()
{
 m_wndEdit.Clear ();
}

void CChildView::OnEditUndo()
{
 m_wndEdit.Undo ();

Programming Windows With MFC

 411

}

void CChildView::OnUpdateEditCut(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (IsTextSelected ());
}

void CChildView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (IsTextSelected ());
}

void CChildView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (::IsClipboardFormatAvailable (CF_TEXT));
}

void CChildView::OnUpdateEditDelete(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (IsTextSelected ());
}

void CChildView::OnUpdateEditUndo(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (m_wndEdit.CanUndo ());
}

void CChildView::OnFileNew()
{
 m_wndEdit.SetWindowText (_T (""));
}

BOOL CChildView::IsTextSelected()
{
 int nStart, nEnd;
 m_wndEdit.GetSel (nStart, nEnd);
 return (nStart != nEnd);
}

7.1.6. The CComboBox Class

The combo box combines a single-line edit control and a list
box into one convenient package. Combo boxes come in three
varieties: simple, drop-down, and drop-down list. Figure 7-7
shows a drop-down list combo box with its list displayed.

Programming Windows With MFC

 412

Figure 7-7. A combo box with a drop-down list displayed.

Simple combo boxes are the least used of the three combo box
types. A simple combo box's list box is permanently displayed.
When the user selects an item from the list, that item is
automatically copied to the edit control. The user can also type
text directly into the edit control. If the text the user enters
matches an item in the list box, the item is automatically
highlighted and scrolled into view.

A drop-down combo box differs from a simple combo box in
that its list box is displayed only on demand. A drop-down list
combo box works the same way but doesn't allow text to be
typed into the edit control. This restriction effectively limits the
user's selection to items appearing in the list box.

The style flags you pass to Create or CreateEx determine what
type of combo box you create. CBS_SIMPLE creates a simple
combo box, CBS_DROPDOWN creates a drop-down combo
box, and CBS_DROPDOWNLIST creates a drop-down list
combo box. Other styles control additional aspects of the
combo box's appearance and behavior, as shown in the table
below. Many of these styles will look familiar because they're
patterned after list box and edit control styles.
CBS_AUTOHSCROLL, for example, does the same thing for
the edit control portion of a combo box control that
ES_AUTOHSCROLL does for a stand-alone edit control.
When you create a combo box control, don't forget to include
the style WS_VSCROLL if you want the list box to have a
vertical scroll bar and WS_BORDER if you want the control's
border to be visible. If m_wndComboBox is a CComboBox
object, the statement

Programming Windows With MFC

 413

m_wndComboBox.Create (WS_CHILD ¦ WS_VISIBLE ¦
WS_BORDER ¦
 WS_VSCROLL ¦ CBS_DROPDOWNLIST ¦ CBS_SORT, rect,
this,
 IDC_COMBOBOX);

creates a drop-down list combo box whose list box contains a
vertical scroll bar when the number of items in the list box
exceeds the number of items that can be displayed and that
automatically sorts the items added to it. The control rectangle
you specify in the call to CComboBox::Create should be large
enough to encompass the list box part of the control as well as
the edit box.

Combo Box Styles

Style Description

CBS_AUTOHSCROLL Enables horizontal scrolling in the edit
control portion of a combo box.

CBS_DISABLENOSCROLL Disables the combo box list box's scroll bar
when it isn't needed. Without this style, an
unneeded scroll bar is hidden rather than
disabled.

CBS_DROPDOWN Creates a drop-down combo box.

CBS_DROPDOWNLIST Creates a drop-down list combo box.

CBS_HASSTRINGS Creates a combo box that "remembers" the
strings added to it. Conventional combo
boxes have this style by default;
owner-draw combo boxes don't.

CBS_LOWERCASE Forces all text in the combo box to
lowercase.

CBS_NOINTEGRALHEIGHT Prevents the combo box's list box height
from having to be an exact multiple of the
item height.

CBS_OEMCONVERT A combo box whose edit control performs
an ANSI-to-OEM-to-ANSI conversion on
all characters so that the application won't
get unexpected results if it performs an
ANSI-to-OEM conversion of its own.
Obsolete.

CBS_OWNERDRAWFIXED Creates an owner-draw combo box whose
items are all the same height.

Programming Windows With MFC

 414

CBS_OWNERDRAWVARIABLE Creates an owner-draw combo box whose
items can vary in height.

CBS_SIMPLE Creates a simple combo box.

CBS_SORT Automatically sorts items as they are
added.

CBS_UPPERCASE Forces all text in the combo box to
uppercase.

Not surprisingly, the list of CComboBox member functions
reads a lot like the list of member functions for CEdit and
CListBox. Items are added to a combo box, for example, with
CComboBox::AddString and CComboBox::InsertString, and
the maximum character count for a combo box's edit control is
set with CComboBox::LimitText. The GetWindowText and
SetWindowText functions that CComboBox inherits from CWnd
get and set the text in the edit control. Functions unique to
combo boxes include GetLBText, which retrieves the text of an
item identified by a 0-based index; GetLBTextLen, which
returns the length of an item, in characters; ShowDropDown,
which hides or displays the drop-down list box; and
GetDroppedState, which returns a value indicating whether the
drop-down list is currently displayed.

7.1.6.1. Combo Box Notifications

Combo boxes send notifications to their parents much as edit
controls and list boxes do. The following table lists the
notifications the parent can expect, the corresponding MFC
message-map macros, and the types of combo boxes the
notifications apply to.

Combo Box Notifications

Notification Message-Macro Map Simpl
e

Drop-Do
wn

Drop-Do
wn List

CBN_DROPDOWN
Sent when the
drop-down list is
displayed.

ON_CBN_DROPDOWN √ √

CBN_CLOSEUP
Sent when the
drop-down list is
closed.

ON_CBN_CLOSEUP √ √

Programming Windows With MFC

 415

CBN_DBLCLK
Sent when an item is
double-clicked.

ON_CBN_DBLCLK √

CBN_SELCHANGE
Sent when the
selection changes.

ON_CBN_SELCHANGE √ √ √

CBN_SELENDOK
Sent when a selection
is made.

ON_CBN_SELENDOK √ √ √

CBN_SELENDCAN
CEL
Sent when a selection
is canceled.

ON_CBN_SELENDCAN
CEL

 √ √

CBN_EDITUPDATE
Sent when the text in
the edit control is
about to change.

N_CBN_EDITUPDATE √ √

CBN_EDITCHANG
E
Sent when the text in
the edit control has
changed.

ON_CBN_EDITCHANG
E

√ √

CBN_KILLFOCUS
Sent when the combo
box loses the input
focus.

ON_CBN_KILLFOCUS √ √ √

CBN_SETFOCUS
Sent when the combo
box receives the input
focus.

ON_CBN_SETFOCUS √ √ √

CBN_ERRSPACE
Sent when an
operation fails
because of
insufficient memory.

ON_CBN_ERRSPACE √ √ √

Not all notifications apply to all combo box types.
CBN_DROPDOWN and CBN_CLOSEUP notifications, for
example, aren't sent to CBS_SIMPLE combo boxes because a
simple combo box's list box doesn't open and close. By the
same token, CBS_DROPDOWN and
CBS_DROPDOWNLIST-style combo boxes don't receive
CBN_DBLCLK notifications because the items in their lists
can't be double-clicked. (Why? Because the list box closes after
the first click.) CBN_EDITUPDATE and
CBN_EDITCHANGE notifications are equivalent to

Programming Windows With MFC

 416

EN_UPDATE and EN_CHANGE notifications sent by edit
controls, and CBN_SELCHANGE is to combo boxes as
LBN_SELCHANGE is to list boxes.

One nuance you should be aware of when processing
CBN_SELCHANGE notifications is that when a notification
arrives, the edit control might not have been updated to match
the list box selection. Therefore, you should use GetLBText to
retrieve the newly selected text instead of GetWindowText. You
can get the index of the selected item with
CComboBox::GetCurSel.

7.1.7. The CScrollBar Class

MFC's CScrollBar class encapsulates scroll bar controls created
from the "SCROLLBAR" WNDCLASS. Scroll bar controls are
identical in most respects to the "window" scroll bars used in
Chapter 2's Accel application. But whereas window scroll bars
are created by adding WS_VSCROLL and WS_HSCROLL
flags to the window style, scroll bar controls are created
explicitly with CScrollBar::Create. And though a window
scroll bar runs the full length of the window's client area and is
inherently glued to the window border, scroll bar controls can
be placed anywhere in the window and can be set to any height
and width.

You create vertical scroll bars by specifying the style
SBS_VERT and horizontal scroll bars by specifying
SBS_HORZ. If m_wndVScrollBar and m_wndHScrollBar are
CScrollBar objects, the statements

m_wndVScrollBar.Create (WS_CHILD ¦ WS_VISIBLE ¦
WS_BORDER ¦
 SBS_VERT, rectVert, this, IDC_VSCROLLBAR);
m_wndHScrollBar.Create (WS_CHILD ¦ WS_VISIBLE ¦
WS_BORDER ¦
 SBS_HORZ, rectHorz, this, IDC_HSCROLLBAR);

create two scroll bar controls, one vertical and the other
horizontal.

You can query Windows for the standard width of a vertical
scroll bar or the standard height of a horizontal scroll bar with
the ::GetSystemMetrics API function. The following code

Programming Windows With MFC

 417

fragment sets nWidth and nHeight to the system's standard
scroll bar width and height:

int nWidth = ::GetSystemMetrics (SM_CXVSCROLL);
int nHeight = ::GetSystemMetrics (SM_CYHSCROLL);

An alternative method for creating a scroll bar with a standard
height or width is to specify the style SBS_TOPALIGN,
SBS_BOTTOMALIGN, SBS_LEFTALIGN, or
SBS_RIGHTALIGN when creating it. SBS_LEFTALIGN and
SBS_RIGHTALIGN align a vertical scroll bar control along
the left or right border of the rectangle specified in the call to
Create and assign it a standard width. SBS_TOPALIGN and
SBS_BOTTOMALIGN align a horizontal scroll bar control
along the top or bottom border of the rectangle and assign it a
standard height.

Unlike the other classic controls, scroll bar controls don't send
WM_COMMAND messages; they send WM_VSCROLL and
WM_HSCROLL messages instead. MFC applications process
these messages with OnVScroll and OnHScroll handlers, as
described in Chapter 2. I didn't mention two scroll bar
notification codes in Chapter 2 because they apply only to
scroll bar controls. SB_TOP means that the user pressed the
Home key while the scroll bar had the input focus, and
SB_BOTTOM means the user pressed End.

MFC's CScrollBar class includes a handful of functions for
manipulating scroll bars, most of which should seem familiar to
you because they work just like the similarly named CWnd
functions. CScrollBar::GetScrollPos and
CScrollBar::SetScrollPos get and set the scroll bar's thumb
position. CScrollBar::GetScrollRange and
CScrollBar::SetScrollRange get and set the scroll bar range.
You use CScrollBar::SetScrollInfo to set the range, position,
and thumb size in one step. For details, refer to the discussion
of CWnd::SetScrollInfo in Chapter 2.

7.2. Advanced Control Programming

One of the benefits of programming controls the MFC way is
the ease with which you can modify a control's behavior by
deriving classes of your own from the MFC control classes. It's

Programming Windows With MFC

 418

easy, for example, to create an edit control that accepts only
numbers or a list box that displays pictures instead of text. You
can also build reusable, self-contained control classes that
respond to their own notification messages.

The remainder of this chapter is about techniques you can use
to shape the controls to make them work the way you want
them to work by combining the best features of C++ and MFC.

7.2.1. Numeric Edit Controls

The MFC control classes are useful in their own right because
they provide an object-oriented interface to the built-in control
types. But their utility is enhanced by the fact that you can use
them as base classes for control classes of your own. By adding
new message handlers to a derived class or overriding message
handlers acquired through inheritance, you can modify certain
aspects of the control's behavior while leaving other aspects
unchanged.

A perfect example of a derived control class is a numeric edit
control. A normal edit control accepts a wide range of
characters, including numbers, letters of the alphabet, and
punctuation symbols. A numeric edit control accepts only
numbers. It's perfect for entering phone numbers, serial
numbers, IP addresses, and other numeric data.

Creating a numeric edit control is no big deal in an MFC
application because the basic features of an edit control are
defined in CEdit. Thanks to C++ inheritance and MFC message
mapping, you can derive a control class from CEdit and supply
custom message handlers to change the way the control
responds to user input. The following CNumEdit class models
an edit control that accepts numbers but rejects all other
characters:

class CNumEdit : public CEdit
{
protected:
 afx_msg void OnChar (UINT nChar, UINT nRepCnt, UINT
nFlags);
 DECLARE_MESSAGE_MAP ()
};

Programming Windows With MFC

 419

BEGIN_MESSAGE_MAP (CNumEdit, CEdit)
 ON_WM_CHAR ()
END_MESSAGE_MAP ()

void CNumEdit::OnChar (UINT nChar, UINT nRepCnt, UINT
nFlags)
{
 if (((nChar >= _T (`0')) && (nChar <= _T (`9'))) ¦¦
 (nChar == VK_BACK))
 CEdit::OnChar (nChar, nRepCnt, nFlags);
}

How does CNumEdit work? When an edit control has the input
focus and a character key is pressed, the control receives a
WM_CHAR message. By deriving a new class from CEdit,
mapping WM_CHAR messages to the derived class's OnChar
handler, and designing OnChar so that it passes WM_CHAR
messages to the base class if and only if the character encoded
in the message is a number, you create an edit control that
rejects nonnumeric characters. VK_BACK is included in the
list of acceptable character codes so that the Backspace key
won't cease to function. It's not necessary to test for other
editing keys such as Home and Del because they, unlike the
Backspace key, don't generate WM_CHAR messages.

7.2.2. Owner-Draw List Boxes

By default, items in a list box consist of strings of text. Should
you need a list box that displays graphical images instead of
text, you can create an owner-draw list box—one whose
contents are drawn by your application, not by Windows—by
following two simple steps.

1. Derive a new list box class from CListBox, and override
CListBox::MeasureItem and CListBox::DrawItem. Also override
PreCreateWindow, and make sure that either
LBS_OWNERDRAWFIXED or LBS_OWNERDRAWVARIABLE is
included in the list box style.

2. Instantiate the derived class, and use Create or CreateEx to create the list
box.

Functionally, owner-draw list boxes are similar to owner-draw
menus. When an item in an owner-draw list box needs to be
drawn (or redrawn), Windows sends the list box's parent a
WM_DRAWITEM message with a pointer to a
DRAWITEMSTRUCT structure containing a device context

Programming Windows With MFC

 420

handle, a 0-based index identifying the item to be drawn, and
other information. Before the first WM_DRAWITEM message
arrives, the list box's parent receives one or more
WM_MEASUREITEM messages requesting the height of the
list box's items. If the list box style is
LBS_OWNERDRAWFIXED, WM_MEASUREITEM is sent
just once. For LBS_OWNERDRAWVARIABLE list boxes, a
WM_MEASUREITEM message is sent for each item. MFC
calls the list box object's virtual DrawItem function when the
parent receives a WM_DRAWITEM message and
MeasureItem when it receives a WM_MEASUREITEM
message. Therefore, you don't have to modify the parent
window class or worry about message maps and message
handlers; just override DrawItem and MeasureItem in the list
box class, and your list box can do its own drawing without any
help from its parent.

CListBox supports two other owner-draw overridables in
addition to DrawItem and MeasureItem. The first is
CompareItem. If an owner-draw list box is created with the
style LBS_SORT and items are added to it with AddString,
CListBox::CompareItem must be overridden with a version that
compares two arbitrary items packaged in
COMPAREITEMSTRUCT structures. The overridden function
must return -1 if item 1 comes before item 2, 0 if the items are
lexically equal, or 1 if item 1 comes after item 2. Owner-draw
list boxes are seldom created with the style LBS_SORT
because nontextual data typically has no inherent order. (How
would you sort a list of colors, for example?) And if you don't
use LBS_SORT, you don't have to write a CompareItem
function. If you don't implement CompareItem in a derived
owner-draw list box class, it's prudent to override
PreCreateWindow and make sure the list box style doesn't
include LBS_SORT.

The final owner-draw list box overridable is DeleteItem. It's
called when an item is deleted with DeleteString, when the list
box's contents are erased with ResetContent, and when a list
box containing one or more items is destroyed. DeleteItem is
called once per item, and it receives a pointer to a
DELETEITEMSTRUCT structure containing information
about the item. If a list box uses per-item resources (for
example, bitmaps) that need to be freed when an item is

Programming Windows With MFC

 421

removed or the list box is destroyed, override DeleteItem and
use it to free those resources.

The following COwnerDrawListBox class is a nearly complete
C++ implementation of an LBS_OWNERDRAWFIXED-style
owner-draw list box:

class COwnerDrawListBox : public CListBox
{
public:
 virtual BOOL PreCreateWindow (CREATESTRUCT&);
 virtual void MeasureItem (LPMEASUREITEMSTRUCT);
 virtual void DrawItem (LPDRAWITEMSTRUCT);
};

BOOL COwnerDrawListBox::PreCreateWindow
(CREATESTRUCT& cs)
{
 if (!CListBox::PreCreateWindow (cs))
 return FALSE;

 cs.style &= ~(LBS_OWNERDRAWVARIABLE ¦ LBS_SORT);
 cs.style ¦= LBS_OWNERDRAWFIXED;
 return TRUE;
}

void COwnerDrawListBox::MeasureItem
(LPMEASUREITEMSTRUCT lpmis)
{
 lpmis->itemHeight = 32; // Item height in pixels
}

void COwnerDrawListBox::DrawItem (LPDRAWITEMSTRUCT
lpdis)
 {
 CDC dc;
 dc.Attach (lpdis->hDC);
 CRect rect = lpdis->rcItem;
 UINT nIndex = lpdis->itemID;

 CBrush* pBrush = new CBrush (::GetSysColor
((lpdis->itemState &
 ODS_SELECTED) ? COLOR_HIGHLIGHT :
COLOR_WINDOW));
 dc.FillRect (rect, pBrush);
 delete pBrush;
 if (lpdis->itemState & ODS_FOCUS)
 dc.DrawFocusRect (rect);

Programming Windows With MFC

 422

 if (nIndex != (UINT) -1) {
 // Draw the item.
 }
 dc.Detach ();
}

Before you use COwnerDrawListBox in an application of your
own, change the 32 in COwnerDrawListBox::MeasureItem to
the desired item height in pixels and replace the comment
"Draw the item" in COwnerDrawListBox::DrawItem with code
that draws the item whose index is nIndex. Use the dc device
context object to do the drawing and restrict your output to the
rectangle specified by rect, and the list box should function
superbly. (Be sure to preserve the state of the device context so
that it's the same going out as it was coming in.)
COwnerDrawListBox's implementation of DrawItem paints the
item's background with the system color
COLOR_HIGHLIGHT if the item is selected (if the
lpdis->itemState's ODS_SELECTED bit is set) or
COLOR_WINDOW if it isn't, and it draws a focus rectangle if
the item has the input focus (if the lpdis->itemState's
ODS_FOCUS bit is set). All you have to do is draw the item
itself. The PreCreateWindow override ensures that
LBS_OWNERDRAWFIXED is set and that
LBS_OWNERDRAWVARIABLE isn't. It also clears the
LBS_SORT bit to prevent calls to CompareItem.

A final feature needed to transform COwnerDrawListBox into a
complete class is an AddItem function that can be called to add
a nontextual item to the list box. For a list box that displays
bitmaps, for example, AddItem might look like this:

int COwnerDrawListBox::AddItem (HBITMAP hBitmap)
{
 int nIndex = AddString (_T (""));
 if ((nIndex != LB_ERR) && (nIndex != LB_ERRSPACE))
 SetItemData (nIndex, (DWORD) hBitmap);
 return nIndex;
}

In this example, AddItem uses SetItemData to associate a
bitmap handle with a list box index. For a given item, the list
box's DrawItem function can retrieve the bitmap handle with
GetItemData and draw the bitmap. Bitmaps are resources that

Programming Windows With MFC

 423

must be deleted when they're no longer needed. You can either
leave it to the list box's parent to delete the bitmaps or override
CListBox::DeleteItem and let the list box delete them itself. The
choice is up to you.

The IconView application shown in Figure 7-8 uses an
owner-draw list box class named CIconListBox to displays
icons. CIconListBox overrides the PreCreateWindow,
MeasureItem, and DrawItem functions it inherits from
CListBox and adds two functions of its own. AddIcon adds an
icon to the list box, and ProjectImage "projects" an icon onto a
display surface, shrinking or expanding the image as needed to
fit a specified rectangle. IconView's source code is shown in
Figure 7-9.

The only form of input that IconView accepts is drag-and-drop.
To try it out, grab an EXE, DLL, or ICO file with the left
mouse button, drag it to the IconView window, and release the
mouse button. Any icons contained in the file will be displayed
in the list box, and an enlarged image of the first icon will be
displayed in the Detail window. To get a close-up view of any
of the other icons in the file, just click the icon or cursor
through the list with the up and down arrow keys.

Figure 7-8. IconView showing the icons contained in Pifmgr.dll.

IconView uses MFC's handy CDC::DrawIcon function to draw
icons into the list box. The core code is found in
CIconListBox::DrawItem:

Programming Windows With MFC

 424

if (nIndex != (UINT) -1)
 dc.DrawIcon (rect.left + 4, rect.top + 2,
 (HICON) GetItemData (nIndex));

Icon handles are stored with SetItemData and retrieved with
GetItemData. The call to DrawIcon is skipped if nIndex—the
index of the currently selected list box item—is -1. That's
important, because DrawItem is called with a list box index of
-1 when an empty list box receives the input focus. DrawItem's
job in that case is to draw a focus rectangle around the
nonexistent item 0. You shouldn't assume that DrawItem will
always be called with a valid item index.

CMainWindow's OnPaint handler does nothing more than
construct a paint device context and call the list box's
ProjectImage function to draw a blown-up version of the
currently selected icon in the window's client area.
ProjectImage uses the CDC functions BitBlt and StretchBlt to
project the image. This code probably won't make a lot of sense
to you right now, but its meaning will be crystal clear once
you've read about bitmaps in Chapter 15.

The drag-and-drop mechanism that IconView uses is a
primitive form of drag-and-drop that was introduced in
Windows 3.1. Briefly, the call to DragAcceptFiles in
CMainWindow::OnCreate registers CMainWindow as a drop
target. Once registered, the window receives a
WM_DROPFILES message whenever a file is dragged from
the shell and dropped on top of it.
CMainWindow::OnDropFiles responds to WM_DROPFILES
messages by using the ::DragQueryFile API function to
retrieve the name of the file that was dropped. It then
uses ::ExtractIcon to extract icons from the file and
CIconListBox::AddIcon to add the icons to the list box.

In Chapter 19, you'll learn about a richer form of drag-and-drop
called OLE drag-and-drop. "Old" drag-and-drop is still
supported in 32-bit Windows, but it's not nearly as flexible as
OLE drag-and-drop. That's why I haven't gone into more detail
about it. Once you see OLE drag-and-drop in action, I think
you'll agree that time spent understanding Windows 3.1-style
drag-and-drop is time better spent elsewhere.

Programming Windows With MFC

 425

Figure 7-9. The IconView application.

IconView.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CIconListBox : public CListBox
{
public:
 virtual BOOL PreCreateWindow (CREATESTRUCT& cs);
 virtual void MeasureItem (LPMEASUREITEMSTRUCT lpmis);
 virtual void DrawItem (LPDRAWITEMSTRUCT lpdis);
 int AddIcon (HICON hIcon);
 void ProjectImage (CDC* pDC, LPRECT pRect, COLORREF
clrBackColor);
};

class CMainWindow : public CWnd
{
protected:
 int m_cxChar;
 int m_cyChar;

 CFont m_font;
 CRect m_rcImage;

 CButton m_wndGroupBox;
 CIconListBox m_wndIconListBox;
 CStatic m_wndLabel;

public:
 CMainWindow ();

protected:
 virtual void PostNcDestroy ();

 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg void OnPaint ();
 afx_msg void OnSetFocus (CWnd* pWnd);
 afx_msg void OnDropFiles (HDROP hDropInfo);
 afx_msg void OnSelChange ();

 DECLARE_MESSAGE_MAP ()
};

IconView.cpp
#include <afxwin.h>
#include "IconView.h"

#define IDC_LISTBOX 100

CMyApp myApp;

Programming Windows With MFC

 426

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CWnd)
 ON_WM_CREATE ()
 ON_WM_PAINT ()
 ON_WM_SETFOCUS ()
 ON_WM_DROPFILES ()
 ON_LBN_SELCHANGE (IDC_LISTBOX, OnSelChange)
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 CString strWndClass = AfxRegisterWndClass (
 0,
 myApp.LoadStandardCursor (IDC_ARROW),
 (HBRUSH) (COLOR_3DFACE + 1),
 myApp.LoadStandardIcon (IDI_WINLOGO)
);
 CreateEx (0, strWndClass, _T ("IconView"),
 WS_OVERLAPPED ¦ WS_SYSMENU ¦ WS_CAPTION ¦
WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT,
 NULL, NULL, NULL);

 CRect rect (0, 0, m_cxChar * 84, m_cyChar * 21);
 CalcWindowRect (&rect);

 SetWindowPos (NULL, 0, 0, rect.Width (), rect.Height (),
 SWP_NOZORDER ¦ SWP_NOMOVE ¦ SWP_NOREDRAW);
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CWnd::OnCreate (lpcs) == -1)
 return -1;

 m_font.CreatePointFont (80, _T ("MS Sans Serif"));

 CClientDC dc (this);
 CFont* pOldFont = dc.SelectObject (&m_font);
 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);

Programming Windows With MFC

 427

 m_cxChar = tm.tmAveCharWidth;
 m_cyChar = tm.tmHeight + tm.tmExternalLeading;
 dc.SelectObject (pOldFont);

 m_rcImage.SetRect (m_cxChar * 4, m_cyChar * 3, m_cxChar * 46,
 m_cyChar * 19);

 m_wndGroupBox.Create (_T ("Detail"), WS_CHILD ¦ WS_VISIBLE ¦
BS_GROUPBOX,
 CRect (m_cxChar * 2, m_cyChar, m_cxChar * 48, m_cyChar * 20),
 this, (UINT) -1);

 m_wndLabel.Create (_T ("Icons"), WS_CHILD ¦ WS_VISIBLE ¦
SS_LEFT,
 CRect (m_cxChar * 50, m_cyChar, m_cxChar * 82, m_cyChar * 2),
 this);

 m_wndIconListBox.Create (WS_CHILD ¦ WS_VISIBLE ¦ WS_VSCROLL
¦
 WS_BORDER ¦ LBS_NOTIFY ¦ LBS_NOINTEGRALHEIGHT,
 CRect (m_cxChar * 50, m_cyChar * 2, m_cxChar * 82, m_cyChar *
20),
 this, IDC_LISTBOX);

 m_wndGroupBox.SetFont (&m_font);
 m_wndLabel.SetFont (&m_font);
 DragAcceptFiles ();
 return 0;
}

void CMainWindow::PostNcDestroy ()
{
 delete this;
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);
 m_wndIconListBox.ProjectImage (&dc, m_rcImage,
 ::GetSysColor (COLOR_3DFACE));
}

void CMainWindow::OnSetFocus (CWnd* pWnd)
{
 m_wndIconListBox.SetFocus ();
}

void CMainWindow::OnDropFiles (HDROP hDropInfo)
{
 //
 // Find out how many files were dropped.
 //
 int nCount = ::DragQueryFile (hDropInfo, (UINT) -1, NULL, 0);

 if (nCount == 1) { // One file at a time, please
 m_wndIconListBox.ResetContent ();

Programming Windows With MFC

 428

 //
 // Extract the file's icons and add them to the list box.
 //
 char szFile[MAX_PATH];
 ::DragQueryFile (hDropInfo, 0, szFile, sizeof (szFile));
 int nIcons = (int) ::ExtractIcon (NULL, szFile, (UINT) -1);

 if (nIcons) {
 HICON hIcon;
 for (int i=0; i<nIcons; i++) {
 hIcon = ::ExtractIcon (AfxGetInstanceHandle (),
 szFile, i);
 m_wndIconListBox.AddIcon (hIcon);
 }
 }

 //
 // Put the file name in the main window's title bar.
 //
 CString strWndTitle = szFile;
 strWndTitle += _T (" - IconView");
 SetWindowText (strWndTitle);
 //
 // Select item number 0.
 //
 CClientDC dc (this);
 m_wndIconListBox.SetCurSel (0);
 m_wndIconListBox.ProjectImage (&dc, m_rcImage,
 ::GetSysColor (COLOR_3DFACE));
 }
 ::DragFinish (hDropInfo);
}

void CMainWindow::OnSelChange ()
{
 CClientDC dc (this);
 m_wndIconListBox.ProjectImage (&dc, m_rcImage,
 ::GetSysColor (COLOR_3DFACE));
}

///
// CIconListBox member functions

BOOL CIconListBox::PreCreateWindow (CREATESTRUCT& cs)
{
 if (!CListBox::PreCreateWindow (cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~(LBS_OWNERDRAWVARIABLE ¦ LBS_SORT);
 cs.style ¦= LBS_OWNERDRAWFIXED;
 return TRUE;
}

void CIconListBox::MeasureItem (LPMEASUREITEMSTRUCT lpmis)
{

Programming Windows With MFC

 429

 lpmis->itemHeight = 36;
}

void CIconListBox::DrawItem (LPDRAWITEMSTRUCT lpdis)
{
 CDC dc;
 dc.Attach (lpdis->hDC);
 CRect rect = lpdis->rcItem;
 int nIndex = lpdis->itemID;

 CBrush* pBrush = new CBrush;
 pBrush->CreateSolidBrush (::GetSysColor ((lpdis->itemState &
 ODS_SELECTED) ? COLOR_HIGHLIGHT : COLOR_WINDOW));
 dc.FillRect (rect, pBrush);
 delete pBrush;

 if (lpdis->itemState & ODS_FOCUS)
 dc.DrawFocusRect (rect);

 if (nIndex != (UINT) -1)
 dc.DrawIcon (rect.left + 4, rect.top + 2,
 (HICON) GetItemData (nIndex));

 dc.Detach ();
}

int CIconListBox::AddIcon (HICON hIcon)
{
 int nIndex = AddString (_T (""));
 if ((nIndex != LB_ERR) && (nIndex != LB_ERRSPACE))
 SetItemData (nIndex, (DWORD) hIcon);
 return nIndex;
}

void CIconListBox::ProjectImage (CDC* pDC, LPRECT pRect,
 COLORREF clrBackColor)
{
 CDC dcMem;
 dcMem.CreateCompatibleDC (pDC);

 CBitmap bitmap;
 bitmap.CreateCompatibleBitmap (pDC, 32, 32);
 CBitmap* pOldBitmap = dcMem.SelectObject (&bitmap);

 CBrush* pBrush = new CBrush (clrBackColor);
 dcMem.FillRect (CRect (0, 0, 32, 32), pBrush);
 delete pBrush;

 int nIndex = GetCurSel ();
 if (nIndex != LB_ERR)
 dcMem.DrawIcon (0, 0, (HICON) GetItemData (nIndex));

 pDC->StretchBlt (pRect->left, pRect->top, pRect->right - pRect->left,
 pRect->bottom - pRect->top, &dcMem, 0, 0, 32, 32, SRCCOPY);

 dcMem.SelectObject (pOldBitmap);

Programming Windows With MFC

 430

}

7.2.3. Graphical Push Buttons

MFC includes three derived control classes of its own:
CCheckListBox, CDragListBox, and CBitmapButton.
CCheckListBox turns a normal list box into a "check" list
box—a list box with a check box by each item and added
functions such as GetCheck and SetCheck for getting and
setting check box states. CDragListBox creates a list box that
supports its own primitive form of drag-and-drop.
CBitmapButton encapsulates owner-draw push buttons that
display pictures instead of text. It supplies its own DrawItem
handler that draws a push button in response to
WM_DRAWITEM messages. All you have to do is create the
button and supply four bitmaps representing the button in
various states.

CBitmapButton was a boon back in the days of 16-bit Windows
because it simplified the task of creating graphical push buttons.
Today, however, owner-draw push buttons are rarely used. Two
button styles that were first introduced in Windows
95—BS_BITMAP and BS_ICON—make graphical push
buttons a breeze by taking a single image and creating a push
button from it. A BS_BITMAP-style push button (henceforth, a
bitmap push button) displays a bitmap on the face of a push
button. A BS_ICON-style push button (an icon push button)
displays an icon. Most developers prefer icon push buttons
because icons, unlike bitmaps, can have transparent pixels.
Transparent pixels are great for displaying nonrectangular
images on button faces because they decouple the image's
background color from the button color.

Creating an icon push button is a two-step process:

1. Create a push button whose style includes a BS_ICON flag.
2. Call the button's SetIcon function, and pass in an icon handle.

The following example creates an icon push button from an
icon whose resource ID is IDI_OK:

m_wndIconButton.Create (_T (""), WS_CHILD ¦ WS_VISIBLE ¦
BS_ICON,

Programming Windows With MFC

 431

 rect, this, IDC_BUTTON);
m_wndIconButton.SetIcon (AfxGetApp ()->LoadIcon (IDI_OK));

The icon is drawn in the center of the button unless you alter its
alignment by applying one or more of the following button
styles:

Button Style Description

BS_LEFT Aligns the icon image with the left edge of the button face

BS_RIGHT Aligns the icon image with the right edge of the button face

BS_TOP Aligns the icon image with the top edge of the button face

BS_BOTTOM Aligns the icon image with the bottom edge of the button face

BS_CENTER Centers the icon image horizontally

BS_VCENTER Centers the icon image vertically

Chapter 8's Phone application uses icon push buttons to
represent the OK and Cancel buttons in a dialog box.

The procedure for creating a bitmap button is almost the same
as the one for creating an icon button. Just change BS_ICON to
BS_BITMAP and SetIcon to SetBitmap and you're set. Of
course, you'll have to replace the call to LoadIcon with code
that loads a bitmap, too. You'll learn how that's done in Chapter
15.

One problem to watch out for when you're using icon push
buttons is what happens when the button becomes disabled.
Windows generates a disabled button image from the button's
icon, but the results aren't always what you'd expect. In general,
the simpler the image, the better. Unfilled figures render better
when disabled than filled figures.

7.2.4. Customizing a Control's Colors

The most glaring deficiency in the Windows control
architecture is that there's no obvious way to change a control's
colors. You can change a control's font with SetFont, but there
is no equivalent function for changing a control's colors.

MFC supports two mechanisms for changing a control's colors.
Both rely on the fact that before a control paints itself, it sends

Programming Windows With MFC

 432

its parent a message containing the handle of the device context
used to do the painting. The parent can call CDC::SetTextColor
and CDC::SetBkColor on that device context to alter the
attributes of any text drawn by the control. It can also alter the
control's background color by returning a brush handle
(HBRUSH).

The message that a control sends to its parent prior to painting
varies with the control type. For example, a list box sends a
WM_CTLCOLORLISTBOX message; a static control sends a
WM_CTLCOLORSTATIC message. In any event, the
message's wParam holds the device context handle, and
lParam holds the control's window handle. If a window
processes a static control's WM_CTLCOLORSTATIC
messages by setting the device context's text color to red and
background color to white and returning a brush handle for a
blue brush, the control text will be red, the gaps in and between
characters will be white, and the control
background—everything inside the control's borders not
covered by text—will be blue.

MFC's ON_WM_CTLCOLOR message-map macro directs
WM_CTLCOLOR messages of all types to a handler named
OnCtlColor. OnCtlColor is prototyped as follows:

afx_msg HBRUSH OnCtlColor (CDC* pDC, CWnd* pWnd, UINT
nCtlColor)

pDC is a pointer to the control's device context, pWnd is a
CWnd pointer that identifies the control itself, and nCtlColor
identifies the type of WM_CTLCOLOR message that prompted
the call. Here are the possible values for nCtlColor.

nCtlColor Control Type or Window Type

CTLCOLOR_BTN Push button. Processing this message has no
effect on a button's appearance.

CTLCOLOR_DLG Dialog box.

CTLCOLOR_EDIT Edit control and the edit control part of a combo
box.

CTLCOLOR_LISTBOX List box and the list box part of a combo box.

CTLCOLOR_MSGBOX Message box.

Programming Windows With MFC

 433

CTLCOLOR_SCROLLBAR Scroll bar.

CTLCOLOR_STATIC Static control, check box, radio button, group
box, read-only or disabled edit control, and the
edit control in a disabled combo box.

Five nCtlColor values pertain to controls, and
two—CTLCOLOR_DLG and CTLCOLOR_MSGBOX—apply
to dialog boxes and message boxes. (That's right: You can
control the color of dialog boxes and message boxes by
processing WM_CTLCOLOR messages.) Static controls aren't
the only controls that send WM_CTLCOLORSTATIC
messages. You'd think that a radio button would send a
WM_CTLCOLORBTN message, but in fact it sends a
WM_CTLCOLORSTATIC message in 32-bit Windows.

One way, then, to change a control's colors is to implement
OnCtlColor in the parent window class. The following
OnCtlColor implementation changes the color of a static text
control named m_wndText to white-on-red in a frame window:

HBRUSH CMainWindow::OnCtlColor (CDC* pDC, CWnd* pWnd,
 UINT nCtlColor)
{
 if (m_wndText.m_hWnd == pWnd->m_hWnd) {
 pDC->SetTextColor (RGB (255, 255, 255));
 pDC->SetBkColor (RGB (255, 0, 0));
 return (HBRUSH) m_brRedBrush;
 }
 CFrameWnd::OnCtlColor (pDC, pWnd, nCtlColor);
}

m_brRedBrush is a CMainWindow data member whose type is
CBrush. It is initialized as follows:

m_brRedBrush.CreateSolidBrush (RGB (255, 0, 0));

Note that this implementation of OnCtlColor compares the
window handle of the control whose color it wishes to change
with the window handle of the control that generated the
message. If the two are not equal, the message is forwarded to
the base class. If this check were not performed, OnCtlColor
would affect all the controls in CMainWindow, not just
m_wndText.

Programming Windows With MFC

 434

That's one way to change a control's color. The problem with
this technique is that it's up to the parent to do the changing.
What happens if you want to derive a control class of your own
and include in it a SetColor function for modifying the control's
color?

A derived control class can set its own colors by using MFC's
ON_WM_CTLCOLOR_REFLECT macro to pass
WM_CTLCOLOR messages that aren't handled by the control's
parent back to the control. Here's the code for a CStatic-like
control that paints itself white-on-red:

class CColorStatic : public CStatic
{
public:
 CColorStatic ();

protected:
 CBrush m_brRedBrush;
 afx_msg HBRUSH CtlColor (CDC* pDC, UINT nCtlColor);
 DECLARE_MESSAGE_MAP ()
};

BEGIN_MESSAGE_MAP (CColorStatic, CStatic)
 ON_WM_CTLCOLOR_REFLECT ()
END_MESSAGE_MAP ()

CColorStatic::CColorStatic ()
{
 m_brRedBrush.CreateSolidBrush (RGB (255, 0, 0));
}

HBRUSH CColorStatic::CtlColor (CDC* pDC, UINT nCtlColor)
{
 pDC->SetTextColor (RGB (255, 255, 255));
 pDC->SetBkColor (RGB (255, 0, 0));
 return (HBRUSH) m_brRedBrush;
}

CtlColor is similar to OnCtlColor, but it doesn't receive the
pWnd parameter that OnCtlColor does. It doesn't need to
because the control to which the message applies is implicit in
the call.

The ColorText application shown in Figure 7-10 uses a static
text control whose colors are configurable. CColorStatic

Programming Windows With MFC

 435

implements the control. This version of CColorStatic is more
versatile than the one in the previous paragraph because rather
than use hardcoded colors, it includes member functions named
SetTextColor and SetBkColor that can be used to change its
colors. When ColorText's Red, Green, or Blue radio button is
clicked, the control's text color changes. The button click
activates a handler that calls the control's SetTextColor function.
(See Figure 7-11.) ColorText doesn't use the control's
SetBkColor function, but I included the function anyway for
completeness. SetBkColor controls the fill color drawn behind
the text. CColorStatic'sdefault colors are black (foreground)
and the system color COLOR_3DFACE (background), but a
simple function call is sufficient to change either one.

Figure 7-10. The ColorText window.

Figure 7-11. The ColorText application.

ColorText.h

#define IDC_RED 100
#define IDC_GREEN 101
#define IDC_BLUE 102

class CColorStatic : public CStatic
{
protected:
 COLORREF m_clrText;
 COLORREF m_clrBack;
 CBrush m_brBkgnd;

public:
 CColorStatic ();
 void SetTextColor (COLORREF clrText);
 void SetBkColor (COLORREF clrBack);

protected:

Programming Windows With MFC

 436

 afx_msg HBRUSH CtlColor (CDC* pDC, UINT nCtlColor);
 DECLARE_MESSAGE_MAP ()
};

class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
protected:
 int m_cxChar;
 int m_cyChar;
 CFont m_font;

 CColorStatic m_wndText;
 CButton m_wndRadioButtonRed;
 CButton m_wndRadioButtonGreen;
 CButton m_wndRadioButtonBlue;
 CButton m_wndGroupBox1;
 CButton m_wndGroupBox2;

public:
 CMainWindow ();

protected:
 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg void OnRedButtonClicked ();
 afx_msg void OnGreenButtonClicked ();
 afx_msg void OnBlueButtonClicked ();

 DECLARE_MESSAGE_MAP ()
};

ColorText.cpp

#include <afxwin.h>
#include "ColorText.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();

Programming Windows With MFC

 437

 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()
 ON_BN_CLICKED (IDC_RED, OnRedButtonClicked)
 ON_BN_CLICKED (IDC_GREEN, OnGreenButtonClicked)
 ON_BN_CLICKED (IDC_BLUE, OnBlueButtonClicked)
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 CString strWndClass = AfxRegisterWndClass (
 0,
 myApp.LoadStandardCursor (IDC_ARROW),
 (HBRUSH) (COLOR_3DFACE + 1),
 myApp.LoadStandardIcon (IDI_WINLOGO)
);

 Create (strWndClass, _T ("ColorText"));
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 m_font.CreatePointFont (80, _T ("MS Sans Serif"));

 CClientDC dc (this);
 CFont* pOldFont = dc.SelectObject (&m_font);
 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);
 m_cxChar = tm.tmAveCharWidth;
 m_cyChar = tm.tmHeight + tm.tmExternalLeading;
 dc.SelectObject (pOldFont);

 m_wndGroupBox1.Create (_T ("Sample text"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_GROUPBOX, CRect (m_cxChar * 2, m_cyChar, m_cxChar * 62,
 m_cyChar * 8), this, UINT (-1));

 m_wndText.Create (_T ("Click a button to change my color"),
 WS_CHILD ¦ WS_VISIBLE ¦ SS_CENTER, CRect (m_cxChar * 4,
 m_cyChar * 4, m_cxChar * 60, m_cyChar * 6), this);

 m_wndGroupBox2.Create (_T ("Color"), WS_CHILD ¦ WS_VISIBLE ¦
 BS_GROUPBOX, CRect (m_cxChar * 64, m_cyChar, m_cxChar *
80,
 m_cyChar * 8), this, UINT (-1));

 m_wndRadioButtonRed.Create (_T ("Red"), WS_CHILD ¦ WS_VISIBLE ¦
 WS_GROUP ¦ BS_AUTORADIOBUTTON, CRect (m_cxChar * 66,

Programming Windows With MFC

 438

m_cyChar * 3,
 m_cxChar * 78, m_cyChar * 4), this, IDC_RED);

 m_wndRadioButtonGreen.Create (_T ("Green"), WS_CHILD ¦
WS_VISIBLE ¦
 BS_AUTORADIOBUTTON, CRect (m_cxChar * 66, (m_cyChar * 9)
/ 2,
 m_cxChar * 78, (m_cyChar * 11) / 2), this, IDC_GREEN);

 m_wndRadioButtonBlue.Create (_T ("Blue"), WS_CHILD ¦ WS_VISIBLE
¦
 BS_AUTORADIOBUTTON, CRect (m_cxChar * 66, m_cyChar * 6,
 m_cxChar * 78, m_cyChar * 7), this, IDC_BLUE);

 m_wndRadioButtonRed.SetCheck (1);
 m_wndText.SetTextColor (RGB (255, 0, 0));

 m_wndGroupBox1.SetFont (&m_font, FALSE);
 m_wndGroupBox2.SetFont (&m_font, FALSE);
 m_wndRadioButtonRed.SetFont (&m_font, FALSE);
 m_wndRadioButtonGreen.SetFont (&m_font, FALSE);
 m_wndRadioButtonBlue.SetFont (&m_font, FALSE);
 return 0;
}

void CMainWindow::OnRedButtonClicked ()
{
 m_wndText.SetTextColor (RGB (255, 0, 0));
}

void CMainWindow::OnGreenButtonClicked ()
{
 m_wndText.SetTextColor (RGB (0, 255, 0));
}

void CMainWindow::OnBlueButtonClicked ()
{
 m_wndText.SetTextColor (RGB (0, 0, 255));
}

///
// CColorStatic message map and member functions

BEGIN_MESSAGE_MAP (CColorStatic, CStatic)
 ON_WM_CTLCOLOR_REFLECT ()
END_MESSAGE_MAP ()

CColorStatic::CColorStatic ()
{
 m_clrText = RGB (0, 0, 0);
 m_clrBack = ::GetSysColor (COLOR_3DFACE);
 m_brBkgnd.CreateSolidBrush (m_clrBack);
}

void CColorStatic::SetTextColor (COLORREF clrText)
{

Programming Windows With MFC

 439

 m_clrText = clrText;
 Invalidate ();
}

void CColorStatic::SetBkColor (COLORREF clrBack)
{
 m_clrBack = clrBack;
 m_brBkgnd.DeleteObject ();
 m_brBkgnd.CreateSolidBrush (clrBack);
 Invalidate ();
}

HBRUSH CColorStatic::CtlColor (CDC* pDC, UINT nCtlColor)
{
 pDC->SetTextColor (m_clrText);
 pDC->SetBkColor (m_clrBack);
 return (HBRUSH) m_brBkgnd;
}

Different controls respond to actions performed by OnCtlColor
and CtlColor handlers in different ways. You've seen how static
controls respond to CDC::SetTextColor and CDC::SetBkColor .
For a scroll bar control, SetTextColor and SetBkColor do
nothing, but the brush handle returned by a
WM_CTLCOLORSCROLLBAR message handler sets the
color of the scroll bar's shaft. For a list box, SetTextColor and
SetBkColor affect unhighlighted list box items but have no
effect on highlighted items, and the brush handle controls the
color of the list box's background—anything on an empty or
unhighlighted line that isn't painted over with text. For a push
button, OnCtlColor and CtlColor have no effect whatsoever
because Windows uses system colors to draw push button
controls. If nCtlType contains the code CTLCOLOR_BTN, you
might as well pass it on to the base class because nothing you
do to the device context will affect how the control is drawn.

7.2.5. Message Reflection

ON_WM_CTLCOLOR_REFLECT is one of several
message-map macros introduced in MFC 4.0 that permit
notification messages to be reflected back to the controls that
sent them. Message reflection is a powerful tool for building
reusable control classes because it empowers derived control
classes to implement their own behavior independent of their
parents. Previous versions of MFC reflected certain messages
back to the controls that sent them using a virtual CWnd
function named OnChildNotify. Modern versions of MFC make

Programming Windows With MFC

 440

the concept of message reflection generic so that a derived
control class can map any message sent to its parent to a class
member function. You saw an example of message reflection at
work in the previous section when we derived a new class from
CStatic and allowed it to handle its own WM_CTLCOLOR
messages.

The following table contains a list of the message reflection
macros MFC provides and short descriptions of what they do.

MFC Message Reflection Macros

Macro Description

ON_CONTROL_REFLECT Reflects notifications relayed
through WM_COMMAND
messages

ON_NOTIFY_REFLECT Reflects notifications relayed
through WM_NOTIFY messages

ON_UPDATE_COMMAND_UI_REFLECT Reflects update notifications to
toolbars, status bars, and other
user interface objects

ON_WM_CTLCOLOR_REFLECT Reflects WM_CTLCOLOR
messages

ON_WM_DRAWITEM_REFLECT Reflects WM_DRAWITEM
messages sent by owner-draw
controls

ON_WM_MEASUREITEM_REFLECT Reflects WM_MEASUREITEM
messages sent by owner-draw
controls

ON_WM_COMPAREITEM_REFLECT Reflects WM_COMPAREITEM
messages sent by owner-draw
controls

ON_WM_DELETEITEM_REFLECT Reflects WM_DELETEITEM
messages sent by owner-draw
controls

ON_WM_CHARTOITEM_REFLECT Reflects WM_CHARTOITEM
messages sent by list boxes

ON_WM_VKEYTOITEM_REFLECT Reflects WM_VKEYTOITEM
messages sent by list boxes

ON_WM_HSCROLL_REFLECT Reflects WM_HSCROLL
messages sent by scroll bars

ON_WM_VSCROLL_REFLECT Reflects WM_VSCROLL
messages sent by scroll bars

Programming Windows With MFC

 441

ON_WM_PARENTNOTIFY_REFLECT Reflects WM_PARENTNOTIFY
messages

Suppose you want to write a list box class that responds to its
own LBN_DBLCLK notifications by displaying a message box
containing the text of the item that was double-clicked. In an
SDK-style application, the list box's parent would have to
process the notification message and pop up the message box.
In an MFC application, the list box can handle the notification
and display the message box itself. Here's a derived list box
class that does just that:

class CMyListBox : public CListBox
{
protected:
 afx_msg void OnDoubleClick ();
 DECLARE_MESSAGE_MAP ()
};
BEGIN_MESSAGE_MAP (CMyListBox, CListBox)
 ON_CONTROL_REFLECT (LBN_DBLCLK, OnDoubleClick)
END_MESSAGE_MAP ()

void CMyListBox::OnDoubleClick ()
{
 CString string;
 int nIndex = GetCurSel ();
 GetText (nIndex, string);
 MessageBox (string);
}

The ON_CONTROL_REFLECT entry in the derived class's
message map tells MFC to call CMyListBox::OnDoubleClick
anytime the list box sends an LBN_DBLCLK notification to its
parent. It's worth noting that the notification is reflected only if
the parent doesn't process the notification itself—that is, if the
parent's message map doesn't include an ON_LBN_DBLCLK
entry for this list box. The parent receives precedence, which is
consistent with the fact that Windows expects the parent to
process any notifications in which it is interested.

Programming Windows With MFC

 442

Programming Windows With MFC

 443

Chapter 8. Dialog Boxes and
Property Sheets

In the real world, most controls appear not in top-level
windows but in dialog boxes. A dialog box, also known as a
dialog, is a window that pops up to solicit input from the user.
The window that appears when you select Open from an
application's File menu is one example of a dialog box; the
window that pops up when you select File-Print is another.
Dialog boxes are simpler to create than ordinary windows
because a few statements in an RC file are sufficient to define a
dialog box and all the controls it contains.

Dialog boxes come in two basic varieties: modal and modeless.
A modal dialog box disables the window to which it is
assigned—its owner—until the dialog box is dismissed. It's an
application's way of saying, "I can't do anything else until you
supply me with the input I need." A modeless dialog box
behaves more like a conventional window. Its owner can be
reactivated even while the dialog box is displayed.

MFC encapsulates the functionality of both modal and
modeless dialog boxes in the class named CDialog. Dialog box
programming is relatively easy when you use the Microsoft
Windows SDK, but it's even easier with MFC. You can often
build even complex dialog boxes with just a few lines of code,
which speeds program development and reduces the likelihood
of errors. MFC also provides convenient C++ implementations
of the Windows common dialogs—Open dialogs, Print dialogs,
and other dialog boxes commonly found in Windows
applications.

A close cousin of the dialog box is the property sheet. A
property sheet is essentially a dialog box with tabbed pages.
Property sheets are great for lending a higher level of
organization to the controls in a dialog. They're also
space-efficient, allowing more controls to fit in a finite amount
of space, and they're fast becoming commonplace in Windows
applications. MFC makes property sheet handling simple with
its CPropertySheet and CPropertyPage classes. Take it from
someone who's been there: if you've programmed property

Programming Windows With MFC

 444

sheets without a class library, you'll appreciate the work MFC
does to make dealing with property sheets fundamentally no
different from—and no more difficult than—dealing with
ordinary dialog boxes.

8.1. Modal Dialog Boxes and the CDialog Class

Creating a modal dialog box is a three-step process:

1. Create a dialog box template describing the dialog and the controls that it
contains.

2. Construct a CDialog object that encapsulates the dialog template.
3. Call CDialog::DoModal to display the dialog box.

For very simple dialogs, you can sometimes instantiate
CDialog directly. More often, however, you'll need to derive a
dialog class of your own so that you can customize its behavior.
Let's begin by examining the ingredients that go into a modal
dialog box. After that, we'll apply what we've learned to
modeless dialogs and property sheets.

8.1.1. The Dialog Box Template

The first step in creating a dialog box is to create a dialog box
template. A template defines the fundamental properties of a
dialog box, from the controls it contains to its width and height.
Although it's possible to create dialog box templates
programmatically by assembling DLGTEMPLATE and
DLGITEMTEMPLATE structures in memory, most dialog box
templates are resources compiled from statements in an
application's RC file. These statements can be hand-coded, but
more often they are written to the RC file by a resource editor
that supports the visual editing of dialog box templates.

The following RC statements define a dialog box template
whose resource ID is IDD_MYDIALOG. The dialog box
described by this template contains four controls: a single-line
edit control for entering text, a static text control that serves as
a label for the edit control, an OK button, and a Cancel button:

IDD_MYDIALOG DIALOG 0, 0, 160, 68
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_VISIBLE ¦
WS_CAPTION ¦ WS_SYSMENU
CAPTION "Enter Your Name"

Programming Windows With MFC

 445

FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "&Name", -1, 8, 14, 24, 8
 EDITTEXT IDC_NAME, 34, 12, 118, 12,
ES_AUTOHSCROLL
 DEFPUSHBUTTON "OK", IDOK, 60, 34, 40, 14,
WS_GROUP
 PUSHBUTTON "Cancel", IDCANCEL, 112, 34, 40, 14,
WS_GROUP
END

The numbers on the first line specify the template's resource ID
(IDD_MYDIALOG), the dialog box's default position (0,0,
which would place the dialog in the upper left corner of its
owner's client area save for the fact that MFC automatically
centers a modal dialog box whose position is 0,0), and the
dialog box's dimensions (160,68). All measurements are
expressed in dialog box units. Horizontally, one dialog box unit
is equal to one-fourth the average width of a character in the
dialog box font. Vertically, one dialog box unit equals
one-eighth the character height. Because characters are
generally about twice as tall as they are wide, the distance
represented by one horizontal dialog box unit is roughly equal
to that of one vertical dialog box unit. Measuring distances in
dialog box units rather than pixels allows you to define a dialog
box's relative proportions independent of the screen resolution.

The STYLE statement in the dialog box template specifies the
dialog box's window style. You should always include
WS_POPUP in a dialog box's window style. You should
typically include WS_VISIBLE, too, so that you don't have to
call ShowWindow to make the dialog box visible on the screen.
WS_CAPTION gives the dialog box a title bar, and
WS_SYSMENU adds a close button to the title bar. Styles
prefixed with DS_ are specific to dialog boxes. By convention,
modal dialog boxes are assigned the style
DS_MODALFRAME. In early versions of Windows, this style
placed a thick border around the dialog box. Today,
DS_MODALFRAME has subtle effects on a dialog box's
behavior but does nothing to its appearance. Other interesting
dialog styles include DS_CENTER, which centers a dialog box
on the screen, DS_ABSALIGN, which positions a dialog
relative to the upper left corner of the screen instead of the
upper left corner of its owner, and DS_CONTEXTHELP,

Programming Windows With MFC

 446

which adds a question mark button to the dialog box's title bar
so that the user can get context-sensitive help regarding the
dialog box's controls.

You can create a system-modal dialog box by including
DS_SYSMODAL in the STYLE statement. In 16-bit Windows,
a system-modal dialog box disables all other windows in the
system until it is dismissed and is typically used to report
critical errors that must be attended to before further processing
is performed. In 32-bit Windows, where processes are
physically isolated from one another by the operating system,
DS_SYSMODAL simply makes the dialog box a topmost
window—that is, one that is always displayed on top of other
windows. The dialog box overlays all other windows, but the
user is free to switch to other applications while the dialog box
is displayed.

The CAPTION statement specifies the text that appears in the
dialog box's title bar. You can also set the title
programmatically with the SetWindowText function a CDialog
object inherits from CWnd.

FONT specifies the dialog box font, which is automatically
assigned to all the controls in the dialog. The statement

FONT 8, "MS Sans Serif"

is somewhat redundant because 8-point MS Sans Serif is the
default font in current versions of Windows. If your dialogs
will be used in older (pre-Windows 95) versions of Windows,
this statement ensures that the dialog will use 8-point MS Sans
Serif. You can use CWnd::SetFont to change the fonts assigned
to individual controls in a dialog box.

The statements between BEGIN and END define the dialog
box's controls. Each statement defines one control, specifying
its type (push button, check box, list box, and so on), its control
ID, its position, its width and height, and its style. For static and
button controls, you can specify the control text, too. In the
example above, the LTEXT statement creates a static text
control whose ID is -1, whose text is left-aligned in the control
rectangle, whose upper left corner lies 8 horizontal dialog box
units to the right of and 14 vertical dialog box units below the

Programming Windows With MFC

 447

dialog box's upper left corner, and whose width and height are
24 horizontal dialog box units and 8 vertical dialog box units,
respectively. The ampersand in the control text makes Alt-N a
shortcut for the edit control created on the following line.

LTEXT is one of several resource statements used to define
controls in dialog box templates; a complete list appears in the
table below. In essence, these statements are shorthand ways of
creating the same kinds of controls we created in Chapter 7 by
instantiating a control class and calling the resulting object's
Create or CreateEx function. Each keyword has certain default
styles associated with it, and all build in the styles WS_CHILD
and WS_VISIBLE. Buttons and edit controls also include the
style WS_TABSTOP so that they can be tabbed to with the Tab
key. If desired, you can remove an implicit style with the NOT
operator. For example, the following resource statement creates
an edit control minus the default WS_TABSTOP style:

EDITTEXT IDC_EDIT, 32, 16, 96, 12, NOT WS_TABSTOP

You can also define dialog box controls with the more generic
CONTROL keyword. Sometimes you'll see a dialog box
template defined this way:

IDD_MYDIALOG DIALOG 0, 0, 160, 68
STYLE DS_MODALFRAME ¦ WS_POPUP ¦ WS_VISIBLE ¦ WS_CAPTION ¦
WS_SYSMENU
CAPTION "Enter Your Name"
BEGIN
 CONTROL "&Name", -1, "STATIC", SS_LEFT, 8, 14, 24, 8
 CONTROL "", IDC_NAME, "EDIT", WS_BORDER ¦
ES_AUTOHSCROLL ¦
 ES_LEFT ¦ WS_TABSTOP, 34, 12, 118, 12

Resource Statements for Creating Dialog Box Controls

Keyword Control Type Default Styles

LTEXT Static control
with left-aligned
text

SS_LEFT ¦ WS_GROUP

CTEXT Static control
with centered text

SS_CENTER ¦ WS_GROUP

RTEXT Static control
with right-aligned

SS_RIGHT ¦ WS_GROUP

Programming Windows With MFC

 448

text

PUSHBUTTON Push button BS_PUSHBUTTON ¦
WS_TABSTOP

DEFPUSHBUTTON Default push
button

BS_DEFPUSHBUTTON ¦
WS_TABSTOP

EDITTEXT Edit control ES_LEFT ¦ WS_BORDER ¦
WS_TABSTOP

CHECKBOX Check box BS_CHECKBOX ¦
WS_TABSTOP

AUTOCHECKBOX Automatic check
box

BS_AUTOCHECKBOX ¦
WS_TABSTOP

STATE3 Three-state check
box

BS_3STATE ¦ WS_TABSTOP

AUTO3STATE Automatic
three-state check
box

BS_AUTO3STATE ¦
WS_TABSTOP

RADIOBUTTON Radio button BS_RADIOBUTTON ¦
WS_TABSTOP

AUTORADIOBUTTON Automatic radio
button

BS_AUTORADIOBUTTON ¦
WS_TABSTOP

GROUPBOX Group box BS_GROUPBOX

LISTBOX List box LBS_NOTIFY ¦ WS_BORDER

COMBOBOX Combo box CBS_SIMPLE

SCROLLBAR Scroll bar SBS_HORZ

ICON Static icon
control

SS_ICON

 CONTROL "OK", IDOK, "BUTTON",
BS_DEFPUSHBUTTON ¦
 WS_TABSTOP ¦ WS_GROUP, 60, 34, 40, 14
 CONTROL "Cancel", IDCANCEL, "BUTTON",
BS_PUSHBUTTON ¦
 WS_TABSTOP ¦ WS_GROUP, 112, 34, 40, 14
END

This dialog template is equivalent to the one at the beginning of
this section. The styles WS_CHILD and WS_VISIBLE are
implicit in a CONTROL statement, but all other styles must be
specified explicitly. The third parameter in a CONTROL
statement specifies the WNDCLASS the control is based

Programming Windows With MFC

 449

on—"BUTTON" for push buttons, radio buttons, check boxes,
and group boxes; "EDIT" for edit controls; and so on. Because
the WNDCLASS is specified explicitly, you can use
CONTROL to create custom controls whose WNDCLASSes
are registered with ::RegisterClass. It's with CONTROL
statements, in fact, that you add progress bars, spin buttons, and
other common controls to a dialog box. You'll learn more about
the common controls in Chapter 16.

Today it's rare for programmers to create dialog box templates
by hand. Using Visual C++'s Insert/Resource command, you
can insert a dialog box resource into a project and edit it
visually. Figure 8-1 shows the Visual C++ dialog editor at work.
You add controls to a dialog box by picking them from the
Controls toolbar and literally drawing them into the dialog
window. (If the Controls toolbar isn't visible, you can make it
visible by selecting Customize from the Tools menu, clicking
the Toolbars tab, and placing a check mark next to Controls.)
You modify a dialog box's properties—its STYLE, CAPTION,
FONT, and so on—by making selections in the dialog box's
property sheet, which you display by right-clicking the dialog
box and selecting Properties from the context menu.

Figure 8-1. The Visual C++ dialog editor.

The Dialog Box Keyboard Interface

Programming Windows With MFC

 450

Windows supplies every dialog box with a keyboard interface
that lets the user move the input focus among controls with the
Tab key, cycle among the controls within a group using the
arrow keys, and more. When you define a dialog box template
in an RC file, you implicitly define the dialog box's keyboard
interface, too. Here are the elements of the dialog box template
that affect the keyboard interface:

x The order in which the controls are defined
x The use of ampersands in control text to designate shortcut keys
x The use of the WS_GROUP style to group controls
x The use of DEFPUSHBUTTON to designate the default push button

The order of the control-creation statements in the dialog
template determines the tab order—the order in which the input
focus is passed around when the user presses Tab or Shift-Tab.
Most dialog editors, including the one that's built into Visual
C++, let you specify the tab order visually. Under the hood,
they simply reorder the resource statements to match the tab
order. A control can't be tabbed to unless it includes the style
WS_TABSTOP. That's why many of the resource statements
discussed in the previous section include WS_TABSTOP by
default.

Dialog boxes support shortcut keys for those users who prefer
the keyboard over the mouse. You can create a shortcut key for
a push button, a radio button, or a check box control by
preceding the shortcut character in the control text with an
ampersand, as in

PUSHBUTTON "&Reset", IDC_RESET, 112, 34, 40, 24,
WS_GROUP

Now presses of Alt-R (or simply R if the input focus rests on
another button control) will click the Reset button unless
another control has been assigned the same mnemonic, in
which case repeated presses of the shortcut key will cycle the
input focus between the two controls. For list boxes, edit
controls, and other controls that have no control text per se, you
define a shortcut key by preceding the statement that creates the
control with a statement that creates a static control and
including an ampersand in the static control's text. For example,
the statements

Programming Windows With MFC

 451

LTEXT "&Name", -1, 8, 14, 24, 8
EDITTEXT IDC_NAME, 34, 12, 118, 12, ES_AUTOHSCROLL

create a static control labeled "Name" and a single-line edit
control to the right of it. Pressing Alt-N moves the input focus
to the edit control.

Another element of the keyboard interface to consider when
creating a dialog box template, especially if the dialog box
includes radio buttons, is the grouping of the controls. Recall
from Chapter 7 that BS_AUTORADIOBUTTON-style radio
buttons must be grouped if Windows is to uncheck all the other
buttons in the group when one of the buttons is clicked.
Windows also uses radio button groupings to determine how to
cycle the input focus among radio buttons when the arrow keys
are pressed. To define a group of radio buttons, first make sure
that the buttons occupy consecutive positions in the tab
order—that is, if the first button in the group is control number
5 in the tab order, that the second button is number 6, that the
third button is number 7, and so on. Then assign the style
WS_GROUP to the first radio button in the group and to the
first control that comes after the group in the tab order.
Windows programmers often assign WS_GROUP to push
buttons and check boxes, too, so that the arrow keys won't
move the input focus when the input focus rests on a push
button or a check box.

A final point to consider as you design a dialog box's keyboard
interface is which push button should serve as the default. In
most dialog boxes, you designate one push button (typically the
OK button) as the default push button by creating it with a
DEFPUSHBUTTON statement or assigning it the
BS_DEFPUSHBUTTON style. When the Enter key is pressed,
Windows simulates a click of the default push button in the
dialog box. If the input focus is on a non-push-button control,
the default push button is the one designated as the default in
the dialog box template. As the input focus is cycled among
push buttons, however, the "defaultness" moves with it. You
can always tell which push button is the default by the thick
border Windows draws around it.

All elements of a dialog box's keyboard interface can be
specified visually in the Visual C++ dialog editor. You specify

Programming Windows With MFC

 452

the tab order by selecting Tab Order from the Layout menu and
clicking the controls in order. The dialog editor uses numbered
boxes to show the tab order, as you can see in Figure 8-2. To
apply the WS_GROUP style to a control, check the Group box
in the control's property sheet. The property sheet is displayed
by clicking the control with the right mouse button and
selecting Properties. To make a push button the default push
button, check the Default Button box in the button's property
sheet.

Figure 8-2. A dialog box's tab order as seen in the Visual C++ dialog
editor.

8.1.2. The CDialog Class

For all but the most trivial dialog boxes, the next step in
creating a modal dialog is to derive a class from CDialog and
use it to define the dialog box's behavior. CDialog includes
three key functions that you can override to initialize the dialog
box and respond to clicks of the OK and Cancel buttons:
OnInitDialog, OnOK, and OnCancel. Although each of these
functions corresponds to a dialog box message, you don't need
a message map to process them because CDialog does the
message mapping for you and exposes the corresponding
functions as ordinary virtual functions. CDialog also provides
default implementations of all three, so you can frequently get

Programming Windows With MFC

 453

away without overriding any of them if you take advantage of
MFC's Dialog Data Exchange and Dialog Data Validation
mechanisms, which we'll cover later in this chapter.

When a dialog box is created, it receives a WM_CREATE
message just as any other window does. But when the
WM_CREATE message arrives, the controls specified in the
dialog box template have yet to be created and therefore can't
be initialized. The dialog box is, in effect, empty. The internal
window procedure that Windows uses to process dialog box
messages responds to WM_CREATE messages by creating the
dialog box's controls. After its controls are created, the dialog
box receives a WM_INITDIALOG message affording it the
opportunity to perform any necessary initializations, including
those involving the controls. In a CDialog-derived class, the
WM_INITDIALOG message activates the dialog box's
OnInitDialog function, which is prototyped as follows:

virtual BOOL OnInitDialog ()

OnInitDialog is where you do anything you need to do to get
the dialog box ready for action—for example, check a radio
button or insert text into an edit control. At the moment
OnInitDialog is called, the dialog box is extant in memory but
not yet visible on the screen. The user won't see what you do in
OnInitDialog, but he or she will see the results.

The value returned from OnInitDialog tells Windows what to
do with the input focus. If OnInitDialog returns TRUE,
Windows assigns the input focus to the first control in the tab
order. To assign the input focus to a control other than the first
one, call that control's SetFocus function in OnInitDialog and
return FALSE from OnInitDialog to prevent Windows from
setting the input focus itself. You can get a CWnd pointer
through which to call SetFocus by passing the control ID to
GetDlgItem, as demonstrated here:

GetDlgItem (IDC_EDIT)->SetFocus ();

If you override OnInitDialog, you should call the base class's
OnInitDialog handler for reasons that we'll get into shortly.

Programming Windows With MFC

 454

When the user clicks the dialog box's OK button, the dialog box
receives a WM_COMMAND message reporting the button
click, and MFC in turn calls the dialog's virtual OnOK function.
For this mechanism to work properly, you must assign the OK
button the special ID value IDOK, as shown in the following
resource statement:

DEFPUSHBUTTON "OK", IDOK, 60, 34, 40, 24, WS_GROUP

You can override OnOK to perform specialized processing
before the dialog box is dismissed, which might include
extracting data from the controls in the dialog box and possibly
validating the data (for example, making sure that a numeric
value retrieved from an edit control falls within an allowable
range). If you do provide your own implementation of OnOK,
be sure to close it out by calling EndDialog to dismiss the
dialog box or by calling the base class's OnOK handler to
dismiss it for you. Otherwise, the dialog box won't disappear
when OK is clicked.

You must assign a Cancel button the predefined ID
IDCANCEL for OnCancel to be called when the button is
clicked. Be aware that even if your dialog box doesn't include a
Cancel button, OnCancel will still be called if the Esc key is
pressed or the close button in the dialog box's title bar is clicked.
OnCancel isn't usually overridden because data typically
doesn't need to be read from the dialog's controls if changes are
canceled. CDialog::OnCancel calls EndDialog with an
IDCANCEL parameter to dismiss the dialog box and inform
the caller that changes in the dialog box controls should be
ignored.

With the exception of the WM_INITDIALOG message, which
is unique to dialog boxes, dialog boxes receive the same
messages that conventional windows do. You can map any of
these messages to the dialog class's member functions using a
message map. For example, if your dialog box includes a Reset
button whose ID is IDC_RESET and you want OnReset to be
called when the button is clicked, you can use the following
message-map entry to connect the two:

ON_BN_CLICKED (IDC_RESET, OnReset)

Programming Windows With MFC

 455

Dialog boxes can even handle WM_PAINT
messages—somewhat unusual but doable nonetheless. Most
dialog boxes don't need OnPaint handlers because controls
repaint themselves when the area of the dialog box that they
occupy is invalidated.

Getting Help from ClassWizard

Although deriving dialog classes from CDialog by hand is
perfectly acceptable, most MFC programmers today prefer to
let ClassWizard do it for them. It's easy: invoke ClassWizard,
click its Add Class button, select New from the menu that
appears under the button, and fill in a class name, base class
name (CDialog), and resource ID, as shown in Figure 8-3. The
resource ID that you specify must be that of a dialog resource.
If you want to override OnInitDialog, OnOK, or OnCancel in
the derived class, you can do so after ClassWizard has
performed the derivation.

That's one way to get to ClassWizard's New Class dialog box,
but it's not the only way. In the dialog editor, double-click the
body of the dialog box. Visual C++ will prompt you with a
message asking if you want to create a new class. If you answer
OK, ClassWizard will pop up and the New Class dialog box
will appear with the name of the base class and the resource ID
already filled in.

Programming Windows With MFC

 456

Figure 8-3. Using ClassWizard to derive from CDialog.

You can also use ClassWizard to write message handlers for a
dialog's controls. Suppose you want to write a BN_CLICKED
handler for a push button, and the push button's control ID is
IDC_RESET. Here's how to go about it:

1. Right-click the dialog class in the ClassView window.
2. Select Add Windows Message Handler from the context menu.
3. Select the button ID (IDC_RESET) in the Class Or Object To Handle

box.
4. Click BN_CLICKED in the New Windows Messages/Events box.
5. Click the Add Handler button, and enter a function name.

When you're done, the function whose name you entered will
be present in the dialog class and will be wired to the push
button via an ON_BN_CLICKED entry in the dialog's message
map.

8.1.3. Creating a Modal Dialog Box

Once you've defined the dialog box template and declared the
dialog class, creating a modal dialog box is a simple matter of
constructing an object from your CDialog-derived class and
calling that object's DoModal function. DoModal doesn't return
until after the dialog box is dismissed. When DoModal does
return, its return value is the value that was passed to

Programming Windows With MFC

 457

EndDialog. Applications typically test the DoModal return
value and take action only if the return value is IDOK,
indicating that the dialog box was dismissed with the OK
button. If the return value is anything else (most likely
IDCANCEL), the information entered into the dialog box is
ignored.

CDialog defines two constructors: one that accepts a string
dialog template resource ID and a CWnd pointer identifying the
dialog box's owner, and another that accepts an integer dialog
template resource ID and a CWnd pointer identifying the dialog
box's owner. The CWnd pointer can be omitted, in which case
the application's main window becomes the dialog's owner. To
make derived dialog classes more objectlike and more
self-contained, MFC programmers often provide their own
constructors that build in references to the dialog templates.
You could write a simple inline constructor for CMyDialog like
this:

CMyDialog::CMyDialog (CWnd* pParentWnd = NULL) :
 CDialog (IDD_MYDIALOG, pParentWnd) {}

This constructor simplifies the code that creates the dialog box
and eliminates the possibility of inadvertently passing the
constructor the wrong resource identifier:

CMyDialog dlg;
dlg.DoModal ();

When the user dismisses the dialog box by clicking OK or
Cancel, DoModal returns and the function that called DoModal
continues. If the action taken following the call to DoModal
depends on whether the data entered in the dialog box was
okayed or canceled (and it almost inevitably will), you can test
the return value, like this:

CMyDialog dlg;
if (dlg.DoModal () == IDOK) {
 // The user clicked OK; do something!
}

Programming Windows With MFC

 458

By default, the only values DoModal will return are IDOK and
IDCANCEL. However, you can write your dialog class to
return other values by calling EndDialog with a value other
than IDOK or IDCANCEL. You could, for example, include an
End This Application button in a dialog box and wire it into the
program as follows:

// In the dialog class
BEGIN_MESSAGE_MAP (CMyDialog, CDialog)
 ON_BN_CLICKED (IDC_ENDAPP, OnEndThisApplication)
END_MESSAGE_MAP ()

void CMyDialog::OnEndThisApplication ()
{
 EndDialog (IDC_ENDAPP);
}

// Elsewhere in the application
CMyDialog dlg;
int nReturn = dlg.DoModal ();
if (nReturn == IDOK) {
 // The user clicked OK; do something!
}
else if (nReturn == IDC_ENDAPP)
 PostMessage (WM_CLOSE, 0, 0);

When the user clicks End This Application in the dialog box,
the return value IDC_ENDAPP alerts the caller that the user
wants to terminate the application. Consequently, a
WM_CLOSE message is posted to the message queue to
initiate a shutdown. IDC_ENDAPP and other user-defined
values passed to EndDialog should be assigned ID values equal
to 3 or higher to avoid conflicting with the predefined IDOK
and IDCANCEL button IDs.

8.1.4. Dialog Data Exchange and Dialog Data
Validation

A typical dialog box presents a list of options to the user,
gathers input regarding those options, and makes that input
available to the application that created the dialog box. A
convenient way to expose the input is to map it to public
member variables in the dialog class. The application that uses

Programming Windows With MFC

 459

the dialog box can then access the data by reading or writing
the dialog object's member variables.

Suppose your dialog box contains two single-line edit controls
in which the user enters a name and a phone number. To expose
the name and number input by the user to the application that
creates the dialog, declare two CString member variables in
your dialog class:

class CMyDialog : public CDialog
{
public:
 CMyDialog::CMyDialog (CWnd* pParentWnd = NULL) :
 CDialog (IDD_MYDIALOG, pParentWnd) {}
 CString m_strName;
 CString m_strPhone;

};

To solicit a name and phone number from the user, display the
dialog and retrieve the values of m_strName and m_strPhone
after the dialog is dismissed:

CMyDialog dlg;
if (dlg.DoModal () == IDOK) {
 CString strName = dlg.m_strName;
 CString strPhone = dlg.m_strPhone;
 TRACE (_T ("Name=%s, Phone=%s"), strName, strPhone);
}

You could modify the code slightly to initialize the edit
controls with a default name and phone number:

CMyDialog dlg;
dlg.m_strName = _T ("Jeff");
dlg.m_strPhone = _T ("555-1212");
if (dlg.DoModal () == IDOK) {
 CString strName = dlg.m_strName;
 CString strPhone = dlg.m_strPhone;
 TRACE (_T ("Name=%s, Phone=%s"), strName, strPhone);
}

These examples assume that m_strName and m_strPhone are
intrinsically linked to the dialog's edit controls—that is, that the
strings assigned to these variables are magically inserted into

Programming Windows With MFC

 460

the edit controls and that strings read from these variables are
the strings the user entered into the edit controls.

The coupling of a dialog's controls and data members doesn't
happen by itself; you have to make it happen. One way to
perform the coupling is to override OnInitDialog and OnOK in
the derived dialog class and include code that transfers data
between the controls and the data members. Assuming the edit
controls' IDs are IDC_NAME and IDC_PHONE, here's a
revised version of CMyDialog that demonstrates this technique:

class CMyDialog : public CDialog
{
public:
 CMyDialog::CMyDialog (CWnd* pParentWnd = NULL) :
 CDialog (IDD_MYDIALOG, pParentWnd) {}
 CString m_strName;
 CString m_strPhone;
protected:
 virtual BOOL OnInitDialog ();
 virtual void OnOK ();
};

BOOL CMyDialog::OnInitDialog ()
{
 CDialog::OnInitDialog ();
 SetDlgItemText (IDC_NAME, m_strName);
 SetDlgItemText (IDC_PHONE, m_strPhone);
 return TRUE;
}

void CMyDialog::OnOK ()
{
 GetDlgItemText (IDC_NAME, m_strName);
 GetDlgItemText (IDC_PHONE, m_strPhone);
 CDialog::OnOK ();
}

Structuring CMyDialog this way ensures that strings written to
m_strName and m_strPhone before the dialog is created will
appear in the edit controls and that strings entered in those edit
controls will be copied to m_strName and m_strPhone when
the dialog is dismissed with the OK button.

Imagine how trivial the implementation of CMyDialog would
be if you didn't have to initialize the controls in OnInitDialog

Programming Windows With MFC

 461

and read them back in OnOK—that is, if you could provide a
"data map" of sorts correlating controls to member variables.
Sound farfetched? It's not. In fact, that's exactly what MFC's
Dialog Data Exchange (DDX) mechanism is for. It's simple to
use, and in many cases, it completely obviates the need to
supply custom OnInitDialog and OnOK functions, even if your
dialog box contains dozens of controls.

You enact DDX by overriding a virtual function named
DoDataExchange in each class you derive from CDialog. In
the override, you use DDX functions provided by MFC to
transfer data between the dialog's controls and data members.
Here's a DoDataExchange implementation that links two
CString data members (m_strName and m_strPhone) to a pair
of edit controls (IDC_NAME and IDC_PHONE):

void CMyDialog::DoDataExchange (CDataExchange* pDX)
{
 DDX_Text (pDX, IDC_NAME, m_strName);
 DDX_Text (pDX, IDC_PHONE, m_strPhone);
}

MFC calls DoDataExchange once when the dialog is created
(when the dialog box receives a WM_INITDIALOG message)
and again when the OK button is clicked. The pDX parameter is
a pointer to a CDataExchange object supplied by MFC. Among
other things, the CDataExchange object tells DDX_Text in
which direction the information is flowing—that is, whether
data is being transferred from the data members to the controls
or from the controls to the data members. Once it has
determined the direction of data flow, DDX_Text performs the
actual data transfer. Thus, one DoDataExchange function is
sufficient to copy data from data members to controls when the
dialog is created and from the controls to the data members
when the dialog is dismissed.

DDX_Text is one of several DDX functions that MFC provides;
a partial list is shown in the table below. The relationship
between a control and a data member depends on the DDX
function connecting the two. For example, an int variable
linked to a group of radio buttons with DDX_Radio holds a
0-based index identifying one member of the group. If the int's
value is 2 when the dialog is created, DDX_Radio checks the

Programming Windows With MFC

 462

third button in the group. When the OK button is clicked,
DDX_Radio copies the index of the currently selected button to
the member variable. An int connected to a scroll bar with
DDX_Scroll specifies the position of the scroll bar thumb, and
an int associated with a check box with DDX_Check specifies
the check box's state—BST_CHECKED, BST_UNCHECKED,
or, for three-state check boxes, BST_INDETERMINATE. If an
int is linked to an edit control with DDX_Text, MFC
automatically converts the integer into a text string when
transferring the value to the edit control and the string to an
integer when transferring data from the edit control.

Dialog Data Exchange (DDX) Functions

DDX Function Description

DDX_Text Associates a BYTE, an int, a short, a UINT, a long, a
DWORD, a CString, a string, a float, a double, a
COleDateTime, or a COleCurrency variable with an edit
control

DDX_Check Associates an int variable with a check box control

DDX_Radio Associates an int variable with a group of radio buttons

DDX_LBIndex Associates an int variable with a list box

DDX_LBString Associates a CString variable with a list box

DDX_LBStringExact Associates a CString variable with a list box

DDX_CBIndex Associates an int variable with a combo box

DDX_CBString Associates a CString variable with a combo box

DDX_CBStringExact Associates a CString variable with a combo box

DDX_Scroll Associates an int variable with a scroll bar

A related mechanism called Dialog Data Validation (DDV)
allows MFC to validate the values entered into a dialog's
controls before the dialog is dismissed. DDV functions fall into
two categories: those that validate numeric variables to ensure
that they fall within specified limits and one that validates a
CString variable to verify that its length doesn't exceed a
certain value. Here's a DoDataExchange function that uses
DDX_Text to connect an int member variable to an edit control
and DDV_MinMaxInt to perform a range check on the value
when the dialog's OK button is clicked:

Programming Windows With MFC

 463

void CMyDialog::DoDataExchange (CDataExchange* pDX)
{
 DDX_Text (pDX, IDC_COUNT, m_nCount);
 DDV_MinMaxInt (pDX, m_nCount, 0, 100);
}

If the value displayed in the edit control is less than 0 or greater
than 100 when OK is clicked, DDV_MinMaxInt transfers the
input focus to the control and displays an error message. For a
given data member, the DDV function call should immediately
follow the DDX function call to enable MFC to set the input
focus to the proper control if the validation proves negative.

DDV_MinMaxInt is one of several DDV functions that MFC
provides. The following table lists the DDV functions that
pertain to the classic controls. The DDV range-validation
routines are not overloaded to accept multiple data types, so if
you write a DoDataExchange function by hand, you must be
careful to match the function to the data type.

Dialog Data Validation (DDV) Functions

Function Description

DDV_MinMaxByte Verifies that a BYTE value falls within specified limits

DDV_MinMaxInt Verifies that an int value falls within specified limits

DDV_MinMaxLong Verifies that a long value falls within specified limits

DDV_MinMaxUInt Verifies that a UINT value falls within specified limits

DDV_MinMaxDWord Verifies that a DWORD value falls within specified
limits

DDV_MinMaxFloat Verifies that a float value falls within specified limits

DDV_MinMaxDouble Verifies that a double value falls within specified limits

DDV_MaxChars On entry, uses an EM_LIMITTEXT message to limit
the number of characters that can be entered into an edit
control; on exit, verifies that the control contains no
more than the specified number of characters

The code that drives DDX and DDV is found in CDialog.
When the dialog box is created, CDialog::OnInitDialog calls
the UpdateData function a dialog object inherits from CWnd
with a FALSE parameter. UpdateData, in turn, creates a
CDataExchange object and calls the dialog's DoDataExchange

Programming Windows With MFC

 464

function, passing it a pointer to the CDataExchange object.
Each DDX function called by DoDataExchange initializes a
control using the value of a member variable. Later, when the
user clicks OK, CDialog::OnOK calls UpdateData with a
TRUE parameter, causing the DDX functions to do just the
opposite of what they did earlier. Any DDV functions present
in DoDataExchange take this opportunity to validate the user's
input. Earlier I mentioned the importance of calling the base
class's OnOK and OnInitDialog functions if you override them
in a derived class. Now you know why. If you fail to call the
base class implementations of these functions, the framework
won't get the opportunity to call UpdateData and DDX and
DDV won't work.

What DDX and DDV amount to is a painless way to get data in
and out of dialog box controls and perform simple validation
procedures on the data. In practice, DDX and DDV prevent you
from having to override OnInitDialog and OnOK simply to
transfer data between a dialog's controls and data members.

More Help from ClassWizard

In an application crafted with the MFC wizards, you can add
DDX and DDV functions to DoDataExchange by hand, or you
can let ClassWizard add them for you. ClassWizard will even
add member variables to a dialog class for you. Here's the
procedure for adding a data member to a dialog class and
associating it with a control via DDX or DDV:

1. Invoke ClassWizard, and go to the Member Variables page. (See Figure
8-4.)

Programming Windows With MFC

 465

Figure 8-4. ClassWizard's Member Variables page.

2. Select the dialog class's name in the Class Name box.
3. Highlight the ID of the control that you want to associate with a member

variable in the Control IDs box, and click the Add Variable button.
4. Type the member variable name into the Add Member Variable dialog

box shown in Figure 8-5, and select the variable type from the Variable
Type box. Then click OK.

If you examine the dialog class's source code after dismissing
ClassWizard, you'll find that ClassWizard has added the
member variable to the class declaration and also added a DDX
statement to DoDataExchange connecting the member variable
to a control. If the variable type is numeric, you can enter
minimum and maximum values into the edit controls at the
bottom of the Member Variables page and ClassWizard will
add a DDV_MinMax statement, too. For string variables, you
can enter a maximum character count and ClassWizard will add
a DDV_MaxChars statement.

Programming Windows With MFC

 466

Figure 8-5. ClassWizard's Add Member Variable dialog box.

8.1.5. Interacting with the Controls in a Dialog

Does the presence of DDX and DDV mean that you'll never
again have to write code to interact with the controls in a dialog
box? Hardly. You might, for example, need to call CListBox
functions on a list box control to add strings to the list box in
OnInitDialog. To do that, you'll need a CListBox pointer to the
list box. The question is, How do you get that pointer?

You can get a CWnd pointer to any control in a dialog with
CWnd::GetDlgItem. The following code sample uses
GetDlgItem and CWnd::EnableWindow to interactively enable
the control whose ID is IDC_CHECK:

CWnd* pWnd = GetDlgItem (IDC_CHECK);
pWnd->EnableWindow (TRUE);

This code works fine because GetDlgItem returns a generic
CWnd pointer and EnableWindow is a CWnd function. But
consider the following code sample:

CListBox* pListBox = (CListBox*) GetDlgItem (IDC_LIST);
pListBox->AddString (_T ("One"));
pListBox->AddString (_T ("Two"));
pListBox->AddString (_T ("Three"));

Programming Windows With MFC

 467

This code works, but only because MFC is specifically
architected to make it work. Because GetDlgItem returns a
CWnd pointer, casting it to a CListBox pointer and calling a
CListBox function through it is poor programming practice at
best and dangerous at worst. In fact, in some situations, this
technique simply won't work.

A better solution for calling non-CWnd functions on a control
in a dialog box is MFC's CWnd::Attach function. With Attach,
you can declare an instance of a control class (for example,
CListBox) and dynamically attach it to a dialog box control.
Here's how you'd use Attach to add strings to a list box.

CListBox wndListBox;
wndListBox.Attach (GetDlgItem (IDC_LIST)->m_hWnd);
wndListBox.AddString (_T ("One"));
wndListBox.AddString (_T ("Two"));
wndListBox.AddString (_T ("Three"));
wndListBox.Detach ();

When a CListBox object is declared on the stack as shown in
this example, it's important to call Detach before the CListBox
object goes out of scope. Otherwise, CListBox's destructor will
destroy the list box and the list box will suddenly disappear
from the dialog box.

MFC's DDX_Control function offers a seamless mechanism for
attaching an instance of an MFC control class to a control in a
dialog box. Placing the following statement in a derived dialog
class's DoDataExchange function transparently connects a
CListBox data member named m_wndListBox to a list box
control whose ID is IDC_LIST:

DDX_Control (pDX, IDC_LIST, m_wndListBox);

Now adding strings to the list box is a simple matter of calling
AddString on m_wndListBox:

m_wndListBox.AddString (_T ("One"));
m_wndListBox.AddString (_T ("Two"));
m_wndListBox.AddString (_T ("Three"));

Programming Windows With MFC

 468

DDX_Control offers added value because rather than simply
encapsulate a control's window handle as Attach does,
DDX_Control dynamically subclasses the control so that
messages sent to the control first pass through the object
specified in DDX_Control's third parameter. This is the easiest
and most effective way to make a control in a dialog box
behave like an object of a derived control class—for example,
to make an edit control behave like a CNumEdit instead of an
ordinary CEdit. You'll see an example demonstrating how to
use a derived control class in a dialog box in the Phones
application at the end of this chapter.

You can use ClassWizard to add DDX_Control statements to
DoDataExchange. To do it, go to the Member Variables page
and use the Add Variable button to add a member variable to
the dialog class. But this time, select Control rather than Value
in the Add Member Variable dialog box's Category box. Then
pick a control class in the Variable Type box and click OK until
you exit ClassWizard. Now, if you check the dialog class,
you'll find that ClassWizard has added both the member
variable and a DDX_Control statement connecting the variable
to the control.

8.1.6. The DlgDemo1 Application

The DlgDemo1 application pictured in Figure 8-6 is a simple
view-based program that draws a colored rectangle in the upper
left corner of the view. The File menu features an Options
command that displays a dialog box through which you can
alter the rectangle's width, height, and units of measurement.

Programming Windows With MFC

 469

Figure 8-6. The DlgDemo1 window and dialog box.

I created DlgDemo1 with AppWizard and used ClassWizard to
derive the dialog class, write message handlers, and so on.
Portions of the source code are reproduced in Figure 8-7. The
dialog box is an instance of COptionsDialog, which
encapsulates the dialog resource IDD_OPTIONS.
COptionsDialog has three public data members—m_nWidth,
m_nHeight, and m_nUnits—which represent the rectangle's
width, height, and units of measurement, respectively. Each
data member is bound to a control (or group of controls) in the
dialog box via DDX. An m_nUnits value equal to 0 represents
inches, while 1 represents centimeters and 2 represents pixels.
The view class CChildView contains identically named member
variables that CChildView::OnPaint uses to paint the rectangle.

When the Options command is selected from the File menu, the
command handler CChildView::OnFileOptions instantiates
COptionsDialog; copies the current width, height, and units
values to the dialog object's member variables; and displays the
dialog with DoModal. If DoModal returns IDOK,
OnFileOptions reads the width, height, and units values from
the dialog's data members and copies them to the view's data
members. Then it calls Invalidate to repaint the view, which
refreshes the rectangle to conform to the new parameters.

Figure 8-7. The DlgDemo1 application.

Programming Windows With MFC

 470

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__AC8095E8_902A_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__AC8095E8_902A_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL
// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:

//{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

Programming Windows With MFC

 471

};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__AC8095E8_902A_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "DlgDemo1.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)

 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))

Programming Windows With MFC

 472

 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 return -1;

 return 0;
}

ChildView.h

// ChildView.h : interface of the CChildView class

Programming Windows With MFC

 473

//
///

#if !defined(AFX_CHILDVIEW_H__AC8095EA_902A_11D2_8E53_006008A
82731__INCLUDED_)

#define
AFX_CHILDVIEW_H__AC8095EA_902A_11D2_8E53_006008A82731__INC
LUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 int m_nUnits;
 int m_nHeight;
 int m_nWidth;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnFileOptions();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

Programming Windows With MFC

 474

#endif
//defined(AFX_CHILDVIEW_H__AC8095EA_902A_11D2_8E53_006008A82731__INCL
UDED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "DlgDemo1.h"
#include "OptionsDialog.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
 m_nWidth = 4;
 m_nHeight = 2;
 m_nUnits = 0;
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_FILE_OPTIONS, OnFileOptions)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

Programming Windows With MFC

 475

 return TRUE;
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // Device context for painting.

 CBrush brush (RGB (255, 0, 255));
 CBrush* pOldBrush = dc.SelectObject (&brush);
 switch (m_nUnits) {

 case 0: // Inches.
 dc.SetMapMode (MM_LOENGLISH);
 dc.Rectangle (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 1: // Centimeters.
 dc.SetMapMode (MM_LOMETRIC);
 dc.Rectangle (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 2: // Pixels.
 dc.SetMapMode (MM_TEXT);
 dc.Rectangle (0, 0, m_nWidth, m_nHeight);
 break;
 }
 dc.SelectObject (pOldBrush);
}

void CChildView::OnFileOptions()
{
 COptionsDialog dlg;

 dlg.m_nWidth = m_nWidth;
 dlg.m_nHeight = m_nHeight;
 dlg.m_nUnits = m_nUnits;

 if (dlg.DoModal () == IDOK) {
 m_nWidth = dlg.m_nWidth;
 m_nHeight = dlg.m_nHeight;
 m_nUnits = dlg.m_nUnits;
 Invalidate ();
 }
}

OptionsDialog.h

#if !defined(AFX_OPTIONSDIALOG_H__AC8095F0_902A_11D2_8E53_006008A82731__I
NCLUDED_)
#define
AFX_OPTIONSDIALOG_H__AC8095F0_902A_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

Programming Windows With MFC

 476

// OptionsDialog.h : header file
//

///
// COptionsDialog dialog

class COptionsDialog : public CDialog
{
// Construction
public:
 COptionsDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(COptionsDialog)
 enum { IDD = IDD_OPTIONS };
 int m_nWidth;
 int m_nHeight;
 int m_nUnits;
 //}}AFX_DATA

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(COptionsDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(COptionsDialog)
 afx_msg void OnReset();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
//!defined(
//
AFX_OPTIONSDIALOG_H__AC8095F0_902A_11D2_8E53_006008A82731__IN
CLUDED_)

OptionsDialog.cpp

// OptionsDialog.cpp : implementation file
//

#include "stdafx.h"
#include "DlgDemo1.h"
#include "OptionsDialog.h"

Programming Windows With MFC

 477

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// COptionsDialog dialog

COptionsDialog::COptionsDialog(CWnd* pParent /*=NULL*/)
 : CDialog(COptionsDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(COptionsDialog)
 m_nWidth = 0;
 m_nHeight = 0;
 m_nUnits = -1;
 //}}AFX_DATA_INIT
}

void COptionsDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(COptionsDialog)
 DDX_Text(pDX, IDC_WIDTH, m_nWidth);
 DDV_MinMaxInt(pDX, m_nWidth, 1, 128);
 DDX_Text(pDX, IDC_HEIGHT, m_nHeight);
 DDX_Radio(pDX, IDC_INCHES, m_nUnits);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(COptionsDialog, CDialog)
 //{{AFX_MSG_MAP(COptionsDialog)
 ON_BN_CLICKED(IDC_RESET, OnReset)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// COptionsDialog message handlers

void COptionsDialog::OnReset()
{
 m_nWidth = 4;
 m_nHeight = 2;

 m_nUnits = 0;
 UpdateData (FALSE);
}

Here's a synopsis of the procedure I used to write DlgDemo1.
You can create the application, too, by following these steps:

1. Use AppWizard to create a project named DlgDemo1. In AppWizard's
Step 1 dialog box, choose Single Document as the application type and

Programming Windows With MFC

 478

uncheck the Document/View Architecture Support box. Uncheck the
following boxes in the Step 3 and Step 4 dialog boxes:

o ActiveX Controls
o 3D Controls
o Docking Toolbar
o Initial Status Bar

Accept the AppWizard defaults everywhere else.

2. Add the following member variables to CChildView. Make the member
variables protected, and initialize them in the view's constructor.

Variable Name Type Initial Value

m_nWidth int 4

m_nHeight int 2

m_nUnits int 0

3. Implement the view's OnPaint function.
4. To compensate for a bug in Visual C++ 6.0, add a WM_CREATE

message handler to the frame window class CMainFrame and add code
to create the view.

5. Use the Insert-Resource command to add a new dialog resource to the
project. Change the dialog's resource ID to IDD_OPTIONS by
right-clicking IDD_DIALOG1 in ResourceView, selecting Properties
from the context menu, and entering the new ID. While you're at it,
change the dialog's caption to "Options."

6. Edit the dialog box so that it resembles the one in Figure 8-6. The table
below lists the controls in the dialog box and their IDs. Be sure to create
the radio buttons one after another so that they will be assigned
consecutive control IDs. The OK and Cancel buttons are provided for
you, so you don't need to add them separately.

Control Type Control Text Control ID

Static "&Width" IDC_STATIC

Static "&Height" IDC_STATIC

Edit None IDC_WIDTH

Edit None IDC_HEIGHT

Group box "Units" IDC_STATIC

Radio button "&Inches" IDC_INCHES

Radio button "&Centimeters" IDC_CENTIMETERS

Radio button "&Pixels" IDC_PIXELS

Push button "&Reset" IDC_RESET

Push button "OK" IDOK

Programming Windows With MFC

 479

Push button "Cancel" IDCANCEL

7. Select Tab Order from the Layout menu, and set the tab order shown in
Figure 8-2. You can test the tab order by selecting Tab Order again to
exit tab order mode, selecting Test from the Layout menu and using the
Tab key to tab among the dialog box's controls. Note that you must
manually select one of the radio buttons before the Tab key will move
the input focus to a radio button.

8. Let Windows know that the three radio buttons are a group by marking
the first control in the group (the Inches radio button) and the first
control in the tab order following the final control in the group (the OK
button) with the style WS_GROUP. You can test the grouping by
choosing Test from the Layout menu, clicking one of the radio buttons,
and pressing the up or down arrow key a few times. If the radio buttons
are properly grouped, the input focus will cycle among the radio buttons.

9. Double-click the dialog box in the dialog editor, and use ClassWizard to
derive a dialog class named COptionsDialog. After you dismiss
ClassWizard, COptionsDialog should appear in the ClassView window.

10. Use ClassWizard to add three int member variables to the dialog class:
one (m_nUnits) that's linked to the radio button IDC_INCHES, another
(m_nWidth) that's linked to the IDC_WIDTH edit control, and a third
(m_nHeight) that's linked to the IDC_HEIGHT edit control. Set the
minimum and maximum values for m_nWidth and m_nHeight to 1 and
128, respectively.

NOTE

Be sure that you create int member variables for the edit controls, not
CString member variables, by selecting int in the Add Member Variable
dialog box's Variable Type field. CString is the default. If you make a
mistake, use the Delete Variable button to delete the member variable
and try again.

11. Open the menu resource IDR_MAINFRAME, and add an Options
command to the File menu. Enter "&Options..." for the text of the menu
item and ID_FILE_OPTIONS for the command ID.

12. Add the following #include to the view's CPP file:

#include "OptionsDialog.h"

Then add a command handler named OnFileOptions to the view class
that's called when the Options command is selected. Implement the
function as shown in Figure 8-7.

13. Add a BN_CLICKED handler named OnReset to the dialog class that
sets m_nWidth to 4, m_nHeight to 2, and m_nUnits to 0 when the Reset
button is clicked. Implement the handler as shown in Figure 8-7.

14. Run the application, and use the File/Options command to display the
Options dialog box. Test your handiwork by entering various widths and
heights and selecting different units of measurement.

Programming Windows With MFC

 480

Notice how COptionsDialog::OnReset is implemented. It's perfectly legal
to call UpdateData yourself to transfer data between a dialog's controls
and data members. In this case, UpdateData is called with a FALSE
parameter to transfer data from the member variables to the controls. To
read data out of the controls and into the member variables, pass
UpdateData a TRUE parameter.

8.2. Modeless Dialog Boxes

Once you've mastered modal dialog boxes, you'll discover that
modeless dialog boxes are just a variation on what you've
already learned. Modal and modeless dialog boxes are more
alike than they are different. The key differences between them
include the following:

x Whereas a modal dialog box is displayed by calling CDialog::DoModal,
modeless dialog boxes are displayed with CDialog::Create. Unlike
DoModal, which doesn't return until the dialog box is dismissed, Create
returns as soon as the dialog box is created. Therefore, the dialog box is
still displayed when Create returns.

x Modeless dialog boxes are dismissed by calling DestroyWindow, not
End-Dialog. You mustn't allow CDialog::OnOK or CDialog::OnCancel
to be called on a modeless dialog box, because both call EndDialog.

x Modal dialog classes are usually instantiated on the stack so that
de-struction is automatic. Modeless dialog classes are instantiated with
new so that the dialog object won't be destroyed prematurely. One way to
ensure that the modeless dialog object is deleted when the dialog box is
destroyed is to override CDialog::PostNcDestroy in the derived dialog
class and execute a delete this statement.

There are other differences between modal and modeless dialog
boxes that MFC handles for you. For example, the message
loop of an SDK application that uses a modeless dialog box
must be modified to call ::IsDialogMessage to forward
messages to the dialog box. An MFC application requires no
such modification because ::IsDialogMessage is called
automatically.

In general, MFC makes dialog handling generic so that using
modeless dialog boxes is little different than using modal dialog
boxes. Let's prove it by converting DlgDemo1's dialog box into
a modeless dialog box.

8.2.1. The DlgDemo2 Application

Figure 8-8's DlgDemo2 application is functionally identical to
DlgDemo1 in all respects but one: the Options dialog box is

Programming Windows With MFC

 481

modeless rather than modal. Following convention, the OK and
Cancel buttons are now labeled Apply and Close. The Apply
button applies the settings entered in the dialog box to the
rectangle but doesn't dismiss the dialog box. The Close button
removes the dialog box from the screen and discards any
changes, just like the Cancel button in DlgDemo1. Despite the
name changes, the button IDs are still IDOK and IDCANCEL.
This means that we can still use OnOK and OnCancel to
process button clicks and that Enter and Esc still serve as the
buttons' keyboard equivalents.

Figure 8-8. The DlgDemo2 application.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__7040DB88_9039_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_MAINFRM_H__7040DB88_9039_11D2_8E53_006008A82731__INCLUDE
D_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

Programming Windows With MFC

 482

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 afx_msg LRESULT OnApply (WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnDialogDestroyed (WPARAM wParam, LPARAM
lParam);
 DECLARE_MESSAGE_MAP()
};
///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__7040DB88_9039_11D2_8E53_006008A82731__INCLUDED
_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "DlgDemo2.h"
#include "OptionsDialog.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP

Programming Windows With MFC

 483

 ON_MESSAGE (WM_USER_APPLY, OnApply)
 ON_MESSAGE (WM_USER_DIALOG_DESTROYED,
OnDialogDestroyed)
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

Programming Windows With MFC

 484

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 return -1;

 return 0;
}

LRESULT CMainFrame::OnApply (WPARAM wParam, LPARAM lParam)
{
 m_wndView.SendMessage (WM_USER_APPLY, wParam, lParam);
 return 0;
}

LRESULT CMainFrame::OnDialogDestroyed (WPARAM wParam, LPARAM
lParam)
{
 m_wndView.SendMessage (WM_USER_DIALOG_DESTROYED,
wParam, lParam);
 return 0;
}

ChildView.h

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__7040DB8A_9039_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__7040DB8A_9039_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

Programming Windows With MFC

 485

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 COptionsDialog* m_pDlg;
 int m_nUnits;
 int m_nHeight;
 int m_nWidth;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnFileOptions();
 //}}AFX_MSG
 afx_msg LRESULT OnApply (WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnDialogDestroyed (WPARAM wParam, LPARAM
lParam);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_CHILDVIEW_H__7040DB8A_9039_11D2_8E53_006008A82731__INCLU
DED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "DlgDemo2.h"
#include "OptionsDialog.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

Programming Windows With MFC

 486

#endif

///
// CChildView

CChildView::CChildView()
{
 m_nWidth = 4;
 m_nHeight = 2;
 m_nUnits = 0;
 m_pDlg = NULL;
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_FILE_OPTIONS, OnFileOptions)
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_APPLY, OnApply)
 ON_MESSAGE (WM_USER_DIALOG_DESTROYED,
OnDialogDestroyed)
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // Device context for painting.

 CBrush brush (RGB (255, 0, 255));
 CBrush* pOldBrush = dc.SelectObject (&brush);

 switch (m_nUnits) {

 case 0: // Inches.
 dc.SetMapMode (MM_LOENGLISH);

Programming Windows With MFC

 487

 dc.Rectangle (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 1: // Centimeters.
 dc.SetMapMode (MM_LOMETRIC);
 dc.Rectangle (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 2: // Pixels.
 dc.SetMapMode (MM_TEXT);
 dc.Rectangle (0, 0, m_nWidth, m_nHeight);
 break;
 }
 dc.SelectObject (pOldBrush);
}

void CChildView::OnFileOptions()
{
 //
 // If the dialog box already exists, display it.
 //
 if (m_pDlg != NULL)
 m_pDlg->SetFocus ();

 //
 // If the dialog box doesn't already exist, create it.
 //
 else {
 m_pDlg = new COptionsDialog;
 m_pDlg->m_nWidth = m_nWidth;
 m_pDlg->m_nHeight = m_nHeight;
 m_pDlg->m_nUnits = m_nUnits;
 m_pDlg->Create (IDD_OPTIONS);
 m_pDlg->ShowWindow (SW_SHOW);
 }
}

LRESULT CChildView::OnApply (WPARAM wParam, LPARAM lParam)
{
 RECTPROP* prp = (RECTPROP*) lParam;
 m_nWidth = prp->nWidth;
 m_nHeight = prp->nHeight;
 m_nUnits = prp->nUnits;
 Invalidate ();
 return 0;
}

LRESULT CChildView::OnDialogDestroyed (WPARAM wParam, LPARAM
lParam)
{
 m_pDlg = NULL;
 return 0;
}

OptionsDialog.h

Programming Windows With MFC

 488

#if !defined(AFX_OPTIONSDIALOG_H__7040DB90_9039_11D2_8E53_006008A82731__INCLUDED
_)
#define
AFX_OPTIONSDIALOG_H__7040DB90_9039_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// OptionsDialog.h : header file
//

///
// COptionsDialog dialog

class COptionsDialog : public CDialog
{
// Construction
public:
 COptionsDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(COptionsDialog)
 enum { IDD = IDD_OPTIONS };
 int m_nWidth;
 int m_nHeight;
 int m_nUnits;
 //}}AFX_DATA

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(COptionsDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 virtual void PostNcDestroy();
 //}}AFX_VIRTUAL
 virtual void OnOK ();
 virtual void OnCancel ();

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(COptionsDialog)
 afx_msg void OnReset();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//

Programming Windows With MFC

 489

AFX_OPTIONSDIALOG_H__7040DB90_9039_11D2_8E53_006008A82731__INCLUDED_)

OptionsDialog.cpp

// OptionsDialog.cpp : implementation file
//

#include "stdafx.h"
#include "DlgDemo2.h"
#include "OptionsDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// COptionsDialog dialog

COptionsDialog::COptionsDialog(CWnd* pParent /*=NULL*/)
 : CDialog(COptionsDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(COptionsDialog)
 m_nWidth = 0;
 m_nHeight = 0;
 m_nUnits = -1;
 //}}AFX_DATA_INIT
}

void COptionsDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(COptionsDialog)
 DDX_Text(pDX, IDC_WIDTH, m_nWidth);
 DDX_Text(pDX, IDC_HEIGHT, m_nHeight);
 DDX_Radio(pDX, IDC_INCHES, m_nUnits);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(COptionsDialog, CDialog)
 //{{AFX_MSG_MAP(COptionsDialog)
 ON_BN_CLICKED(IDC_RESET, OnReset)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// COptionsDialog message handlers

void COptionsDialog::OnReset()
{
 m_nWidth = 4;
 m_nHeight = 2;
 m_nUnits = 0;
 UpdateData (FALSE);
}

Programming Windows With MFC

 490

void COptionsDialog::OnOK ()
{
 UpdateData (TRUE);

 RECTPROP rp;
 rp.nWidth = m_nWidth;
 rp.nHeight = m_nHeight;
 rp.nUnits = m_nUnits;

 AfxGetMainWnd ()->SendMessage (WM_USER_APPLY, 0, (LPARAM)
&rp);
}

void COptionsDialog::OnCancel ()
{
 DestroyWindow ();
}

void COptionsDialog::PostNcDestroy ()
{
 CDialog::PostNcDestroy ();
 AfxGetMainWnd ()->SendMessage
(WM_USER_DIALOG_DESTROYED, 0, 0);
 delete this;
}

As before, the Options dialog box is invoked by selecting
Options from the File menu. Here's the code in OnFileOptions
that constructs the dialog object, initializes the dialog's data
members, and creates the dialog box:

m_pDlg = new COptionsDialog;
m_pDlg->m_nWidth = m_nWidth;
m_pDlg->m_nHeight = m_nHeight;
m_pDlg->m_nUnits = m_nUnits;
m_pDlg->Create (IDD_OPTIONS);
m_pDlg->ShowWindow (SW_SHOW);

To avoid automatic destruction, the dialog object is created on
the heap rather than on the stack. The dialog pointer is saved in
CChildView::m_pDlg, which is initialized to NULL by
CChildView's constructor and reset to NULL when the dialog
box is destroyed. Any member function of CChildView can
determine whether the dialog box is currently displayed by
checking m_pDlg for a non-NULL value. This turns out to be
quite useful because before creating the Options dialog box,
OnFileOptions checks m_pDlg to see whether the dialog box is
already displayed. If the answer is yes, OnFileOptions uses the

Programming Windows With MFC

 491

m_pDlg pointer to set the focus to the existing dialog box rather
than create a new one:

if (m_pDlg != NULL)
 m_pDlg->SetFocus ();

Without this precaution, every invocation of File-Options
would create a new instance of the dialog, even if other
instances already existed. There's normally no reason to have
two or more copies of the same dialog box on the screen at the
same time, so you shouldn't allow the user to open multiple
instances of a modeless dialog box unless circumstances
warrant it.

8.2.1.1. Processing the Apply and Close Buttons

One of the fundamental differences in implementing modal and
modeless dialog boxes with MFC is how the dialog classes
handle OnOK and OnCancel. A modal dialog class rarely
overrides OnCancel because the default implementation in
CDialog calls EndDialog to close the dialog box and return
IDCANCEL. OnOK rarely needs to be overridden because the
CDialog implementation of OnOK calls UpdateData to update
the dialog's data members before dismissing the dialog box. If
the dialog box's controls and data members are linked via DDX
or DDV, the default action provided by CDialog::OnOK is
usually sufficient.

A modeless dialog box, by contrast, almost always overrides
OnOK and OnCancel. As mentioned earlier, it's important to
prevent CDialog::OnOK and CDialog::OnCancel from being
called in a modeless dialog box because modeless dialog boxes
are dismissed with DestroyWindow, not EndDialog. You
should override OnOK if any button in the dialog box has the
ID IDOK. You should always override OnCancel because an
IDCANCEL notification is sent when the user presses the Esc
key or clicks the dialog box's close button, regardless of
whether the dialog box contains a Cancel button.

Because clicking DlgDemo2's Apply and Close buttons
generates calls to On-OK and OnCancel, both functions are
overridden in COptionsDialog. COptionsDialog::OnOK
contains the following statements:

Programming Windows With MFC

 492

UpdateData (TRUE);

RECTPROP rp;
rp.nWidth = m_nWidth;
rp.nHeight = m_nHeight;
rp.nUnits = m_nUnits;

AfxGetMainWnd ()->SendMessage (WM_USER_APPLY, 0,
(LPARAM) &rp);

The first statement updates the dialog's member variables to
match the current state of the controls. A modeless dialog box
that uses DDX or DDV must call UpdateData itself because
calling CDialog::OnOK and letting it call UpdateData is out of
the question. The next block of statements instantiates the
RECTPROP structure declared in Stdafx.h and copies the new
settings from the dialog's data members to the data structure.
The final statement sends a message to the application's main
window telling it to apply the settings contained in the
RECTPROP structure to the dialog box. WM_USER_APPLY
is a user-defined message that's defined this way in Stdafx.h:

#define WM_USER_APPLY WM_USER+0x100

WM_USER, which is defined as 0x400 in the header file
Winuser.h, specifies the low end of a range of message IDs an
application can use without conflicting with the message IDs of
standard Windows messages such as WM_CREATE and
WM_PAINT. An application is free to use message IDs from
WM_USER's 0x400 through 0x7FFF for its own purposes.
Messages in this range are referred to as user-defined messages.
Because dialog boxes use some message IDs in this range
themselves, DlgDemo2 arbitrarily adds 0x100 to WM_USER
to avoid conflicts.

A message transmitted with SendMessage includes two
parameters the sender can use to pass data to the receiver: a
32-bit value of type WPARAM and another 32-bit value whose
type is LPARAM. When COptionsDialog::OnOK sends a
message to the main window, it sends along a pointer to a
RECTPROP structure containing the settings retrieved from the
dialog box. The main window processes the message with

Programming Windows With MFC

 493

CMainFrame::OnApply, which is referenced in the message
map with the following statement:

ON_MESSAGE (WM_USER_APPLY, OnApply);

When activated, OnApply forwards the message to the view:

LRESULT CMainFrame::OnApply (WPARAM wParam, LPARAM
lParam)
{
 m_wndView.SendMessage (WM_USER_APPLY, wParam,
lParam);
 return 0;
}

CChildView::OnApply, in turn, copies the values out of the data
structure and into its own data members. It then invalidates the
view to force a repaint incorporating the new settings:

LRESULT CChildView::OnApply (WPARAM wParam, LPARAM
lParam)
{
 RECTPROP* prp = (RECTPROP*) lParam;
 m_nWidth = prp->nWidth;
 m_nHeight = prp->nHeight;
 m_nUnits = prp->nUnits;
 Invalidate ();
 return 0;
}

The value returned by a handler for a user-defined message is
returned to the caller through SendMessage. DlgDemo2
attaches no meaning to the return value, so both
CMainFrame::OnApply and CChildView::OnApply return 0.

COptionsDialog::OnCancel contains just one statement: a call
to DestroyWindow to destroy the dialog box. Ultimately, this
action activates COptionsDialog::PostNcDestroy, which is
implemented as follows:

void COptionsDialog::PostNcDestroy ()
{
 CDialog::PostNcDestroy ();
 AfxGetMainWnd ()->SendMessage

Programming Windows With MFC

 494

(WM_USER_DIALOG_DESTROYED, 0, 0);
 delete this;
}

This SendMessage sends a different user-defined message to
the main window. The main window's
WM_USER_DIALOG_DESTROYED handler,
CMainFrame::OnDialogDestroyed, forwards the message to
the view, whose WM_USER_DIALOG_DESTROYED handler
responds by setting m_pDlg to NULL. Its work almost done,
PostNcDestroy finishes up by executing a delete this statement
to delete the dialog object created by
CChildView::OnFileOptions.

8.3. Using a Dialog Box as a Main Window

If you write an application whose primary user interface is a
dialog-like collection of controls, you should consider using a
dialog box as a main window. Charles Petzold immortalizes
this technique with the HEXCALC program featured in his
book Programming Windows. Scores of developers have used
similar techniques for creating small, utility-type application
programs whose main windows are more easily defined in
dialog templates than within the programmatic confines of
OnCreate handlers.

Writing a dialog-based application is a snap thanks to
AppWizard. One of the options in AppWizard's Step 1 dialog
box is a radio button labeled Dialog Based. Checking this
button prompts AppWizard to generate an application whose
main window is a dialog box. AppWizard creates the dialog
resource for you and derives a dialog class from CDialog. It
also emits a special version of InitInstance that instantiates the
dialog class and calls its DoModal function to display the
dialog box on the screen when the application is started. All
you have to do is add controls to the dialog in the resource
editor and write message handlers to respond to control events.
The AppWizard-generated code handles everything else.

The DlgCalc application shown in Figure 8-9 is an example of
a dialog-based MFC application. DlgCalc is a calculator applet.
It differs from the calculator applet supplied with Windows in
one important respect: it uses postfix notation, which is also

Programming Windows With MFC

 495

known as reverse Polish notation, or RPN. Postfix notation is
the form of data entry used by Hewlett-Packard calculators.
Once you've grown accustomed to postfix notation, you'll never
want to use a conventional calculator again.

Figure 8-9. The DlgCalc window.

DlgCalc's source code appears in Figure 8-10. The main
window is created in CDlgCalcApp::InitInstance, which
constructs a CDlgCalcDlg object, copies the object's address to
the application object's m_pMainWnd data member, and calls
DoModal to display the window:

CDlgCalcDlg dlg;
m_pMainWnd = &dlg;
dlg.DoModal ();

CDlgCalcDlg is the dialog class that AppWizard derived from
CDialog. The window created from it is a dialog box in every
sense of the term, but it doubles as a main window since it has
no parent and its address is tucked away in m_pMainWnd. I
deleted some of the code that AppWizard placed in
InitInstance—notably, the code that tests DoModal's return
value—because it served no purpose in this application. I also
deleted the WM_QUERYDRAGICON handler that AppWizard
included in the dialog class and the AppWizard-generated
OnPaint code that paints the application icon when the window
is minimized because neither is needed unless your application
will be run on old versions of Windows—specifically, versions
that use the Windows 3.x_style shell.

Programming Windows With MFC

 496

Figure 8-10. The DlgCalc application.

DlgCalc.h

// DlgCalc.h : main header file for the DLGCALC application
//

#if !defined(AFX_DLGCALC_H__F42970C4_9047_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_DLGCALC_H__F42970C4_9047_11D2_8E53_006008A82731__INCLUDE
D_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CDlgCalcApp:
// See DlgCalc.cpp for the implementation of this class
//

class CDlgCalcApp : public CWinApp
{
public:
 CDlgCalcApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CDlgCalcApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CDlgCalcApp)
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_DLGCALC_H__F42970C4_9047_11D2_8E53_006008A82731__INCLUDED
_)

Programming Windows With MFC

 497

DlgCalc.cpp

// DlgCalc.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "DlgCalc.h"
#include "DlgCalcDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CDlgCalcApp

BEGIN_MESSAGE_MAP(CDlgCalcApp, CWinApp)
 //{{AFX_MSG_MAP(CDlgCalcApp)
 //}}AFX_MSG
 ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CDlgCalcApp construction

CDlgCalcApp::CDlgCalcApp()
{
}

///
// The one and only CDlgCalcApp object

CDlgCalcApp theApp;

///
// CDlgCalcApp initialization

BOOL CDlgCalcApp::InitInstance()
{
 CDlgCalcDlg dlg;
 m_pMainWnd = &dlg;
 dlg.DoModal ();
 return FALSE;
}

DlgCalcDlg.h

Programming Windows With MFC

 498

// DlgCalcDlg.h : header file
//

#if !defined(AFX_DLGCALCDLG_H__F42970C6_9047_11D2_8E53_006008A82731__INCL
UDED_)
#define
AFX_DLGCALCDLG_H__F42970C6_9047_11D2_8E53_006008A82731__INCL
UDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CDlgCalcDlg dialog

class CDlgCalcDlg : public CDialog
{
// Construction
public:
 void UpdateDisplay (LPCTSTR pszDisplay);
 CDlgCalcDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CDlgCalcDlg)
 enum { IDD = IDD_DLGCALC_DIALOG };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CDlgCalcDlg)
 public:
 virtual BOOL PreTranslateMessage(MSG* pMsg);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

// Implementation
protected:
 void DropStack();
 void LiftStack();
 void DisplayXRegister();

 double m_dblStack[4];
 double m_dblMemory;
 CString m_strDisplay;
 CString m_strFormat;
 CRect m_rect;
 int m_cxChar;
 int m_cyChar;

 BOOL m_bFixPending;
 BOOL m_bErrorFlag;
 BOOL m_bDecimalInString;
 BOOL m_bStackLiftEnabled;
 BOOL m_bNewX;

Programming Windows With MFC

 499

 HICON m_hIcon;
 HACCEL m_hAccel;

 // Generated message map functions
 //{{AFX_MSG(CDlgCalcDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg void OnAdd();
 afx_msg void OnSubtract();
 afx_msg void OnMultiply();
 afx_msg void OnDivide();
 afx_msg void OnEnter();
 afx_msg void OnChangeSign();
 afx_msg void OnExponent();
 afx_msg void OnStore();
 afx_msg void OnRecall();
 afx_msg void OnFix();
 afx_msg void OnClear();
 afx_msg void OnDecimal();
 afx_msg void OnDelete();
 //}}AFX_MSG
 afx_msg void OnDigit(UINT nID);
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_DLGCALCDLG_H__F42970C6_9047_11D2_8E53_006008A82731__INCL
UDED_)

DlgCalcDlg.cpp

// DlgCalcDlg.cpp : implementation file
//

#include "stdafx.h"
#include "DlgCalc.h"
#include "DlgCalcDlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CDlgCalcDlg dialog

CDlgCalcDlg::CDlgCalcDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CDlgCalcDlg::IDD, pParent)
{

Programming Windows With MFC

 500

 //{{AFX_DATA_INIT(CDlgCalcDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
 m_hAccel = ::LoadAccelerators (AfxGetInstanceHandle (),
 MAKEINTRESOURCE (IDR_ACCEL));

 m_bFixPending = FALSE;
 m_bErrorFlag = FALSE;
 m_bDecimalInString = FALSE;
 m_bStackLiftEnabled = FALSE;
 m_bNewX = TRUE;

 for (int i=0; i<4; i++)
 m_dblStack[i] = 0.0;
 m_dblMemory = 0.0;
 m_strFormat = _T ("%0.2f");
}

void CDlgCalcDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CDlgCalcDlg)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CDlgCalcDlg, CDialog)
 //{{AFX_MSG_MAP(CDlgCalcDlg)
 ON_WM_PAINT()
 ON_BN_CLICKED(IDC_ADD, OnAdd)
 ON_BN_CLICKED(IDC_SUBTRACT, OnSubtract)
 ON_BN_CLICKED(IDC_MULTIPLY, OnMultiply)
 ON_BN_CLICKED(IDC_DIVIDE, OnDivide)
 ON_BN_CLICKED(IDC_ENTER, OnEnter)
 ON_BN_CLICKED(IDC_CHGSIGN, OnChangeSign)
 ON_BN_CLICKED(IDC_EXP, OnExponent)
 ON_BN_CLICKED(IDC_STO, OnStore)
 ON_BN_CLICKED(IDC_RCL, OnRecall)
 ON_BN_CLICKED(IDC_FIX, OnFix)
 ON_BN_CLICKED(IDC_CLX, OnClear)
 ON_BN_CLICKED(IDC_DECIMAL, OnDecimal)
 ON_BN_CLICKED(IDC_DEL, OnDelete)
 //}}AFX_MSG_MAP
 ON_CONTROL_RANGE (BN_CLICKED, IDC_0, IDC_9, OnDigit)
END_MESSAGE_MAP()

///
// CDlgCalcDlg message handlers

BOOL CDlgCalcDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 //
 // Set the application's icon.

Programming Windows With MFC

 501

 //
 SetIcon(m_hIcon, TRUE);
 SetIcon(m_hIcon, FALSE);

 //
 // Remove the Size and Maximize commands from the system menu.
 //
 CMenu* pMenu = GetSystemMenu (FALSE);
 pMenu->DeleteMenu (SC_SIZE, MF_BYCOMMAND);
 pMenu->DeleteMenu (SC_MAXIMIZE, MF_BYCOMMAND);

 //
 // Initialize m_rect with the coordinates of the control representing
 // the calculator's output window. Then destroy the control.
 //
 CWnd* pWnd = GetDlgItem (IDC_DISPLAYRECT);
 pWnd->GetWindowRect (&m_rect);
 pWnd->DestroyWindow ();
 ScreenToClient (&m_rect);

 //
 // Initialize m_cxChar and m_cyChar with the average character width
 // and height.
 //
 TEXTMETRIC tm;
 CClientDC dc (this);
 dc.GetTextMetrics (&tm);
 m_cxChar = tm.tmAveCharWidth;
 m_cyChar = tm.tmHeight - tm.tmDescent;

 //
 // Initialize the calculator's output window and return.
 //
 DisplayXRegister ();
 return TRUE;
}

void CDlgCalcDlg::OnPaint()
{
 CPaintDC dc (this);
 dc.DrawEdge (m_rect, EDGE_SUNKEN, BF_RECT);
 UpdateDisplay (m_strDisplay);
}

BOOL CDlgCalcDlg::PreTranslateMessage(MSG* pMsg)
{
 if (m_hAccel != NULL)
 if (::TranslateAccelerator (m_hWnd, m_hAccel, pMsg))
 return TRUE;

 return CDialog::PreTranslateMessage (pMsg);
}

BOOL CDlgCalcDlg::OnCommand(WPARAM wParam, LPARAM lParam)
{
 int nID = (int) LOWORD (wParam);

Programming Windows With MFC

 502

 if (m_bErrorFlag && (nID != IDC_CLX)) {
 ::MessageBeep (MB_ICONASTERISK);
 return TRUE;
 }

 if (m_bFixPending &&
 ((nID < IDC_0) ¦¦ (nID > IDC_9)) &&
 (nID != IDC_CLX)) {
 ::MessageBeep (MB_ICONASTERISK);
 return TRUE;
 }
 return CDialog::OnCommand (wParam, lParam);
}

void CDlgCalcDlg::OnDigit(UINT nID)
{
 TCHAR cDigit = (char) nID;

 if (m_bFixPending) {
 m_strFormat.SetAt (3, cDigit - IDC_0 + 0x30);
 DisplayXRegister ();
 m_bFixPending = FALSE;
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
 return;
 }

 if (m_bNewX) {
 m_bNewX = FALSE;
 if (m_bStackLiftEnabled) {
 m_bStackLiftEnabled = FALSE;
 LiftStack ();
 }
 m_bDecimalInString = FALSE;
 m_strDisplay.Empty ();
 }

 int nLength = m_strDisplay.GetLength ();
 if ((nLength == MAXCHARS) ¦¦
 ((nLength == (MAXCHARS - 10)) && !m_bDecimalInString))
 ::MessageBeep (MB_ICONASTERISK);
 else {
 m_strDisplay += (cDigit - IDC_0 + 0x30);
 UpdateDisplay (m_strDisplay);
 m_dblStack[0] = _tcstod (m_strDisplay.GetBuffer (0), NULL);
 }
}

void CDlgCalcDlg::OnAdd()
{
 m_dblStack[0] += m_dblStack[1];
 DisplayXRegister ();
 DropStack ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;

Programming Windows With MFC

 503

}

void CDlgCalcDlg::OnSubtract()
{
 m_dblStack[0] = m_dblStack[1] - m_dblStack[0];
 DisplayXRegister ();
 DropStack ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
}

void CDlgCalcDlg::OnMultiply()
{
 m_dblStack[0] *= m_dblStack[1];
 DisplayXRegister ();
 DropStack ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
}

void CDlgCalcDlg::OnDivide()
{
 if (m_dblStack[0] == 0.0) {
 m_bErrorFlag = TRUE;
 ::MessageBeep (MB_ICONASTERISK);
 UpdateDisplay (CString (_T ("Divide by zero")));
 }
 else {
 m_dblStack[0] = m_dblStack[1] / m_dblStack[0];
 DisplayXRegister ();
 DropStack ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
 }
}

void CDlgCalcDlg::OnEnter()
{
 LiftStack ();
 DisplayXRegister ();
 m_bStackLiftEnabled = FALSE;
 m_bNewX = TRUE;
}

void CDlgCalcDlg::OnChangeSign()
{
 if (m_dblStack[0] != 0.0) {
 m_dblStack[0] = -m_dblStack[0];
 if (m_strDisplay[0] == _T (`-')) {
 int nLength = m_strDisplay.GetLength ();
 m_strDisplay = m_strDisplay.Right (nLength - 1);
 }
 else
 m_strDisplay = _T ("-") + m_strDisplay;
 UpdateDisplay (m_strDisplay);
 }

Programming Windows With MFC

 504

}

void CDlgCalcDlg::OnExponent()
{
 if (((m_dblStack[1] == 0.0) && (m_dblStack[0] < 0.0)) ¦¦
 ((m_dblStack[1] == 0.0) && (m_dblStack[0] == 0.0)) ¦¦
 ((m_dblStack[1] < 0.0) &&
 (floor (m_dblStack[0]) != m_dblStack[0]))) {
 m_bErrorFlag = TRUE;
 ::MessageBeep (MB_ICONASTERISK);
 UpdateDisplay (CString (_T ("Invalid operation")));
 }
 else {
 m_dblStack[0] = pow (m_dblStack[1], m_dblStack[0]);
 DisplayXRegister ();
 DropStack ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
 }
}

void CDlgCalcDlg::OnStore()
{
 DisplayXRegister ();
 m_dblMemory = m_dblStack[0];
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
}

void CDlgCalcDlg::OnRecall()
{
 LiftStack ();
 m_dblStack[0] = m_dblMemory;
 DisplayXRegister ();
 m_bStackLiftEnabled = TRUE;
 m_bNewX = TRUE;
}

void CDlgCalcDlg::OnFix()
{
 m_bFixPending = TRUE;
}

void CDlgCalcDlg::OnClear()
{
 if (m_bFixPending) {
 m_bFixPending = FALSE;
 return;
 }

 m_bErrorFlag = FALSE;
 m_dblStack[0] = 0.0;
 DisplayXRegister ();
 m_bStackLiftEnabled = FALSE;
 m_bNewX = TRUE;
}

Programming Windows With MFC

 505

void CDlgCalcDlg::OnDecimal()
{
 if (m_bNewX) {
 m_bNewX = FALSE;
 if (m_bStackLiftEnabled) {
 m_bStackLiftEnabled = FALSE;
 LiftStack ();
 }
 m_bDecimalInString = FALSE;
 m_strDisplay.Empty ();
 }

 int nLength = m_strDisplay.GetLength ();
 if ((nLength == MAXCHARS) ¦¦ (m_bDecimalInString))
 ::MessageBeep (MB_ICONASTERISK);
 else {
 m_bDecimalInString = TRUE;
 m_strDisplay += (char) 0x2E;
 UpdateDisplay (m_strDisplay);
 m_dblStack[0] = strtod (m_strDisplay.GetBuffer (0), NULL);
 }
}

void CDlgCalcDlg::OnDelete()
{
 int nLength = m_strDisplay.GetLength ();

 if (!m_bNewX && (nLength != 0)) {
 if (m_strDisplay[nLength - 1] == _T (`.'))
 m_bDecimalInString = FALSE;
 m_strDisplay = m_strDisplay.Left (nLength - 1);
 UpdateDisplay (m_strDisplay);
 m_dblStack[0] = strtod (m_strDisplay.GetBuffer (0), NULL);
 }
}

void CDlgCalcDlg::LiftStack()
{
 for (int i=3; i>0; i--)
 m_dblStack[i] = m_dblStack[i-1];
}

void CDlgCalcDlg::DropStack()
{
 for (int i=1; i<3; i++)
 m_dblStack[i] = m_dblStack[i+1];
}

void CDlgCalcDlg::DisplayXRegister()
{
 double dblVal = m_dblStack[0];

 if ((dblVal >= 1000000000000.0) ¦¦ (dblVal <= -1000000000000.0)) {
 UpdateDisplay (CString (_T ("Overflow error")));
 m_bErrorFlag = TRUE;

Programming Windows With MFC

 506

 MessageBeep (MB_ICONASTERISK);
 }
 else {
 m_strDisplay.Format (m_strFormat, dblVal);
 UpdateDisplay (m_strDisplay);
 }
}

void CDlgCalcDlg::UpdateDisplay(LPCTSTR pszDisplay)
{
 CClientDC dc (this);
 CFont* pOldFont = dc.SelectObject (GetFont ());
 CSize size = dc.GetTextExtent (pszDisplay);

 CRect rect = m_rect;
 rect.InflateRect (-2, -2);
 int x = rect.right - size.cx - m_cxChar;
 int y = rect.top + ((rect.Height () - m_cyChar) / 2);

 dc.ExtTextOut (x, y, ETO_OPAQUE, rect, pszDisplay, NULL);
 dc.SelectObject (pOldFont);
}

By default, the main window in a dialog-based application
created by AppWizard doesn't have a minimize button. I added
one to the title bar by opening the dialog box in the dialog
editor and checking Minimize Button in the dialog's property
sheet.

The bulk of the code in DlgCalcDlg.cpp is there to process
clicks of the calculator buttons. Thanks to this code, DlgCalc
works very much like a genuine RPN calculator. To add 2 and
2, for example, you would type

2 <Enter> 2 +

To multiply 3.46 by 9, add 13, divide by 10, and raise the result
to a power of 2.5, you would type

3.46 <Enter> 9 * 13 + 10 / 2.5 <Exp>

The Sto key copies the number in the calculator display to
memory (stores it), and Rcl recalls it. Clx clears the calculator
display (the "x" in "Clx" is a reference to the calculator's X
register, whose contents are always shown in the calculator
display), and the ± button changes the sign of the number that's
currently displayed. Fix sets the number of digits displayed to

Programming Windows With MFC

 507

the right of the decimal point. To change from two decimal
places to four, click Fix and then the 4 button. The Del button
deletes the rightmost character in the numeric display. For each
button on the face of the calculator, there is an equivalent key
on the keyboard, as shown in the following table. The P key
assigned to the ± button is a crude mnemonic for "plus or
minus." Most users find it slow going to click calculator
buttons with the mouse, so the keyboard shortcuts are an
important part of this application's user interface.

Keyboard Equivalents for DlgCalc's Calculator Buttons

Button(s) Key(s)

± P

Exp E

Sto S

Rcl R

Enter Enter

Fix F

Clx C

0-9 0-9

- -

+ +

x *

÷ /

. .

Del Del, Backspace

8.3.1. Processing Keyboard Messages

Because it's unusual for a dialog box to implement its own
keyboard interface on top of the one that Windows provides,
DlgCalc's keyboard processing logic deserves a closer look.

A fundamental problem with processing keystrokes in a dialog
box is that WM_CHAR messages are processed
by ::IsDialogMessage, which is called from every MFC
dialog's message loop. You can add an OnChar handler to a

Programming Windows With MFC

 508

dialog class, but it will never get called if ::IsDialogMessage
sees keyboard messages before ::TranslateMessage does.
Another problem is that once a control gets the input focus,
subsequent keyboard messages go to the control instead of to
the dialog window.

To circumvent these problems, I decided to use accelerators to
process keyboard input. I first created an accelerator resource
by selecting the Resource command from Visual C++'s Insert
menu and double-clicking "Accelerator." Then I added
accelerators for all the keys on the face of the calculator—"1"
for the IDC_1 button, "2" for the IDC_2 button, and so on.
Next I added an HACCEL member variable to CDlgCalcDlg
and inserted the following statement into CDlgCalcDlg's
constructor to load the accelerators:

m_hAccel = ::LoadAccelerators (AfxGetInstanceHandle (),
 MAKEINTRESOURCE (IDR_ACCELL));

Finally, I overrode PreTranslateMessage and replaced it with a
version that calls ::TranslateAccelerator on each message that
the dialog receives:

BOOL CCalcDialog::PreTranslateMessage (MSG* pMsg)
{
 if (m_hAccel != NULL)
 if (::TranslateAccelerator (m_hWnd, m_hAccel, pMsg))
 return TRUE;

 return CDialog::PreTranslateMessage (pMsg);
}

This way, ::TranslateAccelerator sees keyboard messages even
before ::IsDialogMessage does, and messages corresponding to
accelerator keys are magically transformed into
WM_COMMAND messages. Because the accelerator keys are
assigned the same command IDs as the calculator's push
buttons, the same ON_BN_CLICKED handlers process button
clicks and keypresses.

Programming Windows With MFC

 509

8.3.2. Preprocessing WM_COMMAND Messages

Before a WM_COMMAND message emanating from a control
is routed through a class's message map, MFC calls the class's
virtual OnCommand function. The default implementation of
OnCommand is the starting point for a command routing
system put in place to ensure that all relevant objects associated
with a running application program, including the document,
view, and application objects used in document/view
applications, see the message and get a crack at processing it. If
desired, an application can preprocess WM_COMMAND
messages by overriding OnCommand. When preprocessing is
complete, the application can call the base class's OnCommand
function to pass the message on for normal processing, or it can
"eat" the message by returning without calling the base class.
An OnCommand handler that doesn't call the base class should
return TRUE to inform Windows that message processing is
complete.

DlgCalc does something else unusual for an MFC application:
it overrides OnCommand and filters out selected
WM_COMMAND messages if either one of a pair of
CDlgCalcDlg member variables—m_bErrorFlag or
m_bFixPending—is nonzero. CDlgCalcDialog::OnCommand
begins by obtaining the ID of the control that generated the
message from the low word of the wParam value passed to it
by MFC:

int nID = (int) LOWORD (wParam);

It then examines m_bErrorFlag, which, if nonzero, indicates
that a divide-by-zero or other error has occurred. The user must
click Clx to clear the display after an error occurs, so
OnCommand rejects all buttons but Clx if m_bErrorFlag is
nonzero:

if (m_bErrorFlag && (nID != IDC_CLX)) {
 ::MessageBeep (MB_ICONASTERISK);
 return TRUE;
}

Similarly, if the m_bFixPending flag is set, indicating that the
calculator is awaiting a press of a numeric key following a

Programming Windows With MFC

 510

press of the Fix key, all buttons other than 0 through 9 and the
Clx key, which cancels a pending fix operation, are rejected:

if (m_bFixPending &&
 ((nID < IDC_0) ¦¦ (nID > IDC_9)) &&
 (nID != IDC_CLX)) {
 ::MessageBeep (MB_ICONASTERISK);
 return TRUE;
}

In both cases, the ::MessageBeep API function is called to
produce an audible tone signifying an invalid button press. The
base class's OnCommand handler is called only if
m_bErrorFlag and m_bFixPending are both 0. Putting the code
that tests these flags in the OnCommand handler prevents the
code from having to be duplicated in every ON_BN_CLICKED
handler.

Another item of interest related to WM_COMMAND messages
is the fact that DlgCalc processes clicks of the 0 through 9
buttons with a common handler. An ON_CONTROL_RANGE
statement hand-coded into the message map directs
BN_CLICKED notifications from each of the 10 buttons to
CDlgCalcDlg::OnDigit:

ON_CONTROL_RANGE (BN_CLICKED, IDC_0, IDC_9, OnDigit)

An ON_CONTROL_RANGE handler receives a UINT
parameter identifying the control that sent the notification, and
it returns void. In DlgCalc's case, the alternative to
ON_CONTROL_RANGE would have been 10 separate
ON_BN_CLICKED macros and a handler that called
CWnd::GetCurrentMessage to retrieve the control ID from the
message's wParam. One message-map entry is obviously more
memory-efficient than ten, and the job of extracting control IDs
from message parameters is best left to MFC when possible to
ensure compatibility with future versions of Windows.

8.4. Property Sheets

One feature of Windows that programmers of every stripe will
appreciate is property sheets—tabbed dialog boxes containing
pages of controls that the user can switch among with mouse

Programming Windows With MFC

 511

clicks. Property sheets live in the common controls library
provided with every copy of Windows. They're something of a
chore to program using the Windows API, but they're relatively
easy to implement in MFC thanks to the support provided by
the framework. In fact, adding a property sheet to an MFC
application isn't all that different from adding a dialog box. An
MFC application that uses property sheets and runs on
Windows 95 or later or Windows NT 3.51 or later uses the
operating system's native property sheet implementation. On
other platforms, MFC's private implementation is used instead.

The functionality of property sheets is neatly encapsulated in a
pair of MFC classes named CPropertySheet and
CPropertyPage. CPropertySheet represents the property sheet
itself and is derived from CWnd. CPropertyPage represents a
page in a property sheet and is derived from CDialog. Both are
defined in the header file Afxdlgs.h. Like dialog boxes,
property sheets can be modal or modeless.
CPropertySheet::DoModal creates a modal property sheet, and
CPropertySheet::Create creates a modeless property sheet.

The general procedure for creating a modal property sheet goes
like this:

1. For each page in the property sheet, create a dialog template defining the
page's contents and characteristics. Set the dialog title to the title you
want to appear on the tab at the top of the property sheet page.

2. For each page in the property sheet, derive a dialog-like class from
CPropertyPage that includes public data members linked to the page's
controls via DDX or DDV.

3. Derive a property sheet class from CPropertySheet. Instantiate the
property sheet class and the property sheet page classes you derived in
step 2. Use CPropertySheet::AddPage to add the pages to the property
sheet in the order in which you want them to appear.

4. Call the property sheet's DoModal function to display it on the screen.

To simplify property sheet creation, most MFC programmers
declare instances of their property sheet page classes inside the
derived property sheet class. They also write the property sheet
class's constructor such that it calls AddPage to add the pages
to the property sheet. The class declarations for a simple
property sheet and its pages might look like this:

class CFirstPage : public CPropertyPage
{
public:

Programming Windows With MFC

 512

 CFirstPage () : CPropertyPage (IDD_FIRSTPAGE) {};
 // Declare CFirstPage's data members here.

protected:
 virtual void DoDataExchange (CDataExchange*);
};

class CSecondPage : public CPropertyPage
{
public:
 CSecondPage () : CPropertyPage (IDD_SECONDPAGE) {};
 // Declare CSecondPage's data members here.

protected:
 virtual void DoDataExchange (CDataExchange*);
};

class CMyPropertySheet : public CPropertySheet
{
public:
 CFirstPage m_firstPage; // First page
 CSecondPage m_secondPage; // Second page

 // Constructor adds the pages automatically.
 CMyPropertySheet (LPCTSTR pszCaption,
 CWnd* pParentWnd = NULL) :
 CPropertySheet (pszCaption, pParentWnd, 0)
 {
 AddPage (&m_firstPage);
 AddPage (&m_secondPage);
 }
};

In this example, CFirstPage represents the first page in the
property sheet, and CSecondPage represents the second. The
associated dialog resources, which are referenced in the pages'
class constructors, are IDD_FIRSTPAGE and
IDD_SECONDPAGE. With this infrastructure in place, a
modal property sheet featuring the caption "Properties" in its
title bar can be constructed and displayed with two simple
statements:

CMyPropertySheet ps (_T ("Properties"));
ps.DoModal ();

Like CDialog::DoModal, CPropertySheet::DoModal returns
IDOK if the property sheet was dismissed with the OK button,
or IDCANCEL otherwise.

Programming Windows With MFC

 513

The dialog templates for property sheet pages shouldn't include
OK and Cancel buttons because the property sheet provides
these buttons. A property sheet also includes an Apply button
and an optional Help button. The Apply button is disabled
when the property sheet first appears and is enabled when a
property sheet page calls the SetModified function it inherits
from CPropertyPage and passes in TRUE. SetModified should
be called anytime the settings embodied in the property sheet
are changed—for example, whenever the text of an edit control
is modified or a radio button is clicked. To trap clicks of the
Apply button, you must include an ON_BN_CLICKED handler
in the derived property sheet class. The button's ID is
ID_APPLY_NOW. The click handler should call UpdateData
with a TRUE parameter to update the active page's member
variables and transmit the current property values to the
property sheet's owner. Afterward, the click handler should
disable the Apply button by calling SetModified with a FALSE
parameter—once for each of the property sheet pages.

Note that the Apply button's ON_BN_CLICKED handler calls
UpdateData for only the active property sheet page—the one
that's currently displayed. That's important, because property
sheet pages aren't physically created until they are activated by
the person using the property sheet. Calling UpdateData for a
property sheet page whose tab hasn't been clicked results in an
assertion error from MFC. The framework calls UpdateData
for the active page when the user switches to another page, so
when the user clicks the Apply button, the only page whose
data members need to be updated is the page that's currently
active. You can get a pointer to the active page with
CPropertySheet::GetActivePage.

Using DDX and DDV to transfer data between controls and
data members in property sheet pages and to validate data
extracted from the controls is more than a matter of
convenience; it allows MFC to do much of the dirty work
involved in property sheet handling. The first time a property
sheet page is displayed, for example, the page's OnInitDialog
function is called. The default implementation of OnInitDialog
calls UpdateData to initialize the page's controls. If the user
then clicks a tab to activate another page, the current page's
OnKillActive function is called and the framework calls
UpdateData to retrieve and validate the controls' data. Shortly

Programming Windows With MFC

 514

thereafter, the newly activated page receives an OnSetActive
notification and possibly an OnInitDialog notification, too. If
the user then goes on to click the property sheet's OK button,
the current page's OnOK handler is called and the framework
calls UpdateData to retrieve and validate that page's data.

The point is that a property sheet works the way it does because
the framework provides default implementations of key virtual
functions that govern the property sheet's behavior. You can
customize a property sheet's operation by overriding the pages'
OnInitDialog, OnSetActive, OnKillActive, OnOK, and
OnCancel functions and performing specialized processing of
your own; but if you do, be sure to call the equivalent functions
in the base class so that the framework can do its part. And if
you don't use DDX and DDV, you need to override all of these
functions for every page in the property sheet to ensure that
each page's data is handled properly. DDX and DDV simplify
property sheet usage by letting the framework do the bulk of
the work.

8.4.1. The PropDemo Application

The PropDemo application shown in Figure 8-11 is similar to
DlgDemo1 and DlgDemo2, but it uses a property sheet instead
of a dialog box to expose configuration settings to the user. The
property sheet's Size page contains controls for setting the size
of the ellipse displayed in the view. The Color page contains
controls for modifying the ellipse's color. The property sheet is
modal, so the main window can't be reactivated while the
property sheet is displayed.

Figure 8-11. The PropDemo window and property sheet.

Programming Windows With MFC

 515

Selected portions of PropDemo's source code are reproduced in
Figure 8-12. CMyPropertySheet represents the property sheet
itself, and CSizePage and CColorPage represent the property
sheet pages. All three classes were derived with ClassWizard.
Instances of CSizePage and CColorPage named m_sizePage
and m_colorPage are declared in CMyPropertySheet so that the
page objects will be constructed automatically when the
property sheet object is constructed. Furthermore, both
m_sizePage and m_colorPage are declared public so that they
can be accessed from outside of CMyPropertySheet.

The property sheet is created by
CChildView::OnFileProperties when the user selects the
Properties command from the File menu. After constructing a
CMyPropertySheet object on the stack, OnFileProperties
copies the current settings—width, height, units, and color—to
the corresponding member variables in the property sheet page
objects:

CMyPropertySheet ps (_T ("Properties"));
ps.m_sizePage.m_nWidth = m_nWidth;
ps.m_sizePage.m_nHeight = m_nHeight;
ps.m_sizePage.m_nUnits = m_nUnits;
ps.m_colorPage.m_nColor = m_nColor;

OnFileProperties then displays the property sheet by calling
DoModal. If the property sheet is dismissed with the OK button,
the new settings are copied from the property sheet pages and
Invalidate is called to repaint the view and apply the changes:

if (ps.DoModal () == IDOK) {
 m_nWidth = ps.m_sizePage.m_nWidth;
 m_nHeight = ps.m_sizePage.m_nHeight;
 m_nUnits = ps.m_sizePage.m_nUnits;
 m_nColor = ps.m_colorPage.m_nColor;
 Invalidate ();
}

Both CSizePage and CColorPage map ON_BN_CLICKED
notifications from radio buttons and EN_CHANGE
notifications from edit controls to a class member function
named OnChange. OnChange contains just one statement: a
call to SetModified to enable the property sheet's Apply button.
Consequently, any button click in a property sheet page, or any

Programming Windows With MFC

 516

change to the text of an edit control, automatically enables the
Apply button if it isn't already enabled.

When the Apply button is clicked, CMyPropertySheet's
OnApply function takes control. It first calls UpdateData on the
active property sheet page to transfer the user's input from the
page's controls to its data members. It then initializes an
ELLPROP structure with the property settings obtained from
each page's data members and sends a message to the main
window containing the structure's address. The main window
forwards the message to the view, which responds by copying
the property values to its own data members and calling
Invalidate to force a repaint. After SendMessage returns,
OnApply disables the Apply button by calling each property
sheet page's SetModified function.

Figure 8-12. The PropDemo application.

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__9CE2B4A8_9067_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__9CE2B4A8_9067_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)

Programming Windows With MFC

 517

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;
// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 afx_msg LRESULT OnApply (WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__9CE2B4A8_9067_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "PropDemo.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)

Programming Windows With MFC

 518

 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_APPLY, OnApply)
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

Programming Windows With MFC

 519

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 return -1;

 return 0;
}

LRESULT CMainFrame::OnApply (WPARAM wParam, LPARAM lParam)
{
 m_wndView.SendMessage (WM_USER_APPLY, wParam, lParam);
 return 0;
}

ChildView.h

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__9CE2B4AA_9067_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__9CE2B4AA_9067_11D2_8E53_006008A82731__INCLU
DED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides

Programming Windows With MFC

 520

 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 int m_nUnits;
 int m_nHeight;
 int m_nWidth;
 int m_nColor;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnFileProperties();
 //}}AFX_MSG
 afx_msg LRESULT OnApply (WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
//!defined(AFX_CHILDVIEW_H__9CE2B4AA_9067_11D2_8E53_006008A82731__INCLUD
ED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "PropDemo.h"
#include "ChildView.h"
#include "MyPropertySheet.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
 m_nWidth = 4;
 m_nHeight = 2;

Programming Windows With MFC

 521

 m_nUnits = 0;
 m_nColor = 0;
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_FILE_PROPERTIES, OnFileProperties)
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_APPLY, OnApply)
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // Device context for painting.

 CBrush brush (CColorPage::m_clrColors[m_nColor]);
 CBrush* pOldBrush = dc.SelectObject (&brush);

 switch (m_nUnits) {

 case 0: // Inches.
 dc.SetMapMode (MM_LOENGLISH);
 dc.Ellipse (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 1: // Centimeters.
 dc.SetMapMode (MM_LOMETRIC);
 dc.Ellipse (0, 0, m_nWidth * 100, -m_nHeight * 100);
 break;

 case 2: // Pixels.
 dc.SetMapMode (MM_TEXT);
 dc.Ellipse (0, 0, m_nWidth, m_nHeight);

Programming Windows With MFC

 522

 break;
 }
 dc.SelectObject (pOldBrush);
}

void CChildView::OnFileProperties()
{
 CMyPropertySheet ps (_T ("Properties"));
 ps.m_sizePage.m_nWidth = m_nWidth;
 ps.m_sizePage.m_nHeight = m_nHeight;
 ps.m_sizePage.m_nUnits = m_nUnits;
 ps.m_colorPage.m_nColor = m_nColor;

 if (ps.DoModal () == IDOK) {
 m_nWidth = ps.m_sizePage.m_nWidth;
 m_nHeight = ps.m_sizePage.m_nHeight;
 m_nUnits = ps.m_sizePage.m_nUnits;
 m_nColor = ps.m_colorPage.m_nColor;
 Invalidate ();
 }
}
LRESULT CChildView::OnApply (WPARAM wParam, LPARAM lParam)
{
 ELLPROP* pep = (ELLPROP*) lParam;
 m_nWidth = pep->nWidth;
 m_nHeight = pep->nHeight;
 m_nUnits = pep->nUnits;
 m_nColor = pep->nColor;
 Invalidate ();
 return 0;
}

MyPropertySheet.h

#if !defined(
AFX_MYPROPERTYSHEET_H__418271A3_90D4_11D2_8E53_006008A82731__INCLU

DED_)
#define
AFX_MYPROPERTYSHEET_H__418271A3_90D4_11D2_8E53_006008A82731__INCLUDED
_

#include "SizePage.h" // Added by ClassView
#include "ColorPage.h" // Added by ClassView
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// MyPropertySheet.h : header file
//

///
// CMyPropertySheet

class CMyPropertySheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CMyPropertySheet)

Programming Windows With MFC

 523

// Construction
public:
 CMyPropertySheet(UINT nIDCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);
 CMyPropertySheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

// Attributes
public:
 CColorPage m_colorPage;
 CSizePage m_sizePage;

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMyPropertySheet)
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMyPropertySheet();

 // Generated message map functions
protected:
 //{{AFX_MSG(CMyPropertySheet)
 // NOTE - the ClassWizard will add and remove
 // member functions here.
 //}}AFX_MSG
 afx_msg void OnApply ();
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_MYPROPERTYSHEET_H__418271A3_90D4_11D2_8E53_006008A82731__INCLUDED
_)

MyPropertySheet.cpp

// MyPropertySheet.cpp : implementation file
//

#include "stdafx.h"
#include "PropDemo.h"
#include "MyPropertySheet.h"

#ifdef _DEBUG
#define new DEBUG_NEW

Programming Windows With MFC

 524

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
///
// CMyPropertySheet

IMPLEMENT_DYNAMIC(CMyPropertySheet, CPropertySheet)

CMyPropertySheet::CMyPropertySheet(UINT nIDCaption, CWnd*
pParentWnd,
 UINT iSelectPage) : CPropertySheet(nIDCaption, pParentWnd,
iSelectPage)
{
 AddPage (&m_sizePage);
 AddPage (&m_colorPage);
}

CMyPropertySheet::CMyPropertySheet(LPCTSTR pszCaption, CWnd*
pParentWnd,
 UINT iSelectPage) : CPropertySheet(pszCaption, pParentWnd,
iSelectPage)
{
 AddPage (&m_sizePage);
 AddPage (&m_colorPage);
}

CMyPropertySheet::~CMyPropertySheet()
{
}

BEGIN_MESSAGE_MAP(CMyPropertySheet, CPropertySheet)
 //{{AFX_MSG_MAP(CMyPropertySheet)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 //}}AFX_MSG_MAP
 ON_BN_CLICKED (ID_APPLY_NOW, OnApply)
END_MESSAGE_MAP()

///
// CMyPropertySheet message handlers

void CMyPropertySheet::OnApply ()
{
 GetActivePage ()->UpdateData (TRUE);

 ELLPROP ep;
 ep.nWidth = m_sizePage.m_nWidth;
 ep.nHeight = m_sizePage.m_nHeight;
 ep.nUnits = m_sizePage.m_nUnits;
 ep.nColor = m_colorPage.m_nColor;

 GetParent ()->SendMessage (WM_USER_APPLY, 0, (LPARAM) &ep);

 m_sizePage.SetModified (FALSE);
 m_colorPage.SetModified (FALSE);
}

Programming Windows With MFC

 525

SizePage.h

#if !defined(AFX_SIZEPAGE_H__418271A1_90D4_11D2_8E53_006008A82731__INCLUDE
D_)
#define AFX_SIZEPAGE_H__418271A1_90D4_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// SizePage.h : header file
//

///
// CSizePage dialog

class CSizePage : public CPropertyPage
{
 DECLARE_DYNCREATE(CSizePage)

// Construction
public:
 CSizePage();
 ~CSizePage();

// Dialog Data
 //{{AFX_DATA(CSizePage)
 enum { IDD = IDD_SIZE_PAGE };
 int m_nWidth;
 int m_nHeight;
 int m_nUnits;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CSizePage)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CSizePage)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 afx_msg void OnChange ();
 DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif

Programming Windows With MFC

 526

//!defined(AFX_SIZEPAGE_H__418271A1_90D4_11D2_8E53_006008A82731__INCLUDED
_)

SizePage.cpp

// SizePage.cpp : implementation file
//

#include "stdafx.h"
#include "PropDemo.h"
#include "SizePage.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSizePage property page

IMPLEMENT_DYNCREATE(CSizePage, CPropertyPage)

CSizePage::CSizePage() : CPropertyPage(CSizePage::IDD)
{
 //{{AFX_DATA_INIT(CSizePage)
 m_nWidth = 0;
 m_nHeight = 0;
 m_nUnits = -1;
 //}}AFX_DATA_INIT
}

CSizePage::~CSizePage()
{
}

void CSizePage::DoDataExchange(CDataExchange* pDX)
{
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CSizePage)
 DDX_Text(pDX, IDC_WIDTH, m_nWidth);
 DDV_MinMaxInt(pDX, m_nWidth, 1, 128);
 DDX_Text(pDX, IDC_HEIGHT, m_nHeight);
 DDV_MinMaxInt(pDX, m_nHeight, 1, 128);
 DDX_Radio(pDX, IDC_INCHES, m_nUnits);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CSizePage, CPropertyPage)
 //{{AFX_MSG_MAP(CSizePage)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
 ON_EN_CHANGE (IDC_WIDTH, OnChange)
 ON_EN_CHANGE (IDC_HEIGHT, OnChange)
 ON_BN_CLICKED (IDC_INCHES, OnChange)
 ON_BN_CLICKED (IDC_CENTIMETERS, OnChange)

Programming Windows With MFC

 527

 ON_BN_CLICKED (IDC_PIXELS, OnChange)
END_MESSAGE_MAP()

///
// CSizePage message handlers

void CSizePage::OnChange ()
{
 SetModified (TRUE);
}

ColorPage.h

#if !defined(AFX_COLORPAGE_H__418271A2_90D4_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_COLORPAGE_H__418271A2_90D4_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// ColorPage.h : header file
//

///
// CColorPage dialog

class CColorPage : public CPropertyPage
{
 DECLARE_DYNCREATE(CColorPage)

// Construction
public:
 CColorPage();
 ~CColorPage();
 static const COLORREF m_clrColors[3];

// Dialog Data
 //{{AFX_DATA(CColorPage)
 enum { IDD = IDD_COLOR_PAGE };
 int m_nColor;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CColorPage)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CColorPage)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG

Programming Windows With MFC

 528

 afx_msg void OnChange ();
 DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
//defined(AFX_COLORPAGE_H__418271A2_90D4_11D2_8E53_006008A82731__INCLUDE
D_)

ColorPage.cpp

// ColorPage.cpp : implementation file
//

#include "stdafx.h"
#include "PropDemo.h"
#include "ColorPage.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CColorPage property page

IMPLEMENT_DYNCREATE(CColorPage, CPropertyPage)

const COLORREF CColorPage::m_clrColors[3] = {
 RGB (255, 0, 0), // Red
 RGB (0, 255, 0), // Green
 RGB (0, 0, 255) // Blue
};

CColorPage::CColorPage() : CPropertyPage(CColorPage::IDD)
{
 //{{AFX_DATA_INIT(CColorPage)
 m_nColor = -1;
 //}}AFX_DATA_INIT
}

CColorPage::~CColorPage()
{
}

void CColorPage::DoDataExchange(CDataExchange* pDX)
{
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CColorPage)
 DDX_Radio(pDX, IDC_RED, m_nColor);
 //}}AFX_DATA_MAP

Programming Windows With MFC

 529

}

BEGIN_MESSAGE_MAP(CColorPage, CPropertyPage)
 //{{AFX_MSG_MAP(CColorPage)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
 ON_BN_CLICKED (IDC_RED, OnChange)
 ON_BN_CLICKED (IDC_GREEN, OnChange)
 ON_BN_CLICKED (IDC_BLUE, OnChange)
END_MESSAGE_MAP()

///
// CColorPage message handlers

void CColorPage::OnChange ()
{
 SetModified (TRUE);
}

8.5. The Common Dialogs

Some dialog boxes appear so frequently in application
programs that they have rightfully taken their places as part of
the operating system. Before Windows 3.1, programmers had to
write their own Open and Save As dialog boxes to get a file
name from the user before opening or saving a file. Because
both the design and the implementation of these dialog boxes
were left up to the programmer, every Open and Save As dialog
box was different, and some were far inferior to others.
Windows 3.1 fixed this long-standing problem by providing
standard implementations of these and other commonly used
dialog boxes in a DLL known as the common dialog library.
Windows 95 enhanced the library with improved versions of
the Windows 3.1 common dialogs and a new Page Setup dialog
box for entering page layouts. Windows 98 and Windows 2000
further refine the common dialogs to make them more
functional than ever.

MFC provides C++ interfaces to the common dialogs with the
classes shown in the following table.

The Common Dialog Classes

Class Dialog Type(s)

CFileDialog Open and Save As dialog boxes

Programming Windows With MFC

 530

CPrintDialog Print and Print Setup dialog boxes

CPageSetupDialog Page Setup dialog boxes

CFindReplaceDialog Find and Replace dialog boxes

CColorDialog Color dialog boxes

CFontDialog Font dialog boxes

In an SDK-style application, a common dialog is invoked by
filling in the fields of a data structure and calling an API
function such as ::GetOpenFileName. When the function
returns, certain fields of the data structure contain values input
by the user. MFC simplifies the interface by providing default
input values for most fields and member functions for
retrieving data entered into the dialog box. In an MFC
application, getting a file name from the user before opening a
file is normally no more complicated than this:

TCHAR szFilters[] =
 _T ("Text files (*.txt)¦*.txt¦All files (*.*)¦*.*¦¦");

CFileDialog dlg (TRUE, _T ("txt"), _T ("*.txt"),
 OFN_FILEMUSTEXIST ¦ OFN_HIDEREADONLY, szFilters);

if (dlg.DoModal () == IDOK) {
 filename = dlg.GetPathName ();
 // Open the file and read it.

}

The TRUE parameter passed to CFileDialog's constructor tells
MFC to display an Open dialog box rather than a Save As
dialog box. The "txt" and "*.txt" parameters specify the default
file name extension—the extension that is appended to the file
name if the user doesn't enter an extension—and the text that
initially appears in the dialog's File Name box. The OFN values
are bit flags that specify the dialog's properties.
OFN_FILEMUSTEXIST tells the dialog to test the file name
the user enters and reject it if the file doesn't exist, and
OFN_HIDEREADONLY hides the read-only check box that
appears in the dialog box by default. szFilters points to a string
specifying the file types the user can select from. When
DoModal returns, the file name that the user entered, complete
with path name, can be retrieved with

Programming Windows With MFC

 531

CFileDialog::GetPathName. Other useful CFileDialog
functions include GetFileName, which retrieves a file name
without the path, and GetFileTitle, which retrieves a file name
with neither path nor extension.

Generally, you'll find that MFC's common dialog classes are
exceptionally easy to use, in part because you can often
instantiate a common dialog class directly and avoid deriving
classes of your own.

8.5.1. Modifying the Common Dialogs

You can modify the behavior of CFileDialog and other
common dialog classes in a number of ways. One method
involves nothing more than changing the parameters passed to
the dialog's constructor. For example,
CFileDialog::CFileDialog's fourth parameter accepts about
two dozen different bit flags affecting the dialog's appearance
and behavior. One use for these flags is to create an Open
dialog box that features a multiple-selection list box in which
the user can select several files instead of just one. Rather than
construct the dialog like this,

CFileDialog dlg (TRUE, _T ("txt"), _T ("*.txt"),
 OFN_FILEMUSTEXIST ¦ OFN_HIDEREADONLY, szFilters);

you would do it like this:

CFileDialog dlg (TRUE, _T ("txt"), _T ("*.txt"),
 OFN_FILEMUSTEXIST ¦ OFN_HIDEREADONLY ¦
OFN_ALLOWMULTISELECT,
 szFilters);

After DoModal returns, a list of file names is stored in the
buffer referenced by the dialog object's m_ofn.lpstrFile data
member. The file names are easily retrieved from the buffer
with CFileDialog's GetStartPosition and GetNextPathName
functions.

When you construct a dialog box from CFileDialog, the class
constructor fills in the fields of an OPENFILENAME structure
with values defining the title for the dialog window, the initial
directory, and other parameters. The structure's address is

Programming Windows With MFC

 532

subsequently passed to ::GetOpenFileName
or ::GetSaveFileName. Some of the values used to initialize the
structure are taken from CFileDialog's constructor parameter
list, but other parameters are filled with default values
appropriate for the majority of applications. Another way to
customize an Open or a Save As dialog box is to modify the
fields of the OPENFILENAME structure after constructing the
dialog object but before calling DoModal. The
OPENFILENAME structure is accessible through the public
data member m_ofn.

Suppose you'd like to change the title of a multiple-selection
file dialog to "Select File(s)" instead of "Open." In addition,
you'd like the file name filter that was selected when the dialog
box was closed to be selected again the next time the dialog
box is displayed. Here's how you could make these changes:

CFileDialog dlg (TRUE, _T ("txt"), NULL,
 OFN_FILEMUSTEXIST ¦ OFN_ALLOWMULTISELECT,
 szFilters);

dlg.m_ofn.nFilterIndex = m_nFilterIndex;
static char szTitle[] = _T ("Select File(s)");
dlg.m_ofn.lpstrTitle = szTitle;

if (dlg.DoModal () == IDOK) {
 m_nFilterIndex = dlg.m_ofn.nFilterIndex;

}

When the program is started, m_nFilterIndex should be set to 1.
The first time the dialog box is created, the first file filter will
be selected by default. When the user dismisses the dialog box
with the OK button, the index of the currently selected filter is
copied out of the OPENFILENAME structure and saved in
m_nFilterIndex. The next time the dialog box is invoked, the
same filter will be selected automatically. In other words, the
dialog box will remember the user's filter selection. For a more
thorough encapsulation, you could make m_nFilterIndex a part
of the dialog box rather than a member of an external class by
deriving your own dialog class from CFileDialog, declaring
m_nFilterIndex to be a static member variable of that class, and
initializing it to 1 before constructing a CMyFileDialog object
for the first time.

Programming Windows With MFC

 533

You can implement more extensive changes by deriving your
own dialog class from CFileDialog and overriding key virtual
functions. In addition to OnOK and OnCancel, you can
override the virtual functions OnFileNameOK,
OnLBSelChangedNotify, and OnShareViolation to customize
the way the dialog box validates file names, responds to
changes in file name selections, and handles sharing violations.
You can override OnInitDialog to perform all sorts of stunts,
such as increasing the size of the dialog box and adding or
deleting controls. (If you override CFileDialog::OnInitDialog,
be sure to call the base class version from your own
implementation.) You could, for example, stretch the dialog
box horizontally and create a preview area that displays a
thumbnail sketch of the contents of the currently selected file.
By overriding OnLBSelChangedNotify, you could update the
preview window when the selection changes.

8.5.2. The Phones Application

This chapter's final application, Phones, brings together into
one project many of the concepts discussed in this chapter and
in Chapter 7. As you can see in Figure 8-13, Phones is a simple
phone list program that stores names and phone numbers.
Names and phone numbers are entered and edited in a modal
dialog box that features a standard edit control for names, a
numeric edit control for phone numbers, and icon push buttons.
Data entered into the application can be saved to disk and read
back using the File menu's Open, Save, and Save As commands.
Phones uses CFileDialog to solicit file names from the user and
CStdioFile to perform its file I/O. It also uses the derived list
box class CPhonesListBox as the base class for CChildView,
and it uses message reflection in that class to allow the list box
to respond to its own double-click notifications. I hand-edited
the AppWizard-generated CChildView class to change the base
class from CWnd to CPhonesListBox. Pertinent portions of the
application's source code are shown in Figure 8-14.

Programming Windows With MFC

 534

Figure 8-13. The Phones window and dialog box.

Figure 8-14. The Phones application.

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__7BE4B248_90ED_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__7BE4B248_90ED_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{

public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)
// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)

Programming Windows With MFC

 535

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__7BE4B248_90ED_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Phones.h"
#include "PhonesListBox.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)

Programming Windows With MFC

 536

 ON_WM_SETFOCUS()
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics
#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling

Programming Windows With MFC

 537

 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndView.Create(WS_CHILD ¦ WS_VISIBLE ¦
LBS_USETABSTOPS ¦
 LBS_SORT ¦ LBS_NOTIFY ¦ LBS_NOINTEGRALHEIGHT,
CRect(0, 0, 0, 0),
 this, AFX_IDW_PANE_FIRST))
 return -1;

 return 0;
}

ChildView.h

// ChildView.h : interface of the CChildView class
//
///

#if !defined(AFX_CHILDVIEW_H__7BE4B24A_90ED_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__7BE4B24A_90ED_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CPhonesListBox
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

Programming Windows With MFC

 538

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 BOOL SaveFile (LPCTSTR pszFile);
 BOOL LoadFile (LPCTSTR pszFile);
 static const TCHAR m_szFilters[];
 CString m_strPathName;
 //{{AFX_MSG(CChildView)
 afx_msg void OnNewEntry();
 afx_msg void OnFileOpen();
 afx_msg void OnFileSave();
 afx_msg void OnFileSaveAs();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
// AFX_CHILDVIEW_H__7BE4B24A_90ED_11D2_8E53_006008A82731__INCLUDED_)

ChildView.cpp

// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "Phones.h"
#include "PhonesListBox.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

const TCHAR CChildView::m_szFilters[] =
 _T ("Phone Files (*.phn)¦*.phn¦All Files (*.*)¦*.*¦¦");

CChildView::CChildView()
{
}

CChildView::~CChildView()

Programming Windows With MFC

 539

{
}

BEGIN_MESSAGE_MAP(CChildView, CPhonesListBox)
 //{{AFX_MSG_MAP(CChildView)
 ON_COMMAND(ID_FILE_NEW, OnNewEntry)
 ON_COMMAND(ID_FILE_OPEN, OnFileOpen)
 ON_COMMAND(ID_FILE_SAVE, OnFileSave)
 ON_COMMAND(ID_FILE_SAVE_AS, OnFileSaveAs)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CPhonesListBox::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 return TRUE;
}

void CChildView::OnNewEntry()
{
 NewEntry ();
}

void CChildView::OnFileOpen()
{
 CFileDialog dlg (TRUE, _T ("phn"), _T ("*.phn"),
 OFN_FILEMUSTEXIST ¦ OFN_HIDEREADONLY, m_szFilters);

 if (dlg.DoModal () == IDOK) {
 if (LoadFile (dlg.GetPathName ())) {
 m_strPathName = dlg.GetPathName ();
 SetCurSel (0);
 }
 }
}

void CChildView::OnFileSave()
{
 if (!m_strPathName.IsEmpty ())
 SaveFile (m_strPathName);
 else // Need a file name first.
 OnFileSaveAs ();
}

void CChildView::OnFileSaveAs()
{
 CFileDialog dlg (FALSE, _T ("phn"), m_strPathName,
 OFN_OVERWRITEPROMPT ¦ OFN_PATHMUSTEXIST ¦
OFN_HIDEREADONLY,

Programming Windows With MFC

 540

 m_szFilters);

 if (dlg.DoModal () == IDOK)
 if (SaveFile (dlg.GetPathName ()))
 m_strPathName = dlg.GetPathName ();
}

BOOL CChildView::LoadFile(LPCTSTR pszFile)
{
 BOOL bResult = FALSE;

 try {
 CStdioFile file (pszFile, CFile::modeRead);
 ResetContent ();
 DWORD dwCount;
 file.Read (&dwCount, sizeof (dwCount));
 if (dwCount) {
 for (int i=0; i<(int) dwCount; i++) {
 CString string;
 file.ReadString (string);
 AddString (string);
 }
 }
 bResult = TRUE;
 }
 catch (CFileException* e) {
 e->ReportError ();
 e->Delete ();
 }
 return bResult;
}

BOOL CChildView::SaveFile(LPCTSTR pszFile)
{
 BOOL bResult = FALSE;

 try {
 CStdioFile file (pszFile, CFile::modeWrite ¦ CFile::modeCreate);
 DWORD dwCount = GetCount ();
 file.Write (&dwCount, sizeof (dwCount));
 if (dwCount) {
 for (int i=0; i<(int) dwCount; i++) {
 CString string;
 GetText (i, string);
 string += _T ("\n");
 file.WriteString (string);
 }
 }
 bResult = TRUE;
 }
 catch (CFileException* e) {
 e->ReportError ();
 e->Delete ();
 }
 return bResult;
}

Programming Windows With MFC

 541

PhonesListBox.h

#if
!defined(

AFX_PHONESLISTBOX_H__7BE4B250_90ED_11D2_8E53_006008A82731__INC
LUDED_)
#define
AFX_PHONESLISTBOX_H__7BE4B250_90ED_11D2_8E53_006008A82731__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// PhonesListBox.h : header file
//

///
// CPhonesListBox window

class CPhonesListBox : public CListBox
{
// Construction
public:
 CPhonesListBox();

// Attributes
public:

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPhonesListBox)
 //}}AFX_VIRTUAL

// Implementation
public:
 void NewEntry();
 virtual ~CPhonesListBox();

 // Generated message map functions
protected:
 CFont m_font;
 //{{AFX_MSG(CPhonesListBox)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnEditItem();
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

Programming Windows With MFC

 542

#endif
// !defined(
//
AFX_PHONESLISTBOX_H__7BE4B250_90ED_11D2_8E53_006008A82731__INCLUD
ED_)

PhonesListBox.cpp

// PhonesListBox.cpp : implementation file
//

#include "stdafx.h"
#include "Phones.h"
#include "PhonesListBox.h"
#include "PhoneEdit.h"
#include "EditDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CPhonesListBox

CPhonesListBox::CPhonesListBox()
{
}

CPhonesListBox::~CPhonesListBox()
{
}

BEGIN_MESSAGE_MAP(CPhonesListBox, CListBox)
 //{{AFX_MSG_MAP(CPhonesListBox)
 ON_WM_CREATE()
 ON_CONTROL_REFLECT(LBN_DBLCLK, OnEditItem)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CPhonesListBox message handlers

int CPhonesListBox::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CListBox::OnCreate(lpCreateStruct) == -1)
 return -1;

 m_font.CreatePointFont (80, _T ("MS Sans Serif"));
 SetFont (&m_font, FALSE);
 SetTabStops (128);
 return 0;
}

Programming Windows With MFC

 543

void CPhonesListBox::OnEditItem()
{
 CEditDialog dlg;

 CString strItem;
 int nIndex = GetCurSel ();
 GetText (nIndex, strItem);
 int nPos = strItem.Find (_T (`\t'));

 dlg.m_strName = strItem.Left (nPos);
 dlg.m_strPhone = strItem.Right (strItem.GetLength () - nPos - 1);
 if (dlg.DoModal () == IDOK) {
 strItem = dlg.m_strName + _T ("\t") + dlg.m_strPhone;
 DeleteString (nIndex);
 AddString (strItem);
 }
 SetFocus ();
}

void CPhonesListBox::NewEntry()
{
 CEditDialog dlg;
 if (dlg.DoModal () == IDOK) {
 CString strItem = dlg.m_strName + _T ("\t") + dlg.m_strPhone;
 AddString (strItem);
 }
 SetFocus ();
}

EditDialog.h

#if
!defined(AFX_EDITDIALOG_H__7BE4B252_90ED_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_EDITDIALOG_H__7BE4B252_90ED_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// EditDialog.h : header file
//

///
// CEditDialog dialog

class CEditDialog : public CDialog
{
// Construction
public:
 CEditDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CEditDialog)
 enum { IDD = IDD_EDITDLG };
 CButton m_wndOK;

Programming Windows With MFC

 544

 CButton m_wndCancel;
 CPhoneEdit m_wndPhoneEdit;
 CString m_strName;
 CString m_strPhone;
 //}}AFX_DATA

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEditDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CEditDialog)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_EDITDIALOG_H__7BE4B252_90ED_11D2_8E53_006008A82731__INCL
UDED_)

EditDialog.cpp

// EditDialog.cpp : implementation file
//

#include "stdafx.h"
#include "Phones.h"
#include "PhoneEdit.h"
#include "EditDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
///
// CEditDialog dialog

CEditDialog::CEditDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CEditDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CEditDialog)

Programming Windows With MFC

 545

 m_strName = _T("");
 m_strPhone = _T("");
 //}}AFX_DATA_INIT
}

void CEditDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CEditDialog)
 DDX_Control(pDX, IDOK, m_wndOK);
 DDX_Control(pDX, IDCANCEL, m_wndCancel);
 DDX_Control(pDX, IDC_PHONE, m_wndPhoneEdit);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDV_MaxChars(pDX, m_strName, 32);
 DDX_Text(pDX, IDC_PHONE, m_strPhone);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CEditDialog, CDialog)
 //{{AFX_MSG_MAP(CEditDialog)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CEditDialog message handlers

BOOL CEditDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_wndOK.SetIcon (AfxGetApp ()->LoadIcon (IDI_OK));
 m_wndCancel.SetIcon (AfxGetApp ()->LoadIcon (IDI_CANCEL));
 return TRUE;
}

PhoneEdit.h

#if !defined(AFX_PHONEEDIT_H__7BE4B251_90ED_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_PHONEEDIT_H__7BE4B251_90ED_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// PhoneEdit.h : header file
//

///
// CPhoneEdit window

class CPhoneEdit : public CEdit
{
// Construction
public:
 CPhoneEdit();

Programming Windows With MFC

 546

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPhoneEdit)
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CPhoneEdit();

 // Generated message map functions
protected:
 //{{AFX_MSG(CPhoneEdit)
 afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
//!defined(AFX_PHONEEDIT_H__7BE4B251_90ED_11D2_8E53_006008A82731__INCLUD
ED_)

PhoneEdit.cpp

// PhoneEdit.cpp : implementation file
//

#include "stdafx.h"
#include "Phones.h"
#include "PhoneEdit.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CPhoneEdit

CPhoneEdit::CPhoneEdit()
{
}

Programming Windows With MFC

 547

CPhoneEdit::~CPhoneEdit()
{
}

BEGIN_MESSAGE_MAP(CPhoneEdit, CEdit)
 //{{AFX_MSG_MAP(CPhoneEdit)
 ON_WM_CHAR()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CPhoneEdit message handlers

void CPhoneEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (((nChar >= _T (`0')) && (nChar <= _T (`9'))) ¦¦
 (nChar == VK_BACK) ¦¦ (nChar == _T (`(`)) ¦¦ (nChar == _T (`)')) ¦¦
 (nChar == _T (`-')) ¦¦ (nChar == _T (` `)))

 CEdit::OnChar(nChar, nRepCnt, nFlags);
}

One of the most subtle yet important elements of Phones'
source code is the innocent-looking statement

DDX_Control (pDX, IDC_PHONE, m_wndPhoneEdit);

in EditDialog.cpp. m_wndPhoneEdit is an instance of the
CEdit-derived class CPhoneEdit, which represents an edit
control that filters out nonnumeric characters. But
m_wndPhoneEdit is linked to IDC_PHONE, which is an
ordinary edit control created from the dialog template. The only
reason IDC_PHONE acts like a CPhoneEdit instead of a CEdit
is that DDX_Control subclasses the control and routes
messages destined for the control through m-wndPhoneEdit's
message map. The moral is both simple and profound.
Whenever you want a control in a dialog box to behave as if it
were an instance of a derived control class, map the control to a
class instance with DDX_Control. Otherwise, any special
behavior built into the derived class will go unused.

Phones does a reasonable job of demonstrating how MFC's
CFileDialog class is used and how documents can be written to
disk and read back. What it doesn't do very well is safeguard
the user's data. If a list of names and phone numbers contains
unsaved changes and another list is loaded or the application is
shut down, Phones doesn't prompt you to save your changes.

Programming Windows With MFC

 548

That's not how a real application should behave. Phones has
other shortcomings, too, such as the fact that it doesn't register
a file name extension with the operating system so that a saved
file can be opened with a double-click. But don't despair:
document handling is infinitely cleaner when performed in the
context of the document/view architecture, and in the next
chapter, we'll finally begin writing document/view applications.
Once we do, MFC will handle many of the mundane chores
expected of Windows applications, such as registering file
name extensions and giving users the opportunity to save
changes. If you've never written a document/view application
before, you'll be pleasantly surprised at the level of support the
framework provides.

Programming Windows With MFC

 549

PART Ⅱ: The Documents/View
Architecture
Chapter 9. Documents, Views,

and the Single Document
Interface

In the early days of MFC, applications were architected in very
much the same style as the sample programs in the first three
chapters of this book. In MFC 1.0, an application had two
principal components: an application object representing the
application itself and a window object representing the
application's window. The application object's primary duty
was to create a window, and the window in turn processed
messages. Other than the fact that it provided general-purpose
classes such as CString and CTime to represent objects
unrelated to Microsoft Windows, MFC was little more than a
thin wrapper around the Windows API that grafted an
object-oriented interface onto windows, dialog boxes, device
contexts, and other objects already present in Windows in one
form or another.

MFC 2.0 changed the way Windows applications are written by
introducing the document/view architecture. In a
document/view application, the application's data is represented
by a document object and views of that data are represented by
view objects. Documents and views work together to process
the user's input and draw textual and graphical representations
of the resulting data. MFC's CDocument class is the base class
for document objects, and CView is the base class for view
objects. The application's main window, whose behavior is
modeled in MFC's CFrameWnd and CMDIFrameWnd classes,
is no longer the focal point for message processing but serves
primarily as a container for views, toolbars, status bars, and
other user interface objects.

A programming model that separates documents from their
views provides many benefits, not the least of which is that it
more clearly defines the division of labor among software
components and results in a higher degree of modularity. But

Programming Windows With MFC

 550

the more compelling reason to take advantage of MFC's
document/view architecture is that it simplifies the
development process. Code to perform routine chores such as
prompting the user to save unsaved data before a document is
closed is provided for you by the framework. So is code to
transform ordinary applications into Active Document servers,
to save documents to disk and read them back, to simplify
printing, and much more.

MFC supports two types of document/view applications. Single
document interface (SDI) applications support just one open
document at a time. Multiple document interface (MDI)
applications permit two or more documents to be open
concurrently and also support multiple views of a given
document. The WordPad applet is an SDI application;
Microsoft Word is an MDI application. The framework hides
many of the differences between the two user interface models
so that writing an MDI application is not much different than
writing an SDI application, but today developers are
discouraged from using the multiple document interface
because the SDI model promotes a more document-centric user
interface. If the user is to edit two documents simultaneously,
Microsoft would prefer that each document be displayed in a
separate instance of your application. This chapter therefore
examines the document/view architecture with a decided
emphasis on the single document interface. Everything that you
learn here, however, applies to MDI applications as well, and
for completeness we'll examine the multiple document interface
as well as methods for supporting multiple views in SDI
applications in Chapter 11.

9.1. Document/View Fundamentals

Let's begin our exploration of the document/view architecture
with a conceptual look at the various objects involved and the
relationships they share with one another. Figure 9-1 shows a
schematic representation of an SDI document/view application.
The frame window is the application's top-level window. It's
normally a WS_OVERLAPPEDWINDOW-style window with
a resizing border, a title bar, a system menu, and minimize,
maximize, and close buttons. The view is a child window sized
to fit the frame window so that it becomes, for all practical
purposes, the frame window's client area. The application's data

Programming Windows With MFC

 551

is stored in the document object, a visible representation of
which appears in the view. For an SDI application, the frame
window class is derived from CFrameWnd, the document class
is derived from CDocument, and the view class is derived from
CView or a related class such as CScrollView.

Figure 9-1. The SDI document/view architecture.

The arrows represent data flow. The application object provides
the message loop that pumps messages to the frame window
and the view. The view object translates mouse and keyboard
input into commands that operate on the data stored in the
document object, and the document object provides the data
that the view needs to render its output. The individual objects
interact in other ways, too, but you'll find the big picture easier
to grasp after you've learned more about the role each object
plays in a program's operation and have written a
document/view application or two of your own.

The architecture depicted in Figure 9-1 has very real
implications for the design and operation of an application
program. In an MFC 1.0_style application, a program's data is
often stored in member variables declared in the frame window
class. The frame window draws "views" of that data by
accessing its own member variables and using GDI functions
encapsulated in the CDC class to draw into its client area. The
document/view architecture enforces a modular program design
by encapsulating data in a stand-alone document object and
providing a view object for the program's screen output. A
document/view application never grabs a client-area device

Programming Windows With MFC

 552

context for its frame window and draws into it; instead, it draws
into the view. It looks as if the drawing is being done in the
frame window, but in reality all output goes to the view. You
can draw into the frame window if you want to, but you won't
see the output because the client area of an SDI frame window
is completely obscured by the view.

9.1.1. The InitInstance Function Revisited

One of the most interesting aspects of an SDI document/view
application is the way in which the frame window, document,
and view objects are created. If you look at the InitInstance
function for an SDI application generated by AppWizard, you'll
see something like this:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate (
 IDR_MAINFRAME,
 RUNTIME_CLASS (CMyDoc),
 RUNTIME_CLASS (CMainFrame),
 RUNTIME_CLASS (CMyView)
);
AddDocTemplate (pDocTemplate);

CCommandLineInfo cmdInfo;
ParseCommandLine (cmdInfo);

if (!ProcessShellCommand (cmdInfo))
 return FALSE;

m_pMainWnd->ShowWindow (SW_SHOW);
m_pMainWnd->UpdateWindow ();

This code is quite different from the startup code in the sample
programs in Part I of this book. Let's look more closely at this
InitInstance function to see what it takes to get a
document/view application up and running. To begin with, the
statements

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate (
 IDR_MAINFRAME,
 RUNTIME_CLASS (CMyDoc),
 RUNTIME_CLASS (CMainFrame),
 RUNTIME_CLASS (CMyView)
);

Programming Windows With MFC

 553

create an SDI document template from MFC's
CSingleDocTemplate class. The SDI document template is a
crucial element of an SDI document/view application. It
identifies the document class used to manage the application's
data, the frame window class that encloses views of that data,
and the view class used to draw visual representations of the
data. The document template also stores a resource ID that the
framework uses to load menus, accelerators, and other
resources that shape the application's user interface. AppWizard
uses the resource ID IDR_MAINFRAME in the code that it
generates. The RUNTIME_CLASS macro surrounding the
class names returns a pointer to a CRuntimeClass structure for
the specified class, which enables the framework to create
objects of that class at run time. This dynamic creation
mechanism is another important element of the document/view
architecture. I'll describe how it works a little later in this
chapter.

After the document template is created, the statement

AddDocTemplate (pDocTemplate);

adds it to the list of document templates maintained by the
application object. Each template registered in this way defines
one document type the application supports. SDI applications
register just one document type, but MDI applications
can—and sometimes do—register several types.

The statements

CCommandLineInfo cmdInfo;
ParseCommandLine (cmdInfo);

use CWinApp::ParseCommandLine to initialize a
CCommandLineInfo object with values reflecting the
parameters entered on the command line, which often include a
document file name. The statements

if (!ProcessShellCommand (cmdInfo))
 return FALSE;

Programming Windows With MFC

 554

"process" the command line parameters. Among other things,
ProcessShellCommand calls CWinApp::OnFileNew to start the
application with an empty document if no file name was
entered on the command line, or CWinApp::OpenDocumentFile
to load a document if a document name was specified. It's
during this phase of the program's execution that the framework
creates the document, frame window, and view objects using
the information stored in the document template. (In case you're
wondering, the document object is created first, followed by the
frame window and then the view.) ProcessShellCommand
returns TRUE if the initialization succeeds and FALSE if it
doesn't. If initialization is successful, the statements

m_pMainWnd->ShowWindow (SW_SHOW);
m_pMainWnd->UpdateWindow ();

display the application's frame window (and by extension, the
view) on the screen.

After the application is started and the document, frame
window, and view objects are created, the message loop kicks
in and the application begins to retrieve and process messages.
Unlike MFC 1.0_type applications, which typically map all
messages to member functions of the frame window class,
document/view applications divide message processing among
the application, document, view, and frame window objects.
The framework does a lot of work in the background to make
this division of labor possible. In Windows, only windows can
receive messages, so MFC implements a sophisticated
command-routing mechanism that sends certain types of
messages from one object to another in a predefined order until
one of the objects processes the message or the message is
passed to ::DefWindowProc for default processing. When we
discuss command routing later in this chapter, it will become
abundantly clear why command routing is a powerful feature of
MFC whose absence would severely inhibit the usefulness of
the document/view architecture.

9.1.2. The Document Object

In a document/view application, data is stored in a document
object. The document object is created when the framework
instantiates a class derived from CDocument. The term

Programming Windows With MFC

 555

document is somewhat misleading because it stirs up visions of
word processors and spreadsheet programs and other types of
applications that deal with what we traditionally think of as
documents. In reality, the "document" part of document/view is
much more general than that. A document can be almost
anything, from a deck of cards in a poker simulation to an
online connection to a remote data source; it is an abstract
representation of a program's data that draws a clear boundary
between how the data is stored and how it is presented to the
user. Typically, the document object provides public member
functions that other objects, primarily views, can use to access
the document's data. All handling of the data is performed by
the document object itself.

A document's data is often stored in member variables of the
derived document class. The Scribble tutorial supplied with
Microsoft Visual C++ exposes its data directly to other objects
by declaring its data members public, but stricter encapsulation
is achieved by making document data private and providing
public member functions for accessing it. The document object
in a text editing program, for example, might store characters in
a CByteArray object and provide AddChar and RemoveChar
functions so that the view can convert the mouse and keyboard
messages it receives into commands to add and remove
characters. Other functions, such as AddLine and DeleteLine,
could further enrich the interface between the document object
and the views connected to it.

9.1.2.1. CDocument Operations

In MFC literature, "operation" is the term used to describe
nonvirtual class member functions. A derived document class
inherits several important operations from CDocument, some of
which are listed in the following table.

Key CDocument Operations

Function Description

GetFirstViewPosition Returns a POSITION value that can be passed to
GetNextView to begin enumerating the views associated
with this document

GetNextView Returns a CView pointer to the next view in the list of
views associated with this document

Programming Windows With MFC

 556

GetPathName Retrieves the document's file name and path—for
example, "C:\Documents\Personal\MyFile.doc"; returns
an empty string if the document hasn't been named

GetTitle Retrieves the document's title—for example, "MyFile";
returns an empty string if the document hasn't been
named

IsModified Returns a nonzero value if the document contains
unsaved data or 0 if it doesn't

SetModifiedFlagS Sets or clears the document's modified flag, which
indicates whether the document contains unsaved data

UpdateAllViews Updates all views associated with the document by
calling each view's OnUpdate function

Of these functions, SetModifiedFlag and UpdateAllViews are
the two that you'll use the most. You should call
SetModifiedFlag whenever the document's data is modified.
This function sets a flag inside the document object that tells
MFC the document contains unsaved data, which allows MFC
to prompt the user before closing a document that contains
unsaved changes. You can determine for yourself whether a
document is "dirty" with IsModified. UpdateAllViews
commands all the views attached to a document to update
themselves. Under the hood, UpdateAllViews calls each view's
OnUpdate function, whose default action is to invalidate the
view to force a repaint. In an application that supports multiple
views of its documents, calling UpdateAllViews whenever the
document's data changes keeps all the different views in sync.
Even a single-view application can call UpdateAllViews to
refresh the view based on the data currently contained in the
document.

A document object can enumerate its views and communicate
with each view individually by using GetFirstViewPosition and
GetNextView to walk the list of views. The excerpt below from
the MFC source code file Doccore.ccp demonstrates how
UpdateAllViews uses GetFirstViewPosition and GetNextView
to call each view's OnUpdate function.

POSITION pos = GetFirstViewPosition();
while (pos != NULL)
{
 CView* pView = GetNextView(pos);

Programming Windows With MFC

 557

 pView->OnUpdate(pSender, lHint, pHint);
}

Given that OnUpdate is a protected member function of CView,
you might wonder how this code can even compile. The answer
is that CDocument is declared a friend of CView in Afxwin.h.
You can freely call GetFirstViewPosition and GetNextView
from your own code, but you can call OnUpdate from your
document class only if you, too, declare the document to be a
friend of the view.

9.1.2.2. CDocument Overridables

CDocument also includes several virtual functions, or
"overridables," that can be overridden to customize a
document's behavior. Some of these functions are almost
always overridden in a derived document class. The four most
commonly used overridables are shown in the following table.

Key CDocument Overridables

Function Description

OnNewDocument Called by the framework when a new document is created.
Override to apply specific initializations to the document
object each time a new document is created.

OnOpenDocument Called by the framework when a document is loaded from
disk. Override to apply specific initializations to the
document object each time a document is loaded.

DeleteContents Called by the framework to delete the document's contents.
Override to free memory and other resources allocated to
the document before it is closed.

Serialize Called by the framework to serialize the document to or
from disk. Override to provide document-specific
serialization code so that documents can be loaded and
saved.

In an SDI application, MFC instantiates the document object
once—when the application starts up—and reuses that object
over and over as document files are opened and closed.
Because the document object is created just one time,
initializations performed by the document's class constructor
are executed only once, too. But what if your derived document
class contains member variables that you want to reinitialize

Programming Windows With MFC

 558

whenever a new document is created or an existing document is
loaded from disk?

That's where OnNewDocument and OnOpenDocument come in.
MFC calls the document's OnNewDocument function whenever
a new document is created. Typically, that occurs when the user
chooses New from the File menu. MFC calls
OnOpenDocument when a document is loaded from disk—that
is, whenever the user selects Open from the File menu. You can
perform one-time initializations in an SDI document class's
constructor. But if you want to perform certain initializations
anytime a document is created or opened, you must override
OnNewDocument or OnOpenDocument.

MFC provides default implementations of OnNewDocument
and OnOpenDocument that shoulder the burden of creating new
documents and opening existing documents. If you override
OnNewDocument and OnOpenDocument, you should call the
equivalent functions in the base class, as shown here:

BOOL CMyDoc::OnNewDocument ()
{
 if (!CDocument::OnNewDocument ())
 return FALSE;
 // Insert application-specific initialization code here.
 return TRUE;
}

BOOL CMyDoc::OnOpenDocument (LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument (lpszPathName))
 return FALSE;
 // Insert application-specific initialization code here.
 return TRUE;
}

Generally speaking, MFC applications more commonly
override OnNewDocument than OnOpenDocument. Why?
Because OnOpenDocument indirectly calls the document's
Serialize function, which initializes a document's persistent data
members with values retrieved from a document file. Only
nonpersistent data members—those that aren't initialized by
Serialize—need to be initialized in OnOpenDocument.
OnNewDocument, by contrast, performs no default
initialization of the document's data members. If you add data

Programming Windows With MFC

 559

members to a document class and want those data members
reinitialized whenever a new document is created, you need to
override OnNewDocument.

Before a new document is created or opened, the framework
calls the document object's virtual DeleteContents function to
delete the document's existing data. Therefore, an SDI
application can override CDocument::DeleteContents and take
the opportunity to free any resources allocated to the document
and perform other necessary cleanup chores in preparation for
reusing the document object. MDI applications generally
follow this model also, although MDI document objects differ
from SDI document objects in that they are individually created
and destroyed as the user opens and closes documents.

When a document is opened or saved, the framework calls the
document object's Serialize function to serialize the document's
data. You implement the Serialize function so that it streams
the document's data in and out; the framework does everything
else, including opening the file for reading or writing and
providing a CArchive object to insulate you from the vagaries
of physical disk I/O. A derived document class's Serialize
function is typically structured like this:

void CMyDoc::Serialize (CArchive& ar)
{
 if (ar.IsStoring ()) {
 // Write the document's persistent data to the archive.
 }
 else { // Loading, not storing
 // Read the document's persistent data from the archive.
 }
}

In place of the comments, you include code that streams the
document's persistent data to or from an archive using the
serialization mechanism described in Chapter 6. For a simple
document class whose data consists of two strings stored in
CString member variables named m_strName and m_strPhone,
you could write Serialize like this:

void CMyDoc::Serialize (CArchive& ar)
{
 if (ar.IsStoring ()) {

Programming Windows With MFC

 560

 ar << m_strName << m_strPhone;
 }
 else { // Loading, not storing.
 ar >> m_strName >> m_strPhone;
 }
}

If your document's data is composed of primitive data types and
serializable classes like CString, writing a Serialize function is
exceedingly easy because all input and output can be performed
with the << and >> operators. For structures and other
nonserializable data types, you can use the CArchive functions
Read and Write. CArchive even includes ReadString and
WriteString functions for serializing raw strings. If all else fails,
you can call CArchive::GetFile to get a CFile pointer for
interacting directly with the file attached to the archive. You'll
see this technique used in Chapter 13's HexDump program.

Other CDocument overridables that aren't used as often but that
can be useful include OnCloseDocument, which is called when
a document is closed; OnSaveDocument, which is called when
a document is saved; SaveModified, which is called before a
document containing unsaved data is closed to ask the user
whether changes should be saved; and
ReportSaveLoadException, which is called when an error
occurs during serialization. There are others, but for the most
part they constitute advanced overridables that you'll rarely find
occasion to use.

9.1.3. The View Object

Whereas the sole purpose of a document object is to manage an
application's data, view objects exist for two purposes: to
render visual representations of a document on the screen and
to translate the user's input—particularly mouse and keyboard
messages—into commands that operate on the document's data.
Thus, documents and views are tightly interrelated, and
information flows between them in both directions.

MFC's CView class defines the basic properties of a view. MFC
also includes a family of view classes derived from CView that
add functionality to views. CScrollView, for example, adds

Programming Windows With MFC

 561

scrolling capabilities to CView. CScrollView and other CView
derivatives are discussed in Chapter 10.

9.1.3.1. The GetDocument Function

A document object can have any number of views associated
with it, but a view always belongs to just one document. The
framework stores a pointer to the associated document object in
a view's m_pDocument data member and exposes that pointer
through the view's GetDocument member function. Just as a
document object can identify its views using
GetFirstViewPosition and GetNextView, a view can identify its
document by calling GetDocument.

When AppWizard generates the source code for a view class, it
overrides the base class's GetDocument function with one that
casts m_pDocument to the appropriate document type and
returns the result. This override allows type-safe access to the
document object and eliminates the need for an explicit cast
each time GetDocument is called.

9.1.3.2. CView Overridables

Like the CDocument class, CView includes several virtual
member functions that you can override in a derived class to
customize a view's behavior. The key overridables are shown in
the following table. The most important is a pure virtual
function named OnDraw, which is called each time the view
receives a WM_PAINT message. In non-document/view
applications, WM_PAINT messages are processed by OnPaint
handlers that use CPaintDC objects to do their drawing. In
document/view applications, the framework fields the
WM_PAINT message, creates a CPaintDC object, and calls the
view's OnDraw function with a pointer to the CPaintDC object.
The following implementation of OnDraw retrieves a CString
from the document object and displays it in the center of the
view:

void CMyView::OnDraw (CDC* pDC)
{
 CMyDoc* pDoc = GetDocument ();
 CString string = pDoc->GetString ();
 CRect rect;
 GetClientRect (&rect);

Programming Windows With MFC

 562

 pDC->DrawText (string, rect,
 DT_SINGLELINE ¦ DT_CENTER ¦ DT_VCENTER);
}

Notice that OnDraw uses the supplied device context pointer
rather than instantiate a device context of its own.

Key CView Overridables

Function Description

OnDraw Called to draw the document's data. Override to paint views
of a document.

OnInitialUpdate Called when a view is first attached to a document. Override
to initialize the view object each time a document is created
or loaded.

OnUpdate Called when the document's data has changed and the view
needs to be updated. Override to implement "smart" update
behavior that redraws only the part of the view that needs
redrawing rather than the entire view.

The fact that the view doesn't have to construct its own device
context object is a minor convenience. The real reason the
framework uses OnDraw is so that the same code can be used
for output to a window, for printing, and for print previewing.
When a WM_PAINT message arrives, the framework passes
the view a pointer to a screen device context so that output will
go to the window. When a document is printed, the framework
calls the same OnDraw function and passes it a pointer to a
printer device context. Because the GDI is a
device-independent graphics system, the same code can
produce identical (or nearly identical) output on two different
devices if it uses two different device contexts. MFC takes
advantage of this fact to make printing—usually a chore in
Windows—a less laborious undertaking. In fact, printing from
a document/view application is typically much easier than
printing from a conventional application. You'll learn all about
MFC's print architecture in Chapter 13.

Two other CView functions you'll frequently override in
derived view classes are OnInitialUpdate and OnUpdate.
Views, like documents, are constructed once and then reused
over and over in SDI applications. An SDI view's
OnInitialUpdate function gets called whenever a document is

Programming Windows With MFC

 563

opened or created. The default implementation of
OnInitialUpdate calls OnUpdate, and the default
implementation of OnUpdate in turn invalidates the view's
client area to force a repaint. Use OnInitialUpdate to initialize
data members of the view class, and perform other view-related
initializations on a per-document basis. In a
CScrollView-derived class, for example, it's common for
OnInitialUpdate to call the view's SetScrollSizes function to
initialize scrolling parameters. It's important to call the base
class version of OnInitialUpdate from an overridden version, or
the view won't be updated when a new document is opened or
created.

OnUpdate is called when a document's data is modified and
someone—usually either the document object or one of the
views—calls UpdateAllViews. You never have to override
OnUpdate because the default implementation calls Invalidate.
But in practice, you'll often override OnUpdate to optimize
performance by repainting just the part of the view that needs
updating rather than repainting the entire view. These so-called
intelligent updates are especially helpful in multiple-view
applications because they eliminate unsightly flashing in
secondary views. You'll see what I mean in the Chapter 11
sample program named Sketch.

At any given time in a multiple-view application, one view is
the active view and other views are said to be inactive.
Generally, the active view is the one with the input focus. A
view can determine when it is activated and deactivated by
overriding CView::OnActivateView. The first parameter to
OnActivateView is nonzero if the view is being activated and 0
if it is being deactivated. The second and third parameters are
CView pointers identifying the views that are being activated
and deactivated, respectively. If the pointers are equal, the
application's frame window was activated without causing a
change in the active view. View objects sometimes use this
feature of the OnActivateView function to realize a palette. A
frame window can get and set the active view with the
functions CFrameWnd::GetActiveView and
CFrameWnd::SetActiveView.

Programming Windows With MFC

 564

9.1.4. The Frame Window Object

So far, we've looked at the roles that application objects,
document objects, and view objects play in document/view
applications. But we've yet to consider the frame window
object, which defines the application's physical workspace on
the screen and serves as a container for a view. An SDI
application uses just one frame window—a CFrameWnd that
serves as the application's top-level window and frames the
view. As you'll discover in the next chapter, an MDI
application uses two different types of frame windows—a
CMDIFrameWnd that acts as a top-level window and
CMDIChildWnd windows that float within the top-level frame
window and frame views of the application's documents.

Frame windows play an important and often misunderstood
role in the operation of document/view applications. Beginning
MFC programmers often think of a frame window as simply a
window. In fact, a frame window is an intelligent object that
orchestrates much of what goes on behind the scenes in a
document/view application. For example, MFC's CFrameWnd
class provides OnClose and OnQueryEndSession handlers that
make sure the user gets a chance to save a dirty document
before the application terminates or Windows shuts down.
CFrameWnd also handles the all-important task of resizing a
view when the frame window is resized, and it knows how to
work with toolbars, status bars, and other user interface objects.
It also includes member functions for manipulating toolbars
and status bars, identifying active documents and views, and
more.

Perhaps the best way to understand the contribution the
CFrameWnd class makes is to compare it to the more generic
CWnd class. The CWnd class is basically a C++ wrapper
around an ordinary window. CFrameWnd is derived from
CWnd and adds all the bells and whistles a frame window needs
to assume a proactive role in the execution of a document/view
application.

9.1.5. Dynamic Object Creation

If the framework is to create document, view, and frame
window objects during the course of a program's execution, the

Programming Windows With MFC

 565

classes from which those objects are constructed must support a
feature known as dynamic creation. MFC's
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE
macros make it easy to write dynamically creatable classes.
Here's all you have to do:

1. Derive the class from CObject.
2. Call DECLARE_DYNCREATE in the class declaration.

DECLARE_DYNCREATE accepts just one parameter—the name of the
dynamically creatable class.

3. Call IMPLEMENT_DYNCREATE from outside the class declaration.
IMPLEMENT_DYNCREATE accepts two parameters—the name of the
dynamically creatable class and the name of its base class.

You can create an instance of a class that uses these macros at
run time with a statement like this one:

RUNTIME_CLASS (CMyClass)->CreateObject ();

Using this statement is basically no different than using the new
operator to create a CMyClass object, but it circumvents a
shortcoming of the C++ language that prevents statements like
these from working:

CString strClassName = _T ("CMyClass");
CMyClass* ptr = new strClassName;

The compiler, of course, will try to construct an object from a
class named "strClassName" because it doesn't realize that
strClassName is a variable name and not a literal class name.
What MFC's dynamic object creation mechanism amounts to is
a means for applications to register classes in such a way that
the framework can create objects of those classes.

What happens under the hood when you write a class that's
dynamically creatable? The DECLARE_DYNCREATE macro
adds three members to the class declaration: a static
CRuntimeClass data member, a virtual function named
GetRuntimeClass, and a static function named CreateObject.
When you write

DECLARE_DYNCREATE (CMyClass)

the C++ preprocessor outputs this:

Programming Windows With MFC

 566

public:
 static const AFX_DATA CRuntimeClass classCMyClass;
 virtual CRuntimeClass* GetRuntimeClass() const;
 static CObject* PASCAL CreateObject();

IMPLEMENT_DYNCREATE initializes the CRuntimeClass
structure with information such as the class name and the size
of each class instance. It also provides the GetRuntimeClass
and CreateObject functions. If IMPLEMENT_DYNCREATE
is called like this:

IMPLEMENT_DYNCREATE (CMyClass, CBaseClass)

CreateObject is implemented like this:

CObject* PASCAL CMyClass::CreateObject()
 { return new CMyClass; }

Early versions of MFC used a different implementation of
CreateObject that allocated memory using the size information
stored in the class's CRuntimeClass structure and manually
initialized an object in that memory space. Today's
implementation of CreateObject is truer to the C++ language
because if a dynamically creatable class overloads the new
operator, CreateObject will use the overloaded operator.

9.1.6. More on the SDI Document Template

Earlier in this chapter, you saw how an SDI document template
object is created from the CSingleDocTemplate class. The
template's constructor was passed four parameters: an integer
value equal to IDR_MAINFRAME and three
RUNTIME_CLASS pointers. The purpose of the three
RUNTIME_CLASS macros should be clear by now, so let's
look more closely at the integer passed in the first parameter,
which is actually a multipurpose resource ID that identifies the
following four resources:

x The application icon
x The application's menu
x The accelerator table that goes with the menu
x A document string that specifies, among other things, the default file

name extension for documents created by this application and the default
name for untitled documents

Programming Windows With MFC

 567

In an SDI document/view application, the framework creates
the top-level window by creating a frame window object using
run-time class information stored in the document template and
then calling that object's LoadFrame function. One of the
parameters LoadFrame accepts is a resource ID identifying the
four resources listed above. Not surprisingly, the resource ID
that the framework passes to LoadFrame is the same one
supplied to the document template. LoadFrame creates a frame
window and loads the associated menu, accelerators, and icon
all in one step, but if the process is to work, you must assign all
these resources the same ID. That's why the RC file that
AppWizard generates for a document/view application uses the
same ID for a variety of different resources.

The document string is a string resource formed from a
combination of as many as seven substrings separated by "\n"
characters. Each substring describes one characteristic of the
frame window or document type. In left-to-right order, the
substrings have the following meaning for an SDI application:

x The title that appears in the frame window's title bar. This is usually the
name of the application—for example, "Microsoft Draw."

x The title assigned to new documents. If this substring is omitted, the
default is "Untitled."

x A descriptive name for the document type that appears along with other
document types in a dialog box when the user selects New from the File
menu in an MDI application that registers two or more document types.
This substring isn't used in SDI applications.

x A descriptive name for the document type combined with a wildcard file
specification that includes the default file name extension—for example,
"Drawing Files (*.drw)." This string is used in Open and Save As dialog
boxes.

x The default file name extension for documents of this type—for example,
".drw."

x A name with no spaces that identifies the document type in the
registry—for example, "Draw.Document." If the application calls
CWinApp::Register- ShellFileTypes to register its document types, this
substring becomes the default value for the HKEY_CLASSES_ROOT
subkey named after the document's file name extension.

x A descriptive name for the document type—for example, "Microsoft
Draw Document." Unlike the substring preceding it in the document
string, this substring can include spaces. If the application uses
CWinApp::Register- ShellFileTypes to register its document types, this
substring is the human-readable name the shell displays in property
sheets.

You don't have to supply all seven substrings; you can omit
individual substrings by following a "\n" separator character
with another "\n," and you can omit trailing null substrings

Programming Windows With MFC

 568

altogether. If you build an application with AppWizard,
AppWizard creates the document string for you using
information entered in the Advanced Options dialog box that's
displayed when you click the Advanced button in AppWizard's
Step 4 dialog box. The resource statements for a typical SDI
document string look like this:

STRINGTABLE
BEGIN
 IDR_MAINFRAME "Microsoft Draw\n\n\nDraw
Files(*.drw)\n.drw\n
 Draw.Document\nMicrosoft Draw Document"
END

STRINGTABLE creates a string table resource (a resource
consisting of one or more text strings, each identifiable by a
unique resource ID) just as DIALOG creates a dialog resource
and MENU creates a menu resource. When this application is
started with an empty document, its frame window will have
the title "Untitled - Microsoft Draw." The default file name
extension for documents saved by this application is ".drw,"
and "Draw Files (*.drw)" will be one of the file type choices
listed in the Open and Save As dialog boxes.

Should the need ever arise, you can retrieve individual
substrings from a document string with MFC's
CDocTemplate::GetDocString function. For example, the
statements

CString strDefExt;
pDocTemplate->GetDocString (strDefExt, CDocTemplate::filterExt);

copy the document's default file name extension to the CString
variable named strDefExt.

9.1.7. Registering Document Types with the
Operating System Shell

In Windows, you can double-click a document icon or
right-click it and select Open from the context menu to open the
document along with the application that created it. In addition,
you can print a document by selecting Print from its context

Programming Windows With MFC

 569

menu or dragging the document icon and dropping it over a
printer icon.

For these operations to work, an application must register its
document types with the operating system shell, which involves
writing a series of entries to the HKEY_CLASSES_ROOT
branch of the registry that identify each document type's file
name extension and the commands used to open and print files
of that type. Some applications perform this registration by
supplying a REG file the user can merge into the registry or by
writing the necessary entries into the registry programmatically
with ::RegCreateKey, ::RegSetValue, and other Win32 registry
functions. An MFC application, however, can make one simple
function call and register every document type it supports.
Calling CWinApp::RegisterShellFileTypes and passing in a
TRUE parameter after calling AddDocTemplate forges critical
links between the application, the documents it creates, and the
operating system shell. When it creates a document/view
application, AppWizard automatically includes a call to
RegisterShellFileTypes in the application class's InitInstance
function.

A related CWinApp function named EnableShellOpen adds a
nifty feature to MDI document/view applications. If an MDI
application registers its document type(s) with
RegisterShellFileTypes and EnableShellOpen and the user
double-clicks a document icon while the application is running,
the shell doesn't automatically start a second instance of the
application; first, it uses Dynamic Data Exchange (DDE) to
send an "open" command to the existing instance and passes
along the document's file name. A DDE handler built into
MFC's CDocManager class responds by calling
OnOpenDocument to open the document. Thus, the document
appears in a new window inside the top-level MDI frame, just
as if it had been opened with the application's File-Open
command. Similar DDE commands allow running application
instances to fulfill print requests placed through the operating
system shell.

9.1.8. Command Routing

One of the most remarkable features of the document/view
architecture is that an application can handle command

Programming Windows With MFC

 570

messages almost anywhere. Command messages is MFC's term
for the WM_COMMAND messages that are generated when
items are selected from menus, keyboard accelerators are
pressed, and toolbar buttons are clicked. The frame window is
the physical recipient of most command messages, but
command messages can be handled in the view class, the
document class, or even the application class by simply
including entries for the messages you want to handle in the
class's message map. Command routing lets you put command
handlers where it makes the most sense to put them rather than
relegate them all to the frame window class. Update commands
for menu items, toolbar buttons, and other user interface objects
are also subject to command routing, so you can put
ON_UPDATE_COMMAND_UI handlers in nonframe window
classes as well.

The mechanism that makes command routing work lies deep
within the bowels of MFC. When a frame window receives a
WM_COMMAND message, it calls the virtual OnCmdMsg
function featured in all CCmdTarget-derived classes to begin
the routing process. The CFrameWnd implementation of
OnCmdMsg looks like this:

BOOL CFrameWnd::OnCmdMsg(...)
{
 // Pump through current view FIRST.
 CView* pView = GetActiveView();
 if (pView != NULL && pView->OnCmdMsg(...))
 return TRUE;

 // Then pump through frame.
 if (CWnd::OnCmdMsg(...))
 return TRUE;

 // Last but not least, pump through application.
 CWinApp* pApp = AfxGetApp();
 if (pApp != NULL && pApp->OnCmdMsg(...))
 return TRUE;

 return FALSE;
}

CFrameWnd::OnCmdMsg first routes the message to the active
view by calling the view's OnCmdMsg function. If
pView->OnCmdMsg returns 0, indicating that the view didn't
process the message (that is, that the view's message map
doesn't contain an entry for this particular message), the frame

Programming Windows With MFC

 571

window tries to handle the message itself by calling
CWnd::OnCmdMsg. If that, too, fails, the frame window then
tries the application object. Ultimately, if none of the objects
processes the message, CFrameWnd::OnCmdMsg returns
FALSE and the framework passes the message
to ::DefWindowProc for default processing.

This explains how a command message received by a frame
window gets routed to the active view and the application
object, but what about the document object? When
CFrameWnd::OnCmdMsg calls the active view's OnCmdMsg
function, the view first tries to handle the message itself. If it
doesn't have a handler for the message, the view calls the
document's OnCmdMsg function. If the document can't handle
the message, it passes it up the ladder to the document template.
Figure 9-2 shows the path that a command message travels
when it's delivered to an SDI frame window. The active view
gets first crack at the message, followed by the document
associated with that view, the document template, the frame
window, and finally the application object. The routing stops if
any object along the way processes the message, but it
continues all the way up to ::DefWindowProc if none of the
objects' message maps contains an entry for the message.
Routing is much the same for command messages delivered to
MDI frame windows, with the framework making sure that all
the relevant objects, including the child window frame that
surrounds the active MDI view, get the opportunity to weigh in.

The value of command routing becomes apparent when you
look at how a typical document/view application handles
commands from menus, accelerators, and toolbar buttons. By
convention, the File-New, File-Open, and File-Exit commands
are mapped to the application object, where CWinApp provides
OnFileNew, OnFileOpen, and OnAppExit command handlers
for them. File-Save and File-Save As are normally handled by
the document object, which provides default command handlers
named CDocument::OnFileSave and
CDocument::OnFileSaveAs. Commands to show and hide
toolbars and status bars are handled by the frame window using
CFrameWnd member functions, and most other commands are
handled by either the document or the view.

Programming Windows With MFC

 572

An important point to keep in mind as you consider where to
put your message handlers is that only command messages and
user interface updates are subject to routing. Standard Windows
messages such as WM_CHAR, WM_LBUTTONDOWN,
WM_CREATE, and WM_SIZE must be handled by the
window that receives the message. Mouse and keyboard
messages generally go to the view, and most other messages go
to the frame window. Document objects and application objects
never receive noncommand messages.

Figure 9-2. Routing of command messages sent to an SDI frame window.

9.1.9. Predefined Command IDs and Command
Handlers

When you write a document/view application, you typically
don't write the handlers for all the menu commands yourself.
CWinApp, CDocument, CFrameWnd, and other MFC classes
provide default handlers for common menu commands such as
File-Open and File-Save. In addition, the framework provides
an assortment of standard menu item command IDs, such as
ID_FILE_OPEN and ID_FILE_SAVE, many of which are
"prewired" into the message maps of classes that use them.

The table below lists the most commonly used predefined
command IDs and their associated command handlers. The

Programming Windows With MFC

 573

"Prewired?" column indicates whether the handler is called
automatically (Yes) or called only if a corresponding entry is
added to the class's message map (No). You enable a prewired
handler by assigning the corresponding ID to a menu item; a
handler that isn't prewired is enabled only if you link the menu
item ID to the function with a message-map entry. For example,
you'll find default implementations of the File-New and
File-Open commands in CWinApp's OnFileNew and
OnFileOpen functions, but neither function is connected to the
application unless you provide an ON_COMMAND
message-map entry for it. CWinApp::OnAppExit, on the other
hand, works all by itself and requires no message-map entry.
All you have to do is assign the File-Exit menu item the ID
ID_APP_EXIT, and OnAppExit will magically be called to end
the application when the user selects Exit from the File menu.
Why? Because CWinApp's message map contains an

ON_COMMAND (ID_APP_EXIT, OnAppExit)

entry, and message maps, like other class members, are passed
on by inheritance.

Predefined Command IDs and Command Handlers

Command ID Menu
Item

Default Handler Prewire
d?

File menu

ID_FILE_NEW New CWinApp::OnFileNew No

ID_FILE_OPEN Open CWinApp::OnFileOpen No

ID_FILE_SAVE Save CDocument::OnFileSave Yes

ID_FILE_SAVE_AS Save As CDocument::OnFileSaveAs Yes

ID_FILE_PAGE_SETUP Page
Setup

None N/A

ID_FILE_PRINT_SETU
P

Print
Setup

CWinApp::OnFilePrintSetup No

ID_FILE_PRINT Print CView::OnFilePrint No

ID_FILE_PRINT_PREV
IEW

Print
Preview

CView::OnFilePrintPreview No

ID_FILE_SEND_MAIL Send
Mail

CDocument::OnFileSendMail No

Programming Windows With MFC

 574

ID_FILE_MRU_FILE1_ N/A CWinApp::OnOpenRecentFile Yes

ID_FILE_MRU_FILE16

ID_APP_EXIT Exit CWinApp::OnAppExit Yes

Edit menu

ID_EDIT_CLEAR Clear None N/A

ID_EDIT_CLEAR_ALL Clear All None N/A

ID_EDIT_CUT Cut None N/A

ID_EDIT_COPY Copy None N/A

ID_EDIT_PASTE Paste None N/A

ID_EDIT_PASTE_LINK Paste
Link

None N/A

ID_EDIT_PASTE_SPEC
IAL

Paste
Special

None N/A

ID_EDIT_FIND Find None N/A

ID_EDIT_REPLACE Replace None N/A

ID_EDIT_UNDO Undo None N/A

ID_EDIT_REDO Redo None N/A

ID_EDIT_REPEAT Repeat None N/A

ID_EDIT_SELECT_AL
L

SelectAl
l

None N/A

View menu

ID_VIEW_TOOLBAR Toolbar CFrameWnd::OnBarCheck Yes

ID_VIEW_STATUS_BA
R

Status
Bar

CFrameWnd::OnBarCheck Yes

Window menu (MDI applications only)

ID_WINDOW_NEW New
Window

CMDIFrameWnd::OnWindowNe
w

Yes

ID_WINDOW_ARRAN
GE

Arrange
All

CMDIFrameWnd::OnMDIWindo
wCmd

Yes

ID_WINDOW_CASCA
DE

Cascade CMDIFrameWnd::OnMDIWindo
wCmd

Yes

ID_WINDOW_TILE_H
ORZ

Tile
Horizont
al

CMDIFrameWnd::OnMDIWindo
wCmd

Yes

ID_WINDOW_TILE_V
ERT

Tile
Vertical

CMDIFrameWnd::OnMDIWindo
wCmd

Yes

Programming Windows With MFC

 575

Help menu

ID_APP_ABOUT About
AppNam
e

None N/A

MFC also provides update handlers for some commands,
including these:

x CFrameWnd::OnUpdateControlBarMenu for the
ID_VIEW_TOOLBAR and ID_VIEW_STATUS_BAR commands

x CMDIFrameWnd::OnUpdateMDIWindowCmd for the ID_WINDOW-
_ARRANGE, ID_WINDOW_CASCADE, ID_WINDOW_TILE_HORZ,
ID- _WINDOW_TILE_VERT, and ID_WINDOW_NEW commands

x CDocument::OnUpdateFileSendMail for the ID_FILE_SEND_MAIL
command

MFC's CEditView and CRichEditView classes include
command handlers for some of the items in the Edit menu, but
other views must provide their own.

You don't have to use the predefined command IDs or
command handlers the framework provides. You can always
strike out on your own and define custom command IDs,
perhaps supplying message map entries to correlate your
command IDs with default command handlers. You can even
replace the default command handlers with handlers of your
own. In short, you can use as much or as little of the
framework's support as you want to. But the more you lean on
the framework, the less code you'll have to write yourself.

9.2. Your First Document/View Application

Now that you have an idea of what the document/view
architecture is all about and a feel for some of the
implementation details, let's write a document/view application.
If some of the concepts covered in the first part of this chapter
seem a little abstract, seeing the code for a working
document/view application should help bring things into focus.

9.2.1. The SdiSquares Application

The program shown in Figure 9-3 is an SDI document/view
application that displays a grid of squares four rows deep and
four columns wide. Initially, each square is colored white.
However, you can change a square's color by clicking it with

Programming Windows With MFC

 576

the left mouse button. By default, clicking changes a square's
color to red. You can select alternate colors from the Color
menu and thereby create a multicolored grid containing squares
of up to six different colors.

Figure 9-3. The SdiSquares window.

Though SdiSquares is but a rudimentary document/view
application, it demonstrates all the basic tenets of the
document/view architecture. Four fundamental classes play
critical roles in the application's operation:The SdiSquares
window.

x The application class CSquaresApp, which is derived from CWinApp
x The frame window class CMainFrame, which is derived from

CFrameWnd
x The document class CSquaresDoc, which is derived from CDocument
x The view class CSquaresView, which is derived from CView

The source code for these classes is reproduced in Figure 9-4.

In SdiSquares, a "document" consists of a two-dimensional
array of COLORREF values defining the color of each square,
plus an additional COLORREF value that defines the "current
color"—the color assigned to a square when the square is
clicked. The colors of the squares are stored in a protected
CSquaresDoc member variable named m_clrGrid, which is a 4
by 4 array of COLORREF values. The current color is stored in

Programming Windows With MFC

 577

a separate CSquaresDoc member variable named
m_clrCurrentColor. In the document's OnNewDocument
function, all 16 elements of m_clrGrid are initialized to white
and m_clrCurrentColor is initialized to red. These variables are
initialized in OnNewDocument instead of CSquaresDoc's
constructor to ensure that they are reset whenever a new
document is created. If they were initialized in the document's
constructor instead, they would be initialized only once—when
the application starts up—and would retain their current values
when a new document is created since an SDI application
constructs a document object just one time and reuses it as
documents are created and destroyed.

To expose the document's data to the view, CSquaresDoc
implements three public member functions. GetCurrentColor
returns the current color (the value of m_clrCurrentColor).
GetSquare returns the color of the square at a given row and
column address (m_clrGrid[i][j]). SetSquare assigns a color to
the square at a specified row and column address. After
assigning a color to a square, SetSquare calls the document's
SetModifiedFlag to mark the document as dirty and
UpdateAllViews to force the view to repaint to show the
updated grid:

m_clrGrid[i][j] = color;
SetModifiedFlag (TRUE);
UpdateAllViews (NULL);

GetCurrentColor, GetSquare, and SetSquare serve as a bridge
between the document and the view. The view can't access the
document's data members directly since they are protected, but
it can call the document's accessor functions because they are
declared public.

The view's OnDraw function draws the grid on the screen. The
colored squares are drawn by a nested for loop that iterates
through the grid one row and one column at a time. Each
iteration through the loop, the view retrieves the color of the
corresponding square by calling the document's GetSquare
function through the pDoc pointer that holds the value returned
by GetDocument:

CSquaresDoc* pDoc = GetDocument();

Programming Windows With MFC

 578

ASSERT_VALID(pDoc);

for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 COLORREF color = pDoc->GetSquare (i, j);
 CBrush brush (color);
 int x1 = (j * 100) + 50;
 int y1 = (i * -100) - 50;
 int x2 = x1 + 100;
 int y2 = y1 - 100;
 CRect rect (x1, y1, x2, y2);
 pDC->FillRect (rect, &brush);
 }
}

AppWizard inserted the calls to GetDocument and
ASSERT_VALID; I added all the other statements in OnDraw.
OnDraw uses negative y values in its computations because it
does its drawing in the MM_LOENGLISH mapping mode,
where client-area y coordinates are negative.

The view includes a WM_LBUTTONDOWN handler that
converts the click coordinates from device coordinates to
MM_LOENGLISH coordinates and then tests to see which, if
any, of the squares was clicked. If the click occurred in a square,
CSquaresView::OnLButtonDown calls the document's
GetCurrentColor function to retrieve the current color:

CSquaresDoc* pDoc = GetDocument ();
COLORREF clrCurrentColor = pDoc->GetCurrentColor ();

It then calls the document's SetSquare function to assign that
color to the square in which the click occurred:

pDoc->SetSquare (i, j, clrCurrentColor);

You can clearly see here how the public member functions
added to CSquaresDoc are used to bridge the gulf between the
document and the view, and why GetDocument is such an
important function. And because the view has no notion of how
the document's data is physically stored, you could alter the
document's internal storage mechanism without affecting the
view class one bit.

Programming Windows With MFC

 579

I placed the command and update handlers for the commands in
the Color menu in the document class because
m_clrCurrentColor is a member of the document class. The
command handlers simply assign an RGB color value to
m_clrCurrentColor. The update handlers use
CCmdUI::SetRadio to bullet the current color. Rather than
write six separate command handlers and six separate update
handlers, I could have used MFC's ON_COMMAND_RANGE
and ON_UPDATE_COMMAND_UI_RANGE macros to
service all six menu items with one command handler and one
update handler. Because ClassWizard provides no means for
outputting RANGE macros, however, these macros, if used,
would have to be added by hand.

When the user saves an SdiSquares document to disk or reads it
back, MFC calls the document's Serialize function.
CSquaresDoc::Serialize responds by serializing m_clrGrid and
m_clrCurrentColor to the archive if the document is being
saved or by serializing them from the archive if the document is
being loaded. Here's the code that does the work:

void CSquaresDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar << m_clrGrid[i][j];
 ar << m_clrCurrentColor;
 }
 else
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar >> m_clrGrid[i][j];
 ar >> m_clrCurrentColor;
 }
}

Because a COLORREF is a DWORD and MFC overloads the
<< and >> operators for DWORDs, m_clrGrid and
m_clrCurrentColor values can be serialized with syntactical
ease. AppWizard generates a do-nothing Serialize function that
includes the call to IsStoring. You supply the code that streams
the document's persistent data in and out. Note that MFC

Programming Windows With MFC

 580

handles the dirty work of displaying an Open or Save As dialog
to the user, opening the file for reading or writing, and so on.
That's why the process of saving and loading documents is
typically much less work in document/view applications than it
is in conventional applications.

As you can probably tell from Figure 9-4, I used AppWizard to
generate SdiSquares' initial source code and ClassWizard to
write message handlers, command handlers, and update
handlers. I didn't touch the code that AppWizard generated for
the application class and frame window class because I didn't
need to. The bulk of my work involved the document and view
classes, which is typical of the document/view application
development process.

Figure 9-4. The SdiSquares application

SdiSquares.h

// SdiSquares.h : main header file for the SDISQUARES application
//

#if !defined(

AFX_SDISQUARES_H__00156CE5_BB17_11D2_A2FD_0000861BAE71__INCL
UDED_)
#define
AFX_SDISQUARES_H__00156CE5_BB17_11D2_A2FD_0000861BAE71__INCL
UDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CSquaresApp:
// See SdiSquares.cpp for the implementation of this class
//

class CSquaresApp : public CWinApp
{
public:
 CSquaresApp();

// Overrides
 // ClassWizard generated virtual function overrides

Programming Windows With MFC

 581

 //{{AFX_VIRTUAL(CSquaresApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation
 //{{AFX_MSG(CSquaresApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_SDISQUARES_H__00156CE5_BB17_11D2_A2FD_0000861BAE71__INCL
UDED_)

SdiSquares.cpp

// SdiSquares.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "SdiSquares.h"

#include "MainFrm.h"
#include "SquaresDoc.h"
#include "SquaresView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSquaresApp

BEGIN_MESSAGE_MAP(CSquaresApp, CWinApp)
 //{{AFX_MSG_MAP(CSquaresApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)

Programming Windows With MFC

 582

 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CSquaresApp construction

CSquaresApp::CSquaresApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CSquaresApp object

CSquaresApp theApp;

///
// CSquaresApp initialization

BOOL CSquaresApp::InitInstance()
{
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file
 // options (including MRU)

 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CSquaresDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame
window
 RUNTIME_CLASS(CSquaresView));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line

Programming Windows With MFC

 583

 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)

Programming Windows With MFC

 584

 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CSquaresApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CSquaresApp message handlers

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(
 AFX_MAINFRM_H__00156CE9_BB17_11D2_A2FD_0000861BAE71__INCLUDED_)
#define AFX_MAINFRM_H__00156CE9_BB17_11D2_A2FD_0000861BAE71__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions

Programming Windows With MFC

 585

protected:
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__00156CE9_BB17_11D2_A2FD_0000861BAE71__INCLUD
ED_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "SdiSquares.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here

Programming Windows With MFC

 586

}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

SquaresDoc.h

// SquaresDoc.h : interface of the CSquaresDoc class
//
///

#if !defined(

AFX_SQUARESDOC_H__00156CEB_BB17_11D2_A2FD_0000861BAE71__INCLUDED_)
#define
AFX_SQUARESDOC_H__00156CEB_BB17_11D2_A2FD_0000861BAE71__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSquaresDoc : public CDocument
{
protected: // create from serialization only
 CSquaresDoc();
 DECLARE_DYNCREATE(CSquaresDoc)

Programming Windows With MFC

 587

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSquaresDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL

// Implementation
public:
 void SetSquare (int i, int j, COLORREF color);
 COLORREF GetSquare (int i, int j);
 COLORREF GetCurrentColor();
 virtual ~CSquaresDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 COLORREF m_clrCurrentColor;
 COLORREF m_clrGrid[4][4];
 //{{AFX_MSG(CSquaresDoc)
 afx_msg void OnColorRed();
 afx_msg void OnColorYellow();
 afx_msg void OnColorGreen();
 afx_msg void OnColorCyan();
 afx_msg void OnColorBlue();
 afx_msg void OnColorWhite();
 afx_msg void OnUpdateColorRed(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorYellow(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorGreen(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorCyan(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorBlue(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorWhite(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif

Programming Windows With MFC

 588

// !defined(
//
AFX_SQUARESDOC_H__00156CEB_BB17_11D2_A2FD_0000861BAE71__INCLUDED_)

SquaresDoc.cpp

// SquaresDoc.cpp : implementation of the CSquaresDoc class
//

#include "stdafx.h"
#include "SdiSquares.h"

#include "SquaresDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSquaresDoc

IMPLEMENT_DYNCREATE(CSquaresDoc, CDocument)

BEGIN_MESSAGE_MAP(CSquaresDoc, CDocument)
 //{{AFX_MSG_MAP(CSquaresDoc)
 ON_COMMAND(ID_COLOR_RED, OnColorRed)
 ON_COMMAND(ID_COLOR_YELLOW, OnColorYellow)
 ON_COMMAND(ID_COLOR_GREEN, OnColorGreen)
 ON_COMMAND(ID_COLOR_CYAN, OnColorCyan)
 ON_COMMAND(ID_COLOR_BLUE, OnColorBlue)
 ON_COMMAND(ID_COLOR_WHITE, OnColorWhite)
 ON_UPDATE_COMMAND_UI(ID_COLOR_RED, OnUpdateColorRed)
 ON_UPDATE_COMMAND_UI(ID_COLOR_YELLOW,
OnUpdateColorYellow)
 ON_UPDATE_COMMAND_UI(ID_COLOR_GREEN,
OnUpdateColorGreen)
 ON_UPDATE_COMMAND_UI(ID_COLOR_CYAN,
OnUpdateColorCyan)
 ON_UPDATE_COMMAND_UI(ID_COLOR_BLUE,
OnUpdateColorBlue)
 ON_UPDATE_COMMAND_UI(ID_COLOR_WHITE,
OnUpdateColorWhite)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSquaresDoc construction/destruction

CSquaresDoc::CSquaresDoc()
{
 // TODO: add one-time construction code here

}

Programming Windows With MFC

 589

CSquaresDoc::~CSquaresDoc()
{
}

BOOL CSquaresDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 m_clrGrid[i][j] = RGB (255, 255, 255);

 m_clrCurrentColor = RGB (255, 0, 0);
 return TRUE;
}

///
// CSquaresDoc serialization

void CSquaresDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar << m_clrGrid[i][j];
 ar << m_clrCurrentColor;
 }
 else
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar >> m_clrGrid[i][j];
 ar >> m_clrCurrentColor;
 }
}

///
// CSquaresDoc diagnostics

#ifdef _DEBUG
void CSquaresDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CSquaresDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///

Programming Windows With MFC

 590

// CSquaresDoc commands

COLORREF CSquaresDoc::GetCurrentColor()
{
 return m_clrCurrentColor;
}

COLORREF CSquaresDoc::GetSquare(int i, int j)
{
 ASSERT (i >= 0 && i <= 3 && j >= 0 && j <= 3);
 return m_clrGrid[i][j];
}

void CSquaresDoc::SetSquare(int i, int j, COLORREF color)
{
 ASSERT (i >= 0 && i <= 3 && j >= 0 && j <= 3);
 m_clrGrid[i][j] = color;
 SetModifiedFlag (TRUE);
 UpdateAllViews (NULL);
}

void CSquaresDoc::OnColorRed()
{
 m_clrCurrentColor = RGB (255, 0, 0);
}

void CSquaresDoc::OnColorYellow()
{
 m_clrCurrentColor = RGB (255, 255, 0);
}

void CSquaresDoc::OnColorGreen()
{
 m_clrCurrentColor = RGB (0, 255, 0);
}

void CSquaresDoc::OnColorCyan()
{
 m_clrCurrentColor = RGB (0, 255, 255);
}x

void CSquaresDoc::OnColorBlue()
{
 m_clrCurrentColor = RGB (0, 0, 255);
}

void CSquaresDoc::OnColorWhite()
{
 m_clrCurrentColor = RGB (255, 255, 255);
}

void CSquaresDoc::OnUpdateColorRed(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 0, 0));
}

Programming Windows With MFC

 591

void CSquaresDoc::OnUpdateColorYellow(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 255, 0));
}

void CSquaresDoc::OnUpdateColorGreen(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 255, 0));
}

void CSquaresDoc::OnUpdateColorCyan(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 255, 255));
}

void CSquaresDoc::OnUpdateColorBlue(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 0, 255));
}

void CSquaresDoc::OnUpdateColorWhite(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 255, 255));
}

SquaresView.h

// SquaresView.h : interface of the CSquaresView class
//
///

#if !defined(

AFX_SQUARESVIEW_H__00156CED_BB17_11D2_A2FD_0000861BAE71__INCLUDED_)
#define
AFX_SQUARESVIEW_H__00156CED_BB17_11D2_A2FD_0000861BAE71__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSquaresView : public CView
{
protected: // create from serialization only
 CSquaresView();
 DECLARE_DYNCREATE(CSquaresView)

// Attributes
public:
 CSquaresDoc* GetDocument();

// Operations
public:

// Overrides

Programming Windows With MFC

 592

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSquaresView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CSquaresView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CSquaresView)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in SquaresView.cpp
inline CSquaresDoc* CSquaresView::GetDocument()
 { return (CSquaresDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_SQUARESVIEW_H__00156CED_BB17_11D2_A2FD_0000861BAE71__INCLUDED_)

SquaresView.cpp

// SquaresView.cpp : implementation of the CSquaresView class
//

#include "stdafx.h"
#include "SdiSquares.h"

#include "SquaresDoc.h"
#include "SquaresView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE

Programming Windows With MFC

 593

static char THIS_FILE[] = __FILE__;
#endif

///
// CSquaresView

IMPLEMENT_DYNCREATE(CSquaresView, CView)

BEGIN_MESSAGE_MAP(CSquaresView, CView)
 //{{AFX_MSG_MAP(CSquaresView)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSquaresView construction/destruction

CSquaresView::CSquaresView()
{
 // TODO: add construction code here

}

CSquaresView::~CSquaresView()
{
}

BOOL CSquaresView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);
}

///
// CSquaresView drawing

void CSquaresView::OnDraw(CDC* pDC)
{
 CSquaresDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 //
 // Set the mapping mode to MM_LOENGLISH.
 //
 pDC->SetMapMode (MM_LOENGLISH);

 //
 // Draw the 16 squares.
 //x
 for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 COLORREF color = pDoc->GetSquare (i, j);
 CBrush brush (color);
 int x1 = (j * 100) + 50;

Programming Windows With MFC

 594

 int y1 = (i * -100) - 50;
 int x2 = x1 + 100;
 int y2 = y1 - 100;
 CRect rect (x1, y1, x2, y2);
 pDC->FillRect (rect, &brush);
 }
 }

 //
 // Then the draw the grid lines surrounding them.
 //
 for (int x=50; x<=450; x+=100) {
 pDC->MoveTo (x, -50);
 pDC->LineTo (x, -450);
 }

 for (int y=-50; y>=-450; y-=100) {
 pDC->MoveTo (50, y);
 pDC->LineTo (450, y);
 }
}

///
// CSquaresView diagnostics

#ifdef _DEBUG
void CSquaresView::AssertValid() const
{
 CView::AssertValid();
}

void CSquaresView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CSquaresDoc* CSquaresView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CSquaresDoc)));
 return (CSquaresDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CSquaresView message handlers

void CSquaresView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CView::OnLButtonDown(nFlags, point);

 //
 // Convert to click coordinates to MM_LOENGLISH units.
 //
 CClientDC dc (this);
 dc.SetMapMode (MM_LOENGLISH);

Programming Windows With MFC

 595

 CPoint pos = point;
 dc.DPtoLP (&pos);

 //
 // If a square was clicked, set its color to the current color.
 //
 if (pos.x >= 50 && pos.x <= 450 && pos.y <= -50 && pos.y >= -450) {
 int i = (-pos.y - 50) / 100;
 int j = (pos.x - 50) / 100;
 CSquaresDoc* pDoc = GetDocument ();
 COLORREF clrCurrentColor = pDoc->GetCurrentColor ();
 pDoc->SetSquare (i, j, clrCurrentColor);
 }
}

9.2.2. SdiSquares Step by Step

It's important to understand how SdiSquares works, but it's also
important to understand how it was created. When you use
AppWizard and ClassWizard to craft MFC applications, the
wizards write part of the code and you write the rest. Moreover,
there's a process involved. Although I don't intend to document
every single button click required to create SdiSquares, I would
be remiss if I didn't provide at least an overview of the process.
Here, then, is a step-by-step account of how SdiSquares came
together and how you can create the application yourself.

1. Use AppWizard to create a new project named SdiSquares. In
AppWizard's Step 1 dialog box, choose Single Document as the
application type and check the Document/View Architecture Support box,
as shown in Figure 9-5. In the Step 3 dialog box, uncheck the ActiveX
Controls box. In Step 4, uncheck Docking Toolbar, Initial Status Bar,
Printing And Print Preview, and 3D Controls. Also in the Step 4 dialog
box, click the Advanced button and type the letters sqr into the File
Extension box (as shown in Figure 9-6) to define the default file name
extension for SdiSquares documents. In the Step 6 dialog box, manually
edit the class names to match the ones in Figure 9-4. Everywhere else,
accept the AppWizard defaults.

Programming Windows With MFC

 596

Figure 9-5. Creating an SDI document/view application with AppWizard.

Figure 9-6. Specifying the default file name extension for SdiSquares
documents.

2. Add the member variables m_clrGrid and m_clrCurrentColor to the
document class, and add code to initialize them to OnNewDocument.

Programming Windows With MFC

 597

AppWizard overrides OnNewDocument, so all you have to do is add the
statements that initialize the data members.

3. Add the member functions GetCurrentColor, GetSquare, and SetSquare
to the document class. Be sure to make them public member functions,
since they must be accessible to the view.

4. Modify the Serialize function that AppWizard included in the document
class to serialize m_clrGrid and m_clrCurrentColor.

5. Implement the view's OnDraw function. AppWizard generates a
do-nothing OnDraw function; you write the code to perform
application-specific duties.

6. Add the WM_LBUTTONDOWN handler (OnLButtonDown) to the view.
You can add the message handler by hand or use ClassWizard to add it. I
used ClassWizard.

7. Open the AppWizard-generated application menu for editing, delete the
Edit menu, and add the Color menu. Then write command and update
handlers for the new menu items. As with message handlers, you can add
command and update handlers manually or you can add them with
ClassWizard's help. Once again, I used ClassWizard.

You can add a nice finishing touch by editing the application's
icons. AppWizard generated two icons when it created the
project. IDR_MAINFRAME is the application icon—the one
that appears in the frame window's title bar.
IDR_SDISQUTYPE is the application's document icon, which
is used to represent SdiSquares document files in the operating
system shell. The document icon is registered with the system
when InitInstance calls RegisterShellFileTypes.

9.3. Doc + View = Less Work for You

As you play around with SdiSquares, notice how much of the
application's functionality is provided by MFC. For example,
documents can be opened and saved, despite the fact that we
added a mere eight lines of code in support of such operations.
If you change the color of a square and attempt to open another
document or exit the application, a message box appears asking
if you'd like to save your changes first. Double-clicking an
SdiSquares document file in the operating system shell
automatically starts SdiSquares and loads the document. MFC
provides these features and more because we built the
application using documents and views. You'll see other
benefits of using the document/view architecture in chapters to
come.

The first time I ever looked at a minimal MFC application
generated by AppWizard, I was dumbfounded by how
relatively little code there was. What I didn't realize at the time

Programming Windows With MFC

 598

was that the framework provided entire chunks of the
application by way of innocent-looking message-map entries
like this one:

ON_COMMAND (ID_FILE_OPEN, CWinApp::OnFileNew)

Still other parts of the program (notably the File menu's Save
and Save As commands) were also implemented by the
framework but weren't even visible as message-map entries
because the message mapping was performed in the base class.
All in all, it looked as if a lot of magic was going on, and it was
clear to me that I was going to have to do some digging before I
would fully understand the mechanics of doc/view.

As I soon found out, there's nothing magic about the
document/view architecture—just some clever coding hidden in
preprocessor macros and thousands of lines of code written to
handle routine (and not-so-routine) chores such as resizing a
view when a frame window is resized and carrying on DDE
conversations with the shell. Many programmers fail to see the
big picture because they don't take the time to look under the
hood at the code AppWizard generates for them. SdiSquares is
a document/view application in existential form, unobscured by
nonessential extras. If you understand SdiSquares, you're well
on your way to understanding the document/view architecture.

Programming Windows With MFC

 599

Chapter 10. Scroll Views, HTML
Views, and Other View Types

MFC's CView class defines the basic functionality of views, but
it is just one of several view classes that MFC places at your
disposal. Related classes such as CScrollView, CTreeView, and
CHtmlView—all of which are derived, either directly or
indirectly, from CView—express added functionality that's
yours for the asking when you use them as base classes for
view classes of your own. The table below lists the view classes
that are available in MFC 6.0 and later.

CView was introduced in Chapter 9, where it was used as the
base class for the view in SdiSquares. In this chapter, we'll look
at some of the other view classes that MFC offers and examine
practical sample code demonstrating their use. First up is
CScrollView, which, next to CView, is probably the view class
that MFC programmers use most often.

MFC View Classes

Class Name Description

CView Root class for all view classes

CCtrlView Base class for CEditView, CRichEditView, CListView, and
CTreeView; can be used to create view classes based on
other types of controls

CEditView Wraps the multiline edit control and adds print, search,
and search-and-replace capabilities

CRichEditView Wraps the rich edit control

CListView Wraps the list view control

CTreeView Wraps the tree view control

CHtmlView Creates views from HTML files and other media
supported by the Microsoft Internet Explorer
WebBrowser control

CScrollView Adds scrolling capabilities to CView; base class for

CFormView Implements scrollable "form" views created from dialog
templates

CRecordView CFormView derivative designed to display records
obtained from an ODBC database

Programming Windows With MFC

 600

CDaoRecordView DAO version of CRecordView

COleDBRecordView OLE DB version of CRecordView

10.1. Scroll Views

CScrollView adds basic scrolling capabilities to CView. It
includes handlers for WM_VSCROLL and WM_HSCROLL
messages that allow MFC to do the bulk of the work involved
in scrolling a window in response to scroll bar messages. It also
includes member functions that you can call to perform
fundamental tasks such as scrolling to a specified position and
retrieving the current scroll position. Because CScrollView
handles scrolling entirely on its own, you have to do very little
to make it work other than implement OnDraw. You can
usually implement OnDraw in a CScrollView exactly as you do
in a CView. Unless you want to tweak it to optimize scrolling
performance, OnDraw requires little or no special logic to
support scrolling.

10.1.1. CScrollView Basics

Using CScrollView to create a scrolling view is simplicity itself.
Here are the three basic steps. The term physical view refers to
the view window and the space that it occupies on the screen,
and logical view describes the virtual workspace that can be
viewed by using the scroll bars:

1. Derive your application's view class from CScrollView. If you use
AppWizard to create the project, you can select CScrollView from the list
of base classes presented in AppWizard's Step 6 dialog box, as shown in
Figure 10-1.

Programming Windows With MFC

 601

Figure 10-1. Using AppWizard to create a CScrollView-based
application.

2. Override OnInitialUpdate in the view class, and call SetScrollSizes to
specify the view's logical dimensions. This is your means of telling MFC
how large an area the scrollable view should cover. If you use
AppWizard to create the project and choose CScrollView in the Step 6
dialog box, AppWizard overrides OnInitialUpdate for you and inserts a
call to SetScrollSizes that sets the view's logical width and height to 100
pixels.

3. Implement OnDraw as if the view were a conventional CView.

A scroll view created in this manner automatically scrolls in
response to scroll bar events. It automatically factors the scroll
position into the output from OnDraw. It also hides its scroll
bars if the physical view size exceeds the logical view size and
sizes the scroll bar thumbs to reflect the relative proportions of
the physical and logical views when the scroll bars are visible.

CScrollView::SetScrollSizes accepts four parameters, two of
which are optional. In order, here are those parameters:

x An integer specifying the mapping mode (required)
x A SIZE structure or CSize object specifying the view's logical

dimensions (required)
x A SIZE structure or CSize object specifying the page size—the amount

by which MFC scrolls the view when the scroll bar shaft is clicked
(optional)

x A SIZE structure or CSize object specifying the line size—the amount by
which MFC scrolls the view when the scroll bar arrows are clicked
(optional)

Programming Windows With MFC

 602

If you omit either or both of the final two parameters, MFC
uses sensible defaults for the page size and the line size. Here's
an OnInitialUpdate function that sets the logical view size to
1,280 pixels wide and 1,024 pixels high:

void CMyView::OnInitialUpdate ()
{
 CScrollView::OnInitialUpdate ();
 SetScrollSizes (MM_TEXT, CSize (1280, 1024));
}

And here's one that sets the view's dimensions to those of an
8½-by-11-inch page:

void CMyView::OnInitialUpdate ()
{
 CScrollView::OnInitialUpdate ();
 SetScrollSizes (MM_LOENGLISH, CSize (850, 1100));
}

The next one does the same as the last one, but it also programs
the view to scroll 2 inches in response to
SB_PAGEUP/DOWN/LEFT/RIGHT events and ¼ inch in
response to SB_LINEUP/DOWN/LEFT/RIGHT events:

void CMyView::OnInitialUpdate ()
{
 CScrollView::OnInitialUpdate ();
 SetScrollSizes (MM_LOENGLISH, CSize (850, 1100),
 CSize (200, 200), CSize (25, 25));
}

The mapping mode specified in SetScrollSizes' first parameter
determines the units of measurement for the second, third, and
fourth parameters. You can specify any mapping mode except
MM_ISOTROPIC and MM_ANISOTROPIC. When OnDraw
is called, the mapping mode has already been set to the one
specified in the call to SetScrollSizes. Therefore, you needn't
call SetMapMode yourself when you implement OnDraw.

Is that all there is to creating a scrolling view? Almost. You
should remember two basic principles when using a
CScrollView:

Programming Windows With MFC

 603

x If you draw in the view outside of OnDraw, call
CScrollView::OnPrepareDC to allow MFC to factor the mapping mode
and scroll position into the output.

x If you do any hit-testing in response to mouse messages, use
CDC-::DPtoLP to convert the click coordinates from device coordinates
to logical coordinates to factor the mapping mode and scroll position into
the hit-test.

A bit of background on how a CScrollView works will clarify
why these principles are important—and why an ordinary
OnDraw function that knows nothing about scrolling magically
adjusts its output to match the current scroll position when it's
part of a CScrollView.

When a scroll event occurs, CScrollView captures the ensuing
message with its OnVScroll or OnHScroll message handler and
calls ::ScrollWindow to scroll the view horizontally or
vertically. Soon after, the view's OnPaint function is called to
paint the portion of the window that was invalidated
by ::ScrollWindow. Here's the OnPaint handler that
CScrollView inherits from CView:

CPaintDC dc(this);
OnPrepareDC(&dc);
OnDraw(&dc);

Before it calls OnDraw, CView::OnPaint calls the virtual
OnPrepareDC function. CScrollView overrides OnPrepareDC
and in it calls CDC::SetMapMode to set the mapping mode and
CDC::SetViewportOrg to translate the viewport origin an
amount that equals the horizontal and vertical scroll positions.
Consequently, the scroll positions are automatically factored in
when OnDraw repaints the view. Thanks to
CScrollView::OnPrepareDC, a generic OnDraw function
ported from a CView to a CScrollView automatically adapts to
changes in the scroll position.

Now think about what happens if you instantiate a device
context class on your own, outside the view's OnDraw function,
and draw something in a CScrollView. Unless you first call
OnPrepareDC to prepare the device context as OnPaint does,
SetViewportOrg won't get called and drawing will be
performed relative to the upper left corner of the physical view
rather than to the upper left corner of the logical view. Views of
a document get out of kilter pretty quickly if they're drawn

Programming Windows With MFC

 604

using two different coordinate systems. Therefore, when you
draw in a CScrollView window outside of OnDraw like this:

CClientDC dc (this);
// Draw something with dc.

Make it a habit to pass the device context to OnPrepareDC first,
like this:

CClientDC dc (this);
OnPrepareDC (&dc);
// Draw something with dc.

By the same token, if you have the coordinates of a point in a
CScrollView in device coordinates and want to find the
corresponding position in the logical view, use CDC::DPtoLP
to convert the device coordinates to logical coordinates. Call
OnPrepareDC first to set the mapping mode and factor in the
scroll position. Here's a WM_LBUTTONDOWN handler that
performs a simple hit-test to determine whether the click point
lies in the upper or lower half of the logical view:

void CMyView::OnLButtonDown (UINT nFlags, CPoint point)
{
 CPoint pos = point;
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&pos);

 CSize size = GetTotalSize ();
 if (::abs (pos.y) < (size.cy / 2)) {
 // Upper half was clicked.
 }
 else {
 // Lower half was clicked.
 }
}

CPoint objects passed to OnLButtonDown and other mouse
message handlers always contain device coordinates, so
conversion is essential if you want to know the coordinates of
the corresponding point in logical view space.

Programming Windows With MFC

 605

10.1.2. CScrollView Operations

CScrollView includes a handful of member functions that you
can use to operate on a scroll view programmatically. For
example, you can retrieve the current horizontal or vertical
scroll position from a CScrollView by calling
GetScrollPosition:

CPoint pos = GetScrollPosition ();

You can scroll to a given position programmatically with
ScrollToPosition:

ScrollToPosition (CPoint (100, 100));

And you can measure the view's logical width and height with
GetTotalSize:

CSize size = GetTotalSize ();
int nWidth = size.cx;
int nHeight = size.cy;

One of CScrollView's more interesting member functions is
SetScaleToFit-Size. Suppose you'd like to implement a Zoom
To Fit command in your application that scales the entire
logical view to fit the physical view. It's easy with
SetScaleToFitSize:

SetScaleToFitSize (GetTotalSize ());

To restore the view to its default scrollable form, simply call
SetScrollSizes again. Incidentally, you can call SetScrollSizes
multiple times throughout the life of an application to adjust
scrolling parameters on the fly. For example, if the size of the
logical view grows as data is added to the document, it's
perfectly legal to use SetScrollSizes to increase the view's
logical dimensions each time the document grows.

10.1.3. Optimizing Scrolling Performance

CScrollView is architected in such a way that the OnDraw code
you write doesn't have to explicitly factor in the scroll position.

Programming Windows With MFC

 606

Consequently, an OnDraw function borrowed from a CView
generally works without modification in a CScrollView. But
"works" and "performs acceptably" are two different things.

CScrollView stresses a view's OnDraw function far more than a
CView does because scrolling precipitates more calls to
OnDraw. Very often, a call to OnDraw induced by a scroll bar
event requires only a few rows of pixels to be painted. If
OnDraw attempts to paint the entire view, the GDI eliminates
unnecessary output by clipping pixels outside the invalid
rectangle. But clipping takes time, with the result that scrolling
performance can range from fine to abysmal depending on how
many CPU cycles OnDraw wastes trying to paint outside the
invalid rectangle.

After you get a scroll view working, you should test its
performance by dragging the scroll bar thumb. If the window
scrolls acceptably, you're done. But if it doesn't (and in practice,
it probably won't more often than it will), you should modify
the view's OnDraw function so that it identifies the invalid
rectangle and, to the extent possible, limits its painting to those
pixels that fall inside the rectangle.

The key to optimizing OnDraw is a CDC function named
GetClipBox. Called on the device context object passed to
OnDraw, GetClipBox initializes a RECT structure or CRect
object with the size and location, in logical coordinates, of the
invalid rectangle, as shown here:

CRect rect;
pDC->GetClipBox (&rect);

A CRect initialized in this manner tells you what part of the
view needs redrawing. How you use this information is highly
application-specific. The sample program in the next section,
which displays a spreadsheet in a scrollable view, translates the
coordinates returned by GetClipBox into row and column
numbers and uses the results to paint only those cells that fall
within (either in whole or in part) the invalid rectangle. This is
just one example of how GetClipBox can be used to optimize
painting by eliminating unnecessary output. You'll see
additional examples in subsequent chapters.

Programming Windows With MFC

 607

10.1.4. The ScrollDemo Application

The ScrollDemo application shown in Figure 10-2
demonstrates many of the principles discussed in the preceding
sections. ScrollDemo displays a spreadsheet that measures 26
columns wide and 99 rows high. One cell in the
spreadsheet—the "current cell"—is highlighted in light blue.
Clicking a cell with the left mouse button makes that cell the
current cell and moves the highlight. The spreadsheet is
displayed in a scrollable view defined by the
CScrollView-derived class named CScrollDemoView.
CScrollDemoView's source code appears in Figure 10-3.

Figure 10-2. The ScrollDemo window.

Figure 10-3. The ScrollDemo application

ScrollDemoView.h

// ScrollDemoView.h : interface of the CScrollDemoView class
//
//

#if !defined(

AFX_SCROLLDEMOVIEW_H__DCCF4E0D_9735_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_SCROLLDEMOVIEW_H__DCCF4E0D_9735_11D2_8E53_006008A82731__INCLUDED
_

Programming Windows With MFC

 608

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CScrollDemoView : public CScrollView
{
protected: // create from serialization only
 CScrollDemoView();
 DECLARE_DYNCREATE(CScrollDemoView)

// Attributes
public:
 CScrollDemoDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CScrollDemoView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CScrollDemoView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 BOOL m_bSmooth;
 void GetCellRect (int row, int col, LPRECT pRect);
 void DrawAddress (CDC* pDC, int row, int col);
 void DrawPointer (CDC* pDC, int row, int col, BOOL bHighlight);
 CFont m_font;
 int m_nCurrentCol;
 int m_nCurrentRow;
 int m_nRibbonWidth;
 int m_nCellHeight;
 int m_nCellWidth;
 //{{AFX_MSG(CScrollDemoView)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Programming Windows With MFC

 609

#ifndef _DEBUG // debug version in ScrollDemoView.cpp
inline CScrollDemoDoc* CScrollDemoView::GetDocument()
 { return (CScrollDemoDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_SCROLLDEMOVIEW_H__DCCF4E0D_9735_11D2_8E53_006008A82731__INCLUDED
_)

ScrollDemoView.cpp

// ScrollDemoView.cpp : implementation of the CScrollDemoView class
//

#include "stdafx.h"
#include "ScrollDemo.h"
#include "ScrollDemoDoc.h"

#include "ScrollDemoView.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CScrollDemoView

IMPLEMENT_DYNCREATE(CScrollDemoView, CScrollView)

BEGIN_MESSAGE_MAP(CScrollDemoView, CScrollView)
 //{{AFX_MSG_MAP(CScrollDemoView)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CScrollDemoView construction/destruction

CScrollDemoView::CScrollDemoView()
{
 m_font.CreatePointFont (80, _T ("MS Sans Serif"));
}

CScrollDemoView::~CScrollDemoView()
{
}

Programming Windows With MFC

 610

BOOL CScrollDemoView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}

///
// CScrollDemoView drawing

void CScrollDemoView::OnDraw(CDC* pDC)
{
 CScrollDemoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 //
 // Draw the grid lines.

//
 CSize size = GetTotalSize ();

 CPen pen (PS_SOLID, 0, RGB (192, 192, 192));
 CPen* pOldPen = pDC->SelectObject (&pen);
 for (int i=0; i<99; i++) {
 int y = (i * m_nCellHeight) + m_nCellHeight;
 pDC->MoveTo (0, y);
 pDC->LineTo (size.cx, y);
 }

 for (int j=0; j<26; j++) {
 int x = (j * m_nCellWidth) + m_nRibbonWidth;
 pDC->MoveTo (x, 0);
 pDC->LineTo (x, size.cy);
 }

 pDC->SelectObject (pOldPen);

 //
 // Draw the bodies of the rows and column headers.
 //
 CBrush brush;
 brush.CreateStockObject (LTGRAY_BRUSH);

 CRect rcTop (0, 0, size.cx, m_nCellHeight);
 pDC->FillRect (rcTop, &brush);
 CRect rcLeft (0, 0, m_nRibbonWidth, size.cy);
 pDC->FillRect (rcLeft, &brush);

 pDC->MoveTo (0, m_nCellHeight);
 pDC->LineTo (size.cx, m_nCellHeight);
 pDC->MoveTo (m_nRibbonWidth, 0);
 pDC->LineTo (m_nRibbonWidth, size.cy);

 pDC->SetBkMode (TRANSPARENT);

 //
 // Add numbers and button outlines to the row headers.

Programming Windows With MFC

 611

 //
 for (i=0; i<99; i++) {
 int y = (i * m_nCellHeight) + m_nCellHeight;
 pDC->MoveTo (0, y);
 pDC->LineTo (m_nRibbonWidth, y);

 CString string;
 string.Format (_T ("%d"), i + 1);

 CRect rect (0, y, m_nRibbonWidth, y + m_nCellHeight);
 pDC->DrawText (string, &rect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);

 rect.top++;
 pDC->Draw3dRect (rect, RGB (255, 255, 255),
 RGB (128, 128, 128));
 }

 //
 // Add letters and button outlines to the column headers.
 //
 for (j=0; j<26; j++) {
 int x = (j * m_nCellWidth) + m_nRibbonWidth;
 pDC->MoveTo (x, 0);
 pDC->LineTo (x, m_nCellHeight);

 CString string;
 string.Format (_T ("%c"), j + `A');

 CRect rect (x, 0, x + m_nCellWidth, m_nCellHeight);
 pDC->DrawText (string, &rect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);

 rect.left++;
 pDC->Draw3dRect (rect, RGB (255, 255, 255),
 RGB (128, 128, 128));
 }

 //
 // Draw address labels into the individual cells.
 //
 CRect rect;
 pDC->GetClipBox (&rect);
 int nStartRow = max (0, (rect.top - m_nCellHeight) / m_nCellHeight);
 int nEndRow = min (98, (rect.bottom - 1) / m_nCellHeight);
 int nStartCol = max (0, (rect.left - m_nRibbonWidth) / m_nCellWidth);
 int nEndCol = min (25, ((rect.right + m_nCellWidth - 1) -
 m_nRibbonWidth) / m_nCellWidth);

 for (i=nStartRow; i<=nEndRow; i++)
 for (j=nStartCol; j<=nEndCol; j++)
 DrawAddress (pDC, i, j);

 //
 // Draw the cell pointer.
 //

Programming Windows With MFC

 612

 DrawPointer (pDC, m_nCurrentRow, m_nCurrentCol, TRUE);
}
void CScrollDemoView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 m_nCurrentRow = 0;
 m_nCurrentCol = 0;
 m_bSmooth = FALSE;

 CClientDC dc (this);
 m_nCellWidth = dc.GetDeviceCaps (LOGPIXELSX);
 m_nCellHeight = dc.GetDeviceCaps (LOGPIXELSY) / 4;
 m_nRibbonWidth = m_nCellWidth / 2;

 int nWidth = (26 * m_nCellWidth) + m_nRibbonWidth;
 int nHeight = m_nCellHeight * 100;
 SetScrollSizes (MM_TEXT, CSize (nWidth, nHeight));
}

///
// CScrollDemoView diagnostics

#ifdef _DEBUG
void CScrollDemoView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CScrollDemoView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CScrollDemoDoc* CScrollDemoView::GetDocument() // non-debug version is
 inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CScrollDemoDoc)));
 return (CScrollDemoDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CScrollDemoView message handlers

void CScrollDemoView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CScrollView::OnLButtonDown(nFlags, point);

 //
 // Convert the click point to logical coordinates.
 //
 CPoint pos = point;
 CClientDC dc (this);
 OnPrepareDC (&dc);

Programming Windows With MFC

 613

 dc.DPtoLP (&pos);

 //
 // If a cell was clicked, move the cell pointer.
 //
 CSize size = GetTotalSize ();
 if (pos.x > m_nRibbonWidth && pos.x < size.cx &&
 pos.y > m_nCellHeight && pos.y < size.cy) {

 int row = (pos.y - m_nCellHeight) / m_nCellHeight;
 int col = (pos.x - m_nRibbonWidth) / m_nCellWidth;
 ASSERT (row >= 0 && row <= 98 && col >= 0 && col <= 25);

 DrawPointer (&dc, m_nCurrentRow, m_nCurrentCol, FALSE);
 m_nCurrentRow = row;
 m_nCurrentCol = col;
 DrawPointer (&dc, m_nCurrentRow, m_nCurrentCol, TRUE);
 }
}

void CScrollDemoView::DrawPointer(CDC *pDC, int row, int col,
 BOOL bHighlight)
{
 CRect rect;
 GetCellRect (row, col, &rect);
 CBrush brush (bHighlight ? RGB (0, 255, 255) :
 ::GetSysColor (COLOR_WINDOW));
 pDC->FillRect (rect, &brush);
 DrawAddress (pDC, row, col);
}

void CScrollDemoView::DrawAddress(CDC *pDC, int row, int col)
{
 CRect rect;
 GetCellRect (row, col, &rect);

 CString string;
 string.Format (_T ("%c%d"), col + _T (`A'), row + 1);

 pDC->SetBkMode (TRANSPARENT);
 CFont* pOldFont = pDC->SelectObject (&m_font);
 pDC->DrawText (string, rect, DT_SINGLELINE ¦ DT_CENTER ¦
DT_VCENTER);
 pDC->SelectObject (pOldFont);
}

void CScrollDemoView::GetCellRect(int row, int col, LPRECT pRect)
{
 pRect->left = m_nRibbonWidth + (col * m_nCellWidth) + 1;
 pRect->top = m_nCellHeight + (row * m_nCellHeight) + 1;
 pRect->right = pRect->left + m_nCellWidth - 1;
 pRect->bottom = pRect->top + m_nCellHeight - 1;
}

Programming Windows With MFC

 614

Because CScrollView manages most aspects of scrolling,
ScrollDemo includes remarkably little code to explicitly
support scrolling operations. It does, however, use GetClipBox
to optimize OnDraw's performance. Rather than attempt to
paint all 2,574 spreadsheet cells every time it's called, OnDraw
translates the clip box into starting and ending row and column
numbers and paints only those cells that fall within these ranges.
The pertinent code is near the end of OnDraw:

CRect rect;
pDC->GetClipBox (&rect);
int nStartRow = max (0, (rect.top - m_nCellHeight) / m_nCellHeight);
int nEndRow = min (98, (rect.bottom - 1) / m_nCellHeight);
int nStartCol = max (0, (rect.left - m_nRibbonWidth) /
m_nCellWidth);
int nEndCol = min (25, ((rect.right + m_nCellWidth - 1) -
 m_nRibbonWidth) / m_nCellWidth);

for (i=nStartRow; i<=nEndRow; i++)
 for (j=nStartCol; j<=nEndCol; j++)
 DrawAddress (pDC, i, j);

As an experiment, try modifying the for loop to paint every
cell:

for (i=0; i<99; i++)
 for (j=0; j<26; j++)
 DrawAddress (pDC, i, j);

Then try scrolling the spreadsheet. You'll quickly see why
optimizing OnDraw is a necessity rather than an option in
many scroll views.

Another interesting experiment involves the view's
OnLButtonDown function, which moves the cell highlight in
response to mouse clicks. Before using the CPoint object
passed to it to determine the row and column number in which
the click occurred, OnLButtonDown converts the CPoint's
device coordinates to logical coordinates with the following
statements:

CPoint pos = point;
CClientDC dc (this);
OnPrepareDC (&dc);

Programming Windows With MFC

 615

dc.DPtoLP (&pos);

To see what happens if OnLButtonDown fails to take the scroll
position into account in a CScrollView, delete the call to
DPtoLP and try clicking around in the spreadsheet after
scrolling it a short distance horizontally or vertically.

10.1.5. Converting an Ordinary View into a Scroll
View

What happens if you use AppWizard to generate a
CView-based application and later decide you want a
CScrollView? You can't use the MFC wizards to convert a
CView into a CScrollView after the fact, but you can perform
the conversion by hand. Here's how:

1. Search the view's header file and CPP file and change all occurrences of
CView to CScrollView, except where CView* occurs in a function's
parameter list.

2. Override OnInitialUpdate if it isn't overridden already, and insert a call
to SetScrollSizes.

If you perform step 1 but forget step 2, you'll know it as soon as
you run the application because MFC will assert on you. MFC
can't manage a scroll view if it doesn't know the view's logical
dimensions.

10.2. HTML Views

One of MFC's most powerful new classes is CHtmlView, which
converts the WebBrowser control that's the heart and soul of
Microsoft Internet Explorer into a full-fledged MFC view.
CHtmlView displays HTML documents. You provide a URL,
which can reference a document on the Internet, on an intranet,
or even on a local hard disk, and CHtmlView displays the
document the same way Internet Explorer displays it. From the
underlying WebBrowser control, CHtmlView inherits a treasure
trove of added functionality, from the ability to go backward or
forward in a history list with a simple function call to the ability
to host Dynamic HTML (DHTML) documents. CHtmlView is
also an Active Document container, which means it can be used
to display documents created by Microsoft Word, Microsoft
Excel, and other Active Document servers. It can even display

Programming Windows With MFC

 616

the contents of folders on a hard disk—just like Internet
Explorer.

CHtmlView is a complex class because it includes dozens of
member functions that provide a C++ interface to the
WebBrowser control. Despite its complexity, however, it is an
exceedingly easy class to use. With just a handful of member
functions, you can build applications that rival Internet
Explorer itself for richness and functionality. In fact, you can
use CHtmlView and other MFC classes such as CToolBar to
build an Internet Explorer knock-off in less than a day. Visual
C++ comes with an MFC sample named MFCIE that
demonstrates how. If you're willing to forego a few bells and
whistles, you can build a basic browser in minutes. Do note that
because CHtmlView derives most of its functionality from the
WebBrowser control, and because the WebBrowser control is
part of Internet Explorer, an application that uses CHtmlView
can be run only on systems equipped with Internet Explorer 4.0
or later.

10.2.1. CHtmlView Operations

A good way to begin learning about CHtmlView is to get
acquainted with its nonvirtual member functions, or operations.
The following table lists the operations that the majority of
programmers will find the most useful. For information on the
others (and there are many), refer to the MFC documentation.

Key CHtmlView Operations

Function Description

GetBusy Indicates whether a download is in progress

GetLocationName If an HTML page is displayed, retrieves the page's title; if a
file or folder is currently displayed, retrieves the file or
folder name

GetLocationURL Retrieves the URL of the resource that is currently
displayed—for example, http://www.microsoft.com/ or
file://C:/HTML Files/Clock.htm

GoBack Goes to the previous item in the history list

GoForward Goes to the next item in the history list

Navigate Displays the resource at the specified URL

Refresh Reloads the resource that is currently displayed

Programming Windows With MFC

 617

Stop Stops loading a resource

The actions performed by these functions should be obvious to
anyone familiar with Internet Explorer. For example, if you
were writing a browser, you could wire up the Back, Forward,
Refresh, and Stop buttons with these one-line command
handlers:

// In CMyView's message map
ON_COMMAND (ID_BACK, OnBack)
ON_COMMAND (ID_FORWARD, OnForward)
ON_COMMAND (ID_REFRESH, OnRefresh)
ON_COMMAND (ID_STOP, OnStop)

void CMyView::OnBack ()
{
 GoBack ();
}

void CMyView::OnForward ()
{
 GoForward ();
}

void CMyView::OnRefresh ()
{
 Refresh ();
}

void CMyView::OnStop ()
{
 Stop ();
}

The WebBrowser control exposes huge chunks of its
functionality through a COM interface named IWebBrowser2.
Most nonvirtual CHtmlView member functions, including the
ones shown here, are little more than C++ wrappers around
calls to IWebBrowser2 methods.

When the user clicks a hyperlink in an HTML document,
CHtmlView automatically jumps to the associated URL. You
can go to other URLs programmatically with the Navigate
function. The statement

Navigate (_T ("http://www.microsoft.com"));

Programming Windows With MFC

 618

displays the main page of Microsoft's web site. Navigate also
accepts file-based URLs. For example, the statement

Navigate (_T ("file://c:/my documents/budget.xls"));

displays an Excel spreadsheet in an HTML view. It works
because Excel is an Active Document server, but it does require
that Excel be installed on the host PC. Passing a path name
identifying a folder rather than a file works, too:

Navigate (_T ("file://c:/my documents"));

A related CHtmlView function named Navigate2 does
everything Navigate does and more. Because it will accept
pointers to ITEMIDLIST structures in lieu of path names,
Navigate2 can be used to access objects anywhere in the shell's
namespace. Navigate, by contrast, is limited to file system
objects only.

10.2.2. CHtmlView Overridables

CHtmlView includes several virtual functions that you can
override in a derived class to obtain up-to-date information
about the state of the WebBrowser control and the resources
that it displays. A sampling of these functions appears in the
following table.

Key CHtmlView Overridables

Function Description

OnNavigateComplete2 Called after navigating to a new URL

OnBeforeNavigate2 Called before navigating to a new URL

OnProgressChange Called to provide an update on the status of a
download

OnDownloadBegin Called to indicate that a download is about to begin

OnDownloadComplete Called to indicate that a download is complete

OnTitleChange Called when the document title changes

OnDocumentComplete Called to indicate that a document was successfully
downloaded

Programming Windows With MFC

 619

Unfortunately, the Visual C++ documentation provides only
sketchy information about why or when these functions are
called. That's why a transcript can be so revealing. Here's a log
of the calls that took place when CHtmlView::Navigate was
called to go to home.microsoft.com:

OnBeforeNavigate2 ("http://home.microsoft.com/")
OnDownloadBegin ()
OnProgressChange (100/10000)
OnProgressChange (150/10000)
OnProgressChange (150/10000)
OnProgressChange (200/10000)
OnProgressChange (250/10000)
OnProgressChange (300/10000)
OnProgressChange (350/10000)
OnProgressChange (400/10000)
OnProgressChange (450/10000)
OnProgressChange (500/10000)
OnProgressChange (550/10000)
OnDownloadComplete ()
OnDownloadBegin ()
OnProgressChange (600/10000)
OnProgressChange (650/10000)
OnProgressChange (700/10000)
OnProgressChange (750/10000)
OnProgressChange (800/10000)
OnProgressChange (850/10000)
OnProgressChange (900/10000)
OnProgressChange (950/10000)
OnProgressChange (1000/10000)
OnProgressChange (1050/10000)
OnProgressChange (1100/10000)
OnProgressChange (1150/10000)
OnProgressChange (1200/10000)
OnProgressChange (1250/10000)
OnProgressChange (131400/1000000)
OnTitleChange ("http://home.microsoft.com/")
OnNavigateComplete2 ("http://home.microsoft.com/")
OnTitleChange ("MSN.COM")
OnProgressChange (146500/1000000)
OnTitleChange ("MSN.COM")
OnProgressChange (158200/1000000)
OnProgressChange (286500/1000000)
OnProgressChange (452300/1000000)
OnTitleChange ("MSN.COM")
OnProgressChange (692800/1000000)
OnProgressChange (787000/1000000)
OnTitleChange ("MSN.COM")

Programming Windows With MFC

 620

OnDownloadComplete ()
OnTitleChange ("MSN.COM")
OnDocumentComplete ("http://home.microsoft.com/")
OnProgressChange (0/0)

You can clearly see the call to OnBeforeNavigate2 advertising
the WebBrowser control's intent to jump to a new URL, the call
to OnNavigateComplete2 after a connection was established,
and the call to OnDocumentComplete once the page was fully
downloaded. In between, you see calls to OnDownloadBegin
and OnDownloadComplete marking the downloading of
individual page elements and calls to OnProgressChange
noting the progress of those downloads. OnProgressChange
receives two parameters: a long specifying the number of bytes
downloaded thus far and a long specifying the number of bytes
to be downloaded. Dividing the first by the second and
multiplying by 100 yields a percentage-done figure that can be
displayed in a progress bar or other control. A call to
OnProgressChange with a first parameter equal to -1 or a pair
of 0 parameters is another indication that a download is
complete.

The MFCIE sample shipped with Visual C++ provides one
example of how these functions can be used. It uses
OnTitleChange to update the document title displayed in its
title bar, OnBeforeNavigate2 to begin playing an animation
indicating a download is in progress, and
OnDocumentComplete to stop the animation and update the
URL displayed in its address bar. In essence, it uses
OnBeforeNavigate2 and OnDocumentComplete to mark the
beginning and end of a document download and
OnTitleChange to display the title parsed from the HTML.

10.2.3. Utilizing DHTML in CHtmlView-Based
Applications

Writing specialized browsers for in-house use is a fine way to
put CHtmlView to work, but CHtmlView has plenty of other
uses, too. Some MFC developers find CHtmlView interesting
because it can be used to write thin clients. A thin client is an
application that derives all or part of its functionality from
HTML code, DHTML code, or other web programming media.

Programming Windows With MFC

 621

A full discourse on DHTML is beyond the scope of this book,
but a sample will help to demonstrate how CHtmlView and
DHTML together can be a potent mix.

Suppose you'd like to write a Windows application that
simulates a digital clock. One way to do it is to fire up Visual
C++ and write an MFC clock application. An alternate
approach is to create a CHtmlView-based application that runs a
DHTML script that in turn runs the clock. The chief advantage
to the latter technique is that the application's look and feel is
defined in an ordinary HTML file. Anyone with access to the
HTML file can customize the application's user interface using
tools as unsophisticated as Notepad. Modifying the user
interface of a compiled executable, by contrast, requires more
elaborate measures.

Because DHTML is language-independent, DHTML scripts
can be written in any scripting language for which a scripting
engine is available. Most DHTML scripts are written in
JavaScript, which is a dialect of the Java programming
language, or Microsoft Visual Basic, Scripting Edition
(VBScript), which comes from Visual Basic. The following
HTML file is based on a sample provided on MSDN. It uses
DHTML and embedded JavaScript to display a ticking digital
clock:

<HTML>
<HEAD><TITLE>DHTML Clock Demo</TITLE></HEAD>
<BODY BGCOLOR="#FF0000">
<H1 STYLE="font-family:comic sans ms" ALIGN=center>DHTML
Clock</H1>
<DIV ID=Clock ALIGN=center
STYLE="font-family:arial; font-size:64; color:#FFFFFF">
 </DIV>

<SCRIPT LANGUAGE="JavaScript">
<!--
function tick() {
 var hours, minutes, seconds, ampm;
 var today = new Date();
 var h = today.getHours();
 var m = today.getMinutes();
 var s = today.getSeconds();

 if (h < 12) {
 hours = h + ":";
 ampm = "A.M.";
 }

Programming Windows With MFC

 622

 else if (h == 12) {
 hours = "12:";
 ampm = "P.M.";
 }
 else {
 h = h - 12;
 hours = h + ":";
 ampm = "P.M.";
 }

 if (m < 10)
 minutes = "0" + m + ":";
 else
 minutes = m + ":";

 if (s < 10)
 seconds = "0" + s + " ";
 else
 seconds = s + " ";

 Clock.innerHTML = hours + minutes + seconds + ampm;
 window.setTimeout("tick();", 100);
}
window.onload = tick;
-->
</SCRIPT>
</BODY>
</HTML>

Figure 10-4 below shows a CHtmlView-based application
named HtmlClock that uses this HTML script as the basis for a
clock program. The HTML is stored in a file named Clock.htm.
When HtmlClock is started, the view's OnInitialUpdate
function passes the path to Clock.htm to the Navigate function.
(Because of the way the path name is formulated, Clock.htm
must be located in the same directory as HtmlClock.exe.)
Under the hood, Navigate passes the path name to the
WebBrowser control, and the WebBrowser control loads the
file, parses the HTML, and executes the script.

Programming Windows With MFC

 623

Figure 10-4. The HtmlClock window.

The source code for HtmlClock's view class appears in Figure 10-5. To create
HtmlClock, I used AppWizard to create an SDI document/view program with a
CHtmlView-based view. I modified the AppWizard-supplied OnInitialUpdate
function to load Clock.htm, added an OnTitleChange function that displays the
page title ("DHTML Clock Demo") in the frame window's title bar, and trimmed
most of the AppWizard-generated entries from the application's menu.

HtmlClock merely scratches the surface of what you can do
with HTML views. For example, you can run Java applets in
HTML views, and you can write C++ code that interacts with
DHTML objects. CHtmlView is also the perfect tool for
building HTML-based help systems. If HTML remains the
industry darling that it is today, CHtmlView can be the ticket
that gets you into the ball.

Figure 10-5. The HtmlClock application.

HtmlClockView.h

// HtmlClockView.h : interface of the CHtmlClockView class
//
///

#if !defined(
//
AFX_HTMLCLOCKVIEW_H__D39825ED_99C0_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_HTMLCLOCKVIEW_H__D39825ED_99C0_11D2_8E53_006008A82731__INCLUDED_
#if _MSC_VER > 1000

#pragma once
#endif // _MSC_VER > 1000

class CHtmlClockView : public CHtmlView
{
protected: // create from serialization only
 CHtmlClockView();
 DECLARE_DYNCREATE(CHtmlClockView)

// Attributes
public:
 CHtmlClockDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CHtmlClockView)

Programming Windows With MFC

 624

 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnTitleChange(LPCTSTR lpszText);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CHtmlClockView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CHtmlClockView)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in HtmlClockView.cpp
inline CHtmlClockDoc* CHtmlClockView::GetDocument()
 { return (CHtmlClockDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_HTMLCLOCKVIEW_H__D39825ED_99C0_11D2_8E53_006008A82731__INCLUDED_)

HtmlClockView.cpp

// HtmlClockView.cpp : implementation of the CHtmlClockView class
//

#include "stdafx.h"
#include "HtmlClock.h"

#include "HtmlClockDoc.h"
#include "HtmlClockView.h"

#ifdef _DEBUG
#define new DEBUG_NEW

Programming Windows With MFC

 625

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CHtmlClockView

IMPLEMENT_DYNCREATE(CHtmlClockView, CHtmlView)

BEGIN_MESSAGE_MAP(CHtmlClockView, CHtmlView)
 //{{AFX_MSG_MAP(CHtmlClockView)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CHtmlClockView construction/destruction

CHtmlClockView::CHtmlClockView()
{
}

CHtmlClockView::~CHtmlClockView()
{
}

BOOL CHtmlClockView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CHtmlView::PreCreateWindow(cs);
}

///
// CHtmlClockView drawing

void CHtmlClockView::OnDraw(CDC* pDC)
{
 CHtmlClockDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
}

void CHtmlClockView::OnInitialUpdate()
{
 CHtmlView::OnInitialUpdate();

 TCHAR szPath[MAX_PATH];
 ::GetModuleFileName (NULL, szPath, sizeof (szPath) / sizeof (TCHAR));

 CString string = szPath;
 int nIndex = string.ReverseFind (_T (`\\'));
 ASSERT (nIndex != -1);
 string = string.Left (nIndex + 1) + _T ("Clock.htm");
 Navigate (string);
}

Programming Windows With MFC

 626

///
// CHtmlClockView diagnostics

#ifdef _DEBUG
void CHtmlClockView::AssertValid() const
{
 CHtmlView::AssertValid();
}

void CHtmlClockView::Dump(CDumpContext& dc) const
{
 CHtmlView::Dump(dc);
}

CHtmlClockDoc* CHtmlClockView::GetDocument() // non-debug version is
inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CHtmlClockDoc)));
 return (CHtmlClockDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CHtmlClockView message handlers

void CHtmlClockView::OnTitleChange(LPCTSTR lpszText)
{
 CHtmlView::OnTitleChange(lpszText);
 AfxGetMainWnd ()->SetWindowText (lpszText);
}

10.3. Tree Views

MFC's CTreeView class enables programmers to create views
similar to the one featured in the left pane of Windows Explorer.
Tree views display treelike structures containing items
composed of text and images. Items can have subitems, and
collections of subitems, or subtrees, can be expanded and
collapsed to display and hide the information contained therein.
Tree views are ideal for depicting data that's inherently
hierarchical, such as the directory structure of a hard disk. If
you do even a moderate amount of Windows programming,
you'll probably find plenty of uses for tree views.

CTreeView is a relatively simple class because it derives most
of its functionality from the tree view control, which is one of
the members of the common controls library Microsoft
Windows 95 introduced to the world. In MFC, CTreeCtrl

Programming Windows With MFC

 627

provides the programmatic interface to tree view controls. A
tree view is programmed by calling CTreeCtrl functions on the
underlying tree view control. The CTreeView function
GetTreeCtrl returns a CTreeCtrl reference to that control. Thus,
to determine how many items a tree view contains, you don't
use a CTreeView function; instead, you call
CTreeCtrl::GetCount, like this:

UINT nCount = GetTreeCtrl ().GetCount ();

This paradigm—call a member function of the view to acquire
a reference to the corresponding control—is shared by all of
MFC's CCtrlView-derived classes.

10.3.1. Initializing a Tree View

A tree view control supports several special window styles that
influence its appearance and operation. Six of those styles are
available on all systems running Windows 95 or later or
Microsoft Windows NT 3.51 or later; additional styles are
available on systems on which Internet Explorer 3.0 is installed,
and even more styles are supported on systems equipped with
Internet Explorer 4.0 or later. (For a discussion of the
interdependencies between the common controls and Internet
Explorer, see Chapter 16.) You can apply any of the supported
styles to a tree view by ORing them into the style field of the
CREATESTRUCT structure passed to PreCreateWindow. The
six styles available to all tree views are listed in the following
table.

Tree View Styles

Style Description

TVS_HASLINES Adds lines connecting subitems to their parents.

TVS_LINESATROOT Adds lines connecting items at the top level, or
root, of the hierarchy. This style is valid only if
TVS_HASLINES is also specified.

TVS_HASBUTTONS Adds buttons containing plus or minus signs to
items that have subitems. Clicking a button
expands or collapses the associated subtree.

TVS_EDITLABELS Enables in-place label editing notifications.

TVS_DISABLEDRAGDROP Disables drag-and-drop notifications.

Programming Windows With MFC

 628

TVS_SHOWSELALWAYS Specifies that the item that's currently selected
should always be highlighted. By default, the
highlight is removed when the control loses the
input focus.

Each item in a tree view control consists of a text string (also
known as a label) and optionally an image from an image list.
The image list is another of the control types introduced in
Windows 95. In MFC, image lists are represented by instances
of the class CImageList. Think of an image list as a collection
of like-sized bitmaps in which each bitmap is identified by a
0-based index. The statements

CImageList il;
il.Create (IDB_IMAGES, 16, 1, RGB (255, 0, 255));

create an image list from a bitmap resource (ID=IDB_IMAGES)
containing one or more images. Each image is 16 pixels wide,
as indicated by Create's second parameter. The COLORREF
value in the final parameter specifies that magenta is the image
lists's transparency color. When images from the image list are
displayed in a tree view, only the nonmagenta pixels will be
displayed.

If you want to include images as well as text in a tree view, you
must create and initialize an image list and use
CTreeCtrl::SetImageList to assign it to the tree view. If il is a
CImageList object, the statement

GetTreeCtrl ().SetImageList (&il, TVSIL_NORMAL);

associates the image list with the control. TVSIL_NORMAL
tells the tree view that the images in the image list will be used
to represent both selected and unselected items. You can assign
a separate TVSIL_STATE image list to the tree view to
represent items that assume application-defined states. Note
that the image list must not be destroyed before the tree view is
destroyed; if it is, the images will disappear from the control.

CTreeCtrl::InsertItem adds an item to a tree view control.
Items are identified by HTREEITEM handles, and one of the
parameters input to InsertItem is the HTREEITEM handle of
the item's parent. A subitem is created when an item is added to

Programming Windows With MFC

 629

a tree view and parented to another item. Root items—items in
the uppermost level of the tree—are created by specifying
TVI_ROOT as the parent. The following code sample
initializes a tree view with the names of two 1970s rock groups
along with subtrees listing some of their albums:

// Root items first, with automatic sorting.
HTREEITEM hEagles = GetTreeCtrl ().InsertItem (_T ("Eagles"),
 TVI_ROOT, TVI_SORT);
HTREEITEM hDoobies = GetTreeCtrl ().InsertItem (_T ("Doobie
Brothers"),
 TVI_ROOT, TVI_SORT);

// Eagles subitems second (no sorting).
GetTreeCtrl ().InsertItem (_T ("Eagles"), hEagles);
GetTreeCtrl ().InsertItem (_T ("On the Border"), hEagles);
GetTreeCtrl ().InsertItem (_T ("Hotel California"), hEagles);
GetTreeCtrl ().InsertItem (_T ("The Long Run"), hEagles);

// Doobie subitems third (no sorting).
GetTreeCtrl ().InsertItem (_T ("Toulouse Street"), hDoobies);
GetTreeCtrl ().InsertItem (_T ("The Captain and Me"), hDoobies);
GetTreeCtrl ().InsertItem (_T ("Stampede"), hDoobies);

Passing a TVI_SORT flag to InsertItem automatically sorts
items added to the tree with respect to other items in the same
subtree. The default is TVI_LAST, which simply adds the item
to the end of the list. You can also specify TVI_FIRST to add
an item to the head of the list.

That's one way to add items to a tree view control. You also
have several other options for adding items because CTreeCtrl
provides four different versions of InsertItem. Let's take the
example in the previous paragraph a little further and assume
that you'd like to include images as well as text in the tree view
items. Suppose you've created an image list that contains two
images. Image 0 depicts a guitar, and image 1 depicts an album
cover. You'd like guitars to appear alongside the names of the
rock groups and album images to appear next to album titles.
Here's what the code to initialize the control looks like:

// Add the image list to the control.
GetTreeCtrl ().SetImageList (pImageList, TVSIL_NORMAL);

// Root items first, with automatic sorting

Programming Windows With MFC

 630

HTREEITEM hEagles = GetTreeCtrl ().InsertItem (_T ("Eagles"),
 0, 0, TVI_ROOT, TVI_SORT);
HTREEITEM hDoobies = GetTreeCtrl ().InsertItem (_T ("Doobie
Brothers"),
 0, 0, TVI_ROOT, TVI_SORT);

// Eagles subitems second (no sorting)
GetTreeCtrl ().InsertItem (_T ("Eagles"), 1, 1, hEagles);
GetTreeCtrl ().InsertItem (_T ("On the Border"), 1, 1, hEagles);
GetTreeCtrl ().InsertItem (_T ("Hotel California"), 1, 1, hEagles);
GetTreeCtrl ().InsertItem (_T ("The Long Run"), 1, 1, hEagles);

// Doobie subitems third (no sorting)
GetTreeCtrl ().InsertItem (_T ("Toulouse Street"), 1, 1, hDoobies);
GetTreeCtrl ().InsertItem (_T ("The Captain and Me"), 1, 1,
hDoobies);
GetTreeCtrl ().InsertItem (_T ("Stampede"), 1, 1, hDoobies);

The second and third parameters passed to this form of
InsertItem are image indexes. The first specifies the image the
tree view will display when the item isn't selected, and the
second specifies the image it will display when the item is
selected. Specifying the same index for both means that the
same image will be used to represent the item in both states.
The tree view control in the left pane of Windows Explorer
uses an image depicting a closed folder for nonselected folder
items and an open folder for selected folder items. Thus, if you
move the highlight up and down with the arrow keys, a folder
"opens" when you highlight it and closes when you highlight
another item.

10.3.2. Tree View Member Functions and
Notifications

CTreeCtrl provides a wide range of member functions for
manipulating the underlying tree view control and acquiring
information about its items. DeleteItem, for example, removes
an item from the control, and DeleteAllItems removes all the
items. Expand expands or collapses a subtree. SetItemText
changes an item's label; GetItemText retrieves it. SortChildren
sorts the items in a subtree. You name it, and there's probably a
CTreeCtrl function for doing it.

The key to nearly every one of these functions is an
HTREEITEM handle identifying the item that's the target of the

Programming Windows With MFC

 631

operation. If you'd like, you can save the handles returned by
InsertItem in an array or a linked list or some other structure so
that you can reference them again later. You can retrieve the
handle of the selected item with CTreeCtrl::GetSelectedItem.
And if necessary, you can start with the first item in a tree view
control and enumerate items one by one using GetParentItem,
GetChildItem, GetNextItem, GetNextSiblingItem, and other
CTreeCtrl functions.

Once items are added to it, a tree view is capable of processing
most user input on its own. The user can browse the items in
the tree by expanding and collapsing branches and can make
selections by pointing and clicking. You can add even more
capabilities to a tree view (or customize its default response to
conventional input) by processing the notifications shown in
the following table. Notifications come in the form of
WM_NOTIFY messages, and in most cases, lParam points to
an NM_TREEVIEW structure containing additional
information about the event that prompted the message. Here
are just a few uses for tree view notifications:

x Enable in-place label editing so that the user can edit text in a tree view
x Update item text and images dynamically by passing

LPSTR_TEXTCALL-BACK and I_IMAGECALLBACK parameters to
InsertItem and processing TVN_GETDISPINFO notifications

x Customize the control's response to keyboard input by processing
TVN-_KEYDOWN notifications

x Support drag-and-drop operations

There are more uses (of course!), but this short list should give
you an idea of the wide-ranging flexibility of a tree view
control.

Tree View Notifications

Notification Sent When

TVN_BEGINDRAG A drag-and-drop operation is begun with the left
mouse button. Not sent if the control has the style
TVS_DISABLEDRAGDROP.

TVN_BEGINRDRAG A drag-and-drop operation is begun with the right
mouse button. Not sent if the control has the style
TVS_DISABLEDRAGDROP.

TVN_BEGINLABELEDIT A label editing operation is begun. Sent only if the
control has the style TVS_EDITLABELS.

TVN_ENDLABELEDIT A label editing operation is completed. Sent only
if the control has the style TVS_EDITLABELS.

Programming Windows With MFC

 632

TVN_GETDISPINFO The control needs additional information to
display an item. Sent if the item text is
LPSTR_TEXTCALLBACK or the image index is
I_IMAGECALLBACK.

TVN_DELETEITEM An item is deleted.

TVN_ITEMEXPANDED A subtree has expanded or collapsed.

TVN_ITEMEXPANDING A subtree is about to expand or collapse.

TVN_KEYDOWN A key is pressed while the control has the input
focus.

TVN_SELCHANGED The selection has changed.

TVN_SELCHANGING The selection is about to change.

TVN_SETDISPINFO The information in a TV_DISPINFO structure
needs to be updated.

10.3.3. The DriveTree Application

The DriveTree application shown in Figure 10-6 uses a
CTreeView-derived class named CDriveView to provide an
interactive view of the host PC's drive and directory structure.
CDriveView::OnInitialUpdate uses SetImageList to import an
image list containing bitmaps for different drive types and then
calls a helper function named AddDrives to initialize the drive
list. AddDrives uses the Win32 ::GetLogical- Drives function
to identify the logical drives in the system. For each drive, it
calls CDriveView::AddDriveItem to add a "drive item"—a tree
view item representing a drive—to the tree's uppermost
level. ::GetLogicalDrives returns a DWORD value with "on"
bits identifying the valid logical drives, where bit 0 corresponds
to drive A:, bit 1 to drive B:, and so on. AddDrives needs just a
few lines of code to enumerate the drives in the system and
create a drive item for each. (See Figure 10-7.)

Programming Windows With MFC

 633

Figure 10-6. The DriveTree window.

AddDriveItem uses CTreeCtrl::InsertItem to add drive items to
the tree. For each drive item that it adds, it also adds a
"dummy" subitem so that a plus sign will appear next to the
drive item. To determine a drive's type—floppy drive, hard disk,
and so on—so that it can assign the drive an image from the
image list, AddDriveItem uses the ::GetDriveType API function.
Given a string specifying the path to a drive's root
directory, ::GetDriveType returns a UINT value identifying the
drive type. The possible return values are listed below.

Return Value Meaning

DRIVE_UNKNOWN The drive type is unknown.

DRIVE_NO_ROOT_DIR The drive lacks a root directory.

DRIVE_REMOVABLE The drive is removable (returned for floppy drives
and other removable-media drives such as Zip
drives).

DRIVE_FIXED The drive is fixed (returned for hard disks).

DRIVE_REMOTE The drive is remote (returned for network drives).

DRIVE_CDROM The drive is a CD-ROM drive.

DRIVE_RAMDISK The drive is a RAM disk.

AddDriveItem uses a switch-case block to handle each of the
possible return values. A series of ILI values defined near the
top of DriveView.cpp correlates drive types and image indexes.

Programming Windows With MFC

 634

Much of the remaining code in DriveView.cpp is devoted to
processing TVN_ITEMEXPANDING notifications. For
performance reasons, CDriveView doesn't initialize itself with
items representing every directory on every drive. Instead, it
adds directory items to a subtree just before the subtree is
displayed and removes them when the subtree is collapsed. If a
collapsed subtree contains at least one directory, a single child
item is inserted so that a plus sign will appear next to the
subtree. That child item is never seen because it's deleted
before the subtree is expanded and replaced with items
representing actual directories. An ON_NOTIFY_REFLECT
entry in the message map reflects TVN_ITEMEXPANDING
notifications so that CDriveView can handle them itself. The
notification handler OnItemExpanding either adds items to the
subtree or removes them, depending on whether the action field
of the NM_TREEVIEW structure indicates that the subtree is
about to expand or collapse. OnItemExpanding uses the helper
function AddDirectories to populate a branch of the tree with
items. AddDirectories, in turn, uses the ::FindFirstFile
and ::FindNextFile functions discussed in Chapter 6 to
enumerate directories.

10.3.3.1. Removing the Document Name from the Title
Bar

DriveTree doesn't use its document object at all. Its File menu
doesn't include document-handling commands. And it doesn't
display a document name in its title bar because it doesn't make
sense to display a document name when the application doesn't
support the loading and saving of documents. But because
MFC automatically adds the document name to the title bar,
you must take special steps to prevent MFC from inserting a
document name.

You'll find the code responsible for removing the document
name in the frame window class.
CMainFrame::PreCreateWindow contains the statement

cs.style &= ~FWS_ADDTOTITLE;

FWS_ADDTOTITLE is a special window style specific to
MFC that's included in frame windows by default. Windows
that have this style have document names added to their

Programming Windows With MFC

 635

window titles; windows that lack this style don't. By stripping
the FWS_ADDTOTITLE bit from the window style in
PreCreateWindow, CMainFrame prevents the framework from
modifying its window title. You can use this technique to
remove the document name from the title bar of any
document/view application.

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
//

#if !defined(AFX_MAINFRM_H__090B3829_959D_11D2_8E53_006008A82731__INCLUDE
D_)
#define AFX_MAINFRM_H__090B3829_959D_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG

Programming Windows With MFC

 636

 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
// AFX_MAINFRM_H__090B3829_959D_11D2_8E53_006008A82731__INCLUDED_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "DriveTree.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

Programming Windows With MFC

 637

 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 cs.style &= ~FWS_ADDTOTITLE;
 return TRUE;
}

//
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

//
// CMainFrame message handlers

DriveView.h

// DriveTreeView.h : interface of the CDriveView class
//
//

#if !defined(

AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CDriveView : public CTreeView
{
protected: // create from serialization only
 CDriveView();
 DECLARE_DYNCREATE(CDriveView)

// Attributes
public:
 CDriveTreeDoc* GetDocument();

// Operations
public:

Programming Windows With MFC

 638

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CDriveView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CDriveView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 BOOL AddDriveItem (LPCTSTR pszDrive);
 int AddDirectories (HTREEITEM hItem, LPCTSTR pszPath);
 void DeleteAllChildren (HTREEITEM hItem);
 void DeleteFirstChild (HTREEITEM hItem);
 CString GetPathFromItem (HTREEITEM hItem);
 BOOL SetButtonState (HTREEITEM hItem, LPCTSTR pszPath);
 int AddDrives ();
 CImageList m_ilDrives;
 //{{AFX_MSG(CDriveView)
 afx_msg void OnItemExpanding(NMHDR* pNMHDR, LRESULT* pResult);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in DriveTreeView.cpp
inline CDriveTreeDoc* CDriveView::GetDocument()
 { return (CDriveTreeDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDED_)

DriveView.cpp

// DriveTreeView.cpp : implementation of the CDriveView class
//

Programming Windows With MFC

 639

#include "stdafx.h"
#include "DriveTree.h"

#include "DriveTreeDoc.h"
#include "DriveView.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

// Image indexes
#define ILI_HARD_DISK 0
#define ILI_FLOPPY 1
#define ILI_CD_ROM 2
#define ILI_NET_DRIVE 3
#define ILI_CLOSED_FOLDER 4
#define ILI_OPEN_FOLDER 5

//
// CDriveView

IMPLEMENT_DYNCREATE(CDriveView, CTreeView)

BEGIN_MESSAGE_MAP(CDriveView, CTreeView)
 //{{AFX_MSG_MAP(CDriveView)
 ON_NOTIFY_REFLECT(TVN_ITEMEXPANDING, OnItemExpanding)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CDriveView construction/destruction

CDriveView::CDriveView()
{
}

CDriveView::~CDriveView()
{
}

BOOL CDriveView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CTreeView::PreCreateWindow (cs))
 return FALSE;

 cs.style ¦= TVS_HASLINES ¦ TVS_LINESATROOT ¦
TVS_HASBUTTONS ¦
 TVS_SHOWSELALWAYS;
 return TRUE;
}

//
// CDriveView drawing

Programming Windows With MFC

 640

void CDriveView::OnDraw(CDC* pDC)
{
 CDriveTreeDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 // TODO: add draw code for native data here
}

void CDriveView::OnInitialUpdate()
{
 CTreeView::OnInitialUpdate();

 //
 // Initialize the image list.
 //
 m_ilDrives.Create (IDB_DRIVEIMAGES, 16, 1, RGB (255, 0, 255));
 GetTreeCtrl ().SetImageList (&m_ilDrives, TVSIL_NORMAL);

 //
 // Populate the tree view with drive items.
 //
 AddDrives ();

 //
 // Show the folders on the current drive.
 //
 TCHAR szPath[MAX_PATH];
 ::GetCurrentDirectory (sizeof (szPath) / sizeof (TCHAR), szPath);
 CString strPath = szPath;
 strPath = strPath.Left (3);

 HTREEITEM hItem = GetTreeCtrl ().GetNextItem (NULL,
TVGN_ROOT);
 while (hItem != NULL) {
 if (GetTreeCtrl ().GetItemText (hItem) == strPath)
 break;
 hItem = GetTreeCtrl ().GetNextSiblingItem (hItem);
 }

 if (hItem != NULL) {
 GetTreeCtrl ().Expand (hItem, TVE_EXPAND);
 GetTreeCtrl ().Select (hItem, TVGN_CARET);
 }
}

//
// CDriveView diagnostics

#ifdef _DEBUG
void CDriveView::AssertValid() const
{
 CTreeView::AssertValid();
}

void CDriveView::Dump(CDumpContext& dc) const
{
 CTreeView::Dump(dc);

Programming Windows With MFC

 641

}

CDriveTreeDoc* CDriveView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CDriveTreeDoc)));
 return (CDriveTreeDoc*)m_pDocument;
}
#endif //_DEBUG

//
// CDriveView message handlers

int CDriveView::AddDrives()
{
 int nPos = 0;
 int nDrivesAdded = 0;
 CString string = _T ("?:\\");

 DWORD dwDriveList = ::GetLogicalDrives ();

 while (dwDriveList) {
 if (dwDriveList & 1) {
 string.SetAt (0, _T (`A') + nPos);
 if (AddDriveItem (string))
 nDrivesAdded++;
 }
 dwDriveList >>= 1;
 nPos++;
 }
 return nDrivesAdded;
}

BOOL CDriveView::AddDriveItem(LPCTSTR pszDrive)
{
 CString string;
 HTREEITEM hItem;

 UINT nType = ::GetDriveType (pszDrive);

 switch (nType) {

 case DRIVE_REMOVABLE:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_FLOPPY,
 ILI_FLOPPY);
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 break;

 case DRIVE_FIXED:
 case DRIVE_RAMDISK:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_HARD_DISK,
 ILI_HARD_DISK);
 SetButtonState (hItem, pszDrive);
 break;

Programming Windows With MFC

 642

 case DRIVE_REMOTE:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_NET_DRIVE,
 ILI_NET_DRIVE);
 SetButtonState (hItem, pszDrive);
 break;

 case DRIVE_CDROM:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_CD_ROM,
 ILI_CD_ROM);
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 break;

 default:
 return FALSE;
 }
 return TRUE;
}

BOOL CDriveView::SetButtonState(HTREEITEM hItem, LPCTSTR pszPath)
{
 HANDLE hFind;
 WIN32_FIND_DATA fd;
 BOOL bResult = FALSE;

 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 if ((hFind = ::FindFirstFile (strPath, &fd)) ==
INVALID_HANDLE_VALUE)
 return bResult;

do {
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 CString strComp = (LPCTSTR) &fd.cFileName;
 if ((strComp != _T (".")) && (strComp != _T (".."))) {
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 bResult = TRUE;
 break;
 }
 }
 } while (::FindNextFile (hFind, &fd));

 ::FindClose (hFind);
 return bResult;
}

void CDriveView::OnItemExpanding(NMHDR* pNMHDR, LRESULT*
pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;
 HTREEITEM hItem = pNMTreeView->itemNew.hItem;
 CString string = GetPathFromItem (hItem);

Programming Windows With MFC

 643

 *pResult = FALSE;

 if (pNMTreeView->action == TVE_EXPAND) {
 DeleteFirstChild (hItem);
 if (AddDirectories (hItem, string) == 0)
 *pResult = TRUE;
 }
 else { // pNMTreeView->action == TVE_COLLAPSE
 DeleteAllChildren (hItem);
 if (GetTreeCtrl ().GetParentItem (hItem) == NULL)
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 else
 SetButtonState (hItem, string);
 }
}

CString CDriveView::GetPathFromItem(HTREEITEM hItem)
{
 CString strResult = GetTreeCtrl ().GetItemText (hItem);

 HTREEITEM hParent;
 while ((hParent = GetTreeCtrl ().GetParentItem (hItem)) != NULL) {
 CString string = GetTreeCtrl ().GetItemText (hParent);
 if (string.Right (1) != _T ("\\"))
 string += _T ("\\");
 strResult = string + strResult;
 hItem = hParent;
 }
 return strResult;
}

void CDriveView::DeleteFirstChild(HTREEITEM hItem)
{
 HTREEITEM hChildItem;
 if ((hChildItem = GetTreeCtrl ().GetChildItem (hItem)) != NULL)
 GetTreeCtrl ().DeleteItem (hChildItem);
}

void CDriveView::DeleteAllChildren(HTREEITEM hItem)
{
 HTREEITEM hChildItem;
 if ((hChildItem = GetTreeCtrl ().GetChildItem (hItem)) == NULL)
 return;

 do {
 HTREEITEM hNextItem =
 GetTreeCtrl ().GetNextSiblingItem (hChildItem);
 GetTreeCtrl ().DeleteItem (hChildItem);
 hChildItem = hNextItem;
 } while (hChildItem != NULL);
}

int CDriveView::AddDirectories(HTREEITEM hItem, LPCTSTR pszPath)
{

Programming Windows With MFC

 644

 HANDLE hFind;
 WIN32_FIND_DATA fd;
 HTREEITEM hNewItem;

 int nCount = 0;

 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 if ((hFind = ::FindFirstFile (strPath, &fd)) ==
INVALID_HANDLE_VALUE) {
 if (GetTreeCtrl ().GetParentItem (hItem) == NULL)
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 return 0;
 }

 do {
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 CString strComp = (LPCTSTR) &fd.cFileName;
 if ((strComp != _T (".")) && (strComp != _T (".."))) {
 hNewItem =
 GetTreeCtrl ().InsertItem ((LPCTSTR) &fd.cFileName,
 ILI_CLOSED_FOLDER, ILI_OPEN_FOLDER,
hItem);

 CString strNewPath = pszPath;
 if (strNewPath.Right (1) != _T ("\\"))
 strNewPath += _T ("\\");

 strNewPath += (LPCTSTR) &fd.cFileName;
 SetButtonState (hNewItem, strNewPath);
 nCount++;
 }
 }
 } while (::FindNextFile (hFind, &fd));

 ::FindClose (hFind);
 return nCount;
}

10.4. List Views

List views are similar to tree views in that they provide a
powerful infrastructure for presenting complex collections of
data to the user. But whereas tree views are ideal for depicting
hierarchical relationships, list views are best suited for
presenting "flat" collections of data, such as lists of file names.

Programming Windows With MFC

 645

Like items in a tree view, items in a list view can include both
text and images. In addition, items can have text-only subitems
containing additional information about the associated items.
The subitems are visible when the control is in "report" mode,
which is one of four presentation styles that a list view supports.
The other presentation styles are large icon mode, small icon
mode, and list mode. You can see examples of all four
presentation styles by starting the Windows Explorer and using
the View menu to change the view in the right pane. The Large
Icons command in the View menu corresponds to large icon
mode, Small Icons corresponds to small icon mode, List
corresponds to list mode, and Details corresponds to report
mode.

10.4.1. Initializing a List View

MFC's CListView class is the base class for list views.
CListView derives most of its functionality from list view
controls, which, like tree view controls, are part of the common
controls library. MFC wraps list view controls in the class
CListCtrl. To program a list view, you call
CListView::GetListCtrl to acquire a CListCtrl reference to the
control that appears inside the list view, and then you call
CListCtrl functions using the returned reference.

When you derive from CListView, you'll almost always
override PreCreateWindow in the derived class and apply one
or more default styles to the view. The following table lists the
styles that all list views support. Additional list view styles are
available on systems running Internet Explorer 3.0 or later.

List View Styles

Style Description

LVS_ICON Selects large icon mode.

LVS_SMALLICON Selects small icon mode.

LVS_LIST Selects list mode.

LVS_REPORT Selects report mode.

LVS_NOCOLUMNHEADER Removes the header control that's normally
displayed in report mode.

LVS_NOSORTHEADER Disables the LVN_COLUMNCLICK

Programming Windows With MFC

 646

notifications that are sent by default when a
column header is clicked in report mode.

LVS_ALIGNLEFT Aligns items along the left border in large and
small icon mode.

LVS_ALIGNTOP Aligns items along the top border in large and
small icon mode.

LVS_AUTOARRANGE Automatically arranges items in rows and
columns in large and small icon mode.

LVS_EDITLABELS Enables in-place label editing notifications.

LVS_NOLABELWRAP Restricts labels to single lines in large icon
mode.

LVS_NOSCROLL Disables scrolling. Scrolling is enabled by
default.

LVS_OWNERDRAWFIXED Specifies that the control's owner will draw the
items in response to WM_DRAWITEM
messages.

LVS_SHAREIMAGELISTS Prevents a list view from automatically deleting
the image lists associated with it when the view
itself is deleted.

LVS_SINGLESEL Disables multiple-selection support.

LVS_SHOWSELALWAYS Specifies that the selected items should always
be highlighted. By default, the highlight is
removed when the view loses the input focus.

LVS_SORTASCENDING Specifies that items should be sorted in
ascending order (for example, A through Z).

LVS_SORTDESCENDING Specifies that items should be sorted in
descending order (for example, Z through A).

Like a tree view control, a list view control is empty when it's
first created. Initialization is a five-step process:

1. Create a pair of image lists containing images for the list view items.
One image list contains "large" images used in large icon mode; the
other contains "small" images used in small icon, list, and report modes.

2. Use CListCtrl::SetImageList to associate the image lists with the list
view control. Pass SetImageList an LVSIL_NORMAL flag for the image
list containing large images and an LVSIL_SMALL flag for the image
list containing small images.

3. Add columns to the list view control with CListCtrl::InsertColumn. The
leftmost column displays the items added to the control. The columns to
the right display subitems and are visible only in report mode.

4. Add items to the control with CListCtrl::InsertItem.
5. Assign text strings to the item's subitems with CListCtrl::SetItemText.

Programming Windows With MFC

 647

This procedure isn't as difficult as it sounds. The following
code fragment initializes a list view with items representing
eight of the states in the United States. Each item consists of a
label and an image. The label is the name of a state, and the
image presumably shows a thumbnail rendition of the state's
outline. Each item also contains a pair of subitems: a text string
naming the state capital and a text string describing the state's
land area. In report mode, the subitems appear in columns
under headers labeled "Capital" and "Area (sq. miles)."

static CString text[8][3] = {
 _T ("Tennessee"), _T ("Nashville"), _T
("41,154"),
 _T ("Alabama"), _T ("Montgomery"), _T
("50,766"),
 _T ("Mississippi"), _T ("Jackson"), _T
("47,234"),
 _T ("Florida"), _T ("Tallahassee"), _T ("54,157"),
 _T ("Georgia"), _T ("Atlanta"), _T ("58,060"),
 _T ("Kentucky"), _T ("Frankfort"), _T ("39,674"),
 _T ("North Carolina"), _T ("Raleigh"), _T ("48,843"),
 _T ("South Carolina"), _T ("Columbia"), _T ("30,207")
};

// Assign image lists.
GetListCtrl ().SetImageList (&ilLarge, LVSIL_NORMAL);
GetListCtrl ().SetImageList (&ilSmall, LVSIL_SMALL);

// Add columns.
GetListCtrl ().InsertColumn (0, _T ("State"), LVCFMT_LEFT, 96);
GetListCtrl ().InsertColumn (1, _T ("Capital"), LVCFMT_LEFT, 96);
GetListCtrl ().InsertColumn (2, _T ("Area (sq. miles)"),
 LVCFMT_RIGHT, 96);

// Add items and subitems.
for (int i=0; i<8; i++) {
 GetListCtrl ().InsertItem (i, (LPCTSTR) text[i][0], i);
 GetListCtrl ().SetItemText (i, 1, (LPCTSTR) text[i][1]);
 GetListCtrl ().SetItemText (i, 2, (LPCTSTR) text[i][2]);
}

The parameters passed to InsertColumn specify, in order, the
column's 0-based index, the label that appears at the top of the
column, the column's alignment (whether data displayed in the
column is left justified, right justified, or centered), and the
column width in pixels. You can base column widths on the
widths of characters in the control font by using

Programming Windows With MFC

 648

CListCtrl::GetStringWidth to convert text strings into pixel
counts. The parameters passed to InsertItem specify the item's
0-based index, the item label, and the index of the
corresponding images in the image lists. The parameters passed
to SetItemText specify the item number, the subitem number,
and the subitem text, in that order.

10.4.2. Changing the Presentation Style

When a list view is created, its presentation style—LVS_ICON,
LVS_SMALLICON, LVS_LIST, or
LVS_REPORT—determines whether it starts up in large icon
mode, small icon mode, list mode, or report mode. The default
presentation style is applied in PreCreateWindow. However,
you can switch modes on the fly by changing the presentation
style. The following statement switches a list view to small icon
mode:

ModifyStyle (LVS_TYPEMASK, LVS_SMALLICON);

Similarly, this statement switches the view to report mode:

ModifyStyle (LVS_TYPEMASK, LVS_REPORT);

ModifyStyle is a CWnd function that's handed down through
inheritance to CListView. The first parameter passed to
ModifyStyle specifies the style bits to turn off, and the second
parameter specifies the style bits to turn on. LVS_TYPEMASK
is a mask for all four presentation styles.

LVS_ICON, LVS_SMALLICON, LVS_LIST, and
LVS_REPORT aren't true bit flags, so LVS_TYPEMASK also
comes in handy when you query a list view to determine its
current presentation style. The following code won't work:

// Wrong!
DWORD dwStyle = GetStyle ();
if (dwStyle & LVS_ICON)
 // Large icon mode.
else if (dwStyle & LVS_SMALLICON)
 // Small icon mode.
else if (dwStyle & LVS_LIST)
 // List mode.

Programming Windows With MFC

 649

else if (dwStyle & LVS_REPORT)
 // Report mode.

But this code will:

DWORD dwStyle = GetStyle () & LVS_TYPEMASK;
if (dwStyle == LVS_ICON)
 // Large icon mode.
else if (dwStyle == LVS_SMALLICON)
 // Small icon mode.
else if (dwStyle == LVS_LIST)
 // List mode.
else if (dwStyle == LVS_REPORT)
 // Report mode.

This is the proper technique for determining the view type
before updating menu items or other user interface objects that
depend on the list view's presentation style.

10.4.3. Sorting in a List View

When a list view that lacks the LVS_NOCOLUMNHEADER
style switches to report mode, it automatically displays a header
control with buttonlike "header items" captioning each column.
The user can change the column widths by dragging the vertical
dividers separating the header items. (For a nice touch, you can
retrieve the column widths with CListCtrl::GetColumnWidth
before destroying a list view and save the widths in the registry.
Restore the column widths the next time the list view is created,
and the user's column width preferences will be persistent.)
Unless a list view has the style LVS_NOSORTHEADER,
clicking a header item sends an LVN_COLUMNCLICK
notification to the list view's parent. The message's lParam
points to an NM_LISTVIEW structure, and the structure's
iSubItem field contains a 0-based index identifying the column
that was clicked.

An application's usual response to an LVN_COLUMNCLICK
notification is to call CListCtrl::SortItems to sort the list view
items. Great, you say. Now I can create a list view that sorts,
and I won't have to write the code to do the sorting. You do
have to provide a callback function that the control's built-in
sorting routine can call to compare a pair of arbitrarily selected
items, but writing a comparison function is substantially less

Programming Windows With MFC

 650

work than writing a full-blown bubble sort or quick sort routine.
And the fact that the comparison function is application-defined
means that you enjoy complete control over how the items in a
list view control are lexically ordered.

The bad news is that the comparison function receives just
three parameters: the 32-bit lParam values of the two items
being compared and an application-defined lParam value that
equals the second parameter passed to SortItems. You can
assign an item an lParam value in the call to InsertItem or in a
separate call to CListCtrl::SetItemData. Unless an application
maintains a private copy of each item's data and stores a value
in lParam that allows the item's data to be retrieved, the
comparison function can't possibly do its job. It's not difficult
for an application to allocate its own per-item memory and stuff
pointers into the items' lParams, but it does complicate matters
a bit because the memory must be deallocated, too. And an
application that stores its own item data uses memory
inefficiently if it assigns text strings to the list view's items and
subitems because then the data ends up being stored in memory
twice. You can avoid such wastefulness by specifying
LPSTR_TEXTCALLBACK for the item and subitem text and
providing text to the list view control in response to
LVN_GETDISPINFO notifications. But this, too, complicates
the program logic and means that the infrastructure required to
support CListCtrl::SortItems isn't as simple as it first appears.
In just a moment, we'll develop an application that implements
sortable columns in a list view so that you can see firsthand
how it's done.

10.4.4. Hit-Testing in a List View

You can respond to mouse clicks in a list view by processing
NM_CLICK, NM_DBLCLK, NM_RCLICK, and
NM_RDBLCLK notifications. Very often, the way you respond
to these events will depend on what, if anything, was under the
cursor when the click (or double-click) occurred. You can use
CListCtrl::HitTest to perform hit-testing on the items in a list
view. Given the coordinates of a point, HitTest returns the
index of the item at that point or at -1 if the point doesn't
correspond to an item.

Programming Windows With MFC

 651

The following code demonstrates how to process double clicks
in a list view. The ON_NOTIFY_REFLECT entry in the
message map reflects NM_DBLCLK notifications back to the
list view. The NM_DBLCLK handler echoes the name of the
item that was double-clicked to the debug output window using
MFC's TRACE macro:

// In CMyListView's message map
ON_NOTIFY_REFLECT (NM_DBLCLK, OnDoubleClick)

void CMyListView::OnDoubleClick (NMHDR* pnmh, LRESULT*
pResult)
{
 DWORD dwPos = ::GetMessagePos ();
 CPoint point ((int) LOWORD (dwPos), (int) HIWORD
(dwPos));
 GetListCtrl ().ScreenToClient (&point);

 int nIndex;
 if ((nIndex = GetListCtrl ().HitTest (point)) != -1) {
 CString string = GetListCtrl ().GetItemText (nIndex, 0);
 TRACE (_T ("%s was double-clicked\n"), string);
 }
 *pResult = 0;
}

NM_DBLCLK notifications don't include cursor coordinates,
so the cursor position is retrieved with ::GetMessagePos. The
screen coordinates returned by ::GetMessagePos are converted
into client coordinates local to the list view and passed to
CListCtrl::HitTest. If HitTest returns an item index, the index is
used to retrieve the item's text.

10.4.5. The WinDir Application

The WinDir application pictured in Figure 10-8 is so named
because its output is reminiscent of the MS-DOS DIR
command, albeit in a graphical format. It uses a
CListView-derived class named CFileView to display a list of
all the files in a specified directory. You pick the directory by
selecting the New Directory command from the File menu and
entering a path name. After retrieving the path name that you
entered, WinDir passes the path name to CFileView::Refresh to
display the directory's contents. You can see this for yourself in

Programming Windows With MFC

 652

FileView.cpp, which, along with other parts of WinDir's source
code, is reproduced in Figure 10-9.

Figure 10-8. The WinDir window.

Here's a synopsis of how CFileView works. First,
CFileView::Refresh builds a list of file names
using ::FindFirstFile and ::FindNextFile. For each file that it
identifies, Refresh adds an item to the list view by calling
CFileView::AddItem. AddItem, in turn, allocates memory for an
ITEMINFO data structure (defined in FileView.h); initializes
the structure with the file's name, size, and date-and-time stamp;
and adds an item to the list view whose lParam is the
structure's address. Here's how it looks with error-checking
code removed:

ITEMINFO* pItem;
pItem = new ITEMINFO;

pItem->strFileName = pfd->cFileName;
pItem->nFileSizeLow = pfd->nFileSizeLow;
pItem->ftLastWriteTime = pfd->ftLastWriteTime;

LV_ITEM lvi;
lvi.mask = LVIF_TEXT ¦ LVIF_IMAGE ¦ LVIF_PARAM;
lvi.iItem = nIndex;
lvi.iSubItem = 0;
lvi.iImage = 0;
lvi.pszText = LPSTR_TEXTCALLBACK;
lvi.lParam = (LPARAM) pItem;

GetListCtrl ().InsertItem (&lvi);

Programming Windows With MFC

 653

Notice the LPSTR_TEXTCALLBACK value specified in the
LV_ITEM structure's pszText field. Rather than assign the item
a text string, AddItem tells the list view, "Call me back when
you need a label for the item." It's not necessary to initialize the
subitems because LPSTR_TEXTCALLBACK is the default for
subitems.

Figure 10-9. The WinDir application.

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__18BD7B7C_95C6_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__18BD7B7C_95C6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.

Programming Windows With MFC

 654

 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__18BD7B7C_95C6_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "WinDir.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

Programming Windows With MFC

 655

{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 cs.style &= ~FWS_ADDTOTITLE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

FileView.h
// FileView.h : interface of the CFileView class
//
///

#if !defined(AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

typedef struct tagITEMINFO {
 CString strFileName;
 DWORD nFileSizeLow;
 FILETIME ftLastWriteTime;
} ITEMINFO;

class CFileView : public CListView
{
protected: // create from serialization only
 CFileView();
 DECLARE_DYNCREATE(CFileView)

// Attributes
public:
 CWinDirDoc* GetDocument();

Programming Windows With MFC

 656

// Operations
public:
 static int CALLBACK CompareFunc (LPARAM lParam1, LPARAM lParam2,
 LPARAM lParamSort);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFileView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 int Refresh (LPCTSTR pszPath);
 virtual ~CFileView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 CString m_strPath;
 void FreeItemMemory ();
 BOOL AddItem (int nIndex, WIN32_FIND_DATA* pfd);
 CImageList m_ilSmall;
 CImageList m_ilLarge;
 //{{AFX_MSG(CFileView)
 afx_msg void OnDestroy();
 afx_msg void OnGetDispInfo(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnColumnClick(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnViewLargeIcons();
 afx_msg void OnViewSmallIcons();
 afx_msg void OnViewList();
 afx_msg void OnViewDetails();
 afx_msg void OnUpdateViewLargeIcons(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewSmallIcons(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewList(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewDetails(CCmdUI* pCmdUI);
 afx_msg void OnFileNewDirectory();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in FileView.cpp
inline CWinDirDoc* CFileView::GetDocument()
 { return (CWinDirDoc*)m_pDocument; }
#endif

///

Programming Windows With MFC

 657

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
// AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUDED_)

FileView.cpp

// FileView.cpp : implementation of the CFileView class
//

#include "stdafx.h"
#include "WinDir.h"
#include "PathDialog.h"
#include "WinDirDoc.h"
#include "FileView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CFileView

IMPLEMENT_DYNCREATE(CFileView, CListView)

BEGIN_MESSAGE_MAP(CFileView, CListView)
 //{{AFX_MSG_MAP(CFileView)
 ON_WM_DESTROY()
 ON_NOTIFY_REFLECT(LVN_GETDISPINFO, OnGetDispInfo)
 ON_NOTIFY_REFLECT(LVN_COLUMNCLICK, OnColumnClick)
 ON_COMMAND(ID_VIEW_LARGE_ICONS, OnViewLargeIcons)
 ON_COMMAND(ID_VIEW_SMALL_ICONS, OnViewSmallIcons)
 ON_COMMAND(ID_VIEW_LIST, OnViewList)
 ON_COMMAND(ID_VIEW_DETAILS, OnViewDetails)
 ON_UPDATE_COMMAND_UI(ID_VIEW_LARGE_ICONS,
OnUpdateViewLargeIcons)
 ON_UPDATE_COMMAND_UI(ID_VIEW_SMALL_ICONS,
OnUpdateViewSmallIcons)
 ON_UPDATE_COMMAND_UI(ID_VIEW_LIST, OnUpdateViewList)
 ON_UPDATE_COMMAND_UI(ID_VIEW_DETAILS,
OnUpdateViewDetails)
 ON_COMMAND(ID_FILE_NEW_DIR, OnFileNewDirectory)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CFileView construction/destruction

CFileView::CFileView()
{

Programming Windows With MFC

 658

}

CFileView::~CFileView()
{
}

BOOL CFileView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CListView::PreCreateWindow (cs))
 return FALSE;

 cs.style &= ~LVS_TYPEMASK;
 cs.style ¦= LVS_REPORT;
 return TRUE;
}

///
// CFileView drawing

void CFileView::OnDraw(CDC* pDC)
{
 CWinDirDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 // TODO: add draw code for native data here
}

void CFileView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 //
 // Initialize the image list.
 //
 m_ilLarge.Create (IDB_LARGEDOC, 32, 1, RGB (255, 0, 255));

 m_ilSmall.Create (IDB_SMALLDOC, 16, 1, RGB (255, 0, 255));

 GetListCtrl ().SetImageList (&m_ilLarge, LVSIL_NORMAL);
 GetListCtrl ().SetImageList (&m_ilSmall, LVSIL_SMALL);

 //
 // Add columns to the list view.
 //
 GetListCtrl ().InsertColumn (0, _T ("File Name"), LVCFMT_LEFT, 192);
 GetListCtrl ().InsertColumn (1, _T ("Size"), LVCFMT_RIGHT, 96);
 GetListCtrl ().InsertColumn (2, _T ("Last Modified"),
LVCFMT_CENTER, 128);

 //
 // Populate the list view with items.
 //
 TCHAR szPath[MAX_PATH];
 ::GetCurrentDirectory (sizeof (szPath) / sizeof (TCHAR), szPath);
 Refresh (szPath);
}

Programming Windows With MFC

 659

///
// CFileView diagnostics

#ifdef _DEBUG
void CFileView::AssertValid() const
{
 CListView::AssertValid();
}

void CFileView::Dump(CDumpContext& dc) const
{
 CListView::Dump(dc);
}

CWinDirDoc* CFileView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CWinDirDoc)));
 return (CWinDirDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CFileView message handlers

int CFileView::Refresh(LPCTSTR pszPath)
{
 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 HANDLE hFind;
 WIN32_FIND_DATA fd;
 int nCount = 0;

 if ((hFind = ::FindFirstFile (strPath, &fd)) !=
INVALID_HANDLE_VALUE) {
 //
 // Delete existing items (if any).
 //
 GetListCtrl ().DeleteAllItems ();

 //
 // Show the path name in the frame window's title bar.
 //
 TCHAR szFullPath[MAX_PATH];
 ::GetFullPathName (pszPath, sizeof (szFullPath) / sizeof (TCHAR),
 szFullPath, NULL);
 m_strPath = szFullPath;

 CString strTitle = _T ("WinDir - ");
 strTitle += szFullPath;
 AfxGetMainWnd ()->SetWindowText (strTitle);

 //
 // Add items representing files to the list view.

Programming Windows With MFC

 660

 //
 if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
 AddItem (nCount++, &fd);

 while (::FindNextFile (hFind, &fd)) {
 if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
 if (!AddItem (nCount++, &fd))
 break;
 }
 ::FindClose (hFind);
 }
 return nCount;
}

BOOL CFileView::AddItem(int nIndex, WIN32_FIND_DATA *pfd)
{
 //
 // Allocate a new ITEMINFO structure and initialize it with information
 // about the item.
 //
 ITEMINFO* pItem;
 try {
 pItem = new ITEMINFO;
 }
 catch (CMemoryException* e) {
 e->Delete ();
 return FALSE;
 }

 pItem->strFileName = pfd->cFileName;
 pItem->nFileSizeLow = pfd->nFileSizeLow;
 pItem->ftLastWriteTime = pfd->ftLastWriteTime;

 //
 // Add the item to the list view.
 //
 LV_ITEM lvi;
 lvi.mask = LVIF_TEXT ¦ LVIF_IMAGE ¦ LVIF_PARAM;
 lvi.iItem = nIndex;
 lvi.iSubItem = 0;
 lvi.iImage = 0;
 lvi.pszText = LPSTR_TEXTCALLBACK;
 lvi.lParam = (LPARAM) pItem;

 if (GetListCtrl ().InsertItem (&lvi) == -1)
 return FALSE;

 return TRUE;
}

void CFileView::FreeItemMemory()
{
 int nCount = GetListCtrl ().GetItemCount ();
 if (nCount) {
 for (int i=0; i<nCount; i++)
 delete (ITEMINFO*) GetListCtrl ().GetItemData (i);

Programming Windows With MFC

 661

 }
}

void CFileView::OnDestroy()
{
 FreeItemMemory ();
 CListView::OnDestroy ();
}

void CFileView::OnGetDispInfo(NMHDR* pNMHDR, LRESULT* pResult)
{
 CString string;
 LV_DISPINFO* pDispInfo = (LV_DISPINFO*) pNMHDR;

 if (pDispInfo->item.mask & LVIF_TEXT) {
 ITEMINFO* pItem = (ITEMINFO*) pDispInfo->item.lParam;

 switch (pDispInfo->item.iSubItem) {

 case 0: // File name.
 ::lstrcpy (pDispInfo->item.pszText, pItem->strFileName);
 break;

 case 1: // File size.
 string.Format (_T ("%u"), pItem->nFileSizeLow);
 ::lstrcpy (pDispInfo->item.pszText, string);
 break;

 case 2: // Date and time.
 CTime time (pItem->ftLastWriteTime);

 BOOL pm = FALSE;
 int nHour = time.GetHour ();
 if (nHour == 0)
 nHour = 12;
 else if (nHour == 12)
 pm = TRUE;
 else if (nHour > 12) {
 nHour -= 12;
 pm = TRUE;
 }

 string.Format (_T ("%d/%0.2d/%0.2d (%d:%0.2d%c)"),
 time.GetMonth (), time.GetDay (), time.GetYear () % 100,
 nHour, time.GetMinute (), pm ? _T (`p') : _T (`a'));
 ::lstrcpy (pDispInfo->item.pszText, string);
 break;
 }
 }
 *pResult = 0;
}

void CFileView::OnColumnClick(NMHDR* pNMHDR, LRESULT* pResult)
{
 NM_LISTVIEW* pNMListView = (NM_LISTVIEW*) pNMHDR;
 GetListCtrl ().SortItems (CompareFunc, pNMListView->iSubItem);

Programming Windows With MFC

 662

 *pResult = 0;
}

int CALLBACK CFileView::CompareFunc (LPARAM lParam1, LPARAM
lParam2,
 LPARAM lParamSort)
{
 ITEMINFO* pItem1 = (ITEMINFO*) lParam1;
 ITEMINFO* pItem2 = (ITEMINFO*) lParam2;
 int nResult;

 switch (lParamSort) {

 case 0: // File name.
 nResult = pItem1->strFileName.CompareNoCase
(pItem2->strFileName);
 break;

 case 1: // File size.
 nResult = pItem1->nFileSizeLow - pItem2->nFileSizeLow;
 break;

 case 2: // Date and time.
 nResult = ::CompareFileTime (&pItem1->ftLastWriteTime,
 &pItem2->ftLastWriteTime);
 break;
 }
 return nResult;
}

void CFileView::OnViewLargeIcons()
{
 ModifyStyle (LVS_TYPEMASK, LVS_ICON);
}

void CFileView::OnViewSmallIcons()
{
 ModifyStyle (LVS_TYPEMASK, LVS_SMALLICON);
}

void CFileView::OnViewList()
{
 ModifyStyle (LVS_TYPEMASK, LVS_LIST);
}

void CFileView::OnViewDetails()
{
 ModifyStyle (LVS_TYPEMASK, LVS_REPORT);
}

void CFileView::OnUpdateViewLargeIcons(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_ICON);
}

Programming Windows With MFC

 663

void CFileView::OnUpdateViewSmallIcons(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_SMALLICON);
}

void CFileView::OnUpdateViewList(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_LIST);
}

void CFileView::OnUpdateViewDetails(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_REPORT);
}

void CFileView::OnFileNewDirectory()
{
 CPathDialog dlg;
 dlg.m_strPath = m_strPath;
 if (dlg.DoModal () == IDOK)
 Refresh (dlg.m_strPath);
}

CFileView uses callbacks for item and subitem text so that it
can maintain its own item data without forcing the control to
maintain copies of the data, too. Callbacks come in the form of
LVN_GETDISPINFO notifications, which CFileView reflects
to its own OnGetDispInfo handler with an
ON_NOTIFY_REFLECT message-map entry. When
OnGetDispInfo is called, pNMHDR points to an
LV_DISPINFO structure. The structure's item.lParam field
contains the address of the ITEMINFO structure for the item in
question, and the item.iSubItem field contains the index of the
requested subitem. CFileView::OnGetDispInfo formulates a
text string from the data stored in the ITEMINFO structure's
strFileName, nFileSizeLow, or ftLastWriteTime field and copies
the result to the address contained in the LV_DISPINFO
structure's item.pszText field. The list view then displays the
text on the screen.

CFileView maintains its own item data so that
CListCtrl::SortItems can be called and
CFileView::CompareFunc can retrieve any or all of an item's
data by dereferencing the pointer stored in the item's lParam. If
the user clicks a column header while the list view is in report
mode, an ON_NOTIFY_REFLECT entry in the message map

Programming Windows With MFC

 664

activates CFileView::OnColumnClick, and OnColumnClick, in
turn, calls the list view's SortItems function, passing in the
index of the column that was clicked:

GetListCtrl ().SortItems (CompareFunc, pNMListView->iSubItem);

CompareFunc is the application-defined sorting routine called
to compare pairs of items. It's declared static because it's a
callback function. CompareFunc uses the ITEMINFO pointers
passed in lParam1 and lParam2 to retrieve the data for the
items it's asked to compare and uses the column index in
lParamSort to determine which of the items' subitems to use as
the basis for the comparison. The entire function requires fewer
than 20 lines of code:

int CALLBACK CFileView::CompareFunc (LPARAM lParam1, LPARAM
lParam2,
 LPARAM lParamSort)
{
 ITEMINFO* pItem1 = (ITEMINFO*) lParam1;
 ITEMINFO* pItem2 = (ITEMINFO*) lParam2;
 int nResult;

 switch (lParamSort) {

 case 0: // File name.
 nResult =
 pItem1->strFileName.CompareNoCase (pItem2->strFileName);
 break;

 case 1: // File size.
 nResult = pItem1->nFileSizeLow - pItem2->nFileSizeLow;
 break;

 case 2: // Date and time.
 nResult = ::CompareFileTime (&pItem1->ftLastWriteTime,
 &pItem2->ftLastWriteTime);
 break;
 }
 return nResult;
}

A negative return value from CompareFunc indicates that item
1 is less than (should come before) item 2, 0 means that they're
equal, and a positive return value means that item 1 is greater
than item 2. The ::CompareFileTime API function makes it
easy to compare dates and times encapsulated in FILETIME
values. You can also create CTime objects from FILETIME

Programming Windows With MFC

 665

values and use <, >, and other operators to compare dates and
times.

It might not be obvious to you yet, but you just saw why a list
view with sortable columns must store its own data. The only
information CompareFunc receives about the items it's asked to
compare is the items' lParam values. Therefore, lParam has to
provide full access to all of an item's data. One way to make
sure that it does is to store item data in memory allocated by the
application (in WinDir's case, in ITEMINFO structures
allocated with new) and to store a pointer to the data in each
item's own lParam. Storing item data yourself rather than
converting it to text and handing it over to the list view
provides greater flexibility in sorting because the data can be
stored in binary form. How else could you sort the information
that appears in CFileView's Last Modified column? A string
sort wouldn't work very well because "1/1/96" comes before
"9/30/85" even though the former represents a later calendar
date. But since CFileView stores dates and times in their native
FILETIME format, sorting is a piece of cake.

A final note concerning CFileView has to do with the method
used to delete the ITEMINFO structures allocated by AddItem.
CFileView::FreeItemMemory deallocates the memory set aside
for each item by iterating through the items in the list view and
calling delete on the pointers stored in the items' lParams.
FreeItemMemory is called by the view's WM_DESTROY
handler to free the ITEMINFO structures before the application
shuts down.

10.5. Do-It-Yourself Control Views

CTreeView and CListView are examples of control
views—views whose functionality comes from a Windows
control. Both are derived from CCtrlView, which is also the
base class for CEditView and CRichEditView. CCtrlView
provides the basic functionality common to all control views.
By using it as a base class, you can create control views of your
own that wrap other types of Windows controls.

To demonstrate, the following CCtrlView-derived class defines
a tabbed view, which is simply a view wrapped around a

Programming Windows With MFC

 666

Win32 tab control. When displayed, it looks like a normal view
except that it has property sheet_like tabs at the top:

class CTabView : public CCtrlView
{
 DECLARE_DYNCREATE (CTabView)
public:
 CTabView () :
 CCtrlView (_T ("SysTabControl32"), AFX_WS_DEFAULT_VIEW)
{}
 CTabCtrl& GetTabCtrl () const { return *(CTabCtrl*) this; }
 virtual BOOL PreCreateWindow (CREATESTRUCT& cs);
 virtual void OnInitialUpdate ();
};

IMPLEMENT_DYNCREATE (CTabView, CCtrlView)

BOOL CTabView::PreCreateWindow (CREATESTRUCT& cs)
{
 ::InitCommonControls ();
 if (!CCtrlView::PreCreateWindow (cs))
 return FALSE;
 cs.style ¦= TCS_FIXEDWIDTH; // Fixed-width tabs.
 return TRUE;
}

void CTabView::OnInitialUpdate ()
{
 static CString strLabel[] = {
 _T ("Tab No. 1"),
 _T ("Tab No. 2"),
 _T ("Tab No. 3")
 };

 // Set the tab width to 96 pixels.
 GetTabCtrl ().SetItemSize (CSize (96, 0));

 // Add three tabs.
 TC_ITEM item;
 item.mask = TCIF_TEXT;
 for (int i=0; i<3; i++) {
 item.pszText = (LPTSTR) (LPCTSTR) strLabel[i];
 item.cchTextMax = strLabel[i].GetLength ();
 GetTabCtrl ().InsertItem (i, &item);
 }
}

The key features of this class are the default constructor, which
passes the base class's constructor the name of the tab control's
WNDCLASS ("SysTabControl32"); the GetTabCtrl function,
which returns a reference to the underlying tab control; and
OnInitialUpdate, which adds three tabs to the control.
PreCreateWindow also plays an important role by initializing

Programming Windows With MFC

 667

the common controls library and applying default styles to the
control.

Programming Windows With MFC

 668

Programming Windows With MFC

 669

Chapter 11. Multiple Documents
and Multiple Views

Document/view applications aren't limited to just one document
and one view of a document's data. Using splitter windows
provided by MFC, a single document interface (SDI)
application can present two or more views of the same
document in resizeable "panes" that subdivide the frame
window's client area. The document/view architecture also
extends to multiple document interface (MDI) applications that
support multiple views of a document, multiple open
documents, and even multiple document types. Although
Microsoft discourages the use of the multiple document
interface, applications that rely on the MDI model are still
prevalent and probably will be for some time to come, as
evidenced by the continued success of Microsoft Word and
other leading Microsoft Windows applications.

In Chapter 9, you saw what it takes to write an SDI
document/view application. You'll find it a simple matter to
extend that paradigm to encompass multiple documents and
multiple views. In this chapter, we'll first examine MFC's
support for MDI applications and see how easy it is to build an
MDI application. Then we'll look at how splitter windows are
used to provide multiple views of documents open in SDI
applications.

11.1. MFC and the Multiple Document
Interface

From a user's point of view, five fundamental characteristics
distinguish MDI applications from SDI applications:

x MDI applications permit the user to have two or more documents open
for editing at once. SDI applications, by contrast, require the user to
close the currently open document before opening another.

x MDI applications sometimes support multiple document types. For
example, an all-in-one word processing, spreadsheet, and charting
program might be implemented as an MDI application that supports
three document types: word processing documents containing text,
spreadsheet documents containing spreadsheets, and chart documents
containing charts.

Programming Windows With MFC

 670

x MDI applications feature a Window menu with a New Window
command for opening secondary views of a document and commands
for arranging the windows in which the views appear. The Window
menu also contains a list of open views. Selecting a view from this menu
makes that view the active view and the document associated with that
view the active document.

x SDI applications generally feature just one menu. MDI applications have
at least two: one that's displayed when no documents are open and
another that's displayed when at least one document is open. Some MDI
applications have more than two menus. An MDI application that
supports multiple document types generally implements one menu per
document type.

x SDI applications use just one frame window—the top-level frame
window that serves as the application's main window and frames views
of open documents. MDI applications use two: a top-level frame window
and child frames or document frames that float within the top-level frame
window and frame views of open documents.

Without help from a framework such as MFC, MDI
applications require more effort to create than SDI applications.
For example, it's the developer's responsi-bility to update the
menu that appears in the top-level frame window as documents
are opened, closed, and switched between. It's the developer's
responsibility to implement the Window menu. And it's the
developer's responsibility to create and manage the document
frames that float within the top-level frame window. Under the
hood, these and other features of the MDI user interface model
translate into dozens of annoying little implementation details
that you (or someone) must account for.

That's the bad news. The good news is that MFC's
document/view architecture abstracts the user interface model
so that writing MDI applications is only slightly different than
writing SDI applications. Like their SDI counterparts, MDI
document/view applications store data in document objects
based on CDocument and present views of that data in view
objects based on CView or one of its derivatives. The chief
structural differences between MDI and SDI applications built
with MFC are as follows:

x MDI applications derive their top-level frame window classes from
CMDI-FrameWnd rather than CFrameWnd.

x MDI applications use classes based on CMDIChildWnd to represent the
child frame windows that frame views of their documents.

x MDI applications use CMultiDocTemplate rather than
CSingleDocTemplate to create document templates. The frame window
class referenced in CMultiDocTemplate's constructor is the child frame
window class rather than the top-level frame window class.

Programming Windows With MFC

 671

x MDI applications have at least two menu resources, as opposed to SDI's
one. One is displayed when no documents are open; the other is
displayed when at least one document is open.

These are the differences that you see. On the inside, MFC
devotes hundreds of lines of code to MDI-specific chores such
as dynamically switching menus and creating new views of
open documents. In short, the framework manages almost every
aspect of an MDI application's user interface to spare you the
chore of having to do it yourself. And to a large extent, details
that aren't automatically handled for you by MFC are handled
by AppWizard. If you choose Multiple Documents instead of
Single Documents in AppWizard's Step 1 dialog box (shown in
Figure 11-1), AppWizard emits an MDI application skeleton.
From that point on, writing an MDI application is just like
writing an SDI application. You just write a document/view
application; MFC handles all the rest.

Well, MFC handles almost all the rest. You mustn't forget one
important implementation detail. That "detail" is the subject of
the next section.

Figure 11-1. Using AppWizard to create an MDI application.

Programming Windows With MFC

 672

11.1.1. Synchronizing Multiple Views of a
Document

When you elect to use the MDI user interface model, you
implicitly afford your users the freedom to display multiple
concurrent views of a document. A user editing a 100-page
document might use this feature of your application to display
pages 1 and 100 side by side for comparison.

When the New Window command is selected from the Window
menu, an MFC-provided command handler pulls up the
document template, extracts CRuntimeClass pointers
identifying the view class and the frame window class, and
instantiates a new view and a new frame window (a child frame,
not a top-level frame) to go with it. Under the hood, the
secondary view's address is added to the linked list of views
maintained by the document object so that the document is
aware that two independent views of it are visible on the screen.
If either view is asked to repaint, it calls GetDocument to
acquire a pointer to the document object, queries the document
for the data it needs, and repaints. Because both views are
connected to the same document object (that is, GetDocument
returns the same pointer in either view), each enjoys access to
the same set of document data. Moreover, the architecture is
scalable: it works just as well for hundreds of open views as it
does for two.

So far, so good. Now consider what happens if the user edits
the document in one of the views. If the change is visible (or
has consequences that are visible) in the other views, the other
views should be updated to reflect the change. The catch is that
the update doesn't happen automatically; it's up to you to make
sure that when the document is edited in one view, other
views—if they exist—are updated, too. The framework
provides the mechanism to make this happen in the form of
CDocument::UpdateAllViews and CView::OnUpdate, which
were briefly discussed in Chapter 9. It's now time to examine
these functions more closely.

Suppose you write a program editor that uses the MDI
architecture to allow the user to display multiple views of a
source code file. If a change made to a file in one view is
visible in the others, all views of that file should be updated to

Programming Windows With MFC

 673

reflect the change. That's what UpdateAllViews is for. When a
document's data is modified in a multiple-view application,
someone—either the object that made the modification (usually
a view object) or the document object—should call
UpdateAllViews to update the views. UpdateAllViews iterates
through the list of views associated with the document, calling
each view's virtual OnUpdate function.

CView provides a trivial implementation of OnUpdate that
invalidates the view and forces a call to OnDraw. If a full
repaint is what you want, there's no need to override OnUpdate.
If, however, you want to make updates as efficient as possible
by repainting only the part of the view that changed, you can
override OnUpdate in the view class and make use of hint
information passed to UpdateAllViews. UpdateAllViews is
prototyped as follows:

void UpdateAllViews (CView* pSender, LPARAM lHint = 0L,
 CObject* pHint = NULL)

The function prototype for OnUpdate looks very similar:

virtual void OnUpdate (CView* pSender, LPARAM lHint,
 CObject* pHint)

lHint and pHint carry hint information from UpdateAllViews to
OnUpdate. How you use these parameters is highly
application-specific. A simple use for hint information is to
pass the address of a RECT structure or a CRect object
specifying what part of the view needs updating. OnUpdate can
use that information in a call to InvalidateRect, as demonstrated
here:

// In the document class
UpdateAllViews (NULL, 1, (CObject*) pRect);

// In the view class
void CMyView::OnUpdate (CView* pSender, LPARAM lHint,
CObject* pHint)
{
 if (lHint == 1) {
 CRect* pRect = (CRect*) pHint;

Programming Windows With MFC

 674

 InvalidateRect (pRect);
 return;
 }
 CView::OnUpdate (pSender, lHint, pHint);
}

If the document's data consists of an array of CObjects and
UpdateAllViews is called because a new CObject was added to
the document, pHint might be used to pass the new CObject's
address. The following example assumes that pLine holds a
pointer to an instance of a CObject-derived class named CLine
and that CLine includes a public member function named Draw
that can be called to render the CLine on the screen:

// In the document class
UpdateAllViews (NULL, 1, pLine);

// In the view class
void CMyView::OnUpdate (CView* pSender, LPARAM lHint,
CObject* pHint)
{
 if (lHint == 1) {
 CLine* pLine = (CLine*) pHint;
 CClientDC dc (this);
 pLine->Draw (&dc);
 return;
 }
 CView::OnUpdate (pSender, lHint, pHint);
}

In both examples, OnUpdate forwards the call to the base class
if lHint is anything other than the application-specific value
passed to UpdateAllViews. That's important, because MFC
sometimes calls OnUpdate itself with lHint equal to 0. You can
use any nonzero value that you like for lHint. You can even
define multiple "hint sets" that assign different meanings to
pHint and use lHint to identify the hint type.

You can use UpdateAllViews' first parameter, pSender, to omit
a view from the update cycle. If pSender is NULL,
UpdateAllViews calls each view's OnUpdate function. If
pSender is non-NULL, UpdateAllViews calls OnUpdate on
every view except the one identified by pSender. When a

Programming Windows With MFC

 675

function in the document class calls UpdateAllViews, it
typically sets pSender to NULL so that all the views will be
updated. If a view calls UpdateAllViews, however, it can set
pSender to this to prevent its own OnUpdate function from
being called. If the view has already updated itself in response
to user input, its OnUpdate function doesn't need to be called.
If, however, the view hasn't already updated itself because it
performs all of its updating in OnUpdate, it should pass
UpdateAllViews a NULL first parameter.

The sample program in the next section makes trivial use of
UpdateAllViews by calling it without hint parameters.
Secondary views are updated by the default implementation of
OnUpdate. Later in this chapter, we'll develop a more
ambitious multiple-view application that passes hint
information to UpdateAllViews and makes use of that
information in OnUpdate.

11.1.2. The MdiSquares Application

The MdiSquares application shown in Figure 11-2 is an MDI
version of Chapter 9's SdiSquares. The document and view
classes that it uses are identical to those used in SdiSquares,
save for the fact that MdiSquares' view class draws the squares
slightly smaller to conserve screen space.

Figure 11-2. MdiSquares with two documents open.

Programming Windows With MFC

 676

When you run MdiSquares, the first document is opened
automatically. You can open additional documents by selecting
New from the File menu. To open another view of a document,
select New Window from the Window menu. Observe that if
you have two views of a document displayed and you click a
square in one view, the square's color changes in both views.
That's because the document's SetSquare function, which the
view calls to add a color to a square, calls UpdateAllViews after
recording the square's color in m_clrGrid. Here's the relevant
statement in SquaresDoc.cpp:

UpdateAllViews (NULL);

Because no hint information is passed in the call, and because
CSquaresView doesn't override OnUpdate, each view is
repainted in its entirety when SetSquare is called. If you look
closely, you can see the views flash each time you click a
square. The flashing is a consequence of the fact that the entire
view is being erased and repainted each time UpdateAllViews is
called.

SquaresDoc.cpp and other MdiSquares source code files are
shown in Figure 11-3. The main frame window class,
CMainFrame, represents the application's top-level window.
Views are displayed in instances of the child frame window
class, CChildFrame. Notice that in InitInstance, CChildFrame,
not CMainFrame, is identified as the frame window class when
the document template is initialized:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
 IDR_MDISQUTYPE,
 RUNTIME_CLASS(CSquaresDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CSquaresView));

Consequently, calling ProcessShellCommand in an MDI
application creates a new child frame but not a top-level frame
window. As a result, an MDI application must create the
top-level frame window itself before calling
ProcessShellCommand. The code that creates MdiSquares'
main window is found elsewhere in InitInstance:

Programming Windows With MFC

 677

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
m_pMainWnd = pMainFrame;

This code and all the other code in CMdiSquaresApp,
CMainFrame, and CChildFrame was generated by AppWizard.
Unless you code an MDI application by hand, you'll perform
the bulk of your work in the document and view classes.

If you open MdiSquares in Visual C++ and browse its list of
resources, you'll see that it has two icons, two menus, and two
document strings. Their resource IDs are IDR_MAINFRAME
and IDR_MDISQUTYPE. Here's how these resources are used:

x The IDR_MAINFRAME icon is displayed in the title bar of the top-level
window. The IDR_MDISQUTYPE icon is displayed in the title bars of
the child frames. You can use the same icon for both if you like, but most
MDI applications use a different icon for document windows.

x The IDR_MAINFRAME menu is displayed when no documents are
open. The IDR_MDISQUTYPE menu is displayed when at least one
document is open. The IDR_MAINFRAME menu is a minimal menu
that features a File menu with New, Open, and Exit commands and a
recently used file list, but little else. IDR_MDISQUTYPE, on the other
hand, is a full-blown menu with all the commands that pertain to
MdiSquares documents.

x The IDR_MAINFRAME document string contains nothing more than
the title that appears in the main window's title bar. The
IDR_MDISQUTYPE document string contains all relevant information
about the document type, including the default file name extension.

Except for the relatively minor differences discussed in this
section, MdiSquares and SdiSquares are virtually identical.
That's one of the benefits of using MFC's document/view
architecture: once you know how to write SDI applications, you
know how to write MDI applications, too.

Figure 11-3. The MdiSquares application.

MdiSquares.h
// MdiSquares.h : main header file for the MDISQUARES application
//

#if !defined(AFX_MDISQUARES_H__36D513DB_9CA0_11D2_8E53_006008A82731__INC
LUDED_)
#define
AFX_MDISQUARES_H__36D513DB_9CA0_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000

Programming Windows With MFC

 678

#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///

/ CMdiSquaresApp:
// See MdiSquares.cpp for the implementation of this class
//

class CMdiSquaresApp : public CWinApp
{
public:
 CMdiSquaresApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMdiSquaresApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

 // Implementation
 //{{AFX_MSG(CMdiSquaresApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_MDISQUARES_H__36D513DB_9CA0_11D2_8E53_006008A82731__INCLUDED_)

MdiSquares.cpp
// MdiSquares.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "MdiSquares.h"

#include "MainFrm.h"

Programming Windows With MFC

 679

#include "ChildFrm.h"
#include "SquaresDoc.h"
#include "SquaresView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMdiSquaresApp

BEGIN_MESSAGE_MAP(CMdiSquaresApp, CWinApp)
 //{{AFX_MSG_MAP(CMdiSquaresApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CMdiSquaresApp construction

CMdiSquaresApp::CMdiSquaresApp()
{
}

///
// The one and only CMdiSquaresApp object

CMdiSquaresApp theApp;

///
// CMdiSquaresApp initialization

BOOL CMdiSquaresApp::InitInstance()
{
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file
 // options (including MRU)

 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(
 IDR_MDISQUTYPE,
 RUNTIME_CLASS(CSquaresDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CSquaresView));
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window

Programming Windows With MFC

 680

 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();
 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The main window has been initialized, so show and update it.
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

Programming Windows With MFC

 681

{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CMdiSquaresApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CMdiSquaresApp message handlers

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__36D513DF_9CA0_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__36D513DF_9CA0_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CMDIFrameWnd

 DECLARE_DYNAMIC(CMainFrame)
public:
 CMainFrame();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides

Programming Windows With MFC

 682

 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
// AFX_MAINFRM_H__36D513DF_9CA0_11D2_8E53_006008A82731__INCLUDED_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "MdiSquares.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.

Programming Windows With MFC

 683

 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CMDIFrameWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CMDIFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CMDIFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

ChildFrm.h

// ChildFrm.h : interface of the CChildFrame class
//
///

#if !defined(AFX_CHILDFRM_H__36D513E1_9CA0_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_CHILDFRM_H__36D513E1_9CA0_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

Programming Windows With MFC

 684

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CChildFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
// AFX_CHILDFRM_H__36D513E1_9CA0_11D2_8E53_006008A82731__INCLUDED_)

ChildFrm.cpp

// ChildFrm.cpp : implementation of the CChildFrame class
//

#include "stdafx.h"
#include "MdiSquares.h"

#include "ChildFrm.h"

#ifdef _DEBUG

Programming Windows With MFC

 685

#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
 //{{AFX_MSG_MAP(CChildFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildFrame construction/destruction

CChildFrame::CChildFrame()
{
}

CChildFrame::~CChildFrame()
{
}

BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CMDIChildWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}

///
// CChildFrame diagnostics

#ifdef _DEBUG
void CChildFrame::AssertValid() const
{
 CMDIChildWnd::AssertValid();
}

void CChildFrame::Dump(CDumpContext& dc) const
{
 CMDIChildWnd::Dump(dc);
}

#endif //_DEBUG

///
// CChildFrame message handlers

Programming Windows With MFC

 686

SquaresDoc.h

// SquaresDoc.h : interface of the CSquaresDoc class
//
///

#if !defined(AFX_SQUARESDOC_H__36D513E3_9CA0_11D2_8E53_006008A82731__INCL
UDED_)
#define
AFX_SQUARESDOC_H__36D513E3_9CA0_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSquaresDoc : public CDocument
{
protected: // create from serialization only
 CSquaresDoc();
 DECLARE_DYNCREATE(CSquaresDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSquaresDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL

// Implementation
public:
 void SetSquare (int i, int j, COLORREF color);
 COLORREF GetSquare (int i, int j);
 COLORREF GetCurrentColor();
 virtual ~CSquaresDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 COLORREF m_clrCurrentColor;
 COLORREF m_clrGrid[4][4];
 //{{AFX_MSG(CSquaresDoc)
 afx_msg void OnColorRed();
 afx_msg void OnColorYellow();

Programming Windows With MFC

 687

 afx_msg void OnColorGreen();
 afx_msg void OnColorCyan();
 afx_msg void OnColorBlue();
 afx_msg void OnColorWhite();
 afx_msg void OnUpdateColorRed(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorYellow(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorGreen(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorCyan(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorBlue(CCmdUI* pCmdUI);
 afx_msg void OnUpdateColorWhite(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_SQUARESDOC_H__36D513E3_9CA0_11D2_8E53_006008A82731__INCLUDED_)

SquaresDoc.cpp

// SquaresDoc.cpp : implementation of the CSquaresDoc class
//

#include "stdafx.h"
#include "MdiSquares.h"

#include "SquaresDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSquaresDoc

IMPLEMENT_DYNCREATE(CSquaresDoc, CDocument)

BEGIN_MESSAGE_MAP(CSquaresDoc, CDocument)
 //{{AFX_MSG_MAP(CSquaresDoc)
 ON_COMMAND(ID_COLOR_RED, OnColorRed)
 ON_COMMAND(ID_COLOR_YELLOW, OnColorYellow)
 ON_COMMAND(ID_COLOR_GREEN, OnColorGreen)
 ON_COMMAND(ID_COLOR_CYAN, OnColorCyan)
 ON_COMMAND(ID_COLOR_BLUE, OnColorBlue)
 ON_COMMAND(ID_COLOR_WHITE, OnColorWhite)
 ON_UPDATE_COMMAND_UI(ID_COLOR_RED, OnUpdateColorRed)
 ON_UPDATE_COMMAND_UI(ID_COLOR_YELLOW,

Programming Windows With MFC

 688

OnUpdateColorYellow)
 ON_UPDATE_COMMAND_UI(ID_COLOR_GREEN,
OnUpdateColorGreen)
 ON_UPDATE_COMMAND_UI(ID_COLOR_CYAN,
OnUpdateColorCyan)
 ON_UPDATE_COMMAND_UI(ID_COLOR_BLUE,
OnUpdateColorBlue)
 ON_UPDATE_COMMAND_UI(ID_COLOR_WHITE,
OnUpdateColorWhite)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSquaresDoc construction/destruction

CSquaresDoc::CSquaresDoc()
{
}

CSquaresDoc::~CSquaresDoc()
{
}

BOOL CSquaresDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 m_clrGrid[i][j] = RGB (255, 255, 255);

 m_clrCurrentColor = RGB (255, 0, 0);
 return TRUE;
}

///
// CSquaresDoc serialization

void CSquaresDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar << m_clrGrid[i][j];
 ar << m_clrCurrentColor;
 }
 else
 {
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 ar >> m_clrGrid[i][j];
 ar >> m_clrCurrentColor;
 }
}

Programming Windows With MFC

 689

///
// CSquaresDoc diagnostics

#ifdef _DEBUG
void CSquaresDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CSquaresDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CSquaresDoc commands

COLORREF CSquaresDoc::GetCurrentColor()
{
 return m_clrCurrentColor;
}

COLORREF CSquaresDoc::GetSquare(int i, int j)
{
 ASSERT (i >= 0 && i <= 3 && j >= 0 && j <= 3);
 return m_clrGrid[i][j];
}

void CSquaresDoc::SetSquare(int i, int j, COLORREF color)
{
 ASSERT (i >= 0 && i <= 3 && j >= 0 && j <= 3);
 m_clrGrid[i][j] = color;
 SetModifiedFlag (TRUE);
 UpdateAllViews (NULL);
}

void CSquaresDoc::OnColorRed()
{
 m_clrCurrentColor = RGB (255, 0, 0);
}

void CSquaresDoc::OnColorYellow()
{
 m_clrCurrentColor = RGB (255, 255, 0);
}

{
 m_clrCurrentColor = RGB (0, 255, 0);
}

void CSquaresDoc::OnColorCyan()
{
 m_clrCurrentColor = RGB (0, 255, 255);

Programming Windows With MFC

 690

}

void CSquaresDoc::OnColorBlue()
{
 m_clrCurrentColor = RGB (0, 0, 255);
}

void CSquaresDoc::OnColorWhite()
{
 m_clrCurrentColor = RGB (255, 255, 255);
}

void CSquaresDoc::OnUpdateColorRed(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 0, 0));
}

void CSquaresDoc::OnUpdateColorYellow(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 255, 0));
}

void CSquaresDoc::OnUpdateColorGreen(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 255, 0));
}

void CSquaresDoc::OnUpdateColorCyan(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 255, 255));
}

void CSquaresDoc::OnUpdateColorBlue(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (0, 0, 255));
}

void CSquaresDoc::OnUpdateColorWhite(CCmdUI* pCmdUI)
{
 pCmdUI->SetRadio (m_clrCurrentColor == RGB (255, 255, 255));
}

SquaresView.h

// SquaresView.h : interface of the CSquaresView class
//
///

#if !defined(

AFX_SQUARESVIEW_H__36D513E5_9CA0_11D2_8E53_006008A82731__INCLUDED_
)
#define
AFX_SQUARESVIEW_H__36D513E5_9CA0_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once

Programming Windows With MFC

 691

#endif // _MSC_VER > 1000

class CSquaresView : public CView
{
protected: // create from serialization only
 CSquaresView();
 DECLARE_DYNCREATE(CSquaresView)

// Attributes
public:
 CSquaresDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSquaresView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CSquaresView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CSquaresView)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in SquaresView.cpp
inline CSquaresDoc* CSquaresView::GetDocument()
 { return (CSquaresDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(

Programming Windows With MFC

 692

//
AFX_SQUARESVIEW_H__36D513E5_9CA0_11D2_8E53_006008A82731__INCLUDED_)

SquaresView.cpp

// SquaresView.cpp : implementation of the CSquaresView class
//

#include "stdafx.h"
#include "MdiSquares.h"

#include "SquaresDoc.h"
#include "SquaresView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSquaresView

IMPLEMENT_DYNCREATE(CSquaresView, CView)

BEGIN_MESSAGE_MAP(CSquaresView, CView)
 //{{AFX_MSG_MAP(CSquaresView)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSquaresView construction/destruction

CSquaresView::CSquaresView()
{
}

CSquaresView::~CSquaresView()
{
}

BOOL CSquaresView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CView::PreCreateWindow(cs);
}

///
// CSquaresView drawing

void CSquaresView::OnDraw(CDC* pDC)
{
 CSquaresDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 //

Programming Windows With MFC

 693

 // Set the mapping mode to MM_LOENGLISH.
 //
 pDC->SetMapMode (MM_LOENGLISH);
 //
 // Draw the 16 squares.
 //
 for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 COLORREF color = pDoc->GetSquare (i, j);
 CBrush brush (color);
 int x1 = (j * 70) + 35;
 int y1 = (i * -70) - 35;
 int x2 = x1 + 70;
 int y2 = y1 - 70;
 CRect rect (x1, y1, x2, y2);
 pDC->FillRect (rect, &brush);
 }
 }

 //
 // Then draw the grid lines surrounding them.
 //
 for (int x=35; x<=315; x+=70) {
 pDC->MoveTo (x, -35);
 pDC->LineTo (x, -315);
 }

 for (int y=-35; y>=-315; y-=70) {
 pDC->MoveTo (35, y);
 pDC->LineTo (315, y);
 }
}

///
// CSquaresView diagnostics

#ifdef _DEBUG
void CSquaresView::AssertValid() const
{
 CView::AssertValid();
}

void CSquaresView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CSquaresDoc* CSquaresView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CSquaresDoc)));
 return (CSquaresDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CSquaresView message handlers

Programming Windows With MFC

 694

void CSquaresView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CView::OnLButtonDown(nFlags, point);

 //
 // Convert click coordinates to MM_LOENGLISH units.
 //
 CClientDC dc (this);
 dc.SetMapMode (MM_LOENGLISH);
 CPoint pos = point;
 dc.DPtoLP (&pos);

 //
 // If a square was clicked, set its color to the current color.
 //
 if (pos.x >= 35 && pos.x <= 315 && pos.y <= -35 && pos.y >= -315) {
 int i = (-pos.y - 35) / 70;
 int j = (pos.x - 35) / 70;
 CSquaresDoc* pDoc = GetDocument ();
 COLORREF clrCurrentColor = pDoc->GetCurrentColor ();
 pDoc->SetSquare (i, j, clrCurrentColor);
 }
}

11.1.3. Supporting Multiple Document Types

An MDI application written with MFC supports multiple
document instances by default. A new document instance is
created each time the user executes a File/New command. MDI
applications can also support multiple document types, each
characterized by a unique document template.

Suppose you want to add a second document type—say, circles
documents—to MdiSquares so that when File/New is selected,
the user is given a choice of whether to create a squares
document or a circles document. Here's how you'd do it.

1. Derive a new document class and a new view class to serve the new
document type. For the sake of this example, assume the classes are
named CCirclesDoc and CCirclesView. Make the classes dynamically
creatable, just like the document and view classes AppWizard generates.

2. Add four new resources to the project for circles documents: an icon, a
menu, an accelerator (optional), and a document string. Assign all four
resources the same resource ID—for example, IDR_CIRCLETYPE.

3. Modify InitInstance to create a new document template containing the
resource ID and CRuntimeClass pointers for the document, view, and
frame window classes. Then call AddDocTemplate and pass in the
address of the document template object.

Programming Windows With MFC

 695

Here's an excerpt from an InitInstance function modified to
register two document templates:

// AppWizard-generated code
CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
 IDR_MDISQUTYPE,
 RUNTIME_CLASS(CSquaresDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CSquaresView));
AddDocTemplate(pDocTemplate);

// Your code
pDocTemplate = new CMultiDocTemplate(
 IDR_CIRCLETYPE,
 RUNTIME_CLASS(CCirclesDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CCirclesView));
AddDocTemplate(pDocTemplate);

That's basically all there is to it. This example uses
CChildFrame as the child frame class for both document types,
but you can derive a separate child frame class if you'd prefer.

When multiple document types are registered in this manner,
MFC's File-New command handler displays a dialog box
presenting the user with a choice of document types. The string
that identifies each document type in the dialog box comes
from the document string—specifically, from the third of the
document string's seven possible substrings. With this
infrastructure in place, it's relatively simple to write
multifunction MDI applications that permit users to create and
edit different kinds of documents. You can write SDI
applications that support two or more document types, too, but
the multiple document type paradigm is rarely used in single
document applications.

11.1.4. Alternatives to MDI

The multiple document interface isn't the only game in town if
you want to give your users the ability to edit several
documents at once in one instance of your application. The
Windows Interface Guidelines for Software Design outlines
three alternatives to the MDI programming model:

Programming Windows With MFC

 696

x A workspace-based model that groups related documents in objects
called workspaces and allows documents contained in a workspace to be
viewed and edited in MDI-like document frames that are children of a
top-level frame window. Visual C++ is one example of an application
that uses the workspace containment model.

x A workbook model in which individual views occupy the full client area
of a top-level frame window but only one view at a time is visible. The
appearance is similar to that of a maximized document frame in an MDI
application. Each view is tabbed so that the user can switch from one
view to another with a button click as if the views were pages in a
property sheet.

x A project model that groups related documents in projects but allows
individual documents to be edited in SDI-like frame windows. The
primary difference between the project model and the MDI and
workspace models is that in the project model there is no top-level frame
window providing containment for document frames.

MFC doesn't support any of these alternatives directly, but you
can always code them yourself. Alternative user interface
models are on the radar screen of the MFC team at Microsoft,
so it's very possible that a future version of MFC will support
user interface models other than SDI and MDI.

11.2. Splitter Windows

MDI applications inherently support multiple views of a
document; SDI applications do not. For SDI applications, the
best way to present two or more concurrent views of a
document is to use a splitter window based on MFC's
CSplitterWnd class. A splitter window is a window that can be
divided into two or more panes horizontally, vertically, or both
horizontally and vertically using movable splitter bars. Each
pane contains one view of a document's data. The views are
children of the splitter window, and the splitter window itself is
normally a child of a frame window. In an SDI application, the
splitter window is a child of the top-level frame window. In an
MDI application, the splitter window is a child of an MDI
document frame. A view positioned inside a splitter window
can use CView::GetParentFrame to obtain a pointer to its
parent frame window.

MFC supports two types of splitter windows: static and
dynamic. The numbers of rows and columns in a static splitter
window are set when the splitter is created and can't be changed
by the user. The user is, however, free to resize individual rows
and columns. A static splitter window can contain a maximum
of 16 rows and 16 columns. For an example of an application

Programming Windows With MFC

 697

that uses a static splitter, look no further than the Windows
Explorer. Explorer's main window is divided in half vertically
by a static splitter window.

A dynamic splitter window is limited to at most two rows and
two columns, but it can be split and unsplit interactively. The
views displayed in a dynamic splitter window's panes aren't
entirely independent of each other: when a dynamic splitter
window is split horizontally, the two rows have independent
vertical scroll bars but share a horizontal scroll bar. Similarly,
the two columns of a dynamic splitter window split vertically
contain horizontal scroll bars of their own but share a vertical
scroll bar. The maximum number of rows and columns a
dynamic splitter window can be divided into are specified when
the splitter is created. Thus, it's a simple matter to create a
dynamic splitter window that can be split horizontally or
vertically but not both. Visual C++ uses a dynamic splitter
window to permit two or more sections of a source code file to
be edited at once. (See Figure 11-4.)

Figure 11-4. A dynamic splitter showing two views of a document in
Visual C++.

One criterion for choosing between static and dynamic splitter
windows is whether you want the user to be able to change the
splitter's row and column configuration interactively. Use a

Programming Windows With MFC

 698

dynamic splitter window if you do. Another factor in the
decision is what kinds of views you plan to use in the splitter's
panes. It's easy to use two or more different view classes in a
static splitter window because you specify the type of view that
goes in each pane. MFC manages the views in a dynamic
splitter window, however, so a dynamic splitter uses the same
view class for all of its views unless you derive a new class
from CSplitterWnd and modify the splitter's default behavior.

11.2.1. Dynamic Splitter Windows

Dynamic splitter windows are created with MFC's
CSplitterWnd::Create function. Creating and initializing a
dynamic splitter window is a simple two-step procedure:

1. Add a CSplitterWnd data member to the frame window class.
2. Override the frame window's virtual OnCreateClient function, and call

CSplitterWnd::Create to create a dynamic splitter window in the frame
window's client area.

Assuming m_wndSplitter is a CSplitterWnd object that's a
member of the frame window class CMainFrame, the following
OnCreateClient override creates a dynamic splitter window
inside the frame window:

BOOL CMainFrame::OnCreateClient (LPCREATESTRUCT lpcs,
 CCreateContext* pContext)
{
 return m_wndSplitter.Create (this, 2, 1, CSize (1, 1), pContext);
}

The first parameter to CSplitterWnd::Create identifies the
splitter window's parent, which is the frame window. The
second and third parameters specify the maximum number of
rows and columns that the window can be split into. Because a
dynamic splitter window supports a maximum of two rows and
two columns, these parameter values will always be 1 or 2. The
fourth parameter specifies each pane's minimum width and
height in pixels. The framework uses these values to determine
when panes should be created and destroyed as splitter bars are
moved. CSize values equal to (1,1) specify that panes can be as
little as 1 pixel wide and 1 pixel tall. The fifth parameter is a
pointer to a CCreateContext structure provided by the
framework. The structure's m_pNewViewClass member

Programming Windows With MFC

 699

identifies the view class used to create views in the splitter's
panes. The framework creates the initial view for you and puts
it into the first pane. Other views of the same class are created
automatically as additional panes are created.

CSplitterWnd::Create supports optional sixth and seventh
parameters specifying the splitter window's style and its child
window ID. In most instances, the defaults are fine. The default
child window ID of AFX_IDW_PANE_FIRST is a magic
number that enables a frame window to identify the splitter
window associated with it. You need to modify the ID only if
you create a second splitter window in a frame window that
already contains a splitter.

Once a dynamic splitter window is created, the framework
provides the logic to make it work. If the window is initially
unsplit and the user drags a vertical splitter bar to the middle of
the window, for example, MFC splits the window vertically and
creates a view inside the new pane. Because the new view is
created at run time, the view class must support dynamic
creation. If the user later drags the vertical splitter bar to the left
or right edge of the window (or close enough to the edge that
either pane's width is less than the minimum width specified
when the splitter window was created), MFC destroys the
secondary pane and the view that appears inside it.

The CSplitterWnd class includes a number of useful member
functions you can call on to query a splitter window for
information. Among other things, you can ask for the number
of rows or columns currently displayed, for the width or height
of a row or a column, or for a CView pointer to the view in a
particular row and column. If you'd like to add a Split
command to your application's menu, include a menu item
whose ID is ID_WINDOW_SPLIT. This ID is prewired to the
command handler CView::OnSplitCmd and the update handler
CView::OnUpdateSplitCmd in CView's message map.
Internally, CView::OnSplitCmd calls
CSplitterWnd::DoKeyboardSplit to begin a tracking process
that allows phantom splitter bars to be moved with the up and
down arrow keys. Tracking ends when Enter is pressed to
accept the new splitter position or Esc is pressed to cancel the
operation.

Programming Windows With MFC

 700

11.2.2. The Sketch Application

The application shown in Figure 11-5 is a sketching application
that you can use to create simple line drawings. To draw a line,
press and hold the left mouse button and drag with the button
held down. Releasing the left mouse button replaces the
rubber-band line that follows the cursor with a real line. The
Grid command in the View menu enables and disables
snapping. When snapping is enabled, endpoints automatically
snap to the nearest grid point.

Figure 11-5. The Sketch window halved by a dynamic splitter window.

Sketch's source code appears in Figure 11-6. In most respects,
Sketch is a standard SDI document/view application. Lines
drawn by the user are represented by instances of CLine, which
includes CPoint member variables for storing a line's endpoints
and a Draw function for drawing a line on the screen. The
document object stores pointers to CLine objects in a dynamic
array based on MFC's CTypedPtrArray class. Each time a line
is drawn on the screen, the view, which uses mouse capturing
to ensure that every WM_LBUTTONDOWN message is
accompanied by a WM_LBUTTONUP message, calls the
document's AddLine function and passes in the line's endpoints.
AddLine, in turn, creates a new CLine object from those
endpoints and records the CLine's address in the array:

// In SketchDoc.h
typedef CTypedPtrArray<CObArray, CLine*> CLineArray;

Programming Windows With MFC

 701

CLineArray m_arrLines;

// In SketchDoc.cpp
CLine* CSketchDoc::AddLine(POINT from, POINT to)
{
 CLine* pLine = NULL;

 try {
 pLine = new CLine (from, to);
 m_arrLines.Add (pLine);
 SetModifiedFlag (TRUE);
 UpdateAllViews (NULL, 0x7C, pLine);
 }
 catch (CMemoryException* e) {
 AfxMessageBox (_T ("Out of memory"));
 if (pLine != NULL) {
 delete pLine;
 pLine = NULL;
 }
 e->Delete ();
 }
 return pLine;
}

Because CLine is a serializable class, and because
CTypedPtrArray is capable of serializing all of its serializable
elements with a simple function call, one statement in
CSketchDoc::Serialize saves or loads every line that the user
has drawn:

m_arrLines.Serialize (ar);

CSketchDoc also overrides DeleteContents and uses it to delete
all the CLine objects created by AddLine before the current
document is discarded. Failure to dispose of the CLines in this
manner would result in memory leaks each time a document is
closed.

What sets Sketch apart from a run-of-the-mill SDI
document/view application is the fact that it uses a dynamic
splitter window. The splitter window is created by the
following statement in CMainFrame::OnCreateClient:

Programming Windows With MFC

 702

return m_wndSplitter.Create (this, 2, 1, CSize (8, 8), pContext);

Significantly, this is the only code anywhere in Sketch that's
provided specifically for splitter windows; MFC handles all
other aspects of the splitter's operation.

Concurrent views of a document displayed in a splitter window
must be synchronized just like concurrent views in an MDI
application. The call to UpdateAllViews in
CSketchDoc::AddLine ensures that both views are updated if
the window is split when a line is drawn. Rather than rely on
the default implementation of OnUpdate, CSketchView
overrides OnUpdate and performs a "smart update" by relying
on hint information passed to UpdateAllViews. Specifically,
each time a line is added to the document, AddLine calls
UpdateAllViews and passes a CLine pointer referencing the
new line in pHint:

UpdateAllViews (NULL, 0x7C, pLine);

The view's OnUpdate function casts pHint back to a CLine and
asks the CLine to draw itself on the screen:

void CSketchView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)
{
 if (lHint == 0x7C) {
 CLine* pLine = (CLine*) pHint;
 ASSERT (pLine->IsKindOf (RUNTIME_CLASS
(CLine)));
 CClientDC dc (this);
 OnPrepareDC (&dc);
 pLine->Draw (&dc);
 return;
 }
 CScrollView::OnUpdate (pSender, lHint, pHint);
}

This is much more efficient than redrawing the entire view with
OnDraw because updating a view involves drawing just the one
new line no matter how many lines are stored in the document.
As a result, Sketch doesn't exhibit the flashing effect that
afflicts MdiSquares.

Programming Windows With MFC

 703

Figure 11-6. The Sketch application.

Sketch.h

// Sketch.h : main header file for the SKETCH application
//

#if !defined(AFX_SKETCH_H__1260AFC5_9CAC_11D2_8E53_006008A82731__INCLUDE
D_)
#define AFX_SKETCH_H__1260AFC5_9CAC_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CSketchApp:
// See Sketch.cpp for the implementation of this class
//

class CSketchApp : public CWinApp
{
public:
 CSketchApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSketchApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation
 //{{AFX_MSG(CSketchApp)
 afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_SKETCH_H__1260AFC5_9CAC_11D2_8E53_006008A82731__INCLUDED

Programming Windows With MFC

 704

_)

Sketch.cpp

// Sketch.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "Line.h"
#include "Sketch.h"
#include "MainFrm.h"
#include "SketchDoc.h"
#include "SketchView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSketchApp

BEGIN_MESSAGE_MAP(CSketchApp, CWinApp)
 //{{AFX_MSG_MAP(CSketchApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CSketchApp construction

CSketchApp::CSketchApp()
{
}

///
// The one and only CSketchApp object

CSketchApp theApp;

///
// CSketchApp initialization

BOOL CSketchApp::InitInstance()
{
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file
 // options (including MRU)

Programming Windows With MFC

 705

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CSketchDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame
window
 RUNTIME_CLASS(CSketchView));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)

Programming Windows With MFC

 706

 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CSketchApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CSketchApp message handlers

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///
//

#if !defined(AFX_MAINFRM_H__1260AFC9_9CAC_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__1260AFC9_9CAC_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

Programming Windows With MFC

 707

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs,
 CCreateContext* pContext);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 CSplitterWnd m_wndSplitter;
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__1260AFC9_9CAC_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Sketch.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW

Programming Windows With MFC

 708

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

Programming Windows With MFC

 709

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs,
CCreateContext* pContext)
{
 return m_wndSplitter.Create (this, 2, 1, CSize (8, 8), pContext);
}

SketchDoc.h

// SketchDoc.h : interface of the CSketchDoc class
//
///

#if !defined(AFX_SKETCHDOC_H__1260AFCB_9CAC_11D2_8E53_006008A82731__
INCLUDED_)
#define
AFX_SKETCHDOC_H__1260AFCB_9CAC_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

typedef CTypedPtrArray<CObArray, CLine*> CLineArray;

class CSketchDoc : public CDocument
{
protected: // create from serialization only
 CSketchDoc();
 DECLARE_DYNCREATE(CSketchDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSketchDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 CLine* GetLine (int nIndex);
 int GetLineCount ();
 CLine* AddLine (POINT from, POINT to);
 BOOL IsGridVisible ();
 virtual ~CSketchDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;

Programming Windows With MFC

 710

#endif

protected:

// Generated message map functions
protected:
 CLineArray m_arrLines;
 BOOL m_bShowGrid;
 //{{AFX_MSG(CSketchDoc)
 afx_msg void OnViewGrid();
 afx_msg void OnUpdateViewGrid(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_SKETCHDOC_H__1260AFCB_9CAC_11D2_8E53_006008A82731__INCLUDED_)

SketchDoc.cpp

// SketchDoc.cpp : implementation of the CSketchDoc class
//

#include "stdafx.h"
#include "Line.h"
#include "Sketch.h"
#include "SketchDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSketchDoc

IMPLEMENT_DYNCREATE(CSketchDoc, CDocument)

BEGIN_MESSAGE_MAP(CSketchDoc, CDocument)
 //{{AFX_MSG_MAP(CSketchDoc)
 ON_COMMAND(ID_VIEW_GRID, OnViewGrid)
 ON_UPDATE_COMMAND_UI(ID_VIEW_GRID, OnUpdateViewGrid)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSketchDoc construction/destruction

Programming Windows With MFC

 711

CSketchDoc::CSketchDoc()
{
}

CSketchDoc::~CSketchDoc()
{
}

BOOL CSketchDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_bShowGrid = TRUE;
 return TRUE;
}

///
// CSketchDoc serialization

void CSketchDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_bShowGrid;
 }
 else
 {
 ar >> m_bShowGrid;
 }
 m_arrLines.Serialize (ar);
}

///
// CSketchDoc diagnostics

#ifdef _DEBUG
void CSketchDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CSketchDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CSketchDoc commands

BOOL CSketchDoc::IsGridVisible()
{
 return m_bShowGrid;
}

Programming Windows With MFC

 712

void CSketchDoc::OnViewGrid()
{
 if (m_bShowGrid)
 m_bShowGrid = FALSE;
 else
 m_bShowGrid = TRUE;

 SetModifiedFlag (TRUE);
 UpdateAllViews (NULL);
}

void CSketchDoc::OnUpdateViewGrid(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bShowGrid);
}

CLine* CSketchDoc::AddLine(POINT from, POINT to)
{
 CLine* pLine = NULL;

 try {
 pLine = new CLine (from, to);
 m_arrLines.Add (pLine);
 SetModifiedFlag (TRUE);
 UpdateAllViews (NULL, 0x7C, pLine);
 }
 catch (CMemoryException* e) {
 AfxMessageBox (_T ("Out of memory"));
 if (pLine != NULL) {
 delete pLine;
 pLine = NULL;
 }
 e->Delete ();
 }
 return pLine;
}

int CSketchDoc::GetLineCount()
{
 return m_arrLines.GetSize ();
}

CLine* CSketchDoc::GetLine(int nIndex)
{
 ASSERT (nIndex < GetLineCount ());
 return m_arrLines[nIndex];
}

void CSketchDoc::DeleteContents()
{
 int nCount = GetLineCount ();

 if (nCount) {
 for (int i=0; i<nCount; i++)
 delete m_arrLines[i];
 m_arrLines.RemoveAll ();

Programming Windows With MFC

 713

 }
 CDocument::DeleteContents();
}

SketchView.h

// SketchView.h : interface of the CSketchView class
//
///
//

#if !defined(

AFX_SKETCHVIEW_H__1260AFCD_9CAC_11D2_8E53_006008A82731__INCLUDED_
)
#define
AFX_SKETCHVIEW_H__1260AFCD_9CAC_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSketchView : public CScrollView
{
protected: // create from serialization only
 CSketchView();
 DECLARE_DYNCREATE(CSketchView)

// Attributes
public:
 CSketchDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSketchView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CSketchView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

Programming Windows With MFC

 714

// Generated message map functions
protected:
 void InvertLine (CDC* pDC, POINT from, POINT to);
 CPoint m_ptFrom;
 CPoint m_ptTo;
 HCURSOR m_hCursor;
 //{{AFX_MSG(CSketchView)
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnMouseMove(UINT nFlags, CPoint point);
 afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in SketchView.cpp
inline CSketchDoc* CSketchView::GetDocument()
 { return (CSketchDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_SKETCHVIEW_H__1260AFCD_9CAC_11D2_8E53_006008A82731__INC
LUDED_)

SketchView.cpp

// SketchView.cpp : implementation of the CSketchView class
//

#include "stdafx.h"
#include "Line.h"
#include "Sketch.h"
#include "SketchDoc.h"
#include "SketchView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSketchView

IMPLEMENT_DYNCREATE(CSketchView, CScrollView)

BEGIN_MESSAGE_MAP(CSketchView, CScrollView)
 //{{AFX_MSG_MAP(CSketchView)

Programming Windows With MFC

 715

 ON_WM_SETCURSOR()
 ON_WM_LBUTTONDOWN()

 ON_WM_MOUSEMOVE()
 ON_WM_LBUTTONUP()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSketchView construction/destruction

CSketchView::CSketchView()
{
 m_hCursor = AfxGetApp ()->LoadStandardCursor (IDC_CROSS);
}

CSketchView::~CSketchView()
{
}

BOOL CSketchView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}

///
// CSketchView drawing

void CSketchView::OnDraw(CDC* pDC)
{
 CSketchDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 //
 // Draw the snap grid.
 //
 if (pDoc->IsGridVisible ()) {
 for (int x=25; x<1600; x+=25)
 for (int y=-25; y>-1200; y-=25)
 pDC->SetPixel (x, y, RGB (128, 128, 128));
 }

 //
 // Draw the lines.
 //
 int nCount = pDoc->GetLineCount ();
 if (nCount) {
 for (int i=0; i<nCount; i++)
 pDoc->GetLine (i)->Draw (pDC);
 }
}

void CSketchView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

Programming Windows With MFC

 716

 SetScrollSizes(MM_LOENGLISH, CSize (1600, 1200));
}

///
// CSketchView diagnostics

#ifdef _DEBUG
void CSketchView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CSketchView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CSketchDoc* CSketchView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CSketchDoc)));
 return (CSketchDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CSketchView message handlers

BOOL CSketchView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT
message)
{
 ::SetCursor (m_hCursor);
 return TRUE;
}

void CSketchView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CScrollView::OnLButtonDown(nFlags, point);

 CPoint pos = point;

 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&pos);

 if (GetDocument ()->IsGridVisible ()) {
 pos.x = ((pos.x + 12) / 25) * 25;
 pos.y = ((pos.y - 12) / 25) * 25;
 }

 m_ptFrom = pos;
 m_ptTo = pos;
 SetCapture ();
}

void CSketchView::OnMouseMove(UINT nFlags, CPoint point)

Programming Windows With MFC

 717

{
 CScrollView::OnMouseMove(nFlags, point);

 if (GetCapture () == this) {
 CPoint pos = point;
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&pos);

 if (GetDocument ()->IsGridVisible ()) {
 pos.x = ((pos.x + 12) / 25) * 25;
 pos.y = ((pos.y - 12) / 25) * 25;
 }

 if (m_ptTo != pos) {
 InvertLine (&dc, m_ptFrom, m_ptTo);
 InvertLine (&dc, m_ptFrom, pos);
 m_ptTo = pos;
 }
 }
}

void CSketchView::OnLButtonUp(UINT nFlags, CPoint point)
{
 CScrollView::OnLButtonUp(nFlags, point);

 if (GetCapture () == this) {
 ::ReleaseCapture ();

 CPoint pos = point;
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&pos);

 if (GetDocument ()->IsGridVisible ()) {
 pos.x = ((pos.x + 12) / 25) * 25;
 pos.y = ((pos.y - 12) / 25) * 25;
 }

 InvertLine (&dc, m_ptFrom, m_ptTo);

 CSketchDoc* pDoc = GetDocument ();
 CLine* pLine = pDoc->AddLine (m_ptFrom, m_ptTo);
 }
}

void CSketchView::InvertLine(CDC *pDC, POINT from, POINT to)
{
 int nOldMode = pDC->SetROP2 (R2_NOT);
 pDC->MoveTo (from);
 pDC->LineTo (to);
 pDC->SetROP2 (nOldMode);
}

void CSketchView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)

Programming Windows With MFC

 718

{
 if (lHint == 0x7C) {
 CLine* pLine = (CLine*) pHint;
 ASSERT (pLine->IsKindOf (RUNTIME_CLASS (CLine)));
 CClientDC dc (this);
 OnPrepareDC (&dc);
 pLine->Draw (&dc);
 return;
 }
 CScrollView::OnUpdate (pSender, lHint, pHint);
}

11.2.3. Static Splitter Windows

Static splitter windows are handled much like dynamic splitter
windows except that an extra step is required to create them.
Static splitters are created with CSplitterWnd::CreateStatic
rather than CSplitterWnd::Create, and because MFC doesn't
automatically create the views displayed in a static splitter
window, it's up to you to create the views after CreateStatic
returns. CSplitterWnd provides a function named CreateView
for this purpose. The procedure for adding a static splitter
window to a frame window goes like this.

1. Add a CSplitterWnd data member to the frame window class.
2. Override the frame window's OnCreateClient function, and call

CSplitterWnd::CreateStatic to create a static splitter window.
3. Use CSplitterWnd::CreateView to create a view in each of the splitter

window's panes.

One of the chief advantages of using a static splitter window is
that because you put the views in the panes, you control what
kinds of views are placed there. The following example creates
a static splitter window that contains two different kinds of
views:

BOOL CMainFrame::OnCreateClient (LPCREATESTRUCT lpcs,
 CCreateContext* pContext)
{
 if (!m_wndSplitter.CreateStatic (this, 1, 2) ¦¦
 !m_wndSplitter.CreateView (0, 0, RUNTIME_CLASS (CTextView),
 CSize (128, 0), pContext) ¦¦
 !m_wndSplitter.CreateView (0, 1, RUNTIME_CLASS
(CPictureView),
 CSize (0, 0), pContext))
 return FALSE;

 return TRUE;
}

Programming Windows With MFC

 719

The parameters passed to CreateStatic identify the splitter
window's parent as well as the number of rows and columns
that the splitter contains. CreateView is called once for each
pane. Panes are identified by 0-based row and column numbers.
In this example, the first call to CreateView inserts a view of
type CTextView into the left pane (row 0, column 0), and the
second inserts a view of type CPictureView into the right pane
(row 0, column 1). The views aren't instantiated directly but are
created by MFC. Therefore, you pass CRuntimeClass pointers
to CreateView instead of pointers to existing CView objects. As
with a dynamic splitter window, the views used in a static
splitter window must be dynamically creatable or the
framework can't use them.

The CSize objects passed to CreateView specify the panes'
initial sizes. In this case, the CTextView pane will start out 128
pixels wide and the CPictureView pane will occupy the
remaining width of the window. The width specified for the
right pane and the heights specified for both the left and the
right panes are 0 because the framework ignores these values.
When a splitter window contains only one row, that row will
occupy the full height of the parent's client area no matter what
CSize values you specify. Similarly, if a splitter window
contains n columns, the rightmost column will occupy all the
space between the right edge of column n-1 and the edge of its
parent.

11.2.4. The Wanderer Application

The Wanderer application shown in Figure 11-7 uses a static
splitter window to mimic the look and feel of the Windows
Explorer. The splitter window divides the frame window into
two panes. The left pane contains a CDriveView, which is a
CTreeView customized to display the directory structure of the
host PC. The right pane contains a CFileView, which is a
CListView that lists the files in the directory selected in the
CDriveView.

Programming Windows With MFC

 720

Figure 11-7. The Wanderer window halved by a static splitter window.

The CDriveView and CFileView classes that Wanderer uses are
almost identical to the classes of the same name introduced in
Chapter 10. I modified CDriveView slightly by adding a
handler for reflected TVN_SELCHANGED notifications
indicating that the tree view selection changed. That handler
translates the selected item into a path name and uses
UpdateAllViews' pHint parameter to transmit the path name to
the CFileView:

void CDriveView::OnSelectionChanged(NMHDR* pNMHDR,
LRESULT* pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)
pNMHDR;
 CString strPath = GetPathFromItem
(pNMTreeView->itemNew.hItem);
 GetDocument ()->UpdateAllViews (this, 0x5A,
 (CObject*) (LPCTSTR) strPath);
 *pResult = 0;
}

I also modified CFileView to respond to calls to OnUpdate by
displaying the contents of the directory identified by pHint if
lHint equals 0x5A:

void CFileView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)
{

Programming Windows With MFC

 721

 if (lHint == 0x5A) {
 FreeItemMemory ();
 GetListCtrl ().DeleteAllItems ();
 Refresh ((LPCTSTR) pHint);
 return;
 }
 CListView::OnUpdate (pSender, lHint, pHint);
}

Together, these two modifications couple the left and right
panes in such a way that the view on the right-hand side is
updated whenever the directory selected on the left-hand side
changes.

The static splitter window is created and initialized in
CMainFrame::OnCreateClient. After creating the splitter
window, OnCreateClient uses CreateView to place a
CDriveView in the left pane and a CFileView in the right pane.
(See Figure 11-8.) The only thing that's unusual about
Wanderer's implementation of OnCreateClient is that it creates
the right-hand view first and the left-hand view second. The
reason why is simple. The CDriveView's OnInitialUpdate
function calls UpdateAllViews to tell the CFileView which
directory is selected; the CFileView's OnUpdate function, in
turn, displays the contents of that directory. But if the
CDriveView is created first, the CFileView doesn't exist when
CDriveView::OnInitialUpdate is called. Creating the
CFileView first is one way to circumvent this problem.

Figure 11-8. The Wanderer application.

Wanderer.h

// Wanderer.h : main header file for the WANDERER application
//

#if !defined(AFX_WANDERER_H__AE0A6FFA_9B0F_11D2_8E53_006008A82731__INCL
UDED_)
#define
AFX_WANDERER_H__AE0A6FFA_9B0F_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH

Programming Windows With MFC

 722

#endif

#include "resource.h" // main symbols

///
// CWandererApp:
// See Wanderer.cpp for the implementation of this class
//

class CWandererApp : public CWinApp
{
public:
 CWandererApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWandererApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation
 //{{AFX_MSG(CWandererApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_WANDERER_H__AE0A6FFA_9B0F_11D2_8E53_006008A82731__INCLUDED_)

Wanderer.cpp

// Wanderer.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "Wanderer.h"

#include "MainFrm.h"
#include "WandererDoc.h"
#include "DriveView.h"

#ifdef _DEBUG
#define new DEBUG_NEW

Programming Windows With MFC

 723

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CWandererApp

BEGIN_MESSAGE_MAP(CWandererApp, CWinApp)
 //{{AFX_MSG_MAP(CWandererApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CWandererApp construction

CWandererApp::CWandererApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CWandererApp object

CWandererApp theApp;

///
// CWandererApp initialization

BOOL CWandererApp::InitInstance()
{
 // Standard initialization

 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file
 // options (including MRU)

 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;

Programming Windows With MFC

 724

 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CWandererDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame
window
 RUNTIME_CLASS(CDriveView));
 AddDocTemplate(pDocTemplate);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

 // Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT

Programming Windows With MFC

 725

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CWandererApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CWandererApp message handlers

MainFrm.h

// MainFrm.h : interface of the CMainFrame class
//
///
//

#if !defined(AFX_MAINFRM_H__AE0A6FFE_9B0F_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_MAINFRM_H__AE0A6FFE_9B0F_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)

Programming Windows With MFC

 726

 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 protected:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs,
 CCreateContext* pContext);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 CSplitterWnd m_wndSplitter;
 //{{AFX_MSG(CMainFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(AFX_MAINFRM_H__AE0A6FFE_9B0F_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Wanderer.h"
#include "WandererDoc.h"
#include "DriveView.h"
#include "FileView.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///

Programming Windows With MFC

 727

// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)

 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 cs.style &= ~FWS_ADDTOTITLE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs,
 CCreateContext* pContext)

Programming Windows With MFC

 728

{
 //
 // Note: Create the CFileView first so the CDriveView's OnInitialUpdate
 // function can call OnUpdate on the CFileView.
 //
 if (!m_wndSplitter.CreateStatic (this, 1, 2) ||
 !m_wndSplitter.CreateView (0, 1, RUNTIME_CLASS
 (CFileView), CSize (0, 0), pContext) ||
 !m_wndSplitter.CreateView (0, 0, RUNTIME_CLASS (CDriveView),
 CSize (192, 0), pContext))
 return FALSE;

 return TRUE;
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 //
 // Route to standard command targets first.
 //
 if (CFrameWnd::OnCmdMsg (nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 //
 // Route to inactive views second.
 //
 CWandererDoc* pDoc = (CWandererDoc*) GetActiveDocument ();
 if (pDoc != NULL) { // Important!
 return pDoc->RouteCmdToAllViews (GetActiveView (),
 nID, nCode, pExtra, pHandlerInfo);
 }
 return FALSE;
}

WandererDoc.h

// WandererDoc.h : interface of the CWandererDoc class
//
///
//

#if !defined(

AFX_WANDERERDOC_H__AE0A7000_9B0F_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_WANDERERDOC_H__AE0A7000_9B0F_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CWandererDoc : public CDocument

Programming Windows With MFC

 729

{
protected: // create from serialization only
 CWandererDoc();
 DECLARE_DYNCREATE(CWandererDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWandererDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL

// Implementation
public:
 BOOL RouteCmdToAllViews (CView* pView, UINT nID, int nCode,
 void* pExtra, AFX_CMDHANDLERINFO* pHandlerInfo);
 virtual ~CWandererDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CWandererDoc)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_WANDERERDOC_H__AE0A7000_9B0F_11D2_8E53_006008A82731__INCLUDED_)

WandererDoc.cpp

// WandererDoc.cpp : implementation of the CWandererDoc class
//

Programming Windows With MFC

 730

#include "stdafx.h"
#include "Wanderer.h"

#include "WandererDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CWandererDoc

IMPLEMENT_DYNCREATE(CWandererDoc, CDocument)

BEGIN_MESSAGE_MAP(CWandererDoc, CDocument)
 //{{AFX_MSG_MAP(CWandererDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CWandererDoc construction/destruction

CWandererDoc::CWandererDoc()
{
}

CWandererDoc::~CWandererDoc()
{
}

BOOL CWandererDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 return TRUE;
}

///
// CWandererDoc serialization

void CWandererDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

Programming Windows With MFC

 731

///
// CWandererDoc diagnostics

#ifdef _DEBUG
void CWandererDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CWandererDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CWandererDoc commands

BOOL CWandererDoc::RouteCmdToAllViews(CView *pView, UINT nID, int
nCode,
 void *pExtra, AFX_CMDHANDLERINFO *pHandlerInfo)
{
 POSITION pos = GetFirstViewPosition ();

 while (pos != NULL) {
 CView* pNextView = GetNextView (pos);
 if (pNextView != pView) {
 if (pNextView->OnCmdMsg (nID, nCode, pExtra,
pHandlerInfo))
 return TRUE;
 }
 }
 return FALSE;
}

DriveView.h

// DriveTreeView.h : interface of the CDriveView class
//
///

#if !defined(

AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CDriveView : public CTreeView
{
protected: // create from serialization only

Programming Windows With MFC

 732

 CDriveView();
 DECLARE_DYNCREATE(CDriveView)

// Attributes
public:
 CWandererDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CDriveView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CDriveView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 BOOL AddDriveItem (LPCTSTR pszDrive);
 int AddDirectories (HTREEITEM hItem, LPCTSTR pszPath);
 void DeleteAllChildren (HTREEITEM hItem);
 void DeleteFirstChild (HTREEITEM hItem);
 CString GetPathFromItem (HTREEITEM hItem);
 BOOL SetButtonState (HTREEITEM hItem, LPCTSTR pszPath);
 int AddDrives ();
 CImageList m_ilDrives;
 //{{AFX_MSG(CDriveView)
 afx_msg void OnItemExpanding(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnSelectionChanged(NMHDR* pNMHDR, LRESULT*
pResult);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in DriveTreeView.cpp
inline CWandererDoc* CDriveView::GetDocument()
 { return (CWandererDoc*)m_pDocument; }
#endif

Programming Windows With MFC

 733

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately
// before the previous line.

#endif
// !defined(
//
AFX_DRIVETREEVIEW_H__090B382D_959D_11D2_8E53_006008A82731__INCLUDED_)

DriveView.cpp

// DriveTreeView.cpp : implementation of the CDriveView class
//

#include "stdafx.h"
#include "Wanderer.h"

#include "WandererDoc.h"
#include "DriveView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

// Image indexes
#define ILI_HARD_DISK 0
#define ILI_FLOPPY 1
#define ILI_CD_ROM 2
#define ILI_NET_DRIVE 3
#define ILI_CLOSED_FOLDER 4
#define ILI_OPEN_FOLDER 5

///
// CDriveView

IMPLEMENT_DYNCREATE(CDriveView, CTreeView)

BEGIN_MESSAGE_MAP(CDriveView, CTreeView)
 //{{AFX_MSG_MAP(CDriveView)
 ON_NOTIFY_REFLECT(TVN_ITEMEXPANDING, OnItemExpanding)
 ON_NOTIFY_REFLECT(TVN_SELCHANGED, OnSelectionChanged)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CDriveView construction/destruction

CDriveView::CDriveView()
{
}

CDriveView::~CDriveView()

Programming Windows With MFC

 734

{
}

BOOL CDriveView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CTreeView::PreCreateWindow (cs))
 return FALSE;

 cs.style |= TVS_HASLINES | TVS_LINESATROOT |
TVS_HASBUTTONS |
 TVS_SHOWSELALWAYS;
 return TRUE;
}

///
// CDriveView drawing

void CDriveView::OnDraw(CDC* pDC)
{
 CWandererDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
}

void CDriveView::OnInitialUpdate()
{
 CTreeView::OnInitialUpdate();

 //
 // Initialize the image list.
 //
 m_ilDrives.Create (IDB_DRIVEIMAGES, 16, 1, RGB (255, 0, 255));
 GetTreeCtrl ().SetImageList (&m_ilDrives, TVSIL_NORMAL);

 //
 // Populate the tree view with drive items.
 //

 AddDrives ();

 //
 // Show the folders on the current drive.
 //
 TCHAR szPath[MAX_PATH];
 ::GetCurrentDirectory (sizeof (szPath) / sizeof (TCHAR), szPath);
 CString strPath = szPath;
 strPath = strPath.Left (3);

 HTREEITEM hItem = GetTreeCtrl ().GetNextItem (NULL,
TVGN_ROOT);
 while (hItem != NULL) {
 if (GetTreeCtrl ().GetItemText (hItem) == strPath)
 break;
 hItem = GetTreeCtrl ().GetNextSiblingItem (hItem);
 }

Programming Windows With MFC

 735

 if (hItem != NULL) {
 GetTreeCtrl ().Expand (hItem, TVE_EXPAND);
 GetTreeCtrl ().Select (hItem, TVGN_CARET);
 }

 //
 // Initialize the list view.
 //
 strPath = GetPathFromItem (GetTreeCtrl ().GetSelectedItem ());
 GetDocument ()->UpdateAllViews (this, 0x5A,
 (CObject*) (LPCTSTR) strPath);
}

///
// CDriveView diagnostics

#ifdef _DEBUG
void CDriveView::AssertValid() const
{
 CTreeView::AssertValid();
}

void CDriveView::Dump(CDumpContext& dc) const
{
 CTreeView::Dump(dc);
}

CWandererDoc* CDriveView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CWandererDoc)));
 return (CWandererDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CDriveView message handlers

int CDriveView::AddDrives()
{
 int nPos = 0;
 int nDrivesAdded = 0;
 CString string = _T ("?:\\");

 DWORD dwDriveList = ::GetLogicalDrives ();

 while (dwDriveList) {
 if (dwDriveList & 1) {
 string.SetAt (0, _T (`A') + nPos);
 if (AddDriveItem (string))
 nDrivesAdded++;
 }
 dwDriveList >>= 1;
 nPos++;
 }
 return nDrivesAdded;

Programming Windows With MFC

 736

}

BOOL CDriveView::AddDriveItem(LPCTSTR pszDrive)
{
 CString string;
 HTREEITEM hItem;

 UINT nType = ::GetDriveType (pszDrive);

 switch (nType) {

 case DRIVE_REMOVABLE:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_FLOPPY,
 ILI_FLOPPY);
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 break;

 case DRIVE_FIXED:
 case DRIVE_RAMDISK:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_HARD_DISK,
 ILI_HARD_DISK);
 SetButtonState (hItem, pszDrive);
 break;

 case DRIVE_REMOTE:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_NET_DRIVE,
 ILI_NET_DRIVE);
 SetButtonState (hItem, pszDrive);
 break;

 case DRIVE_CDROM:
 hItem = GetTreeCtrl ().InsertItem (pszDrive, ILI_CD_ROM,
 ILI_CD_ROM);
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 break;

 default:
 return FALSE;
 }
 return TRUE;
}

BOOL CDriveView::SetButtonState(HTREEITEM hItem, LPCTSTR pszPath)
{
 HANDLE hFind;
 WIN32_FIND_DATA fd;
 BOOL bResult = FALSE;

 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 if ((hFind = ::FindFirstFile (strPath, &fd)) ==

Programming Windows With MFC

 737

INVALID_HANDLE_VALUE)
 return bResult;

 do {
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 CString strComp = (LPCTSTR) &fd.cFileName;
 if ((strComp != _T (".")) && (strComp != _T (".."))) {
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 bResult = TRUE;
 break;
 }
 }
 } while (::FindNextFile (hFind, &fd));

 ::FindClose (hFind);
 return bResult;
}

void CDriveView::OnItemExpanding(NMHDR* pNMHDR, LRESULT*
pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;
 HTREEITEM hItem = pNMTreeView->itemNew.hItem;
 CString string = GetPathFromItem (hItem);

 *pResult = FALSE;

 if (pNMTreeView->action == TVE_EXPAND) {
 DeleteFirstChild (hItem);
 if (AddDirectories (hItem, string) == 0)
 *pResult = TRUE;
 }
 else { // pNMTreeView->action == TVE_COLLAPSE
 DeleteAllChildren (hItem);
 if (GetTreeCtrl ().GetParentItem (hItem) == NULL)
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 else
 SetButtonState (hItem, string);
 }
}

CString CDriveView::GetPathFromItem(HTREEITEM hItem)
{
 CString strResult = GetTreeCtrl ().GetItemText (hItem);

 HTREEITEM hParent;
 while ((hParent = GetTreeCtrl ().GetParentItem (hItem)) != NULL) {
 CString string = GetTreeCtrl ().GetItemText (hParent);

 if (string.Right (1) != _T ("\\"))
 string += _T ("\\");
 strResult = string + strResult;
 hItem = hParent;
 }

Programming Windows With MFC

 738

 return strResult;
}

void CDriveView::DeleteFirstChild(HTREEITEM hItem)
{
 HTREEITEM hChildItem;
 if ((hChildItem = GetTreeCtrl ().GetChildItem (hItem)) != NULL)
 GetTreeCtrl ().DeleteItem (hChildItem);
}

void CDriveView::DeleteAllChildren(HTREEITEM hItem)
{
 HTREEITEM hChildItem;
 if ((hChildItem = GetTreeCtrl ().GetChildItem (hItem)) == NULL)
 return;

 do {
 HTREEITEM hNextItem =
 GetTreeCtrl ().GetNextSiblingItem (hChildItem);
 GetTreeCtrl ().DeleteItem (hChildItem);
 hChildItem = hNextItem;
 } while (hChildItem != NULL);
}

int CDriveView::AddDirectories(HTREEITEM hItem, LPCTSTR pszPath)
{
 HANDLE hFind;
 WIN32_FIND_DATA fd;
 HTREEITEM hNewItem;

 int nCount = 0;

 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 if ((hFind = ::FindFirstFile (strPath, &fd)) ==
INVALID_HANDLE_VALUE) {
 if (GetTreeCtrl ().GetParentItem (hItem) == NULL)
 GetTreeCtrl ().InsertItem (_T (""), ILI_CLOSED_FOLDER,
 ILI_CLOSED_FOLDER, hItem);
 return 0;
 }

 do {
 if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 CString strComp = (LPCTSTR) &fd.cFileName;
 if ((strComp != _T (".")) && (strComp != _T (".."))) {
 hNewItem =
 GetTreeCtrl ().InsertItem ((LPCTSTR) &fd.cFileName,
 ILI_CLOSED_FOLDER, ILI_OPEN_FOLDER,
hItem);

 CString strNewPath = pszPath;
 if (strNewPath.Right (1) != _T ("\\"))

Programming Windows With MFC

 739

 strNewPath += _T ("\\");

 strNewPath += (LPCTSTR) &fd.cFileName;
 SetButtonState (hNewItem, strNewPath);
 nCount++;
 }
 }
 } while (::FindNextFile (hFind, &fd));

 ::FindClose (hFind);
 return nCount;
}

void CDriveView::OnSelectionChanged(NMHDR* pNMHDR, LRESULT*
pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*) pNMHDR;
 CString strPath = GetPathFromItem (pNMTreeView->itemNew.hItem);
 GetDocument ()->UpdateAllViews (this, 0x5A,
 (CObject*) (LPCTSTR) strPath);
 *pResult = 0;
}

FileView.h
// FileView.h : interface of the CFileView class
//
///
//

#if !defined(AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUD
ED_)
#define AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

typedef struct tagITEMINFO {
 CString strFileName;
 DWORD nFileSizeLow;
 FILETIME ftLastWriteTime;
} ITEMINFO;

class CFileView : public CListView
{
protected: // create from serialization only
 CFileView();
 DECLARE_DYNCREATE(CFileView)

// Attributes
public:
 CWandererDoc* GetDocument();

// Operations
public:
 static int CALLBACK CompareFunc (LPARAM lParam1, LPARAM lParam2,

Programming Windows With MFC

 740

 LPARAM lParamSort);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFileView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
 //}}AFX_VIRTUAL

// Implementation
public:
 int Refresh (LPCTSTR pszPath);
 virtual ~CFileView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 CString m_strPath;
 void FreeItemMemory ();
 BOOL AddItem (int nIndex, WIN32_FIND_DATA* pfd);
 CImageList m_ilSmall;
 CImageList m_ilLarge;
 //{{AFX_MSG(CFileView)
 afx_msg void OnDestroy();
 afx_msg void OnGetDispInfo(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnColumnClick(NMHDR* pNMHDR, LRESULT* pResult);
 afx_msg void OnViewLargeIcons();
 afx_msg void OnViewSmallIcons();
 afx_msg void OnViewList();
 afx_msg void OnViewDetails();
 afx_msg void OnUpdateViewLargeIcons(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewSmallIcons(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewList(CCmdUI* pCmdUI);
 afx_msg void OnUpdateViewDetails(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in FileView.cpp
inline CWandererDoc* CFileView::GetDocument()
 { return (CWandererDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately

Programming Windows With MFC

 741

// before the previous line.

#endif
// !defined(AFX_FILEVIEW_H__18BD7B80_95C6_11D2_8E53_006008A82731__INCLUDE
D_)

FileView.cpp

// FileView.cpp : implementation of the CFileView class
//

#include "stdafx.h"
#include "Wanderer.h"
#include "WandererDoc.h"
#include "FileView.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CFileView

IMPLEMENT_DYNCREATE(CFileView, CListView)

BEGIN_MESSAGE_MAP(CFileView, CListView)
 //{{AFX_MSG_MAP(CFileView)
 ON_WM_DESTROY()
 ON_NOTIFY_REFLECT(LVN_GETDISPINFO, OnGetDispInfo)
 ON_NOTIFY_REFLECT(LVN_COLUMNCLICK, OnColumnClick)
 ON_COMMAND(ID_VIEW_LARGE_ICONS, OnViewLargeIcons)
 ON_COMMAND(ID_VIEW_SMALL_ICONS, OnViewSmallIcons)
 ON_COMMAND(ID_VIEW_LIST, OnViewList)
 ON_COMMAND(ID_VIEW_DETAILS, OnViewDetails)
 ON_UPDATE_COMMAND_UI(ID_VIEW_LARGE_ICONS,
OnUpdateViewLargeIcons)
 ON_UPDATE_COMMAND_UI(ID_VIEW_SMALL_ICONS,
OnUpdateViewSmallIcons)
 ON_UPDATE_COMMAND_UI(ID_VIEW_LIST, OnUpdateViewList)
 ON_UPDATE_COMMAND_UI(ID_VIEW_DETAILS,
OnUpdateViewDetails)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CFileView construction/destruction

CFileView::CFileView()
{
}

CFileView::~CFileView()
{
}

Programming Windows With MFC

 742

BOOL CFileView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CListView::PreCreateWindow (cs))
 return FALSE;

 cs.style &= ~LVS_TYPEMASK;
 cs.style |= LVS_REPORT;
 return TRUE;
}

///
// CFileView drawing

void CFileView::OnDraw(CDC* pDC)
{
 CWandererDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 // TODO: add draw code for native data here
}

void CFileView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 //
 // Initialize the image list.
 //
 m_ilLarge.Create (IDB_LARGEDOC, 32, 1, RGB (255, 0, 255));
 m_ilSmall.Create (IDB_SMALLDOC, 16, 1, RGB (255, 0, 255));

 GetListCtrl ().SetImageList (&m_ilLarge, LVSIL_NORMAL);
 GetListCtrl ().SetImageList (&m_ilSmall, LVSIL_SMALL);

 //
 // Add columns to the list view.
 //
 GetListCtrl ().InsertColumn (0, _T ("File Name"), LVCFMT_LEFT, 192);
 GetListCtrl ().InsertColumn (1, _T ("Size"), LVCFMT_RIGHT, 96);
 GetListCtrl ().InsertColumn (2, _T ("Last Modified"),
LVCFMT_CENTER,
 128);

 //
 // Populate the list view with items.
 //
 TCHAR szPath[MAX_PATH];
 ::GetCurrentDirectory (sizeof (szPath) / sizeof (TCHAR), szPath);
 Refresh (szPath);
}

///
// CFileView diagnostics

#ifdef _DEBUG
void CFileView::AssertValid() const
{

Programming Windows With MFC

 743

 CListView::AssertValid();
}
void CFileView::Dump(CDumpContext& dc) const
{
 CListView::Dump(dc);
}

CWandererDoc* CFileView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CWandererDoc)));
 return (CWandererDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CFileView message handlers

int CFileView::Refresh(LPCTSTR pszPath)
{
 CString strPath = pszPath;
 if (strPath.Right (1) != _T ("\\"))
 strPath += _T ("\\");
 strPath += _T ("*.*");

 HANDLE hFind;
 WIN32_FIND_DATA fd;
 int nCount = 0;

 if ((hFind = ::FindFirstFile (strPath, &fd)) !=
INVALID_HANDLE_VALUE) {
 //
 // Delete existing items (if any).
 //
 GetListCtrl ().DeleteAllItems ();

 //
 // Show the path name in the frame window's title bar.
 //
 TCHAR szFullPath[MAX_PATH];
 ::GetFullPathName (pszPath, sizeof (szFullPath) / sizeof (TCHAR),
 szFullPath, NULL);
 m_strPath = szFullPath;

 CString strTitle = _T ("WinDir - ");
 strTitle += szFullPath;
 AfxGetMainWnd ()->SetWindowText (strTitle);

 //
 // Add items representing files to the list view.
 //
 if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
 AddItem (nCount++, &fd);

 while (::FindNextFile (hFind, &fd)) {
 if (!(fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))

Programming Windows With MFC

 744

 if (!AddItem (nCount++, &fd))
 break;
 }
 ::FindClose (hFind);
 }
 return nCount;
}

BOOL CFileView::AddItem(int nIndex, WIN32_FIND_DATA *pfd)
{
 //
 // Allocate a new ITEMINFO structure and initialize it with information
 // about the item.
 //
 ITEMINFO* pItem;
 try {
 pItem = new ITEMINFO;
 }
 catch (CMemoryException* e) {
 e->Delete ();
 return FALSE;
 }

 pItem->strFileName = pfd->cFileName;
 pItem->nFileSizeLow = pfd->nFileSizeLow;
 pItem->ftLastWriteTime = pfd->ftLastWriteTime;

 //
 // Add the item to the list view.
 //
 LV_ITEM lvi;
 lvi.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM;
 lvi.iItem = nIndex;
 lvi.iSubItem = 0;
 lvi.iImage = 0;
 lvi.pszText = LPSTR_TEXTCALLBACK;
 lvi.lParam = (LPARAM) pItem;

 if (GetListCtrl ().InsertItem (&lvi) == -1)
 return FALSE;

 return TRUE;
}
void CFileView::FreeItemMemory()
{
 int nCount = GetListCtrl ().GetItemCount ();
 if (nCount) {
 for (int i=0; i<nCount; i++)
 delete (ITEMINFO*) GetListCtrl ().GetItemData (i);
 }
}

void CFileView::OnDestroy()
{
 FreeItemMemory ();
 CListView::OnDestroy ();

Programming Windows With MFC

 745

}

void CFileView::OnGetDispInfo(NMHDR* pNMHDR, LRESULT* pResult)
{
 CString string;
 LV_DISPINFO* pDispInfo = (LV_DISPINFO*) pNMHDR;

 if (pDispInfo->item.mask & LVIF_TEXT) {
 ITEMINFO* pItem = (ITEMINFO*) pDispInfo->item.lParam;

 switch (pDispInfo->item.iSubItem) {

 case 0: // File name
 ::lstrcpy (pDispInfo->item.pszText, pItem->strFileName);
 break;

 case 1: // File size
 string.Format (_T ("%u"), pItem->nFileSizeLow);
 ::lstrcpy (pDispInfo->item.pszText, string);
 break;

 case 2: // Date and time
 CTime time (pItem->ftLastWriteTime);

 BOOL pm = FALSE;
 int nHour = time.GetHour ();
 if (nHour == 0)
 nHour = 12;
 else if (nHour == 12)
 pm = TRUE;
 else if (nHour > 12) {
 nHour -= 12;
 pm = TRUE;
 }

 string.Format (_T ("%d/%0.2d/%0.2d (%d:%0.2d%c)"),
 time.GetMonth (), time.GetDay (), time.GetYear () % 100,
 nHour, time.GetMinute (), pm ? _T (`p') : _T (`a'));
 ::lstrcpy (pDispInfo->item.pszText, string);
 break;
 }
 }
 *pResult = 0;
}

void CFileView::OnColumnClick(NMHDR* pNMHDR, LRESULT* pResult)
{
 NM_LISTVIEW* pNMListView = (NM_LISTVIEW*) pNMHDR;
 GetListCtrl ().SortItems (CompareFunc, pNMListView->iSubItem);
 *pResult = 0;
}

int CALLBACK CFileView::CompareFunc (LPARAM lParam1, LPARAM
lParam2,
 LPARAM lParamSort)
{

Programming Windows With MFC

 746

 ITEMINFO* pItem1 = (ITEMINFO*) lParam1;
 ITEMINFO* pItem2 = (ITEMINFO*) lParam2;
 int nResult;

 switch (lParamSort) {

 case 0: // File name
 nResult = pItem1->strFileName.CompareNoCase
(pItem2->strFileName);
 break;

 case 1: // File size
 nResult = pItem1->nFileSizeLow - pItem2->nFileSizeLow;
 break;

 case 2: // Date and time
 nResult = ::CompareFileTime (&pItem1->ftLastWriteTime,
 &pItem2->ftLastWriteTime);
 break;
 }
 return nResult;
}

void CFileView::OnViewLargeIcons()
{
 ModifyStyle (LVS_TYPEMASK, LVS_ICON);
}

void CFileView::OnViewSmallIcons()
{
 ModifyStyle (LVS_TYPEMASK, LVS_SMALLICON);
}

void CFileView::OnViewList()
{
 ModifyStyle (LVS_TYPEMASK, LVS_LIST);
}

void CFileView::OnViewDetails()
{
 ModifyStyle (LVS_TYPEMASK, LVS_REPORT);
}

void CFileView::OnUpdateViewLargeIcons(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_ICON);
}

void CFileView::OnUpdateViewSmallIcons(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_SMALLICON);
}

void CFileView::OnUpdateViewList(CCmdUI* pCmdUI)

Programming Windows With MFC

 747

{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_LIST);
}

void CFileView::OnUpdateViewDetails(CCmdUI* pCmdUI)
{
 DWORD dwCurrentStyle = GetStyle () & LVS_TYPEMASK;
 pCmdUI->SetRadio (dwCurrentStyle == LVS_REPORT);
}

void CFileView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)
{
 if (lHint == 0x5A) {
 FreeItemMemory ();
 GetListCtrl ().DeleteAllItems ();
 Refresh ((LPCTSTR) pHint);
 return;
 }
 CListView::OnUpdate (pSender, lHint, pHint);
}

I created Wanderer by using AppWizard to generate the source
code for a standard SDI document/view application, plugging
in Chapter 10's CDriveView and CFileView classes and
modifying them as described above, adding a CSplitterWnd
member variable to CMainFrame, overriding OnCreateClient,
and inserting calls CreateStatic and CreateView. However,
there is another way to create Explorer-like applications. If you
select Windows Explorer instead of MFC Standard in
AppWizard's Step 5 dialog box (shown in Figure 11-9),
AppWizard adds code to create a static splitter window. It also
derives a pair of view classes—one from CTreeView, the other
from CListView or the view class of your choice—and places
them in the splitter window's panes. Unfortunately, the
AppWizard-generated view classes add little to the base classes
from which they derive, so while AppWizard will get you
started, you still have to write a fair amount of code to create an
Explorer-type application.

Programming Windows With MFC

 748

Figure 11-9. Using AppWizard to create an Explorer-style application.

Despite the outward similarities between Wanderer and the
Windows Explorer, there is a fundamental difference between
these applications that goes well beyond their feature lists.
Wanderer is a file browser that displays drive, directory, and
file names. Explorer is a namespace browser that serves as a
virtual window into the shell's namespace. You can see how the
shell's namespace is structured and what kinds of objects it
includes by studying the left pane of an Explorer window. The
desktop object sits at the uppermost level of the hierarchy,
followed by My Computer, Network Neighborhood, and
Recycle Bin at the next level, drives at the level beneath that,
and so on. Drives, directories, and files are merely a subset of
the shell's namespace. The namespace also includes printers,
printer folders, and other objects for which there are no direct
analogues in the file system. The operating system shell
supports a set of API functions all its own that applications can
use to access its namespace. Some are conventional API
functions with names such as ::SHGetDesktopFolder; others
are COM functions accessed through IShellFolder interfaces.
For more information, search MSDN for articles on the shell's
namespace.

Programming Windows With MFC

 749

11.2.5. Custom Command Routing

As you already know, MFC's CFrameWnd class routes the
command messages and user interface (UI) update messages it
receives to other objects so that the frame window doesn't have
to process commands from menu items and other UI objects.
Thanks to command routing, events involving menu items and
toolbar buttons can be handled just as easily in the application
class, the document class, or the view class as they can in the
frame window class. Chapter 9 described the command routing
mechanism, and Figure 9-2 documented the path a command or
a UI update message follows after an SDI frame window
receives it. The active view sees the message first, followed by
the document, the document template, the frame window, and
finally the application object. For most document/view
applications, the command routing sequence depicted in Figure
9-2 is adequate because it gives each object that's likely to want
to see a command or an update message a crack at processing
it.

Every now and then you'll run into an application for which
default command routing isn't sufficient. Wanderer is one of
them, and here's why. Commands and UI updates for the view
items in Wanderer's View menu are processed in the CFileView
class. When CFileView is the active view, its command and
update handlers work just fine because the active view is
included in the framework's routing list. But when CDriveView
is the active view, CFileView isn't notified of events involving
View commands because it's not the active view. Consequently,
the commands in the Options menu are grayed out and can't be
selected when the CDriveView in the left pane has the input
focus.

To circumvent this problem, Wanderer modifies the command
routing sequence so that command and update messages that
aren't handled by any of the standard command targets are
routed to inactive views. The work is done in
CMainFrame::OnCmdMsg, which first forwards command and
update messages to the standard command targets by calling
CFrameWnd::OnCmdMsg:

if (CFrameWnd::OnCmdMsg (nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

Programming Windows With MFC

 750

If CFrameWnd::OnCmdMsg returns 0, indicating that none of
the standard command targets handled the message,
CMainFrame::OnCmdMsg calls a function in the document
class to route the message to all the inactive views:

CWandererDoc* pDoc = (CWandererDoc*) GetActiveDocument ();
if (pDoc != NULL) { // Important!
 return pDoc->RouteCmdToAllViews (GetActiveView (),
 nID, nCode, pExtra, pHandlerInfo);
}

CWandererDoc::RouteCmdToAllViews iterates through the
views associated with the document and calls each view's
OnCmdMsg function:

BOOL CWandererDoc::RouteCmdToAllViews(CView *pView,
UINT nID, int nCode,
 void *pExtra, AFX_CMDHANDLERINFO *pHandlerInfo)
{
 POSITION pos = GetFirstViewPosition ();

 while (pos != NULL) {
 CView* pNextView = GetNextView (pos);
 if (pNextView != pView) {
 if (pNextView->OnCmdMsg (nID, nCode, pExtra,
pHandlerInfo))
 return TRUE;
 }
 }
 return FALSE;
}

CMainFrame::OnCmdMsg passes RouteCmdToAllViews a
pointer to the active view so that RouteCmdToAllViews can
avoid calling the active view's OnCmdMsg function. The active
view has already been called as part of the standard command
routing sequence, so calling it again is wasteful. The frame
window provides the pointer to the active view because the
document class has no concept of active and inactive views. By
the same token, a frame window knows which view is active
but doesn't how many views there are. That's why CMainFrame
calls a function in the document class to iterate through all the
views rather than enumerate the views itself.

Programming Windows With MFC

 751

Note that the CView pointer returned by GetNextView must be
cast upward to CCmdTarget pointers in some versions of MFC
because those versions erroneously declare OnCmdMsg as
protected in CView. Thankfully, this bug is fixed in MFC 6.

Custom routing is a powerful tool for routing commands and
UI update messages to nonstandard command targets. You can
tap into the command routing sequence just about anywhere
you want to by overriding the right OnCmdMsg function. In
general, you should call the base class version of OnCmdMsg
from an override to keep default command routing intact. And
be careful about whose OnCmdMsg functions you call because
it's possible to fall into a recursive loop in which object A calls
object B and object B calls object A. You wouldn't, for
example, want to call a view's OnCmdMsg function from a
document's OnCmdMsg function because the view calls the
document as part of the standard command routing sequence.

11.2.6. Three-Way Splitter Windows

You can create a three-way splitter window similar to the one
featured in Microsoft Outlook Express by nesting static splitter
windows. The following OnCreateClient function creates a
three-way static splitter that's divided into two columns. The
right column is further subdivided into two rows. The user can
adjust the relative sizes of the panes by dragging the splitter
bars, but the basic layout of the splitter can't be changed
because the splitters are static rather than dynamic:

BOOL CMainFrame::OnCreateClient (LPCREATESTRUCT lpCreateStruct,
 CCreateContext* pContext)
{
 if (!m_wndSplitter1.CreateStatic (this, 1, 2) ¦¦
 !m_wndSplitter1.CreateView (0, 0, RUNTIME_CLASS (CTextView),
 CSize (128, 0), pContext) ¦¦
 !m_wndSplitter2.CreateStatic (&m_wndSplitter1, 2, 1, WS_CHILD ¦
 WS_VISIBLE, m_wndSplitter1.IdFromRowCol (0, 1)) ¦¦
 !m_wndSplitter2.CreateView (0, 0, RUNTIME_CLASS
(CPictureView),
 CSize (0, 128), pContext) ¦¦
 !m_wndSplitter2.CreateView (1, 0, RUNTIME_CLASS
(CPictureView),
 CSize (0, 0), pContext))
 return FALSE;
 return TRUE;
}

Programming Windows With MFC

 752

Here's a synopsis of what happens in the if statement that
creates and initializes the three-way splitter:

1. The first splitter window is created by calling CreateStatic on the
CSplitterWnd data member m_wndSplitter1. This splitter window
contains one row and two columns.

2. A CTextView is added to m_wndSplitter1's first (left) pane with
CreateView.

3. A second splitter window is created in the right pane of the first splitter
window by calling m_wndSplitter2's CreateStatic function.
m_wndSplitter2 is parented to m_wndSplitter1 rather than to the frame
window and assigned a child window ID that identifies it as the pane in
row 0, column 1. The proper ID for m_wndSplitter2 is obtained by
calling CSplitterWnd::IdFromRowCol, which uses simple math to
convert a row and column number into a numeric offset that's added to
AFX_IDW_PANE_FIRST.

4. CreateView is called twice to add a CPictureView to each
m_wndSplitter2 pane.

Using a dynamic splitter window for m_wndSplitter2 would
require a little more work because of some of the assumptions
that MFC makes when it creates new views to fill dynamically
created splitter panes. If you try to nest a dynamic splitter
window inside a static splitter window like this:

BOOL CMainFrame::OnCreateClient (LPCREATESTRUCT lpCreateStruct,
 CCreateContext* pContext)
{
 if (!m_wndSplitter1.CreateStatic (this, 1, 2) ¦¦
 !m_wndSplitter1.CreateView (0, 0, RUNTIME_CLASS (CTextView),
 CSize (128, 0), pContext) ¦¦
 !m_wndSplitter2.Create (&m_wndSplitter1, 2, 1, CSize (1, 1),
 pContext, WS_CHILD ¦ WS_VISIBLE ¦ WS_HSCROLL ¦
 WS_VSCROLL ¦ SPLS_DYNAMIC_SPLIT,
 m_wndSplitter1.IdFromRowCol (0, 1)))
 return FALSE;
 return TRUE;
}

you'll sometimes generate access violations when splitting the
dynamic splitter window. The reason why is rooted deep in the
framework. When a dynamic splitter window splits,
CSplitterWnd calls CreateView with a NULL pContext pointer
to create a view for the new pane. Seeing that pContext is
NULL, CreateView queries the frame window for a pointer to
the active view and uses that view as a model for the new view.
If the CTextView window happens to be the active view when a
split occurs, the framework will see that the view isn't a child of
the dynamic splitter and will create an "empty" view that isn't

Programming Windows With MFC

 753

attached to a document object. The first time that view tries to
access its document, an access violation will occur.

The secret to successfully nesting a dynamic splitter window
inside a static splitter window involves two steps:

1. Derive a class from CSplitterWnd, and replace CSplitterWnd::SplitRow
in the derived class with the following implementation:

BOOL CNestedSplitterWnd::SplitRow (int cyBefore)
{
 GetParentFrame ()->
 SetActiveView ((CView*) GetPane (0, 0));
 return CSplitterWnd::SplitRow (cyBefore);
}

2. Make the nested dynamic splitter an instance of the derived class rather
than an instance of CSplitterWnd.

SplitRow is a virtual CSplitterWnd function that's called when a
horizontal splitter bar is dragged to create a new pane. The
version of SplitRow shown above makes the view in the
dynamic splitter window's uppermost pane the active view
before the split occurs, which neatly circumvents the dynamic
view creation problems that result when the active view is a
child of the static splitter window. The override uses
GetParentFrame instead of GetParent because the dynamic
splitter window's parent is actually the static splitter window,
not the frame window, and a frame window function (not a
splitter window function) sets the active view.

11.2.7. Dynamic Splitter Windows with Multiple
View Types

The previous section demonstrates one way in which a splitter
window can be customized by deriving from CSplitterWnd and
overriding CSplitterWnd::SplitRow. The CSplitterWnd class
includes other virtual functions you can override to customize a
splitter window's behavior. One of those functions is
CreateView, which MFC calls to create a new view when a
dynamic splitter window is split. You can create a dynamic
splitter window that displays different types of views in
different panes by deriving a class from CSplitterWnd,

Programming Windows With MFC

 754

overriding CreateView, and calling CSplitterWnd::CreateView
with a CRuntimeClass pointer to the view of your choice.

The following CreateView override forces a CTextView into the
pane at row 1, column 0, regardless of the type of view
contained in row 0, column 0:

BOOL CDynaSplitterWnd::CreateView (int row, int col,
 CRuntimeClass* pViewClass, SIZE sizeInit,
 CCreateContext* pContext)
{
 if ((row == 1) && (col == 0))
 return CSplitterWnd::CreateView (row, col,
 RUNTIME_CLASS (CTextView), sizeInit, pContext);

 return CSplitterWnd::CreateView (row, col, pViewClass,
 sizeInit, pContext);
}

You'll probably have to modify this code for every different
splitter window you use because the view class is hardwired to
the row and column number. However, you could build a
generic (and reusable) dynamic splitter class that supports
multiple view types by adding a RegisterView function that
correlates view types identified by CRuntimeClass pointers to
row and column numbers. Before CSplitterWnd::Create is
called, the splitter window could be initialized with information
about the type of view that goes in each pane, and CreateView
could then use that information to generate the appropriate
views.

Programming Windows With MFC

 755

Chapter 12. Toolbars, Status Bars,
and Rebars

In this chapter, we'll continue our look at MFC by examining
two new classes that you can use to enhance your applications'
user interfaces: CToolBar and CStatusBar. CToolBar
implements toolbars—ribbonlike windows containing push
buttons (and sometimes other types of controls) that provide
swift access to commonly used commands. CStatusBar is
MFC's status bar class. A status bar is a window that displays
context-sensitive help for menu items and toolbar buttons as
well as other helpful information. Adding toolbars and status
bars to MFC applications is easy because CToolBar and
CStatusBar provide thorough encapsulations of these
ubiquitous user interface (UI) elements.

Another feature of MFC that you'll learn about in this chapter is
the new CReBar class, which wraps the rebar controls that were
introduced with Microsoft Internet Explorer. Rebars convert
ordinary toolbars into the stylized toolbars (also known as
"coolbars") featured in Internet Explorer, Microsoft Visual C++,
and other Microsoft applications. They are also the basis for
"command bars"—menu bars with items that highlight like
push buttons when the cursor passes over them—similar to the
one that serves as the main menu in Visual C++. Thanks to
CReBar, an MFC programmer can transform a CToolBar into a
coolbar with just one or two lines of code. You'll see how in
just a few moments.

12.1. Toolbars

A toolbar's purpose is to provide one-click access to commonly
used commands. Toolbar buttons typically serve as shortcuts
for menu commands, but they can also implement commands
that don't appear in a menu. MFC's CToolBar class takes a
bitmap resource containing images for the faces of the toolbar
buttons and an array of button IDs and creates a toolbar object
that docks to the side of a frame window or floats in its own
mini frame window. Toolbar buttons are assigned command
IDs just as menu items are. Clicking a toolbar button produces
a WM_COMMAND message just as if a menu item had been

Programming Windows With MFC

 756

selected. If a menu item and a toolbar button are assigned the
same command ID, one command handler can serve them both.
With a little work, you can add combo boxes, check boxes, and
other non-push-button controls to a toolbar. You can also
convert ordinary push buttons into "check push buttons" that
stay up or down when clicked or "radio push buttons" that work
like radio buttons. MFC provides functions for hiding and
displaying toolbars, saving and restoring toolbar states, and
much more.

In early versions of MFC, CToolBar was a stand-alone class
whose functionality came entirely from MFC. Today,
CToolBar derives much of its functionality from the toolbar
control in Comctl32.dll. A separate and more primitive MFC
class named CToolBarCtrl provides an MFC interface to
toolbar controls. That's useful to know, because if you want to
do something with a CToolBar and can't find a suitable member
function, CToolBarCtrl might have the member function you're
looking for. You can call CToolBarCtrl functions on a
CToolBar if you first call CToolBar::GetToolBarCtrl to
acquire a CToolBarCtrl reference to the underlying control.
Most of the time, however, CToolBar will do everything you
need and then some. With that in mind, let's see what it takes to
get a CToolBar up and running.

12.1.1. Creating and Initializing a Toolbar

You create a toolbar by constructing a CToolBar object and
calling CToolBar::Create. Because a toolbar is a child of the
application's main frame window and is normally created when
the frame window is created, the usual practice is to add a
CToolBar member to the frame window class and call Create
from the frame window's OnCreate handler. If m_wndToolBar
is a CToolBar data member, the statement

m_wndToolBar.Create (this);

creates a toolbar that is a child of this. Two parameters are
implicit in the call: the toolbar's style and its child-window ID.
The default style is WS_CHILD ¦ WS_VISIBLE ¦ CBRS_TOP.
You can change the toolbar style by adding a second parameter
to Create or by calling the SetBarStyle function that a toolbar
inherits from its base class, CControlBar, after the toolbar is

Programming Windows With MFC

 757

created. For example, to replace CBRS_TOP with
CBRS_BOTTOM so that the toolbar aligns itself along the
bottom of its parent, you could create it like this:

m_wndToolBar.Create (this, WS_CHILD ¦ WS_VISIBLE ¦
CBRS_BOTTOM);

Or you could create it like this:

m_wndToolBar.Create (this);
m_wndToolBar.SetBarStyle ((m_wndToolBar.GetBarStyle () &
 ~CBRS_TOP) ¦ CBRS_BOTTOM);

CToolBar::Create also accepts an optional third parameter
specifying the toolbar ID. The default is
AFX_IDW_TOOLBAR. There's no need to change the toolbar
ID unless you write an application that contains two or more
toolbars. In a multitoolbar application, you should assign each
toolbar a unique ID.

A freshly created toolbar is empty, so the next step is to add
buttons to it. One way to add buttons is to call
CToolBar::LoadBitmap to load a bitmap resource containing
images for the button faces and CToolBar::SetButtons to tell
the toolbar how many buttons it will have and what the buttons'
command IDs are. The following statements create a toolbar
and initialize it with the images stored in the bitmap resource
IDR_TOOLBAR and the IDs in the array nButtonIDs. The
special ID_SEPARATOR value places a small gap a few pixels
wide between buttons.

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

// In the CPP file
static UINT nButtonIDs[] = {
 ID_FILE_NEW,
 ID_FILE_OPEN,
 ID_FILE_SAVE,
 ID_SEPARATOR,
 ID_EDIT_CUT,
 ID_EDIT_COPY,
 ID_EDIT_PASTE,
 ID_EDIT_UNDO,

Programming Windows With MFC

 758

 ID_SEPARATOR,
 ID_FILE_PRINT
};

m_wndToolBar.Create (this);
m_wndToolBar.LoadBitmap (IDR_TOOLBAR);
m_wndToolBar.SetButtons (nButtonIDs, 10);

The bitmap resource contains all of the toolbar button images,
positioned end to end like frames in a filmstrip, as shown in
Figure 12-1. By default, each image is 16 pixels wide and 15
pixels high. The button itself measures 24 pixels by 22 pixels.
You can change both the image size and the button size with
CToolBar::SetSizes. Drawing professional-looking toolbar
buttons requires a little artistic flair, but for standard items such
as New, Open, Save, Cut, Copy, Paste, and Print, you can
borrow images from the Toolbar.bmp bitmap supplied with
Visual C++.

Figure 12-1. Toolbar images and a toolbar created from them.

A second method for creating the toolbar buttons is to add a
TOOLBAR resource describing the button IDs and image sizes
to the application's RC file and call CToolBar::LoadToolBar
with the resource ID. The following statements create and
initialize a toolbar that is identical to the one in the previous
paragraph:

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

IDR_TOOLBAR TOOLBAR 16, 15
BEGIN
 BUTTON ID_FILE_NEW
 BUTTON ID_FILE_OPEN
 BUTTON ID_FILE_SAVE
 SEPARATOR
 BUTTON ID_EDIT_CUT
 BUTTON ID_EDIT_COPY

Programming Windows With MFC

 759

 BUTTON ID_EDIT_PASTE
 BUTTON ID_EDIT_UNDO
 SEPARATOR
 BUTTON ID_FILE_PRINT
END

// In the CPP file
m_wndToolBar.Create (this);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);

When you use a TOOLBAR resource, you can change the
image size simply by changing the numbers in the resource
statement. LoadToolBar loads the toolbar images, sets the
button IDs, and sets the button sizes all in one step. When you
ask AppWizard to include a toolbar in an application, it uses
this method to define the toolbar.

Fortunately, you don't have to create and edit TOOLBAR
resources by hand. When AppWizard adds a toolbar to an
application, it creates a TOOLBAR resource and a bitmap to go
with it. You can also add TOOLBAR resources to a project
with Visual C++'s Insert-Resource command. Once it's added, a
TOOLBAR resource and its button bitmaps can be edited
visually in Visual C++'s resource editor.

By default, toolbar buttons contain images but not text. You
can add text strings to the faces of the buttons with
CToolBar::SetButtonText. After you've specified the text of
each button, use CToolBar::SetSizes to adjust the button sizes
to accommodate the text strings. The following statements
create a toolbar from IDR_TOOLBAR and add descriptive text
to each button face:

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

IDR_TOOLBAR TOOLBAR 40, 19

// In the CPP file
m_wndToolBar.Create (this);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);

m_wndToolBar.SetButtonText (0, _T ("New"));
m_wndToolBar.SetButtonText (1, _T ("Open"));
m_wndToolBar.SetButtonText (2, _T ("Save"));

Programming Windows With MFC

 760

m_wndToolBar.SetButtonText (4, _T ("Cut"));
m_wndToolBar.SetButtonText (5, _T ("Copy"));
m_wndToolBar.SetButtonText (6, _T ("Paste"));
m_wndToolBar.SetButtonText (7, _T ("Undo"));
m_wndToolBar.SetButtonText (9, _T ("Print"));

m_wndToolBar.SetSizes (CSize (48, 42), CSize (40, 19));

The resulting toolbar is shown in Figure 12-2. The first
parameter passed to SetButtonText specifies the button's index,
with 0 representing the leftmost button on the toolbar, 1
representing the button to its right, and so on. SetSizes must be
called after the button text is added, not before, or the button
sizes won't stick. Also, the width of the button bitmaps must be
expanded to make room for the button text. In this example, the
button bitmaps in Toolbar.bmp were expanded to a width of 40
pixels each, and the height was changed to 19 pixels to make
the resulting buttons roughly square.

Figure 12-2. Toolbar buttons with text.

Unless you take steps to have them do otherwise, toolbar
buttons behave like standard push buttons: they go down when
clicked and pop back up when released. You can use MFC's
CToolBar::SetButtonStyle function to create check push
buttons that stay down until they're clicked again and radio
push buttons that stay down until another toolbar button is
clicked. The following statements create a text formatting
toolbar that contains check push buttons for selecting bold,
italic, and underlined text and radio push buttons for selecting
left aligned, centered, or right aligned text.

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

IDR_TOOLBAR TOOLBAR 16, 15
BEGIN
 BUTTON ID_CHAR_BOLD
 BUTTON ID_CHAR_ITALIC
 BUTTON ID_CHAR_UNDERLINE
 SEPARATOR

Programming Windows With MFC

 761

 BUTTON ID_PARA_LEFT
 BUTTON ID_PARA_CENTER
 BUTTON ID_PARA_RIGHT
END

// In the CPP file
m_wndToolBar.Create (this);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);

m_wndToolBar.SetButtonStyle (0, TBBS_CHECKBOX);
m_wndToolBar.SetButtonStyle (1, TBBS_CHECKBOX);
m_wndToolBar.SetButtonStyle (2, TBBS_CHECKBOX);
m_wndToolBar.SetButtonStyle (4, TBBS_CHECKGROUP);
m_wndToolBar.SetButtonStyle (5, TBBS_CHECKGROUP);
m_wndToolBar.SetButtonStyle (6, TBBS_CHECKGROUP);

The TBBS_CHECKBOX style creates a check push button.
TBBS_CHECKGROUP, which is equivalent to
TBBS_CHECKBOX ¦ TBBS_GROUP, creates a radio push
button. Because buttons 4, 5, and 6 share the
TBBS_CHECKGROUP style, clicking any one of them
"checks" that button and unchecks the others. Buttons 0, 1, and
2, however, operate independently of each other and toggle up
and down only when clicked. Other toolbar button styles that
you can specify through SetButtonStyle include
TBBS_BUTTON, which creates a standard push button, and
TBBS_SEPARATOR, which creates a button separator. The
complementary CToolBar::GetButtonStyle function retrieves
button styles.

When you add radio push buttons to a toolbar, you should also
check one member of each group to identify the default
selection. The following code expands on the example in the
previous paragraph by checking the ID_PARA_LEFT button:

int nState =
 m_wndToolBar.GetToolBarCtrl ().GetState (ID_PARA_LEFT);
m_wndToolBar.GetToolBarCtrl ().SetState (ID_PARA_LEFT, nState
¦
 TBSTATE_CHECKED);

As described earlier in the chapter, CToolBar::GetToolBarCtrl
returns a reference to the CToolBarCtrl that provides the basic
functionality for a CToolBar. CToolBarCtrl::GetState returns
the state of a toolbar button, and CToolBarCtrl::SetState

Programming Windows With MFC

 762

changes the button state. Setting the TBSTATE_CHECKED
flag in the parameter passed to SetState checks the button.

In practice, you might never need SetButtonStyle because in an
MFC program you can convert standard push buttons into
check push buttons and radio push buttons by providing update
handlers that use CCmdUI::SetCheck to do the checking and
unchecking. I'll have more to say about this aspect of toolbar
buttons in just a moment.

12.1.2. Docking and Floating

One feature that CToolBar provides for free is the ability for
the user to grab a toolbar with the mouse, detach it from its
frame window, and either dock it to another side of the window
or allow it to float free in a mini frame window of its own. You
can control which (if any) sides of the frame window a toolbar
can be docked to and other docking and floating characteristics.
You can also create highly configurable toolbars that can be
docked, floated, and resized at the user's behest and static tool
palettes that permanently float and retain rigid row and column
configurations.

When a toolbar is first created, it's affixed to the side of its
frame window and can't be detached. Floating and docking are
enabled by calling the toolbar's EnableDocking function
(CControlBar::EnableDocking) with bit flags specifying
which sides of the frame window the toolbar will allow itself to
be docked to and by calling the frame window's EnableDocking
function (CFrameWnd::EnableDocking) with bit flags
specifying which sides of the window are valid docking targets.
The following values can be ORed together and passed to either
EnableDocking function:

Bit Flag Description

CBRS_ALIGN_LEFT Permit docking to the left side of the frame
window

CBRS_ALIGN_RIGHT Permit docking to the right side of the frame
window

CBRS_ALIGN_TOP Permit docking to the top of the frame window

CBRS_ALIGN_BOTTOM Permit docking to the bottom of the frame window

Programming Windows With MFC

 763

CBRS_ALIGN_ANY Permit docking to any side of the frame window

Called from a member function of a frame window class, the
statements

m_wndToolBar.EnableDocking (CBRS_ALIGN_ANY);
EnableDocking (CBRS_ALIGN_ANY);

enable the toolbar represented by m_wndToolBar to be docked
to any side of its parent. The statements

m_wndToolBar.EnableDocking (CBRS_ALIGN_TOP ¦
CBRS_ALIGN_BOTTOM);
EnableDocking (CBRS_ALIGN_ANY);

restrict docking to the top and bottom of the frame window. It
might seem redundant for both the toolbar and the frame
window to specify docking targets, but the freedom to
configure the toolbar's docking parameters and the frame
window's docking parameters independently comes in handy
when a frame window contains more than one toolbar and each
has different docking requirements. For example, if
m_wndToolBar1 and m_wndToolBar2 belong to the same
frame window, the statements

m_wndToolBar1.EnableDocking (CBRS_ALIGN_TOP ¦
CBRS_ALIGN_BOTTOM);
m_wndToolBar2.EnableDocking (CBRS_ALIGN_LEFT ¦
CBRS_ALIGN_RIGHT);
EnableDocking (CBRS_ALIGN_ANY);

enable m_wndToolBar1 to be docked top and bottom and
m_wndToolBar2 to be docked left and right.

Toolbars are docked and undocked programmatically with the
CFrameWnd member functions DockControlBar and
FloatControlBar. DockControlBar docks a toolbar to its parent
frame. The statement

DockControlBar (&m_wndToolBar);

Programming Windows With MFC

 764

docks m_wndToolBar in its default location—the inside top of
the frame window. The statement

DockControlBar (&m_wndToolBar,
AFX_IDW_DOCKBAR_RIGHT);

docks the toolbar to the right edge of the frame window. To
exercise even finer control over a toolbar's placement, you can
pass DockControlBar a CRect object or a pointer to a RECT
structure containing a docking position. Until DockControlBar
is called, a toolbar can't be detached from its parent, even if
docking has been enabled with CControlBar::EnableDocking
and CFrameWnd::EnableDocking.

FloatControlBar is the opposite of DockControlBar. It's called
to detach a toolbar from its frame window and tell it to begin
floating. The framework calls this function when the user drags
a docked toolbar and releases it in an undocked position, but
you can float a toolbar yourself by calling FloatControlBar and
passing in a CPoint parameter specifying the position of the
toolbar's upper left corner in screen coordinates:

FloatControlBar (&m_wndToolBar, CPoint (x, y));

You can also pass FloatControlBar a third parameter equal to
CBRS_ALIGN_TOP to orient the toolbar horizontally or
CBRS_ALIGN_LEFT to orient it vertically. Call
FloatControlBar instead of DockControlBar to create a toolbar
that's initially floating instead of docked. If you call
EnableDocking with a 0 and then call FloatControlBar, you get
a floating toolbar that can't be docked to the side of a frame
window. MFC programmers sometimes use this technique to
create stand-alone tool palette windows. You can determine
whether a toolbar is docked or floating at any given moment by
calling CControlBar::IsFloating. You can also add a title to the
mini frame window that surrounds a floating toolbar by calling
the toolbar's SetWindowText function.

By default, a floating toolbar aligns itself horizontally when
docked to the top or bottom of a frame window and vertically
when it's docked on the left or right, but it can't be realigned
while it's floating. You can give the user the ability to resize a
floating toolbar by adding a CBRS_SIZE_DYNAMIC flag to

Programming Windows With MFC

 765

the toolbar style. Conversely, you can make sure that a toolbar's
size and shape remain fixed (even when the toolbar is docked)
by using CBRS_SIZE_FIXED. One use for
CBRS_SIZE_FIXED is to create floating tool palette windows
with permanent row and column configurations. You can create
static tool palettes containing multiple rows of buttons by using
the TBBS_WRAPPED style to tell CToolBar where the line
breaks are. A toolbar button with the style TBBS_WRAPPED
is analogous to a carriage return/line feed pair in a text file:
what comes after it begins on a new line. Assuming
IDR_TOOLBAR represents a toolbar containing nine buttons,
the following sample code creates a fixed tool palette window
containing three rows of three buttons each:

m_wndToolBar.Create (this);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);
m_wndToolBar.SetBarStyle (m_wndToolBar.GetBarStyle () ¦
 CBRS_SIZE_FIXED);

m_wndToolBar.SetButtonStyle (2,
 m_wndToolBar.GetButtonStyle (0) ¦ TBBS_WRAPPED);
m_wndToolBar.SetButtonStyle (5,
 m_wndToolBar.GetButtonStyle (0) ¦ TBBS_WRAPPED);

EnableDocking (CBRS_ALIGN_ANY);
m_wndToolBar.EnableDocking (0);
FloatControlBar (&m_wndToolBar, CPoint (x, y));

Adding TBBS_WRAPPED bits to the buttons whose indexes
are 2 and 5 creates a line break every third button. And because
the tool palette's EnableDocking function is called with a 0, the
tool palette floats indefinitely and can't be docked to a frame
window.

If an application uses two or more toolbars, you can include a
CBRS_FLOAT_MULTI flag in the toolbars' EnableDocking
functions and allow the user to dock floating toolbars together
to form composite toolbars that share a common mini frame
window. Unfortunately, the CBRS_FLOAT_MULTI and
CBRS_SIZE_DYNAMIC styles are incompatible with each
other, so you can't use both in the same toolbar.

Programming Windows With MFC

 766

12.1.3. Controlling a Toolbar's Visibility

Most applications that incorporate toolbars feature commands
for hiding and displaying them. An MFC application can use
the CFrameWnd member function OnBarCheck to toggle a
toolbar on or off. Called with a toolbar ID, OnBarCheck hides
the toolbar if it's visible or displays it if it's hidden. A related
member function named OnUpdateControlBarMenu updates
the menu containing the command that toggles a toolbar on or
off by checking or unchecking the menu item whose ID
matches the toolbar ID. OnBarCheck and
OnUpdateControlBarMenu work with status bars, too; all you
have to do is pass a status bar ID instead of a toolbar ID.

If your application has only one toolbar and that toolbar is
assigned the default ID AFX_IDW_TOOLBAR, you can create
a menu item that toggles the toolbar on and off by assigning the
menu item the special ID value ID_VIEW_TOOLBAR. For a
status bar, use ID_VIEW_STATUS_BAR instead. No message
mapping is necessary because CFrameWnd's message map
contains entries mapping these "magic" menu item IDs to the
appropriate CFrameWnd member functions:

ON_UPDATE_COMMAND_UI (ID_VIEW_STATUS_BAR,
OnUpdateControlBarMenu)
ON_COMMAND_EX (ID_VIEW_STATUS_BAR, OnBarCheck)
ON_UPDATE_COMMAND_UI (ID_VIEW_TOOLBAR,
OnUpdateControlBarMenu)
ON_COMMAND_EX (ID_VIEW_TOOLBAR, OnBarCheck)

ON_COMMAND_EX is similar to ON_COMMAND, but an
ON_COMMAND_EX handler, unlike an ON_COMMAND
handler, receives a UINT parameter containing the ID of the UI
object that generated the message. OnBarCheck assumes that
the toolbar ID and the menu item ID are the same and uses that
ID to hide or display the toolbar.

If your application uses a toolbar whose ID isn't
AFX_IDW_TOOLBAR, you can connect the toolbar to
command and update handlers that control its visibility in two
ways. The simplest method is to assign the toolbar and the
corresponding menu item the same ID and to map that ID to
OnBarCheck and OnUpdateControlBarMenu in the main frame
window's message map. If the menu item ID is

Programming Windows With MFC

 767

ID_VIEW_TOOLBAR2, here's what the message-map entries
will look like:

ON_UPDATE_COMMAND_UI (ID_VIEW_TOOLBAR2,
OnUpdateControlBarMenu)
ON_COMMAND_EX (ID_VIEW_TOOLBAR2, OnBarCheck)

Don't forget that for this method to work, the toolbar must be
assigned the same ID as the menu item.

The second approach is to provide your own command and
update handlers and use CFrameWnd::ShowControlBar to hide
and display the toolbar. You can determine whether a toolbar is
currently visible or invisible by checking the WS_VISIBLE bit
of the value returned by GetStyle:

// In CMainFrame's message map
ON_COMMAND (ID_VIEW_TOOLBAR2, OnViewToolbar2)
ON_UPDATE_COMMAND_UI (ID_VIEW_TOOLBAR2,
OnUpdateViewToolbar2UI)

void CMainFrame::OnViewToolbar2 ()
{
 ShowControlBar (&m_wndToolBar2, (m_wndToolBar2.GetStyle() &
 WS_VISIBLE) == 0, FALSE);
}

void CMainFrame::OnUpdateViewToolbar2UI (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck ((m_wndToolBar2.GetStyle () &
 WS_VISIBLE) ? 1 : 0);
}

Don't try to toggle a toolbar's visibility by turning the
WS_VISIBLE flag on or off, because there's more to hiding
and displaying a toolbar than flipping a style bit. When a
toolbar is toggled on or off (or docked or undocked), for
example, MFC resizes the view to compensate for the change in
the visible area of the frame window's client area.
ShowControlBar takes these and other factors into account
when it hides or displays a toolbar. For details, see the code for
CFrameWnd::ShowControlBar in the MFC source code file
Winfrm.cpp.

Programming Windows With MFC

 768

12.1.4. Keeping Toolbar Buttons in Sync with
Your Application

Toolbar buttons are connected to command handlers in your
source code the same way menu items are connected: through
message maps. You can assign toolbar buttons update handlers
just as you can menu items. That's one reason MFC passes an
update handler a pointer to a CCmdUI object instead of a
pointer to a CMenu or a CButton: the same CCmdUI functions
that update menu items are equally capable of updating toolbar
buttons. Calling CCmdUI::SetCheck during a menu update
checks or unchecks the menu item. Calling the same function
during a toolbar update checks or unchecks a toolbar button by
pushing it down or popping it back up. Because CCmdUI
abstracts the physical nature of UI objects, one update handler
can do the updating for a toolbar button and a menu item as
long as both objects share the same ID.

Suppose your application has an Edit menu with a Paste
command that's enabled when there's text on the clipboard and
disabled when there isn't. Furthermore, suppose that the
application has a Paste toolbar button that performs the same
action as Edit-Paste. Both the menu item and the toolbar button
are assigned the predefined command ID ID_EDIT_PASTE,
and ID_EDIT_PASTE is mapped to a handler named
OnEditPaste with the following message-map entry.

ON_COMMAND (ID_EDIT_PASTE, OnEditPaste)

To update the Paste menu item each time the Edit menu is
displayed, you also map ID_EDIT_PASTE to an update
handler named OnUpdateEditPasteUI:

ON_UPDATE_COMMAND_UI (ID_EDIT_PASTE,
OnUpdateEditPasteUI)

OnUpdateEditPasteUI uses CCmdUI::Enable to enable or
disable the Paste command based on the value returned
by ::IsClipboardFormatAvailable:

void CMyClass::OnUpdateEditPasteUI (CCmdUI* pCmdUI)
{

Programming Windows With MFC

 769

 pCmdUI->Enable (::IsClipboardFormatAvailable (CF_TEXT));
}

With this infrastructure in place, a paste operation can be
performed by selecting Paste from the Edit menu or by clicking
the Paste button in the toolbar. In addition, the handler that
keeps the menu item in sync with the clipboard state also
updates the toolbar button. The only difference between menu
item updates and toolbar updates is the timing of calls to the
update handler. For a menu item, the framework calls the
update handler in response to WM_INITMENUPOPUP
messages. For a toolbar button, the framework calls the update
handler during idle periods in which there are no messages for
the application to process. Thus, although menu updates are
deferred until just before a menu is displayed, toolbar buttons
are updated almost immediately when a state change occurs. It's
a good thing, too, because toolbar buttons, unlike menu items,
are visible at all times. The physical calling mechanism is
transparent to the application, which simply provides an update
handler and then trusts the framework to call it as needed.

Earlier I mentioned that you can use update handlers to create
check push buttons and radio push buttons without changing
the button styles. It's easy: just provide an update handler for
each button and use CCmdUI::SetCheck or CCmdUI::SetRadio
to do the checking and unchecking. If a button's command
handler toggles a Boolean variable between TRUE and FALSE,
and if its update handler checks or unchecks the button based
on the value of the variable, the button acts like a check push
button. If the command handler sets the variable value to TRUE
and sets the values of other buttons in the group to FALSE, the
button acts like a radio push button. The following
message-map entries, command handlers, and update handlers
make a group of three toolbar buttons behave like radio push
buttons:

// In CMyClass's message map
ON_COMMAND (ID_BUTTON1, OnButton1)
ON_COMMAND (ID_BUTTON2, OnButton2)
ON_COMMAND (ID_BUTTON3, OnButton3)
ON_UPDATE_COMMAND_UI (ID_BUTTON1, OnUpdateButton1)
ON_UPDATE_COMMAND_UI (ID_BUTTON2, OnUpdateButton2)
ON_UPDATE_COMMAND_UI (ID_BUTTON3, OnUpdateButton3)

Programming Windows With MFC

 770

void CMyClass::OnButton1 ()
{
 m_bButton1Down = TRUE;
 m_bButton2Down = FALSE;
 m_bButton3Down = FALSE;
}

void CMyClass::OnButton2 ()
{
 m_bButton1Down = FALSE;
 m_bButton2Down = TRUE;
 m_bButton3Down = FALSE;
}

void CMyClass::OnButton3 ()
{
 m_bButton1Down = FALSE;
 m_bButton2Down = FALSE;
 m_bButton3Down = TRUE;
}

void CMyClass::OnUpdateButton1 (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bButton1Down);
}

void CMyClass::OnUpdateButton2 (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bButton2Down);
}

void CMyClass::OnUpdateButton3 (CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bButton3Down);
}

With these command and update handlers in place, it's
irrelevant whether the toolbar buttons are
TBBS_CHECKGROUP buttons or ordinary TBBS_BUTTON
buttons. Clicking any one of the buttons sets the other
button-state variables to FALSE, and the update handlers
respond by drawing the buttons in their new states.

12.1.5. Adding ToolTips and Flyby Text

When toolbars first began appearing in Microsoft Windows
applications, they were sometimes more hindrance than help

Programming Windows With MFC

 771

because the meanings of the buttons weren't always clear from
the pictures on the buttons' faces. Some UI designers sought to
alleviate this problem by adding text to the buttons. Others
went one step further and invented ToolTips—small windows
with descriptive text such as "Open" and "Paste" that appear on
the screen when the cursor pauses over a toolbar button for a
half second or so. (See Figure 12-3.) Today, ToolTips are
commonplace in Windows applications, and they offer a unique
solution to the problem of button ambiguity because they make
context-sensitive help for toolbar buttons readily available
without requiring a commensurate increase in button size.

Figure 12-3. A floating toolbar with a ToolTip displayed.

Adding ToolTips to an MFC toolbar is easy. Simply add
CBRS_TOOLTIPS to the toolbar style and create a string table
resource containing ToolTip text. The string IDs match the
ToolTips to the toolbar buttons. If you use standard MFC
command IDs such as ID_FILE_OPEN and ID_EDIT_PASTE
and include Afxres.h in your application's RC file, the
framework provides the ToolTip text for you. For other
command IDs, you provide the ToolTip text by supplying
string resources with IDs that match the toolbar button IDs. The
following code sample creates a toolbar with buttons for
performing common text-formatting operations and ToolTips to
go with the buttons:

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

IDR_TOOLBAR TOOLBAR 16, 15
BEGIN
 BUTTON ID_CHAR_BOLD
 BUTTON ID_CHAR_ITALIC
 BUTTON ID_CHAR_UNDERLINE
 SEPARATOR
 BUTTON ID_PARA_LEFT
 BUTTON ID_PARA_CENTER
 BUTTON ID_PARA_RIGHT
END

Programming Windows With MFC

 772

STRINGTABLE
BEGIN
 ID_CHAR_BOLD "\nBold"
 ID_CHAR_ITALIC "\nItalic"
 ID_CHAR_UNDERLINE "\nUnderline"
 ID_PARA_LEFT "\nAlign Left"
 ID_PARA_CENTER "\nAlign Center"
 ID_PARA_RIGHT "\nAlign Right"
END

// In the CPP file
m_wndToolBar.Create (this, WS_CHILD ¦ WS_VISIBLE ¦
 CBRS_TOP ¦ CBRS_TOOLTIPS);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);

When the cursor pauses over a toolbar button and there's a
string resource whose ID matches the button ID, the framework
displays the text following the newline character in a ToolTip
window. The ToolTip disappears when the cursor moves. In the
old days, you had to set timers, monitor mouse movements, and
subclass windows to make ToolTips work. Nowadays, that
functionality is provided for you.

If your application features a status bar as well as a toolbar, you
can configure the toolbar to display "flyby" text in addition to
(or in lieu of) ToolTips by setting the CBRS_FLYBY bit in the
toolbar style. Flyby text is descriptive text displayed in the
status bar when the cursor pauses over a toolbar button.
ToolTip text should be short and to the point, but flyby text can
be lengthier. Did you wonder why the string resources in the
previous paragraph began with "\n" characters? That's because
the same string resource identifies flyby text and ToolTip text.
Flyby text comes before the newline character, and ToolTip
text comes after. Here's what the previous code sample would
look like if it were modified to include flyby text as well as
ToolTips:

// In the RC file
IDR_TOOLBAR BITMAP Toolbar.bmp

IDR_TOOLBAR TOOLBAR 16, 15
BEGIN
 BUTTON ID_CHAR_BOLD
 BUTTON ID_CHAR_ITALIC

Programming Windows With MFC

 773

 BUTTON ID_CHAR_UNDERLINE
 SEPARATOR
 BUTTON ID_PARA_LEFT
 BUTTON ID_PARA_CENTER
 BUTTON ID_PARA_RIGHT
END

STRINGTABLE
BEGIN
 ID_CHAR_BOLD "Toggle boldface on or off\nBold"
 ID_CHAR_ITALIC "Toggle italic on or off\nItalic"
 ID_CHAR_UNDERLINE "Toggle underline on or
off\nUnderline"
 ID_PARA_LEFT "Align text flush left\nAlign Left"
 ID_PARA_CENTER "Center text between
margins\nAlign Center"
 ID_PARA_RIGHT "Align text flush right\nAlign Right"
END

// In the CPP file
m_wndToolBar.Create (this, WS_CHILD ¦ WS_VISIBLE ¦
 CBRS_TOP ¦ CBRS_TOOLTIPS ¦ CBRS_FLYBY);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);

If menu items share the same IDs as the toolbar buttons, the
text preceding the newline character in the corresponding string
resource is also displayed when a menu item is highlighted.
We'll discuss this and other features of status bars shortly.

You can assign ToolTips and flyby text to toolbar buttons
visually using the resource editor in Visual C++. With a toolbar
resource open for editing, double-clicking a toolbar button
displays the button's property sheet. You can then type a string
into the Prompt box to assign flyby text, ToolTip text, or both
to the button, as shown in Figure 12-4.

Figure 12-4. Assigning ToolTip text and flyby text to a toolbar button.

Programming Windows With MFC

 774

12.1.6. Adding Non-Push-Button Controls to a
Toolbar

Push buttons far outnumber the other types of controls found on
toolbars, but CToolBars can also include non-push-button
controls such as combo boxes and check boxes. Suppose you'd
like to add a combo box to a toolbar so that the user can select a
typeface or a font size or something else from a drop-down list.
Here's how to do it.

The first step is to include either a button separator or a dummy
push button—a push button with an arbitrary command ID and
button image—in the TOOLBAR resource where you want the
combo box to appear. The following TOOLBAR resource
definition uses a separator as a placeholder for a combo box
that appears to the right of the final push button:

IDR_TOOLBAR TOOLBAR 16, 15
BEGIN
 BUTTON ID_CHAR_BOLD
 BUTTON ID_CHAR_ITALIC
 BUTTON ID_CHAR_UNDERLINE
 SEPARATOR
 BUTTON ID_PARA_LEFT
 BUTTON ID_PARA_CENTER
 BUTTON ID_PARA_RIGHT
 SEPARATOR // Space between button and combo box
 SEPARATOR // Placeholder for combo box
END

The second step is to use CToolBar::SetButtonInfo to increase
the width of the placeholder to make room for the combo box
and then to create a combo box in that space. Assuming that the
toolbar is represented by a toolbar class derived from CToolBar,
that m_wndComboBox is a CComboBox data member in the
derived class, that IDC_COMBOBOX is the combo box's
control ID, and that nWidth and nHeight hold the desired
combo box dimensions, here's an excerpt from the derived
class's OnCreate handler demonstrating how to create the
combo box:

SetButtonInfo (8, IDC_COMBOBOX, TBBS_SEPARATOR,
nWidth);
CRect rect;

Programming Windows With MFC

 775

GetItemRect (8, &rect);
rect.bottom = rect.top + nHeight;
m_wndComboBox.Create (WS_CHILD ¦ WS_VISIBLE ¦
WS_VSCROLL ¦
 CBS_SORT ¦ CBS_DROPDOWNLIST, rect, this,
IDC_COMBOBOX);

The call to CToolBar::SetButtonInfo assigns the placeholder
the same ID as the combo box and expands the placeholder
horizontally so that its width equals the desired width of the
combo box. Before CComboBox::Create is called to create the
combo box, CToolBar::GetItemRect is called to retrieve the
placeholder's control rectangle. That rectangle is then
heightened to make room for the list box part of the combo box,
and the combo box is created over the top of the placeholder.
The combo box is parented to the toolbar so that it will move
when the toolbar moves. The toolbar also receives the combo
box's WM_COMMAND messages, but thanks to command
routing, the notifications that the combo box sends to its parent
can be processed by the frame window, the view, and other
standard command targets.

What about ToolTips and flyby text for non-push-button
controls? As far as the framework is concerned, the combo box
is just another control on the toolbar and can include ToolTips
and flyby text just as push button controls can. All you have to
do to add ToolTip and flyby text to the combo box is define a
string resource whose ID is IDC_COMBOBOX. A ToolTip
window will automatically appear when the cursor pauses over
the combo box, and the flyby text will appear in the status bar.

12.1.7. Updating Non-Push-Button Controls

It wouldn't make sense to assign an update handler to a combo
box in a toolbar because CCmdUI isn't designed to handle
combo boxes. But MFC provides an alternative update
mechanism that's ideal for non-push-button controls.
CControlBar::OnUpdateCmdUI is a virtual function the
framework calls as part of its idle-processing regimen. A
derived toolbar class can override OnUpdateCmdUI and take
the opportunity to update controls that don't have UI update
handlers. OnUpdateCmdUI is the perfect solution for keeping
custom toolbar controls in sync with other parts of the

Programming Windows With MFC

 776

application, and doing it in a passive way that closely mimics
the update mechanism used for toolbar buttons and menu items.

Let's say you've derived a toolbar class named CStyleBar from
CToolBar that includes a combo box with a list of all the fonts
installed in the system. As the user moves the caret through a
document, you want to update the combo box so that the item
selected in it is the name of the typeface at the current caret
position. Rather than respond to each change in the caret
position by updating the combo box selection directly, you can
override OnUpdateCmdUI as shown here:

void CStyleBar::OnUpdateCmdUI (CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler)
{
 CToolBar::OnUpdateCmdUI (pTarget, bDisableIfNoHndler);
 CString string = GetTypefaceAtCaret ();
 if (m_wndComboBox.SelectString (-1, string) == CB_ERR)
 m_wndComboBox.SetCurSel (-1);
}

GetTypefaceAtCaret is a CStyleBar helper function that
retrieves font information from the document or from the view
and returns a CString with the typeface name. After
GetTypefaceAtCaret returns, CComboBox::SelectString is
called to select the corresponding combo box item, and
CComboBox::SetCurSel is called with a -1 to blank the visible
portion of the combo box if SelectString fails. With this simple
update handler in place, the combo box selection will stay in
sync with the caret as the user cursors through the document.
The MyWord application presented later in this chapter uses a
similar OnUpdateCmdUI handler to keep a pair of combo
boxes—one for typefaces and one for font sizes—in sync with
the caret position.

Generally speaking, you can ignore the pTarget and
bDisableIfNoHndler parameters passed to OnUpdateCmdUI.
But be sure to call CToolBar::OnUpdateCmdUI from the
derived class's OnUpdateCmdUI function to avoid
short-circuiting the update handlers for conventional toolbar
buttons.

Programming Windows With MFC

 777

12.1.8. Making Toolbar Settings Persistent

MFC provides two convenient functions that you can use to
preserve toolbar settings across sessions:
CFrameWnd::SaveBarState and CFrameWnd::LoadBarState.
SaveBarState writes information about each toolbar's docked or
floating state, position, orientation, and visibility to the registry
or a private INI file. (In Windows 95 and Windows 98 and in
all versions of Windows NT, you should call
CWinApp::SetRegistryKey from the application class's
InitInstance function so that SaveBarState will use the registry.)
If your application includes a status bar, SaveBarState records
information about the status bar, too. Calling LoadBarState
when the application restarts reads the settings back from the
registry and restores each toolbar and status bar to its previous
state. Normally, LoadBarState is called from the main frame
window's OnCreate handler after the toolbars and status bars
are created, and SaveBarState is called from the frame
window's OnClose handler. If you'd also like to save control
bar settings if Windows is shut down while your application is
running, call SaveBarState from an OnEndSession handler, too.

You shouldn't call SaveBarState from the frame window's
OnDestroy handler if you want to preserve the states of floating
toolbars as well as docked toolbars. A docked toolbar is a child
of the frame window it's docked to, but a floating toolbar is a
child of the mini frame window that surrounds it. The mini
frame window is a popup window owned by the frame window,
but it's not a child of the frame window. (A popup window is a
window with the style WS_POPUP; a child window has the
WS_CHILD style instead.) The distinction is important because
popup windows owned by a frame window are destroyed
before the frame window is destroyed. Child windows, on the
other hand, are destroyed after their parents are destroyed. A
floating toolbar no longer exists when the frame window's
OnDestroy function is called. Consequently, if it's called from
OnDestroy, SaveBarState will fail to save state information for
toolbars that aren't docked to the frame window.

12.1.9. Toolbar Support in AppWizard

You can use AppWizard to add a basic toolbar to an application.
Checking the Docking Toolbar box in AppWizard's Step 4

Programming Windows With MFC

 778

dialog box (shown in Figure 12-5) adds a simple toolbar
containing push buttons for File-Open, File-Save, and other
commonly used commands. Besides creating the TOOLBAR
resource and button bitmap, AppWizard adds a CToolBar data
member named m_wndToolBar to the main frame window
class and includes in the frame window's OnCreate handler
code to create the toolbar and to enable docking.

AppWizard's toolbar-creation code uses CToolBar::CreateEx
rather than CToolBar::Create to create a toolbar, and it passes
CBRS_GRIPPER and TBSTYLE_FLAT flags to CreateEx.
CBRS_GRIPPER draws a thin vertical bar, or "gripper," down
the left edge of the toolbar. TBSTYLE_FLAT creates a "flat"
toolbar—one with flat buttons whose edges are visible only
when the cursor is over them—like the ones in Visual C++. Flat
toolbars are only supported on systems that have Internet
Explorer installed. Fortunately, they degrade gracefully on
older systems by assuming the visage of ordinary toolbars.

Figure 12-5. Using AppWizard to add a toolbar.

12.2. Status Bars

Programming Windows With MFC

 779

It has become common, even expected, for Windows
applications to include status bars that display context-sensitive
help for toolbar buttons and menu items. SDK-style Windows
applications customarily display descriptive help text for menu
items by trapping WM_MENUSELECT messages and
updating the status bar. MFC provides an easier way. When a
CStatusBar is connected to a frame window, it automatically
displays a string of help text when a menu item is highlighted.
If the application includes a toolbar, and if the toolbar style
includes a CBRS_FLYBY flag, the status bar also displays
flyby text for toolbar buttons. The best part is that all you're
responsible for besides creating and initializing the status bar
(something that requires just a few lines of code) is providing
the help text in the form of string resources in your
application's RC file. The framework does the rest.

Status bars can do much more than just display help text, of
course. A status bar can be divided into one or more areas that
are variously referred to as panes, panels, or indicators. The text
of each pane can be set individually, so one pane can display
the current line number or page number in a document while
another displays menu and toolbar help and still others display
the current Caps Lock and Num Lock states. Some status bars
even contain progress controls that report percentage-complete
figures for potentially lengthy operations such as document
saving and loading.

12.2.1. Creating and Initializing a Status Bar

In MFC, a status bar is an instance of CStatusBar. An
application that uses a status bar typically declares a
CStatusBar object as a member of the frame window class.
Then the frame window's OnCreate handler creates the status
bar with a statement like this one:

m_wndStatusBar.Create (this);

The lone argument passed to Create identifies the status bar's
parent window. Passing a this pointer referring to a frame
window makes the status bar a child of the frame window. A
status bar created in this way doesn't need to be destroyed
before the application terminates because it's destroyed
automatically when its parent is destroyed. CStatusBar::Create

Programming Windows With MFC

 780

also accepts parameters specifying the status bar's style and
child window ID, but the default values MFC provides for these
parameters do quite nicely for most applications.

After it's created, a status bar is initialized by calling
CStatusBar::SetIndicators. SetIndicators specifies the number
of panes the status bar will contain and optionally assigns string
resources to individual panes. The statements

UINT nIndicator = ID_SEPARATOR;
m_wndStatusBar.Create (this);
m_wndStatusBar.SetIndicators (&nIndicator, 1);

create a simple status bar containing just one pane.
ID_SEPARATOR is a generic ID that says no string resource is
associated with this pane. You can create a simple "binary"
pane that indicates whether a particular feature of your
application is on or off by specifying a string resource ID
instead of ID_SEPARATOR and connecting the pane to an
update handler that uses CCmdUI::Enable to enable and
disable the pane. An enabled pane displays the string resource
assigned to it, but a disabled pane is blank. The status bar
created by the following code sample includes a pane that
displays the text string "INS" when the application is in insert
mode and nothing when it's in overstrike mode. This example
assumes that insert mode is on when m_bInsert is nonzero and
off when m_bInsert is 0:

// In the RC file
STRINGTABLE
BEGIN
 ID_INDICATOR_INS "INS"
END

// In CMainFrame's message map
ON_UPDATE_COMMAND_UI (ID_INDICATOR_INS,
OnUpdateIndicator)

// In CMainFrame::OnCreate
static UINT nIndicators[] = {
 ID_SEPARATOR,
 ID_INDICATOR_INS
};

m_wndStatusBar.Create (this);

Programming Windows With MFC

 781

m_wndStatusBar.SetIndicators (nIndicators, 2);

// Elsewhere in CMainFrame
void CMainFrame::OnUpdateIndicator (CCmdUI* pCmdUI)
{
 pCmdUI->Enable (m_bInsert);
}

In this example, the frame window handles the UI update
commands. In a real application, it might be more appropriate
to make OnUpdateIndicator a member of the document or the
view class. ID_INDICATOR_INS is a symbolic constant
defined elsewhere in the application; MFC doesn't define it for
you.

MFC defines four special indicator IDs for status bar panes that
display keyboard states and maps them to a common update
handler in the CFrameWnd class:

x ID_INDICATOR_CAPS, which corresponds to the Caps Lock key
x ID_INDICATOR_NUM, which corresponds to the Num Lock key
x ID_INDICATOR_SCRL, which corresponds to the Scroll Lock key
x ID_INDICATOR_KANA, which corresponds to the Kana key on

Japanese keyboards

A status bar pane assigned the ID value
ID_INDICATOR_CAPS displays the word "CAP" when Caps
Lock is on. Similarly, an ID_INDICATOR_NUM pane
displays "NUM" when Num Lock is on, an
ID_INDICATOR_SCRL pane displays "SCRL" when Scroll
Lock is on, and an ID_INDICATOR_KANA pane displays
"KANA" when Kana mode is enabled on Japanese keyboards.
The framework (in reality,
CFrameWnd::OnUpdateKeyIndicator) keeps these indicators
in sync with the keyboard. Consequently, you can create a
status bar with Caps Lock, Num Lock, and Scroll Lock
indicators simply by adding the magic ID values to the array
passed to SetIndicators:

static UINT nIndicators[] = {
 ID_SEPARATOR,
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL
};

Programming Windows With MFC

 782

m_wndStatusBar.Create (this);
m_wndStatusBar.SetIndicators (nIndicators, 4);

The resulting status bar is shown in Figure 12-6. The blank
pane indicates that Scroll Lock is inactive. CStatusBar
automatically positions all panes after the first at the far right
end of the status bar and stretches the leftmost pane to fill the
remaining space. It sizes the other panes so that they're just
wide enough to display the text strings assigned to them. Panes
other than the first are also drawn "indented" so that they're
visible even when they're blank.

Figure 12-6. Status bar with Caps Lock, Num Lock, and Scroll Lock
indicators.

12.2.2. Providing Context-Sensitive Help for
Menu Items

When you assign the first (leftmost) pane in a status bar the
value ID_SEPARATOR, you enable a special feature of MFC
that is elegant in both design and simplicity. When the user
highlights a menu item, the framework checks to see whether
the application's EXE file contains a string resource whose ID
equals the menu item ID. If the search turns up a match, the
string resource is loaded and displayed in the status bar pane.
As a result, you can provide context-sensitive help for your
application's menus by providing string resources whose IDs
match the menu item IDs. If a menu item and a toolbar button
share the same ID, the same string resource doubles as help text
for the menu item and as flyby text for the toolbar.

As it does for toolbar buttons, the framework provides default
help strings for ID_FILE_NEW, ID_FILE_OPEN, and other
common command IDs. It also provides default help strings for
commands found in the system menu. (For a complete list of
predefined IDs and the help text and ToolTip text associated
with them, look in the MFC source code file Prompts.rc.)
Simply include the header file Afxres.h in your application's
RC file, and the framework's predefined string resources will be
included, too. If you use AppWizard to create the application,

Programming Windows With MFC

 783

Afxres.h is included for you. Rather than add string resources
for other menu items by hand, you can double-click a menu
item in the menu editor and enter a string in the Menu Item
Properties window's Prompt box.

You can override the help text for predefined menu item IDs by
defining your own string resources with identical ID values.
For a nice touch, include an

AFX_IDS_IDLEMESSAGE "Ready"

statement in your application's string table, and the framework
will display the word "Ready" in the status bar when no menu
is pulled down or no item is selected. As usual, this is done for
you if you use AppWizard to add a status bar to your
application.

12.2.3. Creating Custom Status Bar Panes

Now you know how to display help text in a status bar, add
Caps Lock, Num Lock, and Scroll Lock indicators, and create
simple on/off indicators by combining string resources and
update handlers. But what about more complex status bars like
the ones featured in Microsoft Word, Microsoft Excel,
Microsoft PowerPoint, and other Windows applications? How,
for example, would you create a status bar pane that displays
the time of day or the current page number?

For starters, you can add panes to a status bar and size them any
way you want using CStatusBar's SetPaneInfo function.
SetPaneInfo accepts four parameters: the 0-based index of the
pane whose attributes you want to modify and the pane's ID,
style, and width, in that order. The pane style specifies whether
the pane will be drawn indented, protruding, or flush with the
face of the status bar. It also determines whether the pane is
currently enabled or disabled and identifies variable-width
panes that expand and contract with the status bar. The style is
a combination of one or more of the following values:

Style Description

SBPS_NOBORDERS Draws the pane flush with the surface of the status bar.

SBPS_POPOUT Draws the pane so that it protrudes from the status bar.

Programming Windows With MFC

 784

SBPS_NORMAL Draws the pane so that it is indented into the status
bar.

SBPS_DISABLED Disables the pane. Disabled panes don't display text.

SBPS_STRETCH Stretches the pane to fill unused space when the status
bar is resized. Only one pane per status bar can have
this style.

SBPS_OWNERDRAW Creates an owner-draw pane.

The following code creates a status bar with three custom panes.
The first pane is 64 pixels wide and is drawn flush with the
surface of the status bar. The second is also 64 pixels wide, but
it protrudes from the status bar. The third is a variable-width
pane whose right edge follows the right edge of the status bar.
It's drawn with an indented border.

static UINT nIndicators[] = {
 ID_SEPARATOR,
 ID_SEPARATOR,
 ID_SEPARATOR
};

m_wndStatusBar.Create (this);
m_wndStatusBar.SetIndicators (nIndicators, 3);

m_wndStatusBar.SetPaneInfo (0, ID_SEPARATOR,
SBPS_NOBORDERS, 64);
m_wndStatusBar.SetPaneInfo (1, ID_SEPARATOR,
SBPS_POPOUT, 64);
m_wndStatusBar.SetPaneInfo (2, ID_SEPARATOR,
SBPS_NORMAL ¦
 SBPS_STRETCH, 0);

In a real application, you'll probably want to avoid hard pixel
counts and, instead, base pane widths on a scalable screen
metric such as the average width of a character in the status bar
font. You can get a CFont pointer for the default status bar font
by calling the GetFont function a CStatusBar inherits from
CWnd.

Once a custom pane is created, it's your job to tell the status bar
what to display inside the pane. You can add text to a pane in
two ways. You can call CStatusBar::SetPaneText to set the text
directly, or you can assign the pane an update handler and let
the update handler set the text with CCmdUI::SetText. Which

Programming Windows With MFC

 785

method you use depends on how you want the pane to be
updated. The following code fragment sets a timer to fire every
200 milliseconds and uses SetPaneText to update an
hours:minutes:seconds display in pane 2. (Windows timers are
discussed in Chapter 14.) In this case, the ID assigned to the
pane in the call to SetIndicators or SetPaneInfo is irrelevant
because SetPaneText identifies panes by index.

// In CMainFrame::OnCreate
SetTimer (ID_TIMER, 200, NULL);

void CMainFrame::OnTimer (UINT nTimerID)
{
 CTime time = CTime::GetCurrentTime ();
 int nSecond = time.GetSecond ();
 int nMinute = time.GetMinute ();
 int nHour = time.GetHour () % 12;

 CString string;
 string.Format (_T ("%0.2d:%0.2d:%0.2d"), nHour, nMinute,
nSecond);
 m_wndStatusBar.SetPaneText (2, string);
}

An alternative approach is to assign the pane a unique ID such
as ID_INDICATOR_TIME and connect it to an update handler
with a message-map entry. Now the time-of-day display in the
status bar will be continually updated by the framework.

// In the message map
ON_UPDATE_COMMAND_UI (ID_INDICATOR_TIME,
OnUpdateTime)

void CMainFrame::OnUpdateTime (CCmdUI* pCmdUI)
{
 CTime time = CTime::GetCurrentTime ();
 int nSecond = time.GetSecond ();
 int nMinute = time.GetMinute ();
 int nHour = time.GetHour () % 12;

 CString string;
 string.Format (_T ("%0.2d:%0.2d:%0.2d"), nHour, nMinute,
nSecond);
 pCmdUI->SetText (string);
}

Programming Windows With MFC

 786

The best way to define ID_INDICATOR_TIME is to add a
string resource with that ID to your application. Assign the
string a dummy value such as "MMMMM," and MFC will use
the width of the string to size the status bar pane. Incidentally,
you can include a leading tab character ("\t") in text written to a
status bar to center the text in the pane or two leading tab
characters ("\t\t") to right-align the text.

12.2.4. Status Bar Support in AppWizard

You can use AppWizard to add a status bar to an MFC
application by checking the Initial Status Bar box in
AppWizard's Step 4 dialog box, as shown in Figure 12-7.
AppWizard responds by adding a CStatusBar member variable
to the main frame window class and hooking it up with an
OnCreate handler that creates a four-pane status bar: an
ID_SEPARATOR pane in which help text appears and
indicator panes for the Caps Lock, Num Lock, and Scroll Lock
keys.

Figure 12-7. Using AppWizard to add a status bar.

One of the first questions new MFC programmers ask about
AppWizard-generated status bars is, "How do I get rid of the
keyboard indicator panes?" The answer is simple. Begin by

Programming Windows With MFC

 787

finding the following statements in the CPP file for the
AppWizard-generated main frame window class:

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

Then remove the final three entries so that the array looks like
this:

static UINT indicators[] =
{
 ID_SEPARATOR // status line indicator
};

That's all there is to it. Rebuild the application and the indicator
panes will be no more.

12.3. Putting It All Together: The MyWord
Application

The sample program shown in Figure 12-8 demonstrates many
of the principles discussed in the preceding sections. MyWord
is a miniature word processor built around a CRichEditView.
MFC's CRichEditView class is like a CEditView on steroids;
based on the rich text edit control supplied in the common
controls library, it features superior text formatting capabilities
and the ability to read and write rich text format (RTF) files
with a simple function call. MyWord doesn't use all the features
of a CRichEditView; in fact, it barely scratches the surface. (For
a more in-depth look at CRichEditView, see the Wordpad
sample program provided with MFC. The Wordpad files are the
actual source code for the Wordpad applet that ships with
Windows.) But MyWord packs a lot of punch for a program
that's only a few hundred lines long, and it's a good starting
point for writing CRichEditView-based applications of your
own.

Programming Windows With MFC

 788

Figure 12-8. The MyWord window.

MyWord uses two toolbars and one status bar. The main
toolbar includes buttons that serve as shortcuts for the New,
Open, and Save items in the File menu and the Cut, Copy, Paste,
and Undo items in the Edit menu. The other toolbar, which I'll
refer to as the style bar, includes check push buttons for setting
the character format (bold, italic, and underline), radio push
buttons for setting the paragraph alignment (left aligned,
centered, and right aligned), and combo boxes for selecting
typefaces and font sizes. Both toolbars can be detached from
the frame window, floated, and docked at other locations; and
both can be resized while they're floating. Try it: Drag the main
toolbar to the right side of the window, and dock it in a vertical
position. Grab the style bar and release it in the center of the
window so that it becomes a floating palette. Use the View
menu to hide and display the toolbars and the status bar. You
can also hide a toolbar by clicking the close button in the mini
frame window it floats in when it's detached from the main
frame window. To redisplay the toolbar, simply select the
Toolbar or Style Bar command in the View menu.

The status bar at the bottom of MyWord's frame window
displays help text for menu items and toolbar controls. It also
includes Caps Lock and Num Lock indicators and a line
number display that's continually updated as the caret moves
through the document. The Caps Lock and Num Lock

Programming Windows With MFC

 789

indicators were added using MFC's predefined
ID_INDICATOR_CAPS and ID_INDICATOR_NUM IDs.
The line number indicator is updated by an
ON_UPDATE_COMMAND_UI handler that, when called,
retrieves the current line number from the CRichEditView,
formulates a text string containing the line number, and updates
the status bar display with CCmdUI::SetText. The line number
pane is sized to fit the dummy string "Line 00000," whose
resource ID, ID_INDICATOR_LINE, is identical to the status
bar pane's ID. The dummy string is never seen because the pane
is updated with a real line number before the status bar appears
on the screen.

I used AppWizard to begin MyWord. I checked the Docking
Toolbar and Initial Status Bar options in AppWizard's Step 4
dialog box, and in Step 6, I selected CRichEditView as the base
class for the view. I next derived a class named CStyleBar to
represent the style bar, added a CStyleBar data member to the
frame window class, and modified the frame window's
OnCreate function to create the style bar. (I used ClassWizard
to perform the class derivation, but because ClassWizard
doesn't support CToolBar as a base class, I derived CStyleBar
from CCmdTarget and then manually patched up the code to
change the base class to CToolBar.) I used Visual C++'s
Insert-Resource command to create the toolbar resource from
which the style bar is created, and I added buttons in the toolbar
editor. Finishing MyWord was a matter of writing the
command handlers, update handlers, and ordinary class
member functions that form the core of the application.

The source code for MyWord's frame window, document, view,
and style bar classes is listed in Figure 12-9. Take a moment to
look it over to see how the toolbars and status bar are handled.
Then go to "The Main Toolbar" to read about pertinent parts of
the source code in greater detail.

Figure 12-9. The MyWord application.

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(

Programming Windows With MFC

 790

AFX_MAINFRM_H__C85C9089_A154_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_MAINFRM_H__C85C9089_A154_11D2_8E53_006008A82731__INCLUDE
D_

#include "StyleBar.h" // Added by ClassView
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStyleBar m_wndStyleBar;
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
// Generated message map functions
protected:
 BOOL CreateToolBar ();
 BOOL CreateStyleBar ();
 BOOL CreateStatusBar ();
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnClose();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

Programming Windows With MFC

 791

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__C85C9089_A154_11D2_8E53_006008A82731__INCLUDE
D_)

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "MyWord.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_CLOSE()
 //}}AFX_MSG_MAP

ON_COMMAND_EX (IDW_STYLE_BAR, OnBarCheck)
 ON_UPDATE_COMMAND_UI (IDW_STYLE_BAR,
OnUpdateControlBarMenu)
END_MESSAGE_MAP()

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 //

Programming Windows With MFC

 792

 // Tell the frame window to permit docking.
 //
 EnableDocking (CBRS_ALIGN_ANY);

 //
 // Create the toolbar, style bar, and status bar.
 //
 if (!CreateToolBar () ||
 !CreateStyleBar () ||
 !CreateStatusBar ())
 return -1;

 //
 // Load the saved bar state (if any).
 //
 LoadBarState (_T ("MainBarState"));
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}
///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{

 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

void CMainFrame::OnClose()
{
 SaveBarState (_T ("MainBarState"));
 CFrameWnd::OnClose();
}

BOOL CMainFrame::CreateToolBar()
{
 if (!m_wndToolBar.Create (this) ||
 !m_wndToolBar.LoadToolBar (IDR_MAINFRAME))

Programming Windows With MFC

 793

 return FALSE;

 m_wndToolBar.SetBarStyle (m_wndToolBar.GetBarStyle () |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 m_wndToolBar.SetWindowText (_T ("Main"));
 m_wndToolBar.EnableDocking (CBRS_ALIGN_ANY);
 DockControlBar (&m_wndToolBar);
 return TRUE;
}

BOOL CMainFrame::CreateStyleBar()
{
 if (!m_wndStyleBar.Create (this, WS_CHILD | WS_VISIBLE |
CBRS_TOP |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC,
IDW_STYLE_BAR))
 return FALSE;

 m_wndStyleBar.SetWindowText (_T ("Styles"));
 m_wndStyleBar.EnableDocking (CBRS_ALIGN_TOP |
CBRS_ALIGN_BOTTOM);
 DockControlBar (&m_wndStyleBar);
 return TRUE;
}

BOOL CMainFrame::CreateStatusBar()
{
 static UINT nIndicators[] = {

 ID_SEPARATOR,
 ID_INDICATOR_LINE,
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM
 };

 if (!m_wndStatusBar.Create (this))
 return FALSE;

 m_wndStatusBar.SetIndicators (nIndicators, 4);
 return TRUE;
}

// MyWordDoc.h : interface of the CMyWordDoc class
//
///

#if !defined(

AFX_MYWORDDOC_H__C85C908B_A154_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_MYWORDDOC_H__C85C908B_A154_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

Programming Windows With MFC

 794

class CMyWordDoc : public CRichEditDoc
{
protected: // create from serialization only
 CMyWordDoc();
 DECLARE_DYNCREATE(CMyWordDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMyWordDoc)
 public:

 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL
 virtual CRichEditCntrItem* CreateClientItem(REOBJECT* preo) const;

// Implementation
public:
 virtual ~CMyWordDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CMyWordDoc)
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_MYWORDDOC_H__C85C908B_A154_11D2_8E53_006008A82731__INCLUDED_)

// MyWordDoc.cpp : implementation of the CMyWordDoc class

Programming Windows With MFC

 795

//

#include "stdafx.h"
#include "MyWord.h"

#include "MyWordDoc.h"
#include "CntrItem.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMyWordDoc

IMPLEMENT_DYNCREATE(CMyWordDoc, CRichEditDoc)

BEGIN_MESSAGE_MAP(CMyWordDoc, CRichEditDoc)
 //{{AFX_MSG_MAP(CMyWordDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Enable default OLE container implementation
 ON_UPDATE_COMMAND_UI(ID_OLE_EDIT_LINKS,
 CRichEditDoc::OnUpdateEditLinksMenu)
 ON_COMMAND(ID_OLE_EDIT_LINKS, CRichEditDoc::OnEditLinks)
 ON_UPDATE_COMMAND_UI_RANGE(ID_OLE_VERB_FIRST,
 ID_OLE_VERB_LAST, CRichEditDoc::OnUpdateObjectVerbMenu)
END_MESSAGE_MAP()

///
// CMyWordDoc construction/destruction

CMyWordDoc::CMyWordDoc()
{
}

CMyWordDoc::~CMyWordDoc()
{
}

BOOL CMyWordDoc::OnNewDocument()
{
 if (!CRichEditDoc::OnNewDocument())
 return FALSE;
 return TRUE;
}
CRichEditCntrItem* CMyWordDoc::CreateClientItem(REOBJECT* preo)
const
{
 return new CMyWordCntrItem(preo, (CMyWordDoc*) this);
}

Programming Windows With MFC

 796

///
// CMyWordDoc serialization

void CMyWordDoc::Serialize(CArchive& ar)
{
 CRichEditDoc::Serialize(ar);
}

///
// CMyWordDoc diagnostics

#ifdef _DEBUG
void CMyWordDoc::AssertValid() const
{
 CRichEditDoc::AssertValid();
}

void CMyWordDoc::Dump(CDumpContext& dc) const
{
 CRichEditDoc::Dump(dc);
}
#endif //_DEBUG

///
// CMyWordDoc commands

// MyWordView.h : interface of the CMyWordView class
//
///

#if !defined(

AFX_MYWORDVIEW_H__C85C908D_A154_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_MYWORDVIEW_H__C85C908D_A154_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMyWordCntrItem;

class CMyWordView : public CRichEditView
{
protected: // create from serialization only
 CMyWordView();
 DECLARE_DYNCREATE(CMyWordView)

// Attributes
public:
 CMyWordDoc* GetDocument();

// Operations
public:
 void GetFontInfo (LPTSTR pszFaceName, int& nSize);
 void ChangeFont (LPCTSTR pszFaceName);

Programming Windows With MFC

 797

 void ChangeFontSize (int nSize);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMyWordView)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMyWordView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CMyWordView)
 afx_msg void OnDestroy();
 afx_msg void OnCharBold();
 afx_msg void OnCharItalic();
 afx_msg void OnCharUnderline();
 afx_msg void OnParaLeft();
 afx_msg void OnParaCenter();
 afx_msg void OnParaRight();
 afx_msg void OnUpdateCharBold(CCmdUI* pCmdUI);
 afx_msg void OnUpdateCharItalic(CCmdUI* pCmdUI);
 afx_msg void OnUpdateCharUnderline(CCmdUI* pCmdUI);
 afx_msg void OnUpdateParaLeft(CCmdUI* pCmdUI);
 afx_msg void OnUpdateParaCenter(CCmdUI* pCmdUI);
 afx_msg void OnUpdateParaRight(CCmdUI* pCmdUI);
 //}}AFX_MSG
 afx_msg void OnUpdateLineNumber (CCmdUI* pCmdUI);
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in MyWordView.cpp
inline CMyWordDoc* CMyWordView::GetDocument()
 { return (CMyWordDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//

Programming Windows With MFC

 798

AFX_MYWORDVIEW_H__C85C908D_A154_11D2_8E53_006008A82731__INCLUDED_)

// MyWordView.cpp : implementation of the CMyWordView class
//

#include "stdafx.h"
#include "MyWord.h"

#include "MyWordDoc.h"
#include "CntrItem.h"
#include "MyWordView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMyWordView

IMPLEMENT_DYNCREATE(CMyWordView, CRichEditView)

BEGIN_MESSAGE_MAP(CMyWordView, CRichEditView)
 //{{AFX_MSG_MAP(CMyWordView)
 ON_WM_DESTROY()
 ON_COMMAND(ID_CHAR_BOLD, OnCharBold)
 ON_COMMAND(ID_CHAR_ITALIC, OnCharItalic)
 ON_COMMAND(ID_CHAR_UNDERLINE, OnCharUnderline)
 ON_COMMAND(ID_PARA_LEFT, OnParaLeft)
 ON_COMMAND(ID_PARA_CENTER, OnParaCenter)
 ON_COMMAND(ID_PARA_RIGHT, OnParaRight)
 ON_UPDATE_COMMAND_UI(ID_CHAR_BOLD, OnUpdateCharBold)
 ON_UPDATE_COMMAND_UI(ID_CHAR_ITALIC,
OnUpdateCharItalic)
 ON_UPDATE_COMMAND_UI(ID_CHAR_UNDERLINE,
OnUpdateCharUnderline)
 ON_UPDATE_COMMAND_UI(ID_PARA_LEFT, OnUpdateParaLeft)
 ON_UPDATE_COMMAND_UI(ID_PARA_CENTER,
OnUpdateParaCenter)
 ON_UPDATE_COMMAND_UI(ID_PARA_RIGHT,
OnUpdateParaRight)
 //}}AFX_MSG_MAP
 ON_UPDATE_COMMAND_UI(ID_INDICATOR_LINE,
OnUpdateLineNumber)
END_MESSAGE_MAP()

///
// CMyWordView construction/destruction

CMyWordView::CMyWordView()
{
}

CMyWordView::~CMyWordView()
{

Programming Windows With MFC

 799

}

BOOL CMyWordView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CRichEditView::PreCreateWindow(cs);
}

void CMyWordView::OnInitialUpdate()
{
 CRichEditView::OnInitialUpdate();

 CHARFORMAT cf;
 cf.cbSize = sizeof (CHARFORMAT);
 cf.dwMask = CFM_BOLD | CFM_ITALIC | CFM_UNDERLINE |
 CFM_PROTECTED | CFM_STRIKEOUT | CFM_FACE |
CFM_SIZE;
 cf.dwEffects = 0;
 cf.yHeight = 240; // 240 twips == 12 points
 ::lstrcpy (cf.szFaceName, _T ("Times New Roman"));
 SetCharFormat (cf);
}

void CMyWordView::OnDestroy()
{
 // Deactivate the item on destruction; this is important
 // when a splitter view is being used.
 CRichEditView::OnDestroy();
 COleClientItem* pActiveItem =
GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL && pActiveItem->GetActiveView() == this)
 {
 pActiveItem->Deactivate();
 ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);
 }
}

///
// CMyWordView diagnostics

#ifdef _DEBUG
void CMyWordView::AssertValid() const
{
 CRichEditView::AssertValid();
}

void CMyWordView::Dump(CDumpContext& dc) const
{
 CRichEditView::Dump(dc);
}

CMyWordDoc* CMyWordView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyWordDoc)));
 return (CMyWordDoc*)m_pDocument;
}

Programming Windows With MFC

 800

#endif //_DEBUG

///
// CMyWordView message handlers

void CMyWordView::OnCharBold()
{
 CHARFORMAT cf;
 cf = GetCharFormatSelection ();

 if (!(cf.dwMask & CFM_BOLD) || !(cf.dwEffects & CFE_BOLD))
 cf.dwEffects = CFE_BOLD;
 else
 cf.dwEffects = 0;

 cf.dwMask = CFM_BOLD;
 SetCharFormat (cf);
}

void CMyWordView::OnCharItalic()
{
 CHARFORMAT cf;
 cf = GetCharFormatSelection ();

 if (!(cf.dwMask & CFM_ITALIC) || !(cf.dwEffects & CFE_ITALIC))
 cf.dwEffects = CFE_ITALIC;
 else
 cf.dwEffects = 0;

 cf.dwMask = CFM_ITALIC;
 SetCharFormat (cf);
}

void CMyWordView::OnCharUnderline()
{
 CHARFORMAT cf;
 cf = GetCharFormatSelection ();

 if (!(cf.dwMask & CFM_UNDERLINE) || !(cf.dwEffects &
CFE_UNDERLINE))
 cf.dwEffects = CFE_UNDERLINE;
 else
 cf.dwEffects = 0;

 cf.dwMask = CFM_UNDERLINE;
 SetCharFormat (cf);
}

void CMyWordView::OnParaLeft()
{
 OnParaAlign (PFA_LEFT);
}

void CMyWordView::OnParaCenter()
{
 OnParaAlign (PFA_CENTER);

Programming Windows With MFC

 801

}

void CMyWordView::OnParaRight()
{
 OnParaAlign (PFA_RIGHT);
}

void CMyWordView::OnUpdateCharBold(CCmdUI* pCmdUI)
{
 OnUpdateCharEffect (pCmdUI, CFM_BOLD, CFE_BOLD);
}

void CMyWordView::OnUpdateCharItalic(CCmdUI* pCmdUI)
{
 OnUpdateCharEffect (pCmdUI, CFM_ITALIC, CFE_ITALIC);
}

void CMyWordView::OnUpdateCharUnderline(CCmdUI* pCmdUI)
{
 OnUpdateCharEffect (pCmdUI, CFM_UNDERLINE,
CFE_UNDERLINE);
}

void CMyWordView::OnUpdateParaLeft(CCmdUI* pCmdUI)
{
 OnUpdateParaAlign (pCmdUI, PFA_LEFT);
}

void CMyWordView::OnUpdateParaCenter(CCmdUI* pCmdUI)
{
 OnUpdateParaAlign (pCmdUI, PFA_CENTER);
}

void CMyWordView::OnUpdateParaRight(CCmdUI* pCmdUI)
{
 OnUpdateParaAlign (pCmdUI, PFA_RIGHT);
}

void CMyWordView::OnUpdateLineNumber(CCmdUI* pCmdUI)
{
 int nLine = GetRichEditCtrl ().LineFromChar (-1) + 1;

 CString string;
 string.Format (_T ("Line %d"), nLine);
 pCmdUI->Enable (TRUE);
 pCmdUI->SetText (string);
}

void CMyWordView::ChangeFont(LPCTSTR pszFaceName)

{
 CHARFORMAT cf;
 cf.cbSize = sizeof (CHARFORMAT);
 cf.dwMask = CFM_FACE;
 ::lstrcpy (cf.szFaceName, pszFaceName);
 SetCharFormat (cf);

Programming Windows With MFC

 802

}

void CMyWordView::ChangeFontSize(int nSize)
{
 CHARFORMAT cf;
 cf.cbSize = sizeof (CHARFORMAT);
 cf.dwMask = CFM_SIZE;
 cf.yHeight = nSize;
 SetCharFormat (cf);
}

void CMyWordView::GetFontInfo(LPTSTR pszFaceName, int& nSize)
{
 CHARFORMAT cf = GetCharFormatSelection ();
 ::lstrcpy (pszFaceName,
 cf.dwMask & CFM_FACE ? cf.szFaceName : _T (""));
 nSize = cf.dwMask & CFM_SIZE ? cf.yHeight : -1;
}

StyleBar.h

#if !defined(

AFX_STYLEBAR_H__C85C9099_A154_11D2_8E53_006008A82731__INCLUD
ED_)
#define
AFX_STYLEBAR_H__C85C9099_A154_11D2_8E53_006008A82731__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// StyleBar.h : header file
//

///
// CStyleBar command target

class CStyleBar : public CToolBar
{
// Attributes
public:

// Operations
public:
 static int CALLBACK EnumFontNameProc (ENUMLOGFONT* lpelf,
 NEWTEXTMETRIC* lpntm, int nFontType, LPARAM lParam);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CStyleBar)
 //}}AFX_VIRTUAL
 virtual void OnUpdateCmdUI (CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

// Implementation

Programming Windows With MFC

 803

protected:
 void InitTypefaceList (CDC* pDC);
 CFont m_font;
 CComboBox m_wndFontNames;
 CComboBox m_wndFontSizes;
 // Generated message map functions
 //{{AFX_MSG(CStyleBar)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 afx_msg void OnSelectFont ();
 afx_msg void OnSelectSize ();
 afx_msg void OnCloseUp ();
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
// AFX_STYLEBAR_H__C85C9099_A154_11D2_8E53_006008A82731__INCLUDED_)

// StyleBar.cpp : implementation file
//

#include "stdafx.h"
#include "MyWord.h"
#include "MyWordDoc.h"
#include "MyWordView.h"
#include "StyleBar.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CStyleBar

BEGIN_MESSAGE_MAP(CStyleBar, CToolBar)
 //{{AFX_MSG_MAP(CStyleBar)
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
 ON_CBN_SELENDOK (IDC_FONTNAMES, OnSelectFont)
 ON_CBN_SELENDOK (IDC_FONTSIZES, OnSelectSize)
 ON_CBN_CLOSEUP (IDC_FONTNAMES, OnCloseUp)
 ON_CBN_CLOSEUP (IDC_FONTSIZES, OnCloseUp)
END_MESSAGE_MAP()

///
// CStyleBar message handlers

Programming Windows With MFC

 804

int CStyleBar::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 static int nFontSizes[] = {
 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 36, 48, 72
 };

 if (CToolBar::OnCreate(lpCreateStruct) == -1)
 return -1;

 //
 // Load the toolbar.
 //
 if (!LoadToolBar (IDR_STYLE_BAR))
 return -1;

 //
 // Create an 8-point MS Sans Serif font for the combo boxes.
 //

 CClientDC dc (this);
 m_font.CreatePointFont (80, _T ("MS Sans Serif"));
 CFont* pOldFont = dc.SelectObject (&m_font);

 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);
 int cxChar = tm.tmAveCharWidth;
 int cyChar = tm.tmHeight + tm.tmExternalLeading;

 dc.SelectObject (pOldFont);

 //
 // Add the font name combo box to the toolbar.
 //
 SetButtonInfo (8, IDC_FONTNAMES, TBBS_SEPARATOR, cxChar *
32);

 CRect rect;
 GetItemRect (8, &rect);
 rect.bottom = rect.top + (cyChar * 16);

 if (!m_wndFontNames.Create (WS_CHILD | WS_VISIBLE |
WS_VSCROLL |
 CBS_DROPDOWNLIST | CBS_SORT, rect, this,
IDC_FONTNAMES))
 return -1;

 m_wndFontNames.SetFont (&m_font);
 InitTypefaceList (&dc);

 //
 // Add the font size combo box to the toolbar.
 //
 SetButtonInfo (10, IDC_FONTSIZES, TBBS_SEPARATOR, cxChar *
12);

 GetItemRect (10, &rect);

Programming Windows With MFC

 805

 rect.bottom = rect.top + (cyChar * 14);

 if (!m_wndFontSizes.Create (WS_CHILD | WS_VISIBLE |
WS_VSCROLL |
 CBS_DROPDOWNLIST, rect, this, IDC_FONTSIZES))
 return -1;

 m_wndFontSizes.SetFont (&m_font);

 CString string;
 int nCount = sizeof (nFontSizes) / sizeof (int);
 for (int i=0; i<nCount; i++) {
 string.Format (_T ("%d"), nFontSizes[i]);
 m_wndFontSizes.AddString (string);
 }
 return 0;
}

void CStyleBar::OnSelectFont ()
{
 TCHAR szFaceName[LF_FACESIZE];
 int nIndex = m_wndFontNames.GetCurSel ();
 m_wndFontNames.GetLBText (nIndex, szFaceName);

 CMyWordView* pView =
 (CMyWordView*) ((CFrameWnd*) AfxGetMainWnd
())->GetActiveView ();
 pView->ChangeFont (szFaceName);
}

void CStyleBar::OnSelectSize ()
{
 TCHAR szSize[8];
 int nIndex = m_wndFontSizes.GetCurSel ();
 m_wndFontSizes.GetLBText (nIndex, szSize);

 int nSize = atoi (szSize) * 20; // Need twips

 CMyWordView* pView =
 (CMyWordView*) ((CFrameWnd*) AfxGetMainWnd
())->GetActiveView ();
 pView->ChangeFontSize (nSize);
}

void CStyleBar::OnCloseUp ()
{
 ((CFrameWnd*) AfxGetMainWnd ())->GetActiveView ()->SetFocus ();
}

void CStyleBar::InitTypefaceList (CDC* pDC)
{
 ::EnumFontFamilies (pDC->m_hDC, NULL,
 (FONTENUMPROC) EnumFontNameProc, (LPARAM) this);
}

int CALLBACK CStyleBar::EnumFontNameProc (ENUMLOGFONT* lpelf,

Programming Windows With MFC

 806

 NEWTEXTMETRIC* lpntm, int nFontType, LPARAM lParam)
{
 CStyleBar* pWnd = (CStyleBar*) lParam;
 if (nFontType & TRUETYPE_FONTTYPE)
 pWnd->m_wndFontNames.AddString
(lpelf->elfLogFont.lfFaceName);
 return 1;
}

void CStyleBar::OnUpdateCmdUI (CFrameWnd* pTarget, BOOL
bDisableIfNoHndler)
{
 CToolBar::OnUpdateCmdUI (pTarget, bDisableIfNoHndler);

 CWnd* pWnd = GetFocus ();
 if ((pWnd == &m_wndFontNames) || (pWnd == &m_wndFontSizes))
 return;

 //
 // Get the font name and size.
 //
 int nTwips;
 TCHAR szFaceName[LF_FACESIZE];

 CMyWordView* pView =
 (CMyWordView*) ((CFrameWnd*) AfxGetMainWnd
())->GetActiveView ();
 pView->GetFontInfo (szFaceName, nTwips);

 //
 // Update the font name combo box.
 //
 TCHAR szSelection[LF_FACESIZE];
 m_wndFontNames.GetWindowText (szSelection,
 sizeof (szSelection) / sizeof (TCHAR));

 if (::lstrcmp (szFaceName, szSelection) != 0) {
 if (szFaceName[0] == 0)
 m_wndFontNames.SetCurSel (-1);
 else {
 if (m_wndFontNames.SelectString (-1, szFaceName) ==
CB_ERR)
 m_wndFontNames.SetCurSel (-1);
 }
 }

 //
 // Update the font size combo box.
 //
 TCHAR szSize[4];
 m_wndFontSizes.GetWindowText (szSize,
 sizeof (szSize) / sizeof (TCHAR));
 int nSizeFromComboBox = atoi (szSize);
 int nSizeFromView = nTwips / 20;

 if (nSizeFromComboBox != nSizeFromView) {

Programming Windows With MFC

 807

 if (nTwips == -1)
 m_wndFontSizes.SetCurSel (-1);
 else {
 CString string;
 string.Format (_T ("%d"), nSizeFromView);
 if (m_wndFontSizes.SelectString (-1, string) == CB_ERR)
 m_wndFontSizes.SetCurSel (-1);
 }
 }
}

12.3.1. The Main Toolbar

MyWord's main toolbar is a standard CToolBar that's created
along with the style bar and status bar in
CMainFrame::OnCreate. After the main toolbar is created, the
styles CBRS_TOOLTIPS, CBRS_FLYBY, and
CBRS_SIZE_DYNAMIC are added and
CToolBar::EnableDocking is called with a
CBRS_ALIGN_ANY parameter so that the toolbar can be
docked to any side of the frame window. DockControlBar is
called to dock the toolbar in its default location at the top of the
window so that it can be detached and floated. The call to
LoadBarState in CMainFrame::OnCreate restores the toolbar
to its previous location if the application has been run before.

Handlers for all the buttons on the main toolbar—and for all the
items in MyWord's menus, for that matter—are provided by the
framework. As usual, CWinApp provides handlers for the New,
Open, and Exit commands in the File menu, and CDocument
handles the Save and Save As commands. CRichEditView
provides handlers for the items in the Edit menu (all prewired
into the message map, of course), and CFrameWnd handles the
commands in the View menu. CRichEditView also provides
update handlers for Edit commands, which explains why the
Cut, Copy, Paste, and Undo buttons in the toolbar are
automatically enabled and disabled in response to actions
performed by the user. To see what I mean, type a line or two
of text and highlight a few characters to form a selection. The
Cut and Copy buttons will light up when the first character is
selected and blink out again when the selection is canceled.
Updates are automatic because of the following entries in
CRichEditView's message map:

Programming Windows With MFC

 808

ON_UPDATE_COMMAND_UI (ID_EDIT_CUT,
OnUpdateNeedSel)
ON_UPDATE_COMMAND_UI (ID_EDIT_COPY,
OnUpdateNeedSel)

Scan the CRichEditView message map in the MFC source code
file Viewrich.cpp to see the full range of commands for which
CRichEditView provides default command and update handlers.

12.3.2. The Style Bar

MyWord's style bar is an instance of the CToolBar-derived
class CStyleBar. The style bar is constructed when the frame
window is constructed and created in CMainFrame::OnCreate,
but it also contains its own OnCreate handler that creates and
initializes the font name and font size combo boxes. Other
CStyleBar member functions include OnSelectFont, which
applies typefaces selected from the font name combo box;
OnSelectSize, which applies sizes selected from the font size
combo box; OnCloseUp, which restores the input focus to the
view when either combo box's drop-down list box is closed;
InitTypefaceList and EnumFontNameProc, which work
together to enumerate fonts and add their names to the font
name combo box; and OnUpdateCmdUI, which updates the
combo boxes so that the font name and the font size shown in
the style bar are consistent with the character at the caret or the
characters in a selection.

MyWord's view class provides command and update handlers
for the buttons in the style bar. Clicking the Bold button, for
example, activates CMyWordView::OnCharBold, which is
implemented as follows:

void CMyWordView::OnCharBold ()
{
 CHARFORMAT cf;
 cf = GetCharFormatSelection ();

 if (!(cf.dwMask & CFM_BOLD) ¦¦ !(cf.dwEffects &
CFE_BOLD))
 cf.dwEffects = CFE_BOLD;
 else
 cf.dwEffects = 0;

Programming Windows With MFC

 809

 cf.dwMask = CFM_BOLD;
 SetCharFormat (cf);
}

GetCharFormatSelection is a CRichEditView function that
returns a CHARFORMAT structure containing information
about the text that is currently selected in the view or, if there is
no selection, about the default character format. SetCharFormat
is another CRichEditView function that applies the text
attributes described in a CHARFORMAT structure to the
selected text. If no text is currently selected, SetCharFormat
sets the view's default character format.

Boldface text is toggled on or off by setting the CFM_BOLD
bit in the dwMask field of the CHARFORMAT structure
passed to SetCharFormat and either setting or clearing the
CFE_BOLD bit in the structure's dwEffects field. To determine
the proper setting for the CFE_BOLD flag, OnCharBold
inspects both the CFM_BOLD and CFE_BOLD flags in the
CHARFORMAT structure returned by
GetCharFormatSelection. The CFM_BOLD flag is clear if the
current selection includes a mix of bold and nonbold text. If
CFM_BOLD is set, either the selection consists entirely of bold
or nonbold text or no text is currently selected. In either case,
the CFE_BOLD flag indicates whether the selected (or default)
text is bold or nonbold. OnCharBold can be called in five
possible scenarios. The following table describes each set of
circumstances and documents the result. The view's
OnCharItalic and OnCharUnderline handlers use similar logic
to toggle italic and underline on and off.

Circumstances Under
Which OnCharBold Is

Called

dwMask &
CFM_BOLD

dwEffects
&CFE_BOLD

Action Taken by
OnCharBold

One or more characters
are selected; the
selection contains a mix
of bold and nonbold
text.

0 Undefined Makes all
characters in the
selection bold.

One or more characters
are selected; the
selection consists
entirely of bold text.

Nonzero Nonzero Makes all
characters in the
selection
nonbold.

Programming Windows With MFC

 810

One or more characters
are selected; the
selection consists
entirely of nonbold text.

Nonzero 0 Makes all
characters in the
selection bold.

No text is selected; the
default character format
is bold.

Nonzero Nonzero Sets the default
character format
to nonbold.

No text is selected; the
default character format
is nonbold.

Nonzero 0 Sets the default
character format
to bold.

The handlers for the paragraph alignment buttons are simpler
because their actions don't depend on the current paragraph
alignment. CRichEditView provides a convenient OnParaAlign
function for setting the paragraph alignment to left, right, or
centered. (Unfortunately, neither a CRichEditView nor the rich
edit control that is the foundation for a CRichEditView supports
fully justified text that extends the width between both margins.)
The statement

OnParaAlign (PFA_LEFT);

in OnParaLeft selects left-aligned text. If no text is selected in
the view, OnParaAlign reformats the paragraph that contains
the caret. If text is selected, all paragraphs touched by the
selection are transformed so that the text in them is left aligned.

Each button in the style bar is mapped to an update handler that
calls either CRichEditView::OnUpdateCharEffect or
CRichEditView::OnUpdateParaAlign. In addition to checking
and unchecking the buttons as appropriate, these
CRichEditView functions also set a button to the indeterminate
state when a selection includes a mix of character formats or
paragraph alignments. For a simple demonstration, try this test.
First enter some text if you haven't already. Then highlight
some characters, click the Italic button to italicize the selection,
and select a range of characters that includes both italicized and
nonitalicized text. Because OnUpdateCharItalic calls
OnUpdateCharEffect, the Italic button will become half-grayed,
indicating that the selection contains a mix of character formats.
And because each style bar button is assigned an update
handler, the buttons behave like check push buttons and radio

Programming Windows With MFC

 811

push buttons even though none is assigned the
TBBS_CHECKBOX or TBBS_CHECKGROUP style.

When a font name or a font size is selected from the combo
boxes, the style bar retrieves the font name or font size and
calls a public member function of the view class to implement
the change. Selecting a font name activates
CStyleBar::OnSelectFont, which passes the new typeface name
to the view through CMyWordView::ChangeFont. ChangeFont,
in turn, changes the font in the view by setting the CFM_FACE
flag in a CHARFORMAT structure's dwMask field, copying
the typeface name to the structure's szFaceName field and
calling SetCharFormat:

void CMyWordView::ChangeFont (LPCTSTR pszFaceName)
{
 CHARFORMAT cf;
 cf.cbSize = sizeof (CHARFORMAT);
 cf.dwMask = CFM_FACE;
 ::lstrcpy (cf.szFaceName, pszFaceName);
 SetCharFormat (cf);
}

CStyleBar::OnSelectSize uses a similar procedure to change the
font size through the view's ChangeFontSize member function.
Font sizes passed to CRichEditViews are expressed in twips,
where 1 twip equals 1/20 of a point. Therefore, OnSelectSize
multiplies the point size retrieved from the combo box by 20 to
convert points to twips before calling ChangeFontSize.

Which brings up a question: Because the command message
generated when an item is selected from a combo box is subject
to command routing, why doesn't MyWord let the view handle
combo box notifications directly? Actually, that would be ideal.
But it would also pose a problem. Because the combo boxes are
protected members of the style bar class, the view would have
no way of retrieving the selected item from the combo box. We
could fix that by making the combo boxes public data members
and the style bar a public data member of the frame window
class, but protected data members provide stricter encapsulation.
Letting the style bar handle combo box notifications and pass
the information to the view through public member functions
allows the style bar to hide its data yet still communicate style
changes to the view.

Programming Windows With MFC

 812

So that the items selected in the combo boxes will match the
character format in the view as the caret is moved through the
document and selections are made, CStyleBar overrides the
OnUpdateCmdUI function it inherits from CToolBar and
updates the combo boxes based on information obtained from
the view. After verifying that neither of the combo boxes has
the input focus so that the combo boxes won't flicker if
OnUpdateCmdUI is called while a drop-down list box is
displayed, OnUpdateCmdUI calls CMyWordView::GetFontInfo
to get the current font name and size. If the font name obtained
from the view doesn't match the font name selected in the font
name combo box, OnUpdateCmdUI changes the combo box
selection. Similarly, the selection is updated in the font size
combo box if the size shown in the combo box doesn't match
the size reported by GetFontInfo. Leaving the current selection
intact if it hasn't changed prevents the combo boxes from
flickering as a result of repeated (and unnecessary) updates.
The update handler is also smart enough to blank the combo
box selection if the font name or font size obtained from
GetFontInfo doesn't match any of the items in the combo box
or if the text selected in the view contains a mixture of
typefaces or font sizes.

One thing CStyleBar doesn't do is update the list of typefaces in
the font name combo box if the pool of installed fonts changes
while MyWord is running. When fonts are added or deleted,
Windows sends all top-level windows a WM_FONTCHANGE
message notifying them of the change. To respond to changes
in font availability while an application is running, include an
ON_WM_FONTCHANGE entry in the frame window's
message map and an OnFontChange handler to go with it. The
message-map entry and handler must be members of the frame
window class because WM_FONTCHANGE messages are not
routed, whereas command messages are.

To simplify the logic for updating the selection in the font size
combo box, MyWord's style bar lists TrueType fonts only. If
the font name combo box included raster fonts as well, the font
size combo box would need to be reinitialized each time the
selection changed in the font name combo box because raster
fonts come in a limited number of sizes. Limiting the user's
choice of fonts to TrueType only makes the point sizes listed in
the font size combo box independent of the typeface selected in

Programming Windows With MFC

 813

the font name combo box because TrueType fonts can be
accurately rendered in any point size from 1 through 999.

12.3.3. More About CRichEditView

Most of MyWord's functionality comes from CRichEditView,
which is built around the powerful rich text edit control
provided in the common controls library. MFC's
CRichEditView class doesn't act alone in encapsulating the
features of a rich text edit control; help comes from
CRichEditDoc and CRichEditCntrItem. CRichEditDoc
represents the data stored in a CRichEditView, which can
include linked and embedded OLE objects, and
CRichEditCntrItem represents OLE objects contained in a
CRichEditView.

When you derive a view class from CRichEditView, you must
also derive a document class from CRichEditDoc and override
CRichEditDoc::CreateClientItem, which is pure virtual.
MyWord's CMyWordDoc document class implements
CreateClientItem by creating a CRichEditCntrItem object and
returning a pointer:

CRichEditCntrItem* CMyWordDoc::CreateClientItem (REOBJECT*
preo) const
{
 return new CMyWordCntrItem (preo, (CMyWordDoc*) this);
}

This simple override enables the Paste and Paste Special
commands in the Edit menu to paste OLE items into the
document. For a demonstration, copy a picture created with the
Windows Paint applet to the clipboard and paste it into a
MyWord document. Then double-click the embedded image in
MyWord, and Paint will merge its menus and toolbars with
MyWord's menus and toolbars so that you can edit the picture
in place. If the document is saved, the embedded Paint object is
saved, too, so that it will come back up just as you left it when
you reload the document.

In case you hadn't noticed, MyWord is fully capable of saving
the documents you create and loading them back in. It can even
read RTF files created by other word processors and serialize

Programming Windows With MFC

 814

OLE objects. Yet CMyWordDoc::Serialize contains just one
statement:

CRichEditDoc::Serialize(ar);

You won't find any other serialization code in CMyWordDoc
because CRichEditDoc can handle serialization on its own.
CRichEditDoc::Serialize streams data to and from a
CRichEditView by calling the view's Serialize function, which
in turn relies on the streaming capabilities built into a rich text
edit control. (For more information, see the documentation for
the EM_STREAMIN and EM_STREAMOUT messages that
can be sent to a rich text edit control and the equivalent
StreamIn and StreamOut function members of MFC's
CRichEditCtrl class.) It's relatively easy to write an SDK
application that saves and loads documents in a rich text edit
control, but it's downright simple to do it in MFC because
CRichEditDoc and CRichEditView work together with other
components of the framework to handle all phases of the
serialization process for you.

By default, CRichEditDoc serializes documents in rich text
format. You can instruct a CRichEditDoc to write text files that
lack formatting information and OLE objects by setting the
CRichEditDoc data member m_bRTF equal to FALSE before
storing a document. By the same token, you can read files in
plain text format by setting m_bRTF to FALSE before
dearchiving a document. It wouldn't be hard to give MyWord
the ability to read and write text files as well as rich text format
files, but you'd have to add some logic to the front end of the
deserialization process to identify the type of file that's about to
be read. CRichEditDoc won't load a text file if m_bRTF is
TRUE, and if it reads a rich text format document with
m_bRTF equal to FALSE, it converts RTF formatting
commands to ordinary text. A full treatment of CRichEditDoc
serialization options is beyond the scope of this book, but if
you're interested in learning more, a good place to start is the
Wordpad source code provided with MFC.

12.4. Rebars

Internet Explorer 3.0 introduced a new control type to
Windows: the rebar control. A rebar is a container for other

Programming Windows With MFC

 815

controls. You populate a rebar control by adding bands to it;
each band can include a child window such as a toolbar, push
button, or combo box. You can add as many bands as you like,
and once the rebar is displayed, the user can move and resize
the bands to configure the rebar control to his or her liking.
Each band in a rebar can optionally have an image from an
image list, a label (text string), and a bitmap associated with it.
The image and label, if used, are displayed on the face of the
band. The bitmap, if used, is tiled horizontally and vertically to
form a stylized background for whatever else happens to be
displayed in the band. Remember the toolbar with the textured
background in Internet Explorer 3.0? That toolbar was actually
a rebar control wrapped around an otherwise rather ordinary
toolbar control. A bitmap provided the textured background.

MFC 6.0 introduced two new classes to simplify the
programming of rebar controls: CReBar and CReBarCtrl.
CReBarCtrl is a low-level class that provides a very thin
wrapper around a raw rebar control. CReBar is a high-level
class that makes it almost as easy to add rebars to an MFC
application as it is to add toolbars and status bars. CReBar
publishes just three member functions:

x Create, which creates a rebar from a CReBar object
x GetReBarCtrl, which returns a CReBarCtrl reference to the underlying

rebar control
x AddBar, which adds a band to the rebar

With CReBar and its member functions to help out, creating
rebar-type toolbars like the ones used in Visual C++ could
hardly be easier. The following example converts an MFC
toolbar into a rebar by first creating a CToolBar and then
making it a band in a CReBar:

m_wndToolBar.CreateEx (this);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);
m_wndReBar.Create (this);
m_wndReBar.AddBar (&m_wndToolBar);

You can use AddBar's optional second and third parameters to
specify a label and a background bitmap. For example, if
m_bitmap is a CBitmap object, the statements

m_bitmap.LoadBitmap (IDB_BKGND);

Programming Windows With MFC

 816

m_wndToolBar.CreateEx (this, TBSTYLE_FLAT |
TBSTYLE_TRANSPARENT);
m_wndToolBar.LoadToolBar (IDR_TOOLBAR);
m_wndReBar.Create (this);
m_wndReBar.AddBar (&m_wndToolBar, _T ("Main"), &m_bitmap);

assign the toolbar the label "Main" and use the bitmap resource
whose ID is IDB_BKGND as the toolbar's background. When
you use a background bitmap in this manner, it's important to
create the toolbar with the styles TBSTYLE_FLAT and
TBSTYLE_TRANSPARENT and to use light gray as the
toolbar buttons' background color. Otherwise, the button
backgrounds are drawn over the top of the background bitmap,
and you won't get the effect you were hoping for.

If you check the Internet Explorer ReBars box in AppWizard's
Step 4 dialog box (shown in Figure 12-10), AppWizard wraps a
rebar around the toolbar that it generates. If you want to do
more with the rebar, such as add a label or a bitmap, or if your
application features multiple toolbars and you want to wrap
each of them in a rebar, you must add the code yourself.

Figure 12-10. Using AppWizard to wrap a rebar around a toolbar.

Programming Windows With MFC

 817

Chapter 13. Printing and Print
Previewing

For beginning programmers, learning to print is one of the
single most daunting aspects of Microsoft Windows
programming. Printing has never been easy in Windows
because the same GDI that provides a device-independent
interface to every kind of printer imaginable makes you jump
through hoops to print a simple document. The GDI also gives
you such precise control over the output that users expect a lot
from Windows applications that produce printed documents.
The good news is that the same GDI functions you use to draw
on the screen can be used to draw on a sheet of paper. The bad
news is that printing entails lots of extra details, from
paginating the output to giving the user the means to terminate
an unfinished print job. And if you really want your product to
be competitive, you should probably support print previewing
so that the user can see exactly what the printed output will
look like before he or she sends the first page to the printer.

In Chapters 9, 10, 11, and 12, you saw how the document/view
architecture simplifies the development of single document
interface (SDI) and multiple document interface (MDI)
applications by letting MFC take over key aspects of a
program's operation. In this chapter, you'll learn how the same
document/view architecture simplifies printing and print
previewing. Even MFC-style printing isn't something to be
taken lightly, but thanks to the support the framework offers,
the tedium of writing and testing code that renders documents
on printers and other hardcopy devices is sharply reduced. And
once you've given an application the ability to print, print
previewing comes almost for free.

13.1. Printing with Documents and Views

MFC's print architecture is built around a kernel formed by
GDI printing functions and virtual CView member functions.
To understand what's on the outside, it helps to first understand
what's on the inside. Here's the approach we'll take in this
chapter as we study the code that enables an MFC application
to support printing and print previewing:

Programming Windows With MFC

 818

x Look at the Windows printing model, and examine the steps an
SDK-style application goes through to print a document.

x Understand the relationship between the Windows print architecture and
the MFC print architecture and the mechanics of printing from MFC
applications.

x Develop a bare-bones printing program that demonstrates how the same
code can be used to send output to either the screen or the printer.

x Develop a more ambitious printing program whose printing and
previewing capabilities are on a par with those of commercial
applications.

As you'll discover, printing from an MFC application isn't
altogether different than rendering to the screen except for the
fact that printed output must be paginated. Because MFC
handles almost everything else, much of the effort you expend
writing printing code will be devoted to figuring out where the
page breaks go and how to position your output on the printed
page.

13.1.1. The Windows Print Architecture

Printing a document from a Windows application without the
benefit of MFC involves a number of steps. You begin by
obtaining a device context (DC) for the printer that output will
go to. Just as an application needs a screen DC to send output
to the screen, it needs a printer DC to send output to a printer. If
you know the device name of the printer you want to print to,
you can create a device context yourself with the
Win32 ::CreateDC function or MFC's CDC::CreateDC:

CDC dc;
dc.CreateDC (NULL, _T ("HP LaserJet IIP"), NULL, NULL);

If you don't know the device name but would like the
application to print to the default printer, you can use MFC's
handy CPrintDialog::GetDefaults and
CPrintDialog::GetPrinterDC functions to create the device
context:

CDC dc;
CPrintDialog dlg (FALSE);
dlg.GetDefaults ();
dc.Attach (dlg.GetPrinterDC ());

Programming Windows With MFC

 819

If you'd like to let the user select a printer, you can use
CPrintDialog::DoModal to display a Print dialog (one of the
common dialogs supplied by the operating system) and call
CPrintDialog::GetPrinterDC to get a DC after the dialog is
dismissed:

CDC dc;
CPrintDialog dlg (FALSE);
if (dlg.DoModal () == IDOK)
 dc.Attach (dlg.GetPrinterDC ());

To prevent resource leakage, you should delete a printer DC
obtained by any of these methods when it's no longer needed. If
the CDC object to which you attach the DC is created on the
stack, deletion is automatic.

Once you have a printer DC in hand, you're ready to begin
printing. The next step is to call ::StartDoc or its MFC
equivalent, CDC::StartDoc, to mark the beginning of the print
job. CDC::StartDoc accepts just one parameter: a pointer to a
DOCINFO structure containing a descriptive name for the
document that's about to be printed, the name of the file the
output will go to if you're printing to a file rather than a printer,
and other information about the print job. The statements

DOCINFO di;
::ZeroMemory (&di, sizeof (DOCINFO));
di.cbSize = sizeof (DOCINFO);
di.lpszDocName = _T ("Budget Figures for the Current Fiscal Year");
dc.StartDoc (&di);

start a print job on the printer associated with the CDC object
dc. If you open a printer window while the document is printing,
the string "Budget Figures for the Current Fiscal Year" will
identify the print job. If StartDoc fails, it returns a 0 or a
less-than-0 value. If it succeeds, it returns a positive integer that
equals the print job ID. You can use the print job ID in
conjunction with Win32 print control functions such
as ::GetJob and ::SetJob.

Next comes output to the page. Text and graphics are rendered
on a printer with GDI functions. If dc refers to a screen device
context, the statement

Programming Windows With MFC

 820

dc.Ellipse (0, 0, 100, 100);

draws an ellipse 100 logical units wide and 100 logical units
high on the screen. If dc refers to a printer device context, the
circle is drawn to the printer instead. Pages of output are
framed between calls to CDC::StartPage and CDC::EndPage,
which mark the beginning and end of each page. A document
that contains nPageCount pages of output could be printed as
follows:

for (int i=1; i<=nPageCount; i++) {
 dc.StartPage ();
 // Print page i
 dc.EndPage ();
}

In a simplified sense, calling EndPage is analogous to
outputting a form feed character to the printer. In between
StartPage and EndPage, you print the page by calling CDC
member functions. Your application should call StartPage and
EndPage even if the document contains only one page.

A common mistake that programmers make the first time they
write printing code is failing to initialize the printer DC for
each page. In Windows 95 and Windows 98, the device
context's default attributes are restored each time StartPage is
called. You can't just select a font or set the mapping mode
right after the DC is created and expect those attributes to
remain in effect indefinitely as you can for a screen DC. Instead,
you must reinitialize the printer DC for each page. (In
Microsoft Windows NT 3.5 and later, a printer DC retains its
settings across calls to StartPage and EndPage, but even a
Windows NT application should reinitialize the device context
at the beginning of each page if it's to work under Windows 95
and Windows 98, too.) If you print using the
MM_LOENGLISH mapping mode, for example, you should
call CDC::SetMapMode at the beginning of each page, like
this:

for (int i=1; i<=nPageCount; i++) {
 dc.StartPage ();
 dc.SetMapMode (MM_LOENGLISH);
 // Print page i.

Programming Windows With MFC

 821

 dc.EndPage ();
}

If you do it this way instead:

dc.SetMapMode (MM_LOENGLISH);
for (int i=1; i<=nPageCount; i++) {
 dc.StartPage ();
 // Print page i.
 dc.EndPage ();
}

printing will be performed in the default MM_TEXT mapping
mode.

After it prints the final page, an application terminates a print
job by calling CDC::EndDoc. Printing is made slightly more
complicated by the fact that EndDoc shouldn't be called if a
previous call to EndPage returned a code indicating that the
print job had already been terminated by the GDI. EndPage
returns a signed integer value greater than 0 if the page was
successfully output to the printer. A 0 or negative return value
indicates either that an error occurred or that the user canceled
the print job while the page was being printed. In either of those
two events, the return code will equal one of the following
values.

Return Code Description

SP_ERROR The print job was aborted for an unspecified reason.

SP_APPABORT The print job was aborted because the user clicked the
Cancel button in the dialog box that displays the status
of the print job.

SP_USERABORT The print job was aborted because the user canceled it
through the operating system shell.

SP_OUTOFDISK The system is out of disk space, so no further printer
data can be spooled.

SP_OUTOFMEMORY The system is out of memory, so no further printer data
can be spooled.

The following loop prints each page of a document and calls
EndDoc at the end of the print job if and only if each page was
successfully printed:

Programming Windows With MFC

 822

if (dc.StartDoc (&di) > 0) {
 BOOL bContinue = TRUE;

 for (int i=1; i<=nPageCount && bContinue; i++) {
 dc.StartPage ();
 // Initialize the device context.
 // Print page i.
 if (dc.EndPage () <= 0)
 bContinue = FALSE;
 }

 if (bContinue)
 dc.EndDoc ();
 else
 dc.AbortDoc ();
}

CDC::AbortDoc signals the end of an uncompleted print job
just as EndDoc signals the end of a successful print job.
AbortDoc can also be called between calls to StartPage and
EndPage to terminate a print job before the final page is
printed.

13.1.1.1. The Abort Procedure and the Abort Dialog

If that's all there was to sending output to a printer under
Windows, printing wouldn't be such a formidable task after all.
But there's more. Because a large print job can take minutes or
even hours to complete, the user should be able to terminate a
print job before it's finished. Windows applications traditionally
give the user the means to cancel a print job by displaying a
print status dialog containing a Cancel button. Clicking the
Cancel button cancels printing by forcing EndPage to return
SP_APPABORT. The mechanism that links the Cancel button
to the printing code in your application is a function that
Windows calls an abort procedure.

An abort procedure is an exported callback function that
Windows calls repeatedly as it processes printed output. It's
prototyped as follows:

BOOL CALLBACK AbortProc (HDC hDC, int nCode)

Programming Windows With MFC

 823

hDC holds the handle of the printer device context. nCode is 0
if printing is proceeding smoothly or SP_OUTOFDISK if the
print spooler is temporarily out of disk space. nCode is usually
ignored because the print spooler responds to an
SP_OUTOFDISK condition by waiting around for more disk
space to come free. The abort procedure's job is twofold:

x To check the message queue with ::PeekMessage and retrieve and
dispatch any waiting messages

x To tell Windows whether printing should continue by returning TRUE
(to continue printing) or FALSE (to abort)

You pass Windows the address of your abort procedure by
calling ::SetAbortProc or CDC::SetAbortProc. A very simple
abort procedure looks like this:

BOOL CALLBACK AbortProc (HDC hDC, int nCode)
{
 MSG msg;
 while (::PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE))
 AfxGetThread ()->PumpMessage ();
 return TRUE;
}

The message loop inside AbortProc allows the
WM_COMMAND message generated when the print status
dialog's Cancel button is clicked to make it through to the
window procedure even though the application is busy printing.
In 16-bit Windows, the message loop plays an important role in
multitasking by yielding so that the print spooler and other
processes running in the system can get CPU time. In Windows
95 and Windows 98, yielding in the abort procedure enhances
multitasking performance when 32-bit applications print to
16-bit printer drivers by reducing contention for the
Win16Mutex—an internal flag that locks 32-bit applications
out of the 16-bit kernel while a 16-bit application executes code
there.

Before it begins printing (before calling StartDoc), the
application calls SetAbortProc to set the abort procedure,
disables its own window by calling CWnd::EnableWindow
with a FALSE parameter, and displays the print status or
"abort" dialog—a modeless dialog box containing a Cancel
button and usually one or more static controls listing the
document's file name and the number of the page that's

Programming Windows With MFC

 824

currently being printed. Disabling the main window ensures
that no other input will interrupt the printing process. The
window is reenabled when printing is finished and the dialog
box is destroyed. The dialog, meanwhile, sets a flag—call it
bUserAbort—from FALSE to TRUE if the Cancel button is
clicked. And the abort procedure is modified so that it returns
FALSE to shut down printing if bUserAbort is TRUE.

BOOL CALLBACK AbortProc (HDC hDC, int nCode)
{
 MSG msg;
 while (!bUserAbort &&
 ::PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE))
 AfxGetThread ()->PumpMessage ();
 return !bUserAbort;
}

Thus, printing proceeds unimpeded if the Cancel button isn't
clicked because AbortProc always returns a nonzero value. But
if Cancel is clicked, bUserAbort changes from FALSE to
TRUE, the next call to AbortProc returns 0, and Windows
terminates the printing process. EndPage returns
SP_APPABORT, and the call to EndDoc is subsequently
bypassed.

13.1.1.2. Print Spooling

Everything I've described up to this point constitutes the "front
end" of the printing process—the part the application is
responsible for. Windows handles the back end, which is a joint
effort on the part of the GDI, the print spooler, the printer
driver, and other components of the 32-bit print subsystem.
Windows supports two kinds of print spooling: EMF (enhanced
metafile) print spooling and "raw" print spooling. If EMF print
spooling is enabled, GDI calls executed through the printer DC
are written to an enhanced metafile on the hard disk and stored
there until the print spooler, which runs in a separate thread,
unspools the commands and "plays" them into the printer driver.
If raw print spooling (the only option available on PostScript
printers) is selected instead, output is processed through the
printer driver and spooled to disk in raw form. Spooling can
also be disabled. In that case, GDI commands are transmitted
directly to the printer driver each time EndPage is called. Print
spooling speeds the return-to-application time by preventing a

Programming Windows With MFC

 825

program from having to wait for the printer to physically print
each page of output. Spooling metafile commands instead of
raw printer data further improves the return-to-application time
by decoupling the performance of the application from the
performance of the printer driver.

Fortunately, applications can safely ignore what happens at the
back end of the printing process and concentrate on the front
end. Still, many details must be attended to before an
application can get down to the real business of
printing—paginating the output and executing GDI calls
between StartPage and EndPage to render each page on the
printer, for example. With this background in mind, let's see
what MFC can do to help.

13.1.2. The MFC Print Architecture

MFC's simplified print architecture is just one more reason that
Windows programmers are migrating away from the SDK and
toward object-oriented development environments. When you
add print capabilities to a document/view application, you can
forget about most of the code samples in the previous section.
The framework creates a printer DC for you and deletes the DC
when printing is finished. The framework also calls StartDoc
and EndDoc to begin and end the print job and StartPage and
EndPage to bracket GDI calls for individual pages. The
framework even supplies the dialog box that displays the status
of the print job and the abort procedure that shuts down the
print operation if the user clicks the Cancel button. And in
some cases, the same OnDraw function that renders a
document on the screen can render it on the printer and in a
print preview window, too.

The key to printing from a document/view application is a set
of virtual CView functions the framework calls at various stages
during the printing process. These functions are listed in the
following table. Which of them you override and what you do
in the overrides depend on the content of your printed output.
At the very least, you'll always override OnPreparePrinting
and call DoPreparePrinting so that the framework will display
a Print dialog and create a printer DC for you. A minimal
OnPreparePrinting override looks like this:

Programming Windows With MFC

 826

BOOL CMyView::OnPreparePrinting (CPrintInfo* pInfo)
{
 return DoPreparePrinting (pInfo);
}

A nonzero return from OnPreparePrinting begins the printing
process, and a 0 return cancels the print job before it begins.
DoPreparePrinting returns 0 if the user cancels the print job by
clicking the Cancel button in the Print dialog, if no printers are
installed, or if the framework is unable to create a printer DC.

Key CView Print Overridables

Function Description

OnPreparePrinting Called at the onset of a print job. Override to call
DoPreparePrinting and to provide the framework with the
page count (if known) and other information about the
print job.

OnBeginPrinting Called just before printing begins. Override to allocate
fonts and other resources required for printing.

OnPrepareDC Called before each page is printed. Override to position the
viewport origin and set a clipping region before OnDraw
prints the next page.

OnPrint Called before each page is printed. Override to print
headers, footers, and other page elements that aren't drawn
by OnDraw or to print without relying on OnDraw.

OnEndPrinting Called when printing is finished. Override to deallocate
resources allocated in OnBeginPrinting.

Before proceeding, let me take a moment to explain the two
basic approaches to printing from an MFC application. The first
is to let OnDraw handle both screen output and printed output.
The second is to let OnDraw handle screen output and OnPrint
handle printed output. Most experienced MFC developers
would agree that the let-OnDraw-do-it-all method is highly
overrated. It almost inevitably requires you to add print-specific
logic to OnDraw, and you usually end up overriding OnPrint
anyway to print page numbers, headers, footers, and other page
elements that appear only on the printed page. So while it's true
that a view's OnDraw function can write to both the screen and
the printer, it's usually more practical to put printer output logic
in OnPrint and screen output logic in OnDraw. I'll discuss both
approaches in this chapter, but I'll emphasize the latter.

Programming Windows With MFC

 827

13.1.2.1. More on the OnPreparePrinting Function

The CPrintInfo object passed to OnPreparePrinting contains
information describing the parameters of the print job,
including the minimum and maximum page numbers. The
minimum and maximum page numbers default to 1 and
0xFFFF, respectively, with 0xFFFF signaling the framework
that the maximum page number is unknown. If your application
knows how many pages the document contains when
OnPreparePrinting is called, it should inform MFC by calling
CPrintInfo::SetMaxPage before calling DoPreparePrinting:

BOOL CMyView::OnPreparePrinting (CPrintInfo* pInfo)
{
 pInfo->SetMaxPage (10);
 return DoPreparePrinting (pInfo);
}

MFC, in turn, displays the maximum page number—in this
case, 10—in the To box of the Print dialog.

SetMinPage and SetMaxPage are two of several CPrintInfo
member functions you can call to specify print parameters or to
query the framework about print options entered by the user.
GetFromPage and GetToPage return the starting and ending
page numbers the user entered in the Print dialog. Be sure to
call them after DoPreparePrinting, because it's
DoPreparePrinting that displays the dialog. CPrintInfo also
includes several public data members, including an m_pPD
variable that points to the initialized CPrintDialog object
through which DoPreparePrinting displays the Print dialog.
You can use this pointer to customize the Print dialog before it
appears on the screen and to extract information from the
dialog by calling CPrintDialog functions or accessing
CPrintDialog data members directly. Later in the chapter,
you'll see an example demonstrating how and why this is done.

13.1.2.2. The OnBeginPrinting andOnEndPrinting
Functions

Often the maximum page number depends on the size of the
printable area of each page output from the printer.
Unfortunately, until the user has selected a printer and the
framework has created a printer DC, you can only guess what

Programming Windows With MFC

 828

that printable area will be. If you don't set the maximum page
number in OnPreparePrinting, you should set it in
OnBeginPrinting if possible. OnBeginPrinting receives a
pointer to an initialized CPrintInfo structure and a pointer to a
CDC object representing the printer DC the framework created
when you called DoPreparePrinting. You can determine the
dimensions of the printable page area in OnBeginPrinting by
calling CDC::GetDeviceCaps twice—once with a HORZRES
parameter and once with a VERTRES parameter. The
following OnBeginPrinting override uses GetDeviceCaps to
determine the height of the printable page area in pixels and
uses that information to inform the framework how many pages
the document contains:

void CMyView::OnBeginPrinting (CDC* pDC, CPrintInfo* pInfo)
{
 int nPageHeight = pDC->GetDeviceCaps (VERTRES);
 int nDocLength = GetDocument ()->GetDocLength ();
 int nMaxPage = max (1, (nDocLength + (nPageHeight - 1)) /
 nPageHeight);
 pInfo->SetMaxPage (nMaxPage);
}

In this example, GetDocLength is a document function that
returns the length of the document in pixels. CPrintInfo
contains a data member named m_rectDraw that describes the
printable page area in logical coordinates, but don't try to use
m_rectDraw in OnBeginPrinting because it isn't initialized
until after OnBeginPrinting returns.

Calling SetMaxPage in either OnPreparePrinting or
OnBeginPrinting lets the framework know how many times it
should call OnPrint to print a page. If it's impossible (or simply
inconvenient) to determine the document length before printing
begins, you can perform print-time pagination by overriding
OnPrepareDC and setting CPrintInfo::m_bContinuePrinting to
TRUE or FALSE each time OnPrepareDC is called. An
m_bContinuePrinting value equal to FALSE terminates the
print job. If you don't call SetMaxPage, the framework assumes
the document is only one page long. Therefore, you must
override OnPrepareDC and set m_bContinuePrinting to print
documents that are more than one page long if you don't set the
maximum page number with SetMaxPage.

Programming Windows With MFC

 829

OnBeginPrinting is also the best place to create fonts and other
GDI resources used in the printing process. Suppose that
OnDraw uses a GDI font to output text to the screen and that
the font height is based on the current screen metrics. To print a
WYSIWYG version of that font on the printer, you must create
a separate font that's scaled to printer metrics rather than to
screen metrics. By creating the font in OnBeginPrinting and
deleting it in OnEndPrinting, you ensure that the font exists
only for the period of time that it is needed and also avoid the
overhead of re-creating it each time a page is printed.

OnEndPrinting is the counterpart of OnBeginPrinting. It's a
great place to free fonts and other resources allocated in
OnBeginPrinting. If there are no resources to free, or if you
didn't override OnBeginPrinting to begin with, you probably
don't need to override OnEndPrinting, either.

13.1.2.3. The OnPrepareDC Function

OnPrepareDC is called once for each page of the printed
document. One reason to override OnPrepareDC is to perform
print-time pagination as described in the previous section.
Another reason to override OnPrepareDC is to calculate a new
viewport origin from the current page number so that OnDraw
can output the current page to the printer. Like
OnBeginPrinting, OnPrepareDC receives a pointer to a device
context and a pointer to a CPrintInfo object. Unlike
OnBeginPrinting, OnPrepareDC is called before screen
repaints as well as in preparation for outputting a page to the
printer. If the call to OnPrepareDC precedes a screen repaint,
the CDC pointer refers to a screen DC and the CPrintInfo
pointer is NULL. If OnPrepareDC is called as part of the
printing process, the CDC pointer references a printer DC and
the CPrintInfo pointer is non-NULL. In the latter case, you can
obtain the page number of the page that's about to be printed
from the CPrintInfo object's public m_nCurPage data member.
You can determine whether OnPrepareDC was called for the
screen or the printer by calling CDC::IsPrinting through the
CDC pointer passed in the parameter list.

The following implementation of OnPrepareDC moves the
viewport origin in the y direction so that the device point
(0,0)—the pixel in the upper left corner of the printed

Programming Windows With MFC

 830

page—corresponds to the logical point in the upper left corner
of the document's current page. m_nPageHeight is a CMyView
data member that holds the printable page height:

void CMyView::OnPrepareDC (CDC* pDC, CPrintInfo* pInfo)
{
 CView::OnPrepareDC (pDC, pInfo);
 if (pDC->IsPrinting ()) { // If printing...
 int y = (pInfo->m_nCurPage - 1) * m_nPageHeight;
 pDC->SetViewportOrg (0, -y);
 }
}

Setting the viewport origin this way ensures that an OnDraw
function that tries to draw the entire document will actually
draw only the part that corresponds to the current page. This
example assumes that you want to use the entire printable area
of the page. Often it's also necessary to set a clipping region to
restrict the part of the document that's printed to something less
than the page's full printable area. Rectangular regions are
created with CRgn::CreateRectRgn and selected into DCs to
serve as clipping regions with CDC::SelectClipRgn.

As a rule, you need to override OnPrepareDC only if you use
OnDraw to draw to both the screen and the printed page. If you
do all your printing from OnPrint, there's no need to override
OnPrepareDC. When you do override it, you should call the
base class before doing anything else so that the default
implementation will get a chance to do its thing. Calling the
base class's OnPrepareDC is especially important when your
view class is derived from CScrollView because
CScrollView::OnPrepareDC sets the viewport origin for screen
DCs to match the current scroll position. When a call to
CScrollView::OnPrepareDC returns, the DC's mapping mode
is set to the mapping mode specified in the call to
SetScrollSizes. If your view class isn't derived from
CScrollView, OnPrepareDC is a good place to call
SetMapMode to set the device context's mapping mode.

13.1.2.4. The OnPrint Function

After calling OnPrepareDC for a given page, the framework
calls CView::OnPrint. Like many other CView printing
functions, OnPrint receives a pointer to the printer DC and a

Programming Windows With MFC

 831

pointer to a CPrintInfo object. The default implementation in
Viewcore.cpp verifies the validity of pDC and calls OnDraw:

void CView::OnPrint(CDC* pDC, CPrintInfo*)
{
 ASSERT_VALID(pDC);

 // Override and set printing variables based on page number
 OnDraw(pDC); // Call Draw
}

What you do when you override OnPrint (and whether you
override it at all) depends on how the application does its
printing. If OnDraw handles both screen output and printed
output, override OnPrint to print page elements that don't
appear on the screen. The following OnPrint function calls a
local member function named PrintHeader to print a header at
the top of the page, another local member function named
PrintPageNumber to print a page number at the bottom of the
page, and OnDraw to print the body of the page:

void CMyView::OnPrint (CDC* pDC, CPrintInfo* pInfo)
{
 PrintHeader (pDC);
 PrintPageNumber (pDC, pInfo->m_nCurPage);
 // Set the viewport origin and/or clipping region before
 // calling OnDraw...
 OnDraw (pDC);
}

Any adjustments made to the printer DC with SetViewportOrg
or SelectClipRgn so that OnDraw will draw just the part of the
document that corresponds to the current page should now be
made in OnPrint rather than OnPrepareDC to prevent headers
and page numbers from being affected.

If instead you elect to do all your printing from OnPrint, you
override OnPrint and include in it code to output one printed
page. To determine which page OnPrint has been called to print,
check CPrintInfo::m_nCurPage.

Programming Windows With MFC

 832

13.1.2.5. CView::OnFilePrint and Other Command
Handlers

Printing usually begins when the user selects the Print
command from the File menu, so MFC provides a
CView::OnFilePrint function you can connect to the
ID_FILE_PRINT menu item through the view's message map.
Figure 13-1 shows what happens when OnFilePrint is called
and when in the printing process each virtual CView printing
function is called. It also shows how the MFC print architecture
meshes with the Windows print architecture: if you take away
the dark rectangles representing the virtual CView functions
that the framework calls, you're left with a pretty good
schematic of the Windows printing model. Notice that
OnPrepareDC is called twice per page when your code
executes under Windows 95 or Windows 98. The first call to
OnPrepareDC is made to preserve compatibility with 16-bit
versions of MFC, which called OnPrepareDC before StartPage
and got away with it because in 16-bit Windows EndPage, not
StartPage, resets the device context. The second call to
OnPrepareDC is made because in Windows 95 and Windows
98, changes made to the device context in the first call to
OnPrepareDC are nullified when StartDoc is called.

Programming Windows With MFC

 833

Figure 13-1. Overview of the MFC print architecture.

MFC also provides predefined command IDs and default
command handlers for the File menu's Print Preview and Print
Setup commands. The File-Print Preview command
(ID=ID_FILE_PRINT_PREVIEW) is handled by
CView::OnFilePrintPreview, and File-Print Setup
(ID=ID_FILE_PRINT_SETUP) is handled by
CWinApp::OnFilePrintSetup. Like OnFilePrint, these
command handlers are not prewired into the message maps of
the classes to which they belong. To enable these handlers, you
must do the message mapping yourself. If you use AppWizard
to generate the skeleton of an application that prints, the
message mapping is done for you. AppWizard also maps
ID_FILE_PRINT_DIRECT to CView::OnFilePrint to enable
"direct" printing—printing performed not by the user's selecting
Print from the File menu but by the user's selecting Print from a
document's context menu or dropping a document icon onto a
printer.

Programming Windows With MFC

 834

13.1.3. Print Previewing

Once a document/view application is endowed with the ability
to print, adding print previewing is as simple as adding a Print
Preview command to the File menu
(ID=ID_FILE_PRINT_PREVIEW) and adding an entry to the
message map to connect this command ID to
CView::OnFilePrintPreview. A lot of code backs up
OnFilePrintPreview (see the MFC source code file
Viewprev.cpp for details), but what happens in
OnFilePrintPreview is pretty simple. OnFilePrintPreview takes
over the frame window and fills it with a view created from a
special CScrollView-derived class named CPreviewView. It
also adds a toolbar with buttons for going to the next or the
previous page, switching between one-page and two-page
views, zooming in and out, and so on. CPreviewView::OnDraw
draws a white rectangle representing a printed page (or two
rectangles if two-page view is selected), sets some scaling
parameters so that the printable area of the white rectangle
matches the printable area of a real page, and calls OnPrint to
draw in the rectangle. As far as your application is concerned,
output is being sent to the printer; the same virtual functions
that get called during printing also get called during print
preview. But in reality, output goes to the print preview
window instead.

Part of the magic that makes print previewing work is the fact
that the device context referenced in the pDC parameter passed
to CView printing functions is actually two device contexts in
one. Every CDC object contains two device context handles:
one for an "output DC" (m_hDC) and another for an "attribute
DC" (m_hAttribDC). MFC uses the output DC for calls that
produce physical output and the attribute DC for calls that
request information about the device context—the current text
color or current background mode, for example. Most of the
time, m_hDC and m_hAttribDC hold the same device context
handle. But during print previewing, m_hDC references the
screen DC where pages are previewed and m_hAttribDC
references the printer DC. The result? If your application uses
GetDeviceCaps or other CDC functions to query the GDI about
the printer's capabilities or the properties of the printed page,
the information it gets back is genuine because it comes from
the printer DC. But all physical output goes to the screen DC.

Programming Windows With MFC

 835

When the user closes the print preview window, the framework
calls a virtual CView function named OnEndPrintPreview to
notify the application that print preview is about to end. The
default implementation of OnEndPrintPreview calls
OnEndPrinting, reactivates the original view, and destroys the
print preview window. Programmers sometimes override
OnEndPrintPreview in order to scroll the view of the document
to the last page displayed in print preview mode. (By default,
the scroll position in the original view is preserved so that
scrolling in print preview mode doesn't affect the original view.)
The following OnEndPrintPreview override demonstrates how
you can link the scroll position in the original view to the scroll
position in the print preview window for a CScrollView:

void CMyView::OnEndPrintPreview (CDC* pDC, CPrintInfo* pInfo,
 POINT point, CPreviewView* pView)
{
 UINT nPage = pInfo->m_nCurPage;
 POINT pt;
 // Convert nPage into a scroll position in pt.
 ScrollToPosition (pt);
 CScrollView::OnEndPrintPreview (pDC, pInfo, point, pView);
}

You'll have to supply the code that converts the current page
number into a scroll position yourself. Don't rely on the point
parameter passed to OnEndPrintPreview to tell you anything;
in current versions of MFC, point always equals (0,0). You
should call the base class's OnEndPrintPreview function from
the overridden version so that the framework can exit print
preview mode and restore the frame window to its original
state.

If your printing code needs to discriminate between real
printing and printing performed in print preview mode, it can
check the m_bPreview data member of the CPrintInfo object
referenced in calls to OnBeginPrinting, OnPrint, and other
print overridables. m_bPreview is nonzero if the document is
being previewed and 0 if it isn't. In addition,
CPrintInfo::m_nNumPreviewPages can be inspected to
determine whether one or two pages are displayed.

13.2. A Bare-Bones Printing Application

Programming Windows With MFC

 836

The EZPrint application shown in Figure 13-2 demonstrates the
minimum amount of work a document/view application must
do to support printing and print previewing.

Figure 13-2. The EZPrint application displaying a print preview.

An EZPrint "document" contains a blue circle 10 centimeters
(1,000 units in the MM_LOMETRIC mapping mode) in
diameter with a yellow interior. The application's File menu
contains just four items: Print, Print Preview, Print Setup, and
Exit. The Print and Print Preview commands are mapped to
CView::OnFilePrint and CView::OnFilePrintPreview in
CEZPrintView's message map, and the Print Setup command is
mapped to CWinApp::OnFilePrintSetup in CEZPrintApp's
message map. AppWizard performed all the message mapping.
The Print command displays a Print dialog box in which the
user can specify printing options such as the desired printer, the
print range, and the number of copies. Print Preview puts the
application in print preview mode. Print Setup displays a Print
Setup dialog box. You can use the Print Setup dialog box to
choose a printer, select a paper size, and specify the page
orientation—portrait or landscape.

I used AppWizard to create the EZPrint project. In the Step 4
dialog box (shown in Figure 13-3), I checked the Printing And

Programming Windows With MFC

 837

Print Preview box to add printing support. Checking this box
prompts AppWizard to make three modifications to the code
that it generates:

x Add Print, Print Preview, and Print Setup commands to the File menu.
x Modify the message map to connect the Print, Print Preview, and Print

Setup commands to MFC-provided command handlers.
x Override OnPreparePrinting, OnBeginPrinting, and OnEndPrinting in

the view class.

AppWizard's OnPreparePrinting function includes a call to
DoPreparePrinting. Its OnBeginPrinting and OnEndPrinting
functions do nothing, so you can delete them if you don't use
them. I left them in, but EZPrint would work just as well
without them. All of EZPrint's printing code is found in the
view class, whose source code is reproduced in Figure 13-4.

Figure 13-3. Using AppWizard to add printing and print previewing
support.

There's not a lot to say about EZPrint's printing and print
previewing capabilities other than that MFC does the bulk of
the work. CEZPrintView::OnDraw renders all the output,
regardless of whether that output is destined for the screen, a
printer, or a print preview window. So that the circle will have
the same proportions regardless of where it is drawn, OnDraw

Programming Windows With MFC

 838

does all of its drawing using the MM_LOMETRIC mapping
mode. That's important, because pixel-per-inch values for
screens and printers are rarely the same. If you drew to the
screen and the printer in the MM_TEXT mapping mode, the
circle would be a lot smaller on a 600 dpi printer than it would
be on the screen. To get WYSIWYG results, you'd have to
scale the circle's height and width manually during printing and
print previewing using ratios derived from pixel-per-inch
counts for the screen and printer. Using a mapping mode in
which logical units scale to physical distances rather than pixel
counts allows the GDI to do the scaling and ensures that
OnDraw can produce consistent results no matter where the
output is rendered.

Figure 13-4. The EZPrint application.

// EZPrintView.h : interface of the CEZPrintView class
//
///

#if !defined(

AFX_EZPRINTVIEW_H__3A83FDED_A3E6_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_EZPRINTVIEW_H__3A83FDED_A3E6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CEZPrintView : public CView
{
protected: // create from serialization only
 CEZPrintView();
 DECLARE_DYNCREATE(CEZPrintView)

// Attributes
public:
 CEZPrintDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEZPrintView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view

Programming Windows With MFC

 839

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEZPrintView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEZPrintView)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in EZPrintView.cpp
inline CEZPrintDoc* CEZPrintView::GetDocument()
 { return (CEZPrintDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_EZPRINTVIEW_H__3A83FDED_A3E6_11D2_8E53_006008A82731__INCLUDED_)

// EZPrintView.cpp : implementation of the CEZPrintView class
//
#include "stdafx.h"
#include "EZPrint.h"

#include "EZPrintDoc.h"
#include "EZPrintView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

Programming Windows With MFC

 840

///
// CEZPrintView

IMPLEMENT_DYNCREATE(CEZPrintView, CView)

BEGIN_MESSAGE_MAP(CEZPrintView, CView)
 //{{AFX_MSG_MAP(CEZPrintView)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW,
CView::OnFilePrintPreview)
END_MESSAGE_MAP()

///
// CEZPrintView construction/destruction

CEZPrintView::CEZPrintView()
{
}

CEZPrintView::~CEZPrintView()
{
}

BOOL CEZPrintView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CView::PreCreateWindow(cs);
}

///
// CEZPrintView drawing
void CEZPrintView::OnDraw(CDC* pDC)
{
 CPen pen (PS_SOLID, 50, RGB (0, 0, 255));
 CBrush brush (RGB (255, 255, 0));

 pDC->SetMapMode (MM_LOMETRIC);
 CPen* pOldPen = pDC->SelectObject (&pen);
 CBrush* pOldBrush = pDC->SelectObject (&brush);

 pDC->Ellipse (100, -100, 1100, -1100);

 pDC->SelectObject (pOldBrush);
 pDC->SelectObject (pOldPen);
}

///
// CEZPrintView printing

BOOL CEZPrintView::OnPreparePrinting(CPrintInfo* pInfo)
{

Programming Windows With MFC

 841

 return DoPreparePrinting(pInfo);
}

void CEZPrintView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEZPrintView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CEZPrintView diagnostics

#ifdef _DEBUG
void CEZPrintView::AssertValid() const
{
 CView::AssertValid();
}

void CEZPrintView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CEZPrintDoc* CEZPrintView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEZPrintDoc)));
 return (CEZPrintDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CEZPrintView message handlers

13.2.1. Black-and-White Print Previews

MFC's print preview support isn't perfect. EZPrint's preview
page shows the circle in full-blown color even if the only
printer attached to your PC is a black-and-white model.
(Naturally, the circle will be printed in color if you print it on a
color printer.) You can add a nice touch to your print preview
code by doing your rendering in shades of gray if both the
following conditions are true when OnPrint or OnDraw is
called:

x pInfo->m_bPreview is nonzero (OnPrint) or pDC->m_hDC is not equal
to pDC->m_hAttribDC(OnDraw).

Programming Windows With MFC

 842

x pDC->GetDeviceCaps (NUMCOLORS) returns 2, indicating that the
printer is a monochrome device.

You can convert RGB color values into shades of gray with this
formula:

r/g/b = (red * 0.30) + (green * 0.59) + (blue * 0.11)

The following statement creates a gray brush that simulates on
the screen how yellow (RGB (255, 255, 0)) will look on a
monochrome output device:

CBrush brush (RGB (227, 227, 227));

I got the value 227 by plugging the color components 255, 255,
and 0 into the color conversion formula.

To see a simple demonstration of black-and-white print
previewing, replace the lines

CPen pen (PS_SOLID, 50, RGB (0, 0, 255));
CBrush brush (RGB (255, 255, 0));

in EZPrint's CPrintView::OnDraw function with these:

BOOL bMono = (pDC->GetDeviceCaps (NUMCOLORS) == 2) &&
 (pDC->m_hDC != pDC->m_hAttribDC); // True only for
preview mode.
CPen pen (PS_SOLID, 50, bMono ? RGB (28, 28, 28) : RGB (0, 0,
255));
CBrush brush (bMono ? RGB (227, 227, 227) : RGB (255, 255, 0));

Print previews will now be rendered in shades of gray when the
default printer is a black-and-white model. Comparing m_hDC
to m_hAttribDC is a sneaky way to detect print preview mode
when CPrintInfo information isn't available.

13.3. A More Complex Printing Application

EZPrint is okay for a start, but it's hardly representative of the
kinds of applications found in the real world. It doesn't have to
deal with pagination because its documents contain one page
each. It creates the GDI resources it needs each time OnDraw is

Programming Windows With MFC

 843

called, so it doesn't use OnBeginPrinting and OnEndPrinting to
allocate printer-specific resources. It doesn't override
OnPrepareDC and OnPrint at all, because nothing in EZPrint
distinguishes a printed view from an onscreen view.

The HexDump application shown in Figure 13-5 better
represents the kinds of applications that you're likely to have to
write. HexDump is a hexadecimal viewing program that
displays the contents of any file in binary form. Printed pages
have a header at the top that includes the file name (prefaced
with a path name if there's room) and the page number. The
header is underscored with a thin horizontal line. The line is
drawn with CDC::MoveTo and CDC::LineTo; all other output
is performed with CDC::TextOut. Figure 13-6 shows one page
of a document in print preview mode. When printing a
document, HexDump queries the printer for the dimensions of
the printable page and adjusts its output accordingly. The page
height is used to compute the number of lines printed per page,
and the page width is used to center the output horizontally no
matter what the page size or orientation.

Figure 13-5. HexDump showing a binary view of a file.

Programming Windows With MFC

 844

Figure 13-6. HexDump's print preview.

CHexView::OnDraw produces all of HexDump's screen output.
To repaint the view, OnDraw calls CDC::GetClipBox to
identify the rectangle that needs repainting, converts the y
coordinates of the rectangle's top and bottom into starting and
ending line numbers, and draws just those lines that need
repainting. The font used in the output is a 10-point Courier
New screen font initialized in CHexView::OnCreate. The
current scroll position is factored into the output automatically
because CHexView is derived from CScrollView. Because
OnDraw does the minimum amount of painting necessary,
scrolling performance is acceptable even if the document is
very large. To see how sluggish a CScrollView can become
when a large document is loaded and OnDraw isn't optimized,
try rewriting OnDraw so that it attempts to draw the entire
document each time it's called. All you have to do is replace
these two lines:

UINT nStart = rect.top / m_cyScreen;
UINT nEnd = min (m_nLinesTotal - 1,
 (rect.bottom + m_cyScreen - 1) / m_cyScreen);

with these:

UINT nStart = 0;
UINT nEnd = m_nLinesTotal _ 1;

Then load a file whose size is 10 KB or 20 KB and do some
scrolling up and down. It will quickly become apparent why

Programming Windows With MFC

 845

OnDraw goes to the trouble of converting the clip box into a
range of line numbers.

HexDump does all its printing in OnPrint. CHexView::OnPrint
calls CHexView::PrintPageHeader to print the header at the
top of the page and CHexView::PrintPage to print the body of
the page. OnBeginPrinting sets the stage by initializing
m_fontPrinter with a 10-point Courier New font sized for the
printer (notice the printer device context pointer passed in
CreatePointFont's third parameter), m_cyPrinter with the
interline spacing, m_nLinesPerPage with the number of lines
per page based on the page height, m_cxOffset with the x indent
required to center printed lines on the page, and m_cxWidth
with the width of each line of text. PrintPage calculates starting
and ending line numbers from the current page number and the
number of lines per page. The for loop that does the drawing is
similar to the for loop in OnDraw, differing only in how it
aligns the text on the page and in the fact that it uses
m_fontPrinter for its output instead of m_fontScreen. When
printing (or print previewing) is complete, OnEndPrinting
cleans up by deleting the printer font created by
OnBeginPrinting.

Could OnDraw have been written to handle both screen and
printer output? Sure. But HexDump's code (Figure 13-7) is
arguably simpler and more straightforward the way it's written
now. MFC programmers sometimes make the mistake of
feeling that they have to do their printing as well as their screen
updating in OnDraw. HexDump not only demonstrates that it
doesn't have to be that way but also provides a working
example of an application that does its printing and screen
updating separately.

Figure 13-7. The HexDump Program.

// HexDoc.h : interface of the CHexDoc class
//
///

#if !defined(AFX_HEXDOC_H__3A83FDFE_A3E6_11D2_8E53_006008A82731__INCLUDE
D_)
#define AFX_HEXDOC_H__3A83FDFE_A3E6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once

Programming Windows With MFC

 846

#endif // _MSC_VER > 1000

class CHexDoc : public CDocument
{
protected: // create from serialization only
 CHexDoc();
 DECLARE_DYNCREATE(CHexDoc)

// Attributes
public:
// Operations
public:
 UINT GetBytes(UINT nIndex, UINT nCount, PVOID pBuffer);
 UINT GetDocumentLength();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CHexDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CHexDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 BYTE* m_pFileData;
 UINT m_nDocLength;
 //{{AFX_MSG(CHexDoc)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_HEXDOC_H__3A83FDFE_A3E6_11D2_8E53_006008A82731__INCLUDED_
)

Programming Windows With MFC

 847

// HexDoc.cpp : implementation of the CHexDoc class
//

#include "stdafx.h"
#include "HexDump.h"

#include "HexDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CHexDoc

IMPLEMENT_DYNCREATE(CHexDoc, CDocument)

BEGIN_MESSAGE_MAP(CHexDoc, CDocument)
 //{{AFX_MSG_MAP(CHexDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CHexDoc construction/destruction

CHexDoc::CHexDoc()
{
 m_nDocLength = 0;
 m_pFileData = NULL;
}

CHexDoc::~CHexDoc()
{
}

BOOL CHexDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 return TRUE;
}

//
// CHexDoc serialization

void CHexDoc::Serialize(CArchive& ar)
{
 if (ar.IsLoading ()) {
 CFile* pFile = ar.GetFile ();
 m_nDocLength = (UINT) pFile->GetLength ();

Programming Windows With MFC

 848

 //
 // Allocate a buffer for the file data.
 //
 try {
 m_pFileData = new BYTE[m_nDocLength];
 }
 catch (CMemoryException* e) {
 m_nDocLength = 0;
 throw e;
 }

 //
 // Read the file data into the buffer.
 //
 try {
 pFile->Read (m_pFileData, m_nDocLength);
 }
 catch (CFileException* e) {
 delete[] m_pFileData;
 m_pFileData = NULL;
 m_nDocLength = 0;
 throw e;
 }
 }
}

///
// CHexDoc diagnostics

#ifdef _DEBUG
void CHexDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CHexDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG
///
// CHexDoc commands

void CHexDoc::DeleteContents()
{
 CDocument::DeleteContents();

 if (m_pFileData != NULL) {
 delete[] m_pFileData;
 m_pFileData = NULL;
 m_nDocLength = 0;
 }
}

UINT CHexDoc::GetBytes(UINT nIndex, UINT nCount, PVOID pBuffer)
{

Programming Windows With MFC

 849

 if (nIndex >= m_nDocLength)
 return 0;

 UINT nLength = nCount;
 if ((nIndex + nCount) > m_nDocLength)
 nLength = m_nDocLength - nIndex;

 ::CopyMemory (pBuffer, m_pFileData + nIndex, nLength);
 return nLength;
}

UINT CHexDoc::GetDocumentLength()
{
 return m_nDocLength;
}

// HexView.h : interface of the CHexView class
//
///

#if !defined(
 AFX_HEXVIEW_H__3A83FE00_A3E6_11D2_8E53_006008A82731__INCLUDED_)
#define AFX_HEXVIEW_H__3A83FE00_A3E6_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CHexView : public CScrollView
{
protected: // create from serialization only
 CHexView();
 DECLARE_DYNCREATE(CHexView)

// Attributes
public:
 CHexDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CHexView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation

Programming Windows With MFC

 850

public:
 virtual ~CHexView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 void FormatLine(CHexDoc* pDoc, UINT nLine, CString& string);
 void PrintPageHeader(CHexDoc* pDoc, CDC* pDC, UINT nPageNumber);
 void PrintPage(CHexDoc* pDoc, CDC* pDC, UINT nPageNumber);
 UINT m_cxWidth;
 UINT m_cxOffset;
 UINT m_nLinesPerPage;
 UINT m_nLinesTotal;
 UINT m_cyPrinter;
 UINT m_cyScreen;
 CFont m_fontPrinter;
 CFont m_fontScreen;
 //{{AFX_MSG(CHexView)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in HexView.cpp
inline CHexDoc* CHexView::GetDocument()
 { return (CHexDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_HEXVIEW_H__3A83FE00_A3E6_11D2_8E53_006008A82731__INCLUDE
D_)

// HexView.cpp : implementation of the CHexView class
//

#include "stdafx.h"
#include "HexDump.h"

#include "HexDoc.h"
#include "HexView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

Programming Windows With MFC

 851

#endif

#define PRINTMARGIN 2

///
// CHexView
IMPLEMENT_DYNCREATE(CHexView, CScrollView)

BEGIN_MESSAGE_MAP(CHexView, CScrollView)
 //{{AFX_MSG_MAP(CHexView)
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW,
CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

///
// CHexView construction/destruction

CHexView::CHexView()
{
}

CHexView::~CHexView()
{
}

BOOL CHexView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}

///
// CHexView drawing

void CHexView::OnDraw(CDC* pDC)
{
 CHexDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 if (m_nLinesTotal != 0) {
 CRect rect;
 pDC->GetClipBox (&rect);

 UINT nStart = rect.top / m_cyScreen;
 UINT nEnd = min (m_nLinesTotal - 1,
 (rect.bottom + m_cyScreen - 1) / m_cyScreen);

 CFont* pOldFont = pDC->SelectObject (&m_fontScreen);
 for (UINT i=nStart; i<=nEnd; i++) {
 CString string;
 FormatLine (pDoc, i, string);
 pDC->TextOut (2, (i * m_cyScreen) + 2, string);

Programming Windows With MFC

 852

 }
 pDC->SelectObject (pOldFont);
 }
}

void CHexView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 UINT nDocLength = GetDocument ()->GetDocumentLength ();
 m_nLinesTotal = (nDocLength + 15) / 16;

 SetScrollSizes (MM_TEXT, CSize (0, m_nLinesTotal * m_cyScreen),
 CSize (0, m_cyScreen * 10), CSize (0, m_cyScreen));
 ScrollToPosition (CPoint (0, 0));
}

///
// CHexView printing

BOOL CHexView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CHexView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 //
 // Create a printer font.
 //
 m_fontPrinter.CreatePointFont (100, _T ("Courier New"), pDC);

 //
 // Compute the width and height of a line in the printer font.
 //
 TEXTMETRIC tm;
 CFont* pOldFont = pDC->SelectObject (&m_fontPrinter);
 pDC->GetTextMetrics (&tm);
 m_cyPrinter = tm.tmHeight + tm.tmExternalLeading;
 CSize size = pDC->GetTextExtent (_T ("- - - - - - - -1- - - - - - - -2- - - - - - -
-" \
 "3- - - - - - - -4- - - - - - - -5- - - - - - - -6- - - - - - - -7- - - - - - - -8-"),
81);
 pDC->SelectObject (pOldFont);
 m_cxWidth = size.cx;
 //
 // Compute the page count.
 //
 m_nLinesPerPage = (pDC->GetDeviceCaps (VERTRES) -
 (m_cyPrinter * (3 + (2 * PRINTMARGIN)))) / m_cyPrinter;
 UINT nMaxPage = max (1, (m_nLinesTotal + (m_nLinesPerPage - 1)) /
 m_nLinesPerPage);
 pInfo->SetMaxPage (nMaxPage);

 //

Programming Windows With MFC

 853

 // Compute the horizontal offset required to center
 // each line of output.
 //
 m_cxOffset = (pDC->GetDeviceCaps (HORZRES) - size.cx) / 2;
}

void CHexView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 CHexDoc* pDoc = GetDocument ();
 PrintPageHeader (pDoc, pDC, pInfo->m_nCurPage);
 PrintPage (pDoc, pDC, pInfo->m_nCurPage);
}

void CHexView::OnEndPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 m_fontPrinter.DeleteObject ();
}

///
// CHexView diagnostics

#ifdef _DEBUG
void CHexView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CHexView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CHexDoc* CHexView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CHexDoc)));
 return (CHexDoc*)m_pDocument;
}
#endif //_DEBUG
///
// CHexView message handlers

int CHexView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CScrollView::OnCreate(lpCreateStruct) == -1)
 return -1;

 //
 // Create a screen font.
 //
 m_fontScreen.CreatePointFont (100, _T ("Courier New"));

 //
 // Compute the height of one line in the screen font.
 //
 CClientDC dc (this);
 TEXTMETRIC tm;

Programming Windows With MFC

 854

 CFont* pOldFont = dc.SelectObject (&m_fontScreen);
 dc.GetTextMetrics (&tm);
 m_cyScreen = tm.tmHeight + tm.tmExternalLeading;
 dc.SelectObject (pOldFont);
 return 0;
}

void CHexView::FormatLine(CHexDoc* pDoc, UINT nLine, CString& string)
{
 //
 // Get 16 bytes and format them for output.
 //
 BYTE b[17];
 ::FillMemory (b, 16, 32);
 UINT nCount = pDoc->GetBytes (nLine * 16, 16, b);

 string.Format (_T ("%0.8X %0.2X %0.2X %0.2X %0.2X %0.2X
%0.2X " \
 "%0.2X %0.2X - %0.2X %0.2X %0.2X %0.2X %0.2X %0.2X %0.2X
" \
 "%0.2X "), nLine * 16,
 b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7],
 b[8], b[9], b[10], b[11], b[12], b[13], b[14], b[15]);

 //
 // Replace non-printable characters with periods.
 //
 for (UINT i=0; i<nCount; i++) {
 if (!::IsCharAlphaNumeric (b[i]))
 b[i] = 0x2E;
 }

 //
 // If less than 16 bytes were retrieved, erase to the end of the line.
 //
 b[nCount] = 0;
 string += b;

 if (nCount < 16) {
 UINT pos1 = 59;
 UINT pos2 = 60;
 UINT j = 16 - nCount;

 for (i=0; i<j; i++) {
 string.SetAt (pos1, _T (` `));
 string.SetAt (pos2, _T (` `));
 pos1 -= 3;
 pos2 -= 3;
 if (pos1 == 35) {
 string.SetAt (35, _T (` `));
 string.SetAt (36, _T (` `));
 pos1 = 33;
 pos2 = 34;
 }
 }
 }

Programming Windows With MFC

 855

}

void CHexView::PrintPageHeader(CHexDoc* pDoc, CDC* pDC, UINT
nPageNumber)
{
 //
 // Formulate the text that appears at the top of page.
 //
 CString strHeader = pDoc->GetPathName ();
 if (strHeader.GetLength () > 68)
 strHeader = pDoc->GetTitle ();

 CString strPageNumber;
 strPageNumber.Format (_T ("Page %d"), nPageNumber);

 UINT nSpaces =
 81 - strPageNumber.GetLength () - strHeader.GetLength ();
 for (UINT i=0; i<nSpaces; i++)
 strHeader += _T (` `);
 strHeader += strPageNumber;

 //
 // Output the text.
 //
 UINT y = m_cyPrinter * PRINTMARGIN;
 CFont* pOldFont = pDC->SelectObject (&m_fontPrinter);
 pDC->TextOut (m_cxOffset, y, strHeader);

 //
 // Draw a horizontal line underneath the line of text.
 //
 y += (m_cyPrinter * 3) / 2;
 pDC->MoveTo (m_cxOffset, y);
 pDC->LineTo (m_cxOffset + m_cxWidth, y);

 pDC->SelectObject (pOldFont);
}

void CHexView::PrintPage(CHexDoc* pDoc, CDC* pDC, UINT
nPageNumber)
{
 if (m_nLinesTotal != 0) {
 UINT nStart = (nPageNumber - 1) * m_nLinesPerPage;
 UINT nEnd = min (m_nLinesTotal - 1, nStart + m_nLinesPerPage -
1);

 CFont* pOldFont = pDC->SelectObject (&m_fontPrinter);
 for (UINT i=nStart; i<=nEnd; i++) {
 CString string;
 FormatLine (pDoc, i, string);
 UINT y = ((i - nStart) + PRINTMARGIN + 3) * m_cyPrinter;
 pDC->TextOut (m_cxOffset, y, string);
 }
 pDC->SelectObject (pOldFont);
 }
}

Programming Windows With MFC

 856

13.3.1. A Unique Approach to Serialization

One aspect of HexDump that deserves special mention is the
unusual way in which it serializes documents. When
CHexDoc::Serialize is called to read a document from disk, it
doesn't read from an archive. Instead, it allocates a buffer
whose size equals the file size and reads the file into the buffer
with CFile::Read. With exception handling statements removed,
here's how it looks in code:

if (ar.IsLoading ()) {
 CFile* pFile = ar.GetFile ();
 m_nDocLength = (UINT) pFile->GetLength ();
 m_pFileDate = new BYTE[m_nDocLength];
 pFile->Read (m_pFileDate, m_nDocLength);
}

CArchive::GetFile returns a CFile pointer for the file
associated with the archive so that an application can call CFile
functions on it directly. This is one way an MFC application
can read and write binary documents stored by someone else.
When the document's DeleteContents function is called,
HexDump frees the buffer containing the raw file data:

delete[] m_pFileData;

HexDump doesn't serialize the contents of a file back to disk
because it's a hex viewer and not a hex editor, but if it did allow
documents to be edited and saved, it would use CFile::Write to
write modified documents back to disk the same way it uses
CFile::Read to read them into memory.

Allocating a buffer whose size equals the file size isn't the most
efficient approach to serializing and viewing large documents
because it means that an entire document has to fit into memory
at once. There are workarounds (memory-mapped files being
one solution that comes to mind), but in HexDump's case it
turns out to be a moot point because the limitations imposed by
the CScrollView are typically more constraining than the
limitations imposed by available memory. To see what I mean,
find a file that's a few hundred kilobytes in length and load it
into HexDump. If it's running on Windows 95 or Windows 98,

Programming Windows With MFC

 857

HexDump won't display more than about a thousand lines of
the file. How come?

The problem arises from the 16-bit heritage of Windows 95 and
Windows 98. In both these operating systems, scroll bar ranges
are 16-bit values. Before CHexView::OnInitialUpdate calls
SetScrollSizes, it computes the view's virtual height by
multiplying the number of lines in the document by the number
of pixels per line. If the height of a line is 16 pixels and the
document contains 1,000 lines, the resulting height is 16,000.
For small documents, that's fine; but a CScrollView can't handle
heights greater than 32,767—the largest positive value that can
be represented with a signed 16-bit integer—because that's the
upper limit of a scroll bar's range. The result? If you load a
document that contains too many lines, the CScrollView shows
only part of the document even though printing and previewing
work adequately. To modify HexDump to handle large
documents, your best bet is to create a CView with a scroll bar
and process scroll bar messages yourself. For more information
about processing scroll bar messages in MFC applications, refer
to Chapter 2.

13.4. Printing Tips and Tricks

Here are a few tips, tricks, and answers to frequently asked
questions to help you write better printing code and resolve
problems that aren't addressed in this chapter's sample
programs.

13.4.1. Using the Print Dialog's Selection Button

The Print dialog that MFC displays before printing begins
includes a Selection radio button that the user can click to print
the current selection rather than the entire document or a range
of pages. By default, the button is disabled. You can enable it
by adding the following statement to OnPreparePrinting just
before the call to DoPreparePrinting:

pInfo->m_pPD->m_pd.Flags &= ~PD_NOSELECTION;

To select the radio button after it's enabled, add this statement
as well:

Programming Windows With MFC

 858

pInfo->m_pPD->m_pd.Flags ¦= PD_SELECTION;

The m_pPD data member of the CPrintInfo structure passed to
OnPreparePrinting points to the CPrintDialog object that
DoPreparePrinting uses to display the Print dialog box.
CPrintDialog::m_pd holds a reference to the PRINTDLG
structure the dialog is based on, and PRINTDLG's Flags field
holds bit flags that define the dialog box's properties. Removing
the PD_NOSELECTION flag added by CPrintInfo's
constructor enables the Selection button, and adding a
PD_SELECTION flag selects the button. If DoPreparePrinting
returns a nonzero value, indicating that the dialog was
dismissed with the OK button, you can find out whether the
Selection button was selected by calling
CPrintDialog::PrintSelection. A nonzero return value means
the button was selected; 0 means it wasn't:

if (pInfo->m_pPD->PrintSelection ()) {
 // Print the current selection.
}

You can call PrintSelection and other CPrintDialog functions
that return information about settings entered in a Print or Print
Setup dialog through the pInfo parameter passed to
OnPreparePrinting after DoPreparePrinting returns. You can
also call them through the pInfo parameter passed to
OnBeginPrinting and other CView print overridables.

You can use CPrintInfo::m_pPD in other ways to modify the
appearance and behavior of the Print dialog that
DoPreparePrinting displays. Refer to the documentation that
accompanies Visual C++ for more information about
PRINTDLG and its data members.

13.4.2. Assume Nothing—And Test Thoroughly!

When you send output to the printed page, it's generally a
mistake to assume anything about the printable area of the
pages you'll be printing. Even if you know you're printing to,
say, an 8½-by-11-inch page, the printable page area will differ
for different printers. The printable page area can even differ
for the same printer and the same paper size depending on
which printer driver is being used, and the horizontal and

Programming Windows With MFC

 859

vertical dimensions of the printable page area will be switched
if the user opts to print in landscape rather than portrait mode.
Rather than assume you have a given amount of space to work
with, do as HexDump does and call GetDeviceCaps through the
CDC pointer provided to CView print functions to determine
the printable page area each time you print, or use
CPrintInfo::m_rectDraw in your OnPrint function. This simple
precaution will enable your printing code to work with any
printer Windows can throw at it and will greatly reduce the
number of problem reports you receive from users.

As you've already learned, calling GetDeviceCaps with
HORZRES and VERTRES parameters returns the horizontal
and vertical dimensions of the printable page area. You can
pass the following values to GetDeviceCaps to get more
information about a printer or other hardcopy device:

Value Description

HORZRES Returns the width of the printable page area in pixels.

VERTRES Returns the height of the printable page area in pixels.

HORSIZE Returns the width of the printable page area in
millimeters.

VERTSIZE Returns the height of the printable page area in
millimeters.

LOGPIXELSX Returns the number of pixels per inch in the horizontal
direction (300 for a 300-dpi printer).

LOGPIXELSY Returns the number of pixels per inch in the vertical
direction (300 for a 300-dpi printer).

PHYSICALWIDTH Returns the page width in pixels (2,550 for an
8½-by-11-inch page on a 300-dpi printer).

PHYSICALHEIGHT Returns the page height in pixels (3,300 for an
8½-by-11-inch page on a 300-dpi printer).

PHYSICALOFFSETX Returns the distance in pixels from the left side of the
page to the beginning of the page's printable area.

PHYSICALOFFSETY Returns the distance in pixels from the top of the page
to the beginning of the page's printable area.

TECHNOLOGY Returns a value that identifies the type of output device
the DC pertains to. The most common return values are
DT_RASDISPLAY for screens, DT_RASPRINTER
for printers, and DT_PLOTTER for plotters.

RASTERCAPS Returns a series of bit flags identifying the level of

Programming Windows With MFC

 860

GDI support provided by the printer driver. For
example, an RC_BITBLT flag indicates that the printer
supports BitBlts, and RC_STRETCHBLT indicates that
the printer supports StretchBlts.

NUMCOLORS Returns the number of colors the printer supports. The
return value is 2 for black-and-white printers.

You've already seen one use for the GetDeviceCaps
NUMCOLORS parameter: to detect when a black-and-white
printer is being used so that you draw print previews in shades
of gray. The PHYSICALOFFSETX and PHYSICALOFFSETY
parameters are useful for setting margin widths based on
information the user enters in a Page Setup dialog. (MFC's
CWinApp::OnFilePrintSetup function displays a Print Setup
dialog instead of a Page Setup dialog, but you can display a
Page Setup dialog yourself using MFC's CPageSetupDialog
class.) If the user wants 1-inch margins on the left side of the
page, for example, you can subtract the PHYSICALOFFSETX
value returned by GetDeviceCaps from the number of pixels
printed per inch (LOGPIXELSX) to compute the x offset from
the left of the printable page area where printing should begin.
If the printer driver returns accurate information, the resulting
margin will fall within a few pixels of being exactly 1 inch.
You can use the HORZRES, VERTRES, LOGPIXELSX,
LOGPIXELSY, PHYSICALWIDTH, PHYSICALHEIGHT,
PHYSICALOFFSETX, and PHYSICALOFFSETY values to
characterize the printable area of a page and pinpoint exactly
where on the page the printable area lies.

If you're concerned about the occasional hardcopy device that
won't draw bitmaps, you can find out whether CDC::BitBlt and
CDC::StretchBlt are supported by calling GetDeviceCaps with
a RASTERCAPS parameter and checking the return flags. For
the most part, only vector devices such as plotters don't support
the GDI's Blt functions. If the driver for a raster device doesn't
support blitting directly, the GDI will compensate by doing the
blitting itself. You can determine outright whether printed
output is destined for a plotter by calling GetDeviceCaps with a
TECHNOLOGY parameter and checking to see if the return
value equals DT_PLOTTER.

When you use a number of different printers to test an
application that prints, you'll find that printer drivers are

Programming Windows With MFC

 861

maddeningly inconsistent in the information they report and the
output they produce. For example, some printer drivers return
the same values for PHYSICALWIDTH and
PHYSICALHEIGHT as they return for HORZRES and
VERTRES. And sometimes an ordinary GDI function such as
CDC::TextOut will work fine on hundreds of printers but will
fail on one particular model because of a driver bug. Other
times, a GDI function won't fail outright but will behave
differently on different printers. I once ran across a printer
driver that defaulted to the TRANSPARENT background mode
even though other drivers for the same family of printers
correctly set the device context's default background mode to
OPAQUE. Printer drivers are notoriously flaky, so you need to
anticipate problems and test as thoroughly as you can on as
many printers as possible. The more ambitious your program's
printing needs, the more likely that driver quirks will require
you to write workarounds for problems that crop up only on
certain printers.

13.4.3. Adding Default Pagination Support

HexDump calls CPrintInfo::SetMaxPage from
OnBeginPrinting rather than from OnPreparePrinting because
the pagination process relies on the printable page area and
OnBeginPrinting is the first virtual CView function that's called
with a pointer to a printer DC. Because the maximum page
number isn't set until after OnPreparePrinting returns, the
From box in the Print dialog is filled in (with a 1) but the To
box isn't. Some users might think it incongruous that an
application can correctly paginate a document for print preview
but can't fill in the maximum page number in a dialog box. In
addition to displaying the maximum page number correctly,
many commercial applications display page breaks outside
print preview and "Page mm of nn" strings in status bars. How
do these applications know how the document will be paginated
when they don't know what printer the document will be
printed on or what the page orientation will be?

The answer is that they don't know for sure, so they make their
best guess based on the properties of the default printer. The
following code snippet initializes a CSize object with the pixel
dimensions of the printable page area on the default printer or
the last printer that the user selected in Print Setup. You can

Programming Windows With MFC

 862

call it from OnPreparePrinting or elsewhere to compute a page
count or to get the information you need to provide other forms
of default pagination support:

CSize size;
CPrintInfo pi;
if (AfxGetApp ()->GetPrinterDeviceDefaults (&pi.m_pPD->m_pd)) {
 HDC hDC = pi.m_pPD->m_pd.hDC;
 if (hDC == NULL)
 hDC = pi.m_pPD->CreatePrinterDC ();
 if (hDC != NULL) {
 CDC dc;
 dc.Attach (hDC);
 size.cx = dc.GetDeviceCaps (VERTRES);
 size.cy = dc.GetDeviceCaps (HORZRES);
 ::DeleteDC (dc.Detach ());
 }
}

CWinApp::GetPrinterDeviceDefaults initializes a PRINTDLG
structure with values describing the default printing
configuration. A 0 return means that the function failed, which
usually indicates that no printers are installed or that a default
printer hasn't been designated. CPrintInfo::CreatePrinterDC
creates a device context handle from the information in the
PRINTDLG structure encapsulated in a CPrintInfo object. With
the device context in hand, it's a simple matter to wrap it in a
CDC object and use CDC::GetDeviceCaps to measure the
printable page area.

13.4.4. Enumerating Printers

Sometimes it's useful to be able to build a list of all the printers
available so that the user can select a printer outside a Print or
Print Setup dialog box. The following routine uses the
Win32 ::EnumPrinters function to enumerate the printers
currently installed and adds an entry for each to the combo box
pointed to by pComboBox.

#include <winspool.h>

DWORD dwSize, dwPrinters;
::EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 5,
 NULL, 0, &dwSize, &dwPrinters);

BYTE* pBuffer = new BYTE[dwSize];

Programming Windows With MFC

 863

::EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 5,
 pBuffer, dwSize, &dwSize, &dwPrinters);

if (dwPrinters != 0) {
 PRINTER_INFO_5* pPrnInfo = (PRINTER_INFO_5*) pBuffer;
 for (UINT i=0; i<dwPrinters; i++) {
 pComboBox->AddString (pPrnInfo->pPrinterName);
 pPrnInfo++;
 }
}

delete[] pBuffer;

The first call to ::EnumPrinters retrieves the amount of buffer
space needed to hold an array of PRINTER_INFO_5 structures
describing individual printers. The second call
to ::EnumPrinters initializes the buffer pointed to by pBuffer
with an array of PRINTER_INFO_5 structures. On return,
dwPrinters holds a count of the printers enumerated (which
equals the count of PRINTER_INFO_5 structures copied to the
buffer), and each structure's pPrinterName field holds a pointer
to a zero-delimited string containing the device name of the
associated printer. Enumerating printers with
PRINTER_INFO_5 structures is fast because no remote calls
are required; all information needed to fill the buffer is obtained
from the registry. For fast printer enumerations in Windows NT
or Windows 2000, use PRINTER_INFO_4 structures instead.

If a printer is selected from the combo box and you want to
create a device context for it, you can pass the device name
copied from the PRINTER_INFO_5 structure to
CDC::CreateDC as follows:

CString strPrinterName;
int nIndex = pComboBox->GetCurSel ();
pComboBox->GetLBText (nIndex, strPrinterName);

CDC dc;
dc.CreateDC (NULL, strPrinterName, NULL, NULL);

You can use the resulting CDC object just like the CDC objects
whose addresses are passed to OnBeginPrinting and other
CView print functions.

Programming Windows With MFC

 864

Programming Windows With MFC

 865

PART : Beyong the BasicsⅢ
Chapter 14. Timers and Idle

Processing
Not all actions that Microsoft Windows applications undertake
are performed in response to user input. Some processing is
inherently time-based, such as autosave operations that save
documents at 10-minute intervals and updates that involve a
clock displayed in a status bar. Windows helps out by providing
timers that you can program to send notifications at regular
intervals. Another form of temporal processing is idle
processing—work performed during "idle" periods when no
messages are waiting in the message queue. MFC supplies a
framework for idle-time processing in the form of a virtual
function named OnIdle that is called whenever the message
pump in CWinThread goes to the message queue and finds it
empty.

In the first half of this chapter, we'll examine timers, which can
be programmed for intervals as low as 55 milliseconds. Here
are just a few of the ways in which you can put timers to use:

x In applications that display wall-clock time. Most such applications set a
timer to fire at intervals ranging from a half second to as many as 60
seconds. When a timer notification arrives, these applications update the
display to reflect the current time.

x In unattended backup programs, disk defragmenters, and other
applications that lie dormant until a specified time.

x In resource monitors, free-memory gauges, and other applications that
monitor the state of the system.

In the second half of the chapter, we'll look at idle
processing—what it is, how it works, and how you can use it to
perform background processing tasks in MFC applications.

14.1. Timer

You only need to know about two functions to use timers.
CWnd::SetTimer programs a timer to fire at specified intervals,
and CWnd::KillTimer stops a running timer. Depending on the
parameters passed to SetTimer, a timer notifies an application
that a time interval has elapsed in one of two ways:

Programming Windows With MFC

 866

x By sending a specified window a WM_TIMER message
x By calling an application-defined callback function

The WM_TIMER method is the simpler of the two, but the
callback method is sometimes preferable, particularly when
multiple timers are used. Both types of timer notifications
receive low priority when they are sent to an application. They
are processed only when the message queue is devoid of other
messages.

Timer notifications are never allowed to stack up in the
message queue. If you set a timer to fire every 100 milliseconds
and a full second goes by while your application is busy
processing other messages, it won't suddenly receive ten
rapid-fire timer notifications when the message queue empties.
Instead, it will receive just one. You needn't worry that if you
take too much time to process a timer notification, another will
arrive before you're finished with the previous one and start a
race condition. Still, a Windows application should never spend
an excessive amount of time processing a message unless
processing has been delegated to a background thread because
responsiveness will suffer if the primary thread goes too long
without checking the message queue.

14.1.1. Setting a Timer: Method 1

The easiest way to set a timer is to call SetTimer with a timer
ID and a timer interval and then map WM_TIMER messages to
an OnTimer function. A timer ID is a nonzero value that
uniquely identifies the timer. When OnTimer is activated in
response to a WM_TIMER message, the timer ID is passed as
an argument. If you use only one timer, the ID value probably
won't interest you because all WM_TIMER messages will
originate from the same timer. An application that employs two
or more timers can use the timer ID to identify the timer that
generated a particular message.

The timer interval passed to SetTimer specifies the desired
length of time between consecutive WM_TIMER messages in
thousandths of a second. Valid values range from 1 through the
highest number a 32-bit integer will hold: 232 - 1 milliseconds,
which equals slightly more than 49½ days. The statement

Programming Windows With MFC

 867

SetTimer (1, 500, NULL);

allocates a timer, assigns it an ID of 1, and programs it to send
the window whose SetTimer function was called a
WM_TIMER message every 500 milliseconds. The NULL
third parameter configures the timer to send WM_TIMER
messages rather than call a callback function. Although the
programmed interval is 500 milliseconds, the window will
actually receive a WM_TIMER message about once every 550
milliseconds because the hardware timer on which Windows
timers are based ticks once every 54.9 milliseconds, give or
take a few microseconds, on most systems (particularly
Intel-based systems). In effect, Windows rounds the value you
pass to SetTimer up to the next multiple of 55 milliseconds.
Thus, the statement

SetTimer (1, 1, NULL);

programs a timer to send a WM_TIMER message roughly
every 55 milliseconds, as does the statement

SetTimer (1, 50, NULL);

But change the timer interval to 60, as in

SetTimer (1, 60, NULL);

and WM_TIMER messages will arrive, on average, every 110
milliseconds.

How regular is the spacing between WM_TIMER messages
once a timer is set? The following list of elapsed times between
timer messages was taken from a 32-bit Windows application
that programmed a timer to fire at 500-millisecond intervals:

Notification No. Interval Notification No. Interval

1 0.542 second 11 0.604 second

2 0.557 second 12 0.550 second

3 0.541 second 13 0.549 second

4 0.503 second 14 0.549 second

Programming Windows With MFC

 868

5 0.549 second 15 0.550 second

6 0.549 second 16 0.508 second

7 1.936 seconds 17 0.550 second

8 0.261 second 18 0.549 second

9 0.550 second 19 0.549 second

10 0.549 second 20 0.550 second

As you can see, the average elapsed time is very close to 550
milliseconds, and most of the individual elapsed times are close
to 550 milliseconds, too. The only significant perturbation, the
elapsed time of 1.936 seconds between the sixth and seventh
WM_TIMER messages, occurred as the window was being
dragged across the screen. It's obvious from this list that
Windows doesn't allow timer messages to accumulate in the
message queue. If it did, the window would have received three
or four timer messages in quick succession following the
1.936-second delay.

The lesson to be learned from this is that you can't rely on
timers for stopwatch-like accuracy. If you write a clock
application that programs a timer for 1,000-millisecond
intervals and updates the display each time a WM_TIMER
message arrives, you shouldn't assume that 60 WM_TIMER
messages means that 1 minute has passed. Instead, you should
check the current time whenever a message arrives and update
the clock accordingly. Then if the flow of timer messages is
interrupted, the clock's accuracy will be maintained.

If you write an application that demands precision timing, you
can use Windows multimedia timers in lieu of conventional
timers and program them for intervals of 1 millisecond or less.
Multimedia timers offer superior precision and are ideal for
specialized applications such as MIDI sequencers, but they also
incur more overhead and can adversely impact other processes
running in the system.

The value returned by SetTimer is the timer ID if the function
succeeded or 0 if it failed. In 16-bit versions of Windows,
timers were a shared global resource and only a limited number
were available. In 32-bit Windows, the number of timers the
system can dole out is virtually unlimited. Failures are rare, but

Programming Windows With MFC

 869

it's still prudent to check the return value just in case the system
is critically low on resources. (Don't forget, too, that a little
discretion goes a long way. An application that sets too many
timers can drag down the performance of the entire system.)
The timer ID returned by SetTimer equals the timer ID
specified in the function's first parameter unless you specify 0,
in which case SetTimer will return a timer ID of 1. SetTimer
won't fail if you assign two or more timers the same ID. Rather,
it will assign duplicate IDs as requested.

You can also use SetTimer to change a previously assigned
time-out value. If timer 1 already exists, the statement

SetTimer (1, 1000, NULL);

reprograms it for intervals of 1,000 milliseconds.
Reprogramming a timer also resets its internal clock so that the
next notification won't arrive until the specified time period has
elapsed.

14.1.2. Responding to WM_TIMER Messages

MFC's ON_WM_TIMER message-map macro directs
WM_TIMER messages to a class member function named
OnTimer. OnTimer is prototyped as follows:

afx_msg void OnTimer (UINT nTimerID)

nTimerID is the ID of the timer that generated the message.
You can do anything in OnTimer that you can do in other
message processing functions, including grabbing a device
context and painting in a window. The following code sample
uses an OnTimer handler to draw ellipses of random sizes and
colors in a frame window's client area. The timer is
programmed for 100-millisecond intervals in the window's
OnCreate handler:

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()
 ON_WM_TIMER ()
END_MESSAGE_MAP ()

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)

Programming Windows With MFC

 870

{
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 if (!SetTimer (ID_TIMER_ELLIPSE, 100, NULL)) {
 MessageBox (_T ("Error: SetTimer failed"));
 return -1;
 }
 return 0;
}

void CMainWindow::OnTimer (UINT nTimerID)
{
 CRect rect;
 GetClientRect (&rect);

 int x1 = rand () % rect.right;
 int x2 = rand () % rect.right;
 int y1 = rand () % rect.bottom;
 int y2 = rand () % rect.bottom;

 CClientDC dc (this);
 CBrush brush (RGB (rand () % 255, rand () % 255,
 rand () % 255));
 CBrush* pOldBrush = dc.SelectObject (&brush);
 dc.Ellipse (min (x1, x2), min (y1, y2), max (x1, x2),
 max (y1, y2));
 dc.SelectObject (pOldBrush);
}

Here's how the same code fragment would look if the
application were modified to use two timers—one for drawing
ellipses and another for drawing rectangles:

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()
 ON_WM_TIMER ()
END_MESSAGE_MAP ()

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 if (!SetTimer (ID_TIMER_ELLIPSE, 100, NULL) ¦¦
 !SetTimer (ID_TIMER_RECTANGLE, 100, NULL)) {
 MessageBox (_T ("Error: SetTimer failed"));
 return -1;
 }
 return 0;
}

Programming Windows With MFC

 871

void CMainWindow::OnTimer (UINT nTimerID)
{
 CRect rect;
 GetClientRect (&rect);

 int x1 = rand () % rect.right;
 int x2 = rand () % rect.right;
 int y1 = rand () % rect.bottom;
 int y2 = rand () % rect.bottom;

 CClientDC dc (this);
 CBrush brush (RGB (rand () % 255, rand () % 255, rand () %
255));
 CBrush* pOldBrush = dc.SelectObject (&brush);
 if (nTimerID == ID_TIMER_ELLIPSE)
 dc.Ellipse (min (x1, x2), min (y1, y2), max (x1, x2),
 max (y1, y2));
 else // nTimerID == ID_TIMER_RECTANGLE
 dc.Rectangle (min (x1, x2), min (y1, y2), max (x1, x2),
 max (y1, y2));
 dc.SelectObject (pOldBrush);
}

As you can see, this version of OnTimer inspects the nTimerID
value passed to it to decide whether to draw an ellipse or a
rectangle.

You might not write too many applications that draw ellipses
and rectangles endlessly, but using timer messages to execute a
certain task or a sequence of tasks repeatedly provides an easy
solution to a common problem encountered in Windows
programming. Suppose you write an application with two push
button controls labeled "Start" and "Stop" and that clicking the
Start button starts a drawing loop that looks like this:

m_bContinue = TRUE;
while (m_bContinue)
 DrawRandomEllipse ();

The loop draws ellipses over and over until the Stop button is
clicked, which sets m_bContinue to FALSE so that the while
loop will fall through. It looks reasonable, but try it and you'll
find that it doesn't work. Once Start is clicked, the while loop
runs until the Windows session is terminated or the application
is aborted with Task Manager. Why? Because the statement

Programming Windows With MFC

 872

that sets m_bContinue to FALSE gets executed only if the
WM_COMMAND message generated by the Stop button is
retrieved, dispatched, and routed through the message map to
the corresponding ON_COMMAND handler. But as long as the
while loop is spinning in a continuous cycle without checking
for messages, the WM_COMMAND message sits idly in the
message queue, waiting to be retrieved. m_bContinue never
changes from TRUE to FALSE, and the program gets stuck in
an infinite loop.

You can solve this problem in several ways. One solution is to
do the drawing in a secondary thread so that the primary thread
can continue to pump messages. Another is to add a message
pump to the while loop to periodically check the message queue
as ellipses are drawn. A third solution is to draw ellipses in
response to WM_TIMER messages. In between WM_TIMER
messages, other messages will continue to be processed as
normal. The only drawback to this solution is that drawing
ellipses at a rate of more than about 18 per second requires
multiple timers, whereas a thread that starts drawing the next
ellipse as soon as the previous one is finished might draw
hundreds of ellipses per second, depending on the speed of the
video hardware and the sizes of the ellipses.

An important point to take home here is that WM_TIMER
messages are not processed asynchronously with respect to
other messages. That is, one WM_TIMER message will never
interrupt another WM_TIMER message in the same thread, nor
will it interrupt a nontimer message, for that matter.
WM_TIMER messages wait their turn in the message queue
just as other messages do and aren't processed until they are
retrieved and dispatched by the message loop. If a regular
message handling function and an OnTimer function use a
common member variable, you can safely assume that accesses
to the variable won't overlap as long as the two message
handlers belong to the same window or to windows running on
the same thread.

14.1.3. Setting a Timer: Method 2

Timers don't have to generate WM_TIMER messages. If you
prefer, you can configure a timer to call a callback function
inside your application rather than send it a WM_TIMER

Programming Windows With MFC

 873

message. This method is often used in applications that use
multiple timers so that each timer can be assigned a unique
handling function.

A common misconception among Windows programmers is
that timer callbacks are processed more expediently than timer
messages because callbacks are called directly by the operating
system whereas WM_TIMER messages are placed in the
message queue. In reality, timer callbacks and timer messages
are handled identically up to the point at
which ::DispatchMessage is called. When a timer fires,
Windows sets a flag in the message queue to indicate that a
timer message or callback is waiting to be processed. (The
on/off nature of the flag explains why timer notifications don't
stack up in the message queue. The flag isn't incremented when
a timer interval elapses but is merely set to "on.")
If ::GetMessage finds that the message queue is empty and that
no windows need repainting, it checks the timer flag. If the flag
is set, ::GetMessage builds a WM_TIMER message that is
subsequently dispatched by ::DispatchMessage. If the timer
that generated the message is of the WM_TIMER variety, the
message is dispatched to the window procedure. But if a
callback function is registered instead, ::DispatchMessage calls
the callback function. Therefore, callback timers enjoy virtually
no performance advantage over message timers. Callbacks are
subject to slightly less overhead than messages because neither
a message map nor a window procedure is involved, but the
difference is all but immeasurable. In practice, you'll find that
WM_TIMER-type timers and callback timers work with the
same regularity (or irregularity, depending on how you look at
it).

To set a timer that uses a callback, specify the name of the
callback function in the third parameter to SetTimer, like this:

SetTimer (ID_TIMER, 100, TimerProc);

The callback procedure, which is named TimerProc in this
example, is prototyped as follows:

void CALLBACK TimerProc (HWND hWnd, UINT nMsg,
 UINT nTimerID, DWORD dwTime)

Programming Windows With MFC

 874

The hWnd parameter to TimerProc contains the window handle,
nMsg contains the message ID WM_TIMER, nTimerID holds
the timer ID, and dwTime specifies the number of milliseconds
that have elapsed since Windows was started. (Some
documentation says that dwTime "specifies the system time in
Coordinated Universal Time format." Don't believe it; it's a bug
in the documentation.) The callback function should be a static
member function or a global function to prevent a this pointer
from being passed to it. For more information on callback
functions and the problems that nonstatic member functions
pose for C++ applications, refer to Chapter 7.

One obstacle you'll encounter when using a static member
function as a timer callback is that the timer procedure doesn't
receive a user-defined lParam value as some Windows callback
functions do. When we used a static member function to field
callbacks from ::EnumFontFamilies in Chapter 7, we passed a
CMainWindow pointer in lParam to permit the callback
function to access nonstatic class members. In a timer
procedure, you have to obtain that pointer by other means if
you want to access nonstatic function and data members.
Fortunately, you can get a pointer to your application's main
window with MFC's AfxGetMainWnd function:

CMainWindow* pMainWnd = (CMainWindow*) AfxGetMainWnd
();

Casting the return value to a CMainWindow pointer is
necessary if you want to access CMainWindow function and
data members because the pointer returned by AfxGetMainWnd
is a generic CWnd pointer. Once pMainWnd is initialized in this
way, a TimerProc function that is also a member of
CMainWindow can access nonstatic CMainWindow function
and data members as if it, too, were a nonstatic member
function.

14.1.4. Stopping a Timer

The counterpart to CWnd::SetTimer is CWnd::KillTimer, which
stops a timer and stops the flow of WM_TIMER messages or
timer callbacks. The following statement releases the timer
whose ID is 1:

Programming Windows With MFC

 875

KillTimer (1);

A good place to kill a timer created in OnCreate is in the
window's OnClose or OnDestroy handler. If an application fails
to free a timer before it terminates, 32-bit versions of Windows
will clean up after it when the process ends. Still, good form
dictates that every call to SetTimer should be paired with a call
to KillTimer to ensure that timer resources are properly
deallocated.

14.2. The Clock Application

The Clock application shown in Figure 14-1 uses a timer set to
fire at 1-second intervals to periodically redraw a set of clock
hands simulating an analog clock. Clock isn't a document/view
application; it uses the MFC 1.0_style application architecture
described in the first few chapters of this book. All of its source
code, including the RC file, was generated by hand. (See Figure
14-2.) Besides demonstrating how to use a timer in a Windows
application, Clock introduces a new MFC class named CTime
and a new message, WM_MINMAXINFO. It also has several
other interesting features that have nothing to do with timers,
including these:

x A command in the system menu for removing the window's title bar
x A command in the system menu for making Clock's window a topmost

window—one that's drawn on top of other windows even when it's
running in the background

x A persistent frame window that remembers its size and position
x A frame window that can be dragged by its client area

We'll go over these and other unique aspects of the application
in the sections that follow.

Programming Windows With MFC

 876

Figure 14-1. The Clock window.

Figure 14-2. The Clock application.

Resource.h
#define IDM_SYSMENU_FULL_WINDOW 16
#define IDM_SYSMENU_STAY_ON_TOP 32
#define IDI_APPICON 100

Clock.rc
#include <afxres.h>
#include "Resource.h"

IDI_APPICON ICON Clock.ico

Clock.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{

protected:
 BOOL m_bFullWindow;
 BOOL m_bStayOnTop;

 int m_nPrevSecond;
 int m_nPrevMinute;
 int m_nPrevHour;

 void DrawClockFace (CDC* pDC);
 void DrawSecondHand (CDC* pDC, int nLength, int nScale, int nDegrees,

Programming Windows With MFC

 877

 COLORREF clrColor);
 void DrawHand (CDC* pDC, int nLength, int nScale, int nDegrees,
 COLORREF clrColor);

 void SetTitleBarState ();
 void SetTopMostState ();
 void SaveWindowState ();
 void UpdateSystemMenu (CMenu* pMenu);

public:
 CMainWindow ();
 virtual BOOL PreCreateWindow (CREATESTRUCT& cs);
 BOOL RestoreWindowState ();

protected:
 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg void OnGetMinMaxInfo (MINMAXINFO* pMMI);
 afx_msg void OnTimer (UINT nTimerID);
 afx_msg void OnPaint ();
 afx_msg UINT OnNcHitTest (CPoint point);
 afx_msg void OnSysCommand (UINT nID, LPARAM lParam);
 afx_msg void OnContextMenu (CWnd* pWnd, CPoint point);
 afx_msg void OnEndSession (BOOL bEnding);
 afx_msg void OnClose ();

 DECLARE_MESSAGE_MAP ()
};

Clock.cpp
#include <afxwin.h>
#include <math.h>
#include "Clock.h"
#include "Resource.h"
#define SQUARESIZE 20
#define ID_TIMER_CLOCK 1

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 SetRegistryKey (_T ("Programming Windows with MFC"));
 m_pMainWnd = new CMainWindow;
 if (!((CMainWindow*) m_pMainWnd)->RestoreWindowState ())
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()

Programming Windows With MFC

 878

 ON_WM_PAINT ()
 ON_WM_TIMER ()
 ON_WM_GETMINMAXINFO ()
 ON_WM_NCHITTEST ()
 ON_WM_SYSCOMMAND ()
 ON_WM_CONTEXTMENU ()
 ON_WM_ENDSESSION ()
 ON_WM_CLOSE ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 m_bAutoMenuEnable = FALSE;

 CTime time = CTime::GetCurrentTime ();
 m_nPrevSecond = time.GetSecond ();
 m_nPrevMinute = time.GetMinute ();
 m_nPrevHour = time.GetHour () % 12;

 CString strWndClass = AfxRegisterWndClass (
 CS_HREDRAW œ CS_VREDRAW,
 myApp.LoadStandardCursor (IDC_ARROW),

 (HBRUSH) (COLOR_3DFACE + 1),
 myApp.LoadIcon (IDI_APPICON));

 Create (strWndClass, _T ("Clock"));
}

BOOL CMainWindow::PreCreateWindow (CREATESTRUCT& cs)
{
 if (!CFrameWnd::PreCreateWindow (cs))
 return FALSE;

 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 return TRUE;
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 //
 // Set a timer to fire at 1-second intervals.
 //
 if (!SetTimer (ID_TIMER_CLOCK, 1000, NULL)) {
 MessageBox (_T ("SetTimer failed"), _T ("Error"),
 MB_ICONSTOP œ MB_OK);
 return -1;
 }

 //
 // Customize the system menu.
 //
 CMenu* pMenu = GetSystemMenu (FALSE);

Programming Windows With MFC

 879

 pMenu->AppendMenu (MF_SEPARATOR);
 pMenu->AppendMenu (MF_STRING,
IDM_SYSMENU_FULL_WINDOW,
 _T ("Remove &Title"));
 pMenu->AppendMenu (MF_STRING,
IDM_SYSMENU_STAY_ON_TOP,
 _T ("Stay on To&p"));
 return 0;
}

void CMainWindow::OnClose ()
{
 SaveWindowState ();
 KillTimer (ID_TIMER_CLOCK);
 CFrameWnd::OnClose ();
}

void CMainWindow::OnEndSession (BOOL bEnding)
{
 if (bEnding)
 SaveWindowState ();
 CFrameWnd::OnEndSession (bEnding);
}

void CMainWindow::OnGetMinMaxInfo (MINMAXINFO* pMMI)
{
 pMMI->ptMinTrackSize.x = 120;
 pMMI->ptMinTrackSize.y = 120;
}

UINT CMainWindow::OnNcHitTest (CPoint point)
{
 UINT nHitTest = CFrameWnd::OnNcHitTest (point);
 if ((nHitTest == HTCLIENT) && (::GetAsyncKeyState (MK_LBUTTON)
< 0))
 nHitTest = HTCAPTION;
 return nHitTest;
}

void CMainWindow::OnSysCommand (UINT nID, LPARAM lParam)
{
 UINT nMaskedID = nID & 0xFFF0;

 if (nMaskedID == IDM_SYSMENU_FULL_WINDOW) {
 m_bFullWindow = m_bFullWindow ? 0 : 1;
 SetTitleBarState ();
 return;
 }
 else if (nMaskedID == IDM_SYSMENU_STAY_ON_TOP) {
 m_bStayOnTop = m_bStayOnTop ? 0 : 1;
 SetTopMostState ();
 return;
 }
 CFrameWnd::OnSysCommand (nID, lParam);
}

Programming Windows With MFC

 880

void CMainWindow::OnContextMenu (CWnd* pWnd, CPoint point)
{
 CRect rect;
 GetClientRect (&rect);
 ClientToScreen (&rect);

 if (rect.PtInRect (point)) {
 CMenu* pMenu = GetSystemMenu (FALSE);
 UpdateSystemMenu (pMenu);

 int nID = (int) pMenu->TrackPopupMenu (TPM_LEFTALIGN œ
 TPM_LEFTBUTTON œ TPM_RIGHTBUTTON œ TPM_RETURNCMD,
point.x,
 point.y, this);

 if (nID > 0)
 SendMessage (WM_SYSCOMMAND, nID, 0);

 return;
 }
 CFrameWnd::OnContextMenu (pWnd, point);
}

void CMainWindow::OnTimer (UINT nTimerID)
{
 //
 // Do nothing if the window is minimized.
 //
 if (IsIconic ())
 return;

 //
 // Get the current time and do nothing if it hasn't changed.
 //
 CTime time = CTime::GetCurrentTime ();
 int nSecond = time.GetSecond ();
 int nMinute = time.GetMinute ();
 int nHour = time.GetHour () % 12;

 if ((nSecond == m_nPrevSecond) &&
 (nMinute == m_nPrevMinute) &&
 (nHour == m_nPrevHour))
 return;

 //
 // Center the origin and switch to the MM_ISOTROPIC mapping mode.
 //
 CRect rect;
 GetClientRect (&rect);

 CClientDC dc (this);
 dc.SetMapMode (MM_ISOTROPIC);
 dc.SetWindowExt (1000, 1000);
 dc.SetViewportExt (rect.Width (), -rect.Height ());
 dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);

Programming Windows With MFC

 881

 //
 // If minutes have changed, erase the hour and minute hands.
 //
 COLORREF clrColor = ::GetSysColor (COLOR_3DFACE);

 if (nMinute != m_nPrevMinute) {
 DrawHand (&dc, 200, 4, (m_nPrevHour * 30) + (m_nPrevMinute / 2),
 clrColor);
 DrawHand (&dc, 400, 8, m_nPrevMinute * 6, clrColor);
 m_nPrevMinute = nMinute;
 m_nPrevHour = nHour;
 }

 //
 // If seconds have changed, erase the second hand and redraw all hands.
 //
 if (nSecond != m_nPrevSecond) {
 DrawSecondHand (&dc, 400, 8, m_nPrevSecond * 6, clrColor);
 DrawSecondHand (&dc, 400, 8, nSecond * 6, RGB (0, 0, 0));
 DrawHand (&dc, 200, 4, (nHour * 30) + (nMinute / 2),
 RGB (0, 0, 0));
 DrawHand (&dc, 400, 8, nMinute * 6, RGB (0, 0, 0));
 m_nPrevSecond = nSecond;
 }
}

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);

 CPaintDC dc (this);
 dc.SetMapMode (MM_ISOTROPIC);
 dc.SetWindowExt (1000, 1000);
 dc.SetViewportExt (rect.Width (), -rect.Height ());
 dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);

 DrawClockFace (&dc);
 DrawHand (&dc, 200, 4, (m_nPrevHour * 30) +
 (m_nPrevMinute / 2), RGB (0, 0, 0));
 DrawHand (&dc, 400, 8, m_nPrevMinute * 6, RGB (0, 0, 0));
 DrawSecondHand (&dc, 400, 8, m_nPrevSecond * 6, RGB (0, 0, 0));
}

void CMainWindow::DrawClockFace (CDC* pDC)
{
 static CPoint point[12] = {
 CPoint (0, 450), // 12 o'clock
 CPoint (225, 390), // 1 o'clock
 CPoint (390, 225), // 2 o'clock
 CPoint (450, 0), // 3 o'clock
 CPoint (390, -225), // 4 o'clock
 CPoint (225, -390), // 5 o'clock
 CPoint (0, -450), // 6 o'clock
 CPoint (-225, -390), // 7 o'clock

Programming Windows With MFC

 882

 CPoint (-390, -225), // 8 o'clock
 CPoint (-450, 0), // 9 o'clock
 CPoint (-390, 225), // 10 o'clock
 CPoint (-225, 390), // 11 o'clock
 };

 pDC->SelectStockObject (NULL_BRUSH);

 for (int i=0; i<12; i++)
 pDC->Rectangle (point[i].x - SQUARESIZE,
 point[i].y + SQUARESIZE, point[i].x + SQUARESIZE,
 point[i].y - SQUARESIZE);
}

void CMainWindow::DrawHand (CDC* pDC, int nLength, int nScale,
 int nDegrees, COLORREF clrColor)
{
 CPoint point[4];
 double nRadians = (double) nDegrees * 0.017453292;

 point[0].x = (int) (nLength * sin (nRadians));
 point[0].y = (int) (nLength * cos (nRadians));

 point[2].x = -point[0].x / nScale;
 point[2].y = -point[0].y / nScale;

 point[1].x = -point[2].y;
 point[1].y = point[2].x;

 point[3].x = -point[1].x;
 point[3].y = -point[1].y;

 CPen pen (PS_SOLID, 0, clrColor);
 CPen* pOldPen = pDC->SelectObject (&pen);

 pDC->MoveTo (point[0]);
 pDC->LineTo (point[1]);
 pDC->LineTo (point[2]);
 pDC->LineTo (point[3]);
 pDC->LineTo (point[0]);

 pDC->SelectObject (pOldPen);
}

void CMainWindow::DrawSecondHand (CDC* pDC, int nLength, int nScale,
 int nDegrees, COLORREF clrColor)
{
 CPoint point[2];
 double nRadians = (double) nDegrees * 0.017453292;

 point[0].x = (int) (nLength * sin (nRadians));
 point[0].y = (int) (nLength * cos (nRadians));

 point[1].x = -point[0].x / nScale;
 point[1].y = -point[0].y / nScale;

Programming Windows With MFC

 883

 CPen pen (PS_SOLID, 0, clrColor);
 CPen* pOldPen = pDC->SelectObject (&pen);

 pDC->MoveTo (point[0]);
 pDC->LineTo (point[1]);

 pDC->SelectObject (pOldPen);
}

void CMainWindow::SetTitleBarState ()
{
 CMenu* pMenu = GetSystemMenu (FALSE);

 if (m_bFullWindow) {
 ModifyStyle (WS_CAPTION, 0);
 pMenu->ModifyMenu (IDM_SYSMENU_FULL_WINDOW,
MF_STRING,
 IDM_SYSMENU_FULL_WINDOW, _T ("Restore &Title"));
 }
 else {
 ModifyStyle (0, WS_CAPTION);
 pMenu->ModifyMenu (IDM_SYSMENU_FULL_WINDOW,
MF_STRING,
 IDM_SYSMENU_FULL_WINDOW, _T ("Remove &Title"));
 }
 SetWindowPos (NULL, 0, 0, 0, 0, SWP_NOMOVE œ SWP_NOSIZE œ
 SWP_NOZORDER œ SWP_DRAWFRAME);
}

void CMainWindow::SetTopMostState ()
{
 CMenu* pMenu = GetSystemMenu (FALSE);

 if (m_bStayOnTop) {
 SetWindowPos (&wndTopMost, 0, 0, 0, 0, SWP_NOMOVE œ
SWP_NOSIZE);
 pMenu->CheckMenuItem (IDM_SYSMENU_STAY_ON_TOP,
MF_CHECKED);
 }
 else {
 SetWindowPos (&wndNoTopMost, 0, 0, 0, 0, SWP_NOMOVE œ
SWP_NOSIZE);
 pMenu->CheckMenuItem (IDM_SYSMENU_STAY_ON_TOP,
MF_UNCHECKED);
 }
}

BOOL CMainWindow::RestoreWindowState ()
{
 CString version = _T ("Version 1.0");
 m_bFullWindow = myApp.GetProfileInt (version, _T ("FullWindow"), 0);
 SetTitleBarState ();
 m_bStayOnTop = myApp.GetProfileInt (version, _T ("StayOnTop"), 0);
 SetTopMostState ();

 WINDOWPLACEMENT wp;

Programming Windows With MFC

 884

 wp.length = sizeof (WINDOWPLACEMENT);
 GetWindowPlacement (&wp);

 if (((wp.flags =
 myApp.GetProfileInt (version, _T ("flags"), -1)) != -1) &&
 ((wp.showCmd =
 myApp.GetProfileInt (version, _T ("showCmd"), -1)) != -1) &&
 ((wp.rcNormalPosition.left =
 myApp.GetProfileInt (version, _T ("x1"), -1)) != -1) &&
 ((wp.rcNormalPosition.top =
 myApp.GetProfileInt (version, _T ("y1"), -1)) != -1) &&
 ((wp.rcNormalPosition.right =
 myApp.GetProfileInt (version, _T ("x2"), -1)) != -1) &&
 ((wp.rcNormalPosition.bottom =
 myApp.GetProfileInt (version, _T ("y2"), -1)) != -1)) {

 wp.rcNormalPosition.left = min (wp.rcNormalPosition.left,
 ::GetSystemMetrics (SM_CXSCREEN) -
 ::GetSystemMetrics (SM_CXICON));
 wp.rcNormalPosition.top = min (wp.rcNormalPosition.top,
 ::GetSystemMetrics (SM_CYSCREEN) -
 ::GetSystemMetrics (SM_CYICON));
 SetWindowPlacement (&wp);
 return TRUE;
 }
 return FALSE;
}

void CMainWindow::SaveWindowState ()
{
 CString version = _T ("Version 1.0");
 myApp.WriteProfileInt (version, _T ("FullWindow"), m_bFullWindow);
 myApp.WriteProfileInt (version, _T ("StayOnTop"), m_bStayOnTop);

 WINDOWPLACEMENT wp;
 wp.length = sizeof (WINDOWPLACEMENT);
 GetWindowPlacement (&wp);

 myApp.WriteProfileInt (version, _T ("flags"), wp.flags);
 myApp.WriteProfileInt (version, _T ("showCmd"), wp.showCmd);
 myApp.WriteProfileInt (version, _T ("x1"), wp.rcNormalPosition.left);
 myApp.WriteProfileInt (version, _T ("y1"), wp.rcNormalPosition.top);
 myApp.WriteProfileInt (version, _T ("x2"), wp.rcNormalPosition.right);
 myApp.WriteProfileInt (version, _T ("y2"), wp.rcNormalPosition.bottom);
}

void CMainWindow::UpdateSystemMenu (CMenu* pMenu)
{
 static UINT nState[2][5] = {
 { MFS_GRAYED, MFS_ENABLED, MFS_ENABLED,
 MFS_ENABLED, MFS_DEFAULT },
 { MFS_DEFAULT, MFS_GRAYED, MFS_GRAYED,
 MFS_ENABLED, MFS_GRAYED }
 };

 if (IsIconic ()) // Shouldn't happen, but let's be safe

Programming Windows With MFC

 885

 return;

 int i = 0;
 if (IsZoomed ())
 i = 1;

 CString strMenuText;
 pMenu->GetMenuString (SC_RESTORE, strMenuText,
MF_BYCOMMAND);
 pMenu->ModifyMenu (SC_RESTORE, MF_STRING œ nState[i][0],
SC_RESTORE,
 strMenuText);

 pMenu->GetMenuString (SC_MOVE, strMenuText,
MF_BYCOMMAND);
 pMenu->ModifyMenu (SC_MOVE, MF_STRING œ nState[i][1],
SC_MOVE,
 strMenuText);

 pMenu->GetMenuString (SC_SIZE, strMenuText, MF_BYCOMMAND);
 pMenu->ModifyMenu (SC_SIZE, MF_STRING œ nState[i][2], SC_SIZE,
 strMenuText);

 pMenu->GetMenuString (SC_MINIMIZE, strMenuText,
MF_BYCOMMAND);
 pMenu->ModifyMenu (SC_MINIMIZE, MF_STRING œ nState[i][3],
SC_MINIMIZE,
 strMenuText);

 pMenu->GetMenuString (SC_MAXIMIZE, strMenuText,
MF_BYCOMMAND);
 pMenu->ModifyMenu (SC_MAXIMIZE, MF_STRING œ nState[i][4],
SC_MAXIMIZE,
 strMenuText);

 SetMenuDefaultItem (pMenu->m_hMenu, i ? SC_RESTORE :
 SC_MAXIMIZE, FALSE);
}

14.2.1. Processing Timer Messages

Clock uses SetTimer to program a timer in OnCreate. The timer
is destroyed in OnClose with KillTimer. When a WM_TIMER
message arrives, CMainWindow::OnTimer gets the current time
and compares the hour, minute, and second to the hour, minute,
and second previously recorded in the member variables
m_nPrevHour, m_nPrevMinute, and m_nPrevSecond. If the
current hour, minute, and second equal the hour, minute, and
second recorded earlier, OnTimer does nothing. Otherwise, it
records the new time and moves the clock hands.
CMainWindow::DrawHand draws the hour and minute hands,
and CMainWindow::DrawSecondHand draws the second hand.

Programming Windows With MFC

 886

A hand is moved by calling the corresponding drawing function
twice: once to erase the hand by drawing over it with the
window background color (COLOR_3DFACE) and once to
draw the hand—in black—in its new position.

With this OnTimer mechanism in place, the clock's second
hand is moved roughly once per second and the hour and
minute hands are moved whenever the current number of
minutes past the hour no longer equals the previously recorded
minutes-past-the-hour. Because the hands are drawn to reflect
the current time and not some assumed time based on the
number of WM_TIMER messages received, it doesn't matter if
WM_TIMER messages are skipped as the window is dragged
or resized. If you watch closely, you'll see that the second hand
occasionally advances by two seconds rather than one. That's
because every now and then a WM_TIMER message arrives
just before a new second ticks off and the next WM_TIMER
message arrives a split second after the next new second. You
could prevent this from happening by lowering the timer
interval to, say, 0.5 second. The cost would be more overhead
to the system, but the added overhead would be minimal
because OnTimer is structured so that it redraws the clock
hands (by far the most labor-intensive part of the process) only
if the time has changed since the last timer message.

Before doing anything else, OnTimer calls the main window's
IsIconic function to determine whether the window is currently
minimized. IsIconic returns nonzero for a minimized window
and 0 for an unminimized window. (A complementary function,
CWnd::IsZoomed, returns a nonzero value if a window is
maximized and 0 if it isn't.) If IsIconic returns nonzero,
OnTimer exits immediately to prevent the clock display from
being updated when the window isn't displayed. When a
minimized window calls GetClientRect in Windows 95 or
higher or Windows NT 4.0 or higher, the returned rectangle is a
NULL rectangle—one whose coordinates equal 0. The
application can try to paint in this rectangle, but the GDI will
clip the output. Checking for a minimized window upon each
timer tick reduces the load on the CPU by eliminating
unnecessary drawing.

Programming Windows With MFC

 887

If you'd rather that Clock not sit idle while its window is
minimized, try rewriting the beginning of the OnTimer function
so that it looks like this:

CTime time = CTime::GetCurrentTime ();
int nSecond = time.GetSecond ();
int nMinute = time.GetMinute ();
int nHour = time.GetHour () % 12;

if (IsIconic ()) {
 CString time;
 time.Format (_T ("%0.2d:%0.2d:%0.2d"), nHour, nMinute,
nSecond);
 SetWindowText (time);
 return;
}

else {
 SetWindowText (_T ("Clock"));

}

An application can change the text displayed next to its icon in
the taskbar by changing the window title with
CWnd::SetWindowText. If modified as shown above, Clock
will tick off the seconds in the taskbar while it is minimized.

14.2.2. Getting the Current Time:The CTime Class

To query the system for the current time, Clock uses a CTime
object. CTime is an MFC class that represents times and dates.
It includes convenient member functions for getting the date,
time, day of the week (Sunday, Monday, Tuesday, and so on),
and other information. Overloaded operators such as +, -, and >
allow you to manipulate times and dates with the ease of simple
integers.

The CTime member functions that interest us are
GetCurrentTime, which is a static function that returns a CTime
object initialized to the current date and time; GetHour, which
returns the hour (0 through 23); GetMinute, which returns the
number of minutes past the hour (0 through 59); and GetSecond,
which returns the number of seconds (0 through 59). OnTimer
uses the following statements to retrieve the current hour,

Programming Windows With MFC

 888

minute, and second so that it can determine whether the clock
display needs to be updated:

CTime time = CTime::GetCurrentTime ();
int nSecond = time.GetSecond ();
int nMinute = time.GetMinute ();
int nHour = time.GetHour () % 12;

The modulo-12 operation applied to GetHour's return value
converts the hour to an integer from 0 through 11.
CMainWindow's constructor uses similar code to initialize
m_nPrevHour, m_nPrevMinute, and m_nPrevSecond.

14.2.3. Using the MM_ISOTROPIC Mapping
Mode

Up to now, most of the applications that we've developed have
used the default MM_TEXT mapping mode. The mapping
mode governs how Windows converts the logical units passed
to CDC drawing functions into device units (pixels) on the
display. In the MM_TEXT mapping mode, logical units and
device units are one and the same, so if an application draws a
line from (0,0) to (50,100), the line extends from the pixel in
the upper left corner of the display surface to the pixel that lies
50 pixels to the right of and 100 pixels below the upper left
corner. This assumes, of course, that the drawing origin hasn't
been moved from its default location in the upper left corner of
the display surface.

MM_TEXT is fine for most applications, but you can use other
GDI mapping modes to lessen an application's dependency on
the physical characteristics of the display. (For a review of GDI
mapping modes, refer to Chapter 2.) In the MM_LOENGLISH
mapping mode, for example, one logical unit is equal to 1/100
of an inch, so if you want to draw a line exactly 1 inch long,
you can use a length of 100 units and Windows will factor in
the number of pixels per inch when it scan-converts the line
into pixels. The conversion might not be perfect for screen DCs
because Windows uses assumed pixel-per-inch values for
screens that aren't based on the physical screen size. Windows
can obtain precise pixel-per-inch values for printers and other
hardcopy devices, however, so by using MM_LOENGLISH for
printer output, you really can draw a line 1 inch long.

Programming Windows With MFC

 889

Clock uses the MM_ISOTROPIC mapping mode, in which
logical units measured along the x axis have the same physical
dimensions as logical units measured along the y axis. Before
drawing the clock's face and hands in response to a
WM_TIMER or WM_PAINT message, Clock measures the
window's client area with GetClientRect and creates a device
context. Then it sets the mapping mode to MM_ISOTROPIC,
moves the origin of the coordinate system so that the logical
point (0,0) lies at the center of the window's client area, and
sets the window extents so that the window's client area
measures 1,000 logical units in each direction. Here's how it
looks in code:

CRect rect;
GetClientRect (&rect);

CClientDC dc (this); // In OnPaint, use CPaintDC instead.
dc.SetMapMode (MM_ISOTROPIC);
dc.SetWindowExt (1000, 1000);
dc.SetViewportExt (rect.Width (), -rect.Height ());
dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);

The negative value passed to SetViewportExt specifying the
viewport's physical height orients the coordinate system such
that values of y increase in the upward direction. If the negative
sign were omitted, increasing values of y would move down the
screen rather than up because Windows numbers pixels at the
bottom of the screen higher than it does pixels at the top. Figure
14-3 shows what the coordinate system looks like after it is
transformed. The coordinate system is centered in the window's
client area, and values of x and y increase as you move to the
right and up. The result is a four-quadrant Cartesian coordinate
system that happens to be a very convenient model for drawing
an analog clock face.

Programming Windows With MFC

 890

Figure 14-3. Clock's coordinate system for screen output.

Once you've configured the coordinate system this way, you
can write the routines that draw the clock's face and hands
without regard for the physical dimensions of the window.
When DrawHand is called to draw a clock hand, the length
value passed in the second parameter is either 200 for an hour
hand or 400 for a minute hand. DrawSecondHand, too, is
passed a length of 400. Because the distance from the origin of
the coordinate system to any edge of the window is 500 logical
units, the minute and second hands extend outward 80 percent
of the distance to the nearest window edge and the hour hand
spans 40 percent of the distance. If you used the MM_TEXT
mapping mode instead, you'd have to scale every coordinate
and every distance manually before passing it to the GDI.

14.2.4. Hiding and Displaying the Title Bar

Clock's system menu contains two extra commands: Remove
Title and Stay On Top. Remove Title removes the window's
title bar so that the clock face fills the entire window. You can
restore the title bar by displaying the system menu again and

Programming Windows With MFC

 891

selecting Restore Title, which appears where Remove Title
used to be. The magic underlying this transformation is simple,
yet adding or removing a title bar on the fly is enough to make
even seasoned Windows programmers scratch their heads in
bewilderment the first time they try it.

The secret lies in CMainWindow::SetTitleBarState. The
attribute that determines whether a window has a title bar is the
WS_CAPTION style bit, which is included in the
WS_OVERLAPPEDWINDOW style used by most frame
windows. Creating a window without a title bar is as simple as
omitting WS_CAPTION from the window style. It follows that
you can remove a title bar from a window that already exists by
stripping the WS_CAPTION bit. MFC's CWnd::ModifyStyle
function changes a window's style with one simple function call.
When Remove/Restore Title is selected from Clock's system
menu, CMainWindow::OnSysCommand toggles the value
stored in CMainWindow::m_bFullWindow from 0 to 1 or 1 to 0
and then calls CMainWindow::SetTitleBarState, which adds or
removes the WS_CAPTION style based on the current value of
m_bFullWindow:

if (m_bFullWindow) {
 ModifyStyle (WS_CAPTION, 0);
 pMenu->ModifyMenu (IDM_SYSMENU_FULL_WINDOW,
MF_STRING,
 IDM_SYSMENU_FULL_WINDOW, _T ("Restore &Title"));
}
else {
 ModifyStyle (0, WS_CAPTION);
 pMenu->ModifyMenu (IDM_SYSMENU_FULL_WINDOW,
MF_STRING,
 IDM_SYSMENU_FULL_WINDOW, _T ("Remove &Title"));
}

The first parameter passed to ModifyStyle specifies the style or
styles to remove, and the second parameter specifies the style
or styles to add. SetTitleBarState also sets the menu item text to
match the state of the style bit: "Remove Title" if the title bar is
displayed and "Restore Title" if it isn't.

Toggling WS_CAPTION on and off is only half the battle,
however. The trick is getting the window's nonclient area to
repaint once the window style is changed. Calling
CWnd::Invalidate won't do it, but calling SetWindowPos with a
SWP_DRAWFRAME parameter will:

Programming Windows With MFC

 892

SetWindowPos (NULL, 0, 0, 0, 0, SWP_NOMOVE ¦ SWP_NOSIZE ¦
 SWP_NOZORDER ¦ SWP_DRAWFRAME);

The combination of SetWindowPos and SWP_DRAWFRAME
causes the entire window, including the title bar, to redraw. The
other SWP flags passed to SetWindowPos preserve the
window's position, size, and position in the z-order—the
front-to-back ordering of windows that determines which
windows are painted on top of others.

14.2.5. Implementing Client-Area Drag

One problem with a window without a title bar is that it can't be
repositioned with the mouse. Windows are dragged by their
title bars, and when there's no title bar, the user has nothing to
grab onto. Clock solves this little dilemma by playing a trick
with the window's WM_NCHITTEST handler so that the
window can be dragged by its client area, a feature Windows
programmers call client-area drag.

In Windows, every mouse message is preceded by a
WM_NCHITTEST message containing screen coordinates
identifying the cursor location. The message is normally
handled by ::DefWindowProc, which returns a code that tells
Windows what part of the window the cursor is over. Windows
uses the return value to decide what type of mouse message to
send. For example, if the left mouse button is clicked over the
window's title bar, ::DefWindowProc's WM_NCHITTEST
handler returns HTCAPTION and Windows sends the window
a WM_NCLBUTTONDOWN message. If ::DefWindowProc
returns HTCLIENT instead, Windows converts the cursor
coordinates from screen coordinates to client coordinates and
passes them to the window in a WM_LBUTTONDOWN
message.

The fact that an application sees mouse messages in raw form
makes for some interesting possibilities. The following
OnNcHitTest handler implements client-area drag by fooling
Windows into thinking that the mouse is over the title bar when
in fact it's over the window's client area:

UINT CMainWindow::OnNcHitTest (CPoint point)
{

Programming Windows With MFC

 893

 UINT nHitTest = CFrameWnd::OnNcHitTest (point);
 if (nHitTest == HTCLIENT)
 nHitTest = HTCAPTION;
 return nHitTest;
}

With this OnNcHitTest handler in place, a window is as easily
dragged by its client area as by its title bar. And it works even if
the window doesn't have a title bar. Try it: click the left mouse
button in Clock's client area, and move the mouse with the
button held down. The window should go wherever the mouse
goes.

Clock uses an OnNcHitTest handler similar to the one shown
above. The only difference is that Clock verifies that the left
mouse button is down before replacing an HTCLIENT return
code with HTCAPTION so that other mouse
messages—particularly right-button mouse messages that
precede WM_CONTEXTMENU messages—will get through
unscathed:

UINT CMainWindow::OnNcHitTest (CPoint point)
{
 UINT nHitTest = CFrameWnd::OnNcHitTest (point);
 if ((nHitTest == HTCLIENT) &&
 (::GetAsyncKeyState (MK_LBUTTON) < 0))
 nHitTest = HTCAPTION;
 return nHitTest;
}

The call to ::GetAsyncKeyState checks the left mouse button
and returns a negative value if the button is currently down.

14.2.6. Using the System Menu as a Context Menu

Removing a window's title bar has other implications, too.
Without a title bar, the user has nothing to click on to display
the system menu so that the title bar can be restored. Clock's
solution is an OnContextMenu handler that displays the system
menu as a context menu when the right mouse button is clicked
in the window's client area. Popping up a system menu at an
arbitrary location is easier said than done because there's no
convenient API function for displaying a system menu

Programming Windows With MFC

 894

programmatically. Clock demonstrates one technique that you
can use to do it yourself.

When Clock's client area is clicked with the right mouse button,
CMainWindow's OnContextMenu handler retrieves a CMenu
pointer to the system menu with GetSystemMenu and displays
the menu with CMenu::TrackPopupMenu:

CMenu* pMenu = GetSystemMenu (FALSE);

int nID = (int) pMenu->TrackPopupMenu (TPM_LEFTALIGN ¦
 TPM_LEFTBUTTON ¦ TPM_RIGHTBUTTON ¦
TPM_RETURNCMD, point.x,
 point.y, this);

One problem with this solution is that commands selected from
the menu produce WM_COMMAND messages instead of
WM_SYSCOMMAND messages. To compensate, Clock
passes TrackPopupMenu a TPM_RETURNCMD flag
instructing it to return the ID of the selected menu item. If
TrackPopupMenu returns a positive, nonzero value, indicating
that an item was selected, Clock sends itself a
WM_SYSCOMMAND message with wParam equal to the
menu item ID as shown below.

if (nID > 0)
 SendMessage (WM_SYSCOMMAND, nID, 0);

Consequently, OnSysCommand gets called to process selections
from the pseudo_system menu just as it does for selections
from the real system menu. To prevent the framework from
disabling the items added to the system menu because of the
lack of ON_COMMAND handlers, CMainWindow's
constructor sets m_bAutoMenuEnable to FALSE. Normally, the
framework's automatic enabling and disabling of menu items
doesn't affect items added to the system menu, but Clock's
system menu is an exception because it's treated as a
conventional menu when it's displayed with TrackPopupMenu.

So far, so good. There's just one problem remaining. Windows
interactively enables and disables certain commands in the
system menu so that the selection of commands available is
consistent with the window state. For example, the Move, Size,

Programming Windows With MFC

 895

and Maximize commands are grayed in a maximized window's
system menu but the Restore and Minimize commands are not.
If the same window is restored to its unmaximized size, Restore
is grayed out but all other commands are enabled.
Unfortunately, when you get a menu pointer with
GetSystemMenu, the menu items haven't been updated yet.
Therefore, OnContextMenu calls a CMainWindow function
named UpdateSystemMenu to manually update the menu item
states based on the current state of the window. After
UpdateSystemMenu updates the system menu by placing a
series of calls to CMenu::GetMenuString and
CMenu::ModifyMenu, it uses the ::SetMenuDefaultItem API
function to set the default menu item (the one displayed in
boldface type) to either Restore or Maximize, depending on the
window state. UpdateSystemMenu is hardly an ideal solution,
but it works, and to date I haven't found a better way to keep
the items in a programmatically displayed system menu in sync
with the window the menu belongs to.

14.2.7. Topmost Windows

One of the innovations Windows 3.1 introduced was the notion
of a topmost window—a window whose position in the z-order
is implicitly higher than those of conventional, or nontopmost,
windows. Normally, the window at the top of the z-order is
painted on top of other windows, the window that's second in
the z-order is painted on top of windows other than the first,
and so on. A topmost window, however, receives priority over
other windows so that it's not obscured even if it's at the bottom
of the z-order. It's always visible, even while it's running in the
background.

The Windows taskbar is the perfect example of a topmost
window. By default, the taskbar is designated a topmost
window so that it will be drawn on top of other windows. If two
(or more) topmost windows are displayed at the same time, the
normal rules of z-ordering determine the visibility of each one
relative to the other. You should use topmost windows
sparingly because if all windows were topmost windows, a
topmost window would no longer be accorded priority over
other windows.

Programming Windows With MFC

 896

The difference between a topmost window and a nontopmost
window is an extended window style bit. WS_EX_TOPMOST
makes a window a topmost window. You can create a topmost
frame window by including a WS_EX_TOPMOST flag in the
call to Create, like this:

Create (NULL, _T ("MyWindow"), WS_OVERLAPPEDWINDOW,
rectDefault,
 NULL, NULL, WS_EX_TOPMOST);

The alternative is to add the style bit after the window is
created by calling SetWindowPos with a &wndTopMost
parameter, as shown here:

SetWindowPos (&wndTopMost, 0, 0, 0, 0, SWP_NOMOVE ¦
SWP_NOSIZE);

You can convert a topmost window into a nontopmost window
by calling SetWindowPos with the first parameter equal to
&wndNoTopMost rather than &wndTopMost.

Clock uses SetWindowPos to make its window a topmost
window when Stay On Top is checked in the system menu and
a nontopmost window when Stay On Top is unchecked. The
work is done by CMainWindow::SetTopMostState, which is
called by OnSysCommand. When Stay On Top is checked,
Clock is visible on the screen at all times, even if it's running in
the background and it overlaps the application running in the
foreground.

14.2.8. Making Configuration Settings Persistent

Clock is the first program presented thus far that makes
program settings persistent by recording them on disk. The
word persistent comes up a lot in discussions of Windows
programming. Saying that a piece of information is persistent
means that it's preserved across sessions. If you want Clock to
run in a tiny window in the lower right corner of your screen,
you can size it and position it once and it will automatically
come back up in the same size and position the next time it's
started. For users who like to arrange their desktops a certain
way, little touches like this one make the difference between a
good application and a great one. Other Clock configuration

Programming Windows With MFC

 897

settings are preserved, too, including the title bar and
stay-on-top states.

The key to preserving configuration information across sessions
is to store it on the hard disk so that it can be read back again
the next time the application is started. In 16-bit Windows,
applications commonly
use ::WriteProfileString, ::GetProfileString, and other API
functions to store configuration settings in Win.ini or private
INI files. In 32-bit Windows, INI files are still supported for
backward compatibility, but programmers are discouraged from
using them. 32-bit applications should store configuration
settings in the registry instead.

The registry is a binary database that serves as a central data
repository for the operating system and the applications it hosts.
Information stored in the registry is organized hierarchically
using a system of keys and subkeys, which are analogous to
directories and subdirectories on a hard disk. Keys can contain
data entries just as directories can contain files. Data entries
have names and can be assigned text or binary values. The
uppermost level in the registry's hierarchy is a set of six root
keys named HKEY_CLASSES_ROOT, HKEY_USERS,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,
HKEY_CURRENT_CONFIG, and HKEY_DYN_DATA. Per
Microsoft's recommendations, Windows applications should
store private configuration settings under the key

HKEY_CURRENT_USER\Software\CompanyName\ProductName\Versi
on

where CompanyName is the company name, ProductName is
the product name, and Version is the product's version number.
A registry entry that records the user-selectable window
background color for version 2.0 of a product named
WidgetMaster from WinWidgets, Inc., might look like this:

HKEY_CURRENT_USER\Software\WinWidgets,
Inc.\WidgetMaster\Version 2.0\BkgndColor=4

Because the information is stored under
HKEY_CURRENT_USER, it is maintained on a per-user basis.
That is, if another user logs in and runs the same application but

Programming Windows With MFC

 898

selects a different background color, a separate BkgndColor
value will be recorded for that user.

The Win32 API includes an assortment of functions for reading
and writing to the registry, but MFC provides a layer on top of
the API that makes reading and writing application-specific
registry values no different from using ordinary INI files. A call
to CWinApp::SetRegistryKey with the name of a registry key
directs the framework to use the registry instead of an INI file.
The key name passed to SetRegistryKey corresponds to the
company name—for example, "WinWidgets, Inc." in the
example above. String and numeric values are written to the
registry with CWinApp's WriteProfileString and WriteProfileInt
functions and read back with GetProfileString and
GetProfileInt. In an application named MyWord.exe, the
statements

SetRegistryKey (_T ("WordSmith"));
WriteProfileInt (_T ("Version 1.0"), _T ("MRULength"), 8);

create the following numeric registry entry:

HKEY_CURRENT_USER\Software\WordSmith\MYWORD\Version
1.0\MRULength=8

The statement

m_nMRULength = GetProfileInt (_T ("Version 1.0"), _T
("MRULength"), 4);

reads it back and returns 4 if the entry doesn't exist. Note that
MFC generates the product name for you by stripping the .exe
extension from the executable file name.

Before it terminates, Clock records the following configuration
settings in the registry:

x The value of CMainWindow::m_bFullWindow, which indicates whether
the title bar is displayed

x The value of CMainWindow::m_bStayOnTop, which indicates whether
Stay On Top is selected

x The size and position of the frame window

Programming Windows With MFC

 899

The next time it starts up, Clock reads the settings back. The
full complement of entries that Clock stores in the registry is
shown in Figure 14-4. The CMainWindow functions
SaveWindowState and RestoreWindowState do the reading and
writing. SaveWindowState is called from the window's OnClose
and OnEndSession handlers, which are called just before the
application closes and just before Windows shuts down,
respectively. If Windows is shut down, a running application
doesn't receive a WM_CLOSE message, but it does receive a
WM_ENDSESSION message. If you want to know whether
Windows is preparing to shut down, simply add an
ON_WM_ENDSESSION entry to the main window's message
map and write an OnEndSession handler to go with it. The
bEnding parameter passed to OnEndSession indicates whether
Windows is in fact shutting down. A nonzero value means it is;
0 means Windows was about to shut down but another
application vetoed the operation. A WM_ENDSESSION
message is preceded by a WM_QUERYENDSESSION
message, in which each application is given a chance to say yes
or no to an impending shutdown.

Figure 14-4. Clock's registry entries as seen in Registry Editor
(RegEdit.exe).

Clock's title bar and stay-on-top settings are saved to the
HKEY_CURRENT_USER\Software\Programming Windows
with MFC\CLOCK\Version 1.0 branch of the registry with the
following statements in SaveWindowState.

CString version = _T ("Version 1.0");

Programming Windows With MFC

 900

myApp.WriteProfileInt (version, _T ("FullWindow"),
m_bFullWindow);
myApp.WriteProfileInt (version, _T ("StayOnTop"), m_bStayOnTop);

The settings are read back and applied to the window in
RestoreWindowState:

CString version = _T ("Version 1.0");
m_bFullWindow = myApp.GetProfileInt (version, _T
("FullWindow"), 0);
SetTitleBarState ();
m_bStayOnTop = myApp.GetProfileInt (version, _T ("StayOnTop"),
0);
SetTopMostState ();

RestoreWindowState is called by CMyApp::InitInstance right
after the window is created but before it's displayed on the
screen.

Saving and restoring the window's size and position is a little
trickier. If you've never written an application with a window
that remembers its size and position, you might think it would
be a simple matter of saving the coordinates returned by
CWnd::GetWindowRect so that they can be passed to Create or
CreateEx. But there's more to it than that. If you fail to take
into account the window's current state (minimized, maximized,
or neither minimized nor maximized), all kinds of bad things
can happen. For example, if you pass the coordinates of a
maximized window to Create or CreateEx, the resultant
window will occupy the full extent of the screen but its title bar
will have a maximize box instead of a restore box. A persistent
window that's closed while it's minimized or maximized should
come back up in the minimized or maximized state, and it
should also remember its normal size so that restoring it will
restore its former size.

The key to preserving a window's size and position and taking
relevant state information into account lies in a pair of CWnd
functions named GetWindowPlacement and
SetWindowPlacement. Each accepts the address of a
WINDOWPLACEMENT structure, which is defined as
follows:

Programming Windows With MFC

 901

typedef struct tagWINDOWPLACEMENT {
 UINT length;
 UINT flags;
 UINT showCmd;
 POINT ptMinPosition;
 POINT ptMaxPosition;
 RECT rcNormalPosition;
 } WINDOWPLACEMENT;

WINDOWPLACEMENT brings together in one place
everything Windows needs to know to characterize a window's
screen state. length specifies the size of the
WINDOWPLACEMENT structure. Both
CWnd::GetWindowPlacement and
CWnd::SetWindowPlacement fill in this field for you. flags
contains zero or more bit flags specifying information about
minimized windows. The WPF_RESTORETOMAXIMIZED
flag, if present, indicates that a minimized window will be
maximized when it is restored. showCmd specifies the
window's current display state. It is set to
SW_SHOWMINIMIZED if the window is minimized,
SW_SHOWMAXIMIZED if the window is maximized, or
SW_SHOWNORMAL if the window is neither minimized nor
maximized. ptMinPosition and ptMaxPosition hold the screen
coordinates of the window's upper left corner when it is
minimized and maximized, respectively. (Don't rely on
ptMinPosition to tell you anything; in current versions of
Windows, ptMinPosition is set to (3000,3000) when a window
is minimized.) rcNormalPosition contains the screen
coordinates of the window's "normal," or unminimized and
unmaximized, screen position. When a window is minimized or
maximized, rcNormalPosition specifies the position and size
the window will be restored to—provided, of course, that the
WPF_RESTORETOMAXIMIZED flag isn't set to force a
restored window to full screen.

You can preserve a window's screen state across sessions by
saving the flags, showCmd, and rcNormalPosition values in the
window's WINDOWPLACEMENT structure and restoring
these values when the window is re-created. You don't need to
save ptMinPosition and ptMaxPosition because Windows fills
in their values when the window is minimized or maximized.
Clock's SaveWindowState function uses GetWindowPlacement

Programming Windows With MFC

 902

to initialize a WINDOWPLACEMENT structure and then
writes the pertinent members of that structure to the registry.
The window state is restored when CMyApp::InitInstance calls
CMainWindow::RestoreWindowState, which in turn calls
GetWindowPlacement to fill in a WINDOWPLACEMENT
structure; reads the flags, showCmd, and rcNormalPosition
values from the registry; copies them to the structure; and calls
SetWindowPlacement. The SW_SHOWMINIMIZED,
SW_SHOWMAXIMIZED, or SW_SHOWNORMAL
parameter passed to SetWindowPlacement in showCmd makes
the window visible, so there's no need to call ShowWindow if
RestoreWindowState returns TRUE, indicating that the window
state was successfully restored. In fact, you should skip the
usual call placed to ShowWindow from InitInstance if
RestoreWindowState returns TRUE because the application
object's m_nCmdShow parameter might alter the window's state.
Clock's InitInstance function looks like this:

BOOL CMyApp::InitInstance ()
{
 SetRegistryKey (_T ("Programming Windows with MFC"));
 m_pMainWnd = new CMainWindow;
 if (!((CMainWindow*) m_pMainWnd)->RestoreWindowState ())
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

The first time Clock is executed, ShowWindow is called in the
normal way because RestoreWindowState returns FALSE. In
subsequent invocations, the window's size, position, and
visibility state are set by RestoreWindowState, and
ShowWindow is skipped.

Before calling SetWindowPlacement to apply the state values
retrieved from the registry, RestoreWindowState ensures that a
window positioned near the edge of a 1,024-by-768 screen
won't disappear if Windows is restarted in 640-by-480 or
800-by-600 mode by comparing the window's normal position
with the screen extents:

wp.rcNormalPosition.left = min (wp.rcNormalPosition.left,
 ::GetSystemMetrics (SM_CXSCREEN) -
 ::GetSystemMetrics (SM_CXICON));

Programming Windows With MFC

 903

wp.rcNormalPosition.top = min (wp.rcNormalPosition.top,
 ::GetSystemMetrics (SM_CYSCREEN) -
 ::GetSystemMetrics (SM_CYICON));

Called with SM_CXSCREEN and SM_CYSCREEN
parameters, ::GetSystemMetrics returns the screen's width and
height, respectively, in pixels. If the window coordinates
retrieved from the registry are 700 and 600 and Windows is
running at a resolution of 640 by 480, this simple procedure
transforms the 700 and 600 into 640 and 480 minus the width
and height of an icon. Rather than appear out of sight off the
screen and probably leave the user wondering why the
application didn't start, the window will appear just inside the
lower right corner of the screen.

A good way to test a program that preserves a window's
position and size is to resize the window to some arbitrary size,
maximize it, minimize it, and then close the application with
the window minimized. When the program is restarted, the
window should come up minimized, and clicking the
minimized window's icon in the taskbar should remaximize it.
Clicking the restore button should restore the window's original
size and position. Try this procedure with Clock, and you
should find that it passes the test with flying colors.

14.2.9. Controlling the Window Size: The
WM_GETMINMAXINFO Message

A final aspect of Clock that deserves scrutiny is its
OnGetMinMaxInfo handler. As a window is being resized, it
receives a series of WM_GETMINMAXINFO messages with
lParam pointing to a MINMAXINFO structure containing
information about the window's minimum and maximum
"tracking" sizes. You can limit a window's minimum and
maximum sizes programmatically by processing
WM_GETMINMAXINFO messages and copying the
minimum width and height to the x and y members of the
structure's ptMinTrackSize field and the maximum width and
height to the x and y members of the ptMaxTrackSize field.
Clock prevents its window from being reduced to less than 120
pixels horizontally and vertically with the following
OnGetMinMaxInfo handler:

Programming Windows With MFC

 904

void CMainWindow::OnGetMinMaxInfo (MINMAXINFO* pMMI)
{
 pMMI->ptMinTrackSize.x = 120;
 pMMI->ptMinTrackSize.y = 120;
}

The tracking dimensions copied to MINMAXINFO are
measured in device units, or pixels. In this example, the
window's maximum size is unconstrained because
pMMI->ptMaxTrackSize is left unchanged. You could limit the
maximum window size to one-half the screen size by adding
the statements

pMMI->ptMaxTrackSize.x = ::GetSystemMetrics (SM_CXSCREEN)
/ 2;
pMMI->ptMaxTrackSize.y = ::GetSystemMetrics (SM_CYSCREEN)
/ 2;

to the message handler.

14.3. Idle Processing

Because MFC's application class, CWinApp, provides the
message loop that retrieves and dispatches messages, it's a
simple matter for CWinApp to call a function in your
application when no messages are waiting to be processed. If
you look at the source code for the CWinThread::Run function
that gets called by WinMain to start the message loop, you'll see
something that looks like this:

BOOL bIdle = TRUE;
LONG lIdleCount = 0;

for (;;)
{
 while (bIdle &&
 !::PeekMessage(&m_msgCur, NULL, NULL, NULL,
PM_NOREMOVE))
 {
 if (!OnIdle(lIdleCount++))
 bIdle = FALSE;
 }

 do
 {
 if (!PumpMessage())
 return ExitInstance();

Programming Windows With MFC

 905

 if (IsIdleMessage(&m_msgCur))
 {
 bIdle = TRUE;
 lIdleCount = 0;
 }

 } while (::PeekMessage(&m_msgCur, NULL, NULL, NULL,
PM_NOREMOVE));
}

Before it calls PumpMessage to retrieve and dispatch a message,
Run calls ::PeekMessage with a PM_NOREMOVE flag to
check the message queue. If a message is
waiting, ::PeekMessage copies it to an MSG structure and
returns a nonzero value but doesn't remove the message from
the queue. If no messages are waiting, ::PeekMessage returns 0.
Unlike ::GetMessage, ::PeekMessage doesn't wait for a
message to appear in the message queue before returning; it
returns immediately. If ::PeekMessage returns nonzero,
indicating that messages are waiting to be processed,
CWinThread::Run enters a do-while loop that calls
CWinThread::PumpMessage repeatedly to retrieve and
dispatch the messages. But if ::PeekMessage returns 0 and the
bIdle flag is set, CWinThread::Run calls a member function
named OnIdle to give the application an opportunity to perform
idle processing. Because OnIdle is a virtual function and
because CWinApp is derived from CWinThread, a derived
application class can hook into the idle loop by replacing
CWinApp::OnIdle with an OnIdle function of its own.

Back in the days of Windows 3.x, when applications were
inherently single-threaded, OnIdle was the perfect place to
perform background processing tasks such as print spooling
and garbage collecting. In 32-bit Windows, CWinApp::OnIdle's
usefulness is greatly diminished because low-priority tasks can
be performed more efficiently in background threads of
execution. OnIdle still has legitimate uses, however. MFC uses
it to update toolbar buttons and other always-visible user
interface objects by calling update handlers registered in the
message map. It also takes advantage of times when the
application isn't busy processing messages by deleting
temporary objects created by functions such as
CWnd::FromHandle and CWnd::GetMenu.

Programming Windows With MFC

 906

When you call FromHandle to convert a window handle into a
CWnd pointer, MFC consults an internal table called a handle
map that correlates CWnd objects and window handles. If it
finds the handle it's looking for, MFC returns a pointer to the
corresponding CWnd object. If the window handle doesn't
appear in the handle map because a corresponding CWnd
doesn't exist, however, FromHandle creates a temporary CWnd
object and returns its address to the caller. The next time
OnIdle is called (which doesn't occur until after the message
handler that called FromHandle returns), MFC cleans up by
deleting the temporary CWnd object. That's why the
documentation for some MFC functions warns that returned
pointers might be temporary and "should not be stored for later
use." What that really means is that an object referenced by one
of these temporary pointers isn't guaranteed to exist outside the
scope of the current message handler because, once that handler
returns, OnIdle is liable to be called—and the object
deleted—at any moment.

14.3.1. Using OnIdle

An MFC application can enact its own idle-processing regimen
by overriding the virtual OnIdle function that it inherits from
CWinApp. OnIdle is prototyped as follows:

virtual BOOL OnIdle (LONG lCount)

lCount is a 32-bit value that specifies the number of times
OnIdle has been called since the last message was processed.
The count continually increases until the message loop in
CWinThread::Run calls PumpMessage to retrieve and dispatch
another message. The count is then reset to 0 and starts again.
WM_PAINT messages, WM_SYSTIMER messages, and
certain mouse messages don't cause lCount to be reset.
(WM_SYSTIMER is an undocumented message Windows uses
internally.) lCount can be used as a rough measure of the time
elapsed since the last message or of the length of time the
application has been idle. If you have two background tasks
you'd like to perform during idle time, one that's high priority
and another that's low, you can use lCount to determine when
to execute each task. For example, you might perform the
high-priority task each time lCount reaches 10 and the
low-priority task when lCount hits 100 or even 1,000.

Programming Windows With MFC

 907

If you could log the calls to an application's OnIdle function
without slowing it down, you'd find that 1,000 is not all that
high a number. Typically, OnIdle is called 100 or more times
per second when the message queue is empty, so a low-priority
background task that kicks off when lCount reaches 1,000 is
typically executed when the mouse and keyboard are idle for a
few seconds. A high-priority task that begins when lCount
reaches 10 is executed much more often because the count
frequently reaches or exceeds 10, even when the message loop
is relatively busy. Idle processing should be carried out as
quickly as possible because message traffic is blocked until
OnIdle returns.

The value that OnIdle returns determines whether OnIdle will
be called again. If OnIdle returns a nonzero value, it's called
again if the message queue is still empty. If OnIdle returns 0,
however, further calls are suspended until another message
finds its way into the message queue and the idle state is
reentered after the message is dispatched. The mechanism that
makes this work is the bIdle flag in CWinThread::Run, which is
initially set to TRUE but is set to FALSE if OnIdle returns
FALSE. The while loop that calls OnIdle tests the value of
bIdle at the beginning of each iteration and falls through if
bIdle is FALSE. bIdle is set to TRUE again when a message
shows up in the message queue and PumpMessage is called. As
a practical matter, you can save a few CPU cycles by returning
FALSE from OnIdle if your background processing is complete
for the moment and you don't want OnIdle to be called again
until the flow of messages resumes. Be careful, however, not to
return FALSE before the framework has finished its most
recent spate of idle-processing chores and thus deprive it of the
idle time it needs.

The cardinal rule to follow when using OnIdle is to call the
base class version of OnIdle from the overridden version. The
following OnIdle override demonstrates the proper technique.
The base class's OnIdle function is called first, and after the call
returns, the application performs its own idle processing:

BOOL CMyApp::OnIdle (LONG lCount)
{
 CWinApp::OnIdle (lCount);
 DoIdleWork (); // Do custom idle processing.

Programming Windows With MFC

 908

 return TRUE;
}

It turns out that the framework does its processing when lCount
is 0 and 1. Therefore, an even better approach is to accord
higher priority to the framework's OnIdle handler by delaying
the start of your own idle processing until lCount reaches a
value of 2 or higher:

BOOL CMyApp::OnIdle (LONG lCount)
{
 CWinApp::OnIdle (lCount);
 if (lCount == 2)
 DoIdleWork (); // Do custom idle processing.
 return TRUE;
}

You can see for yourself what MFC does during idle time by
examining the source code for CWinThread::OnIdle in
Thrdcore.cpp and CWinApp::OnIdle in Appcore.cpp.

Because the OnIdle implementations in the previous paragraph
always returns TRUE, calls to OnIdle will continue unabated
even if both you and the framework are finished with OnIdle
for the time being. The following OnIdle override reduces
overhead by returning FALSE when both MFC's idle
processing and the application's idle processing are complete:

BOOL CMyApp::OnIdle (LONG lCount)
{
 BOOL bContinue = CWinApp::OnIdle (lCount);
 if (lCount == 2)
 DoIdleWork (); // Do custom idle processing.
 return (bContinue œœ lCount < 2);
}

The fact that application-specific idle processing isn't started
until lCount equals 2 means that the framework won't be
deprived of the idle time it needs if the application's OnIdle
function returns FALSE.

It's important to perform idle processing as quickly as possible
to avoid adversely impacting the application's responsiveness.
If necessary, break up large OnIdle tasks into smaller, more

Programming Windows With MFC

 909

manageable pieces and process one piece at a time in
successive calls to OnIdle. The following OnIdle function
begins its work when lCount reaches 2 and continues
responding to OnIdle calls until DoIdleWork returns 0:

BOOL CMyApp::OnIdle (LONG lCount)
{
 BOOL bMFCContinue = CWinApp::OnIdle (lCount);
 BOOL bAppContinue = TRUE;
 if (lCount >= 2)
 bAppContinue = DoIdleWork (); // Do custom idle
processing.
 return (bMFCContinue œœ bAppContinue);
}

Because DoIdleWork's return value is also used as OnIdle's
return value, OnIdle will cease to be called once DoIdleWork
has completed its appointed task.

14.3.2. Idle Processing vs. Multithreading

In Chapter 17, you'll learn about another way to perform
background tasks that involves multiple threads of execution.
Multithreading is a powerful programming paradigm that's
ideal for performing two or more tasks in parallel. It's also
scalable: on a multiprocessor system containing n CPUs,
Windows NT and Windows 2000 will execute up to n threads
concurrently by scheduling each to run on a different processor.
(Windows 95 and Windows 98, by contrast, force all threads to
share a single CPU, even on multiprocessor systems.)

Given the robust multithreading support in 32-bit Windows, it's
reasonable to ask when, if at all, you should use idle processing
in lieu of multithreading. Here are two answers:

x When you have background tasks to perform that must execute in the
application's primary thread. User interface_related tasks tend to be very
thread-sensitive. That's one reason why MFC performs user interface
updates in the primary thread.

x When you have background tasks to perform and the application that
you're writing must work in 16-bit Windows as well as in 32-bit
Windows. Multithreading is not supported in 16-bit Windows.

In these situations, performing background tasks in OnIdle
makes a lot of sense. Under any other circumstances,
multithreading is in all likelihood the proper solution.

Programming Windows With MFC

 910

Programming Windows With MFC

 911

Chapter 15. Bitmaps, Palettes, and
Regions

Getting a firm grasp of the Microsoft Windows GDI is an
important milestone on the road to becoming a Windows
programmer because all graphical output to screens, printers,
and other devices is performed through the GDI. So far in this
book, we've used three of the six MFC classes that represent
GDI objects: CPen, CBrush, and CFont. In this chapter, we'll
examine the remaining three: CPalette, CBitmap, and CRgn.

CPalette represents palettes—tables of color that allow
Windows to balance the sometimes conflicting needs of
applications that demand more colors than the video adapter
can provide. If every video adapter displayed 24-bits-per-pixel
color (8 bits each for red, green, and blue), palettes would be
unnecessary. But 256-color video adapters are a fact of life and
probably will be for some time to come. By default, a Windows
application that executes in a 256-color environment has access
to only 20 colors. If you're careful about how you pick your
colors and make those colors part of a palette, you can expand
the selection to 256 colors and write Windows applications
whose color output is almost as good on 256-color screens as it
is on screens that display millions of colors. In this chapter,
you'll see how to use palettes in your applications to generate
color output as rich as the hardware will allow.

MFC's CBitmap class represents GDI bitmaps. CBitmap is a
primitive class that does very little on its own. Combined with
MFC's CDC class, however, CBitmap makes it relatively easy
to draw on virtual display surfaces in memory, load bitmap
resources, and display simple bitmap images on the screen. You
can also use CBitmap to build more capable bitmap classes that
exploit the capabilities of the Windows device-independent
bitmap (DIB) engine. One technique you'll see demonstrated in
this chapter is a method for creating DIB sections from BMP
files and attaching them to ordinary CBitmap objects—all in
just three lines of code.

CRgn is one of MFC's more obscure classes, but one that you
can use for some exotic graphics effects. Rather than spoil the
fun, I'll leave the details for the end of the chapter.

Programming Windows With MFC

 912

15.1. Palettes

Have you ever written a Windows application that makes
generous use of color only to find that the output looks crummy
on 16-color and 256-color video adapters? There's not a whole
lot you can do about it when the adapter itself supports only 16
colors, but you can do plenty to improve output on 256-color
devices. The key to better color output is MFC's CPalette class.
Before we get into the specifics of CPalette, let's briefly review
how color information is encoded in Windows and what
Windows does with the color information that you provide.

15.1.1. How Windows Uses Color

One of the benefits of a device-independent output model is
that you can specify the colors an application uses without
regard for the physical characteristics of the output device.
When you pass a color to the Windows GDI, you pass a
COLORREF value containing 8 bits each for red, green, and
blue. The RGB macro combines individual red, green, and blue
values into a single COLORREF. The statement

COLORREF clr = RGB (255, 0, 255);

creates a COLORREF value named clr that represents
magenta—the color you get when you mix equal parts red and
blue. Conversely, you can extract 8-bit red, green, and blue
values from a COLORREF value with the GetRValue,
GetGValue, and GetBValue macros. A number of GDI
functions, including those that create pens and brushes, accept
COLORREF values.

What the GDI does with the COLORREF values you pass it
depends on several factors, including the color resolution of the
video hardware and the context in which the colors are used. In
the simplest and most desirable scenario, the video adapter is a
24-bits-per-pixel device and COLORREF values translate
directly into colors on the screen. Video adapters that support
24-bit color, or true color, are becoming increasingly common,
but Windows still runs on millions of PCs whose video
adapters are limited to 4 or 8 bits per pixel. Typically, these
devices are palletized devices, meaning that they support a wide
range of colors but can display only a limited number of colors

Programming Windows With MFC

 913

at one time. A standard VGA, for example, can display 262,144
different colors—6 bits each for red, green, and blue. However,
a VGA running at a resolution of 640 by 480 pixels can display
only 16 different colors at once because each pixel is limited to
4 bits of color information in the video buffer. The more
common case is a video adapter that can display more than 16.7
million colors but can display only 256 colors at once. The 256
colors that can be displayed are determined from RGB values
that are programmed into the adapter's hardware palette.

Windows handles palletized devices by preprogramming a
standard selection of colors into the adapter's hardware palette.
A 256-color adapter is preprogrammed with the 20 so-called
static colors shown in the following table. The four colors
marked with asterisks are subject to change at the operating
system's behest, so you shouldn't write code that depends on
their presence.

Static Palette Colors

Color R G B Color R G B

Black 0 0 0 Cream* 255 251 240

Dark red 128 0 0 Intermediate gray* 160 160 164

Dark green 0 128 0 Medium gray 128 128 128

Dark yellow 128 128 0 Red 255 0 0

Dark blue 0 0 128 Green 0 255 0

Dark magenta 128 0 128 Yellow 255 255 0

Dark cyan 0 128 128 Blue 0 0 255

Light gray 192 192 192 Magenta 255 0 255

Money green* 192 220 192 Cyan 0 255 255

Sky blue* 166 202 240 White 255 255 255

*Denotes default colors that are subject to change.

When you draw on a palletized device, the GDI maps each
COLORREF value to the nearest static color using a simple
color-matching algorithm. If you pass a COLORREF value to a
function that creates a pen, Windows assigns the pen the
nearest static color. If you pass a COLOREF value to a function

Programming Windows With MFC

 914

that creates a brush and there isn't a matching static color,
Windows dithers the brush color using static colors. Because
the static colors include a diverse (if limited) assortment of
hues, Windows can do a reasonable job of simulating any
COLORREF value you throw at it. A picture painted with 100
different shades of red won't come out very well because
Windows will simulate all 100 shades with just two reds. But
you're guaranteed that red won't undergo a wholesale
transformation to blue, green, or some other color, because the
static colors are always there and are always available.

For many applications, the primitive form of color mapping
that Windows performs using static colors is good enough. But
for others, accurate color output is a foremost concern and 20
colors just won't get the job done. In a single-tasking
environment such as MS-DOS, a program running on a
256-color adapter can program the hardware palette itself and
use any 256 colors it wants. In Windows, applications can't be
allowed to program the hardware palette directly because the
video adapter is a shared resource. So how do you take
advantage of the 236 colors left unused in a 256-color adapter
after Windows adds the 20 static colors? The answer lies in a
GDI object known as a logical palette.

15.1.2. Logical Palettes and the CPalette Class

A logical palette is a table of RGB color values that tells
Windows what colors an application would like to display. A
related term, system palette, refers to the adapter's hardware
color palette. At an application's request, the palette manager
built into Windows will transfer the colors in a logical palette to
unused entries in the system palette—a process known as
realizing a palette—so that the application can take full
advantage of the video adapter's color capabilities. With the
help of a logical palette, an application running on a 256-color
video adapter can use the 20 static colors plus an additional 236
colors of its choosing. And because all requests to realize a
palette go through the GDI, the palette manager can serve as an
arbitrator between programs with conflicting color needs and
thus ensure that the system palette is used cooperatively.

What happens if two or more applications realize logical
palettes and the sum total of the colors they request is more

Programming Windows With MFC

 915

than the 236 additional colors a 256-color video adapter can
handle? The palette manager assigns color priorities based on
each window's position in the z-order. The window at the top of
the z-order receives top priority, the window that's second gets
the next highest priority, and so on. If the foreground window
realizes a palette of 200 colors, all 200 get mapped to the
system palette. If a background window then realizes a palette
of, say, 100 colors, 36 get programmed into the unused slots
remaining in the system palette and 64 get mapped to the
nearest matching colors. That's the worst case. Unless directed
to do otherwise, the palette manager avoids duplicating entries
in the system palette. Therefore, if 4 of the foreground
window's colors and 10 of the background window's colors
match static colors, and if another 10 of the background
window's colors match nonstatic colors in the foreground
window, the background window ends up getting 60 exact
matches in the system palette.

You can see the palette manager at work by switching
Windows to 256-color mode, launching two instances of the
Windows Paint applet, loading a different 256-color bitmap in
each, and clicking back and forth between the two. The bitmap
in the foreground will always look the best because it gets first
crack at the system palette. The bitmap in the background gets
what's left over. If both bitmaps use similar colors, the
background image won't look too bad. But if the colors are
vastly different—for example, if bitmap A contains lots of
bright, vibrant colors whereas bitmap B uses primarily earth
tones—the image in the background window might be so
color-corrupted that it's hardly recognizable. The palette
manager's role in the process is to try to satisfy the needs of
both programs. When those needs conflict, the foreground
window receives priority over all others so that the application
the user is working with looks the best.

15.1.3. Creating a Logical Palette

Writing an application that uses a logical palette isn't difficult.
In MFC, logical palettes are represented by the CPalette class
and are created and initialized with CPalette member functions.
Once a logical palette is created, it can be selected into a device
context and realized with CDC member functions.

Programming Windows With MFC

 916

CPalette provides two member functions for palette creation.
CreatePalette creates a custom palette from RGB values you
specify; CreateHalftonePalette creates a "halftone" palette
containing a generic and fairly uniform distribution of colors.
Custom palettes give better results when an image contains few
distinctly different colors but many subtle variations in tone.
Halftone palettes work well for images containing a wide range
of colors. The statements

CPalette palette;
palette.CreateHalftonePalette (pDC);

create a halftone palette tailored to the device context pointed
to by pDC. If the device context corresponds to a 256-color
device, the halftone palette will also contain 256 colors. Twenty
of the colors will match the static colors; the other 236 will
expand the selection of colors available by adding subtler
shades of red, green, and blue and mixtures of these primary
colors. Specifically, a 256-color halftone palette includes all the
colors in a 6-by-6-by-6-color cube (colors composed of six
shades each of red, green, and blue), plus an array of grays for
gray-scale imaging and other colors handpicked by the GDI.
Passing a NULL DC handle to CreateHalftonePalette creates a
256-color halftone palette independent of the characteristics of
the output device. However, because
CPalette::CreateHalftonePalette mistakenly asserts in debug
builds if passed a NULL DC handle, you must drop down to
the Windows API to take advantage of this feature:

CPalette palette;
palette.Attach (::CreateHalftonePalette (NULL));

::CreateHalftonePalette is the API equivalent of
CPalette::CreateHalftonePalette.

Creating a custom palette is a little more work because before
you call CreatePalette, you must initialize a LOGPALETTE
structure with entries describing the palette's colors.
LOGPALETTE is defined as follows.

typedef struct tagLOGPALETTE {
 WORD palVersion;

Programming Windows With MFC

 917

 WORD palNumEntries;
 PALETTEENTRY palPalEntry[1];
} LOGPALETTE;

palVersion specifies the LOGPALETTE version number; in all
current releases of Windows, it should be set to 0x300.
palNumEntries specifies the number of colors in the palette.
palPalEntry is an array of PALETTEENTRY structures
defining the colors. The number of elements in the array should
equal the value of palNumEntries. PALETTEENTRY is
defined like this:

typedef struct tagPALETTEENTRY {
 BYTE peRed;
 BYTE peGreen;
 BYTE peBlue;
 BYTE peFlags;
} PALETTEENTRY;

peRed, peGreen, and peBlue specify a color's 8-bit RGB
components. peFlags contains zero or more bit flags describing
the type of palette entry. It can be set to any of the values
shown here, or to 0 to create a "normal" palette entry:

Flag Description

PC_EXPLICIT Creates a palette entry that specifies an index into the
system palette rather than an RGB color. Used by
programs that display the contents of the system palette.

PC_NOCOLLAPSE Creates a palette entry that's mapped to an unused entry
in the system palette even if there's already an entry for
that color. Used to ensure the uniqueness of palette
colors.

PC_RESERVED Creates a palette entry that's private to this application.
When a PC_RESERVED entry is added to the system
palette, it isn't mapped to colors in other logical palettes
even if the colors match. Used by programs that perform
palette animation.

Most of the time, peFlags is simply set to 0. We'll discuss one
use for the PC_RESERVED flag later in this chapter, in the
section on palette animation.

The PALETTEENTRY array in the LOGPALETTE structure is
declared with just one array element because Windows has no

Programming Windows With MFC

 918

way of anticipating how many colors a logical palette will
contain. As a result, you can't just declare an instance of
LOGPALETTE on the stack and fill it in; instead, you have to
allocate memory for it based on the number of
PALETTEENTRY structures it contains. The following code
allocates a "full" LOGPALETTE structure on the stack and
then creates a logical palette containing 32 shades of red:

struct {
 LOGPALETTE lp;
 PALETTEENTRY ape[31];
} pal;

LOGPALETTE* pLP = (LOGPALETTE*) &pal;
pLP->palVersion = 0x300;
pLP->palNumEntries = 32;

for (int i=0; i<32; i++) {
 pLP->palPalEntry[i].peRed = i * 8;
 pLP->palPalEntry[i].peGreen = 0;
 pLP->palPalEntry[i].peBlue = 0;
 pLP->palPalEntry[i].peFlags = 0;
}

CPalette palette;
palette.CreatePalette (pLP);

Like other GDI objects, logical palettes should be deleted when
they're no longer needed. A logical palette represented by a
CPalette object is automatically deleted when the
corresponding CPalette object is deleted or goes out of scope.

How many entries can a logical palette contain? As many as
you want it to. Of course, the number of colors that can be
mapped directly to the system palette is limited by the
capabilities of the video adapter. If you realize a palette
containing 1,024 colors on a 256-color output device, only the
first 236 will be mapped directly; the remaining colors will be
matched as closely as possible to colors already in the system
palette. When you use logical palettes (especially large ones),
it's helpful to arrange the colors in order of importance, where
palPalEntry[0] defines the most important color, palPalEntry[1]
defines the next most important color, and so on. The palette
manager maps palette colors in array order, so by putting
important colors first, you increase the chances that those

Programming Windows With MFC

 919

colors will be displayed in their native form. In general, you
shouldn't make a logical palette any larger than it has to be.
Large palettes take longer to realize, and the more palette colors
a foreground window uses, the fewer colors the palette manager
can make available to palette-aware windows lower in the
z-order.

After a palette is created, you can retrieve individual palette
entries with CPalette::GetPaletteEntries or change them with
CPalette::SetPaletteEntries. You can also resize a palette with
CPalette::ResizePalette. If the palette is enlarged, the new
palette entries initially contain all 0s.

15.1.4. Realizing a Logical Palette

For a logical palette to be effective, it must be selected into a
device context and realized before any drawing takes place.
The current logical palette is a device context attribute, just as
the current pen and brush are device context attributes. (In case
you're wondering, a device context's default logical palette is a
trivial one whose entries correspond to the static colors.) The
following OnPaint handler selects the logical palette m_palette
into a paint device context and realizes the palette before
repainting the screen:

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);
 CPalette* pOldPalette = dc.SelectPalette (&m_palette, FALSE);
 dc.RealizePalette ();
 // Do some drawing.
 dc.SelectPalette (pOldPalette, FALSE);
}

In this example, the pointer to the default palette is saved and
used later to select m_palette out of the device context. Note
that palettes are selected with CDC::SelectPalette instead of
CDC::SelectObject. The second parameter is a BOOL value
that, if TRUE, forces the palette to behave as if it were in the
background even when the window that selected it is in the
foreground. Background palettes can be handy in applications
that use multiple palettes, but normally you'll specify FALSE in
calls to SelectPalette. CDC::RealizePalette realizes the palette
that's currently selected into the device context by asking the

Programming Windows With MFC

 920

palette manager to map colors from the logical palette to the
system palette.

15.1.5. Drawing with Palette Colors

Once you create a palette, select it into a device context, and
realize it, you're ready to start drawing. If you use CDC::BitBlt
to display a bitmap, the realized colors are used automatically.
But if you're drawing images with brushes or pens or using
functions such as CDC::FloodFill that use neither a brush nor a
pen directly but do accept COLORREF values, there's
something else you must consider.

The RGB macro is one of three macros that create COLORREF
values. The others are PALETTEINDEX and PALETTERGB.
Which of the three macros you use determines how the GDI
treats the resultant COLORREF. When you draw with a
COLORREF value created with the RGB macro, the GDI
ignores the colors that were added to the system palette when
the logical palette was realized and uses only the static colors.
If you want the GDI to use all the palette colors, use the
PALETTERGB macro. PALETTERGB creates a
palette-relative color. The PALETTEINDEX macro creates a
COLORREF value that specifies an index into a logical palette
rather than an RGB color value. This value is called a
palette-index color value. It's the fastest kind of color to draw
with because it prevents the GDI from having to match RGB
color values to colors in the logical palette.

The following code sample demonstrates how all three macros
are used:

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 // Select and realize a logical palette.
 CPalette* pOldPalette = dc.SelectPalette (&m_palette, FALSE);
 dc.RealizePalette ();

 // Create three pens.
 CPen pen1 (PS_SOLID, 16, RGB (242, 36, 204));
 CPen pen2 (PS_SOLID, 16, PALETTERGB (242, 36, 204));
 CPen pen3 (PS_SOLID, 16, PALETTEINDEX (3));

Programming Windows With MFC

 921

 // Do some drawing.
 dc.MoveTo (0, 0);
 CPen* pOldPen = dc.SelectObject (&pen1);
 dc.LineTo (300, 0); // Nearest static color
 dc.SelectObject (&pen2);
 dc.LineTo (150, 200); // Nearest static or palette color
 dc.SelectObject (&pen3);
 dc.LineTo (0, 0); // Exact palette color
 dc.SelectObject (pOldPen);

 // Select the palette out of the device context.
 dc.SelectPalette (pOldPalette, FALSE);
}

Because pens use solid, undithered colors and because its
COLORREF value is specified with an RGB macro, pen1
draws with the static color that most closely approximates the
RGB value (242, 36, 204). pen2, on the other hand, is assigned
the nearest matching color from the static colors or m_palette.
pen3 uses the color in the system palette that corresponds to the
fourth color (index=3) in the logical palette, regardless of what
that color might be.

15.1.6. The WM_QUERYNEWPALETTE and
WM_PALETTECHANGED Msg

When you write an application that uses a logical palette, you
should include handlers for a pair of messages named
WM_QUERYNEWPALETTE and
WM_PALETTECHANGED. WM_QUERYNEWPALETTE is
sent to a top-level window when it or one of its children
receives the input focus. WM_PALETTECHANGED is sent to
all top-level windows in the system when a palette realization
results in a change to the system palette. An application's
normal response to either message is to realize its palette and
repaint itself. Realizing a palette and repainting in response to a
WM_QUERYNEWPALETTE message enables a window that
was just brought to the foreground to put on its best face by
taking advantage of the fact that it now has top priority in
realizing its palette. Realizing a palette and repainting in
response to a WM_PALETTECHANGED message enable
background windows to adapt to changes in the system palette

Programming Windows With MFC

 922

and take advantage of any unused entries that remain after
windows higher in the z-order have realized their palettes.

The following message handler demonstrates a typical response
to a WM_QUERYNEWPALETTE message:

// In the message map
ON_WM_QUERYNEWPALETTE ()

BOOL CMainWindow::OnQueryNewPalette ()
{
 CClientDC dc (this);
 CPalette* pOldPalette = dc.SelectPalette (&m_palette, FALSE);

 UINT nCount;
 if (nCount = dc.RealizePalette ())
 Invalidate ();

 dc.SelectPalette (pOldPalette, FALSE);
 return nCount;
}

The general strategy is to realize a palette and force a repaint by
invalidating the window's client area. The value returned by
RealizePalette is the number of palette entries that were
mapped to entries in the system palette. A 0 return value means
that realizing the palette had no effect, which should be
extremely rare for a foreground window. If RealizePalette
returns 0, you should skip the call to Invalidate.
OnQueryNewPalette should return a nonzero value if a logical
palette was realized and 0 if it wasn't. It should also return 0 if
it tried to realize a palette but RealizePalette returned 0. The
return value isn't used in current versions of Windows.

WM_PALETTECHANGED messages are handled in a similar
way. Here's what a typical OnPaletteChanged handler looks
like:

// In the message map
ON_WM_PALETTECHANGED ()

void CMainWindow::OnPaletteChanged (CWnd* pFocusWnd)
{
 if (pFocusWnd != this) {
 CClientDC dc (this);

Programming Windows With MFC

 923

 CPalette* pOldPalette = dc.SelectPalette (&m_palette,
 FALSE);
 if (dc.RealizePalette ())
 Invalidate ();
 dc.SelectPalette (pOldPalette, FALSE);
 }
}

The CWnd pointer passed to OnPaletteChanged identifies the
window that prompted the WM_PALETTECHANGED
message by realizing a palette. To avoid unnecessary recursion
and possible infinite loops, OnPaletteChanged should do
nothing if pFocusWnd points to its own window. That's the
reason for the if statement that compares pFocusWnd to this.

Rather than perform full repaints in response to
WM_PALETTECHANGED messages, applications can
optionally call CDC::UpdateColors instead. UpdateColors
updates a window by matching the color of each pixel to the
colors in the system palette. It's usually faster than a full repaint,
but the results typically aren't as good because the color
matching is done based on the contents of the system palette
before it changed. If you use UpdateColors, maintain a variable
that counts the number of times UpdateColors has been called.
Then every third or fourth time, do a full repaint and reset the
counter to 0. This will prevent the colors in a background
window from becoming too out of sync with the colors in the
system palette.

15.1.6.1. Handling Palette Messages in Document/View
Applications

The OnQueryNewPalette and OnPaletteChanged handlers in
the previous section assume that the window to be updated is
the application's main window. In a document/view application,
that's not the case; the views need updating, not the top-level
window. The ideal solution would be to put the
OnQueryNewPalette and OnPaletteChanged handlers in the
view class, but that won't work because views don't receive
palette messages—only top-level windows do.

What most document/view applications do instead is have their
main windows update the views in response to palette messages.

Programming Windows With MFC

 924

The following OnQueryNewPalette and OnPaletteChanged
handlers work well for most SDI applications:

BOOL CMainFrame::OnQueryNewPalette ()
{
 CDocument* pDoc = GetActiveDocument ();
 if (pDoc != NULL)
 GetActiveDocument ()->UpdateAllViews (NULL);
 return TRUE;
}

void CMainFrame::OnPaletteChanged (CWnd* pFocusWnd)
{
 if (pFocusWnd != this) {
 CDocument* pDoc = GetActiveDocument ();
 if (pDoc != NULL)
 GetActiveDocument ()->UpdateAllViews (NULL);
 }
}

Palettes are a little trickier in MDI applications. If each open
document has a unique palette associated with it (as is often the
case), the active view should be redrawn using a foreground
palette and inactive views should be redrawn using background
palettes. Another issue with MDI applications that use multiple
palettes is the need to update the views' colors as the user clicks
among views. The best solution is to override
CView::OnActivateView so that a view knows when it's
activated or deactivated and can realize its palette accordingly.
For a good example of palette handling in MDI applications,
see the DIBLOOK sample program provided with Visual C++.

15.1.7. Determining Whether a Logical Palette Is
Needed

Now that you understand the mechanics of palette usage, ask
yourself this question: How do I know if I need a logical palette
in the first place? If color accuracy is of paramount concern,
you'll probably want to use a logical palette when your
application runs on a palletized 256-color video adapter. But
the same application doesn't need a logical palette when the
hardware color depth is 24 bits because in that environment
perfect color output comes for free. And if the application runs
on a standard 16-color VGA, palettes are extraneous because

Programming Windows With MFC

 925

the system palette contains 16 static colors that leave no room
for colors in logical palettes.

You can determine at run time whether a logical palette will
improve color output by calling CDC::GetDeviceCaps with a
RASTERCAPS parameter and checking the RC_PALETTE bit
in the return value, as demonstrated here:

CClientDC dc (this);
BOOL bUsePalette = FALSE;
if (dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE)
 bUsePalette = TRUE;

RC_PALETTE is set in palettized color modes and clear in
nonpalettized modes. Generally speaking, the RC_PALETTE
bit is set in 8-bit color modes and clear in 4-bit and 24-bit color
modes. The RC_PALETTE bit is also clear if the adapter is
running in 16-bit color ("high color") mode, which for most
applications produces color output every bit as good as true
color. Don't make the mistake some programmers have made
and rely on bit counts to tell you whether to use a palette. As
sure as you do, you'll run across an oddball video adapter that
defies the normal conventions and fools your application into
using a palette when a palette isn't needed or not using a palette
when a palette would help.

What happens if you ignore the RC_PALETTE setting and use
a logical palette regardless of color depth? The application will
still work because the palette manager works even on
nonpalettized devices. If RC_PALETTE is 0, palettes can still
be created and selected into device contexts, but calls to
RealizePalette do nothing. PALETTEINDEX values are
dereferenced and converted into RGB colors in the logical
palette, and PALETTERGB values are simply treated as if they
were standard RGB color values. OnQueryNewPalette and
OnPaletteChanged aren't called because no
WM_QUERYNEWPALETTE and
WM_PALETTECHANGED messages are sent. As explained
in an excellent article, "The Palette Manager: How and Why,"
available on the Microsoft Developer Network (MSDN), "The
goal is to allow applications to use palettes in a
device-independent fashion and to not worry about the actual
palette capabilities of the device driver."

Programming Windows With MFC

 926

Still, you can avoid wasted CPU cycles by checking the
RC_PALETTE flag and skipping palette-related function calls
if the flag is clear. And if your application relies on the
presence of hardware palette support and won't work without
it—for example, if it uses palette animation, a subject we'll get
to in a moment—you can use RC_PALETTE to determine
whether your application is even capable of running on the
current hardware.

An equally important question to ask yourself when
considering whether to use logical palettes is, "How accurate
does my program's color output need to be?" Applications that
draw using colors that match the static colors don't need
palettes at all. On the other hand, a bitmap file viewer almost
certainly needs palette support because without it all but the
simplest bitmaps would look terrible on 256-color video
adapters. Assess your program's color needs, and do as little
work as you have to. You'll write better applications as a result.

15.1.8. The PaletteDemo Application

The application shown in Figure 15-1 demonstrates basic
palette-handling technique in a non-document/view application.
PaletteDemo uses a series of blue brushes to paint a
background that fades smoothly from blue to black. Moreover,
it produces a beautiful gradient fill even on 256-color video
adapters. The key to the high quality of its output on 256-color
screens is PaletteDemo's use of a logical palette containing 64
shades of blue, ranging from almost pure black (R=0, G=0,
B=3) to high-intensity blue (R=0, G=0, B=255). Brush colors
are specified using palette-relative COLORREF values so that
the GDI will match the brush colors to colors in the system
palette after the logical palette is realized. You can judge the
results for yourself by running PaletteDemo in both 8-bit and
24-bit color modes and seeing that the output is identical. Only
when it is run in 16-color mode does PaletteDemo fail to
produce a smooth gradient fill. But even then the results aren't
bad because the GDI dithers the brush colors.

Programming Windows With MFC

 927

Figure 15-1. The PaletteDemo window.

Here are a few points of interest in PaletteDemo's source code,
which appears in Figure 15-2. For starters, PaletteDemo's main
window paints the gradient-filled background in response to
WM_ERASEBKGND messages. WM_ERASEBKGND
messages are sent to erase a window's background before a
WM_PAINT handler paints the foreground. A
WM_ERASEBKGND handler that paints a custom window
background as PaletteDemo does should return a nonzero value
to notify Windows that the background has been "erased." (For
a cool effect, see what happens when a WM_ERASEBKGND
handler paints nothing but returns TRUE anyway. What do you
get? A see-through window!) Otherwise, Windows erases the
background itself by filling the window's client area with the
WNDCLASS's background brush.

PaletteDemo creates the logical palette that it uses to paint the
window background in CMainWindow::OnCreate. The palette
itself is a CPalette data member named m_palette. Before
creating the palette, OnCreate checks CDC::GetDeviceCaps's
return value for an RC_PALETTE bit. If the bit isn't set,
OnCreate leaves m_palette uninitialized. Before selecting and
realizing the palette, CMainWindow::OnEraseBkgnd checks
m_palette to determine whether a palette exists:

if ((HPALETTE) m_palette != NULL) {
 pOldPalette = pDC->SelectPalette (&m_palette, FALSE);
 pDC->RealizePalette ();
}

Programming Windows With MFC

 928

CPalette's HPALETTE operator returns the handle of the
palette attached to a CPalette object. A NULL handle means
m_palette is uninitialized. OnEraseBkgnd adapts itself to the
environment it's run in by selecting and realizing a logical
palette if and only if the video hardware is palettized. The
DoGradientFill function that draws the window background
works with or without a palette because brush colors are
specified with PALETTERGB macros.

One consideration that PaletteDemo doesn't address is what
happens if the color depth changes while the application is
running. You can account for such occurrences by processing
WM_DISPLAYCHANGE messages, which are sent when the
user changes the screen's resolution or color depth, and
reinitializing the palette based on the new settings. There is no
ON_WM_DISPLAYCHANGE macro, so you have to do the
message mapping manually with ON_MESSAGE. The
wParam parameter encapsulated in a
WM_DISPLAYCHANGE message contains the new color
depth expressed as the number of bits per pixel, and the low
and high words of lParam contain the latest horizontal and
vertical screen resolution in pixels.

WM_DISPLAYCHANGE isn't only for applications that use
palettes. You should also use it if, for example, you initialize
variables with the average width and height of a character in the
system font when the application starts and later use those
variables to size and position your output. If the variables aren't
reinitialized when the screen resolution changes, subsequent
output might be distorted.

Figure 15-2. The PaletteDemo application.

PaletteDem.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
protected:
 CPalette m_palette;
 void DoGradientFill (CDC* pDC, LPRECT pRect);
 void DoDrawText (CDC* pDC, LPRECT pRect);

Programming Windows With MFC

 929

public:
 CMainWindow ();

protected:
 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg BOOL OnEraseBkgnd (CDC* pDC);
 afx_msg void OnPaint ();
 afx_msg BOOL OnQueryNewPalette ();
 afx_msg void OnPaletteChanged (CWnd* pFocusWnd);
 DECLARE_MESSAGE_MAP ()
};

PaletteDem.cpp
#include <afxwin.h>
#include "PaletteDemo.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_CREATE ()
 ON_WM_ERASEBKGND ()
 ON_WM_PAINT ()
 ON_WM_QUERYNEWPALETTE ()
 ON_WM_PALETTECHANGED ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("Palette Demo"));
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 //
 // Create a logical palette if running on a palettized adapter.
 //
 CClientDC dc (this);
 if (dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE) {

Programming Windows With MFC

 930

 struct {
 LOGPALETTE lp;
 PALETTEENTRY ape[63];
 } pal;

 LOGPALETTE* pLP = (LOGPALETTE*) &pal;
 pLP->palVersion = 0x300;
 pLP->palNumEntries = 64;

 for (int i=0; i<64; i++) {
 pLP->palPalEntry[i].peRed = 0;
 pLP->palPalEntry[i].peGreen = 0;
 pLP->palPalEntry[i].peBlue = 255 - (i * 4);
 pLP->palPalEntry[i].peFlags = 0;
 }
 m_palette.CreatePalette (pLP);
 }
 return 0;
}

BOOL CMainWindow::OnEraseBkgnd (CDC* pDC)
{
 CRect rect;
 GetClientRect (&rect);

 CPalette* pOldPalette;
 if ((HPALETTE) m_palette != NULL) {
 pOldPalette = pDC->SelectPalette (&m_palette, FALSE);
 pDC->RealizePalette ();
 }

 DoGradientFill (pDC, &rect);

 if ((HPALETTE) m_palette != NULL)
 pDC->SelectPalette (pOldPalette, FALSE);
 return TRUE;
}

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);
 CPaintDC dc (this);
 DoDrawText (&dc, &rect);
}

BOOL CMainWindow::OnQueryNewPalette ()
{
 if ((HPALETTE) m_palette == NULL) // Shouldn't happen, but
 return 0; // let's be sure.

 CClientDC dc (this);
 CPalette* pOldPalette = dc.SelectPalette (&m_palette, FALSE);

 UINT nCount;
 if (nCount = dc.RealizePalette ())

Programming Windows With MFC

 931

 Invalidate ();

 dc.SelectPalette (pOldPalette, FALSE);
 return nCount;
}

void CMainWindow::OnPaletteChanged (CWnd* pFocusWnd)
{
 if ((HPALETTE) m_palette == NULL) // Shouldn't happen, but
 return; // let's be sure.

 if (pFocusWnd != this) {
 CClientDC dc (this);
 CPalette* pOldPalette = dc.SelectPalette (&m_palette, FALSE);
 if (dc.RealizePalette ())
 Invalidate ();
 dc.SelectPalette (pOldPalette, FALSE);
 }
}

void CMainWindow::DoGradientFill (CDC* pDC, LPRECT pRect)
{
 CBrush* pBrush[64];
 for (int i=0; i<64; i++)
 pBrush[i] = new CBrush (PALETTERGB (0, 0, 255 - (i * 4)));

 int nWidth = pRect->right - pRect->left;
 int nHeight = pRect->bottom - pRect->top;
 CRect rect;

 for (i=0; i<nHeight; i++) {
 rect.SetRect (0, i, nWidth, i + 1);
 pDC->FillRect (&rect, pBrush[(i * 63) / nHeight]);
 }

 for (i=0; i<64; i++)
 delete pBrush[i];
}

void CMainWindow::DoDrawText (CDC* pDC, LPRECT pRect)
{
 CFont font;
 font.CreatePointFont (720, _T ("Comic Sans MS"));

 pDC->SetBkMode (TRANSPARENT);
 pDC->SetTextColor (RGB (255, 255, 255));

 CFont* pOldFont = pDC->SelectObject (&font);
 pDC->DrawText (_T ("Hello, MFC"), -1, pRect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);
 pDC->SelectObject (pOldFont);
}

Programming Windows With MFC

 932

15.1.9. Palette Animation

One of the more novel uses for a logical palette is for
performing palette animation. Conventional computer
animation is performed by repeatedly drawing, erasing, and
redrawing images on the screen. Palette animation involves no
drawing and erasing, but it can make images move just the
same. A classic example of palette animation is a simulated
lava flow that cycles shades of red, orange, and yellow to
produce an image that resembles lava flowing down a hill.
What's interesting is that the image is drawn only once. The
illusion of motion is created by repeatedly reprogramming the
system palette so that red becomes orange, orange becomes
yellow, yellow becomes red, and so on. Palette animation is fast
because it doesn't involve moving any pixels. A simple value
written to a palette register on a video adapter can change the
color of an entire screen full of pixels in the blink of an eye—to
be precise, in the 1/60 of a second or so it takes for a monitor's
electron guns to complete one screen refresh cycle.

What does it take to do palette animation in Windows? Just
these three steps:

1. Call GetDeviceCaps, and check RC_PALETTE to verify that palettes are
supported. Palette animation won't work if the RC_PALETTE bit isn't
set.

2. Create a logical palette containing the colors you want to animate, and
mark each palette entry with a PC_RESERVED flag. Only palette entries
marked PC_RESERVED can be used for palette animation.

3. Draw an image using colors in the logical palette, and then call
CPalette::AnimatePalette repeatedly to change the palette colors. Each
time you change the palette with AnimatePalette, the colors in the image
will change accordingly.

Figure 15-3. The LivePalette window.

Programming Windows With MFC

 933

The LivePalette application in Figure 15-3 and Figure 15-4
demonstrates how palette animation works. The window
background is painted with bands of color (eight different
colors in all) from PC_RESERVED entries in a logical palette.
Brush colors are specified with PALETTEINDEX values.
PALETTERGB values would work, too, but ordinary RGB
values wouldn't because pixels whose colors will be animated
must be painted with colors marked PC_RESERVED in the
logical palette, not static colors. LivePalette sets a timer to fire
every 500 milliseconds, and OnTimer animates the palette as
follows:

PALETTEENTRY pe[8];
m_palette.GetPaletteEntries (7, 1, pe);
m_palette.GetPaletteEntries (0, 7, &pe[1]);
m_palette.AnimatePalette (0, 8, pe);

The calls to CPalette::GetPaletteEntries initialize an array of
PALETTEENTRY structures with values from the logical
palette and simultaneously rotate every color up one position so
that color 7 becomes color 0, color 0 becomes color 1, and so
on. AnimatePalette then updates the colors on the screen by
copying the values from the array directly to the corresponding
entries in the system palette. It isn't necessary to call
RealizePalette because the equivalent of a palette realization
has already been performed.

The remainder of the program is very similar to the previous
section's PaletteDemo program, with one notable exception: If
RC_PALETTE is NULL, InitInstance displays a message box
informing the user that palette animation isn't supported in the
present environment and shuts down the application by
returning FALSE. You'll see this message if you run
LivePalette in anything other than a 256-color video mode.

Figure 15-4. The LivePalette application.

LivePalette.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

Programming Windows With MFC

 934

class CMainWindow : public CFrameWnd
{
protected:
 CPalette m_palette;
 void DoBkgndFill (CDC* pDC, LPRECT pRect);
 void DoDrawText (CDC* pDC, LPRECT pRect);

public:
 CMainWindow ();

protected:
 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg BOOL OnEraseBkgnd (CDC* pDC);
 afx_msg void OnPaint ();
 afx_msg void OnTimer (UINT nTimerID);
 afx_msg BOOL OnQueryNewPalette ();
 afx_msg void OnPaletteChanged (CWnd* pFocusWnd);
 afx_msg void OnDestroy ();
 DECLARE_MESSAGE_MAP ()
};

LivePalette.cpp
#include <afxwin.h>
#include "LivePalette.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 //
 // Verify that the host system is running in a palettized video mode.
 //
 CClientDC dc (NULL);
 if ((dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE) == 0) {
 AfxMessageBox (_T ("Palette animation is not supported on this " \
 "device. Set the color depth to 256 colors and try again."),
 MB_ICONSTOP ¦ MB_OK);
 return FALSE;
 }

 //
 // Initialize the application as normal.
 //
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)

Programming Windows With MFC

 935

 ON_WM_CREATE ()
 ON_WM_ERASEBKGND ()
 ON_WM_PAINT ()
 ON_WM_TIMER ()
 ON_WM_QUERYNEWPALETTE ()
 ON_WM_PALETTECHANGED ()
 ON_WM_DESTROY ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("Palette Animation Demo"));
}

int CMainWindow::OnCreate (LPCREATESTRUCT lpcs)
{
 static BYTE bColorVals[8][3] = {
 128, 128, 128, // Dark Gray
 0, 0, 255, // Blue
 0, 255, 0, // Green
 0, 255, 255, // Cyan
 255, 0, 0, // Red
 255, 0, 255, // Magenta
 255, 255, 0, // Yellow
 192, 192, 192 // Light gray
 };
 if (CFrameWnd::OnCreate (lpcs) == -1)
 return -1;

 //
 // Create a palette to support palette animation.
 //
 struct {
 LOGPALETTE lp;
 PALETTEENTRY ape[7];
 } pal;

 LOGPALETTE* pLP = (LOGPALETTE*) &pal;
 pLP->palVersion = 0x300;
 pLP->palNumEntries = 8;

 for (int i=0; i<8; i++) {
 pLP->palPalEntry[i].peRed = bColorVals[i][0];
 pLP->palPalEntry[i].peGreen = bColorVals[i][1];
 pLP->palPalEntry[i].peBlue = bColorVals[i][2];
 pLP->palPalEntry[i].peFlags = PC_RESERVED;
 }

 m_palette.CreatePalette (pLP);

 //
 // Program a timer to fire every half-second.
 //
 SetTimer (1, 500, NULL);
 return 0;
}

Programming Windows With MFC

 936

void CMainWindow::OnTimer (UINT nTimerID)
{
 PALETTEENTRY pe[8];
 m_palette.GetPaletteEntries (7, 1, pe);
 m_palette.GetPaletteEntries (0, 7, &pe[1]);
 m_palette.AnimatePalette (0, 8, pe);
}

BOOL CMainWindow::OnEraseBkgnd (CDC* pDC)
{
 CRect rect;
 GetClientRect (&rect);

 CPalette* pOldPalette;
 pOldPalette = pDC->SelectPalette (&m_palette, FALSE);
 pDC->RealizePalette ();
 DoBkgndFill (pDC, &rect);

 pDC->SelectPalette (pOldPalette, FALSE);
 return TRUE;
}

void CMainWindow::OnPaint ()
{
 CRect rect;
 GetClientRect (&rect);
 CPaintDC dc (this);
 DoDrawText (&dc, &rect);
}

BOOL CMainWindow::OnQueryNewPalette ()
{
 CClientDC dc (this);
 dc.SelectPalette (&m_palette, FALSE);

 UINT nCount;
 if (nCount = dc.RealizePalette ())
 Invalidate ();

 return nCount;
}

void CMainWindow::OnPaletteChanged (CWnd* pFocusWnd)
{
 if (pFocusWnd != this) {
 CClientDC dc (this);
 dc.SelectPalette (&m_palette, FALSE);
 if (dc.RealizePalette ())
 Invalidate ();
 }
}

void CMainWindow::OnDestroy ()
{
 KillTimer (1);

Programming Windows With MFC

 937

}

void CMainWindow::DoBkgndFill (CDC* pDC, LPRECT pRect)
{
 CBrush* pBrush[8];
 for (int i=0; i<8; i++)
 pBrush[i] = new CBrush (PALETTEINDEX (i));

 int nWidth = pRect->right - pRect->left;
 int nHeight = (pRect->bottom - pRect->top) / 8;

 CRect rect;
 int y1, y2;

 for (i=0; i<8; i++) {
 y1 = i * nHeight;
 y2 = (i == 7) ? pRect->bottom - pRect->top : y1 + nHeight;
 rect.SetRect (0, y1, nWidth, y2);
 pDC->FillRect (&rect, pBrush[i]);
 }

 for (i=0; i<8; i++)
 delete pBrush[i];
}

void CMainWindow::DoDrawText (CDC* pDC, LPRECT pRect)
{
 CFont font;
 font.CreatePointFont (720, _T ("Comic Sans MS"));

 pDC->SetBkMode (TRANSPARENT);
 pDC->SetTextColor (RGB (255, 255, 255));

 CFont* pOldFont = pDC->SelectObject (&font);
 pDC->DrawText (_T ("Hello, MFC"), -1, pRect, DT_SINGLELINE ¦
 DT_CENTER ¦ DT_VCENTER);
 pDC->SelectObject (pOldFont);
}

15.1.10. The ::SetSystemPaletteUse Function

A final word on palette usage: if your application absolutely,
unequivocally has to have access to the entire system palette
and not just the unused color entries that remain after the static
colors are added, it can call ::SetSystemPaletteUse with a
device context handle and a SYSPAL_NOSTATIC parameter
to reduce the number of static colors from 20 to 2—black and
white. On a 256-color video adapter, this means that 254
instead of just 236 colors can be copied from a logical palette to
the system palette. The Win32 API documentation makes it
pretty clear how ::SetSystemPaletteUse and its companion
function ::GetSystemPaletteUse are used, so I'll say no more

Programming Windows With MFC

 938

about them here. However, realize that replacing the static
colors with colors of your own is an extremely unfriendly thing
to do because it could corrupt the colors of title bars, push
buttons, and other window elements throughout the entire
system. Don't do it unless you have to.

15.2. Bitmaps

The bitmapped image, or simply bitmap, is a staple of modern
computer graphics because it allows computers to store
complex images in the form of 1s and 0s. In Windows, bitmaps
are GDI objects that are handled at a fairly high level just like
fonts, brushes, pens, and other GDI objects. You can create
bitmaps with a paint program, embed them as resources in an
application's EXE file, and load them with a simple function
call; or you can create bitmaps on the fly by using GDI
functions to draw to virtual display surfaces in memory. Once
created, a bitmap can be displayed on the screen or reproduced
on the printer with a few simple function calls.

Two types of bitmaps are supported in 32-bit Windows:
device-dependent bitmaps (DDBs) and device-independent
bitmaps (DIBs). Also supported in 32-bit Windows is a
variation on the device-independent bitmap that was first
introduced in Windows NT—something programmers refer to
as a DIB section. DDBs are the simplest of the lot as well as the
most limiting. They also happen to be the only type of bitmap
that MFC thoroughly encapsulates. We'll get the fundamentals
out of the way first by covering CBitmaps and DDBs, and later
we'll move on to the more powerful DIBs and DIB sections. As
you read, be aware that I'll often use the term bitmap
interchangeably with the more specific terms DDB, DIB, and
DIB section. Which type of bitmap I'm referring to (or whether
I'm using the term generically) should be clear from the context
of the discussion.

15.2.1. DDBs and the CBitmap Class

It goes without saying that before you can do anything with a
bitmap, you must first create it. One way to create a bitmap is
to construct a CBitmap object and call
CBitmap::CreateCompatibleBitmap:

Programming Windows With MFC

 939

CBitmap bitmap;
bitmap.CreateCompatibleBitmap (&dc, nWidth, nHeight);

In this example, dc represents a screen device context and
nWidth and nHeight are the bitmap's dimensions in pixels. The
reason CreateCompatibleBitmap requires a device context
pointer is that the format of the resulting DDB is closely tied to
the architecture of the output device. Providing a pointer to a
device context enables Windows to structure the DDB so that
it's compatible with the device on which you intend to display it.
The alternative is to call CBitmap::CreateBitmap or
CBitmap::CreateBitmapIndirect and specify the number of
color planes and number of bits per pixel per color plane, both
of which are device-dependent values. These days, about the
only practical use for CreateBitmap and CreateBitmapIndirect
is for creating monochrome bitmaps. Monochrome bitmaps are
sometimes useful even in color environments, as one of this
chapter's sample programs will demonstrate.

A DDB created with CreateCompatibleBitmap initially
contains random data. If you want to do something with the
DDB—say, display it in a window—you'll probably want to
draw something into the bitmap first. You can use GDI
functions to draw into a bitmap by first creating a special type
of device context known as a memory device context (DC) and
then selecting the bitmap into the memory DC. In essence, a
bitmap selected into a memory DC becomes the device
context's display surface, just as the display surface that
corresponds to a screen DC is the screen itself. The following
code creates an uninitialized DDB that measures 100 pixels
square. It then creates a memory DC, selects the bitmap into it,
and initializes all the pixels in the bitmap to blue:

CClientDC dcScreen (this);
CBitmap bitmap;
bitmap.CreateCompatibleBitmap (&dcScreen, 100, 100);

CDC dcMem;
dcMem.CreateCompatibleDC (&dcScreen);

CBrush brush (RGB (0, 0, 255));
CBitmap* pOldBitmap = dcMem.SelectObject (&bitmap);
dcMem.FillRect (CRect (0, 0, 100, 100), &brush);
dcMem.SelectObject (pOldBitmap);

Programming Windows With MFC

 940

CDC::CreateCompatibleDC creates a memory DC that's
compatible with the specified device context. The device
context whose address you pass in is usually a screen DC, but it
could just as easily be a printer DC if the image you're
preparing is destined for a printer rather than the screen. Once a
bitmap is selected into a memory DC, you can draw to the
memory DC (and hence into the bitmap) using the same CDC
member functions you use to draw to a screen or printer DC.

The big difference between drawing to a memory DC and
drawing to a screen DC is that pixels drawn to a memory DC
aren't displayed. To display them, you have to copy them from
the memory DC to a screen DC. Drawing to a memory DC first
and then transferring pixels to a screen DC can be useful for
replicating the same image on the screen several times. Rather
than draw the image anew each time, you can draw it once in a
memory DC and then transfer the image to a screen DC as
many times as you want. (Be aware, however, that many
display adapters will perform better if you copy the image from
the memory DC to the screen DC one time and then replicate
the image already present in the screen DC as needed.) Bitmaps
play an important role in the process because when a memory
DC is first created it contains just one pixel you can draw to,
and that pixel is a monochrome pixel. Selecting a bitmap into a
memory DC gives you a larger display surface to draw on and
also more colors to work with as long as the bitmap isn't
monochrome.

15.2.2. Blitting Bitmaps to Screens and Other
Devices

How do you draw a bitmap on the screen? Bitmaps can't be
selected into nonmemory DCs; if you try, SelectObject will
return NULL. But you can use CDC::BitBlt or CDC::StretchBlt
to "blit" pixels from a memory DC to a screen DC. BitBlt
transfers a block of pixels from one DC to another and
preserves the block's dimensions; StretchBlt transfers a block of
pixels between DCs and scales the block to the dimensions you
specify. If dcMem is a memory DC that contains a 100-pixel by
100-pixel bitmap image and dcScreen is a screen DC, the
statement

Programming Windows With MFC

 941

dcScreen.BitBlt (0, 0, 100, 100, &dcMem, 0, 0, SRCCOPY);

copies the image to the screen DC and consequently displays it
on the screen. The first two parameters passed to BitBlt specify
the coordinates of the image's upper left corner in the
destination (screen) DC, the next two specify the width and
height of the block to be transferred, the fifth is a pointer to the
source (memory) DC, the sixth and seventh specify the
coordinates of the upper left corner of the block of pixels in the
source DC, and the eighth and final parameter specifies the type
of raster operation to be used in the transfer. SRCCOPY copies
the pixels unchanged from the memory DC to the screen DC.

You can shrink or expand a bitmap as it's blitted by using
StretchBlt instead of BitBlt. StretchBlt's argument list looks a
lot like BitBlt's, but it includes an additional pair of parameters
specifying the width and height of the resized image. The
following statement blits a 100-by-100 image from a memory
DC to a screen DC and stretches the image to fit a 50-by-200
rectangle:

dcScreen.StretchBlt (0, 0, 50, 200, &dcMem, 0, 0, 100, 100,
SRCCOPY);

By default, rows and columns of pixels are simply removed
from the resultant image when the width or height in the
destination DC is less than the width or height in the source DC.
You can call CDC::SetStretchBltMode before calling StretchBlt
to specify other stretching modes that use various methods to
preserve discarded color information. Refer to the
documentation on SetStretchBltMode for further details, but be
advised that the most potentially useful alternative stretching
mode—HALFTONE, which uses dithering to simulate colors
that can't be displayed directly—works in Windows NT and
Windows 2000 but not in Windows 95 and Windows 98.

You can get information about a bitmap by passing a pointer to
a BITMAP structure to CBitmap::GetBitmap. BITMAP is
defined as follows:

typedef struct tagBITMAP {
 LONG bmType;

Programming Windows With MFC

 942

 LONG bmWidth;
 LONG bmHeight;
 LONG bmWidthBytes;
 WORD bmPlanes;
 WORD bmBitsPixel;
 LPVOID bmBits;
} BITMAP;

The bmType field always contains 0. bmWidth and bmHeight
specify the bitmap's dimensions in pixels. bmWidthBytes
specifies the length (in bytes) of each line in the bitmap and is
always a multiple of 2 because rows of bits are padded to 16-bit
boundaries. bmPlanes and bmBitsPixel specify the number of
color planes and the number of pixels per bit in each color
plane. If bm is an initialized BITMAP, you can determine the
maximum number of colors the bitmap can contain by using the
following statement:

int nColors = 1 << (bm.bmPlanes * bm.bmBitsPixel);

Finally, bmBits contains a NULL pointer following a call to
GetBitmap if the bitmap is a DDB. If bitmap represents a
CBitmap object, the statements

BITMAP bm;
bitmap.GetBitmap (&bm);

initialize bm with information about the bitmap.

The bitmap dimensions returned by GetBitmap are expressed in
device units (pixels), but both BitBlt and StretchBlt use logical
units. If you want to write a generic DrawBitmap function that
blits a bitmap to a DC, you must anticipate the possibility that
the DC might be set to a mapping mode other than MM_TEXT.
The following DrawBitmap function, which is designed to be a
member function of a class derived from CBitmap, works in all
mapping modes. pDC points to the device context the bitmap is
being blitted to; x and y specify the location of the image's
upper left corner at the destination:

void CMyBitmap::DrawBitmap (CDC* pDC, int x, int y)
{
 BITMAP bm;

Programming Windows With MFC

 943

 GetBitmap (&bm);
 CPoint size (bm.bmWidth, bm.bmHeight);
 pDC->DPtoLP (&size);

 CPoint org (0, 0);
 pDC->DPtoLP (&org);

 CDC dcMem;
 dcMem.CreateCompatibleDC (pDC);
 CBitmap* pOldBitmap = dcMem.SelectObject (this);
 dcMem.SetMapMode (pDC->GetMapMode ());
 pDC->BitBlt (x, y, size.x, size.y, &dcMem, org.x, org.y,
SRCCOPY);
 dcMem.SelectObject (pOldBitmap);
}

Because of some inadvertent skullduggery that MFC's
CDC::DPtoLP function performs on CSize objects, the size
variable that holds the bitmap's dimensions is a CPoint object,
not a CSize object. When you pass CDC::DPtoLP the address
of a CPoint object, the call goes straight through to
the ::DPtoLP API function and the conversion is performed
properly, even if one or more of the coordinates comes back
negative. But when you pass CDC::DPtoLP the address of a
CSize object, MFC performs the conversion itself and converts
any negatives to positives. It might make intuitive sense that
sizes shouldn't be negative, but that's exactly what BitBlt
expects in mapping modes in which the y axis points upward.

15.2.3. Bitmap Resources

If all you want to do is display a predefined bitmap image—one
created with the Visual C++ resource editor or any paint
program or image editor that generates BMP files—you can
add a bitmap resource to your application's RC file like this:

IDB_MYLOGO BITMAP Logo.bmp

Then you can load it like this:

CBitmap bitmap;
bitmap.LoadBitmap (IDB_MYLOGO);

Programming Windows With MFC

 944

In this example, IDB_MYLOGO is the bitmap's integer
resource ID and Logo.bmp is the name of the file that contains
the bitmap image. You can also assign a bitmap resource a
string ID and load it this way:

bitmap.LoadBitmap (_T ("MyLogo"));

LoadBitmap accepts resource IDs of either type. After loading a
bitmap resource, you display it the way you display any other
bitmap—by selecting it into a memory DC and blitting it to a
screen DC. Splash screens like the one you see when Visual
C++ starts up are typically stored as bitmap resources and
loaded with LoadBitmap (or its API equivalent, ::LoadBitmap)
just before they're displayed.

CBitmap includes a related member function named
LoadMappedBitmap that loads a bitmap resource and
transforms one or more colors in the bitmap to the colors you
specify. LoadMappedBitmap is a wrapper
around ::CreateMappedBitmap, which was added to the API so
that colors in bitmaps used to paint owner-draw buttons, toolbar
buttons, and other controls could be transformed into system
colors upon loading. The statement

bitmap.LoadMappedBitmap (IDB_BITMAP);

loads a bitmap resource and automatically transforms black
pixels to the system color COLOR_BTNTEXT, dark gray
(R=128, G=128, B=128) pixels to COLOR_BTNSHADOW,
light gray (R=192, G=192, B=192) pixels to COLOR
_BTNFACE, white pixels to COLOR_BTNHIGHLIGHT, dark
blue (R=0, G=0, B=128) pixels to COLOR_HIGHLIGHT, and
magenta (R=255, G=0, B=255) pixels to COLOR_WINDOW.
The idea behind mapping magenta to COLOR_WINDOW is
that you can add "transparent" pixels to a bitmap by coloring
them magenta. If LoadMappedBitmap transforms magenta
pixels into COLOR_WINDOW pixels and the bitmap is
displayed against a COLOR_WINDOW background, the
remapped pixels will be invisible against the window
background.

Programming Windows With MFC

 945

You can perform custom color conversions by passing
LoadMappedBitmap a pointer to an array of COLORMAP
structures specifying the colors you want changed and the
colors you want to change them to. One use for custom color
mapping is for simulating transparent pixels by transforming an
arbitrary background color to the background color of your
choice. Later in this chapter, we'll examine a technique for
drawing bitmaps with transparent pixels that works with any
kind of background (even those that aren't solid) and requires
no color mapping.

15.2.4. DIBs and DIB Sections

The problem with device-dependent bitmaps is—well, that
they're device-dependent. You can manipulate the bits in a
DDB directly using CBitmap::GetBitmapBits and
CBitmap::SetBitmapBits, but because pixel color data is stored
in a device-dependent format, it's difficult to know what to do
with the data returned by GetBitmapBits (or what to pass to
SetBitmapBits) unless the bitmap is monochrome. Worse, the
color information encoded in a DDB is meaningful only to the
device driver that displays it. If you write a DDB to disk on one
PC and read it back on another, there's a very good chance that
the colors won't come out the same. DDBs are fine for loading
and displaying bitmap resources (although you'll get poor
results if a bitmap resource contains more colors than your
hardware is capable of displaying) and for drawing images in
memory DCs before rendering them on an output device. But
their lack of portability makes them unsuitable for just about
anything else.

That's why Windows 3.0 introduced the device-independent
bitmap, or DIB. The term DIB describes a device-independent
format for storing bitmap data, a format that's meaningful
outside the context of a display driver and even outside the
framework of Windows itself. When you call ::CreateBitmap
(the API equivalent of CBitmap::CreateBitmap) to create a
bitmap, you get back an HBITMAP handle. When you
call ::CreateDIBitmap to create a bitmap, you also get back an
HBITMAP. The difference is what's inside. Pixel data passed
to ::CreateBitmap is stored in device driver format, but pixel
data passed to ::CreateDIBitmap is stored in DIB format.
Moreover, the DIB format includes color information that

Programming Windows With MFC

 946

enables different device drivers to interpret colors consistently.
The API includes a pair of functions named ::GetDIBits
and ::SetDIBits for reading and writing DIB-formatted bits. It
also includes functions for rendering raw DIB data stored in a
buffer owned by the application to an output device. Windows
BMP files store bitmaps in DIB format, so it's relatively easy to
write a function that uses ::CreateDIBitmap to convert the
contents of a BMP file into a GDI bitmap object.

DIB sections are similar to DIBs and were created to solve a
performance problem involving the ::StretchDIBits function in
Windows NT. Some graphics programs allocate a buffer to
hold DIB bits and then render those bits directly to the screen
with ::StretchDIBits. By not passing the bits
to ::CreateDIBitmap and creating an HBITMAP, the programs
enjoy direct access to the bitmap data but can still display the
bitmap on the screen. Unfortunately, the client/server
architecture of Windows NT and Windows 2000 dictates that
bits blitted from a buffer on the client side be copied to a buffer
on the server side before they're transferred to the frame buffer,
and the extra overhead causes ::StretchDIBits to perform
sluggishly.

Rather than compromise the system architecture, the Windows
NT team came up with DIB sections. A DIB section is the
Windows NT and Windows 2000 equivalent of having your
cake and eating it, too: you can select a DIB section into a DC
and blit it to the screen (thus avoiding the undesirable
memory-to-memory moves), but you can also access the bitmap
bits directly. Speed isn't as much of an issue with
the ::StretchDIBits function in Windows 95 and Windows 98
because these operating systems are architected differently than
Windows NT and Windows 2000, but Windows 95 and
Windows 98 support DIB sections just as Windows NT and
Windows 2000 do and also offer some handy API functions for
dealing with them. Win32 programmers are encouraged to use
DIB sections in lieu of ordinary DIBs and DDBs whenever
possible to give the operating system the greatest amount of
flexibility in handling bitmap data.

The bad news about DIBs and DIB sections is that current
versions of MFC don't encapsulate them. To use DIBs and DIB
sections in your MFC applications, you have to either resort to

Programming Windows With MFC

 947

the API or write your own classes to encapsulate the relevant
API functions. Writing a basic CDib class or extending
CBitmap to include functions for DIBs and DIB sections isn't
difficult, but I'm not going to do either here because it's very
likely that some future version of MFC will include a
comprehensive set of classes representing DIBs and DIB
sections. What I'll do instead is show you how to get the most
out of MFC's CBitmap class and how to combine CBitmap with
API functions to get some very DIB-like behavior out of
ordinary CBitmaps.

15.2.5. Blits, Raster Operations, and Color
Mapping

The most common use for CDC::BitBlt is to blit bitmap images
to the screen. But BitBlt does more than just transfer raw bits.
In reality, it's a complex function that computes the color of
each pixel it outputs by using Boolean operations to combine
pixels from the source DC, the destination DC, and the brush
currently selected in the destination DC. The SRCCOPY
raster-op code is simple; it merely copies pixels from the source
to the destination. Other raster-op codes aren't so simple.
MERGEPAINT, for example, inverts the colors of the source
pixels with a Boolean NOT operation and ORs the result with
the pixel colors at the destination. BitBlt supports 256 raster-op
codes in all. The 15 shown in the following table are given
names with #define statements in Wingdi.h.

BitBlt Raster-Op Codes

Name Binary Equivalent Operation(s) Performed

SRCCOPY 0xCC0020 dest = source

SRCPAINT 0xEE0086 dest = source OR dest

SRCAND 0x8800C6 dest = source AND dest

SRCINVERT 0x660046 dest = source XOR dest

SRCERASE 0x440328 dest = source AND (NOT dest)

NOTSRCCOPY 0x330008 dest = (NOT source)

NOTSRCERASE 0x1100A6 dest = (NOT src) AND (NOT dest)

MERGECOPY 0xC000CA dest = (source AND pattern)

Programming Windows With MFC

 948

MERGEPAINT 0xBB0226 dest = (NOT source) OR dest

PATCOPY 0xF00021 dest = pattern

PATPAINT 0xFB0A09 dest = pattern OR (NOT src) OR dest

PATINVERT 0x5A0049 dest = pattern XOR dest

DSTINVERT 0x550009 dest = (NOT dest)

BLACKNESS 0x000042 dest = BLACK

WHITENESS 0xFF0062 dest = WHITE

You can derive custom raster-op codes by applying the logical
operations you want to the bit values in the following list and
using the result to look up a DWORD-sized raster-op code in
the "Ternary Raster Operations" section of Microsoft's Platform
SDK.

Pat 1 1 1 1 0 0 0 0
Src 1 1 0 0 1 1 0 0
Dest 1 0 1 0 1 0 1 0

Pat (for "pattern") represents the color of the brush selected
into the destination DC; Src represents the pixel color in the
source DC; and Dest represents the pixel color in the
destination DC. Let's say you want to find a raster-op code that
inverts a source bitmap, ANDs it with the pixels at the
destination, and ORs the result with the brush color. First apply
these same operations to each column of bits in the list. The
result is shown here:

Pat 1 1 1 1 0 0 0 0
Src 1 1 0 0 1 1 0 0
Dest 1 0 1 0 1 0 1 0

 1 1 1 1 0 0 1 0
= 0xF2

Look up 0xF2 in the ternary raster operations table, and you'll
find that the full raster-op code is 0xF20B05. Consequently,
you can pass BitBlt the hex value 0xF20B05 instead of
SRCCOPY or some other raster-op code and it will perform the
raster operation described above.

Programming Windows With MFC

 949

So what can you do with all those raster-op codes? The truth is
that in color environments you probably won't use many of
them. After SRCCOPY, the next most useful raster operations
are SRCAND, SRCINVERT, and SRCPAINT. But as the
sample program in the next section demonstrates, using an
unnamed raster-op code can sometimes reduce the number of
steps required to achieve a desired result.

BitBlt is part of a larger family of CDC blitting functions that
includes StretchBlt (which we've already discussed), PatBlt,
MaskBlt, and PlgBlt. PatBlt combines pixels in a rectangle in
the destination DC with the brush selected into the device
context, basically duplicating the subset of BitBlt raster
operations that don't use a source DC. MaskBlt combines pixels
in source and destination DCs and uses a monochrome bitmap
as a mask. One raster operation (the "foreground" raster
operation) is performed on pixels that correspond to 1s in the
mask, and another raster operation (the "background" raster
operation) is performed on pixels that correspond to 0s in the
mask. PlgBlt blits a rectangular block of pixels in a source DC
to a parallelogram in the destination DC and optionally uses a
monochrome bitmap as a mask during the transfer. Pixels that
correspond to 1s in the mask are blitted to the parallelogram;
pixels that correspond to 0s in the mask are not. Unfortunately,
MaskBlt and PlgBlt are supported in Windows NT 3.1 and
higher and in Windows 2000 but not in Windows 95 and
Windows 98. If you call either of them in Windows 95 or
Windows 98, you'll get a 0 return, indicating that the function
failed.

Some output devices (notably plotters) don't support BitBlt and
other blitting functions. To determine whether BitBlts are
supported on a given device, get a device context and call
GetDeviceCaps with a RASTERCAPS parameter. If the
RC_BITBLT bit is set in the return value, the device supports
BitBlts; if the RC_STRETCHBLT bit is set, the device also
supports StretchBlts. There are no specific RASTERCAPS bits
for other blit functions, but if you're writing for Windows NT
and BitBlt isn't supported, you should assume that PatBlt,
MaskBlt, and PlgBlt aren't supported, either. Generally, plotters
and other vector-type devices that don't support blits will set the
RC_NONE bit in the value returned by GetDeviceCaps to
indicate that they don't support raster operations of any type.

Programming Windows With MFC

 950

BitBlt and other blitting functions produce the best results (and
also perform the best) when the color characteristics of the
source and destination DCs match. If you blit a 256-color
bitmap to a 16-color destination DC, Windows must map the
colors in the source DC to the colors in the destination DC. On
some occasions, however, you can use color mapping to your
advantage. When BitBlt blits a monochrome bitmap to a color
DC, it converts 0 bits to the destination DC's current
foreground color (CDC::SetTextColor) and 1 bits to the
destination DC's current background color (CDC::SetBkColor).
Conversely, when it blits a color bitmap to a monochrome DC,
BitBlt converts pixels that match the destination DC's
background color to 1 and all other pixels to 0. You can use the
latter form of color mapping to create a monochrome mask
from a color bitmap and use that mask in a routine that blits all
pixels except those of a certain color from a bitmap to a screen
DC, in effect creating transparent pixels in the bitmap.

Sound interesting? Icons implement transparent pixels by
storing two bitmaps for every icon image: a monochrome AND
mask and a color XOR mask. You can draw bitmaps with
transparent pixels by writing an output routine that uses BitBlts
and raster operations to build the AND and XOR masks on the
fly. The BitmapDemo sample program in the next section
shows how.

15.2.6. The BitmapDemo Application

BitmapDemo is a non-document/view application created with
AppWizard that demonstrates how to load a bitmap resource
and BitBlt it to the screen. It also shows how to make clever use
of BitBlts and raster-op codes to blit irregularly shaped images
by designating one color in the bitmap as the transparency color.
The program's output consists of a rectangular array of bitmap
images drawn against a background that fades from blue to
black. When Draw Opaque is checked in the Options menu,
bitmaps are blitted to the screen unchanged, producing the
result shown in Figure 15-5. If Draw Transparent is checked
instead, red pixels are removed from the bitmaps when they're
blitted to the screen. The result is pictured in Figure 15-6.

Programming Windows With MFC

 951

Figure 15-5. The BitmapDemo window with transparency disabled.

Figure 15-6. The BitmapDemo window with transparency enabled.

BitmapDemo uses a CBitmap-derived class named
CMaskedBitmap to represent bitmaps. CMaskedBitmap
contains two member functions that CBitmap doesn't: a Draw
function for blitting a bitmap to a DC and a DrawTransparent
function for blitting a bitmap to a DC and simultaneously
filtering out all pixels of a specified color. With
CMaskedBitmap to lend a hand, the statements

CMaskedBitmap bitmap;
bitmap.LoadBitmap (IDB_BITMAP);
bitmap.Draw (pDC, x, y);

are all you need to create a bitmap object, load a bitmap
resource into it, and draw that bitmap on the device represented
by pDC. The x and y parameters specify the placement of the
bitmap's upper left corner. The statements

Programming Windows With MFC

 952

CMaskedBitmap bitmap;
bitmap.LoadBitmap (IDB_BITMAP);
bitmap.DrawTransparent (pDC, x, y, RGB (255, 0, 255));

do the same but don't blit any pixels in the bitmap whose color
is bright magenta—RGB (255, 0, 255). With CMaskedBitmap
to help out, drawing bitmaps with "holes" or nonrectangular
profiles is easy: just assign all the transparent pixels in the
bitmap a common color and pass that color to
DrawTransparent. DrawTransparent will see to it that the
transparent pixels don't get blitted along with the others.

The source code for CMaskedBitmap::Draw should look
familiar to you: it's identical to the DrawBitmap function
discussed earlier. CMaskedBitmap::DrawTransparent is a little
more complicated. The comments in the source code should
help you understand what's going on. If the comments don't
make things clear enough, here's a summary of the steps
involved in blitting a bitmap to the screen but omitting pixels of
a certain color:

1. Create a memory DC, and select the bitmap into it.
2. Create a second memory DC, and select in a monochrome bitmap whose

size is identical to that of the original bitmap. Create an AND mask by
setting the background color of the memory DC created in step 1 to the
transparency color and blitting the bitmap to the DC. The resultant AND
mask has 1s everywhere the original bitmap has pixels whose color
equals the transparency color and 0s everywhere else.

3. Create a third memory DC, and select in a bitmap whose size and color
characteristics match those of the original bitmap. Create an XOR mask
in this DC by first blitting the image from the memory DC created in
step 1 to this DC with a SRCCOPY raster-op code and then blitting the
AND mask to this DC with the raster-op code 0x220326.

4. Create a fourth memory DC, and select in a bitmap whose size and color
characteristics match those of the original bitmap. Blit the pixels from
the rectangle in which the bitmap will go in the output DC to the newly
created memory DC.

5. Create the final image in the memory DC created in step 4 by first
blitting in the AND mask with a SRCAND raster-op code and then
blitting in the XOR mask with a SRCINVERT raster-op code.

6. Copy the image from the memory DC to the output DC.

Notice how BitBlt is used to generate the AND mask in step 2.
Because the destination DC is monochrome, the GDI translates
pixels whose color equals the background color to 1s and all
other pixels to 0s at the destination. It's important to set the
source DC's background color equal to the bitmap's

Programming Windows With MFC

 953

transparency color first so that the transformation will be
performed properly. If you look at the code in
CMaskedBitmap::DrawTransparent that corresponds to step 2,
you'll see that the destination DC's size and color characteristics
are set by using CBitmap::CreateBitmap to create a
monochrome bitmap whose dimensions equal the dimensions
of the original bitmap and then selecting the monochrome
bitmap into the DC. You control the size of a memory DC's
display surface and the number of colors that it supports by
selecting a bitmap into it. That's why you see so many calls to
CreateBitmap and CreateCompatibleBitmap in
DrawTransparent.

One other point of interest in DrawTransparent is the raster-op
code 0x220326 used in step 3, which performs the following
raster operation involving pixels at the source and destination.

dest = (NOT src) AND dest

You can accomplish the same thing using "standard" raster-op
codes by calling BitBlt twice: once with the raster-op code
NOTSRCCOPY to invert the image in the source DC and again
with SRCAND to AND the inverted image with the pixels in
the destination DC. One BitBlt is obviously more efficient than
two, but don't be surprised if the 0x220326 code doesn't
perform any faster than the NOTSRCCOPY/SRCAND
combination on some PCs. Most display drivers are optimized
to perform certain raster operations faster than others, and it's
always possible that a NOTSRCCOPY or a SRCAND will
execute very quickly but a 0x220326 won't.

As you experiment with BitmapDemo (whose source code
appears in Figure 15-7), notice that the window takes longer to
repaint when BitmapDemo draws transparent pixels. That's
because DrawTransparent has to do a lot more work than Draw
to get a single image to the screen. The worst performance hit
occurs when DrawTransparent generates the same AND and
XOR masks over and over again. If you want the functionality
of DrawTransparent in an application in which output
performance is critical (for example, if you use transparent
bitmaps to create spritelike objects that move about the screen),
you should modify the CMaskedBitmap class so that the masks
are generated just once and then reused as needed. Performance

Programming Windows With MFC

 954

can also be improved by applying the AND and XOR masks
directly to the destination DC rather than to a memory DC
containing a copy of the pixels at the destination, but the small
amount of flickering produced by the short delay between the
application of the masks might be too much if you're using the
bitmap for animation.

Figure 15-7. The BitmapDemo application.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(

AFX_MAINFRM_H__D71EF549_A6FE_11D2_8E53_006008A82731__INCLUD
ED_)
#define
AFX_MAINFRM_H__D71EF549_A6FE_11D2_8E53_006008A82731__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame();
protected:
 DECLARE_DYNAMIC(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG

Programming Windows With MFC

 955

 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CChildView m_wndView;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSetFocus(CWnd *pOldWnd);
 afx_msg BOOL OnQueryNewPalette();
 afx_msg void OnPaletteChanged(CWnd* pFocusWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_MAINFRM_H__D71EF549_A6FE_11D2_8E53_006008A82731__INCLUD
ED_)

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "BitmapDemo.h"
#include "MaskedBitmap.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_SETFOCUS()
 ON_WM_QUERYNEWPALETTE()

Programming Windows With MFC

 956

 ON_WM_PALETTECHANGED()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR
};

///
// CMainFrame construction/destruction
CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 // create a view to occupy the client area of the frame
 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
 CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
 {
 TRACE0("Failed to create view window\n");
 return -1;
 }

 if (!m_wndStatusBar.Create(this) ¦¦
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

///
// CMainFrame diagnostics

Programming Windows With MFC

 957

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

BOOL CMainFrame::OnQueryNewPalette()
{
 m_wndView.Invalidate ();
 return TRUE;
}

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
{
 m_wndView.Invalidate ();
}

ChildView.h
// ChildView.h : interface of the CChildView class
//
///

#if !defined(

AFX_CHILDVIEW_H__D71EF54B_A6FE_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_CHILDVIEW_H__D71EF54B_A6FE_11D2_8E53_006008A82731__INCLU
DED_

Programming Windows With MFC

 958

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 void DoGradientFill (CDC* pDC, LPRECT pRect);
 CPalette m_palette;
 CMaskedBitmap m_bitmap;
 BOOL m_bDrawOpaque;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg BOOL OnEraseBkgnd(CDC* pDC);
 afx_msg void OnOptionsDrawOpaque();
 afx_msg void OnOptionsDrawTransparent();
 afx_msg void OnUpdateOptionsDrawOpaque(CCmdUI* pCmdUI);
 afx_msg void OnUpdateOptionsDrawTransparent(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif

Programming Windows With MFC

 959

// !defined(
//
AFX_CHILDVIEW_H__D71EF54B_A6FE_11D2_8E53_006008A82731__INCLU
DED_)

ChildView.cpp
// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "BitmapDemo.h"
#include "MaskedBitmap.h"
#include "ChildView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
 m_bDrawOpaque = TRUE;
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_WM_CREATE()
 ON_WM_ERASEBKGND()
 ON_COMMAND(ID_OPTIONS_DRAW_OPAQUE,
OnOptionsDrawOpaque)
 ON_COMMAND(ID_OPTIONS_DRAW_TRANSPARENT,
OnOptionsDrawTransparent)
 ON_UPDATE_COMMAND_UI(ID_OPTIONS_DRAW_OPAQUE,
OnUpdateOptionsDrawOpaque)

ON_UPDATE_COMMAND_UI(ID_OPTIONS_DRAW_TRANSPARENT,
 OnUpdateOptionsDrawTransparent)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

Programming Windows With MFC

 960

 cs.dwExStyle ¦= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW¦CS_VREDRAW¦CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CRect rect;
 GetClientRect (&rect);
 CPaintDC dc (this);

 BITMAP bm;
 m_bitmap.GetBitmap (&bm);
 int cx = (rect.Width () / (bm.bmWidth + 8)) + 1;
 int cy = (rect.Height () / (bm.bmHeight + 8)) + 1;

 int i, j, x, y;
 for (i=0; i<cx; i++) {
 for (j=0; j<cy; j++) {
 x = 8 + (i * (bm.bmWidth + 8));
 y = 8 + (j * (bm.bmHeight + 8));
 if (m_bDrawOpaque)
 m_bitmap.Draw (&dc, x, y);
 else
 m_bitmap.DrawTransparent (&dc, x, y, RGB (255, 0, 0));
 }
 }
}

int CChildView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CWnd ::OnCreate(lpCreateStruct) == -1)
 return -1;

 //
 // Load the bitmap.
 //
 m_bitmap.LoadBitmap (IDB_BITMAP);

 //
 // Create a palette for a gradient fill if this is a palettized device.
 //
 CClientDC dc (this);
 if (dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE) {
 struct {
 LOGPALETTE lp;
 PALETTEENTRY ape[63];
 } pal;

 LOGPALETTE* pLP = (LOGPALETTE*) &pal;

Programming Windows With MFC

 961

 pLP->palVersion = 0x300;
 pLP->palNumEntries = 64;

 for (int i=0; i<64; i++) {
 pLP->palPalEntry[i].peRed = 0;
 pLP->palPalEntry[i].peGreen = 0;
 pLP->palPalEntry[i].peBlue = 255 - (i * 4);
 pLP->palPalEntry[i].peFlags = 0;
 }
 m_palette.CreatePalette (pLP);
 }
 return 0;
}
BOOL CChildView::OnEraseBkgnd(CDC* pDC)
{
 CRect rect;
 GetClientRect (&rect);

 CPalette* pOldPalette;
 if ((HPALETTE) m_palette != NULL) {
 pOldPalette = pDC->SelectPalette (&m_palette, FALSE);
 pDC->RealizePalette ();
 }

 DoGradientFill (pDC, &rect);

 if ((HPALETTE) m_palette != NULL)
 pDC->SelectPalette (pOldPalette, FALSE);
 return TRUE;
}

void CChildView::DoGradientFill(CDC *pDC, LPRECT pRect)
{
 CBrush* pBrush[64];
 for (int i=0; i<64; i++)
 pBrush[i] = new CBrush (PALETTERGB (0, 0, 255 - (i * 4)));

 int nWidth = pRect->right - pRect->left;
 int nHeight = pRect->bottom - pRect->top;
 CRect rect;

 for (i=0; i<nHeight; i++) {
 rect.SetRect (0, i, nWidth, i + 1);
 pDC->FillRect (&rect, pBrush[(i * 63) / nHeight]);
 }

 for (i=0; i<64; i++)
 delete pBrush[i];
}

void CChildView::OnOptionsDrawOpaque()
{
 m_bDrawOpaque = TRUE;
 Invalidate ();
}

Programming Windows With MFC

 962

void CChildView::OnOptionsDrawTransparent()
{
 m_bDrawOpaque = FALSE;
 Invalidate ();
}

void CChildView::OnUpdateOptionsDrawOpaque(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bDrawOpaque ? 1 : 0);
}

void CChildView::OnUpdateOptionsDrawTransparent(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck (m_bDrawOpaque ? 0 : 1);
}

MaskedBitmap.h
// MaskedBitmap.h: interface for the CMaskedBitmap class.
//
//

#if !defined(

AFX_MASKEDBITMAP_H__D71EF554_A6FE_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_MASKEDBITMAP_H__D71EF554_A6FE_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMaskedBitmap : public CBitmap
{
public:
 void DrawTransparent (CDC* pDC, int x, int y,
 COLORREF clrTransparency);
 void Draw (CDC* pDC, int x, int y);
};

#endif
// !defined(
//
AFX_MASKEDBITMAP_H__D71EF554_A6FE_11D2_8E53_006008A82731__INCLUDED_)

MaskedBitmap.cpp
// MaskedBitmap.cpp: implementation of the CMaskedBitmap class.
//
//

#include "stdafx.h"
#include "BitmapDemo.h"
#include "MaskedBitmap.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;

Programming Windows With MFC

 963

#define new DEBUG_NEW
#endif

void CMaskedBitmap::Draw(CDC *pDC, int x, int y)
{
 BITMAP bm;
 GetBitmap (&bm);
 CPoint size (bm.bmWidth, bm.bmHeight);
 pDC->DPtoLP (&size);

 CPoint org (0, 0);
 pDC->DPtoLP (&org);

 CDC dcMem;
 dcMem.CreateCompatibleDC (pDC);
 CBitmap* pOldBitmap = dcMem.SelectObject (this);
 dcMem.SetMapMode (pDC->GetMapMode ());

 pDC->BitBlt (x, y, size.x, size.y, &dcMem, org.x, org.y, SRCCOPY);

 dcMem.SelectObject (pOldBitmap);
}

void CMaskedBitmap::DrawTransparent(CDC *pDC, int x, int y,
 COLORREF clrTransparency)
{
 BITMAP bm;
 GetBitmap (&bm);
 CPoint size (bm.bmWidth, bm.bmHeight);
 pDC->DPtoLP (&size);

 CPoint org (0, 0);
 pDC->DPtoLP (&org);

 //
 // Create a memory DC (dcImage) and select the bitmap into it.
 //
 CDC dcImage;
 dcImage.CreateCompatibleDC (pDC);
 CBitmap* pOldBitmapImage = dcImage.SelectObject (this);
 dcImage.SetMapMode (pDC->GetMapMode ());

 //
 // Create a second memory DC (dcAnd) and in it create an AND mask.
 //
 CDC dcAnd;
 dcAnd.CreateCompatibleDC (pDC);
 dcAnd.SetMapMode (pDC->GetMapMode ());

 CBitmap bitmapAnd;
 bitmapAnd.CreateBitmap (bm.bmWidth, bm.bmHeight, 1, 1, NULL);
 CBitmap* pOldBitmapAnd = dcAnd.SelectObject (&bitmapAnd);

 dcImage.SetBkColor (clrTransparency);
 dcAnd.BitBlt (org.x, org.y, size.x, size.y, &dcImage, org.x, org.y,
 SRCCOPY);

Programming Windows With MFC

 964

 //
 // Create a third memory DC (dcXor) and in it create an XOR mask.
 //
 CDC dcXor;
 dcXor.CreateCompatibleDC (pDC);
 dcXor.SetMapMode (pDC->GetMapMode ());

 CBitmap bitmapXor;
 bitmapXor.CreateCompatibleBitmap (&dcImage, bm.bmWidth,
bm.bmHeight);
 CBitmap* pOldBitmapXor = dcXor.SelectObject (&bitmapXor);

 dcXor.BitBlt (org.x, org.y, size.x, size.y, &dcImage, org.x, org.y,
 SRCCOPY);

 dcXor.BitBlt (org.x, org.y, size.x, size.y, &dcAnd, org.x, org.y,
 0x220326);

 //
 // Copy the pixels in the destination rectangle to a temporary
 // memory DC (dcTemp).
 //
 CDC dcTemp;
 dcTemp.CreateCompatibleDC (pDC);
 dcTemp.SetMapMode (pDC->GetMapMode ());

 CBitmap bitmapTemp;
 bitmapTemp.CreateCompatibleBitmap (&dcImage, bm.bmWidth,
bm.bmHeight);
 CBitmap* pOldBitmapTemp = dcTemp.SelectObject (&bitmapTemp);

 dcTemp.BitBlt (org.x, org.y, size.x, size.y, pDC, x, y, SRCCOPY);

 //
 // Generate the final image by applying the AND and XOR masks to
 // the image in the temporary memory DC.
 //
 dcTemp.BitBlt (org.x, org.y, size.x, size.y, &dcAnd, org.x, org.y,
 SRCAND);

 dcTemp.BitBlt (org.x, org.y, size.x, size.y, &dcXor, org.x, org.y,
 SRCINVERT);

 //
 // Blit the resulting image to the screen.
 //
 pDC->BitBlt (x, y, size.x, size.y, &dcTemp, org.x, org.y, SRCCOPY);

 //
 // Restore the default bitmaps.
 //
 dcTemp.SelectObject (pOldBitmapTemp);
 dcXor.SelectObject (pOldBitmapXor);
 dcAnd.SelectObject (pOldBitmapAnd);
 dcImage.SelectObject (pOldBitmapImage);

Programming Windows With MFC

 965

}

Both Windows 98 and Windows 2000 support a new API
function named ::TransparentBlt that performs the equivalent
of a StretchBlt and also accepts a transparency color. Like
BitmapDemo's DrawTransparent function, ::TransparentBlt
skips pixels whose color equals the transparency color. I didn't
use ::TransparentBlt because I wanted BitmapDemo to work as
well on down-level systems as it works on Windows 98 and
Windows 2000 systems. Which of these transparency functions
you should use depends on the platforms you're targeting.

15.2.7. Writing a BMP File Viewer

The disk-and-drive image drawn by BitmapDemo looks pretty
good because it's a simple 16-color bitmap whose colors match
the static colors in the system palette. As long as you draw the
bitmaps yourself and stick to the colors in the default palette,
bitmaps will display just fine without custom CPalettes. But if
you write an application that reads arbitrary BMP files created
by other programs and you rely on the default palette for color
mapping, bitmaps containing 256 or more colors will be
posterized—some rather severely. You can dramatically
improve the quality of the output by creating a CPalette whose
colors match the colors in the bitmap. The sample program in
this section demonstrates how. It also shows one way that MFC
programmers can combine CBitmaps with DIB sections to
create more functional bitmaps.

The sample program, which I'll call Vista, is shown in Figure
15-8. Vista is a document/view BMP file viewer that will read
virtually any BMP file containing any number of colors and
draw a reasonable representation of it on a screen that's capable
of displaying 256 or more colors. (Vista works with 16-color
screens, too, but don't expect a lot from the output if the bitmap
contains more than 16 colors.) The source code, selected
portions of which appear in Figure 15-9, is surprisingly simple.
Other than the code that creates a logical palette after a BMP
file is read from disk, the application includes very little other
than the standard stuff that forms the core of every
document/view application.

Programming Windows With MFC

 966

Figure 15-8. The Vista window with a bitmap displayed.

The view's OnDraw function displays bitmaps on the screen by
selecting the logical palette associated with the bitmap into the
device context (provided such a palette exists) and BitBlting the
bitmap to a CScrollView. OnDraw retrieves the logical palette
by calling the document's GetPalette function, and it retrieves
the bitmap by calling the document's GetBitmap function.
GetPalette returns a CPalette pointer to the palette that the
document object creates when the bitmap is loaded. A NULL
return means that no palette is associated with the bitmap,
which in turn means that Vista is running on a nonpalettized
video adapter. GetBitmap returns a pointer to the bitmap that
constitutes the document itself. Vista's document class
CVistaDoc stores the bitmap in a CBitmap data member named
m_bitmap and the palette (if any) that goes with the bitmap in a
CPalette member named m_palette. The bitmap and palette
objects are initialized when the document's OnOpenDocument
function is called (when the user selects Open from the File
menu) and destroyed when the document's DeleteContents
function is called.

One simple statement in OnOpenDocument reads the BMP file
named in the function's parameter list:

HBITMAP hBitmap = (HBITMAP) ::LoadImage (NULL,
lpszPathName,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE ¦

Programming Windows With MFC

 967

LR_CREATEDIBSECTION);

The value returned by ::LoadImage is a valid HBITMAP if the
DIB section was successfully created and NULL if it wasn't.
If ::LoadImage fails, it's highly likely that the file doesn't
contain a DIB. OnOpenDocument indicates as much in the
error message it displays when ::LoadImage returns NULL. If
the HBITMAP isn't NULL, OnOpenDocument attaches it to
m_bitmap. The document (bitmap) is now loaded and ready to
be displayed—almost.

If Vista is running on a palettized display device, the bitmap
probably won't look very good unless there's a logical palette to
go with it. After ::LoadImage returns, OnOpenDocument grabs
a device context and calls GetDeviceCaps to determine whether
palettes are supported. If the return value doesn't contain an
RC_PALETTE flag, OnOpenDocument returns immediately
and leaves m_palette uninitialized. Otherwise,
OnOpenDocument initializes m_palette with a logical palette.

To determine how best to create the palette, OnOpenDocument
first finds out how many colors the bitmap contains by calling
GetObject with a pointer to a DIBSECTION structure. One of
the members of a DIBSECTION structure is a
BITMAPINFOHEADER structure, and the
BITMAPINFOHEADER structure's biClrUsed and biBitCount
fields reveal the number of colors in the bitmap. If biClrUsed is
nonzero, it specifies the color count. If biClrUsed is 0, the
number of colors equals

1 << biBitCount

The following code in OnOpenDocument sets nColors equal to
the number of colors in the bitmap:

DIBSECTION ds;
m_bitmap.GetObject (sizeof (DIBSECTION), &ds);

int nColors;
if (ds.dsBmih.biClrUsed != 0)
 nColors = ds.dsBmih.biClrUsed;
else
 nColors = 1 << ds.dsBmih.biBitCount;

Programming Windows With MFC

 968

What OnOpenDocument does next depends on the value of
nColors. If nColors is greater than 256, indicating that the
bitmap has a color depth of 16, 24, or 32 bits (images stored in
BMP files always use 1-bit, 4-bit, 8-bit, 16-bit, 24-bit, or 32-bit
color), OnOpenDocument creates a halftone palette by calling
CPalette::CreateHalftonePalette with a pointer to the screen
DC it obtained earlier:

if (nColors > 256)
 m_palette.CreateHalftonePalette (&dc);

In return, the system creates a generic palette with a rainbow of
colors that's suited to the device context. In most cases, a
logical palette created by CreateHalftonePalette will contain
256 colors. That's not enough to allow a bitmap containing
thousands or perhaps millions of colors to be displayed with
100 percent accuracy, but it will produce much better results
than you'd get if you used the device context's default palette.

If nColors is less than or equal to 256, OnOpenDocument
initializes m_palette with a logical palette whose colors match
the colors in the bitmap. The key to matching the bitmap's
colors is the API function ::GetDIBColorTable, which copies
the color table associated with a 1-bit, 4-bit, or 8-bit DIB
section to an array of RGBQUAD structures. That array, in turn,
is used to initialize an array of PALETTEENTRY structures
and create a logical palette:

RGBQUAD* pRGB = new RGBQUAD[nColors];

CDC memDC;
memDC.CreateCompatibleDC (&dc);
CBitmap* pOldBitmap = memDC.SelectObject (&m_bitmap);
::GetDIBColorTable ((HDC) memDC, 0, nColors, pRGB);
memDC.SelectObject (pOldBitmap);

UINT nSize = sizeof (LOGPALETTE) +
 (sizeof (PALETTEENTRY) * (nColors - 1));
LOGPALETTE* pLP = (LOGPALETTE*) new BYTE[nSize];

pLP->palVersion = 0x300;
pLP->palNumEntries = nColors;

for (int i=0; i<nColors; i++) {
 pLP->palPalEntry[i].peRed = pRGB[i].rgbRed;

Programming Windows With MFC

 969

 pLP->palPalEntry[i].peGreen = pRGB[i].rgbGreen;
 pLP->palPalEntry[i].peBlue = pRGB[i].rgbBlue;
 pLP->palPalEntry[i].peFlags = 0;
}

m_palette.CreatePalette (pLP);

::GetDIBColorTable works only if the DIB section is selected
into a device context, so OnOpenDocument creates a memory
DC and selects m_bitmap into it before making the call. The
rest is just detail: allocating memory for a LOGPALETTE
structure, transferring the RGBQUAD values from the color
table to the corresponding PALETTEENTRY entries, and
calling CreatePalette. Once it has a palette to work with, Vista
will display most 256-color bitmaps with stunning accuracy on
256-color screens.

For a nice touch, Vista includes a readout in its status bar that
identifies the bitmap's dimensions and color depth (bits per
pixel). The status bar is updated when OnOpenDocument sends
Vista's main window a WM_USER_UPDATE_STATS
message containing a pointer to the string that it wants to
appear in the status bar pane. A message handler in the frame
window class fields the message and updates the status bar
accordingly.

Figure 15-9. The Vista application.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(

AFX_MAINFRM_H__3597FEA9_A70E_11D2_8E53_006008A82731__INCLUDE
D_)
#define
AFX_MAINFRM_H__3597FEA9_A70E_11D2_8E53_006008A82731__INCLUDE
D_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

Programming Windows With MFC

 970

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg BOOL OnQueryNewPalette();
 afx_msg void OnPaletteChanged(CWnd* pFocusWnd);
 //}}AFX_MSG
 afx_msg LRESULT OnUpdateImageStats (WPARAM wParam, LPARAM
lParam);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__3597FEA9_A70E_11D2_8E53_006008A82731__INCLUDE
D_)

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Vista.h"

Programming Windows With MFC

 971

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_QUERYNEWPALETTE()
 ON_WM_PALETTECHANGED()
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_UPDATE_STATS, OnUpdateImageStats)
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR,
 ID_SEPARATOR
};

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 //
 // Create the status bar.
 //
 if (!m_wndStatusBar.Create(this) ¦¦
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

Programming Windows With MFC

 972

 //
 // Size the status bar's rightmost pane to hold a text string.
 //
 TEXTMETRIC tm;
 CClientDC dc (this);
 CFont* pFont = m_wndStatusBar.GetFont ();
 CFont* pOldFont = dc.SelectObject (pFont);
 dc.GetTextMetrics (&tm);
 dc.SelectObject (pOldFont);

 int cxWidth;
 UINT nID, nStyle;
 m_wndStatusBar.GetPaneInfo (1, nID, nStyle, cxWidth);
 cxWidth = tm.tmAveCharWidth * 24;
 m_wndStatusBar.SetPaneInfo (1, nID, nStyle, cxWidth);
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

BOOL CMainFrame::OnQueryNewPalette()
{
 CDocument* pDoc = GetActiveDocument ();
 if (pDoc != NULL)
 GetActiveDocument ()->UpdateAllViews (NULL);
 return TRUE;
}

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
{
 if (pFocusWnd != this) {
 CDocument* pDoc = GetActiveDocument ();

Programming Windows With MFC

 973

 if (pDoc != NULL)
 GetActiveDocument ()->UpdateAllViews (NULL);
 }
}

LRESULT CMainFrame::OnUpdateImageStats (WPARAM wParam, LPARAM
lParam)
{
 m_wndStatusBar.SetPaneText (1, (LPCTSTR) lParam, TRUE);
 return 0;
}

VistaDoc.h
// VistaDoc.h : interface of the CVistaDoc class
//
///

#if !defined(

AFX_VISTADOC_H__3597FEAB_A70E_11D2_8E53_006008A82731__INCLUD
ED_)
#define
AFX_VISTADOC_H__3597FEAB_A70E_11D2_8E53_006008A82731__INCLUD
ED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CVistaDoc : public CDocument
{
protected: // create from serialization only
 CVistaDoc();
 DECLARE_DYNCREATE(CVistaDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CVistaDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 CPalette* GetPalette();
 CBitmap* GetBitmap();

Programming Windows With MFC

 974

 virtual ~CVistaDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 CPalette m_palette;
 CBitmap m_bitmap;
 //{{AFX_MSG(CVistaDoc)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_VISTADOC_H__3597FEAB_A70E_11D2_8E53_006008A82731__INCLUD
ED_)

VistaDoc.cpp
// VistaDoc.cpp : implementation of the CVistaDoc class
//

#include "stdafx.h"
#include "Vista.h"

#include "VistaDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CVistaDoc

IMPLEMENT_DYNCREATE(CVistaDoc, CDocument)

BEGIN_MESSAGE_MAP(CVistaDoc, CDocument)
 //{{AFX_MSG_MAP(CVistaDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!

Programming Windows With MFC

 975

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CVistaDoc construction/destruction

CVistaDoc::CVistaDoc()
{
}

CVistaDoc::~CVistaDoc()
{
}

BOOL CVistaDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 return TRUE;
}

///
// CVistaDoc serialization

void CVistaDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

///
// CVistaDoc diagnostics

#ifdef _DEBUG
void CVistaDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CVistaDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CVistaDoc commands

BOOL CVistaDoc::OnOpenDocument(LPCTSTR lpszPathName)
{

Programming Windows With MFC

 976

 if (!CDocument::OnOpenDocument (lpszPathName))
 return FALSE;

 //
 // Open the file and create a DIB section from its contents.
 //
 HBITMAP hBitmap = (HBITMAP) ::LoadImage (NULL, lpszPathName,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE ¦
LR_CREATEDIBSECTION);

 if (hBitmap == NULL) {
 CString string;
 string.Format (_T ("%s does not contain a DIB"), lpszPathName);
 AfxMessageBox (string);
 return FALSE;
 }

 m_bitmap.Attach (hBitmap);

 //
 // Return now if this device doesn't support palettes.
 //
 CClientDC dc (NULL);
 if ((dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE) == 0)
 return TRUE;

 //
 // Create a palette to go with the DIB section.
 //
 if ((HBITMAP) m_bitmap != NULL) {
 DIBSECTION ds;
 m_bitmap.GetObject (sizeof (DIBSECTION), &ds);

 int nColors;
 if (ds.dsBmih.biClrUsed != 0)
 nColors = ds.dsBmih.biClrUsed;
 else
 nColors = 1 << ds.dsBmih.biBitCount;

 //
 // Create a halftone palette if the DIB section contains more
 // than 256 colors.
 //
 if (nColors > 256)
 m_palette.CreateHalftonePalette (&dc);

 //
 // Create a custom palette from the DIB section's color table
 // if the number of colors is 256 or less.
 //
 else {
 RGBQUAD* pRGB = new RGBQUAD[nColors];

 CDC memDC;
 memDC.CreateCompatibleDC (&dc);
 CBitmap* pOldBitmap = memDC.SelectObject (&m_bitmap);

Programming Windows With MFC

 977

 ::GetDIBColorTable ((HDC) memDC, 0, nColors, pRGB);
 memDC.SelectObject (pOldBitmap);
 UINT nSize = sizeof (LOGPALETTE) +
 (sizeof (PALETTEENTRY) * (nColors - 1));
 LOGPALETTE* pLP = (LOGPALETTE*) new BYTE[nSize];

 pLP->palVersion = 0x300;
 pLP->palNumEntries = nColors;

 for (int i=0; i<nColors; i++) {
 pLP->palPalEntry[i].peRed = pRGB[i].rgbRed;
 pLP->palPalEntry[i].peGreen = pRGB[i].rgbGreen;
 pLP->palPalEntry[i].peBlue = pRGB[i].rgbBlue;
 pLP->palPalEntry[i].peFlags = 0;
 }

 m_palette.CreatePalette (pLP);
 delete[] pLP;
 delete[] pRGB;
 }
 }
 return TRUE;
}

void CVistaDoc::DeleteContents()
{
 if ((HBITMAP) m_bitmap != NULL)
 m_bitmap.DeleteObject ();

 if ((HPALETTE) m_palette != NULL)
 m_palette.DeleteObject ();

 CDocument::DeleteContents();
}

CBitmap* CVistaDoc::GetBitmap()
{
 return ((HBITMAP) m_bitmap == NULL) ? NULL : &m_bitmap;
}

CPalette* CVistaDoc::GetPalette()
{
 return ((HPALETTE) m_palette == NULL) ? NULL : &m_palette;
}

VistaView.h
// VistaView.h : interface of the CVistaView class
//
///

#if !defined(

AFX_VISTAVIEW_H__3597FEAD_A70E_11D2_8E53_006008A82731__INCLU
DED_)
#define
AFX_VISTAVIEW_H__3597FEAD_A70E_11D2_8E53_006008A82731__INCLU

Programming Windows With MFC

 978

DED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CVistaView : public CScrollView
{
protected: // create from serialization only
 CVistaView();
 DECLARE_DYNCREATE(CVistaView)

// Attributes
public:
 CVistaDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CVistaView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CVistaView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CVistaView)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in VistaView.cpp
inline CVistaDoc* CVistaView::GetDocument()
 { return (CVistaDoc*)m_pDocument; }
#endif

///

Programming Windows With MFC

 979

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_VISTAVIEW_H__3597FEAD_A70E_11D2_8E53_006008A82731__INCLU
DED_)

VistaView.cpp
// VistaView.cpp : implementation of the CVistaView class
//

#include "stdafx.h"
#include "Vista.h"

#include "VistaDoc.h"
#include "VistaView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CVistaView

IMPLEMENT_DYNCREATE(CVistaView, CScrollView)

BEGIN_MESSAGE_MAP(CVistaView, CScrollView)
 //{{AFX_MSG_MAP(CVistaView)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CVistaView construction/destruction

CVistaView::CVistaView()
{
}

CVistaView::~CVistaView()
{
}

BOOL CVistaView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}

///

Programming Windows With MFC

 980

// CVistaView drawing

void CVistaView::OnDraw(CDC* pDC)
{
 CVistaDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBitmap* pBitmap = pDoc->GetBitmap ();

 if (pBitmap != NULL) {
 CPalette* pOldPalette;
 CPalette* pPalette = pDoc->GetPalette ();

 if (pPalette != NULL) {
 pOldPalette = pDC->SelectPalette (pPalette, FALSE);
 pDC->RealizePalette ();
 }
 DIBSECTION ds;
 pBitmap->GetObject (sizeof (DIBSECTION), &ds);

 CDC memDC;
 memDC.CreateCompatibleDC (pDC);
 CBitmap* pOldBitmap = memDC.SelectObject (pBitmap);

 pDC->BitBlt (0, 0, ds.dsBm.bmWidth, ds.dsBm.bmHeight,
&memDC,
 0, 0, SRCCOPY);

 memDC.SelectObject (pOldBitmap);

 if (pPalette != NULL)
 pDC->SelectPalette (pOldPalette, FALSE);
 }
}

void CVistaView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate ();

 CString string;
 CSize sizeTotal;
 CBitmap* pBitmap = GetDocument ()->GetBitmap ();

 //
 // If a bitmap is loaded, set the view size equal to the bitmap size.
 // Otherwise, set the view's width and height to 0.
 //
 if (pBitmap != NULL) {
 DIBSECTION ds;
 pBitmap->GetObject (sizeof (DIBSECTION), &ds);
 sizeTotal.cx = ds.dsBm.bmWidth;
 sizeTotal.cy = ds.dsBm.bmHeight;
 string.Format (_T ("\t%d x %d, %d bpp"), ds.dsBm.bmWidth,
 ds.dsBm.bmHeight, ds.dsBmih.biBitCount);
 }
 else {

Programming Windows With MFC

 981

 sizeTotal.cx = sizeTotal.cy = 0;
 string.Empty ();
 }

 AfxGetMainWnd ()->SendMessage (WM_USER_UPDATE_STATS, 0,
 (LPARAM) (LPCTSTR) string);
 SetScrollSizes (MM_TEXT, sizeTotal);
}

///
// CVistaView diagnostics

#ifdef _DEBUG
void CVistaView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CVistaView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CVistaDoc* CVistaView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CVistaDoc)));
 return (CVistaDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CVistaView message handlers

15.2.8. More on the ::LoadImage Function

One reason Vista can do so much with so little code is that
the ::LoadImage function allows a DIB section to be built from
a BMP file with just one statement. Here's that statement again:

HBITMAP hBitmap = (HBITMAP) ::LoadImage (NULL,
lpszPathName,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE ¦
LR_CREATEDIBSECTION);

::LoadImage is to DIB sections what ::LoadBitmap and
CDC::LoadBitmap are to DDBs. But it's also much more. I
won't rehash all the input values it accepts because you can get
that from the documentation, but here's a short summary of
some of the things you can do with ::LoadImage:

x Load bitmap resources, and create DDBs and DIB sections from them.

Programming Windows With MFC

 982

x Load bitmaps stored in BMP files, and create DDBs and DIB sections
from them.

x Automatically convert three shades of gray (RGB (128, 128, 128), RGB
(192, 192, 192), and RGB (223, 223, 223)) to the system colors
COLOR_3DSHADOW, COLOR_3DFACE, and COLOR_3DLIGHT as
an image is loaded.

x Automatically convert the color of the pixel in the upper left corner of
the bitmap to the system color COLOR_WINDOW or
COLOR_3DFACE so that the pixel and others like it will be invisible
against a COLOR_WINDOW or COLOR_3DFACE background.

x Convert a color image to monochrome.

Keep in mind that ::LoadImage's color-mapping capabilities
work only with images that contain 256 or fewer colors. DIBs
with 256 or fewer colors contain built-in color tables that make
color mapping fast and efficient. Rather than examine every
pixel in the image to perform a color conversion, ::LoadImage
simply modifies the color table.

Vista demonstrates how ::LoadImage can be used to create a
DIB section from a BMP file and attach it to a CBitmap object.
One advantage of loading a bitmap as a DIB section instead of
as an ordinary DDB is that you can call functions such
as ::GetDIBColorTable on it. Had the
LR_CREATEDIBSECTION flag been omitted from the call
to ::LoadImage, we would have been unable to access the
bitmap's color table and create a logical palette from it. In
general, your applications will port more easily to future
versions of Windows (and probably perform better, too) if you
now start using DIB sections instead of DDBs whenever
possible.

15.3. Regions

MFC's CRect class represents rectangles—simple regions of
space enclosed by four boundaries aligned at right angles. More
complex regions of space can be represented with the CRgn
class, which encapsulates GDI objects called, appropriately
enough, regions. The most common use for regions is to create
complex patterns that serve as clipping boundaries for GDI
drawing functions. But you can use CRgn in other ways, too.
Here's a brief look at regions and some of the interesting things
that you can do with them.

Programming Windows With MFC

 983

15.3.1. Regions and the CRgn Class

CRgn provides functions for creating geometrically shaped
regions, combining existing regions to create more complex
regions, and performing certain operations such as hit-testing a
region or retrieving a region's bounding rectangle. The CDC
class provides tools for drawing with a region once it's
created—for example, filling a region with a brush color or
using it to clip other drawing operations. Let's see first how
regions are created. Then we'll look at the CDC functions that
act on regions and finish up by building a sample program that
uses regions to generate some rather unusual output.

15.3.1.1. Creating Regions

After a CRgn object is constructed, a region is created and
attached to it by calling one of several member functions the
CRgn class provides for region creation. The pertinent CRgn
functions are summarized in the following table.

CRgn Region-Creation Functions

Function Description

CreateRectRgn Creates a rectangular region from a set of
coordinates

CreateRectRgnIndirect Creates a rectangular region from a RECT structure
or a CRect object

CreateEllipticRgn Creates an elliptical region from a set of coordinates

CreateEllipticRgnIndirect Creates an elliptical region from a RECT structure
or a CRect object

CreateRoundRectRgn Creates a rectangular region with rounded corners

CreatePolygonRgn Creates a polygonal region from a set of points

CreatePolyPolygonRgn Creates a region composed of multiple polygons
from a set of points

CreateFromPath Creates a region from a path

CreateFromData Creates a region by applying two-dimensional
coordinate transformations to an existing region

CopyRgn Creates a region that is a copy of an existing region

Programming Windows With MFC

 984

The use of most of these functions is straightforward. For
example, to create an elliptical region from a CRect object
named rect that defines a bounding box, you can write

CRgn rgn;
rgn.CreateEllipticRgnIndirect(&rect);

To create a rectangular region with rounded corners, you'd do it this way
instead:

CRgn rgn;
rgn.CreateRoundRectRgn (rect.left, rect.top, rect.right,
 rect.bottom, nCornerWidth, nCornerHeight);

nCornerWidth and nCornerHeight represent the horizontal and
vertical dimensions, respectively, of the ellipses used to round
the corners. All coordinates passed to functions that create
regions are logical coordinates. Like other GDI objects, a
region must be deleted when it's no longer needed. Creating a
CRgn on the stack makes destruction automatic because when a
CRgn goes out of scope it destroys the GDI region it's attached
to.

One of the most powerful region-creation functions is
CRgn::CreateFromPath, which converts the device context's
current path into a region. A path is an outline generated by
bracketing calls to other GDI drawing functions between calls
to CDC::BeginPath and CDC::EndPath. The following
statements generate a simple elliptical path and convert it into a
region:

dc.BeginPath (); // Define a path
dc.Ellipse (0, 0, 400, 200);
dc.EndPath ();

CRgn rgn; // Convert the path into a
region.
rgn.CreateFromPath (&dc);

There's nothing remarkable about this code because you could
do the same thing by simply calling CRgn::CreateEllipticRgn.
But what's cool about CreateFromPath is that you can create
paths from more complex objects such as Bézier curves and

Programming Windows With MFC

 985

text outlines. The following statements create a region from the
characters in the text string "Hello, MFC":

dc.BeginPath ();
dc.TextOut (0, 0, CString (_T ("Hello, MFC")));
dc.EndPath ();

Once created, the path can be converted into a region with
CRgn::CreateFromPath. Ellipse and TextOut are but two of
several CDC drawing functions that work with BeginPath and
EndPath; for a complete list, refer to the MFC documentation
for the API function ::BeginPath. (The subset of GDI drawing
functions that can be used to generate paths varies slightly
between Windows 95 and Windows 98 and Windows NT and
Windows 2000, so watch out.) You can also use paths in ways
unrelated to regions. To learn about the drawing operations you
can perform with paths, see the MFC documentation for the
CDC functions FillPath, StrokePath, StrokeAndFillPath, and
WidenPath.

Another way to create complex regions is to combine existing
regions with CRgn::CombineRgn. CombineRgn accepts three
parameters: CRgn pointers to the two regions to be combined
(region 1 and region 2) and an integer value specifying the
combine mode. The combine mode can be any one of the five
values listed here:

Mode Description

RGN_COPY Sets the region equal to region 1

RGN_AND Sets the region equal to the intersection of regions 1 and 2

RGN_OR Sets the region equal to the union of regions 1 and 2

RGN_DIFF Sets the region equal to the area bounded by region 1 minus the
area bounded by region 2

RGN_XOR Sets the region equal to the nonoverlapping areas of regions 1
and 2

The combine mode tells the GDI what Boolean operations to
use to combine the regions. The statements

CRgn rgn1, rgn2, rgn3;
rgn1.CreateEllipticRgn (0, 0, 100, 100);

Programming Windows With MFC

 986

rgn2.CreateEllipticRgn (40, 40, 60, 60);
rgn3.CreateRectRgn (0, 0, 1, 1);
rgn3.CombineRgn (&rgn1, &rgn2, RGN_DIFF);

create a donut-shaped region consisting of a circle with a hole
in the middle. Note that CombineRgn can't be called until the
region it's called for is created by some other means (that is,
until there's an HRGN to go with the CRgn). That's why this
example calls CreateRectRgn to create a trivial rectangular
region for rgn3 before calling CombineRgn.

15.3.1.2. Using Regions

Just what can you do with a region after it's created? To start
with, the following CDC drawing functions use regions:

x CDC::FillRgn fills a region using a specified brush.
x CDC::PaintRgn fills a region using the current brush.
x CDC::InvertRgn inverts the colors in a region.
x CDC::FrameRgn borders a region with a specified brush.

You can also invalidate a region with CWnd::InvalidateRgn.
Internally, Windows uses regions rather than rectangles to track
the invalid areas of a window. When you call
CDC::GetClipBox, what you get back is a rectangle that
bounds the window's invalid region. That region could be a
simple rectangle, or it could be something much more complex.

You can perform hit-testing in regions with CRgn::PtInRegion.
Let's say you create an elliptical region that's centered in a
window's client area. You used PaintRgn or FillRgn to paint
the region a different color from the window background color,
and now you want to know when the user clicks the left mouse
button inside the ellipse. If m_rgn is the CRgn object, here's
what the OnLButtonDown handler might look like:

void CMyWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 CClientDC dc (this);
 dc.DPtoLP (&point); // Convert to logical coordinates.
 if (m_rgn.PtInRegion (point)) {
 // The point falls within the region.
 }
}

Programming Windows With MFC

 987

MFC's CRect class provides an analogous function for
rectangles: PtInRect. In fact, there are many parallels in the API
(and in MFC member functions) between regions and
rectangles: InvalidateRect and InvalidateRgn, FillRect and
FillRgn, and so on. Rectangle functions are faster, so when
possible you should avoid using region functions to operate on
simple rectangles and use the equivalent rectangle functions
instead.

Regions really pay off when you use them as clipping
boundaries for complex graphic images. A region can be
selected into a device context with CDC::SelectObject or
CDC::SelectClipRgn. Once selected, the region serves as a
clipping boundary for all subsequent output to the device
context. The RegionDemo application in the next section uses a
clipping region to create an image that would be murderously
difficult to draw by other means. But with a region acting as a
virtual stencil for graphics output, the image is relatively easy
to render. The drawback to complex clipping regions is that
they're slow. But sometimes using a clipping region is the only
practical way to get the output you're looking for. If you want
to use a path as a clipping region, you don't have to convert it
into a region and then select it into a device context. You can
select the path directly into the device context with
CDC::SelectClipPath.

One of the more imaginative uses for a region is to pass it to the
CWnd::SetWindowRgn function so that it becomes a window
region. A window region is a clipping region for an entire
window. Windows doesn't allow anything outside the window
region to be painted, including title bars and other
nonclient-area window elements. Create an elliptical region and
pass its handle to SetWindowRgn, and you'll get an elliptical
window. If the window is a top-level window and its title bar is
hidden from view, use an OnNcHitTest handler to convert
HTCLIENT hit-test codes into HTCAPTION codes so that the
window can be dragged by its client area. A more practical use
for nonrectangular window regions is to create stylized text
bubbles that are actually windows and that receive messages
just as other windows do. With SetWindowRgn to assist you, it's
not terribly difficult to create a popup window class that
displays help text in a window shaped like a thought balloon
and that automatically destroys itself when it's clicked.

Programming Windows With MFC

 988

15.3.2. The RegionDemo Application

Figure 15-10 shows the output from an application named
RegionDemo, which uses a clipping region to draw a radial
array of lines forming the words "Hello, MFC." The clipping
region is generated from a path, and the path, in turn, is
generated by calling CDC::TextOut between calls to
CDC::BeginPath and CDC::EndPath. All the work is done in
OnPaint. Look over the source code in Figure 15-11; it should
be pretty apparent what's going on in each phase of the output,
with the possible exception of the code that uses two different
CRgn objects and various calls to CRgn member functions to
generate the final clipping region (rgn1) that is selected into the
device context with CDC::SelectClipRgn.

Figure 15-10. The RegionDemo window.

Figure 15-11. The RegionDemo application.

RegionDemo.h
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd
{
public:
 CMainWindow ();

Programming Windows With MFC

 989

protected:
 afx_msg void OnPaint ();
 DECLARE_MESSAGE_MAP ()
};

RegionDemo.cpp
#include <afxwin.h>
#include <math.h>
#include "RegionDemo.h"

CMyApp myApp;

///
// CMyApp member functions

BOOL CMyApp::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (m_nCmdShow);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

///
// CMainWindow message map and member functions

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_PAINT ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("Region Demo"));
}

void CMainWindow::OnPaint ()
{
 CPaintDC dc (this);

 //
 // Create a 72-point Times New Roman font.
 //
 CFont font;
 font.CreatePointFont (720, _T ("Times New Roman"));

 //
 // Create a clipping region from the text string "Hello, MFC."
 //
 CRect rect;
 GetClientRect (&rect);
 CString string ("Hello, MFC");

 CFont* pOldFont = dc.SelectObject (&font);
 CSize size = dc.GetTextExtent (string);
 int x = (rect.Width () - size.cx) / 2;

Programming Windows With MFC

 990

 TEXTMETRIC tm;
 dc.GetTextMetrics (&tm);
 int y = (rect.Height () - tm.tmHeight) / 2;

 dc.BeginPath ();
 dc.TextOut (x, y, string);
 dc.EndPath ();
 dc.SelectObject (pOldFont);

 CRect rcText;
 CRgn rgn1, rgn2;
 rgn1.CreateFromPath (&dc);
 rgn1.GetRgnBox (&rcText);
 rgn2.CreateRectRgnIndirect (&rcText);
 rgn1.CombineRgn (&rgn2, &rgn1, RGN_DIFF);

 dc.SelectClipRgn (&rgn1);

 //
 // Draw a radial array of lines.
 //
 dc.SetViewportOrg (rect.Width () / 2, rect.Height () / 2);
 double fRadius = hypot (rect.Width () / 2, rect.Height () / 2);

 for (double fAngle = 0.0; fAngle < 6.283; fAngle += 0.01745) {
 dc.MoveTo (0, 0);
 dc.LineTo ((int) ((fRadius * cos (fAngle)) + 0.5),
 (int) ((fRadius * sin (fAngle)) + 0.5));
 }
}

Here's a blow-by-blow analysis of the code that creates the
clipping region after the path outlining the characters in the text
string is created. The statement

rgn1.CreateFromPath (&dc);

initializes rgn1 with a region that matches the path. Figure
15-12 shows what this first region looks like. The interior of the
region is a rectangle with the outline of the letters "Hello,
MFC" stamped out in the middle. (Some graphics
systems—notably PostScript—handle paths generated from
character outlines differently by making the interiors of the
regions the interiors of the characters themselves. The GDI
does essentially the opposite, creating a region from the
characters' bounding box and then subtracting the areas
enclosed by the character outlines.) Next, the statements

rgn1.GetRgnBox (&rcText);

Programming Windows With MFC

 991

rgn2.CreateRectRgnIndirect (&rcText);

copy rgn1's bounding box to a CRect object named rcText and
create a region (rgn2) from it. The final statement effectively
inverts rgn1 by subtracting rgn1 from rgn2:

rgn1.CombineRgn (&rgn2, &rgn1, RGN_DIFF);

Figure 15-12. The path generated from the text string "Hello, MFC."

The resulting region is one whose interior exactly matches the
insides of the characters drawn by TextOut. After the region is
selected into the device context, a radial array of lines is drawn
outward at 1-degree increments from the center of the window's
client area. Because the lines are clipped to the boundaries of
the region, nothing is drawn outside the character outlines.

You could make RegionDemo slightly more efficient by
moving the code that generates the region out of OnPaint and
into OnCreate. The region would no longer have to be
generated anew each time the window is repainted, but it would
need to be repositioned with CRgn::OffsetRgn to keep it
centered. Eliminating redundant calls to CRgn functions
improves the speed of the output somewhat, but the biggest
performance hit still comes when the lines drawn on the screen
are clipped to the region's boundaries. That complex clipping
regions exact a price in performance is a fact of life in
computer graphics, so it's wise to avoid using nonrectangular
clipping regions except in cases in which there's no reasonable
alternative.

Programming Windows With MFC

 992

Programming Windows With MFC

 993

Chapter 16. The Common
Controls

Since version 1.0, Microsoft Windows has provided a core set
of controls that includes push buttons, radio buttons, list boxes,
and other common user interface (UI) objects. Windows 95 and
Windows NT 3.51 expanded the selection of controls available
by including 15 new control types in a DLL named
Comctl32.dll. Collectively known as the common controls,
these controls run the gamut from simple progress controls,
which provide graphical feedback regarding the progress of
ongoing operations, to richer and more complex tree view
controls, which present hierarchical views of data in treelike
structures whose branches expand and collapse in response to
mouse clicks. Microsoft Internet Explorer adds even more
controls to Comctl32.dll, bringing the total number of common
controls supported on today's platforms to 20. The suite of
controls provided by Internet Explorer includes controls for
selecting dates and times, entering Internet Protocol (IP)
addresses, and more.

Programming Windows With MFC

 994

Figure 16-1. Common controls and the Windows user interface.

Common controls are used throughout Windows and are an
important part of the operating system's look and feel. Figure
16-1 shows how Windows uses some of the common controls.
The header control in the Explorer window is a part of the list
view control, but header controls can also be created apart from
list views. The magnifying glass that moves in a circle while
Find performs a search is an animation control. So are the
pieces of paper that fly across the screen when files are moved,
copied, or deleted. As you'll see later, animation controls make
it easy to display simple animations by playing back sequences
recorded in Windows Audio Video Interleaved (AVI) format.

In this chapter, I'll introduce the common controls and their
MFC interfaces. I'll begin with an overview of the common
controls and then explain how they're created and the unique
way in which they send notifications to their parents. After that,
we'll examine several of the common controls in detail and go
over sample code demonstrating their use.

16.1. Common Control Fundamentals

MFC provides classes to wrap the common controls just as it
provides classes to wrap the core control types implemented in
User.exe. The following table shows the 20 types of common
controls, the WNDCLASSes on which they're based, and the
corresponding MFC classes. It also shows aliases for those
WNDCLASSes defined in the header file Commctrl.h. Image
lists and property sheets don't have WNDCLASSes because
they're not controls in the strict sense of the word, but they're
nearly always counted among the common controls because
their code resides in Comctl32.dll. You'll sometimes see drag
list boxes shown with the common controls. I didn't include
them here because drag list boxes aren't stand-alone controls;
they're conventional list boxes that are converted into "drag"
list boxes by a function in Comctl32.dll. MFC provides a
convenient implementation of drag list boxes in CDragListBox,
so for more information, see the documentation for
CDragListBox.

The Common Controls

Programming Windows With MFC

 995

Control Type WNDCLASS WNDCLASS Alias MFC Class

Animation "SysAnimate32" ANIMATE_CLASS CAnimateCtrl

ComboBoxEx
*

"ComboBoxEx32" WC_COMBOBOXEX CComboBoxEx

Date-Time* "SysDateTimePick3
2"

DATETIMEPICK_CLAS
S

CDateTimeCtrl

Header "SysHeader32" WC_HEADER CHeaderCtrl

Hotkey "msctls_hotkey32" HOTKEY_CLASS CHotKeyCtrl

Image list N/A N/A CImageList

IP address** "SysIPAddress32" WC_IPADDRESS CIPAddressCtrl

List view "SysListView32" WC_LISTVIEW CListCtrl

Month
calendar*

"SysMonthCal32" MONTHCAL_CLASS CMonthCalCtrl

Progress "msctls_progress32" PROGRESS_CLASS CProgressCtrl

Property sheet N/A N/A CPropertySheet

Rebar* "ReBarWindow32" REBARCLASSNAME CReBarCtrl

Rich edit "RichEdit20A"
(ANSI) or
"RichEdit20W"
(Unicode)

RICHEDIT_CLASS CRichEditCtrl

Slider "msctls_trackbar32" TRACKBAR_CLASS CSliderCtrl

Spin button "msctls_updown32" UPDOWN_CLASS CSpinButtonCt
rl

Status bar "msctls_statusbar32" STATUSCLASSNAME CStatusBarCtrl

Tab "SysTabControl32" WC_TABCONTROL CTabCtrl

Toolbar "ToolbarWindow32" TOOLBARCLASSNAM
E

CToolBarCtrl

ToolTip "tooltips_class32" TOOLTIPS_CLASS CToolTipCtrl

Tree view "SysTreeView32" WC_TREEVIEW CTreeCtrl

* Requires Internet Explorer 3.0 or later.

** Requires Internet Explorer 4.0 or later.

As you can see from the table, some of the common controls
are only supported on systems that have a particular version of
Internet Explorer installed. That's because when you install
Internet Explorer, the setup program silently upgrades

Programming Windows With MFC

 996

Comctl32.dll, too. Many times in this chapter I'll say something
like "This style is only supported on systems equipped with
Internet Explorer 3.0 or later" or "This feature requires Internet
Explorer 4.0." In truth, it's not Internet Explorer that's required
but the version of Comctl32.dll that comes with that version of
Internet Explorer. Because installing a more recent version of
Internet Explorer is presently the only legal way to get the latest
version of Comctl32.dll, Internet Explorer is a reasonable basis
for documenting version dependencies.

Given the common controls' myriad dependencies on the
version of Comctl32.dll that's installed and the fact that some
systems don't have Internet Explorer installed at all, you might
wonder how to determine at run time whether a given feature is
supported provided that you know what version of
Comctl32.dll it requires. Here's a simple routine that returns
Comctl32.dll's major and minor version numbers. It returns 4.0
if the Comctl32.dll installed on the host system is one that
predates Internet Explorer 3.0, and 0.0 if Comctl32.dll isn't
installed at all:

void GetComctlVersion(DWORD &dwMajor, DWORD &dwMinor)
{
 dwMajor = dwMinor = 0;
 HINSTANCE hLib = ::LoadLibrary (_T ("Comctl32.dll"));
 if (hLib != NULL) {
 DLLGETVERSIONPROC pDllGetVersion =
 (DLLGETVERSIONPROC) ::GetProcAddress (hLib, _T
("DllGetVersion"));
 if (pDllGetVersion) { // IE 3.0 or higher
 DLLVERSIONINFO dvi;
 ::ZeroMemory (&dvi, sizeof (dvi));
 dvi.cbSize = sizeof (dvi);
 HRESULT hr = (*pDllGetVersion) (&dvi);
 if (SUCCEEDED (hr)) {
 dwMajor = dvi.dwMajorVersion;
 dwMinor = dvi.dwMinorVersion;
 }
 }
 else { // Pre-IE 3.0
 dwMajor = 4;
 dwMinor = 0;
 }
 ::FreeLibrary (hLib);
 }
}

Programming Windows With MFC

 997

You also need a way to translate Internet Explorer version
numbers into Comctl32.dll version numbers. Here's a table that
will help:

Internet Explorer Version Comctl32.dll Version

3.0 4.70

4.0 4.71

4.01 4.72

Now if I say that a certain feature requires Internet Explorer 3.0
or later and you want to determine at run time whether that
feature is supported, you can do this:

DWORD dwMajor, dwMinor;
GetComctlVersion (dwMajor, dwMinor);
if ((dwMajor == 4 && dwMinor >= 70) ¦¦ dwMajor > 4) {
 // The feature is supported.
}
else {
 // The feature is not supported.
}

Yes, it's ugly. But it's the only option currently available.

16.1.1. Creating a Common Control

There are two ways to create a common control without
resorting to API functions. The first method is to instantiate the
corresponding MFC control class and call the resulting object's
Create function, as demonstrated here:

#include <afxcmn.h>

CProgressCtrl wndProgress;
wndProgress.Create (WS_CHILD ¦ WS_VISIBLE ¦ WS_BORDER,
 CRect (x1, y1, x2, y2), this, IDC_PROGRESS);

The header file Afxcmn.h contains the declarations for
CProgressCtrl and other common control classes. The second
method is to add a CONTROL statement to a dialog template.
When the dialog box is created, the control is created, too. The
following CONTROL statement creates a progress control in a
dialog box:

Programming Windows With MFC

 998

CONTROL "", IDC_PROGRESS, PROGRESS_CLASS,
WS_BORDER, 32, 32, 80, 16

When you create a common control this way, you can specify
either the literal WNDCLASS name or its alias, whichever you
prefer. The Visual C++ dialog editor writes CONTROL
statements for you when you use it to add common controls to a
dialog box.

Most of the common controls support their own window styles,
which you can combine with WS_CHILD, WS_VISIBLE, and
other standard window styles. The table below shows the
"generic" common control styles that, at least in theory, aren't
specific to any particular control type. As an MFC programmer,
you'll rarely have occasion to manipulate these styles directly
because many of them apply only to toolbars and status bars,
and if you use CToolBar and CStatusBar instead of the more
primitive CToolBarCtrl and CStatusBarCtrl classes to
implement toolbars and status bars, the appropriate CCS styles
are built in. These are by no means all the styles you can use
with common controls. I'll point out control-specific styles
when we examine individual control types.

Common Control Styles

Style Description

CCS_TOP Positions the control at the top of its parent's client
area and matches the control's width to the width of
its parent. Toolbars have this style by default.

CCS_BOTTOM Positions the control at the bottom of its parent's
client area and matches the control's width to the
width of its parent. Status bars have this style by
default.

CCS_LEFT* Positions the control at the left end of its parent's
client area.

CCS_RIGHT* Positions the control at the right end of its parent's
client area.

CCS_VERT* Orients the control vertically rather than
horizontally.

CCS_NOMOVEX* Causes the control to resize and move itself
vertically but not horizontally when its parent is
resized.

Programming Windows With MFC

 999

CCS_NOMOVEY Causes the control to resize and move itself
horizontally but not vertically when its parent is
resized. Header controls have this style by default.

CCS_NORESIZE Prevents the control from resizing itself when the
size of its parent changes. If this style is specified,
the control assumes the width and height specified
in the control rectangle.

CCS_NOPARENTALIGN Prevents the control from sticking to the top or
bottom of its parent's client area. A control with this
style retains its position relative to the upper left
corner of its parent's client area. If this style is
combined with CCS_TOP or CCS_BOTTOM, the
control assumes a default height but its width and
position don't change when its parent is resized.

CCS_NODIVIDER Eliminates the divider drawn at the top of a toolbar
control.

CCS_ADJUSTABLE Enables a toolbar control's built-in customization
features. Double-clicking a toolbar of this type
displays a Customize Toolbar dialog box.

* Requires Internet Explorer 3.0 or later

Once you've created a common control, you manipulate it using
member functions of the corresponding control class. For
controls created from dialog templates, you can use any of the
techniques described in Chapter 8 to manufacture type-specific
references for accessing a control's function and data members.
For example, the following statement links a CProgressCtrl
member variable named m_wndProgress to the progress control
whose ID is IDC_PROGRESS:

DDX_Control (pDX, IDC_PROGRESS, m_wndProgress);

This statement must appear in a dialog class's DoDataExchange
function. Rather than add the statement manually, you can use
ClassWizard if you'd like. See Chapter 8 for a description of
how to use ClassWizard to bind a member variable in a dialog
class to a control in the dialog box.

When you use the common controls in an SDK-style
application, you must call either ::InitCommonControls or the
newer ::InitCommonControlsEx to load Comctl32.dll and
register the controls' WNDCLASSes before creating the first
control. In an MFC application, MFC calls these functions for
you. It first tries to call ::InitCommonControlsEx. If the attempt

Programming Windows With MFC

 1000

fails because Internet Explorer 3.0 or later isn't installed
(Internet Explorer adds ::InitCommonControlsEx to the Win32
API), MFC falls back and calls ::InitCommonControls, which
is supported on any system running Windows 95 or higher or
Windows NT 3.51 or higher.

MFC calls ::InitCommonControls(Ex) whenever a dialog box is
created or a common control class's Create function is called. If
for some reason you decide to create a common control or a
dialog box that contains a common control using the Windows
API instead of MFC, or if you create a common control with
CreateEx instead of Create, you should
call ::InitCommonControls or ::InitCommonControlsEx
yourself. A good place to do that is in the main window's
OnCreate handler or InitInstance, although you can defer the
call until just before the control or dialog box is created if you'd
prefer. It's not harmful to call ::InitCommonControls(Ex)
multiple times during an application's lifetime.

16.1.2. Processing Notifications: The
WM_NOTIFY Message

Unlike the classic controls, which send notifications to their
parents using WM_COMMAND messages, most common
controls package their notifications in WM_NOTIFY messages.
A WM_NOTIFY message's wParam holds the child window
ID of the control that sent the message, and lParam holds a
pointer to either an NMHDR structure or a structure that's a
superset of NMHDR. NMHDR is defined as follows:

typedef struct tagNMHDR {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

hwndFrom holds the control's window handle, idFrom holds
the control ID (the same value that's passed in wParam), and
code specifies the notification code. The following notifications
are transmitted by virtually all of the common controls.

Notification Sent When

Programming Windows With MFC

 1001

NM_CLICK The control is clicked with the left mouse button.

NM_DBLCLK The control is double-clicked with the left mouse
button.

NM_RCLICK The control is clicked with the right mouse button.

NM_RDBLCLK The control is double-clicked with the right mouse
button.

NM_RETURN The Enter key is pressed while the control has the
input focus.

NM_KILLFOCUS The control loses the input focus.

NM_SETFOCUS The control gains the input focus.

NM_OUTOFMEMORY An operation on the control has failed because of
insufficient memory.

Systems on which Internet Explorer 3.0 or later is installed
support a richer assortment of NM notifications. For example,
certain control types, including some of the original common
controls that aren't unique to Internet Explorer but that are
enhanced when Internet Explorer is installed, send
NM_CUSTOMDRAW notifications so that their owners can
customize their appearance. Others send NM_SETCURSOR
notifications that their owners can use to apply custom cursors.
The documentation for individual controls notes the "special"
NM notifications, if any, that the controls send.

Most common controls define additional notification codes to
signify control-specific events. For example, a tree view control
notifies its parent when a subtree is expanded by sending it a
WM_NOTIFY message with code equal to
TVN_ITEMEXPANDED. lParam points to an
NM_TREEVIEW structure, which contains the following data
members:

typedef struct _NM_TREEVIEW {
 NMHDR hdr;
 UINT action;
 TV_ITEM itemOld;
 TV_ITEM itemNew;
 POINT ptDrag;
} NM_TREEVIEW;

Notice that the structure's first member is an NMHDR structure,
making NM_TREEVIEW a functional superset of NMHDR.

Programming Windows With MFC

 1002

The type of structure lParam points to depends on the type of
control the notification came from. It sometimes even depends
on the notification code. For instance, the lParam
accompanying a TVN_GETDISPINFO notification from a tree
view control points to a TV_DISPINFO structure, which is
defined differently than NM_TREEVIEW is:

typedef struct _TV_DISPINFO {
 NMHDR hdr;
 TV_ITEM item;
} TV_DISPINFO;

How do you know what kind of pointer to cast lParam to? You
start by casting to an NMHDR pointer and examining the
notification code. Then, if necessary, you can recast to a more
specific pointer type, as demonstrated here:

NMHDR* pnmh = (NMHDR*) lParam;
switch (pnmh->code) {

case TVN_ITEMEXPANDED:
 NM_TREEVIEW* pnmtv = (NM_TREEVIEW*) pnmh;
 // Process the notification.
 break;

case TVN_GETDISPINFO:
 NM_DISPINFO* pnmdi = (NM_DISPINFO*) pnmh;
 // Process the notification.
 break;
}

If the window that processes these notifications contains two or
more tree view controls, it can examine the hwndFrom or
idFrom field of the NMHDR structure to determine which
control sent the notification.

switch statements like the one above are usually unnecessary in
MFC applications, because notifications encapsulated in
WM_NOTIFY messages are mapped to class member functions
with ON_NOTIFY and ON_NOTIFY_RANGE macros. In
addition, WM_NOTIFY notifications can be reflected to
derived control classes using ON_NOTIFY_REFLECT. (MFC
also supports extended forms of these macros named
ON_NOTIFY_EX, ON_NOTIFY_EX_RANGE, and

Programming Windows With MFC

 1003

ON_NOTIFY_REFLECT_EX.) The following message-map
entries map TVN_ITEMEXPANDED and
TVN_GETDISPINFO notifications from a tree view control
whose ID is IDC_TREEVIEW to handling functions named
OnItemExpanded and OnGetDispInfo:

ON_NOTIFY (TVN_ITEMEXPANDED, IDC_TREEVIEW,
OnItemExpanded)
ON_NOTIFY (TVN_GETDISPINFO, IDC_TREEVIEW,
OnGetDispInfo)

Casting to specific pointer types is performed inside the
notification handlers:

void CMyWindow::OnItemExpanded (NMHDR* pnmh, LRESULT*
pResult)
{
 NM_TREEVIEW* pnmtv = (NM_TREEVIEW*) pnmh;
 // Process the notification.
}

void CMyWindow::OnGetDispInfo (NMHDR* pnmh, LRESULT*
pResult)
{
 NM_DISPINFO* pnmdi = (NM_DISPINFO*) pnmh;
 // Process the notification.
}

The pnmh parameter passed to an ON_NOTIFY handler is
identical to the WM_NOTIFY message's lParam. The pResult
parameter points to a 32-bit LRESULT variable that receives
the handler's return value. Many notifications attach no
meaning to the return value, in which case the handler can
safely ignore pResult. But sometimes what happens after the
handler returns depends on the value of *pResult. For example,
you can prevent branches of a tree view control from being
expanded by processing TVN_ITEMEXPANDING
notifications and setting *pResult to a nonzero value. A 0 return
value, on the other hand, allows the expansion to occur:

// In the message map
ON_NOTIFY (TVN_ITEMEXPANDING, IDC_TREEVIEW,
OnItemExpanding)

Programming Windows With MFC

 1004

void OnItemExpanding (NMHDR* pnmh, LRESULT* pResult)
{
 NM_TREEVIEW* pnmtv = (NM_TREEVIEW*) pnmh;
 if (...) {
 *pResult = TRUE; // Under certain conditions, prevent
 return; // the expansion from taking place.
 }
 *pResult = 0; // Allow the expansion to proceed.
}

A TVN_ITEMEXPANDING notification differs from a
TVN_ITEMEXPANDED notification in that it is sent before an
item in a tree view control is expanded, not after. As with the
standard control types, you can ignore notifications you're not
interested in and process only those that are meaningful to your
application. Windows provides appropriate default responses
for unhandled notifications.

16.2. Slider, Spin Button, and ToolTip
Controls

Now that you're familiar with the general characteristics of the
common controls, let's look at specifics for a few of the control
types. We'll start with sliders, spin buttons, and ToolTip
controls, which are all relatively simple to program and which
are also generic enough that they can be put to use in a variety
of applications. After we've looked at these controls and the
corresponding MFC control classes, we'll write a sample
program that uses a slider control and a pair of spin buttons in a
dialog box and also uses a ToolTip control to provide
context-sensitive help. Rather than use a raw CToolTipCtrl to
implement the ToolTip control, we'll use CToolTipCtrl as a
base class for a class of our own and add a pair of handy
member functions that correct a rather severe deficiency in
MFC's ToolTip implementation.

16.2.1. Slider Controls

Slider controls, also known as trackbar controls, are similar to
the sliding volume controls found on many radios and stereo
systems. A slider has a thumb that moves like the thumb in a
scroll bar. After you create a slider, you set the minimum and
maximum values representing the extremes of the thumb's

Programming Windows With MFC

 1005

travel and optionally set the initial thumb position. The user can
then reposition the thumb by dragging it with the left mouse
button or clicking the channel in which the thumb slides. When
a slider has the input focus, its thumb can also be moved with
the arrow keys, the Page Up and Page Down keys, and the
Home and End keys. A simple function call returns an integer
representing the thumb position. If desired, you can respond to
positional changes as the thumb is moved by processing control
notifications. Figure 16-2 shows what a simple slider control
looks like. Tick marks denote the positions the thumb can
assume.

Figure 16-2. A horizontal slider with tick marks denoting thumb stops.

The table below shows slider-specific control styles. A slider
can be oriented horizontally or vertically. The default
orientation if neither TBS_HORZ nor TBS_VERT is specified
is horizontal. The TBS_AUTOTICKS style marks thumb stops
with tick marks. If the slider's range is 0 through 8,
TBS_AUTOTICKS creates nine tick marks—one at each end
of the slider and seven in between. TBS_NOTICKS removes
the tick marks altogether, and TBS_NOTHUMB creates a
slider that has no thumb. If you specify neither
TBS_AUTOTICKS nor TBS_NOTICKS, the slider has a tick
mark at each end but none in between. By default, tick marks
are drawn below a horizontal slider and to the right of a vertical
slider. You can move the tick marks to the top or the left by
specifying TBS_TOP or TBS_LEFT, or you can use
TBS_BOTH to create a slider that has tick marks both above
and below or to its right and left.

Slider Control Styles

Style Description

TBS_HORZ Orients the slider horizontally.

TBS_VERT Orients the slider vertically.

TBS_LEFT Draws tick marks to the left of a vertical slider.

TBS_RIGHT Draws tick marks to the right of a vertical slider.

TBS_TOP Draws tick marks above a horizontal slider.

Programming Windows With MFC

 1006

TBS_BOTTOM Draws tick marks below a horizontal slider.

TBS_BOTH Draws tick marks both above and below a
horizontal slider or to the left and right of a
vertical slider.

TBS_NOTICKS Removes tick marks from the slider.

TBS_AUTOTICKS Positions a tick mark at each stop in the slider's
range.

TBS_FIXEDLENGTH Allows the thumb size to be modified by sending
the control a TBM_SETTHUMBLENGTH
message.

TBS_NOTHUMB Removes the thumb from the slider.

TBS_ENABLESELRANGE Widens the slider's channel so that a selection
range can be displayed.

TBS_TOOLTIPS* Adds a dynamic ToolTip control that moves with
the thumb and displays the thumb position. Use
CSliderCtrl::SetToolTips to replace the default
ToolTip control with one of your own.

* Requires Internet Explorer 3.0 or later

MFC represents sliders with the CSliderCtrl class. A slider's
range and thumb position are set with CSliderCtrl::SetRange
and CSliderCtrl::SetPos. The related CSliderCtrl::GetRange
and CSliderCtrl::GetPos functions retrieve range and position
information. If m_wndSlider is a CSliderCtrl, the statements

m_wndSlider.SetRange (0, 8);
m_wndSlider.SetPos (2);

set the slider's range to 0 through 8 and its thumb position to 2.

A slider control assigned the style TBS_AUTOTICKS draws
tick marks at each incremental thumb position. You can adjust
the distance between tick marks with CSliderCtrl::SetTicFreq.
The following statement configures a slider control to draw tick
marks at every other thumb stop:

m_wndSlider.SetTicFreq (2);

To create a slider with tick marks at irregular intervals, omit the
TBS_AUTOTICKS style and use CSliderCtrl::SetTic to put
tick marks where you want them. The statements

Programming Windows With MFC

 1007

m_wndSlider.SetRange (0, 8);
m_wndSlider.SetTic (2);
m_wndSlider.SetTic (3);
m_wndSlider.SetTic (6);
m_wndSlider.SetPos (2);

place tick marks at 2, 3, and 6 in addition to the ones drawn at 0
and 8.

The TBS_ENABLESELRANGE style creates a slider with a
wide channel suitable for displaying a selection range. The
selection range is set with CSliderCtrl::SetSelection and is
represented by a bar drawn in the system color
COLOR_HIGHLIGHT. The statements

m_wndSlider.SetRange (0, 8);
m_wndSlider.SetSelection (3, 7);

set the range to 0 through 8 and the selection to 3 through 7,
producing the slider seen in Figure 16-3. Setting a selection
doesn't limit the thumb's travel; the thumb can still be
positioned anywhere in the slider range. If you want to limit the
thumb's travel to the selection range or allow the user to alter
the selection, you must implement a custom slider control UI.
The most practical approach to customizing the UI is to derive
a class from CSliderCtrl and add message handlers that change
the way the control responds to presses of the Home, End, Page
Up, Page Down, and arrow keys and clicks of the left mouse
button. To perform default processing on selected messages,
simply pass those messages to the base class.

Figure 16-3. A slider with a selection range.

As its thumb is moved, a slider sends its parent
WM_HSCROLL or WM_VSCROLL messages as a scroll bar
does. An OnHScroll or OnVScroll handler for a slider control
receives three parameters: a notification code, an integer
specifying the latest thumb position, and a CScrollBar pointer
that can be cast to a CSliderCtrl pointer. The table below shows
the nine possible notification codes and the actions that

Programming Windows With MFC

 1008

generate them. The thumb position passed to OnHScroll or
OnVScroll is valid only when the notification code is
TB_THUMBPOSITION or TB_THUMBTRACK. Use
CSliderCtrl::GetPos to retrieve the thumb position in response
to other types of notifications.

Slider Notifications

Notification Sent When

TB_TOP The Home key is pressed while the slider has the
input focus.

TB_BOTTOM The End key is pressed while the slider has the input
focus.

TB_LINEDOWN The down or right arrow key is pressed while the
slider has the input focus.

TB_LINEUP The up or left arrow key is pressed while the slider
has the input focus.

TB_PAGEDOWN The Page Down key is pressed while the slider has
the input focus, or the channel is clicked right of the
thumb in a horizontal slider or below the thumb in a
vertical slider.

TB_PAGEUP The Page Up key is pressed while the slider has the
input focus, or the channel is clicked left of the
thumb in a horizontal slider or above the thumb in a
vertical slider.

TB_THUMBTRACK The thumb is dragged to a new position with the
mouse.

TB_THUMBPOSITION The left mouse button is released after the thumb is
dragged.

TB_ENDTRACK The key or mouse button used to move the thumb to
a new position is released.

One use for slider notifications is for dynamically updating an
image on the screen in response to positional changes. The
Settings page of the system's Display Properties property sheet,
which you can display by right-clicking the desktop and
selecting Properties from the context menu, processes
TB_THUMBTRACK notifications from the slider in the Screen
Area box and redraws an image of the computer screen each
time the thumb moves to preview the effect the new setting will
have on the desktop.

Programming Windows With MFC

 1009

CSliderCtrl provides more than two dozen functions you can
use to operate on slider controls. Other useful member
functions include SetPageSize, which sets the number of units
the thumb moves when the channel is clicked with the mouse or
when Page Up or Page Down is pressed; GetTic, GetTicPos,
GetTicArray, and GetNumTicks, which return information
about tick marks; and ClearSel, which removes a selection
range. See the MFC documentation for more information
regarding these and other CSliderCtrl function members.

16.2.2. Spin Button Controls

Spin button controls, which are also known as up-down
controls, are small windows containing arrows that point up
and down or left and right. Like scroll bars and sliders, spin
buttons maintain their own ranges and positions. Clicking the
up or right arrow increments the current position, and clicking
the down or left arrow decrements it. Spin button controls send
their parents notification messages before and after each
positional change, but often those notifications are ignored
because spin buttons are capable of doing some extraordinarily
useful things on their own.

You can choose from the styles shown in the following table
when you create a spin button control. UDS_SETBUDDYINT
creates a spin button control that automatically updates an
integer value displayed in a "buddy" control, which is typically
an edit control or a static text control. When a
UDS_SETBUDDYINT-style spin button control undergoes a
positional change, it converts the integer describing the new
position into a text string (think _itoa) and
uses ::SetWindowText to display the string in its buddy.
UDS_SETBUDDYINT makes it trivial to add a set of arrows to
an edit control so that the user can enter a number by either
typing it at the keyboard or dialing it in with the mouse.

Spin Button Control Styles

Style Description

UDS_HORZ Orients the arrows horizontally rather than vertically.

UDS_WRAP Causes the position to wrap around if it's
decremented or incremented beyond the minimum or
maximum.

Programming Windows With MFC

 1010

UDS_ARROWKEYS Adds a keyboard interface. If a spin button control
with this style has the input focus, the up and down
arrow keys increment and decrement its position.

UDS_NOTHOUSANDS Removes thousands separators so that 1,234,567 is
displayed as 1234567.

UDS_SETBUDDYINT Creates a spin button control that updates the text of
a designated buddy control when the position is
incremented or decremented.

UDS_AUTOBUDDY Selects the previous control in the z-order as the spin
button's buddy.

UDS_ALIGNRIGHT Attaches the spin button control to the right inside
border of its buddy.

UDS_ALIGNLEFT Attaches the spin button control to the left inside
border of its buddy.

You can connect a spin button control to its buddy in two ways.
You can explicitly link the two by calling
CSpinButtonCtrl::SetBuddy with a CWnd pointer identifying
the buddy control, or you can specify UDS_AUTOBUDDY
when creating the spin button control, which automatically
selects the previous control in the z-order as the spin button's
buddy. In a dialog template, the statements

EDITTEXT IDC_EDIT, 60, 80, 40, 14, ES_AUTOHSCROLL
CONTROL "", IDC_SPIN, "msctls_updown32", UDS_SETBUDDYINT ¦
 UDS_AUTOBUDDY ¦ UDS_ALIGNRIGHT, 0, 0, 0, 0

create a single-line edit control and attach a spin button control
to its right inside border, as shown in Figure 16-4. The edit
control is shrunk by the width of the spin button control, and
the spin button's height is adjusted to match the height of its
buddy. Consequently, the edit control and the spin button
control together occupy the same amount of space as the
original edit control. Information regarding a spin button
control's size and position is ignored when UDS_ALIGNLEFT
or UDS_ALIGNRIGHT is specified.

Figure 16-4. A spin button control attached to an edit control.

By default, a UDS_SETBUDDYINT spin button control
displays numbers in decimal format and inserts a thousands

Programming Windows With MFC

 1011

separator every third digit. You can configure the control to
display hexadecimal numbers instead with
CSpinButtonCtrl::SetBase:

m_wndSpinButton.SetBase (16);

Hex numbers are preceded by 0x characters so that it's obvious
they are hexadecimal. Calling SetBase with a 10 switches
output back to decimal format. You can remove separators
from decimal numbers by specifying UDS_NOTHOUSANDS
when you create the control; thousands separators are omitted
from hex numbers by default.

You set a spin button control's range and position with
CSpinButtonCtrl::SetRange and CSpinButtonCtrl::SetPos.
Valid minimums and maximums range from 32,767 through
32,767, but the difference between the low and high ends of the
range can't exceed 32,767. It's legal to specify a maximum
that's less than the minimum. When you do, the actions of the
arrows are reversed. On systems with Internet Explorer 4.0 or
later installed, spin button controls support 32-bit ranges whose
minimums and maximums can be set and retrieved with the
aptly named CSliderCtrl functions SetRange32 and
GetRange32.

Each discrete click of an arrow in a spin button control (or
press of an arrow key if the control's style includes
UDS_ARROWKEYS) increments or decrements the position
by 1. If you press and hold a button, the increments change to
±5 after 2 seconds and ±20 after 5 seconds. You can alter the
number of seconds that elapse before the incremental value
changes and also control the magnitude of the changes with
CSpinButtonCtrl::SetAccel. SetAccel accepts two parameters: a
pointer to an array of UDACCEL structures and the number of
structures in the array. The following statements configure a
spin button control to increment or decrement the position by 1
for the first 2 seconds, 2 for the next 2 seconds, 10 for the next
2 seconds, and 100 for the remainder of the time a button is
held down:

UDACCEL uda[4];
uda[0].nSec = 0;
uda[0].nInc = 1;

Programming Windows With MFC

 1012

uda[1].nSec = 2;
uda[1].nInc = 2;
uda[2].nSec = 4;
uda[2].nInc = 10;
uda[3].nSec = 8;
uda[3].nInc = 100;
pSpinButton->SetAccel (4, uda);

Another use for SetAccel is to specify incremental values other
than 1. If you'd like each button click to increment or
decrement the position by 5, call SetAccel like this:

UDACCEL uda;
uda.nSec = 0;
uda.nInc = 5;
pSpinButton->SetAccel (1, &uda);

You can retrieve accelerator values by passing the address of an
array of UDACCEL structures to CSpinButton::GetAccel. But
there's a trick: How do you know how many structures to
allocate space for? This fact wasn't documented prior to Visual
C++ 6, but calling GetAccel as shown here returns the number
of UDACCEL structures in the accelerator array:

UINT nCount = pSpinButton->GetAccel (0, NULL);

Once the count is known, you can allocate a buffer for the array
and retrieve it like this:

UDACCEL* puda = new UDACCEL[nCount];
pSpinButton->GetAccel (nCount, puda);
// Do something with the array.
delete[] puda;

See? Nothing to it when you know the secret.

Before its position is incremented or decremented, a spin button
control sends its parent a WM_NOTIFY message with a
notification code equal to UDN_DELTAPOS and an lParam
pointing to an NM_UPDOWN structure. Inside the structure
are integers specifying the current position (iPos) and the
amount by which the position is about to change (iDelta). A
UDN_DELTAPOS handler must set *pResult to FALSE to

Programming Windows With MFC

 1013

allow the change to occur. To purposely prevent an increment
or decrement operation being carried out, have the handler set
*pResult to TRUE, and then return TRUE from OnNotify.
UDN_DELTAPOS notifications are followed by
WM_HSCROLL or WM_VSCROLL messages (depending on
whether the spin button is oriented horizontally or vertically)
reporting the new position. Clicking the down arrow when the
control's current position is 8 produces the following sequence
of messages.

Message Notification Code Parameters

WM_NOTIFY UDN_DELTAPOS iPos=8, iDelta=-1

WM_VSCROLL SB_THUMBPOSITION nPos=7

WM_VSCROLL SB_ENDSCROLL nPos=7

If the button is held down for more than a half second or so,
several UDN_DELTAPOS and SB_THUMBPOSITION
notifications are sent in sequence.

16.2.3. ToolTip Controls

A ToolTip is a miniature help-text window that appears when
the cursor pauses over a "tool" such as a button on a toolbar or
a control in a dialog box. A ToolTip control is a control that
monitors mouse movements and automatically displays a
ToolTip when the cursor remains motionless over a tool for a
predetermined period of time. MFC provides a convenient C++
interface to ToolTip controls through the CToolTipCtrl class.
With CToolTipCtrl to help out, it's relatively easy to add
ToolTips to controls in dialog boxes and implement other forms
of interactive help. You simply create a ToolTip control and
register the tools for which you'd like ToolTips displayed and
the text of the ToolTips. For the most part, the control does the
rest.

CToolTipCtrl::Create creates a ToolTip control. (ToolTip
controls can also be created from dialog templates, but the more
common approach is to add a CToolTipCtrl data member to the
dialog class and call Create from OnInitDialog instead.) If
m_ctlTT is a CToolTipCtrl data member of a window class, the
statement

Programming Windows With MFC

 1014

m_ctlTT.Create (this);

creates a ToolTip control. CToolTipCtrl::Create accepts an
optional second parameter specifying the control's style. The
only two styles supported are TTS_ALWAYSTIP and
TTS_NOPREFIX. By default, ToolTips appear over active
windows only. A TTS_ALWAYSTIP-style ToolTip control
displays ToolTips over both active and inactive windows.
TTS_NOPREFIX tells the control not to strip ampersands from
ToolTip text. The default behavior is to ignore ampersands so
that you can use the same text strings for menus and ToolTips.

After you create a ToolTip control, the next step is to add tools
to it. A tool is either another window—usually a child window
control that belongs to the ToolTip control's parent—or a
rectangular area of a window. CToolTipCtrl::AddTool registers
a tool and the ToolTip text that goes with it. One ToolTip
control can have any number of tools associated with it. The
statement

m_ctlTT.AddTool (pWnd, _T ("This is a window"), NULL, 0);

assigns the ToolTip text "This is a window" to the window
identified by pWnd. The second parameter passed to AddTool
can be a pointer to a text string or the ID of a string resource,
whichever you prefer. Similarly, the statement

m_ctlTT.AddTool (pWnd, _T ("This is a rectangle"),
 CRect (32, 32, 64, 64), IDT_RECTANGLE);

creates a tool from the specified rectangle in pWnd's client area.
IDT_RECTANGLE is a nonzero integer that identifies the
rectangle and is analogous to a child window ID identifying a
control.

So far, so good. There's just one problem. A ToolTip control
has to be able to see the mouse messages a tool receives so that
it can monitor mouse events and know when to display a
ToolTip, but Windows sends mouse messages to the window
underneath the cursor. In the examples above, it's up to you to
forward mouse messages going to pWnd to the ToolTip control.
If pWnd corresponds to a top-level window or a dialog box,

Programming Windows With MFC

 1015

forwarding mouse messages is no big deal because you can
map the relevant mouse messages to handlers in the window
class or dialog class and relay them to the ToolTip control with
CToolTipCtrl::RelayEvent. But if pWnd points to a child
window control or any window other than your own, you have
to resort to window subclassing or other devices in order to see
mouse messages going to the window and relay them to the
ToolTip control. Late in the beta cycle of Windows 95, the
operating system architects recognized this problem and gave
ToolTip controls the ability to do their own subclassing.
Unfortunately, this feature has yet to be folded into
CToolTipCtrl. So to make ToolTips truly easy to use, you must
customize the CToolTipCtrl class by adding some smarts of
your own.

Whenever I use a ToolTip control in an MFC application, I first
derive a class from CToolTipCtrl named CMyToolTipCtrl and
add a pair of member functions that take advantage of the fact
that a ToolTip control can do its own subclassing. Here's what
the derived class looks like:

class CMyToolTipCtrl : public CToolTipCtrl
{
public:
 BOOL AddWindowTool (CWnd* pWnd, LPCTSTR pszText);
 BOOL AddRectTool (CWnd* pWnd, LPCTSTR pszText,
 LPCRECT pRect, UINT nIDTool);
};

BOOL CMyToolTipCtrl::AddWindowTool (CWnd* pWnd,
LPCTSTR pszText)
{
 TOOLINFO ti;
 ti.cbSize = sizeof (TOOLINFO);
 ti.uFlags = TTF_IDISHWND ¦ TTF_SUBCLASS;
 ti.hwnd = pWnd->GetParent ()->GetSafeHwnd ();
 ti.uId = (UINT) pWnd->GetSafeHwnd ();
 ti.hinst = AfxGetInstanceHandle ();
 ti.lpszText = (LPTSTR) pszText;

 return (BOOL) SendMessage (TTM_ADDTOOL, 0, (LPARAM)
&ti);
}

BOOL CMyToolTipCtrl::AddRectTool (CWnd* pWnd, LPCTSTR
pszText,

Programming Windows With MFC

 1016

 LPCRECT lpRect, UINT nIDTool)
{
 TOOLINFO ti;
 ti.cbSize = sizeof (TOOLINFO);
 ti.uFlags = TTF_SUBCLASS;
 ti.hwnd = pWnd->GetSafeHwnd ();
 ti.uId = nIDTool;
 ti.hinst = AfxGetInstanceHandle ();
 ti.lpszText = (LPTSTR) pszText;
 ::CopyRect (&ti.rect, lpRect);

 return (BOOL) SendMessage (TTM_ADDTOOL, 0, (LPARAM)
&ti);
}

With this infrastructure in place, creating a tool from a child
window control—subclassing and all—requires just one simple
statement:

m_ctlTT.AddWindowTool (pWnd, _T ("This is a window"));

Creating a tool from a rectangle in a window is equally simple:

m_ctlTT.AddRectTool (pWnd, _T ("This is a rectangle"),
 CRect (32, 32, 64, 64), IDT_RECTANGLE);

The pWnd parameter passed to AddWindowTool identifies the
window the ToolTip will be applied to. The pWnd parameter
passed to AddRectTool references the window whose client
area contains the rectangle referenced in the third parameter.
Because of the TTF_SUBCLASS flag passed in the uFlags
field of the TOOLINFO structure, the ToolTip control will do
its own window subclassing and mouse messages don't have to
be relayed manually.

16.2.3.1. Dynamic ToolTips

If you specify LPSTR_TEXTCALLBACK for the ToolTip text
when you call AddTool, AddWindowTool, or AddRectTool, the
ToolTip control will send a notification to its parent requesting
a text string before displaying a ToolTip. You can use
LPSTR_TEXTCALLBACK to create dynamic ToolTips whose
text varies from one invocation to the next. Text callbacks
come in the form of WM_NOTIFY messages with a

Programming Windows With MFC

 1017

notification code equal to TTN_NEEDTEXT and lParam
pointing to a structure of type TOOLTIPTEXT.
TOOLTIPTEXT is defined as follows:

typedef struct {
 NMHDR hdr;
 LPTSTR lpszText;
 char szText[80];
 HINSTANCE hinst;
 UINT uFlags;
} TOOLTIPTEXT;

A ToolTip control's parent responds to TTN_NEEDTEXT
notifications in one of three ways: by copying the address of a
text string to the TOOLTIPTEXT structure's lpszText field; by
copying the text (as many as 80 characters, including the zero
terminator) directly to the structure's szText field; or by copying
a string resource ID to lpszText and copying the application's
instance handle, which an MFC application can obtain with
AfxGetInstanceHandle, to hinst. The idFrom field of the
NMHDR structure that's nested inside the TOOLTIPTEXT
structure contains either a window handle or an
application-defined tool ID identifying the tool for which text is
needed.

The following example demonstrates how to create a dynamic
ToolTip for a rectangular region of a dialog box. The
rectangle's application-defined tool ID is IDT_RECTANGLE,
and the text displayed in the ToolTip window is the current
time:

// In the message map
ON_NOTIFY (TTN_NEEDTEXT, NULL, OnNeedText)

BOOL CMyDialog::OnInitDialog ()
{
 m_ctlTT.Create (this);
 m_ctlTT.AddRectTool (this, LPSTR_TEXTCALLBACK,
 CRect (0, 0, 32, 32), IDT_RECTANGLE);
 return TRUE;
}

void CMyDialog::OnNeedText (NMHDR* pnmh, LRESULT*
pResult)
{

Programming Windows With MFC

 1018

 TOOLTIPTEXT* pttt = (TOOLTIPTEXT*) pnmh;
 if (pttt->hdr.idFrom == IDT_RECTANGLE) {
 CString string;
 CTime time = CTime::GetCurrentTime ();
 string.Format (_T ("%0.2d:%0.2d:%0.2d"), time.GetHour ()
% 12,
 time.GetMinute (), time.GetSecond ());
 ::lstrcpy (pttt->szText, (LPCTSTR) string);
 }
}

Notice the NULL child window ID specified in the second
parameter to the ON_NOTIFY macro in CMyDialog's message
map. This parameter must be NULL because
CToolTipCtrl::Create registers a NULL child window ID for
ToolTip controls.

MFC's CToolTipCtrl class includes an assortment of member
functions you can use to operate on ToolTip controls. For
example, you can use GetText to retrieve the text assigned to a
tool, UpdateTipText to change ToolTip text, Activate to activate
and deactivate a ToolTip control, and SetDelayTime to change
the delay time—the number of milliseconds the cursor must
remain motionless before a ToolTip is displayed. The default
delay time is 500 milliseconds.

16.2.4. The GridDemo Application

The GridDemo application, whose source code appears in
Figure 16-6, provides a practical demonstration of slider
controls, spin button controls, and ToolTip controls. GridDemo
divides a frame window's client area into a grid by drawing
intersecting horizontal and vertical lines. By default, the grid
contains 8 rows and 8 columns and grid lines are drawn in a
medium shade of gray. You can vary the number of rows and
columns as well as the darkness of the grid lines by choosing
Grid Settings from the Options menu and entering the new
settings in the dialog box shown in Figure 16-5. The slider
control selects the line weight, and the values entered into the
edit controls control the numbers of rows and columns. Valid
values range from 2 through 64; you can type in the numbers or
use the arrow buttons. When the cursor pauses over the slider
or either of the edit controls, a ToolTip window appears with a
short description of the tool underneath.

Programming Windows With MFC

 1019

Figure 16-5. GridDemo's Settings dialog box with a ToolTip displayed.

Figure 16-6. The GridDemo application.

ChildView.h
// ChildView.h : interface of the CChildView class
//
///

#if !defined(

AFX_CHILDVIEW_H__A4559BAA_ABE5_11D2_8E53_006008A82731__INCL
UDED_)

#define
AFX_CHILDVIEW_H__A4559BAA_ABE5_11D2_8E53_006008A82731__INCL
UDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CChildView window

class CChildView : public CWnd
{
// Construction
public:
 CChildView();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildView)

Programming Windows With MFC

 1020

 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildView();

 // Generated message map functions
protected:
 int m_nWeight;
 int m_cy;
 int m_cx;
 //{{AFX_MSG(CChildView)
 afx_msg void OnPaint();
 afx_msg void OnOptionsGridSettings();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_CHILDVIEW_H__A4559BAA_ABE5_11D2_8E53_006008A82731__INCL
UDED_)

ChildView.cpp
// ChildView.cpp : implementation of the CChildView class
//

#include "stdafx.h"
#include "GridDemo.h"
#include "ChildView.h"
#include "SettingsDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CChildView

CChildView::CChildView()
{
 m_cx = 8;
 m_cy = 8;
 m_nWeight = 4;
}

Programming Windows With MFC

 1021

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd)
 //{{AFX_MSG_MAP(CChildView)
 ON_WM_PAINT()
 ON_COMMAND(ID_OPTIONS_GRID_SETTINGS,
OnOptionsGridSettings)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
 return FALSE;

 cs.dwExStyle |= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass =
AfxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,
 ::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1), NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CRect rect;
 GetClientRect (&rect);

 int nShade = m_nWeight * 32;
 if (nShade != 0)
 nShade- -;

 CPaintDC dc (this);
 CPen pen (PS_SOLID, 1, RGB (nShade, nShade, nShade));
 CPen* pOldPen = dc.SelectObject (&pen);

 int x;
 for (int i=1; i<m_cx; i++) {
 x = (rect.Width () * i) / m_cx;
 dc.MoveTo (x, 0);
 dc.LineTo (x, rect.Height ());
 }

 int y;
 for (i=1; i<m_cy; i++) {
 y = (rect.Height () * i) / m_cy;
 dc.MoveTo (0, y);
 dc.LineTo (rect.Width (), y);

Programming Windows With MFC

 1022

 }

 dc.SelectObject (pOldPen);
}

void CChildView::OnOptionsGridSettings()
{
 CSettingsDialog dlg;

 dlg.m_cx = m_cx;
 dlg.m_cy = m_cy;
 dlg.m_nWeight = m_nWeight;

 if (dlg.DoModal () == IDOK) {
 m_cx = dlg.m_cx;
 m_cy = dlg.m_cy;
 m_nWeight = dlg.m_nWeight;
 Invalidate ();
 }
}

SettingsDialog.h
#if !defined(

AFX_SETTINGSDIALOG_H__A4559BB0_ABE5_11D2_8E53_006008A82731__INCLUDED_
)
#define

AFX_SETTINGSDIALOG_H__A4559BB0_ABE5_11D2_8E53_006008A82731__INCLUDED_

#include "MyToolTipCtrl.h" // Added by ClassView
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// SettingsDialog.h : header file
//

///
// CSettingsDialog dialog

class CSettingsDialog : public CDialog
{
// Construction
public:
 int m_nWeight;
 CSettingsDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CSettingsDialog)
 enum { IDD = IDD_SETTINGDLG };
 CSpinButtonCtrl m_wndSpinVert;
 CSpinButtonCtrl m_wndSpinHorz;
 CSliderCtrl m_wndSlider;
 int m_cx;
 int m_cy;
 //}}AFX_DATA

Programming Windows With MFC

 1023

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSettingsDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 CMyToolTipCtrl m_ctlTT;
 // Generated message map functions
 //{{AFX_MSG(CSettingsDialog)
 virtual BOOL OnInitDialog();
 virtual void OnOK();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_SETTINGSDIALOG_H__A4559BB0_ABE5_11D2_8E53_006008A82731__INCLUDED_
)

SettingsDialog.cpp
// SettingsDialog.cpp : implementation file
//

#include "stdafx.h"
#include "GridDemo.h"
#include "MyToolTipCtrl.h"
#include "SettingsDialog.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSettingsDialog dialog

CSettingsDialog::CSettingsDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CSettingsDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CSettingsDialog)
 m_cx = 0;
 m_cy = 0;
 //}}AFX_DATA_INIT
}

Programming Windows With MFC

 1024

void CSettingsDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CSettingsDialog)
 DDX_Control(pDX, IDC_SPINVERT, m_wndSpinVert);
 DDX_Control(pDX, IDC_SPINHORZ, m_wndSpinHorz);
 DDX_Control(pDX, IDC_SLIDER, m_wndSlider);
 DDX_Text(pDX, IDC_EDITHORZ, m_cx);
 DDX_Text(pDX, IDC_EDITVERT, m_cy);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CSettingsDialog, CDialog)
 //{{AFX_MSG_MAP(CSettingsDialog)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CSettingsDialog message handlers

BOOL CSettingsDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 //
 // Initialize the slider control.
 //
 m_wndSlider.SetRange (0, 8);
 m_wndSlider.SetPos (m_nWeight);

 //
 // Initialize the spin button controls.
 //
 m_wndSpinHorz.SetRange (2, 64);
 m_wndSpinVert.SetRange (2, 64);

 //
 // Create and initialize a tooltip control.
 //
 m_ctlTT.Create (this);
 m_ctlTT.AddWindowTool (GetDlgItem (IDC_SLIDER),
 MAKEINTRESOURCE (IDS_SLIDER));
 m_ctlTT.AddWindowTool (GetDlgItem (IDC_EDITHORZ),
 MAKEINTRESOURCE (IDS_EDITHORZ));
 m_ctlTT.AddWindowTool (GetDlgItem (IDC_EDITVERT),
 MAKEINTRESOURCE (IDS_EDITVERT));
 return TRUE;
}

void CSettingsDialog::OnOK()
{
 //
 // Read the slider control's thumb position
 // before dismissing the dialog.
 //
 m_nWeight = m_wndSlider.GetPos ();

Programming Windows With MFC

 1025

 CDialog::OnOK();
}

MyToolTipCtrl
#if !defined(

AFX_MYTOOLTIPCTRL_H__A4559BB1_ABE5_11D2_8E53_006008A82731__INCLUDED_)
#define

AFX_MYTOOLTIPCTRL_H__A4559BB1_ABE5_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// MyToolTipCtrl.h : header file
//

///
// CMyToolTipCtrl window

class CMyToolTipCtrl : public CToolTipCtrl
{
// Construction
public:
 CMyToolTipCtrl();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMyToolTipCtrl)
 //}}AFX_VIRTUAL

// Implementation
public:
 BOOL AddRectTool (CWnd* pWnd, LPCTSTR pszText, LPCRECT pRect,
 UINT nIDTool);
 BOOL AddWindowTool (CWnd* pWnd, LPCTSTR pszText);
 virtual ~CMyToolTipCtrl();

 // Generated message map functions
protected:
 //{{AFX_MSG(CMyToolTipCtrl)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}

Programming Windows With MFC

 1026

// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_MYTOOLTIPCTRL_H__A4559BB1_ABE5_11D2_8E53_006008A82731__INCLUDED_)

MyToolTipCtrl.cpp
// MyToolTipCtrl.cpp : implementation file
//

#include "stdafx.h"
#include "GridDemo.h"
#include "MyToolTipCtrl.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMyToolTipCtrl

CMyToolTipCtrl::CMyToolTipCtrl()
{
}

CMyToolTipCtrl::~CMyToolTipCtrl()
{
}

BEGIN_MESSAGE_MAP(CMyToolTipCtrl, CToolTipCtrl)
 //{{AFX_MSG_MAP(CMyToolTipCtrl)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CMyToolTipCtrl message handlers

BOOL CMyToolTipCtrl::AddWindowTool(CWnd *pWnd, LPCTSTR pszText)
{
 TOOLINFO ti;
 ti.cbSize = sizeof (TOOLINFO);
 ti.uFlags = TTF_IDISHWND | TTF_SUBCLASS;
 ti.hwnd = pWnd->GetParent ()->GetSafeHwnd ();
 ti.uId = (UINT) pWnd->GetSafeHwnd ();
 ti.hinst = AfxGetInstanceHandle ();
 ti.lpszText = (LPTSTR) pszText;
 return (BOOL) SendMessage (TTM_ADDTOOL, 0, (LPARAM) &ti);
}

Programming Windows With MFC

 1027

BOOL CMyToolTipCtrl::AddRectTool(CWnd *pWnd, LPCTSTR pszText,
 LPCRECT pRect, UINT nIDTool)
{
 TOOLINFO ti;
 ti.cbSize = sizeof (TOOLINFO);
 ti.uFlags = TTF_SUBCLASS;
 ti.hwnd = pWnd->GetSafeHwnd ();
 ti.uId = nIDTool;
 ti.hinst = AfxGetInstanceHandle ();
 ti.lpszText = (LPTSTR) pszText;
 ::CopyRect (&ti.rect, pRect);

 return (BOOL) SendMessage (TTM_ADDTOOL, 0, (LPARAM) &ti);
}

The ToolTip control is an instance of CMyToolTipCtrl. Rather
than hardcode the ToolTip text into the calls to
AddWindowTool, I elected to put the text in the application's
string table. String resources are identified by their resource
IDs. In the calls to AddWindowTool, IDS_SLIDER,
IDS_EDITHORZ, and IDS_EDITVERT are the resource IDs:

m_ctlTT.AddWindowTool (GetDlgItem (IDC_SLIDER),
 MAKEINTRESOURCE (IDS_SLIDER));
m_ctlTT.AddWindowTool (GetDlgItem (IDC_EDITHORZ),
 MAKEINTRESOURCE (IDS_EDITHORZ));
m_ctlTT.AddWindowTool (GetDlgItem (IDC_EDITVERT),
 MAKEINTRESOURCE (IDS_EDITVERT));

You can see the text associated with these resource IDs by
opening the project, switching to ResourceView, and viewing
the string table.

The slider and spin button controls are part of the dialog
template and are programmed using CSliderCtrl and
CSpinButtonCtrl member functions. The slider's range and
initial position are set in OnInitDialog, and the final thumb
position is retrieved in OnOK. The spin buttons' ranges are also
initialized in OnInitDialog, but their positions don't have to be
explicitly set or retrieved because the edit controls that the spin
buttons are buddied to are served by Dialog Data Exchange
(DDX) and Dialog Data Validation (DDV) routines.

Speaking of DDX and DDV: With few exceptions, MFC
doesn't provide DDX routines to move data between common
controls and dialog data members or DDV routines to validate

Programming Windows With MFC

 1028

input to common controls. When you use only classic controls
in a dialog, you frequently don't have to override OnInitDialog
and OnOK because you (or ClassWizard) can populate
DoDataExchange with statements that transfer data between
the dialog's member variables and its controls. When you use
common controls, however, it's up to you to initialize the
controls and perform data exchanges. That's why
CSettingsDialog::OnInitDialog contains these statements:

m_wndSlider.SetRange (0, 8);
m_wndSlider.SetPos (m_nWeight);

m_wndSpinHorz.SetRange (2, 64);
m_wndSpinVert.SetRange (2, 64);

And CSettingsDialog::OnOK contains this one:

m_nWeight = m_wndSlider.GetPos ();

These statements do what DDX would have done had it been
supported. (Interestingly enough, MFC 6 includes a
DDX_Slider function that performs DDX on slider controls, but
it's fatally flawed because it initializes a slider with a position
but not a range. Try it and you'll see what I mean.)
m_wndSlider is a CSliderCtrl member variable that I added to
the dialog class with ClassWizard. m_wndSpinHorz and
m_wndSpinVert are CSpinButtonCtrl member variables; I
added them with ClassWizard as well. All three are linked to
controls in the dialog via DDX_Control statements in
DoDataExchange.

Because GridDemo doesn't create a logical palette with shades
of gray representing the different line weight settings, the full
range of line weights isn't visible on 16-color and 256-color
video adapters. As an exercise, you might try adding palette
support by adding a CPalette data member to the frame
window and using PALETTERGB or PALETTEINDEX colors
to draw the grid lines. Refer to Chapter 15 for more information
on GDI palettes and MFC's CPalette class.

16.3. Image Lists and ComboBoxEx Controls

Programming Windows With MFC

 1029

Chapter 10's DriveTree and WinDir programs used image lists
to provide iconlike images to a tree view and a list view. At the
time, I didn't say much about image lists other than that they
hold collections of bitmapped images and that MFC wraps
them with the class CImageList. As it turns out, image lists are
extraordinarily useful not only for supplying images to other
controls, but also for blitting bitmaps with special effects such
as transparency and blending. We'll examine these and other
features of image lists in the next section.

When Internet Explorer 3.0 or later is installed, it replaces
Comctl32.dll with a newer version that includes enhanced
versions of the existing controls as well as several new
common control types. One of those new control types is the
extended combo box control, better known as the
ComboBoxEx control. A ComboBoxEx control differs from a
standard combo box control in several important respects, most
notably in the fact that it can display images next to each item.
Not surprisingly, the images come from an image list. You can
combine image lists and ComboBoxEx controls to create
drop-down lists containing both graphics and text.

In the sections that follow, I'll use a broad brush to paint a
picture of image lists and ComboBoxEx controls and introduce
the fundamental principles involved in programming them.
Then you'll see just how powerful image lists and
ComboBoxEx controls can be by developing a combo box that
depicts path names visually.

16.3.1. Image Lists

An image list is a collection of identically sized bitmap images
joined together to form one logical unit. MFC's CImageList
class provides functions for creating image lists, adding and
deleting images, drawing images on the screen, writing image
lists to an archive and reading them back, and more. Image lists
are useful in and of themselves because many of the functions
that operate on them have no direct counterparts elsewhere in
Windows. But image lists were added to the operating system
in the first place so that bitmaps could be grouped and passed
as a unit to other common controls. When you supply images to
a tree view control, for example, you don't pass it an array of
CBitmaps; you pass it a handle to an image list (an

Programming Windows With MFC

 1030

HIMAGELIST) or a pointer to a CImageList object. Individual
images are then referenced with 0-based indexes.

The best way to picture an image list is to think of a filmstrip
with images laid horizontally from end to end. The leftmost
image is image number 0, the one to its right is image number 1,
and so on. The images can be any height and width, but they
must all be the same height and width.

MFC provides three ways to create an image list. You can
create an empty image list and add images to it with
CImageList::Add; you can create an initialized image list from
an existing bitmap containing an array of images; or you can
create an initialized image list by merging images from existing
image lists. CImageList::Create is overloaded to support all
three creation methods. The second (and probably the most
common) of these methods is illustrated in the following
example. Suppose IDB_BITMAP is the resource ID of a
bitmap that contains five images, each measuring 18 pixels
wide and 16 pixels high. The bitmap itself is 90 pixels wide (5
times 18) and 16 pixels high. These statements create an image
list from the bitmap:

CImageList il;
il.Create (IDB_BITMAP, 18, 1, CLR_NONE);

The first parameter passed to Create is the bitmap's resource ID.
You can also pass a string resource ID for this parameter. The
second parameter is the width, in pixels, of the individual
images. Windows determines how many images to add to the
list by dividing the bitmap width by the image width. The third
parameter is the grow size. Image lists are sized dynamically
just as arrays created from MFC collection classes are, and the
grow size tells the image list how many additional images to
make room for when more memory must be allocated to
accommodate new images. The final
parameter—CLR_NONE—creates an unmasked image list.
Unmasked images are ordinary bitmaps that are blitted directly
to the destination when they're drawn on the screen.

Passing CImageList::Create a COLORREF value instead of
CLR_NONE creates a masked image list. In addition to storing
color information for a masked image, Windows also stores a

Programming Windows With MFC

 1031

monochrome bit mask that allows it to distinguish between
foreground and background pixels. The COLORREF value
passed to CImageList::Create specifies the background color,
and any pixel set to that color is assumed to be a background
pixel. What's cool about masked images is the fact that you can
call CImageList::SetBkColor before drawing from an image list
and set the background color to any color you like. The
background color in the original bitmap might be magenta, but
if you set the background color to red and draw the image, all
the magenta pixels will come out red. What's really cool is that
you can pass CImageList::SetBkColor a CLR_NONE
parameter and background pixels won't be drawn at all.
Consequently, image lists provide a simple means of drawing
bitmaps with transparent pixels. Remember the
DrawTransparent function we developed in Chapter 15 for
drawing nonrectangular bitmaps? An image list lets you do the
same thing with less code. The image list method is faster, too,
because the masks don't have to be generated anew each time
the image is blitted to the screen.

CImageList::Draw draws images on the screen. The following
statement draws the third image in the list (image number 2) to
the screen DC referenced by the CDC pointer pDC:

il.Draw (pDC, 2, point, ILD_NORMAL);

point is a POINT structure containing the x and y coordinates of
the point in the destination DC where the upper left corner of
the image will be drawn. ILD_NORMAL is a flag that tells the
Draw function to draw a masked image using the current
background color. (This flag has no effect on unmasked
images.) If you'd like background pixels to be transparent
regardless of what the current background color happens to be,
you can use an ILD_TRANSPARENT flag instead:

il.Draw (pDC, 2, point, ILD_TRANSPARENT);

For some truly interesting effects, try drawing a masked image
with an ILD_BLEND25 or ILD_BLEND50 flag to blend in the
system highlight color (COLOR_HIGHLIGHT).
CImageList::Draw also accepts ILD_SELECTED and
ILD_FOCUS flags, but they're nothing more than

Programming Windows With MFC

 1032

ILD_BLEND50 and ILD_BLEND25 in disguise. To see
blending at work, select an icon on the Windows desktop. To
show the icon in a selected state, the system dithers the icon
with the system highlight color by drawing it with an
ILD_BLEND50 flag.

An aside: Drawing with an ILD_TRANSPARENT flag or with
the background color set to CLR_NONE is always a little
slower than drawing an unmasked image. If an image contains
transparent pixels but is being blitted to a solid background, use
CImageList::SetBkColor to set the image list's background
color to the color of the solid background and then call
CImageList::Draw with an ILD_NORMAL flag. You'll
improve performance and still get those transparent pixels you
wanted.

16.3.2. ComboBoxEx Controls

ComboBoxEx controls exist to simplify the task of including
images as well as text in combo boxes. Assuming that
m_wndCBEx is a ComboBoxEx data member of a dialog class,
that m_wndCBEx is mapped to a ComboBoxEx control in the
dialog, and that m_il is an instance of CImageList, the
following statements initialize the control with items labeled
"Item 1" through "Item 5." Next to each item appears a folder
image extracted from the image list. The image list, in turn,
acquires the image from the bitmap resource IDB_IMAGE:

m_il.Create (IDB_IMAGE, 16, 1, RGB (255, 0, 255));
m_wndCBEx.SetImageList (&m_il);

for (int i=0; i<5; i++) {
 CString string;
 string.Format (_T ("Item %d"), i);

 COMBOBOXEXITEM cbei;
 cbei.mask = CBEIF_IMAGE ¦ CBEIF_SELECTEDIMAGE ¦
CBEIF_TEXT;
 cbei.iItem = i;
 cbei.pszText = (LPTSTR) (LPCTSTR) string;
 cbei.iImage = 0;
 cbei.iSelectedImage = 0;

 m_wndCBEx.InsertItem (&cbei);
}

Programming Windows With MFC

 1033

The key functions used in this sample include
CComboBoxEx::SetImageList, which associates an image list
with a ComboBoxEx control, and CComboBoxEx::InsertItem,
which adds an item to the control. InsertItem accepts a pointer
to a COMBOBOXEXITEM structure containing pertinent
information about the item, including the item's text and the
0-based indexes of the images (if any) associated with the item.
iImage identifies the image displayed next to the item when the
item isn't selected, and iSelectedImage identifies the image
that's displayed when the item is selected. Figure 16-7 shows
the resulting control with its drop-down list displayed.

Figure 16-7. A ComboBoxEx control containing both text and images.

You can indent an item in a ComboBoxEx control by
specifying a nonzero number of "spaces" in
COMBOBOXEXITEM's iIndent field. Each space equals 10
pixels. The following example initializes a ComboBoxEx
control that's identical to the one in the preceding example
except for the fact that each successive item is indented one
space more than the previous item:

m_il.Create (IDB_IMAGE, 16, 1, RGB (255, 0, 255));
m_wndCBEx.SetImageList (&m_il);

for (int i=0; i<5; i++) {
 CString string;
 string.Format (_T ("Item %d"), i);

 COMBOBOXEXITEM cbei;
 cbei.mask = CBEIF_IMAGE ¦ CBEIF_SELECTEDIMAGE ¦
CBEIF_TEXT ¦
 CBEIF_INDENT;
 cbei.iItem = i;
 cbei.pszText = (LPTSTR) (LPCTSTR) string;
 cbei.iImage = 0;
 cbei.iSelectedImage = 0;
 cbei.iIndent = i;

Programming Windows With MFC

 1034

 m_wndCBEx.InsertItem (&cbei);
}

The result is shown in Figure 16-8. The ability to indent items
an arbitrary number of spaces comes in handy when you use a
ComboBoxEx control to display items that share a hierarchical
relationship, such as the names of the individual directories
comprising a path name.

Figure 16-8. A ComboBoxEx control containing indented items.

InsertItem is one of four CComboBoxEx member functions that
you can use to manipulate items in a ComboBoxEx control.
The others are DeleteItem, which removes an item; GetItem,
which copies the information about an item to a
COMBOBOXEXITEM structure; and SetItem, which modifies
an item using information supplied in a COMBOBOXEXITEM
structure.

CComboBoxEx has just a handful of member functions of its
own. Common operations such as selecting an item or
retrieving the index of the selected item are performed with
CComboBox member functions. Because CComboBoxEx
derives from CComboBox, you can call CComboBox functions
on a CComboBoxEx. For example, the statement

m_wndCBEx.SetCurSel (nIndex);

selects the item whose 0-based index is nIndex, and the
statement

int nIndex = m_wndCBEx.GetCurSel ();

sets nIndex equal to the index of the currently selected item.

Programming Windows With MFC

 1035

Like conventional combo boxes, ComboBoxEx controls come
in three varieties: simple, drop-down, and drop-down list. You
pick the type by choosing one of the three primary combo box
styles: CBS_SIMPLE, CBS_DROPDOWN, or
CBS_DROPDOWNLIST. Other CBS styles, such as
CBS_SORT, don't apply to ComboBoxEx controls and are
ignored if you use them. ComboBoxEx controls do support a
few styles of their own, however. These styles are known as
extended styles and can't be applied in a dialog template or a
Create statement; instead, you must apply them
programmatically with CComboBoxEx::SetExtendedStyle after
the control is created. The following table lists the extended
styles that are supported on all platforms. To configure the
control to treat text as case-sensitive, for example, you would
write:

m_wndCBEx.SetExtendedStyle (CBES_EX_CASESENSITIVE,
 CBES_EX_CASESENSITIVE);

The second parameter you pass to SetExtendedStyle specifies
the style or styles that you want to apply. The first parameter is
a style mask that you can use to prevent other styles from being
affected, too. Passing zero in parameter 1 effectively eliminates
the mask.

ComboBoxEx Control Extended Styles

Style Description

CBES_EX_CASESENSITIVE Makes string searches case-sensitive

CBES_EX_NOEDITIMAGE Suppresses item images

CBES_EX_NOEDITIMAGEINDENT Suppresses item images and
left-indents each item to remove the
space normally reserved for the item
image

CBES_EX_NOSIZELIMIT Allows the ComboBoxEx control's
height to be less than the height of the
combo box contained inside the control

A ComboBoxEx control sends the same CBN notifications to
its parent that a conventional combo box sends. It also supports
the notifications of its own that are listed in the following table.

ComboBoxEx Notifications

Programming Windows With MFC

 1036

Notification Sent When

CBEN_BEGINEDIT The user displays the control's drop-down list or
clicks the edit control to begin editing.

CBEN_ENDEDIT The user selects an item from the control's list box or
edits the control's text directly.

CBEN_DRAGBEGIN The user drags an item in the control to begin a
drag-and-drop operation.

CBEN_INSERTITEM An item is added to the control.

CBEN_DELETEITEM An item is removed from the control.

CBEN_GETDISPINFO The control needs additional information—a text
string, an image, an indentation level, or some
combination thereof—about an item before displaying
that item.

NM_SETCURSOR The control is about to set the cursor in response to a
WM_SETCURSOR message.

MFC applications use ON_NOTIFY macros to map CBEN
notifications to handling functions in the parent's window class.
CBEN_GETDISPINFO notifications are sent only if the
pszText field of a COMBOBOXEXITEM structure passed to
InsertItem contains LPSTR_TEXTCALLBACK, the iImage or
iSelectedImage field contains I_IMAGECALLBACK, or the
iIndent field contains I_INDENTCALLBACK. You can use
these special values to create dynamic ComboBoxEx controls
that supply text, images, and indentation levels on the fly rather
than at the time the items are inserted.

16.3.3. The PathList Application

PathList, shown in Figure 16-9, is a dialog-based MFC
application that uses a ComboBoxEx control to depict path
names. The control is an instance of CPathComboBox, which I
derived from CComboBoxEx. CPathComboBox has two public
member functions: SetPath and GetPath. When passed a fully
qualified path name, SetPath parses the path name and adds
indented items representing the individual directories that make
up the path. (SetPath checks the drive letter but doesn't validate
the remainder of the path name.) GetPath returns a fully
qualified path name that corresponds to the drive or directory
that is currently selected in the control.

Programming Windows With MFC

 1037

Figure 16-9. The PathList window.

The source code for PathList's dialog and ComboBoxEx classes
is shown in Figure 16-10. PathList's dialog window does very
little with the ComboBoxEx control other than host it. It calls
SetPath with the path to the current directory when it starts up,
and it displays the path name returned by GetPath when an
item is selected. The control class CPathComboBox contains
most of the interesting stuff, including the code that parses path
names passed to SetPath, adds items to the control, removes the
old items when the path name changes, and so on. Take the
time to understand how it works and you'll be well on your way
to understanding ComboBoxEx controls, too.

Figure 16-10. The PathList application.

PathListDlg.h
// PathListDlg.h : header file
//

#if !defined(

AFX_PATHLISTDLG_H__710413E6_AC66_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_PATHLISTDLG_H__710413E6_AC66_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CPathListDlg dialog

Programming Windows With MFC

 1038

class CPathListDlg : public CDialog
{
// Construction
public:
 CPathListDlg(CWnd* pParent = NULL); // standard constructor
// Dialog Data
 //{{AFX_DATA(CPathListDlg)
 enum { IDD = IDD_PATHLIST_DIALOG };
 CPathComboBox m_wndCBEx;
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPathListDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 HICON m_hIcon;

 // Generated message map functions
 //{{AFX_MSG(CPathListDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 afx_msg void OnSelEndOK();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_PATHLISTDLG_H__710413E6_AC66_11D2_8E53_006008A82731__INCLUDED_)

PathListDlg.cpp
// PathListDlg.cpp : implementation file
//

#include "stdafx.h"
#include "PathList.h"
#include "PathComboBox.h"
#include "PathListDlg.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///

Programming Windows With MFC

 1039

// CPathListDlg dialog

CPathListDlg::CPathListDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CPathListDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CPathListDlg)
 //}}AFX_DATA_INIT
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CPathListDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPathListDlg)
 DDX_Control(pDX, IDC_CBEX, m_wndCBEx);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPathListDlg, CDialog)
 //{{AFX_MSG_MAP(CPathListDlg)
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 ON_CBN_SELENDOK(IDC_CBEX, OnSelEndOK)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CPathListDlg message handlers

BOOL CPathListDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE);
 SetIcon(m_hIcon, FALSE);

 //
 // Initialize the ComboBoxEx control.
 //
 TCHAR szPath[MAX_PATH];
 ::GetCurrentDirectory (sizeof (szPath) / sizeof (TCHAR), szPath);
 m_wndCBEx.SetPath (szPath);
 return TRUE;
}

void CPathListDlg::OnPaint()
{
 if (IsIconic())
 {
 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);

Programming Windows With MFC

 1040

 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

HCURSOR CPathListDlg::OnQueryDragIcon()
{
 return (HCURSOR) m_hIcon;
}

void CPathListDlg::OnSelEndOK()
{
 //
 // Display the path just selected from the ComboBoxEx control.
 //
 MessageBox (m_wndCBEx.GetPath ());
}

PathComboBox.h
#if !defined(

AFX_PATHCOMBOBOX_H__710413F1_AC66_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_PATHCOMBOBOX_H__710413F1_AC66_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// PathComboBox.h : header file
//

///
// CPathComboBox window

class CPathComboBox : public CComboBoxEx
{
// Construction
public:
 CPathComboBox();

// Attributes
public:

// Operations
public:

Programming Windows With MFC

 1041

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPathComboBox)
 //}}AFX_VIRTUAL

// Implementation
public:
 CString GetPath();
 BOOL SetPath (LPCTSTR pszPath);
 virtual ~CPathComboBox();

 // Generated message map functions
protected:
 void GetSubstring (int& nStart, CString& string, CString& result);
 int m_nIndexEnd;
 int m_nIndexStart;
 BOOL m_bFirstCall;
 CImageList m_il;
 //{{AFX_MSG(CPathComboBox)
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_PATHCOMBOBOX_H__710413F1_AC66_11D2_8E53_006008A82731__INCLUDED_)

PathComboBox.cpp
// PathComboBox.cpp : implementation file
//

#include "stdafx.h"
#include "PathList.h"
#include "PathComboBox.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CPathComboBox

CPathComboBox::CPathComboBox()
{
 m_bFirstCall = TRUE;
 m_nIndexStart = -1;

Programming Windows With MFC

 1042

 m_nIndexEnd = -1;
}

CPathComboBox::~CPathComboBox()
{
}

BEGIN_MESSAGE_MAP(CPathComboBox, CComboBoxEx)
 //{{AFX_MSG_MAP(CPathComboBox)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CPathComboBox message handlers

BOOL CPathComboBox::SetPath(LPCTSTR pszPath)
{
 if (m_bFirstCall) {
 m_bFirstCall = FALSE;

 //
 // Add an image list containing drive and folder images.
 //
 m_il.Create (IDB_IMAGES, 16, 1, RGB (255, 0, 255));
 SetImageList (&m_il);

 //
 // Add icons representing the drives on the host system.
 //
 int nPos = 0;
 int nCount = 0;
 CString string = _T ("?:\\");

 DWORD dwDriveList = ::GetLogicalDrives ();

 while (dwDriveList) {
 if (dwDriveList & 1) {
 string.SetAt (0, _T (`A') + nPos);
 CString strDrive = string.Left (2);
 UINT nType = ::GetDriveType (string);

 int nImage = 0;
 switch (nType) {

 case DRIVE_FIXED:
 nImage = 0;
 break;

 case DRIVE_REMOVABLE:
 nImage = 1;
 break;

 case DRIVE_CDROM:
 nImage = 2;
 break;

Programming Windows With MFC

 1043

 case DRIVE_REMOTE:
 nImage = 3;
 break;
 }

 COMBOBOXEXITEM cbei;
 cbei.mask = CBEIF_TEXT | CBEIF_IMAGE |
CBEIF_SELECTEDIMAGE;
 cbei.iItem = nCount++;
 cbei.pszText = (LPTSTR) (LPCTSTR) strDrive;
 cbei.iImage = nImage;
 cbei.iSelectedImage = nImage;
 InsertItem (&cbei);
 }
 dwDriveList >>= 1;
 nPos++;
 }
 }

 //
 // Find the item that corresponds to the drive specifier in pszPath.
 //
 CString strPath = pszPath;
 CString strDrive = strPath.Left (2);

 int nDriveIndex = FindStringExact (-1, strDrive);
 if (nDriveIndex == CB_ERR)
 return FALSE;

 //
 // Delete previously added folder items (if any).
 //
 if (m_nIndexStart != -1 && m_nIndexEnd != -1) {
 ASSERT (m_nIndexEnd >= m_nIndexStart);
 int nCount = m_nIndexEnd - m_nIndexStart + 1;
 for (int i=0; i<nCount; i++)
 DeleteItem (m_nIndexStart);
 if (m_nIndexStart < nDriveIndex)
 nDriveIndex -= nCount;
 m_nIndexStart = -1;
 m_nIndexEnd = -1;
 }

 //
 // Add items representing the directories in pszPath.
 //
 int nCount = 0;
 int nStringIndex = strPath.Find (_T (`\\'), 0);

 if (nStringIndex++ != -1) {
 CString strItem;
 GetSubstring (nStringIndex, strPath, strItem);

 while (!strItem.IsEmpty ()) {
 COMBOBOXEXITEM cbei;
 cbei.mask = CBEIF_TEXT | CBEIF_IMAGE |

Programming Windows With MFC

 1044

CBEIF_SELECTEDIMAGE |
 CBEIF_INDENT;
 cbei.iItem = nDriveIndex + ++nCount;
 cbei.pszText = (LPTSTR) (LPCTSTR) strItem;
 cbei.iImage = 4;
 cbei.iSelectedImage = 5;
 cbei.iIndent = nCount;
 InsertItem (&cbei);

 GetSubstring (nStringIndex, strPath, strItem);
 }
 }

 //
 // Record the indexes of the items that were added, too.
 //
 if (nCount) {
 m_nIndexStart = nDriveIndex + 1;
 m_nIndexEnd = nDriveIndex + nCount;
 }

 //
 // Finish up by selecting the final item.
 //
 int nResult = SetCurSel (nDriveIndex + nCount);
 return TRUE;
}

void CPathComboBox::GetSubstring(int& nStart, CString &string,
 CString &result)
{
 result = _T ("");
 int nLen = string.GetLength ();
 if (nStart >= nLen)
 return;

 int nEnd = string.Find (_T (`\\'), nStart);
 if (nEnd == -1) {
 result = string.Right (nLen - nStart);
 nStart = nLen;
 }
 else {
 result = string.Mid (nStart, nEnd - nStart);
 nStart = nEnd + 1;
 }
}

CString CPathComboBox::GetPath()
{
 //
 // Get the index of the selected item.
 //
 CString strResult;
 int nEnd = GetCurSel ();
 int nStart = nEnd + 1;

Programming Windows With MFC

 1045

 //
 // Find the index of the "root" item.
 //
 COMBOBOXEXITEM cbei;
 do {
 cbei.mask = CBEIF_INDENT;
 cbei.iItem = —nStart;
 GetItem (&cbei);
 } while (cbei.iIndent != 0);

 //
 // Build a path name by combining all the items from the root item to
 // the selected item.
 //
 for (int i=nStart; i<=nEnd; i++) {
 TCHAR szItem[MAX_PATH];
 COMBOBOXEXITEM cbei;
 cbei.mask = CBEIF_TEXT;
 cbei.iItem = i;
 cbei.pszText = szItem;
 cbei.cchTextMax = sizeof (szItem) / sizeof (TCHAR);
 GetItem (&cbei);
 strResult += szItem;
 strResult += _T ("\\");
 }

 //
 // Strip the trailing backslash.
 //
 int nLen = strResult.GetLength ();
 strResult = strResult.Left (nLen - 1);
 return strResult;
}

16.4. Progress Controls and Animation
Controls

Comctl32.dll includes two convenient tools for providing visual
feedback to users concerning the status of ongoing operations.
The first is the progress control. A progress control is a vertical
or horizontal rectangle containing a colored bar that grows as
an operation approaches completion. The second is the
animation control, which reduces the complex task of playing
an AVI file to two simple function calls. Although animation
controls enjoy a variety of uses, very often they are used simply
to let the user know that a lengthy operation is underway.

Programming Windows With MFC

 1046

16.4.1. Progress Controls

MFC represents progress controls with instances of the class
CProgressCtrl. By default, a progress control is oriented
horizontally and its bar is drawn as a series of line segments.
You can orient a progress control vertically by assigning it the
style PBS_VERTICAL, and you can change the bar from
broken to solid with PBS_SMOOTH. (See Figure 16-11.)
Unfortunately, neither style is supported in the absence of
Internet Explorer 3.0 or later.

Figure 16-11. Progress controls with and without the style
PBS_SMOOTH.

Like slider controls, progress controls have ranges and
positions. If a progress control's range is 0 to 100 and its
position is 20, the bar fills 20 percent of the control. If the range
is 100 to 400 and the position is 300, the bar extends two-thirds
of the control's length. The default range is 0 to 100, but you
can change it to anything you like with
CProgressCtrl::SetRange. If m_wndProgress is a
CProgressCtrl object, the statement

m_wndProgress.SetRange (100, 400);

sets the control's range to 100 to 400. SetRange limits its
minimums and maximums to 16-bit values, but if Internet
Explorer 3.0 or later is installed, you can specify 32-bit ranges
using the newer CProgressCtrl::SetRange32 function. To
retrieve the current range, use GetRange. GetRange handles
both 16-bit and 32-bit ranges.

Once you've created a progress control and set its range, you
can set its position with CProgressCtrl::SetPos. The following
example steps a progress control from 0 to 100 in about 2½
seconds by calling SetPos repeatedly from a loop that uses

Programming Windows With MFC

 1047

the ::Sleep API function to ensure that each iteration requires at
least 25 milliseconds:

m_wndProgress.SetRange (0, 100);
m_wndProgress.SetPos (0);
for (int i=0; i<100; i++) {
 m_wndProgress.SetPos (i);
 ::Sleep (25);
}
m_wndProgress.SetPos (0);

That's one way to step a progress control. You can also use the
OffsetPos function to specify a new position that's relative to
the current one. Here's the previous code sample rewritten to
use OffsetPos:

m_wndProgress.SetRange (0, 100);
m_wndProgress.SetPos (0);
for (int i=0; i<100; i++) {
 m_wndProgress.OffsetPos (1);
 ::Sleep (25);
}
m_wndProgress.SetPos (0);

A third way to step a progress control is to assign the control a
step size with SetStep and then to increment the position by the
current step size with StepIt:

m_wndProgress.SetRange (0, 100);
m_wndProgress.SetPos (0);
m_wndProgress.SetStep (1);
for (int i=0; i<100; i++) {
 m_wndProgress.StepIt ();
 ::Sleep (25);
}
m_wndProgress.SetPos (0);

You can call the complementary CProgressCtrl::GetPos
function at any time to retrieve the control's current position.

By default, the color of the bar in a progress control is the
system color COLOR_HIGHLIGHT, and the control's
background color is COLOR_3DFACE. On systems equipped
with Internet Explorer 4.0 or higher, you can change the bar
color with a PBM_SETBARCOLOR message, and you can

Programming Windows With MFC

 1048

change the control's background color with a
PBM_SETBKCOLOR message. Because CProgressCtrl lacks
wrapper functions for these messages, you must send the
messages yourself. For example, the statement

m_wndProgress.SendMessage (PBM_SETBARCOLOR, 0,
(LPARAM) RGB (255, 0, 0));

changes m_wndProgress's bar color to red.

One of the sample programs in the next
chapter—ImageEdit—uses a progress control to provide visual
feedback regarding an image processing operation. The
progress control is attached to a status bar and in fact appears to
be an ordinary status bar pane until the operation begins and the
bar begins stepping across the face of the control. If you'd like
to see a progress control in action, feel free to skip ahead and
take a look at ImageEdit.

16.4.2. Animation Controls

Animation controls simplify the task of playing video clips in a
dialog box or a window. The video clips must be in Windows
AVI format, and they can have at most two streams inside them.
If one of the streams is an audio stream, it is ignored. Visual
Studio comes with a number of sample AVI files that work well
in animation controls. One of those sample files, Findfile.avi,
contains the circling magnifying glass featured in the system's
Find utility. Another, Filecopy.avi, contains the "flying paper"
clip you see when you drag-copy a large file or group of files
from one folder to another.

CAnimateCtrl wraps the functionality of animation controls in
an easy-to-use C++ class. Using CAnimateCtrl is simplicity
itself. CAnimateCtrl::Open loads an AVI clip from a resource
or an external file. CAnimateCtrl::Play begins playing the clip,
CAnimateCtrl::Stop stops it, and CAnimateCtrl::Close unloads
the clip. Assuming that m_wndAnimate is an instance of
CAnimateCtrl and that it is associated with an animation
control, the following code sample loads an AVI file named
Findfile.avi and begins playing it:

Programming Windows With MFC

 1049

m_wndAnimate.Open (_T ("Findfile.avi"));
m_wndAnimate.Play (0, -1, -1);

Open will accept a resource ID in lieu of a file name, enabling
you to embed AVI clips as resources in EXE files:

// In the RC file
IDR_FINDFILE AVI "Findfile.avi"

// In the CPP file
m_wndAnimate.Open (IDR_FINDFILE);
m_wndAnimate.Play (0, -1, -1);

Play starts the animation and returns immediately; it doesn't
wait around for the animation to stop. That's good, because it
means the thread that called Play can continue working while
the animation plays in the background.

Play accepts three parameters: the starting and ending frame
numbers and the number of times the animation should be
played. Specifying 0, -1, and -1 for these parameters tells the
control to play all the frames and to repeat them indefinitely
until Stop is called, like this:

m_wndAnimate.Stop ();

After you call Stop, you should call Close to remove the clip
from memory if you don't intend to play it anymore:

m_wndAnimate.Close ();

Every call to Open should be accompanied by a call to Close to
prevent resource leaks.

Animation controls support four styles that affect their
appearance and operation. ACS_AUTOPLAY configures the
control to begin playing an animation as soon as it is opened
rather than waiting for Play to be called. ACS_CENTER
centers the output in the control rectangle. Without this style,
the clip plays in the upper left corner of the control rectangle
and the control is resized to fit the frames contained in the
animation. ACS_TRANSPARENT plays the animation using a

Programming Windows With MFC

 1050

transparent background instead of the background color
designated inside the AVI file. Finally, ACS_TIMER prevents
the control from launching a background thread to do its
drawing. Rather than start another thread (threads consume
resources, and too many threads can bog down the system), an
ACS_TIMER-style animation control sets a timer in the caller's
thread and uses timer callbacks to draw successive frames.
ACS_TIMER is supported only on systems equipped with
Internet Explorer 3.0 or later.

16.5. IP Address Controls and Other
Data-Entry Controls

IP address controls, hotkey controls, month calendar controls,
and date-time picker controls all have one characteristic in
common: they exist to make it easy to solicit specially
formatted input from the user. Some of them, such as the IP
address control, are exceedingly simple; others, such as the
date-time picker control, offer an intimidating array of options.
All are relatively easy to program, however, especially when
you use the wrapper classes provided by MFC. The sections
that follow provide an overview of all four control types and
present code samples demonstrating their use.

16.5.1. IP Address Controls

IP address controls facilitate the effortless entry of 32-bit IP
addresses consisting of four 8-bit integer values separated by
periods, as in 10.255.10.1. The control accepts numeric input
only and is divided into four 3-digit fields, as shown in Figure
16-12. When the user types three digits into a field, the input
focus automatically moves to the next field. IP address controls
exist only on systems that have Internet Explorer 4.0 or later
installed.

Figure 16-12. The IP address control.

MFC codifies the interface to IP address controls with
CIPAddressCtrl. CIPAddressCtrl functions named SetAddress
and GetAddress get IP addresses in and out. If

Programming Windows With MFC

 1051

m_wndIPAddress is a CIPAddressCtrl data member in a dialog
class, the following OnInitDialog and OnOK functions
initialize the control with the IP address stored in m_nField1
through m_nField4 when the dialog box is created and retrieve
the IP address from the control when the dialog box is
dismissed:

// In CMyDialog's class declaration
BYTE m_nField1, m_nField2, m_nField3, m_nField4;

BOOL CMyDialog::OnInitDialog ()
{
 CDialog::OnInitDialog ();
 m_wndIPAddress.SetAddress (m_nField1, m_nField2,
 m_nField3, m_nField4);
 return TRUE;
}

void CMyDialog::OnOK ()
{
 m_wndIPAddress.GetAddress (m_nField1, m_nField2,
 m_nField3, m_nField4);
 CDialog::OnOK ();
}

You can also empty an IP address control with
CIPAddressCtrl::ClearAddress or find out whether it is
currently empty with CIPAddressCtrl::IsBlank. Another
CIPAddressCtrl member function, SetFieldFocus,
programmatically moves the input focus to a specified field.

By default, each field in an IP address control accepts a value
from 0 to 255. You can change the range of values that a given
field will accept with CIPAddressCtrl::SetFieldRange. The
following statement configures the control to restrict values
entered into the control's first field to 10 through 100 and
values entered in the final field to 100 through 155, inclusive:

m_wndIPAddress.SetFieldRange (0, 10, 100); // Field 1
m_wndIPAddress.SetFieldRange (3, 100, 155); // Field 4

The control prevents invalid values from being entered into a
field by automatically converting values that fall outside the
allowable range to the upper or lower limit of that range,
whichever is appropriate.

Programming Windows With MFC

 1052

IP address controls send four types of notifications to their
owners. EN_SETFOCUS and EN_KILLFOCUS notifications
signify that the control gained or lost the input focus.
EN_CHANGE notifications indicate that the data in the control
has changed. All three notifications are encapsulated in
WM_COMMAND messages. IP address controls also send
IPN_FIELDCHANGED notifications when a field's value
changes or the input focus moves from one field to another.
IPN_FIELDCHANGED is unique among IP address control
notifications in that it is transmitted in WM_NOTIFY
messages.

16.5.2. Hotkey Controls

Hotkey controls are similar in concept to IP address controls.
The chief difference is that hotkey controls accept key
combinations instead of IP addresses. A hotkey control is
essentially a glorified edit control that automatically converts
key combinations such as Ctrl-Alt-P into text strings suitable
for displaying on the screen. Hotkey controls are so-called
because the key combinations entered in them are sometimes
converted into hotkeys with WM_SETHOTKEY messages.
Data entered into a hotkey control doesn't have to be used for
hotkeys, however; it can be used any way that you, the
developer, see fit.

MFC represents hotkey controls with instances of CHotKeyCtrl.
Member functions named SetHotKey and GetHotKey convert
key combinations into text strings displayed by the control, and
vice versa. The following statement initializes a hotkey control
represented by the CHotKeyCtrl object m_wndHotkey with the
key combination Ctrl-Alt-P. The control responds by displaying
the text string "Ctrl + Alt + P":

m_wndHotkey.SetHotKey (_T (`P'), HOTKEYF_CONTROL ¦
HOTKEYF_ALT);

The next two statements read data from the hotkey control into
variables named wKeyCode, which holds a virtual key code,
and wModifiers, which holds bit flags specifying which, if any,
modifier keys—Ctrl, Alt, and Shift—are included in the key
combination:

Programming Windows With MFC

 1053

WORD wKeyCode, wModifiers;
m_wndHotkey.GetHotKey (wKeyCode, wModifiers);

You can include similar calls to SetHotKey and GetHotKey in a
dialog class's OnInitDialog and OnOK functions to transfer
data between a hotkey control and data members of the dialog
class.

By default, a hotkey control accepts key combinations that
include any combination of the Ctrl, Shift, and Alt keys. You
can restrict the combinations that the control will accept by
calling CHotKeyCtrl::SetRules. SetRules accepts two
parameters: an array of bit flags identifying invalid
combinations of Ctrl, Shift, and Alt, and an array of bit flags
specifying the combination of Ctrl, Shift, and Alt that should
replace an invalid combination of modifier keys. For example,
the statement

m_wndHotkey.SetRules (HKCOMB_A ¦ HKCOMB_CA ¦
HKCOMB_SA ¦ HKCOMB_SCA, 0);

disallows any key combination that includes the Alt key, and
the statement

m_wndHotkey.SetRules (HKCOMB_A ¦ HKCOMB_CA ¦
HKCOMB_SA ¦ HKCOMB_SCA,
 HOTKEYF_CONTROL);

does the same but also directs the control to replace the
modifiers in any key combination that includes the Alt key with
the Ctrl key. See the SetRules documentation for a list of other
supported HKCOMB flags.

16.5.3. Month Calendar Controls

The month calendar control, which I'll refer to simply as the
calendar control, lets users input dates by picking them from a
calendar rather than typing them into an edit control. (See
Figure 16-13.) A calendar control can support single selections
or multiple selections. Clicking a date in a single-selection
calendar control makes that date the "current date." In a
multiple-selection calendar control, the user can select a single

Programming Windows With MFC

 1054

date or a contiguous range of dates. You can set and retrieve the
current selection, be it a single date or a range of dates,
programmatically by sending messages to the control. MFC
wraps these and other calendar control messages in member
functions belonging to the CMonthCalCtrl class.

Figure 16-13. The month calendar control.

In a single-selection calendar control,
CMonthCalCtrl::SetCurSel sets the current date and
CMonthCalCtrl::GetCurSel retrieves it. The statement

m_wndCal.SetCurSel (CTime (1999, 9, 30, 0, 0, 0));

sets the current date to September 30, 1999, in the calendar
control represented by m_wndCal. Ostensibly, the statements

CTime date;
m_wndCal.GetCurSel (date);

retrieve the date from the control by initializing date with the
currently selected date. But watch out. Contrary to what the
documentation says, a calendar control sometimes returns
random data in the hours, minutes, seconds, and milliseconds
fields of the SYSTEMTIME structure it uses to divulge dates in
response to MCM_GETCURSEL messages. Because CTime
factors the time into the dates it obtains from SYSTEMTIME
structures, incrementing the day by 1, for example, if hours
equals 25, CTime objects initialized by
CMonthCalCtrl::GetCurSel can't be trusted. The solution is to
retrieve the current date by sending the control an
MCM_GETCURSEL message and zeroing the time fields of

Programming Windows With MFC

 1055

the SYSTEMTIME structure before converting it into a CTime,
as demonstrated here:

SYSTEMTIME st;
m_wndCal.SendMessage (MCM_GETCURSEL, 0, (LPARAM) &st);
st.wHour = st.wMinute = st.wSecond = st.wMilliseconds = 0;
CTime date (st);

If you prefer, you can also use CMonthCalCtrl's SetRange
function to place upper and lower bounds on the dates that the
control will allow the user to select.

The alternative to SetCurSel and GetCurSel is to use DDX to
get dates in and out of a calendar control. MFC includes a DDX
function named DDX_MonthCalCtrl that you can put in a
dialog's DoDataExchange function to automatically transfer
data between a calendar control and a CTime or COleDateTime
data member. It even includes DDV functions for date
validation. But guess what? DDX_MonthCalCtrl doesn't work
because it uses GetCurSel to read the current date. Until this
bug is fixed, your best recourse is to forego DDX and use the
techniques described above to get and set the current date.

You can create a calendar control that allows the user to select
a range of contiguous dates by including an
MCS_MULTISELECT bit in the control's style. By default, a
selection can't span more than 7 days. You can change that with
CMonthCalCtrl::SetMaxSelCount. The statement

m_wndCal.SetMaxSelCount (14);

sets the upper limit on selection ranges to 14 days. The
complementary GetMaxSelCount function returns the current
maximum selection count.

To programmatically select a date or a range of dates in a
multiple-selection calendar control, you must use
CMonthCalCtrl::SetSelRange instead of
CMonthCalCtrl::SetCurSel. (The latter fails if it's called on a
multiple-selection calendar control.) The statements

m_wndCal.SetSelRange (CTime (1999, 9, 30, 0, 0, 0),
 CTime (1999, 9, 30, 0, 0, 0));

Programming Windows With MFC

 1056

select September 30, 1999, in an MCS_MULTISELECT-style
calendar control, and the statements

m_wndCal.SetSelRange (CTime (1999, 9, 16, 0, 0, 0),
 CTime (1999, 9, 30, 0, 0, 0));

select September 16 through September 30. This call will fail
unless you first call SetMaxSelCount to set the maximum
selection range size to 15 days or higher. To read the current
selection, use CMonthCalCtrl::GetSelRange as demonstrated
here:

CTime dateStart, dateEnd;
m_wndCal.GetSelRange (dateStart, dateEnd);

This example sets dateStart equal to the selection's start date
and dateEnd to the end date. If just one day is selected,
dateStart will equal dateEnd. Fortunately, GetSelRange doesn't
suffer from the randomness problems that GetCurSel does.

Three calendar control styles allow you to alter a calendar
control's appearance. MCS_NOTODAY removes the line that
displays today's date at the bottom of the calendar;
MCS_NOTODAYCIRCLE removes the circle that appears
around today's date in the body of the calendar; and
MCS_WEEKNUMBERS displays week numbers (1 through
52). You can further modify a calendar's appearance with
CMonthCalCtrl functions. For example, you can change today's
date (as displayed by the control) with SetToday, the day of the
week that appears in the calendar's leftmost column with
SetFirstDayOfWeek, and the control's colors with SetColor.
You can even command the control to display certain dates in
boldface type by calling its SetDayState function or processing
MCN_GETDAYSTATE notifications. Be aware that
SetDayState works (and MCN_GETDAYSTATE notifications
are sent) only if MCS_DAYSTATE is included in the control
style.

If you'd like to know when the current date (or date range)
changes in a calendar control, you can process either of two
notifications. MCN_SELECT notifications are sent when the
user selects a new date or range of dates. MCN_SELCHANGE
notifications are sent when the user explicitly makes a selection

Programming Windows With MFC

 1057

and when the selection changes because the user scrolled the
calendar backward or forward a month. In an MFC application,
you can map these notifications to member functions in the
parent window class with ON_NOTIFY or reflect them to
functions in a derived control class with
ON_NOTIFY_REFLECT.

16.5.4. Date-Time Picker Controls

Date-time picker controls, or DTP controls, provide developers
with a simple, convenient, and easy-to-use means for soliciting
dates and times from a user. A DTP control resembles an edit
control, but rather than display ordinary text strings, it displays
dates and times. Dates can be displayed in short format, as in
9/30/99, or long format, as in Thursday, September 30, 1999.
Times are displayed in standard HH:MM:SS format followed
by AM or PM. Custom date and time formats are also
supported. Times and dates can be edited visually—for
example, by clicking the control's up and down arrows or
picking from a drop-down calendar control—or manually.
MFC simplifies the interface to DTP controls with the wrapper
class named CDateTimeCtrl.

Using a DTP control to solicit a time requires just one or two
lines of code. First you assign the control the style
DTS_TIMEFORMAT to configure it to display times rather
than dates. Then you call CDateTimeCtrl::SetTime to set the
time displayed in the control and CDateTimeCtrl::GetTime
when you're ready to retrieve it. Assuming m_wndDTP is a
CDateTimeCtrl data member in a dialog class and that
m_wndDTP is mapped to a DTP control in the dialog, the
following OnInitDialog and OnOK functions transfer data
between the control and a CTime member variable in the dialog
class:

// In CMyDialog's class declaration
CTime m_time;

BOOL CMyDialog::OnInitDialog ()
{
 CDialog::OnInitDialog ();
 m_wndDTP.SetTime (&m_time);
 return TRUE;
}

Programming Windows With MFC

 1058

void CMyDialog::OnOK ()
{
 m_wndDTP.GetTime (m_time);
 CDialog::OnOK ();
}

Rather than call SetTime and GetTime explicitly, you can use a
DDX_DateTimeCtrl statement in the dialog's DoDataExchange
function instead:

DDX_DateTimeCtrl (pDX, IDC_DTP, m_time);

If you use DDX_DateTimeCtrl to connect a DTP control to a
dialog data member, you might also want to use MFC's
DDV_MinMaxDateTime function to validate times retrieved
from the control.

To display dates rather than times in a DTP control, replace
DTS_TIMEFORMAT with either
DTS_SHORTDATEFORMAT for short dates or
DTS_LONGDATEFORMAT for long dates. You set and
retrieve dates the same way you do times: with SetTime and
GetTime or DDX_DateTimeCtrl. You can use
CDateTimeCtrl::SetRange to limit the dates and times that a
DTP control will accept.

A DTP control whose style includes DTS_UPDOWN has up
and down arrows that the user can use to edit times and dates. If
DTS_UPDOWN is omitted from the control style, a
downward-pointing arrow similar to the arrow in a combo box
replaces the up and down arrows. Clicking the
downward-pointing arrow displays a drop-down calendar
control, as illustrated in Figure 16-14. Thus, combining either
of the date styles (DTS_SHORTDATEFORMAT or
DTS_LONGDATEFORMAT) with DTS_UPDOWN produces
a DTP control in which dates are entered using up and down
arrows; using either of the date styles without DTS_UPDOWN
creates a control in which dates are picked from a calendar. By
default, a calendar dropped down from a DTP control is
left-aligned with the control. You can alter the alignment by
including DTS_RIGHTALIGN in the control style. You can
also use the DTS_APPCANPARSE style to allow the user to

Programming Windows With MFC

 1059

manually edit the text displayed in a DTP control. Even without
this style, the keyboard's arrow keys can be used to edit time
and date entries.

Figure 16-14. Date-time picker controls with and without the style
DTS_UPDOWN.

CDateTimeCtrl's SetFormat function assigns custom formatting
strings to a DTP control. For example, a formatting string of the
form "H': `mm': `ss" programs a DTP control to display the
time in 24-hour military format. Here's how SetFormat would
be used to apply this formatting string:

m_wndDTP.SetFormat (_T ("H\':\'mm\':\'ss"));

In a formatting string, H represents a one-digit or two-digit
hour in 24-hour format, mm represents a two-digit minute, and
ss represents a two-digit second. The following table shows all
the special characters that you can use in formatting strings.
You can include literals, such as the colons in the example
above, by enclosing them in single quotation marks. If you
really want to get fancy, you can use Xs to define callback
fields. A DTP control uses DTN_FORMAT and
DTN_FORMATQUERY notifications to determine what to
display in a callback field, enabling an application that
processes these notifications to provide text to a DTP control at
run time.

DTP Formatting Characters

Character(s) Description

Programming Windows With MFC

 1060

d One-digit or two-digit day

dd Two-digit day

ddd Three-character day of the week abbreviation (for example, Mon
or Tue)

dddd Full day of the week name (for example, Monday or Tuesday)

h One-digit or two-digit hour in 12-hour format

hh Two-digit hour in 12-hour format

H One-digit or two-digit hour in 24-hour format

HH Two-digit hour in 24-hour format

m One-digit or two-digit minute

mm Two-digit minute

M One-digit or two-digit month

MM Two-digit month

MMM Three-character month abbreviation (for example, Jan or Feb)

MMMM Full month name (for example, January or February)

s One-digit or two-digit second

ss Two-digit second

t Displays A for a.m. or P for p.m.

tt Displays AM for a.m. or PM for p.m.

X Callback field

y One-digit year

yy Two-digit year

yyyy Four-digit year

DTP controls send a variety of other notifications to their
parents. If you want to know when a drop-down calendar
control is displayed, listen for DTN_DROPDOWN
notifications. When a DTN_DROPDOWN notification arrives,
you can call CDateTimeCtrl::GetMonthCalCtrl to acquire a
CMonthCalCtrl pointer that you can use to modify the calendar
control. If you simply want to know when the time or the date
in a DTP control changes, process
DTN_DATETIMECHANGE notifications. Consult the
Platform SDK documentation on DTP controls for details
concerning these and other DTP control notifications.

Programming Windows With MFC

 1061

Chapter 17. Threads and Thread
Synchronization

In the Microsoft Win32 environment, every running application
constitutes a process and every process contains one or more
threads of execution. A thread is a path of execution through a
program's code, plus a set of resources (stack, register state, and
so on) assigned by the operating system.

A fundamental difference between 16-bit and 32-bit versions of
Microsoft Windows is that 32-bit Windows doesn't limit its
applications to just one thread each. A process in a 32-bit
Windows application begins its life as a single thread, but that
thread can spawn additional threads. A preemptive scheduler in
the operating system kernel divides CPU time among active
threads so that they appear to run simultaneously. Threads are
ideal for performing tasks in the background while processing
user input in the foreground. They can also play more visible
roles by creating windows and processing messages to those
windows, just as the primary thread processes messages sent to
an application's main window.

Multithreading isn't for everyone. Multithreaded applications
are difficult to write and debug because the parallelism of
concurrently running threads adds an extra layer of complexity
to a program's code. Used properly, however, multiple threads
can dramatically improve an application's responsiveness. A
word processor that does its spell checking in a dedicated
thread, for example, can continue to process messages in the
primary thread and allow the user to continue to work while the
spelling checker runs its course. What makes writing a threaded
spelling checker difficult is that the spell checking thread will
invariably have to synchronize its actions with other threads in
the application. Most programmers have been conditioned to
think about their code in synchronous terms—function A calls
function B, function B performs some task and returns to A,
and so on. But threads are asynchronous by nature. In a
multithreaded application, you have to think about what
happens if, say, two threads call function B at the same time or
one thread reads a variable while another writes it. If function
A launches function B in a separate thread, you also must
anticipate the problems that could occur if function A continues

Programming Windows With MFC

 1062

to run while function B executes. For example, it's common to
pass the address of a variable created on the stack in function A
to function B for processing. But if function B is in another
thread, the variable might no longer exist when function B gets
around to accessing it. Even the most innocent-looking code
can be fatally flawed when it involves two different threads.

MFC encapsulates threads of execution in the CWinThread
class. It also encapsulates events, mutexes, and other Win32
thread synchronization objects in easy-to-use C++ classes.
Does MFC make multithreading easier? Not exactly.
Developers who have written multithreaded Windows
applications in C are often surprised to learn that MFC adds
complexities all its own. The key to writing multithreaded
programs in MFC is having a keen understanding of what
you're doing and knowing where the trouble spots are. This
chapter will help you do both.

17.1. Threads

As far as Windows is concerned, all threads are alike. MFC,
however, distinguishes between two types of threads: user
interface (UI) threads and worker threads. The difference
between the two is that UI threads have message loops and
worker threads don't. UI threads can create windows and
process messages sent to those windows. Worker threads
perform background tasks that receive no direct input from the
user and therefore don't need windows and message loops.

The system itself provides two very good examples of how UI
threads and worker threads can be used. When you open a
folder in the operating system shell, the shell launches a UI
thread that creates a window showing the folder's contents. If
you drag-copy a group of files to the newly opened folder, that
folder's thread performs the file transfers. (Sometimes the UI
thread creates yet another thread—this time a worker
thread—to copy the files.) The benefit of this multithreaded
architecture is that, once the copy has begun, you can switch to
windows opened onto other folders and continue working while
the files are being copied in the background. Launching a UI
thread that creates a window is conceptually similar to
launching an application within an application. The most

Programming Windows With MFC

 1063

common use for UI threads is to create multiple windows
serviced by separate threads of execution.

Worker threads are ideal for performing isolated tasks that can
be broken off from the rest of the application and performed in
the background. A classic example of a worker thread is the
thread that an animation control uses to play AVI clips. That
thread does little more than draw a frame, put itself to sleep for
a fraction of a second, and wake up and repeat the process. It
adds little to the processor's workload because it spends most of
its life suspended between frames, and yet it also provides a
valuable service. This is a great example of multithreaded
design because the background thread is given a specific task to
do and then allowed to perform that task over and over until the
primary thread signals that it's time to end.

17.1.1. Creating a Worker Thread

The best way to launch a thread in an MFC application is to call
AfxBeginThread. MFC defines two different versions of
AfxBeginThread: one that starts a UI thread and another that
starts a worker thread. The source code for both is found in
Thrdcore.cpp. Don't use the Win32 ::CreateThread function to
create a thread in an MFC program unless the thread doesn't
use MFC. AfxBeginThread isn't merely a wrapper around the
Win32 ::CreateThread function; in addition to launching a
thread, it initializes internal state information used by the
framework, performs sanity checks at various points during the
thread creation process, and takes steps to ensure that functions
in the C run-time library are accessed in a thread-safe manner.

AfxBeginThread makes it simple—almost trivial, in fact—to
create a worker thread. When called, AfxBeginThread creates a
new CWinThread object, launches a thread and attaches it to
the CWinThread object, and returns a CWinThread pointer. The
statement

CWinThread* pThread = AfxBeginThread (ThreadFunc,
&threadInfo);

starts a worker thread and passes it the address of an
application-defined data structure (&threadInfo) that contains
input to the thread. ThreadFunc is the thread function—the

Programming Windows With MFC

 1064

function that gets executed when the thread itself begins to
execute. A very simple thread function that spins in a loop
eating CPU cycles and then terminates looks like this:

UINT ThreadFunc (LPVOID pParam)
{
 UINT nIterations = (UINT) pParam;
 for (UINT i=0; i<nIterations; i++);
 return 0;
}

In this example, the value passed in pParam isn't a pointer at all,
but an ordinary UINT. Thread functions are described in more
detail in the next section.

The worker thread form of AfxBeginThread accepts as many as
four additional parameters that specify the thread's priority,
stack size, creation flags, and security attributes. The complete
function prototype is as follows:

CWinThread* AfxBeginThread (AFX_THREADPROC pfnThreadProc,
 LPVOID pParam, int nPriority = THREAD_PRIORITY_NORMAL,
 UINT nStackSize = 0, DWORD dwCreateFlags = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL)

nPriority specifies the thread's execution priority. High-priority
threads are scheduled for CPU time before low-priority threads,
but in practice, even threads with extremely low priorities
usually get all the processor time they need. nPriority doesn't
specify an absolute priority level. It specifies a priority level
relative to the priority level of the process to which the thread
belongs. The default is THREAD_PRIORITY_NORMAL,
which assigns the thread the same priority as the process that
owns it. You can change a thread's priority level at any time
with CWinThread::SetThreadPriority.

The nStackSize parameter passed to AfxBeginThread specifies
the thread's maximum stack size. In the Win32 environment,
each thread receives its own stack. The 0 default nStackSize
value allows the stack to grow as large as 1 MB. This doesn't
mean that every thread requires a minimum of 1 MB of
memory; it means that each thread is assigned 1 MB of address
space in the larger 4-GB address space in which 32-bit
Windows applications execute. Memory isn't committed

Programming Windows With MFC

 1065

(assigned) to the stack's address space until it's needed, so most
thread stacks never use more than a few kilobytes of physical
memory. Placing a limit on the stack size allows the operating
system to trap runaway functions that recur endlessly and
eventually consume the stack. The default limit of 1 MB is fine
for almost all applications.

dwCreateFlags can be one of two values. The default value 0
tells the system to start executing the thread immediately. If
CREATE_SUSPENDED is specified instead, the thread starts
out in a suspended state and doesn't begin running until another
thread (usually the thread that created it) calls
CWinThread::ResumeThread on the suspended thread, as
demonstrated here:

CWinThread* pThread = AfxBeginThread (ThreadFunc, &threadInfo,
 THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);

pThread->ResumeThread (); // Start the thread

Sometimes it's useful to create a thread but defer its execution
until later. The CREATE_SUSPENDED flag is your
mechanism for enacting delayed execution.

The final parameter in AfxBeginThread's argument list,
lpSecurityAttrs, is a pointer to a SECURITY_ATTRIBUTES
structure that specifies the new thread's security attributes and
also tells the system whether child processes should inherit the
thread handle. The NULL default value assigns the new thread
the same properties the thread that created it has.

17.1.1.1. The Thread Function

A thread function is a callback function, so it must be either a
static class member function or a global function declared
outside a class. It is prototyped this way:

UINT ThreadFunc (LPVOID pParam)

pParam is a 32-bit value whose value equals the pParam
passed to AfxBeginThread. Very often, pParam is the address
of an application-defined data structure containing information
passed to the worker thread by the thread that created it. It can

Programming Windows With MFC

 1066

also be a scalar value, a handle, or even a pointer to an object.
Using the same thread function for two or more threads is
perfectly legal, but you should be sensitive to reentrancy
problems caused by global and static variables. As long as the
variables (and objects) a thread uses are created on the stack, no
reentrancy problems occur because each thread gets its own
stack.

17.1.2. Creating a UI Thread

Creating a UI thread is an altogether different process than
creating a worker thread. A worker thread is defined by its
thread function, but a UI thread's behavior is governed by a
dynamically creatable class derived from CWinThread that
resembles an application class derived from CWinApp. The UI
thread class shown below creates a top-level frame window that
closes itself when clicked with the left mouse button. Closing
the window terminates the thread, too, because
CWnd::OnNcDestroy posts a WM_QUIT message to the
thread's message queue. Posting a WM_QUIT message to a
secondary thread ends the thread. Posting a WM_QUIT
message to a primary thread ends the thread and ends the
application, too.

// The CUIThread class
class CUIThread : public CWinThread
{
 DECLARE_DYNCREATE (CUIThread)

public:
 virtual BOOL InitInstance ();
};

IMPLEMENT_DYNCREATE (CUIThread, CWinThread)

BOOL CUIThread::InitInstance ()
{
 m_pMainWnd = new CMainWindow;
 m_pMainWnd->ShowWindow (SW_SHOW);
 m_pMainWnd->UpdateWindow ();
 return TRUE;
}

// The CMainWindow class
class CMainWindow : public CFrameWnd
{
public:
 CMainWindow ();

Programming Windows With MFC

 1067

protected:
 afx_msg void OnLButtonDown (UINT, CPoint);
 DECLARE_MESSAGE_MAP ()
};

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)
 ON_WM_LBUTTONDOWN ()
END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()
{
 Create (NULL, _T ("UI Thread Window"));
}

void CMainWindow::OnLButtonDown (UINT nFlags, CPoint point)
{
 PostMessage (WM_CLOSE, 0, 0);
}

Notice the SW_SHOW parameter passed to ShowWindow in
place of the normal m_nCmdShow parameter. m_nCmdShow is
a CWinApp data member, so when you create a top-level
window from a UI thread, it's up to you to specify the window's
initial state.

You launch a CUIThread by calling the form of
AfxBeginThread that accepts a CRuntimeClass pointer to the
thread class:

CWinThread* pThread = AfxBeginThread (RUNTIME_CLASS
(CUIThread));

The UI-thread version of AfxBeginThread accepts the same
four optional parameters as the worker-thread version, but it
doesn't accept a pParam value. Once started, a UI thread runs
asynchronously with respect to the thread that created it.

17.1.3. Suspending and Resuming Threads

A running thread can be suspended with
CWinThread::SuspendThread and started again with
CWinThread::ResumeThread. A thread can call SuspendThread
on itself, or another thread can call SuspendThread for it.
However, a suspended thread can't call ResumeThread to wake
itself up; someone else must call ResumeThread on its behalf.
A suspended thread consumes next to no processor time and
imposes essentially zero overhead on the system.

Programming Windows With MFC

 1068

For each thread, Windows maintains a suspend count that's
incremented by SuspendThread and decremented by
ResumeThread. A thread is scheduled for processor time only
when its suspend count is 0. If SuspendThread is called twice in
succession, ResumeThread must be called twice also. A thread
created without a CREATE_SUSPENDED flag has an initial
suspend count of 0. A thread created with a
CREATE_SUSPENDED flag begins with a suspend count of 1.
Both SuspendThread and ResumeThread return the thread's
previous suspend count, so you can make sure a thread gets
resumed no matter how high its suspend count is by calling
ResumeThread repeatedly until it returns 1. ResumeThread
returns 0 if the thread it's called on isn't currently suspended.

17.1.4. Putting Threads to Sleep

A thread can put itself to sleep for a specified period of time by
calling the API function ::Sleep. A sleeping thread uses no
processor time. The statement

::Sleep (10000);

suspends the current thread for 10 seconds.

One use for ::Sleep is to implement threads whose actions are
inherently time-based, such as the background thread in an
animation control or a thread that moves the hands of a
clock. ::Sleep can also be used to relinquish the remainder of a
thread's timeslice. The statement

::Sleep (0);

suspends the current thread and allows the scheduler to run
other threads of equal or higher priority. If no other equal or
higher priority threads are awaiting execution time, the function
call returns immediately and the current thread resumes
execution. In Microsoft Windows NT 4.0 and higher, you can
yield to another thread by calling ::SwitchToThread.
Use ::Sleep (0) if the code you're writing must work on all
Win32 platforms.

Programming Windows With MFC

 1069

If you write an application that uses multiple threads to draw to
the screen, a few strategically placed ::Sleep (0) statements can
do wonders for the quality of the output. Suppose you're
animating the motion of four objects and you assign each object
its own thread. Each thread is responsible for moving one
object across the screen. If you simply run each thread in a loop
and allow it to grab for all the processor time it can get, the
motion of the objects is likely to be grainy and irregular. But if
you have each thread move its assigned object a few pixels and
then call ::Sleep (0), the animation can be performed more
smoothly.

The value you pass to ::Sleep doesn't guarantee that the thread
will be awakened at the precise moment that the time-out
interval elapses. Passing ::Sleep a value of 10,000 guarantees
that the thread will awaken sometime after 10 seconds have
elapsed. The thread might sleep for 10 seconds, or it might
sleep for 20—it's all up to the operating system. In practice, the
thread will usually begin running again a fraction of a second
after the time-out interval elapses, but there are no guarantees.
Presently, no method exists in any version of Windows to
suspend a thread for a precise amount of time.

17.1.5. Terminating a Thread

Once a thread begins, it can terminate in two ways. A worker
thread ends when the thread function executes a return
statement or when any function anywhere in the thread calls
AfxEndThread. A UI thread terminates when a WM_QUIT
message is posted to its message queue or when the thread itself
calls AfxEndThread. A thread can post a WM_QUIT message
to itself with the API function ::PostQuitMessage.
AfxEndThread, ::PostQuitMessage, and return all accept a
32-bit exit code that can be retrieved
with ::GetExitCodeThread after the thread has terminated. The
following statement copies the exit code of the thread
referenced by pThread to dwExitCode:

DWORD dwExitCode;
::GetExitCodeThread (pThread->m_hThread, &dwExitCode);

If called for a thread that's still executing, ::GetExitCodeThread
sets dwExitCode equal to STILL_ACTIVE (0x103). In this

Programming Windows With MFC

 1070

example, the thread handle passed to ::GetExitCodeThread is
retrieved from the m_hThread data member of the CWinThread
object encapsulating the thread. Anytime you have a
CWinThread and you want to call an API function that requires
a thread handle, you can get that handle from m_hThread.

17.1.6. Autodeleting CWinThreads

The two-line code sample in the previous section looks
innocent enough, but it's an accident waiting to happen unless
you're aware of a peculiar characteristic of CWinThread and
take steps to account for it.

You already know that AfxBeginThread creates a CWinThread
object and returns its address to the caller. But how does that
CWinThread get deleted? So that you don't have to call delete
on a CWinThread pointer returned by AfxBeginThread, MFC
calls delete on that pointer itself after the thread has terminated.
Furthermore, CWinThread's destructor uses the ::CloseHandle
API function to close the thread handle. Thread handles must
be closed explicitly because they remain open even after the
threads associated with them have terminated. They have to
remain open; otherwise, functions such
as ::GetExitCodeThread couldn't possibly work.

On the surface, the fact that MFC automatically deletes
CWinThread objects and closes the corresponding thread
handles seems convenient. If MFC didn't handle these routine
housekeeping chores for you, you'd have to handle them
yourself. But there's a problem—at least a potential one. Look
again at this statement:

::GetExitCodeThread (pThread->m_hThread, &dwExitCode);

There's nothing wrong with this code if the thread hasn't
terminated, because pThread is still a valid pointer. But if the
thread has terminated, it's highly likely that MFC has deleted
the CWinThread object and that pThread is now an invalid
pointer. (I say "highly likely" because a short window of time
separates a thread's termination from the associated
CWinThread object's deletion.) An obvious solution is to copy
the thread handle from the CWinThread object to a local

Programming Windows With MFC

 1071

variable before the thread terminates and to use that handle in
the call to ::GetExitCodeThread, like this:

// While the thread is running
HANDLE hThread = pThread->m_hThread;

// Sometime later
::GetExitCodeThread (hThread, &dwExitCode);

But this code, too, is buggy. Why? Because if the CWinThread
object no longer exists, the thread handle no longer exists,
either; it has long since been closed. Failure to take into
account the autodeleting nature of CWinThreads and
the ::CloseHandle call executed by CWinThread's destructor
can lead to egregious programming errors if you use functions
such as ::GetExitCodeThread that assume a thread's handle is
still valid even if the thread is no longer running.

Fortunately, this problem has a solution—two of them, in fact.
The first solution is to prevent MFC from deleting a
CWinThread object by setting the object's m_bAutoDelete data
member equal to FALSE. The default is TRUE, which enables
autodeletion. If you choose this route, you must remember to
call delete on the CWinThread pointer returned by
AfxBeginThread, or your application will suffer memory leaks.
The following code fragment illustrates this point:

CWinThread* pThread = AfxBeginThread (ThreadFunc, NULL,
 THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);
pThread->m_bAutoDelete = FALSE;
pThread->ResumeThread ();

// Sometime later
DWORD dwExitCode;
::GetExitCodeThread (pThread->m_hThread, &dwExitCode);
if (dwExitCode == STILL_ACTIVE) {
 // The thread is still running.
}
else {
 // The thread has terminated. Delete the CWinThread object.
 delete pThread;
}

Just as important as deleting the CWinThread object is creating
the thread in a suspended state. If you don't, a small but very

Programming Windows With MFC

 1072

real chance exists that the new thread will run out its lifetime
before the thread that created it executes the statement that sets
m_bAutoDelete to FALSE. Remember: Once a thread is started,
Windows gives you no guarantees about how much or how
little CPU time that thread will be accorded.

The second solution is to allow the CWinThread to autodelete
but to use the Win32 ::DuplicateHandle function to create a
copy of the thread handle. Thread handles are
reference-counted, and using ::DuplicateHandle to duplicate a
newly opened thread handle bumps that handle's reference
count up from 1 to 2. Consequently, when CWinThread's
destructor calls ::CloseHandle, the handle isn't really closed; it
simply has its reference count decremented. The downside is
that you mustn't forget to call ::CloseHandle yourself to close
the handle. Here's an example:

CWinThread* pThread = AfxBeginThread (ThreadFunc, NULL,
 THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);

HANDLE hThread;
::DuplicateHandle (GetCurrentProcess (), pThread->m_hThread,
 GetCurrentProcess (), &hThread, 0, FALSE,
DUPLICATE_SAME_ACCESS);

pThread->ResumeThread ();

// Sometime later
DWORD dwExitCode;
::GetExitCodeThread (hThread, &dwExitCode);
if (dwExitCode == STILL_ACTIVE) {
 // The thread is still running.
}
else {
 // The thread has terminated. Close the thread handle.
 ::CloseHandle (hThread);
}

Once again, the new thread is created in a suspended state so
that the creating thread can be absolutely sure to execute code
before the new thread ends.

17.1.7. Terminating Another Thread

Generally speaking, threads can terminate only themselves. If
you want thread A to terminate thread B, you must set up a

Programming Windows With MFC

 1073

signaling mechanism that allows thread A to tell thread B to
terminate itself. A simple variable can serve as a termination
request flag, as demonstrated here:

// Thread A
nContinue = 1;
CWinThread* pThread = AfxBeginThread (ThreadFunc,
&nContinue);

nContinue = 0; // Tell thread B to terminate.

// Thread B
UINT ThreadFunc (LPVOID pParam)
{
 int* pContinue = (int*) pParam;
 while (*pContinue) {
 // Work work work work
 }
 return 0;
}

In this example, thread B checks nContinue from time to time
and terminates if nContinue changes from nonzero to 0.
Normally it's not a terrific idea for two threads to access the
same variable without synchronizing their actions, but in this
case, it's acceptable because thread B is checking only to find
out whether nContinue is 0. Of course, to prevent access
violations, you need to ensure that nContinue doesn't go out of
scope while thread B is running. You can do that by making
nContinue a static or global variable.

Now suppose that you want to modify this example so that once
thread A sets nContinue to 0, it pauses until thread B is no
longer running. Here's the proper way to do it:

// Thread A
nContinue = 1;
CWinThread* pThread = AfxBeginThread (ThreadFunc,
&nContinue);

HANDLE hThread = pThread->m_hThread; // Save the thread handle.
nContinue = 0; // Tell thread B to terminate.
::WaitForSingleObject (hThread, INFINITE);

// Thread B
UINT ThreadFunc (LPVOID pParam)

Programming Windows With MFC

 1074

{
 int* pContinue = (int*) pParam;
 while (*pContinue) {
 // Work work work work
 }
 return 0;
}

::WaitForSingleObject blocks the calling thread until the
specified object—in this case, another thread—enters a
"signaled" state. A thread becomes signaled when it terminates.
When a thread blocks in ::WaitForSingleObject, it waits very
efficiently because it's effectively suspended until the function
call returns. This example assumes that thread B won't end until
thread A tells it to. If that's not the case—if thread B could end
before thread A commands it to—thread A should create thread
B in a suspended state and make a copy of the thread handle
with ::DuplicateHandle. Otherwise, thread A could get caught
in the trap of passing an invalid thread handle
to ::WaitForSingleObject.

::WaitForSingleObject is an indispensable function that you'll
use time and time again when writing multithreaded code. The
first parameter passed to it is the handle of the object you want
to wait on. (It can also be a process handle, the handle of a
synchronization object, or a file change notification handle,
among other things.) In the example above, thread A retrieves
thread B's handle before setting nContinue to 0 because the
CWinThread object representing thread B might no longer exist
when the call to ::WaitForSingleObject executes. The second
parameter to ::WaitForSingleObject is the length of time you're
willing to wait. INFINITE means wait as long as it takes. When
you specify INFINITE, you take the chance that the calling
thread could lock up if the object it's waiting on never becomes
signaled. If you specify a number of milliseconds instead, as in

::WaitForSingleObject (hThread, 5000);

::WaitForSingleObject will return after the specified
time—here 5 seconds—has elapsed even if the object hasn't
become signaled. You can check the return value to determine
why the function returned. WAIT_OBJECT_0 means that the

Programming Windows With MFC

 1075

object became signaled, and WAIT_TIMEOUT means that it
didn't.

Given a thread handle or a valid CWinThread object wrapping
a thread handle, you can quickly determine whether the thread
is still running by calling ::WaitForSingleObject and specifying
0 for the time-out period, as shown here:

if (::WaitForSingleObject (hThread, 0) == WAIT_OBJECT_0) {
 // The thread no longer exists.
}
else {
 // The thread is still running.
}

Called this way, ::WaitForSingleObject doesn't wait; it returns
immediately. A return value equal to WAIT_OBJECT_0 means
that the thread is signaled (no longer exists), and a return value
equal to WAIT_TIMEOUT means that the thread is
nonsignaled (still exists). As usual, it's up to you to ensure that
the handle you pass to ::WaitForSingleObject is a valid one,
either by duplicating the original thread handle or by preventing
the CWinThread object from being autodeleted.

There is one way a thread can kill another thread directly, but
you should use it only as a last resort. The statement

::TerminateThread (hThread, 0);

terminates the thread whose handle is hThread and assigns it an
exit code of 0. The Win32 API reference documents some of
the many problems ::TerminateThread can cause, which range
from orphaned thread synchronization objects to DLLs that
don't get a chance to execute normal thread-shutdown code.

17.1.8. Threads, Processes, and Priorities

The scheduler is the component of the operating system that
decides which threads run when and for how long. Thread
scheduling is a complex task whose goal is to divide CPU time
among multiple threads of execution as efficiently as possible
to create the illusion that all of them are running at once. On
machines with multiple CPUs, Windows NT and Windows

Programming Windows With MFC

 1076

2000 really do run two or more threads at the same time by
assigning different threads to different processors using a
scheme called symmetric multiprocessing, or SMP. Windows
95 and Windows 98 are not SMP operating systems, so they
schedule all of their threads on the same CPU even on
multiprocessor PCs.

The scheduler uses a variety of techniques to improve
multitasking performance and to try to ensure that each thread
in the system gets an ample amount of CPU time. (For an inside
look at the Windows NT scheduler, its strategies, and its
algorithms, I highly recommend the book Inside Windows NT,
second edition, by David Solomon.) Ultimately, however, the
decision about which thread to execute next boils down to the
thread with the highest priority. At any given moment, each
thread is assigned a priority level from 0 through 31, with
higher numbers indicating higher priorities. If a priority-11
thread is waiting to execute and all other threads vying for CPU
time have priority levels of 10 or less, the priority-11 thread
runs next. If two priority-11 threads are waiting to execute, the
scheduler executes the one that has executed the least recently.
When that thread's timeslice, or quantum, is up, the other
priority-11 thread gets executed if all the other threads still
have lower priorities. As a rule, the scheduler always gives the
next timeslice to the waiting thread with the highest priority.

Does this mean that low-priority threads never get executed?
Not at all. First, remember that Windows is a message-based
operating system. If a thread calls ::GetMessage and its
message queue is empty, the thread blocks until a message
becomes available. This gives lower priority threads a chance
to execute. Most UI threads spend the vast majority of their
time blocked on the message queue, so as long as a
high-priority worker thread doesn't monopolize the CPU, even
very low priority threads typically get all the CPU time they
need. (A worker thread never blocks on the message queue
because it doesn't process messages.)

The scheduler also plays a lot of tricks with priority levels to
enhance the overall responsiveness of the system and to reduce
the chance that any thread will be starved for CPU time. If a
thread with a priority level of 7 goes for too long without
receiving a timeslice, the scheduler may temporarily boost the

Programming Windows With MFC

 1077

thread's priority level to 8 or 9 or even higher to give it a
chance to execute. Windows NT 3.x boosts the priorities of
threads that belong to the foreground process to improve the
responsiveness of the application in which the user is working,
and Windows NT 4.0 Workstation boosts the threads' quantums.
Windows also uses a technique called priority inheritance to
prevent high-priority threads from blocking for too long on
synchronization objects owned by low-priority threads. For
example, if a priority-11 thread tries to claim a mutex owned by
a priority-5 thread, the scheduler may boost the priority of the
priority-5 thread so that the mutex will come free sooner.

How do thread priorities get assigned in the first place? When
you call AfxBeginThread or CWinThread::SetThreadPriority,
you specify a relative thread priority. The operating system
combines the relative priority level with the priority class of the
process that owns the thread (more about that in a moment) to
compute a base priority level for the thread. The thread's actual
priority level—a number from 0 through 31—can vary from
moment to moment because of priority boosting and deboosting.
You can't control boosting (and you wouldn't want to even if
you could), but you can control the base priority level by
setting the process priority class and the relative thread priority
level.

17.1.8.1. Process Priority Classes

Most processes begin life with the priority class
NORMAL_PRIORITY_CLASS. Once started, however, a
process can change its priority by calling ::SetPriorityClass,
which accepts a process handle (obtainable
with ::GetCurrentProcess) and one of the specifiers shown in
the following table.

Process Priority Classes

Priority Class Description

IDLE_PRIORITY_CLASS The process runs only when the system is
idle—for example, when no other thread is
waiting for a given CPU.

NORMAL_PRIORITY_CLASS The default process priority class. The
process has no special scheduling needs.

HIGH_PRIORITY_CLASS The process receives priority over

Programming Windows With MFC

 1078

IDLE_PRIORITY_CLASS and
NORMAL_PRIORITY_CLASS processes.

REALTIME_PRIORITY_CLASS The process must have the highest possible
priority, and its threads should preempt
even threads belonging to
HIGH_PRIORITY_CLASS processes.

Most applications don't need to change their priority classes.
HIGH_PRIORITY_CLASS and
REALTIME_PRIORITY_CLASS processes can severely
inhibit the responsiveness of the system and can even delay
critical system activities such as flushing of the disk cache. One
legitimate use of HIGH_PRIORITY_CLASS is for system
applications that remain hidden most of the time but pop up a
window when a certain input event occurs. These applications
impose very little overhead on the system while they're blocked
waiting for input, but once the input appears, they receive
priority over normal applications.
REALTIME_PRIORITY_CLASS is provided primarily for the
benefit of real-time data acquisition programs that must have
the lion's share of the CPU time in order to work properly.
IDLE_PRIORITY_CLASS is ideal for screen savers, system
monitors, and other low-priority applications that are designed
to operate unobtrusively in the background.

17.1.8.2. Relative Thread Priorities

The table below shows the relative thread priority values you
can pass to AfxBeginThread and
CWinThread::SetThreadPriority. The default is
THREAD_PRIORITY_NORMAL, which AfxBeginThread
automatically assigns to a thread unless you specify otherwise.
Normally, a THREAD_PRIORITY_NORMAL thread that
belongs to a NORMAL_PRIORITY_CLASS process has a
base priority level of 8. At various times, the thread's priority
may be boosted for reasons mentioned earlier, but it will
eventually return to 8. A THREAD_PRIORITY_LOWEST
thread running in a HIGH_PRIORITY_CLASS background or
foreground process has a base priority of 11. The actual
numbers aren't as important as realizing that you can fine-tune
the relative priorities of the threads within a process to achieve
the best responsiveness and performance—and if necessary,
you can adjust the priority of the process itself.

Programming Windows With MFC

 1079

Relative Thread Priorities

Priority Value Description

THREAD_PRIORITY_IDLE The thread's base priority level is
1 if the process's priority class is
HIGH_PRIORITY_CLASS or
lower, or 16 if the process's
priority class is
REALTIME_PRIORITY_CLASS.

THREAD_PRIORITY_LOWEST The thread's base priority level is
equal to the process's priority class
minus 2.

THREAD_PRIORITY_BELOW_NORMAL The thread's base priority level is
equal to the process's priority class
minus 1.

THREAD_PRIORITY_NORMAL The default thread priority value.
The thread's base priority level is
equal to the process's priority
class.

THREAD_PRIORITY_ABOVE_NORMAL The thread's base priority level is
equal to the process's priority class
plus 1.

THREAD_PRIORITY_HIGHEST The thread's base priority level is
equal to the process's priority class
plus 2.

THREAD_PRIORITY_TIME_CRITICAL The thread's base priority level is
15 if the process's priority class is
HIGH_PRIORITY_CLASS or
lower, or 31 if the process's
priority class is
REALTIME_PRIORITY_CLASS.

Now that you understand where thread priorities come from
and how they affect the scheduling process, let's talk about how
you know when to adjust thread priorities and what values you
should assign to them. As a rule, if a high priority is required,
it's usually obvious. If it's not obvious that a thread requires a
high priority, a normal thread priority will probably do. For
most threads, the default THREAD_PRIORITY_NORMAL is
just fine. But if you're writing a communications program that
uses a dedicated thread to read and buffer data from a serial
port, you might miss bytes here and there unless the thread that
does the reading and buffering has a relative priority value of
THREAD_PRIORITY_HIGHEST or
THREAD_PRIORITY_TIME_CRITICAL.

Programming Windows With MFC

 1080

One thing's for sure: if an application is a CPU hog and it's not
designed to fulfill a specific purpose, such as performing
real-time data acquisition on a PC dedicated to that task, the
market will look upon it unfavorably. CPU time is a computer's
most precious resource. Use it judiciously, and don't get caught
in the trap of bumping up priority levels to make your own
application execute 5 percent faster when doing so might
subtract 50 percent from the speed and responsiveness of other
applications.

17.1.9. Using C Run-Time Functions in
Multithreaded Applications

Certain functions in the standard C run-time library pose
problems for multithreaded applications. strtok, asctime, and
several other C run-time functions use global variables to store
intermediate data. If thread A calls one of these functions and
thread B preempts thread A and calls the same function, global
data stored by thread B could overwrite global data stored by
thread A, or vice versa. One solution to this problem is to use
thread synchronization objects to serialize access to C run-time
functions. But even simple synchronization objects can be
expensive in terms of processor time. Therefore, most modern
C and C++ compilers come with two versions of the C run-time
library: one that's thread-safe (can safely be called by two or
more threads) and one that isn't. The thread-safe versions of the
run-time library typically don't rely on thread synchronization
objects. Instead, they store intermediate values in per-thread
data structures.

Visual C++ comes with six versions of the C run-time library.
Which one you should choose depends on whether you're
compiling a debug build or a release build, whether you want to
link with the C run-time library statically or dynamically, and,
obviously, whether your application is single-threaded or
multithreaded. The following table shows the library names and
the corresponding compiler switches.

Visual C++ Versions of the C Run-Time Library

Library
Name

Application Type Switch

Libc.lib Single-threaded; static linking; release builds /ML

Programming Windows With MFC

 1081

Libcd.lib Single-threaded; static linking; debug builds /MLd

Libcmt.lib Multithreaded; static linking; release builds /MT

Libcmtd.lib Multithreaded; static linking; debug builds /MTd

Msvcrt.lib Single-threaded or multithreaded; dynamic linking;
release builds

/MD

Msvcrtd.lib Single-threaded or multithreaded; dynamic linking;
debug builds

/MDd

Libc.lib, Libcd.lib, Libcmt.lib, and Libcmtd.lib are static link
libraries containing C run-time code; Msvcrt.lib and
Msvcrtd.lib are import libraries that enable an application to
dynamically link to functions in the Visual C++ C run-time
DLL. Of course, you don't have to fuss with compiler switches
unless you build your own make files. If you're using Visual
C++, just select the appropriate entry in the Use Run-time
Library field of the Project Settings dialog box and the IDE will
add the switches for you. Even if you write a multithreaded
application that doesn't use C run-time functions, you should
link with one of the multithreaded libraries anyway because
MFC calls certain C run-time functions itself.

In an MFC application, that's all you have to do to make calls to
C run-time functions thread-safe. Simply set the compiler
switches, and trust the class library to do the rest. In an SDK
application, you must also replace calls to ::CreateThread with
calls to _beginthreadex. MFC programmers don't need to worry
about _beginthreadex because AfxBeginThread calls it
automatically.

17.1.10. Calling MFC Member Functions Across
Thread Boundaries

Now for the bad news about writing multithreaded MFC
applications. As long as threads don't call member functions
belonging to objects created by other threads, there are few
restrictions on what they can do. However, if thread A passes a
CWnd pointer to thread B and thread B calls a member function
of that CWnd object, MFC is likely to assert in a debug build. A
release build might work fine—but then again, it might not.
There's also the possibility that a debug build won't assert but
that it won't work properly, either. It all depends on what
happens inside the framework when that particular CWnd

Programming Windows With MFC

 1082

member function is called. You can avoid a potential minefield
of problems by compartmentalizing your threads and having
each thread use only those objects that it creates rather than rely
on objects created by other threads. But for cases in which
that's simply not practical, here are a few rules to go by.

First, many MFC member functions can be safely called on
objects in other threads. Most of the inline functions defined in
the INL files in MFC's Include directory can be called across
thread boundaries because they are little more than wrappers
around API functions. But calling a noninline member function
is asking for trouble. For example, the following code, which
passes a CWnd pointer named pWnd from thread A to thread B
and has B call CWnd::GetParent through the pointer, works
without any problems:

CWinThread* pThread = AfxBeginThread (ThreadFunc, pWnd);

UINT ThreadFunc (LPVOID pParam)
{
 CWnd* pWnd = (CWnd*) pParam;
 CWnd* pParent = pWnd->GetParent ();
 return 0;
}

Simply changing GetParent to GetParentFrame, however,
causes an assertion:

CWinThread* pThread = AfxBeginThread (ThreadFunc, pWnd);

UINT ThreadFunc (LPVOID pParam)
{
 CWnd* pWnd = (CWnd*) pParam;
 // Get ready for an assertion!
 CWnd* pParent = pWnd->GetParentFrame ();
 return 0;
}

Why does GetParent work when GetParentFrame doesn't?
Because GetParent calls through almost directly to
the ::GetParent function in the API. Here's how
CWnd::GetParent is defined in Afxwin2.inl, with a little
reformatting thrown in to enhance readability:

Programming Windows With MFC

 1083

_AFXWIN_INLINE CWnd* CWnd::GetParent () const
{
 ASSERT (::IsWindow (m_hWnd));
 return CWnd::FromHandle (::GetParent (m_hWnd));
}

No problem there; m_hWnd is valid because it's part of the
CWnd object that pWnd points to, and FromHandle converts
the HWND returned by ::GetParent into a CWnd pointer.

But now consider what happens when you call
GetParentFrame, whose source code is found in Wincore.cpp.
The line that causes the assertion error is

ASSERT_VALID (this);

ASSERT_VALID calls CWnd::AssertValid, which performs a
sanity check by making sure that the HWND associated with
this appears in the permanent or temporary handle map the
framework uses to convert HWNDs into CWnds. Going from a
CWnd to an HWND is easy because the HWND is a data
member of the CWnd, but going from an HWND to a CWnd
can be done only through the handle maps. And here's the
problem: Handle maps are local to each thread and aren't
visible to other threads. If thread A created the CWnd whose
address is passed to ASSERT_VALID, the corresponding
HWND won't appear in thread B's permanent or temporary
handle map and MFC will assert. Many of MFC's noninline
member functions call ASSERT_VALID, but inline functions
don't—at least not in current releases.

Frequently, MFC's assertions protect you from calling functions
that wouldn't work anyway. In a release build, GetParentFrame
returns NULL when called from a thread other than the one in
which the parent frame was created. But in cases in which
assertion errors are spurious—that is, in cases in which the
function would work okay despite the per-thread handle
tables—you can avoid assertions by passing real handles
instead of object pointers. For example, it's safe to call
CWnd::GetTopLevelParent in a secondary thread if you call
FromHandle first to create an entry in the thread's temporary
handle map, as shown below.

Programming Windows With MFC

 1084

CWinThread* pThread = AfxBeginThread (ThreadFunc,
pWnd->m_hWnd);

UINT ThreadFunc (LPVOID pParam)
{
 CWnd* pWnd = CWnd::FromHandle ((HWND) pParam);
 CWnd* pParent = pWnd->GetTopLevelParent ();
 return 0;
}

That's why the MFC documentation warns that windows, GDI
objects, and other objects should be passed between threads
using handles instead of pointers. In general, you'll have fewer
problems if you pass handles and use FromHandle to re-create
objects in the destination threads. But don't take that to mean
that just any function will work. It won't.

What about calling member functions belonging to objects
created from "pure" MFC classes such as CDocument and
CRect—classes that don't wrap HWNDs, HDCs, or other
handle types and therefore don't rely on handle maps? Just what
you wanted to hear: some work and some don't. There's no
problem with this code:

CWinThread* pThread = AfxBeginThread (ThreadFunc, pRect);

UINT ThreadFunc (LPVOID pParam)
{
 CRect* pRect = (CRect*) pParam;
 int nArea = pRect->Width () * pRect->Height ();
 return 0;
}

But this code will assert on you:

CWinThread* pThread = AfxBeginThread (ThreadFunc, pDoc);

UINT ThreadFunc (LPVOID pParam)
{
 CDocument* pDoc = pParam;
 pDoc->UpdateAllViews (NULL);
 return 0;
}

Programming Windows With MFC

 1085

Even some seemingly innocuous functions such as
AfxGetMainWnd don't work when they're called from anywhere
but the application's primary thread.

The bottom line is that before you go calling member functions
on MFC objects created in other threads, you must understand
the implications. And the only way to understand the
implications is to study the MFC source code to see how a
particular member function behaves. Also keep in mind that
MFC isn't thread-safe, a subject we'll discuss further later in
this chapter. So even if a member function appears to be safe,
ask yourself what might happen if thread B accessed an object
created by thread A and thread A preempted thread B in the
middle of the access.

This stuff is incredibly difficult to sort out and only adds to the
complexity of writing multithreaded applications. That's why in
the real world, multithreaded MFC applications tend to do the
bulk of their user interface work in the main thread. If a
background thread wants to update the user interface, it sends
or posts a message to the main thread so that the main thread
can do the updating. You'll see examples of this kind of
messaging in this chapter's sample programs.

17.1.11. Your First Multithreaded Application

The application shown in Figure 17-1 demonstrates some of the
basic principles involved in designing and implementing a
multithreaded application. Sieve is a dialog-based application
that uses the famous Sieve of Eratosthenes algorithm to
compute the number of prime numbers between 2 and a number
that you specify. The computation begins when you click the
Start button and ends when a count appears in the box in the
center of the window. Because counting primes is
resource-intensive, Sieve does all its counting in a background
thread. (To see just how resource-intensive counting primes can
be, ask Sieve to count primes between 2 and 100,000,000.
Unless your system has gobs of memory, you'll wait a while for
the answer.) If the primary thread were to perform the counting,
Sieve would be frozen to input for the duration. But because it
delegates the task of counting primes to a worker thread, Sieve
remains responsive to user input no matter how much time the
computation requires.

Programming Windows With MFC

 1086

Figure 17-1. The Sieve window.

The thread that does the counting is launched by the Start
button's ON_BN_CLICKED handler, OnStart. You can see the
source code yourself in Figure 17-2. Here's the code that
launches the thread:

THREADPARMS* ptp = new THREADPARMS;
ptp->nMax = nMax;
ptp->hWnd = m_hWnd;
AfxBeginThread (ThreadFunc, ptp);

OnStart passes data to the worker thread in an
application-defined data structure named THREADPARMS.
One of the items included in the structure is the upper limit that
the user typed into the dialog (nMax). The other is the dialog's
window handle. The upper limit is passed to the Sieve function
that does the actual counting. The dialog's window handle is
used to post a message to the application's main window once
the worker thread has arrived at a result:

int nCount = Sieve (nMax);
::PostMessage (hWnd, WM_USER_THREAD_FINISHED,
(WPARAM) nCount, 0);

WM_USER_THREAD_FINISHED is a user-defined message
ID defined in SieveDlg.h. The main window's
WM_USER_THREAD_FINISHED handler retrieves the result
from the message's wParam and displays it in the window.

Notice that storage for the THREADPARMS structure passed
by address to the thread function is allocated in the primary
thread and deallocated in the worker thread, as shown here:

Programming Windows With MFC

 1087

// In the primary thread
THREADPARAMS* ptp = new THREADPARMS;

AfxBeginThread (ThreadFunc, ptp);

// In the worker thread
THREADPARMS* ptp = (THREADPARMS*) pParam;

delete ptp;

Why create the structure in one thread and delete it in another?
Because if you create the structure on the stack in the primary
thread, it might go out of scope before the other thread gets a
chance to access it. This is one of those annoying little details
that can cause seemingly random errors if you don't handle it
properly. Allocating the structure with new ensures that scoping
problems won't occur, and allocating memory in one thread and
deleting it in another isn't harmful. Making the structure a class
data member or declaring it globally is an equally effective
method of ensuring that it doesn't go away too soon.

When an application's primary thread terminates, the process
terminates and any other threads that belong to the process
terminate, too. Multithreaded SDK applications typically don't
bother to kill background threads before terminating, but MFC
applications that end without terminating running background
threads suffer memory leaks because the threads' CWinThread
objects don't get autodeleted. Such leaks aren't a big deal
because the operating system cleans them up almost
immediately. However, if you'd rather leave nothing to chance,
you can avoid leaking CWinThreads by deleting extant
CWinThread objects just before your application shuts down.
It's not harmful to delete a running CWinThread, but keep in
mind that you can't call CWinThread functions on a deleted
CWinThread, either.

Figure 17-2. The Sieve application.

Sieve.h
// Sieve.h : main header file for the SIEVE application
//

#if !defined(AFX_SIEVE_H__6DF40C9B_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_
)
#define AFX_SIEVE_H__6DF40C9B_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_

Programming Windows With MFC

 1088

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CSieveApp:
// See Sieve.cpp for the implementation of this class
//

class CSieveApp : public CWinApp
{
public:
 CSieveApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSieveApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CSieveApp)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_SIEVE_H__6DF40C9B_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_)

Sieve.cpp
// Sieve.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "Sieve.h"
#include "SieveDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW

Programming Windows With MFC

 1089

#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSieveApp

BEGIN_MESSAGE_MAP(CSieveApp, CWinApp)
 //{{AFX_MSG_MAP(CSieveApp)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CSieveApp construction

CSieveApp::CSieveApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CSieveApp object

CSieveApp theApp;

///
// CSieveApp initialization

BOOL CSieveApp::InitInstance()
{
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 CSieveDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;

Programming Windows With MFC

 1090

}

SieveDlg.h
// SieveDlg.h : header file
//

#if !defined(

AFX_SIEVEDLG_H__6DF40C9D_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_)
#define
AFX_SIEVEDLG_H__6DF40C9D_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#define WM_USER_THREAD_FINISHED WM_USER+0x100

UINT ThreadFunc (LPVOID pParam);
int Sieve (int nMax);

typedef struct tagTHREADPARMS {
 int nMax;
 HWND hWnd;
} THREADPARMS;

///
// CSieveDlg dialog

class CSieveDlg : public CDialog
{
// Construction
public:
 CSieveDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CSieveDlg)
 enum { IDD = IDD_SIEVE_DIALOG };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSieveDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 HICON m_hIcon;

 // Generated message map functions
 //{{AFX_MSG(CSieveDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();

Programming Windows With MFC

 1091

 afx_msg HCURSOR OnQueryDragIcon();
 afx_msg void OnStart();
 //}}AFX_MSG
 afx_msg LONG OnThreadFinished (WPARAM wParam, LPARAM
lParam);
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_SIEVEDLG_H__6DF40C9D_7EA1_11D1_8E53_E4D9F9C00000__INCLUDED_)

SieveDlg.cpp
// SieveDlg.cpp : implementation file
//

#include "stdafx.h"
#include "Sieve.h"
#include "SieveDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CSieveDlg dialog

CSieveDlg::CSieveDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CSieveDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CSieveDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 // Note that LoadIcon does not require a subsequent
 // DestroyIcon in Win32
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CSieveDlg::DoDataExchange(CDataExchange* pDX)

{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CSieveDlg)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CSieveDlg, CDialog)
 //{{AFX_MSG_MAP(CSieveDlg)

Programming Windows With MFC

 1092

 ON_BN_CLICKED(IDC_START, OnStart)
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_THREAD_FINISHED, OnThreadFinished)
END_MESSAGE_MAP()

///
// CSieveDlg message handlers

BOOL CSieveDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 SetIcon(m_hIcon, TRUE);
 SetIcon(m_hIcon, FALSE);
 return TRUE;
}

void CSieveDlg::OnStart()
{
 int nMax = GetDlgItemInt (IDC_MAX);
 if (nMax < 10) {
 MessageBox (_T ("The number you enter must be 10 or higher"));
 GetDlgItem (IDC_MAX)->SetFocus ();
 return;
 }

 SetDlgItemText (IDC_RESULT, _T (""));
 GetDlgItem (IDC_START)->EnableWindow (FALSE);

 THREADPARMS* ptp = new THREADPARMS;
 ptp->nMax = nMax;
 ptp->hWnd = m_hWnd;
 AfxBeginThread (ThreadFunc, ptp);
}

LONG CSieveDlg::OnThreadFinished (WPARAM wParam, LPARAM lParam)
{
 SetDlgItemInt (IDC_RESULT, (int) wParam);
 GetDlgItem (IDC_START)->EnableWindow (TRUE);
 return 0;
}

///
// Global functions

UINT ThreadFunc (LPVOID pParam)
{
 THREADPARMS* ptp = (THREADPARMS*) pParam;
 int nMax = ptp->nMax;
 HWND hWnd = ptp->hWnd;
 delete ptp;

 int nCount = Sieve (nMax);
 ::PostMessage (hWnd, WM_USER_THREAD_FINISHED, (WPARAM)
nCount, 0);
 return 0;
}

Programming Windows With MFC

 1093

int Sieve(int nMax)
{
 PBYTE pBuffer = new BYTE[nMax + 1];
 ::FillMemory (pBuffer, nMax + 1, 1);

 int nLimit = 2;
 while (nLimit * nLimit < nMax)
 nLimit++;

 for (int i=2; i<=nLimit; i++) {
 if (pBuffer[i]) {
 for (int k=i + i; k<=nMax; k+=i)
 pBuffer[k] = 0;
 }
 }

 int nCount = 0;
 for (i=2; i<=nMax; i++)
 if (pBuffer[i])
 nCount++;

 delete[] pBuffer;
 return nCount;
}

17.2. Thread Synchronization

In the real world, you don't usually have the luxury of starting a
thread and just letting it run. More often than not, that thread
must coordinate its actions with other threads in the application.
If two threads share a linked list, for example, accesses to the
linked list must be serialized so that both threads don't try to
modify it at the same time. Simply letting a thread go off and
do its own thing can lead to all sorts of synchronization
problems that show up only randomly in testing and that can
often be fatal to the application.

Windows supports four types of synchronization objects that
can be used to synchronize the actions performed by
concurrently running threads:

x Critical sections
x Mutexes
x Events
x Semaphores

MFC encapsulates these objects in classes named
CCriticalSection, CMutex, CEvent, and CSemaphore. It also
includes a pair of classes named CSingleLock and CMultiLock

Programming Windows With MFC

 1094

that further abstract the interfaces to thread synchronization
objects. In the sections that follow, I'll describe how to use
these classes to synchronize the actions of concurrently
executing threads.

17.2.1. Critical Sections

The simplest type of thread synchronization object is the
critical section. Critical sections are used to serialize accesses
performed on linked lists, simple variables, structures, and
other resources that are shared by two or more threads. The
threads must belong to the same process, because critical
sections don't work across process boundaries.

The idea behind critical sections is that each thread that
requires exclusive access to a resource can lock a critical
section before accessing that resource and unlock it when the
access is complete. If thread B attempts to lock a critical
section that is currently locked by thread A, thread B blocks
until the critical section comes free. While blocked, thread B
waits in an extremely efficient wait state that consumes no
processor time.

CCriticalSection::Lock locks a critical section, and
CCriticalSection::Unlock unlocks it. Let's say that a document
class includes a linked-list data member created from MFC's
CList class and that two separate threads use the linked list.
One writes to the list, and the other reads from it. To prevent
the two threads from accessing the list at exactly the same time,
you can protect the list with a critical section. The following
example uses a globally declared CCriticalSection object to
demonstrate how. (I've used global synchronization objects in
the examples to ensure that the objects are equally visible to all
the threads in a process, but no, synchronization objects don't
have to have global scope.)

// Global data
CCriticalSection g_cs;

// Thread A
g_cs.Lock ();
// Write to the linked list.

Programming Windows With MFC

 1095

g_cs.Unlock ();

// Thread B
g_cs.Lock ();
// Read from the linked list.
g_cs.Unlock ();

Now it's impossible for threads A and B to access the linked list
at the same time because both guard the list with the same
critical section. The diagram in Figure 17-3 illustrates how the
critical section prevents overlapping read and write accesses by
serializing the threads' actions.

Figure 17-3. Protecting a shared resource with a critical section.

An alternate form of CCriticalSection::Lock accepts a time-out
value, and some MFC documentation states that if you pass
Lock a time-out value, it will return if the time-out period
expires before the critical section comes free. The
documentation is wrong. You can specify a time-out value if
you want to, but Lock won't return until the critical section is
unlocked.

It's obvious why a linked list should be protected from
concurrent thread accesses, but what about simple variables?
For example, suppose thread A increments a variable with the
statement

nVar++;

Programming Windows With MFC

 1096

and thread B does something else with the variable. Should
nVar be protected with a critical section? In general, yes. What
looks to be an atomic operation in a C++ program—even the
application of a simple ++ operator—might compile into a
sequence of several machine instructions. And one thread can
preempt another between any two machine instructions. As a
rule, it's a good idea to protect any data subject to simultaneous
write accesses or simultaneous read and write accesses. A
critical section is the perfect tool for the job.

The Win32 API includes a family of functions
named ::InterlockedIncrement, ::InterlockedDecrement, ::Inter
lockedExchange, ::InterlockedCompareExchange,
and ::InterlockedExchangeAdd that you can use to safely
operate on 32-bit values without explicitly using
synchronization objects. For example, if nVar is a UINT,
DWORD, or other 32-bit data type, you can increment it with
the statement

::InterlockedIncrement (&nVar);

and the system will ensure that other accesses to nVar
performed using Interlocked functions don't overlap. nVar
should be aligned on a 32-bit boundary, or the Interlocked
functions might fail on multiprocessor Windows NT systems.
Also, ::InterlockedCompareExchange
and ::InterlockedExchangeAdd are supported only in Windows
NT 4.0 and higher and Windows 98.

17.2.2. Mutexes

Mutex is a contraction of the words mutually and exclusive.
Like critical sections, mutexes are used to gain exclusive access
to a resource shared by two or more threads. Unlike critical
sections, mutexes can be used to synchronize threads running in
the same process or in different processes. Critical sections are
generally preferred to mutexes for intraprocess thread
synchronization needs because critical sections are faster, but if
you want to synchronize threads running in two or more
different processes, mutexes are the answer.

Suppose two applications use a block of shared memory to
exchange data. Inside that shared memory is a linked list that

Programming Windows With MFC

 1097

must be protected against concurrent thread accesses. A critical
section won't work because it can't reach across process
boundaries, but a mutex will do the job nicely. Here's what you
do in each process before reading or writing the linked list:

// Global data
CMutex g_mutex (FALSE, _T ("MyMutex"));

g_mutex.Lock ();
// Read or write the linked list.
g_mutex.Unlock ();

The first parameter passed to the CMutex constructor specifies
whether the mutex is initially locked (TRUE) or unlocked
(FALSE). The second parameter specifies the mutex's name,
which is required if the mutex is used to synchronize threads in
two different processes. You pick the name, but both processes
must specify the same name so that the two CMutex objects
will reference the same mutex object in the Windows kernel.
Naturally, Lock blocks on a mutex locked by another thread,
and Unlock frees the mutex so that others can lock it.

By default, Lock will wait forever for a mutex to become
unlocked. You can build in a fail-safe mechanism by specifying
a maximum wait time in milliseconds. In the following
example, the thread waits for up to 1 minute before accessing
the resource guarded by the mutex.

g_mutex.Lock (60000);
// Read or write the linked list.
g_mutex.Unlock ();

Lock's return value tells you why the function call returned. A
nonzero return means that the mutex came free, and 0 indicates
that the time-out period expired first. If Lock returns 0, it's
normally prudent not to access the shared resource because
doing so could result in an overlapping access. Thus, code that
uses Lock's time-out feature is normally structured like this:

if (g_mutex.Lock (60000)) {
 // Read or write the linked list.
 g_mutex.Unlock ();
}

Programming Windows With MFC

 1098

There is one other difference between mutexes and critical
sections. If a thread locks a critical section and terminates
without unlocking it, other threads waiting for the critical
section to come free will block indefinitely. However, if a
thread that locks a mutex fails to unlock it before terminating,
the system deems the mutex to be "abandoned" and
automatically frees the mutex so that waiting threads can
resume.

17.2.3. Events

MFC's CEvent class encapsulates Win32 event objects. An
event is little more than a flag in the operating system kernel.
At any given time, it can be in either of two states: raised (set)
or lowered (reset). A set event is said to be in a signaled state,
and a reset event is said to be nonsignaled. CEvent::SetEvent
sets an event, and CEvent::ResetEvent resets it. A related
function, CEvent::PulseEvent, sets and clears an event in one
operation.

Events are sometimes described as "thread triggers." One
thread calls CEvent::Lock to block on an event and wait for it
to become set. Another thread sets the event and thereby
releases the waiting thread. Setting the event is like pulling a
trigger: it unblocks the waiting thread and allows it to resume
executing. An event can have one thread or several threads
blocking on it, and if your code is properly written, all waiting
threads will be released when the event becomes set.

Windows supports two different types of events: autoreset
events and manual-reset events. The difference between them is
very simple, but the implications are far-reaching. An autoreset
event is automatically reset to the nonsignaled state when a
thread blocking on it is released. A manual-reset event doesn't
reset automatically; it must be reset programmatically. The
rules for choosing between autoreset and manual-reset
events—and for using them once you've made your
selection—are as follows:

x If just one thread will be triggered by the event, use an autoreset event
and release the waiting thread with SetEvent. There's no need to call
ResetEvent because the event is reset automatically the moment the
thread is released.

x If two or more threads will be triggered by the event, use a manual-reset
event and release all waiting threads with PulseEvent. Once more, you

Programming Windows With MFC

 1099

don't need to call ResetEvent because PulseEvent resets the event for you
after releasing the threads.

It's vital to use a manual-reset event to trigger multiple threads.
Why? Because an autoreset event would be reset the moment
one of the threads was released and would therefore trigger just
one thread. It's equally important to use PulseEvent to pull the
trigger on a manual-reset event. If you use SetEvent and
ResetEvent, you have no guarantee that all waiting threads will
be released. PulseEvent not only sets and resets the event, but it
also ensures that all threads waiting on the event are released
before resetting the event.

An event is created by constructing a CEvent object.
CEvent::CEvent accepts four parameters, all of them optional.
It's prototyped as follows:

CEvent (BOOL bInitiallyOwn = FALSE,
 BOOL bManualReset = FALSE, LPCTSTR lpszName = NULL,
 LPSECURITY_ATTRIBUTES lpsaAttribute = NULL)

The first parameter, bInitiallyOwn, specifies whether the
eventobject is initially signaled (TRUE) or nonsignaled
(FALSE). The default is fine in most cases. bManualReset
specifies whether the event is a manual-reset event (TRUE) or
an autoreset event (FALSE). The third parameter, lpszName,
assigns a name to the event object. Like mutexes, events can be
used to coordinate threads running in different processes, and
for an event to span process boundaries, it must be assigned a
name. If the threads that use the event belong to the same
process, lpszName should be NULL. The final parameter,
lpsaAttribute, is a pointer to a SECURITY_ATTRIBUTES
structure describing the object's security attributes. NULL
accepts the default security attributes, which are appropriate for
most applications.

So how do you use events to synchronize threads? Here's an
example involving one thread (thread A) that fills a buffer with
data and another thread (thread B) that does something with
that data. Assume that thread B must wait for a signal from
thread A saying that the buffer is initialized and ready to go. An
autoreset event is the perfect tool for the job:

Programming Windows With MFC

 1100

// Global data
CEvent g_event; // Autoreset, initially nonsignaled

// Thread A
InitBuffer (&buffer); // Initialize the buffer.
g_event.SetEvent (); // Release thread B.

// Thread B
g_event.Lock (); // Wait for the signal.

Figure 17-4. Triggering a thread with an autoreset event.

Thread B calls Lock to block on the event object. Thread A
calls SetEvent when it's ready to release thread B. Figure 17-4
shows what happens as a result.

The lone parameter passed to Lock specifies how long the caller
is willing to wait, in milliseconds. The default is INFINITE,
which means wait as long as necessary. A nonzero return value
means that Lock returned because the object became signaled; 0
means that the time-out period expired or an error occurred.
MFC isn't doing anything fancy here. It's simply recasting the
kernel's thread synchronization objects and the API functions
that operate on them in a more object-oriented mold.

Autoreset events are fine for triggering single threads, but what
if a thread C running in parallel with thread B does something
entirely different with the buffered data? You need a
manual-reset event to release B and C together because an
autoreset event would release one or the other but not both.
Here's the code to trigger two or more threads with a
manual-reset event:

// Global data
CEvent g_event (FALSE, TRUE); // Nonsignaled, manual-reset

Programming Windows With MFC

 1101

// Thread A
InitBuffer (&buffer); // Initialize the buffer.
g_event.PulseEvent (); // Release threads B and C.

// Thread B
g_event.Lock (); // Wait for the signal.

// Thread C
g_event.Lock (); // Wait for the signal.

Notice that thread A uses PulseEvent to pull the trigger, in
accordance with the second of the two rules prescribed above.
Figure 17-5 illustrates the effect of using a manual-reset event
to trigger two threads.

Figure 17-5. Triggering two threads with a manual-reset event.

To reiterate, use autoreset events and CEvent::SetEvent to
release single threads blocking on an event, and use
manual-reset events and CEvent::PulseEvent to release
multiple threads. Abide by these simple rules and events will
serve you capably and reliably.

Sometimes events aren't used as triggers but as primitive
signaling mechanisms. For example, maybe thread B wants to
know whether thread A has completed some task, but it doesn't
want to block if the answer is no. Thread B can check the state
of an event without blocking by passing ::WaitForSingleObject
the event handle and a time-out value of 0. The event handle
can be retrieved from a CEvent's m_hObject data member:

if (::WaitForSingleObject (g_event.m_hObject, 0) ==
WAIT_OBJECT_0) {
 // The event is signaled.

Programming Windows With MFC

 1102

}
else {
 // The event is not signaled.
}

One caveat to be aware of when using an event in this manner
is that if thread B will be checking the event repeatedly until it
becomes set, make sure that the event is a manual-reset event
and not an autoreset event. Otherwise, the very act of checking
the event will reset it.

17.2.4. Semaphores

The fourth and final type of synchronization object is the
semaphore. Events, critical sections, and mutexes are "all or
nothing" objects in the sense that Lock blocks on them if any
other thread has them locked. Semaphores are different.
Semaphores maintain resource counts representing the number
of resources available. Locking a semaphore decrements its
resource count, and unlocking a semaphore increments the
resource count. A thread blocks only if it tries to lock a
semaphore whose resource count is 0. In that case, the thread
blocks until another thread unlocks the semaphore and thereby
raises the resource count or until a specified time-out period has
elapsed. Semaphores can be used to synchronize threads within
a process or threads that belong to different processes.

MFC represents semaphores with instances of the class
CSemaphore. The statement

CSemaphore g_semaphore (3, 3);

constructs a semaphore object that has an initial resource count
of 3 (parameter 1) and a maximum resource count of 3
(parameter 2). If the semaphore will be used to synchronize
threads in different processes, you should include a third
parameter assigning the semaphore a name. An optional fourth
parameter points to a SECURITY_ATTRIBUTES structure
(default=NULL). Each thread that accesses a resource
controlled by a semaphore can do so like this:

g_semaphore.Lock ();

Programming Windows With MFC

 1103

// Access the shared resource.
g_semaphore.Unlock ();

As long as no more than three threads try to access the resource
at the same time, Lock won't suspend the thread. But if the
semaphore is locked by three threads and a fourth thread calls
Lock, that thread will block until one of the other threads calls
Unlock. (See Figure 17-6.) To limit the time that Lock will wait
for the semaphore's resource count to become nonzero, you can
pass a maximum wait time (in milliseconds, as always) to the
Lock function.

Figure 17-6. Using a semaphore to guard a shared resource.

CSemaphore::Unlock can be used to increment the resource
count by more than 1 and also to find out what the resource
count was before Unlock was called. For example, suppose the
same thread calls Lock twice in succession to lay claim to two
resources guarded by a semaphore. Rather than call Unlock
twice, the thread can do its unlocking like this:

LONG lPrevCount;
g_semaphore.Unlock (2, &lPrevCount);

There are no functions in either MFC or the API that return a
semaphore's resource count other than CSemaphore::Unlock
and its API equivalent, ::ReleaseSemaphore.

A classic use for semaphores is to allow a group of m threads to
share n resources, where m is greater than n. For example,
suppose you launch 10 worker threads and charge each with the
task of gathering data. Whenever a thread fills a buffer with
data, it transmits the data through an open socket, clears the

Programming Windows With MFC

 1104

buffer, and starts gathering data again. Now suppose that only
three sockets are available at any given time. If you guard the
socket pool with a semaphore whose resource count is 3 and
code each thread so that it locks the semaphore before claiming
a socket, threads will consume no CPU time while they wait for
a socket to come free.

17.2.5. The CSingleLock and CMultiLock Classes

MFC includes a pair of classes named CSingleLock and
CMultiLock that have Lock and Unlock functions of their own.
You can wrap a critical section, mutex, event, or semaphore in
a CSingleLock object and use CSingleLock::Lock to apply a
lock, as demonstrated here:

CCriticalSection g_cs;

CSingleLock lock (&g_cs); // Wrap it in a CSingleLock.
lock.Lock (); // Lock the critical section.

Is there any advantage to locking a critical section this way
instead of calling the CCriticalSection object's Lock function
directly? Sometimes, yes. Consider what happens if the
following code throws an exception between the calls to Lock
and Unlock:

g_cs.Lock ();

g_cs.Unlock ();

If an exception occurs, the critical section will remain locked
forever because the call to Unlock will be bypassed. But look
what happens if you architect your code this way:

CSingleLock lock (&g_cs);
lock.Lock ();

lock.Unlock ();

The critical section won't be left permanently locked. Why?
Because the CSingleLock object is created on the stack, its
destructor is called if an exception is thrown. CSingleLock's
destructor calls Unlock on the contained synchronization object.

Programming Windows With MFC

 1105

In other words, CSingleLock is a handy tool for making sure
that a locked synchronization object gets unlocked even in the
face of inopportune exceptions.

CMultiLock is an altogether different animal. By using a
CMultiLock, a thread can block on up to 64 synchronization
objects at once. And depending on how it calls
CMultiLock::Lock, the thread can block until one of the
synchronization objects comes free or until all of them come
free. The following example demonstrates how a thread can
block on two events and one mutex simultaneously. Be aware
of the fact that events, mutexes, and semaphores can be
wrapped in CMultiLock objects, but critical sections can't.

CMutex g_mutex;
CEvent g_event[2];
CSyncObject* g_pObjects[3] = { &g_mutex, &g_event[0],
&g_event[1] };

// Block until all three objects become signaled.
CMultiLock multiLock (g_pObjects, 3);
multiLock.Lock ();

// Block until one of the three objects becomes signaled.
CMultiLock multiLock (g_pObjects, 3);
multiLock.Lock (INFINITE, FALSE);

CMultiLock::Lock accepts three parameters, all of which are
optional. The first specifies a time-out value
(default=INFINITE). The second specifies whether the thread
should be awakened when one of the synchronization objects
becomes unlocked (FALSE) or when all of them come
unlocked (TRUE, the default). The third is a wakeup mask that
specifies other conditions that will wake up the thread—for
example, WM_PAINT messages or mouse-button messages.
The default wakeup mask value of 0 prevents the thread from
being awakened for any reason other than that the
synchronization object (or objects) came free or the time-out
period expired.

If a thread comes unblocked after calling CMultiLock::Lock to
block until just one synchronization object becomes signaled,
it's very often the case that the thread will need to know which

Programming Windows With MFC

 1106

synchronization object became signaled. The answer can be
ascertained from Lock's return value:

CMutex g_mutex;
CEvent g_event[2];
CSyncObject* g_pObjects[3] = { &g_mutex, &g_event[0],
&g_event[1] };

CMultiLock multiLock (g_pObjects, 3);
DWORD dwResult = multiLock.Lock (INFINITE, FALSE);
DWORD nIndex = dwResult _ WAIT_OBJECT_0;
if (nIndex == 0) {
 // The mutex became signaled.
}
else if (nIndex == 1) {
 // The first event became signaled.
}
else if (nIndex == 2) {
 // The second event became signaled.
}

Be aware that if you pass Lock a time-out value other than
INFINITE, you should compare the return value to
WAIT_TIMEOUT before subtracting WAIT_OBJECT_0 in
case Lock returned because the time-out period expired. Also, if
Lock returns because an abandoned mutex became signaled,
you must subtract WAIT_ABANDONED_0 from the return
value instead of WAIT_OBJECT_0. For further details, consult
the documentation for CMultiLock::Lock.

Here's one example of a situation in which CMultiLock can be
useful. Suppose three separate threads—threads A, B, and
C—are working together to prepare data in a buffer. Once the
data is ready, thread D transmits the data through a socket or
writes it to a file. However, thread D can't be called until
threads A, B, and C have completed their work. The solution?
Create separate event objects to represent threads A, B, and C,
and let thread D use a CMultiLock object to block until all three
events become signaled. As each thread completes its work, it
sets the corresponding event object to the signaled state. Thread
D therefore blocks until the last of the three threads signals that
it's done.

Programming Windows With MFC

 1107

17.2.6. Writing Thread-Safe Classes

MFC classes are thread-safe at the class level but not at the
object level. Translated, this means that it's safe for two threads
to access two separate instances of the same class but that
problems could result if two threads are allowed to access the
same instance at the same time. MFC's designers chose not to
make it thread-safe at the object level for performance reasons.
The simple act of locking an unlocked critical section can
consume hundreds of clock cycles on a Pentium processor. If
every access to an object of an MFC class locked a critical
section, the performance of single-threaded applications would
suffer needlessly.

To illustrate what it means for a class to be thread-safe, think
about what might happen if two threads using the same CString
object made no attempt to synchronize their actions. Let's say
that thread A decides to set the string, whose name is
g_strFileName, equal to the text string referenced by pszFile:

g_strFileName = pszFile;

At about the same time, thread B decides to display
g_strFileName on the screen by passing it to CDC::TextOut:

pDC->TextOut (x, y, g_strFileName);

What gets displayed on the screen? The old value of
g_strFileName or the new value? Maybe neither. Copying text
to a CString object is a multistep operation that involves
allocating buffer space to hold the text, performing a memcpy to
copy the characters, setting the CString data member that stores
the string length equal to the number of characters that were
copied, adding a terminating 0 to the end, and so on. If thread B
interrupts this process at the wrong moment, there's no telling
what state the CString might be in when it's passed to TextOut.
The output might be improperly truncated. Or TextOut might
display garbage on the screen or cause an access violation.

One way to synchronize access to g_strFileName is to protect it
with a critical section, as shown here:

Programming Windows With MFC

 1108

// Global data
CCriticalSection g_cs;

// Thread A
g_cs.Lock ();
g_strFileName = pszFile;
g_cs.Unlock ();

// Thread B
g_cs.Lock ();
pDC->TextOut (x, y, g_strFileName);
g_cs.Unlock ();

An alternative approach is to derive a class from CString and
make the derived class thread-safe by building in a critical
section that's automatically locked anytime an access occurs.
Then the object itself ensures that accesses are performed in a
thread-safe way, and it's no longer incumbent upon the
application that uses the object to synchronize the actions of its
threads.

Deriving a class and making it thread-safe is basically a matter
of overriding every member function that reads or writes an
object's data and wrapping calls to member functions in the
base class with calls to lock and unlock a synchronization
object that's a member of the derived class. Ditto for
thread-safe classes that aren't derived from other classes but are
designed from the ground up: add a CCriticalSection or
CMutex data member to the class, and lock and unlock the
synchronization object before and after every access.

It's not always possible to make a class entirely thread-safe. If a
thread uses GetBuffer or an LPCTSTR operator to get a pointer
to the text of a CString, for example, the CString itself has no
control over what the caller does with that pointer. In that case,
it's still the responsibility of the thread that uses the CString
object to coordinate its accesses with those of other threads.

The point to take home from all of this is that objects are not
thread-safe by default. You can use synchronization objects to
access other objects in a thread-safe way, and you can develop
classes that are inherently thread-safe by controlling access to
objects created from those classes. But allowing one thread to
read data from an object while another thread modifies the

Programming Windows With MFC

 1109

object's data—or vice versa—is a recipe for disaster. To make
matters worse, errors of this nature often show up randomly in
testing. You might run the application 1,000 times and never
experience the debilitating effects of an overlapping access. But
as sure as the possibility exists, someone using your application
will experience a dual access that occurs at the worst possible
moment and brings the entire application (and possibly the
operating system, too) crashing to the ground.

17.2.7. The ImageEdit Application

The ImageEdit application shown in Figure 17-7 is an enhanced
version of Chapter 15's Vista application, one that uses a
separate thread to perform a complex image processing task in
the background. When you select Convert To Gray Scale from
the Effects menu, ImageEdit scans the current bitmap pixel by
pixel, converts each pixel to a shade of gray, and adjusts the
color palette to display an accurate gray-scale rendition of the
original color image. The conversion function is an ideal
candidate for a worker thread because it can take anywhere
from a few seconds to several minutes to run, depending on the
size of the bitmap, the speed of the CPU, and other factors. The
code that performs the conversion is far from optimal; in fact,
its speed could be improved by a factor of 10 or more if it were
rewritten to operate directly on the bitmap's bits rather than to
call CDC::GetPixel and CDC::SetPixel on every pixel. But for
demonstration purposes, it's fine. And using CDC pixel
functions to get and set pixel colors allows us to do in about 20
lines of code what could easily require several hundred if we
rewrote ImageEdit to process raw bitmap data.

Programming Windows With MFC

 1110

Figure 17-7. The ImageEdit window.

The bulk of ImageEdit's source code is reproduced in Figure
17-8. I wanted to show a multithreaded document/view
application in this chapter because there are certain issues
unique to writing multithreaded document/view programs that
don't come up in multithreaded SDK applications or in
multithreaded MFC applications that don't use documents and
views. For example, it's not unusual for a document object to
launch a worker thread to process the document's data. But how
can a background thread let the document object know that
processing is complete? It can't post a message to the document
because a document isn't a window. It's a bad idea for the
document to block on an event waiting for the thread to
complete its mission, because doing so would block the
application's primary thread and effectively suspend the
message loop. Yet the document usually needs to know when
the thread is finished so that it can update its views. The
question is, How?

Figure 17-8. The ImageEdit application.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(
 AFX_MAINFRM_H__9D77AEE8_AA14_11D2_8E53_006008A82731__INCLUDED_)
#define
AFX_MAINFRM_H__9D77AEE8_AA14_11D2_8E53_006008A82731__INCLUDED_

Programming Windows With MFC

 1111

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CSpecialStatusBar m_wndStatusBar;

// Generated message map functions protected:
 int m_nPercentDone;
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg BOOL OnQueryNewPalette();
 afx_msg void OnPaletteChanged(CWnd* pFocusWnd);
 //}}AFX_MSG
 afx_msg LRESULT OnUpdateImageStats (WPARAM wParam, LPARAM
lParam);
 afx_msg LRESULT OnThreadUpdate (WPARAM wParam, LPARAM
lParam);
 afx_msg LRESULT OnThreadFinished (WPARAM wParam, LPARAM
lParam);
 afx_msg LRESULT OnThreadAborted (WPARAM wParam, LPARAM
lParam);
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}

Programming Windows With MFC

 1112

// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_MAINFRM_H__9D77AEE8_AA14_11D2_8E53_006008A82731__INCLUD
ED_)

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "ImageEdit.h"
#include "ImageEditDoc.h"
#include "SpecialStatusBar.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)

 ON_WM_CREATE()
 ON_WM_QUERYNEWPALETTE()
 ON_WM_PALETTECHANGED()
 //}}AFX_MSG_MAP
 ON_MESSAGE (WM_USER_UPDATE_STATS, OnUpdateImageStats)
 ON_MESSAGE (WM_USER_THREAD_UPDATE, OnThreadUpdate)
 ON_MESSAGE (WM_USER_THREAD_FINISHED, OnThreadFinished)
 ON_MESSAGE (WM_USER_THREAD_ABORTED, OnThreadAborted)
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR,
 ID_SEPARATOR,
 ID_SEPARATOR
};

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 m_nPercentDone = -1;
}

Programming Windows With MFC

 1113

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndStatusBar.Create(this))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

BOOL CMainFrame::OnQueryNewPalette()
{
 CDocument* pDoc = GetActiveDocument ();
 if (pDoc != NULL)
 GetActiveDocument ()->UpdateAllViews (NULL);
 return TRUE;
}

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
{
 if (pFocusWnd != this) {
 CDocument* pDoc = GetActiveDocument ();
 if (pDoc != NULL)

Programming Windows With MFC

 1114

 GetActiveDocument ()->UpdateAllViews (NULL);
 }
}

LRESULT CMainFrame::OnUpdateImageStats (WPARAM wParam, LPARAM
lParam)
{
 m_wndStatusBar.SetImageStats ((LPCTSTR) lParam);
 return 0;
}

LRESULT CMainFrame::OnThreadUpdate (WPARAM wParam, LPARAM
lParam)
{
 int nPercentDone = ((int) wParam * 100) / (int) lParam;
 if (nPercentDone != m_nPercentDone) {
 m_wndStatusBar.SetProgress (nPercentDone);
 m_nPercentDone = nPercentDone;
 }
 return 0;
}

LRESULT CMainFrame::OnThreadFinished (WPARAM wParam, LPARAM
lParam)
{
 CImageEditDoc* pDoc = (CImageEditDoc*) GetActiveDocument ();
 if (pDoc != NULL) {
 pDoc->ThreadFinished ();
 m_wndStatusBar.SetProgress (0);
 m_nPercentDone = -1;
 }
 return 0;
}

LRESULT CMainFrame::OnThreadAborted (WPARAM wParam, LPARAM
lParam)
{
 CImageEditDoc* pDoc = (CImageEditDoc*) GetActiveDocument ();
 if (pDoc != NULL) {
 pDoc->ThreadAborted ();
 m_wndStatusBar.SetProgress (0);
 m_nPercentDone = -1;
 }
 return 0;
}

ImageEditDoc.h
// ImageEditDoc.h : interface of the CImageEditDoc class
//
///

#if !defined(

AFX_IMAGEEDITDOC_H__9D77AEEA_AA14_11D2_8E53_006008A82731__I
NCLUDED_)
#define

Programming Windows With MFC

 1115

AFX_IMAGEEDITDOC_H__9D77AEEA_AA14_11D2_8E53_006008A82731__I
NCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
UINT ThreadFunc (LPVOID pParam);
LOGPALETTE* CreateGrayScale ();

class CImageEditDoc : public CDocument
{
protected: // create from serialization only
 CImageEditDoc();
 DECLARE_DYNCREATE(CImageEditDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CImageEditDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 void ThreadAborted();
 void ThreadFinished();
 CPalette* GetPalette();
 CBitmap* GetBitmap();
 virtual ~CImageEditDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 CCriticalSection m_cs;
 CEvent m_event;
 HANDLE m_hThread;
 BOOL m_bWorking;
 CPalette m_palette;
 CBitmap m_bitmap;
 //{{AFX_MSG(CImageEditDoc)
 afx_msg void OnGrayScale();
 afx_msg void OnUpdateGrayScale(CCmdUI* pCmdUI);
 //}}AFX_MSG

Programming Windows With MFC

 1116

 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_IMAGEEDITDOC_H__9D77AEEA_AA14_11D2_8E53_006008A82731__INCLUDED_)

ImageEditDoc.cpp
// ImageEditDoc.cpp : implementation of the CImageEditDoc class
//

#include "stdafx.h"
#include "ImageEdit.h"

#include "ImageEditDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CImageEditDoc

IMPLEMENT_DYNCREATE(CImageEditDoc, CDocument)

BEGIN_MESSAGE_MAP(CImageEditDoc, CDocument)
 //{{AFX_MSG_MAP(CImageEditDoc)
 ON_COMMAND(ID_EFFECTS_GRAY_SCALE, OnGrayScale)
 ON_UPDATE_COMMAND_UI(ID_EFFECTS_GRAY_SCALE,
OnUpdateGrayScale)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
///
// CImageEditDoc construction/destruction

CImageEditDoc::CImageEditDoc() :
 m_event (FALSE, TRUE) // Manual-reset event, initially unowned
{
 m_hThread = NULL;
 m_bWorking = FALSE;
}

CImageEditDoc::~CImageEditDoc()
{
}

BOOL CImageEditDoc::OnNewDocument()

Programming Windows With MFC

 1117

{
 if (!CDocument::OnNewDocument())
 return FALSE;
 return TRUE;
}

///
// CImageEditDoc diagnostics

#ifdef _DEBUG
void CImageEditDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CImageEditDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CImageEditDoc commands

BOOL CImageEditDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 //
 // Return now if an image is being processed.
 //

 if (m_bWorking) {
 AfxMessageBox (_T ("You can't open an image while another is " \
 "being converted"));
 return FALSE;
 }

 //
 // Let the base class do its thing.
 //
 if (!CDocument::OnOpenDocument (lpszPathName))
 return FALSE;

 //
 // Open the file and create a DIB section from its contents.
 //
 HBITMAP hBitmap = (HBITMAP) ::LoadImage (NULL, lpszPathName,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE œ
LR_CREATEDIBSECTION);

 if (hBitmap == NULL) {
 CString string;
 string.Format (_T ("%s does not contain a DIB"), lpszPathName);
 AfxMessageBox (string);
 return FALSE;
 }

Programming Windows With MFC

 1118

 m_bitmap.Attach (hBitmap);

 //
 // Return now if this device doesn't support palettes.
 //
 CClientDC dc (NULL);
 if ((dc.GetDeviceCaps (RASTERCAPS) & RC_PALETTE) == 0)
 return TRUE;

 //
 // Create a palette to go with the DIB section.
 //
 if ((HBITMAP) m_bitmap != NULL) {
 DIBSECTION ds;
 m_bitmap.GetObject (sizeof (DIBSECTION), &ds);

 int nColors;
 if (ds.dsBmih.biClrUsed != 0)
 nColors = ds.dsBmih.biClrUsed;
 else
 nColors = 1 << ds.dsBmih.biBitCount;

 //
 // Create a halftone palette if the DIB section contains more
 // than 256 colors.
 //
 if (nColors > 256)
 m_palette.CreateHalftonePalette (&dc);

 //
 // Create a custom palette from the DIB section's color table
 // if the number of colors is 256 or less.
 //
 else {
 RGBQUAD* pRGB = new RGBQUAD[nColors];

 CDC memDC;
 memDC.CreateCompatibleDC (&dc);
 CBitmap* pOldBitmap = memDC.SelectObject (&m_bitmap);
 ::GetDIBColorTable ((HDC) memDC, 0, nColors, pRGB);
 memDC.SelectObject (pOldBitmap);

 UINT nSize = sizeof (LOGPALETTE) +
 (sizeof (PALETTEENTRY) * (nColors - 1));
 LOGPALETTE* pLP = (LOGPALETTE*) new BYTE[nSize];

 pLP->palVersion = 0x300;
 pLP->palNumEntries = nColors;

 for (int i=0; i<nColors; i++) {
 pLP->palPalEntry[i].peRed = pRGB[i].rgbRed;
 pLP->palPalEntry[i].peGreen = pRGB[i].rgbGreen;
 pLP->palPalEntry[i].peBlue = pRGB[i].rgbBlue;
 pLP->palPalEntry[i].peFlags = 0;
 }

Programming Windows With MFC

 1119

 m_palette.CreatePalette (pLP);
 delete[] pLP;
 delete[] pRGB;
 }
 }
 return TRUE;
}

void CImageEditDoc::DeleteContents()
{
 if ((HBITMAP) m_bitmap != NULL)
 m_bitmap.DeleteObject ();

 if ((HPALETTE) m_palette != NULL)
 m_palette.DeleteObject ();

 CDocument::DeleteContents();
}

CBitmap* CImageEditDoc::GetBitmap()
{
 return ((HBITMAP) m_bitmap == NULL) ? NULL : &m_bitmap;
}

CPalette* CImageEditDoc::GetPalette()
{
 return ((HPALETTE) m_palette == NULL) ? NULL : &m_palette;
}

void CImageEditDoc::ThreadFinished()
{
 ASSERT (m_hThread != NULL);
 ::WaitForSingleObject (m_hThread, INFINITE);
 ::CloseHandle (m_hThread);
 m_hThread = NULL;
 m_bWorking = FALSE;

 //
 // Replace the current palette with a gray scale palette.
 //
 if ((HPALETTE) m_palette != NULL) {
 m_palette.DeleteObject ();
 LOGPALETTE* pLP = CreateGrayScale ();
 m_palette.CreatePalette (pLP);
 delete[] pLP;
 }

 //
 // Tell the view to repaint.
 //
 UpdateAllViews (NULL);
}

void CImageEditDoc::ThreadAborted()
{
 ASSERT (m_hThread != NULL);

Programming Windows With MFC

 1120

 ::WaitForSingleObject (m_hThread, INFINITE);
 ::CloseHandle (m_hThread);
 m_hThread = NULL;
 m_bWorking = FALSE;
}

void CImageEditDoc::OnGrayScale()
{
 if (!m_bWorking) {
 m_bWorking = TRUE;
 m_event.ResetEvent ();

 //
 // Package data to pass to the image processing thread.
 //
 THREADPARMS* ptp = new THREADPARMS;
 ptp->pWnd = AfxGetMainWnd ();
 ptp->pBitmap = &m_bitmap;
 ptp->pPalette = &m_palette;
 ptp->pCriticalSection = &m_cs;
 ptp->pEvent = &m_event;

 //
 // Start the image processing thread and duplicate its handle.
 //
 CWinThread* pThread = AfxBeginThread (ThreadFunc, ptp,
 THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);

 ::DuplicateHandle (GetCurrentProcess (),
 pThread->m_hThread, GetCurrentProcess (), &m_hThread,
 0, FALSE, DUPLICATE_SAME_ACCESS);

 pThread->ResumeThread ();
 }
 else
 //
 // Kill the image processing thread.
 //
 m_event.SetEvent ();
}

void CImageEditDoc::OnUpdateGrayScale(CCmdUI* pCmdUI)
{
 if (m_bWorking) {
 pCmdUI->SetText (_T ("Stop &Gray Scale Conversion"));
 pCmdUI->Enable ();
 }
 else {
 pCmdUI->SetText (_T ("Convert to &Gray Scale"));
 pCmdUI->Enable ((HBITMAP) m_bitmap != NULL);
 }
}

///
// Thread function and other globals

Programming Windows With MFC

 1121

UINT ThreadFunc (LPVOID pParam)
{
 THREADPARMS* ptp = (THREADPARMS*) pParam;
 CWnd* pWnd = ptp->pWnd;
 CBitmap* pBitmap = ptp->pBitmap;
 CPalette* pPalette = ptp->pPalette;
 CCriticalSection* pCriticalSection = ptp->pCriticalSection;
 CEvent* pKillEvent = ptp->pEvent;
 delete ptp;

 DIBSECTION ds;
 pBitmap->GetObject (sizeof (DIBSECTION), &ds);
 int nWidth = ds.dsBm.bmWidth;
 int nHeight = ds.dsBm.bmHeight;

 //
 // Initialize one memory DC (memDC2) to hold a color copy of the
 // image and another memory DC (memDC1) to hold a gray scale copy.
 //
 CClientDC dc (pWnd);
 CBitmap bitmap1, bitmap2;
 bitmap1.CreateCompatibleBitmap (&dc, nWidth, nHeight);
 bitmap2.CreateCompatibleBitmap (&dc, nWidth, nHeight);

 CDC memDC1, memDC2;
 memDC1.CreateCompatibleDC (&dc);
 memDC2.CreateCompatibleDC (&dc);
 CBitmap* pOldBitmap1 = memDC1.SelectObject (&bitmap1);
 CBitmap* pOldBitmap2 = memDC2.SelectObject (&bitmap2);

 CPalette* pOldPalette1 = NULL;
 CPalette* pOldPalette2 = NULL;
 CPalette grayPalette;

 if (pPalette->m_hObject != NULL) {
 LOGPALETTE* pLP = CreateGrayScale ();
 grayPalette.CreatePalette (pLP);
 delete[] pLP;

 pOldPalette1 = memDC1.SelectPalette (&grayPalette, FALSE);
 pOldPalette2 = memDC2.SelectPalette (pPalette, FALSE);
 memDC1.RealizePalette ();
 memDC2.RealizePalette ();
 }

 //
 // Copy the bitmap to memDC2.
 //
 CDC memDC3;
 memDC3.CreateCompatibleDC (&dc);
 pCriticalSection->Lock ();
 CBitmap* pOldBitmap3 = memDC3.SelectObject (pBitmap);
 memDC2.BitBlt (0, 0, nWidth, nHeight, &memDC3, 0, 0, SRCCOPY);
 memDC3.SelectObject (pOldBitmap3);
 pCriticalSection->Unlock ();

Programming Windows With MFC

 1122

 //
 // Convert the colors in memDC2 to shades of gray in memDC1.
 //
 int x, y;
 COLORREF crColor;
 BYTE grayLevel;

 for (y=0; y<nHeight; y++) {
 for (x=0; x<nWidth; x++) {
 crColor = memDC2.GetPixel (x, y);
 grayLevel = (BYTE)
 (((((UINT) GetRValue (crColor)) * 30) +
 (((UINT) GetGValue (crColor)) * 59) +
 (((UINT) GetBValue (crColor)) * 11)) / 100);
 memDC1.SetPixel (x, y,
 PALETTERGB (grayLevel, grayLevel, grayLevel));
 }

 //
 // Kill the thread if the pKillEvent event is signaled.
 //
 if (::WaitForSingleObject (pKillEvent->m_hObject, 0) ==
 WAIT_OBJECT_0) {

 memDC1.SelectObject (pOldBitmap1);
 memDC2.SelectObject (pOldBitmap2);

 if (pPalette->m_hObject != NULL) {
 memDC1.SelectPalette (pOldPalette1, FALSE);
 memDC2.SelectPalette (pOldPalette2, FALSE);
 }
 pWnd->PostMessage (WM_USER_THREAD_ABORTED, y +
1, 0);
 return (UINT) -1;
 }
 pWnd->SendMessage (WM_USER_THREAD_UPDATE, y + 1,
nHeight);
 }

 //
 // Copy the gray scale image over the original bitmap.
 //
 CPalette* pOldPalette3 = NULL;
 if (pPalette->m_hObject != NULL) {
 pOldPalette3 = memDC3.SelectPalette (&grayPalette, FALSE);
 memDC3.RealizePalette ();
 }
 pCriticalSection->Lock ();
 pOldBitmap3 = memDC3.SelectObject (pBitmap);
 memDC3.BitBlt (0, 0, nWidth, nHeight, &memDC1, 0, 0, SRCCOPY);
 memDC3.SelectObject (pOldBitmap3);
 pCriticalSection->Unlock ();

 //
 // Clean up the memory DCs.
 //

Programming Windows With MFC

 1123

 memDC1.SelectObject (pOldBitmap1);
 memDC2.SelectObject (pOldBitmap2);

 if (pPalette->m_hObject != NULL) {
 memDC1.SelectPalette (pOldPalette1, FALSE);
 memDC2.SelectPalette (pOldPalette2, FALSE);
 memDC3.SelectPalette (pOldPalette3, FALSE);
 }

 //
 // Tell the frame window we're done.
 //
 pWnd->PostMessage (WM_USER_THREAD_FINISHED, 0, 0);
 return 0;
}

LOGPALETTE* CreateGrayScale ()
{
 UINT nSize = sizeof (LOGPALETTE) + (sizeof (PALETTEENTRY) *
63);
 LOGPALETTE* pLP = (LOGPALETTE*) new BYTE[nSize];

 pLP->palVersion = 0x300;
 pLP->palNumEntries = 64;

 for (int i=0; i<64; i++) {
 pLP->palPalEntry[i].peRed = i * 4;
 pLP->palPalEntry[i].peGreen = i * 4;
 pLP->palPalEntry[i].peBlue = i * 4;
 pLP->palPalEntry[i].peFlags = 0;
 }
 return pLP;
}

ImageEditView.h
// ImageEditView.h : interface of the CImageEditView class
//
///

#if !defined(

AFX_IMAGEEDITVIEW_H__9D77AEEC_AA14_11D2_8E53_006008A82731__INCLUDED_)
#define

AFX_IMAGEEDITVIEW_H__9D77AEEC_AA14_11D2_8E53_006008A82731__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CImageEditView : public CScrollView
{
protected: // create from serialization only
 CImageEditView();
 DECLARE_DYNCREATE(CImageEditView)

Programming Windows With MFC

 1124

// Attributes
public:
 CImageEditDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CImageEditView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CImageEditView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CImageEditView)
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in ImageEditView.cpp
inline CImageEditDoc* CImageEditView::GetDocument()
 { return (CImageEditDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_IMAGEEDITVIEW_H__9D77AEEC_AA14_11D2_8E53_006008A82731__INCLUDED_)

ImageEditView.cpp
// ImageEditView.cpp : implementation of the CImageEditView class
//

#include "stdafx.h"

Programming Windows With MFC

 1125

#include "ImageEdit.h"

#include "ImageEditDoc.h"
#include "ImageEditView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CImageEditView

IMPLEMENT_DYNCREATE(CImageEditView, CScrollView)

BEGIN_MESSAGE_MAP(CImageEditView, CScrollView)
 //{{AFX_MSG_MAP(CImageEditView)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CImageEditView construction/destruction

CImageEditView::CImageEditView()
{
}

CImageEditView::~CImageEditView()
{
}

BOOL CImageEditView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}

///
// CImageEditView drawing

void CImageEditView::OnDraw(CDC* pDC)
{
 CImageEditDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBitmap* pBitmap = pDoc->GetBitmap ();

 if (pBitmap != NULL) {
 CPalette* pOldPalette;
 CPalette* pPalette = pDoc->GetPalette ();

 if (pPalette != NULL) {
 pOldPalette = pDC->SelectPalette (pPalette, FALSE);
 pDC->RealizePalette ();
 }

Programming Windows With MFC

 1126

 DIBSECTION ds;
 pBitmap->GetObject (sizeof (DIBSECTION), &ds);

 CDC memDC;
 memDC.CreateCompatibleDC (pDC);
 CBitmap* pOldBitmap = memDC.SelectObject (pBitmap);

 pDC->BitBlt (0, 0, ds.dsBm.bmWidth, ds.dsBm.bmHeight,
&memDC,
 0, 0, SRCCOPY);

 memDC.SelectObject (pOldBitmap);

 if (pPalette != NULL)
 pDC->SelectPalette (pOldPalette, FALSE);
 }
}

void CImageEditView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate ();

 CString string;
 CSize sizeTotal;
 CBitmap* pBitmap = GetDocument ()->GetBitmap ();

 //
 // If a bitmap is loaded, set the view size equal to the bitmap size.
 // Otherwise, set the view's width and height to 0.
 //
 if (pBitmap != NULL) {
 DIBSECTION ds;
 pBitmap->GetObject (sizeof (DIBSECTION), &ds);
 sizeTotal.cx = ds.dsBm.bmWidth;
 sizeTotal.cy = ds.dsBm.bmHeight;
 string.Format (_T ("\t%d x %d, %d bpp"), ds.dsBm.bmWidth,
 ds.dsBm.bmHeight, ds.dsBmih.biBitCount);
 }
 else {
 sizeTotal.cx = sizeTotal.cy = 0;
 string.Empty ();
 }

 AfxGetMainWnd ()->SendMessage (WM_USER_UPDATE_STATS, 0,
 (LPARAM) (LPCTSTR) string);
 SetScrollSizes (MM_TEXT, sizeTotal);
}

///
// CImageEditView diagnostics

#ifdef _DEBUG
void CImageEditView::AssertValid() const
{
 CScrollView::AssertValid();

Programming Windows With MFC

 1127

}

void CImageEditView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CImageEditDoc* CImageEditView::GetDocument() // non-debug version is
inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CImageEditDoc)));
 return (CImageEditDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CImageEditView message handlers

SpecialStatusBar.h
// SpecialStatusBar.h: interface for the CSpecialStatusBar class.
//
//

#if !defined(

AFX_SPECIALSTATUSBAR_H__4BA7D301_AA24_11D2_8E53_006008A82731__INCLUDE
D_)
#define

AFX_SPECIALSTATUSBAR_H__4BA7D301_AA24_11D2_8E53_006008A82731__INCLUDE
D_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSpecialStatusBar : public CStatusBar
{
public:
 void SetProgress (int nPercent);
 void SetImageStats(LPCTSTR pszStats);
 CSpecialStatusBar();
 virtual ~CSpecialStatusBar();

protected:
 CProgressCtrl m_wndProgress;
 afx_msg int OnCreate (LPCREATESTRUCT lpcs);
 afx_msg void OnSize (UINT nType, int cx, int cy);
 DECLARE_MESSAGE_MAP ()
};

Programming Windows With MFC

 1128

#endif
// !defined(
//
AFX_SPECIALSTATUSBAR_H__4BA7D301_AA24_11D2_8E53_006008A82731__INCLUDE
D_)

SpecialStatusBar.cpp
// SpecialStatusBar.cpp: implementation of the CSpecialStatusBar class.
//
//

#include "stdafx.h"
#include "ImageEdit.h"
#include "SpecialStatusBar.h"
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif

//
// Construction/Destruction
//

BEGIN_MESSAGE_MAP(CSpecialStatusBar, CStatusBar)
 ON_WM_CREATE ()
 ON_WM_SIZE ()
END_MESSAGE_MAP()

CSpecialStatusBar::CSpecialStatusBar()
{
}

CSpecialStatusBar::~CSpecialStatusBar()
{
}

int CSpecialStatusBar::OnCreate (LPCREATESTRUCT lpcs)
{
 static UINT nIndicators[] =
 {
 ID_SEPARATOR,
 ID_SEPARATOR,
 ID_SEPARATOR
 };

 if (CStatusBar::OnCreate (lpcs) == -1)
 return -1;

 //
 // Add panes to the status bar.
 //
 SetIndicators (nIndicators, sizeof (nIndicators) / sizeof (UINT));

 //

Programming Windows With MFC

 1129

 // Size the status bar panes.
 //
 TEXTMETRIC tm;
 CClientDC dc (this);
 CFont* pFont = GetFont ();

 CFont* pOldFont = dc.SelectObject (pFont);
 dc.GetTextMetrics (&tm);
 dc.SelectObject (pOldFont);

 int cxWidth;
 UINT nID, nStyle;
 GetPaneInfo (1, nID, nStyle, cxWidth);
 SetPaneInfo (1, nID, nStyle, tm.tmAveCharWidth * 24);
 GetPaneInfo (2, nID, nStyle, cxWidth);
 SetPaneInfo (2, nID, SBPS_NOBORDERS, tm.tmAveCharWidth * 24);

 //
 // Place a progress control in the rightmost pane.
 //
 CRect rect;
 GetItemRect (2, &rect);
 m_wndProgress.Create (WS_CHILD œ WS_VISIBLE œ PBS_SMOOTH,
 rect, this, -1);
 m_wndProgress.SetRange (0, 100);
 m_wndProgress.SetPos (0);
 return 0;
}

void CSpecialStatusBar::OnSize (UINT nType, int cx, int cy)
{
 CStatusBar::OnSize (nType, cx, cy);

 //
 // Resize the rightmost pane to fit the resized status bar.
 //
 CRect rect;
 GetItemRect (2, &rect);
 m_wndProgress.SetWindowPos (NULL, rect.left, rect.top,
 rect.Width (), rect.Height (), SWP_NOZORDER);
}

void CSpecialStatusBar::SetImageStats(LPCTSTR pszStats)
{
 SetPaneText (1, pszStats, TRUE);
}

void CSpecialStatusBar::SetProgress(int nPercent)
{
 ASSERT (nPercent >= 0 && nPercent <= 100);
 m_wndProgress.SetPos (nPercent);
}

ImageEdit demonstrates a practical solution to the problem of
how a worker thread can let a document object know when it's

Programming Windows With MFC

 1130

finished. When Convert To Gray Scale is selected from the
Effects menu, the document's OnGrayScale function launches a
background thread that executes the ThreadFunc function.
ThreadFunc processes the bitmap and posts a
WM_USER_THREAD_FINISHED message to the
application's frame window just before it terminates. The frame
window, in turn, calls the document's ThreadFinished function
to notify the document that the image has been converted, and
ThreadFinished calls UpdateAllViews.

Posting a message to the frame window and having it call down
to the document object is not the same as having the thread
function call a function in the document object directly because
the PostMessage call performs a virtual transfer of control to
the primary thread. If ThreadFunc called the document object
itself, UpdateAllViews would be called in the context of the
background thread and would fail.

For good measure, ThreadFunc sends a
WM_USER_THREAD_UPDATE message to the main
window each time it finishes converting another line in the
bitmap. The frame window responds by updating a progress
control embedded in the status bar, so the user is never left
wondering when the gray-scale image will appear.
WM_USER_THREAD_UPDATE messages are sent rather
than posted to make sure that the progress control is updated in
real time. If WM_USER_THREAD_UPDATE messages were
posted rather than sent, the background thread might post
messages faster than the main window could process them on
fast CPUs.

ImageEdit uses two thread synchronization objects: a CEvent
object named m_event and a CCriticalSection object named
m_cs. Both are members of the document class, and both are
passed by address to the thread function in a THREADPARMS
structure. The event object is used to terminate the worker
thread if the user stops a gray-scale conversion midstream by
selecting the Stop Gray Scale Conversion command from the
Effects menu. To kill the thread, the primary thread sets the
event to the signaled state:

m_event.SetEvent ();

Programming Windows With MFC

 1131

Upon completion of each scan line, the conversion routine
inside ThreadFunc checks the event object and terminates the
thread if the event is signaled:

if (::WaitForSingleObject (pKillEvent->m_hObject, 0) ==
 WAIT_OBJECT_0) {

 pWnd->PostMessage (WM_USER_THREAD_ABORTED, y +
1, 0);
 return (UINT) -1;
}

The WM_USER_THREAD_ABORTED message alerts the
frame window that the thread has been aborted. The frame
window notifies the document by calling
CImageEditDoc::ThreadAborted, and ThreadAborted blocks
on the thread handle just in case the thread hasn't quite
terminated. Then it resets an internal flag indicating that the
thread is no longer running.

The critical section prevents the application's two threads from
trying to select the bitmap into a device context at the same
time. The primary thread selects the bitmap into a device
context when the view needs updating; the background thread
selects the bitmap into a memory device context once when a
gray-scale conversion begins and again when it ends. A bitmap
can be selected into only one device context at a time, so if
either thread tries to select the bitmap into a device context
while the other has it selected into a device context, one of the
threads will fail. (Palettes, on the other hand, can be selected
into several device contexts concurrently, and ThreadFunc
takes advantage of that fact when it performs a gray-scale
conversion on a palettized device.) The odds that the two
threads will try to select the bitmap at the same time are small,
but the use of a critical section ensures that the code executed
between calls to SelectObject won't be interrupted by a call to
SelectObject from another thread. The bitmap doesn't stay
selected into a device context for any appreciable length of time,
so neither thread should have to wait long if the critical section
is locked.

Programming Windows With MFC

 1132

ImageEdit also demonstrates how to place a progress control in
a status bar. ImageEdit's status bar is an instance of
CSpecialStatusBar, which I derived from CStatusBar.
CSpecialStatusBar::OnCreate adds three panes to the status bar.
Then it creates a progress control and positions the control to
exactly fit the rightmost pane. Because the sizes and positions
of a status bar's panes can change when the status bar is resized,
CSpecialStatusBar also includes an OnSize handler that adjusts
the progress control to the rightmost pane. The result is a
progress control that looks like an ordinary status bar pane until
you begin stepping it with CProgressCtrl::SetPos.

17.3. Odds and Ends

Here are a few odds and ends related to multitasking and
multithreading that might be useful to you.

17.3.1. Message Pumps

A common misconception programmers have about
multithreading is that it makes applications run faster. On a
single-processor machine, it doesn't; however, it does make
applications more responsive. One way to demonstrate the
difference in responsiveness multithreading can make is to
write an application that draws a few thousand ellipses in
response to a menu command. If the drawing is done by the
primary thread and the thread doesn't occasionally take time out
to check its message queue and dispatch any waiting messages,
input will be frozen until the drawing loop has run its course. If
the same application is written so that drawing is done in a
separate thread, it will continue to respond to user input while
the drawing loop executes.

In a scenario as simple as this, however, multithreading might
be overkill. An alternative solution is to use a message pump to
keep the messages flowing while the primary thread draws
ellipses. Suppose the message handler that does the drawing
looks like this:

void CMainWindow::OnStartDrawing ()
{
 for (int i=0; i<NUMELLIPSES; i++)
 DrawRandomEllipse ();

Programming Windows With MFC

 1133

}

If NUMELLIPSES is a large number, the program could be
stuck for a long time once the for loop is started. You could try
adding another menu command that sets a flag and interrupts
the for loop, as shown here:

void CMainWindow::OnStartDrawing ()
{
 m_bQuit = FALSE;
 for (int i=0; i<NUMELLIPSES && !m_bQuit; i++)
 DrawRandomEllipse ();
}

void CMainWindow::OnStopDrawing ()
{
 m_bQuit = TRUE;
}

But that wouldn't work. Why not? Because the
WM_COMMAND message that activates OnStopDrawing
can't get through as long as the for loop in OnStartDrawing
executes without pumping messages. In fact, a menu can't even
be pulled down while the for loop is running.

This problem is easily solved with a message pump. Here's the
proper way to execute a lengthy procedure in a single-threaded
MFC program:

void CMainWindow::OnStartDrawing ()
{
 m_bQuit = FALSE;
 for (int i=0; i<NUMELLIPSES && !m_bQuit; i++) {
 DrawRandomEllipse ();
 if (!PeekAndPump ())
 break;
 }
}

void CMainWindow::OnStopDrawing ()
{
 m_bQuit = TRUE;
}
BOOL CMainWindow::PeekAndPump ()
{

Programming Windows With MFC

 1134

 MSG msg;
 while (::PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE))
{
 if (!AfxGetApp ()->PumpMessage ()) {
 ::PostQuitMessage (0);
 return FALSE;
 }
 }
 LONG lIdle = 0;
 while (AfxGetApp ()->OnIdle (lIdle++));
 return TRUE;
}

PeekAndPump enacts a message loop within a message loop.
Called at the conclusion of each iteration through
OnStartDrawing's for loop, PeekAndPump first calls
CWinThread::PumpMessage to retrieve and dispatch messages
if ::PeekMessage indicates that messages are waiting in the
queue. A 0 return from PumpMessage indicates that the last
message retrieved and dispatched was a WM_QUIT message,
which calls for special handling because the application won't
terminate unless the WM_QUIT message is retrieved by the
main message loop. That's why PeekAndPump posts another
WM_QUIT message to the queue if PumpMessage returns 0,
and why the for loop in OnStartDrawing falls through if
PeekAndPump returns 0. If a WM_QUIT message doesn't
prompt an early exit, PeekAndPump simulates the framework's
idle mechanism by calling the application object's OnIdle
function before returning.

With PeekAndPump inserted into the drawing loop, the
WM_COMMAND message that activates OnStopDrawing is
retrieved and dispatched normally. Because OnStopDrawing
sets m_bQuit to TRUE, the drawing loop will fall through
before the next ellipse is drawn.

17.3.2. Launching Other Processes

Win32 processes can launch other processes with the same ease
with which they launch threads. The following statements
launch Notepad.exe from the Windows directory of drive C:

STARTUPINFO si;
::ZeroMemory (&si, sizeof (STARTUPINFO));

Programming Windows With MFC

 1135

si.cb = sizeof (STARTUPINFO);
PROCESS_INFORMATION pi;

if (::CreateProcess (NULL, _T ("C:\\Windows\\Notepad"), NULL,
 NULL, FALSE, NORMAL_PRIORITY_CLASS, NULL, NULL, &si,
&pi)) {
 ::CloseHandle (pi.hThread);
 ::CloseHandle (pi.hProcess);
}

::CreateProcess is a versatile function that takes the name of
(and optionally the path to) an executable file and then loads
and executes it. If the drive and directory name are omitted
from the executable file name, the system automatically
searches for the file in the Windows directory, the Windows
system directory, all directories in the current path, and in
selected other locations. The file name can also include
command line parameters, as in

"C:\\Windows\\Notepad C:\\Windows\\Desktop\\Ideas.txt"

::CreateProcess fills a PROCESS_INFORMATION structure
with pertinent information about the process, including the
process handle (hProcess) and the handle of the process's
primary thread (hThread). You should close these handles
with ::CloseHandle after the process is started. If you have no
further use for the handles, you can close them as soon
as ::CreateProcess returns.

A nonzero return from ::CreateProcess means that the process
was successfully launched. Win32 processes are launched and
executed asynchronously, so ::CreateProcess does not wait
until the process has ended to return. If you'd like to launch
another process and suspend the current process until the
process that it launched terminates, call ::WaitForSingleObject
on the process handle, as shown here:

STARTUPINFO si;
::ZeroMemory (&si, sizeof (STARTUPINFO));
si.cb = sizeof (STARTUPINFO);
PROCESS_INFORMATION pi;

if (::CreateProcess (NULL, _T ("C:\\Windows\\Notepad"), NULL,
 NULL, FALSE, NORMAL_PRIORITY_CLASS, NULL, NULL, &si,
&pi)) {
 ::CloseHandle (pi.hThread);

Programming Windows With MFC

 1136

 ::WaitForSingleObject (pi.hProcess, INFINITE);
 ::CloseHandle (pi.hProcess);
}

Processes have exit codes just as threads do.
If ::WaitForSingleObject returns anything but WAIT_FAILED,
you can call ::GetExitCodeProcess to retrieve the process's exit
code.

Sometimes the need arises to launch a process and delay just
long enough to make sure the process is started and responding
to user input. If process A launches process B and process B
creates a window, for example, and process A wants to send
that window a message, process A might have to wait for a
moment after ::CreateProcess returns to give process B time to
create a window and begin processing messages. This problem
is easily solved with the Win32 ::WaitForInputIdle function:

STARTUPINFO si;
::ZeroMemory (&si, sizeof (STARTUPINFO));
si.cb = sizeof (STARTUPINFO);
PROCESS_INFORMATION pi;

if (::CreateProcess (NULL, _T ("C:\\Windows\\Notepad"), NULL,
 NULL, FALSE, NORMAL_PRIORITY_CLASS, NULL, NULL, &si,
&pi)) {
 ::CloseHandle (pi.hThread);
 ::WaitForInputIdle (pi.hProcess, INFINITE);
 // Get B's window handle and send or post a message.
 ::CloseHandle (pi.hProcess);
}

::WaitForInputIdle suspends the current process until the
specified process begins processing messages and empties its
message queue. I didn't show the code to find the window
handle because there isn't a simple MFC or API function you
can call to convert a process handle into a window handle.
Instead, you must use ::EnumWindows, ::FindWindow, or a
related function to search for the window based on some known
characteristic of the owning process.

17.3.3. File Change Notifications

Earlier in this chapter, I mentioned that the HANDLE
parameter passed to ::WaitForSingleObject can be a "file
change notification handle." The Win32 API includes a

Programming Windows With MFC

 1137

function named ::FindFirstChangeNotification that returns a
handle you can use to wake a blocked thread whenever a
change occurs in a specified directory or its subdirectories—for
example, when a file is renamed or deleted or a new directory is
created.

Let's say you want to enhance Chapter 11's Wanderer
application so that changes to the file system are instantly
reflected in the left or right pane. The most efficient way to do
it is to start a background thread and have it block on one or
more file change notification handles. Here's what the thread
function for a thread that monitors drive C: might look like:

UINT ThreadFunc (LPVOID pParam)
{
 HWND hwnd = (HWND) pParam; // Window to notify
 HANDLE hChange = ::FindFirstChangeNotification (_T ("C:\\"),
 TRUE, FILE_NOTIFY_CHANGE_FILE_NAME ¦
FILE_NOTIFY_CHANGE_DIR_NAME);

 if (hChange == INVALID_HANDLE_VALUE) {
 TRACE (_T ("Error: FindFirstChangeNotification failed\n"));
 return (UINT) -1;
 }

 while (...) {
 ::WaitForSingleObject (hChange, INFINITE);
 ::PostMessage (hwnd, WM_USER_CHANGE_NOTIFY, 0, 2);
 ::FindNextChangeNotification (hChange); // Reset
 }
 ::FindCloseChangeNotification (hChange);
 return 0;
}

The first parameter passed to ::FindFirstChangeNotification
identifies the directory you want to monitor, the second
specifies whether you want to monitor just that directory
(FALSE) or that directory and all its subdirectories (TRUE),
and the third specifies the kinds of changes that the thread
should be notified of. In this example, the thread will be
awakened when a file is created, renamed, or deleted anywhere
on the C: drive (FILE_NOTIFY_CHANGE_FILE_NAME) or
when a directory is created, renamed, or deleted
(FILE_NOTIFY_CHANGE_DIR_NAME). When the thread is
awakened, it posts a user-defined message to the window
whose handle was passed in pParam. The message's lParam
holds a drive number (2 for drive C:). The window that receives

Programming Windows With MFC

 1138

the message—presumably the application's top-level frame
window—can respond to the message by updating its views.
Keep in mind that a thread awakened by a file change
notification doesn't receive any information about the nature of
the change or about where in the directory tree the change
occurred, so it must scan the file system if it wants to determine
what caused the file change notification.

It's also possible to structure the thread so that it monitors not
just one drive, but several. All you would have to do is
call ::FindFirstChangeNotification once per drive to acquire a
separate file change notification handle for each drive and
use ::WaitForMultipleObjects to block on all the file change
notifications simultaneously. ::WaitForMultipleObjects is the
Win32 API equivalent of CMultiLock::Lock. Passing FALSE in
the third parameter to a call to ::WaitForMultipleObjects tells
the system to wake the thread when any one of the objects that
the thread is blocking on becomes signaled.

Programming Windows With MFC

 1139

PART : COM, OLE and Ⅳ
ActiveX
Chapter 18. MFC and the

Component Object Model
In the beginning, when MFC was still in its infancy, C++
programmers who began migrating from the Microsoft
Windows API in favor of MFC did so because they wanted a
class library to aid them in developing Windows applications.
The conventional wisdom at the time said that MFC made
Windows programming easier, but the truth of the matter was
that Windows programming was still Windows programming.
MFC simplified certain aspects of the development process,
and for those few programmers prescient enough to adopt it
early on, it eased the pain of porting 16-bit Windows
applications to 32 bits. But even MFC could hardly claim to put
a dent in the legendary Windows learning curve. That was true
then, and it's still true today.

Today there is another, more compelling reason to use MFC. If
the applications you develop have anything whatsoever to do
with COM, OLE, or ActiveX, MFC can dramatically simplify
the development process. By that, I mean MFC can cut the time
required to develop an application (or a software component)
by an order of magnitude. In this day and time, there is simply
no good reason to develop certain types of software from
scratch given that such good class libraries are available. COM,
OLE, and ActiveX have been criticized for being overly
complex and hopelessly arcane, but for better or worse, they're
here to stay, and there's a very real chance that in the future
you'll have to be a COM programmer if you want to program
Windows.

So what are COM, OLE, and ActiveX, and what does MFC do
to make them so much easier to program? I'm glad you asked,
because the rest of this book is about MFC's support for all
things COM. In this chapter, I'll begin by defining COM, OLE,
and ActiveX, and then I'll introduce some of the unique and
interesting ways in which MFC wraps its arms around them. In

Programming Windows With MFC

 1140

subsequent chapters, we'll tackle specific COM-based
technologies such as Automation and ActiveX controls and
you'll see how to use MFC to make them come to life.

18.1. The Component Object Model

COM is an acronym for Component Object Model. Simply put,
COM is a way of building objects that is independent of any
programming language. If you want the gory details, you can
download the COM specification from Microsoft's Web site.
But don't be too quick to pull out your browser: if this is your
first exposure to COM, the specification might be a bit
overwhelming. A better approach is to start slowly and allow
yourself time to understand the big picture rather than risk
getting mired in details that for the moment are unimportant.

C++ programmers are accustomed to writing classes that other
C++ programmers can use. The problem with these classes is
that only other C++ programmers can use them. COM tells us
how to build objects in any programming language that can
also be used in any programming language. In other words,
COM transcends language-specific ways of building reusable
objects and gives us a true binary standard for object
architectures.

C++ classes have member functions; COM objects have
methods. Methods are grouped into interfaces and are called
through interface pointers. Interfaces exist to semantically bind
together groups of related methods. For example, suppose
you're writing a COM class that has methods named Add,
Subtract, and CheckSpelling. Rather than make all three
methods members of the same interface, you might assign Add
and Subtract to an interface named IMath and CheckSpelling to
an interface named ISpelling. (Prefacing interface names with a
capital I for Interface is an almost universal COM
programming convention.) Microsoft has predefined more than
100 interfaces that any COM object can support. These
interfaces are called standard interfaces. User-defined
interfaces such as IMath and ISpelling are custom interfaces.
COM objects can use standard interfaces, custom interfaces, or
a combination of the two.

Programming Windows With MFC

 1141

Every COM object implements an interface named IUnknown.
IUnknown contains just three methods:

Method Name Description

QueryInterface Returns a pointer to another interface

AddRef Increments the object's reference count

Release Decrements the object's reference count

One of the rules of COM says that given a pointer to an
interface, a client can call any IUnknown method through that
pointer as well as any methods that are specific to the interface.
In other words, all interfaces must support the three IUnknown
methods in addition to their own methods. This means that if
you define an IMath interface with methods named Add and
Subtract, the interface actually contains five methods:
QueryInterface, AddRef, Release, Add, and Subtract. Most
objects don't implement IUnknown as a separate interface.
Because all interfaces include the IUnknown methods, most
objects, if asked for an IUnknown pointer, simply return a
pointer to one of their other interfaces.

Figure 18-1 shows a schematic of a simple COM object. The
sticks, or "lollipops" as they're sometimes called, represent the
object's interfaces. The IUnknown lollipop is often omitted
because it's understood that every COM object implements
IUnknown.

Figure 18-1. A simple COM object.

I've been using human-readable names such as IMath to refer to
interfaces, but in truth, interfaces are identified by number, not
by name. Every interface is uniquely identified by a 128-bit
value called an interface identifier, or IID. So many different

Programming Windows With MFC

 1142

128-bit numbers are possible that the chances of you and I ever
picking the same IID at random are virtually nil. Therefore, it
doesn't matter if two people on different sides of the planet
happen to define incompatible versions of a custom interface
named IMath. What counts is that the two IMath interfaces
have different IIDs.

Microsoft Visual C++ comes with two tools for generating IIDs.
One is a command line utility named Uuidgen. The other is a
GUI application named Guidgen. Both utilities do their best to
maximize the randomness of the 128-bit numbers they generate,
even factoring in variables such as your network card's Ethernet
ID and the time of day. You can generate IIDs
programmatically with the COM API function CoCreateGuid.
The Guid in CoCreateGuid stands for globally unique identifier,
a generic term that describes any 128-bit identifier. An IID is
simply a special GUID.

18.1.1. Instantiating a COM Object

COM classes, like interfaces, are identified by 128-bit values.
GUIDs that identify classes are called class IDs, or CLSIDs.
All a client needs to know in order to instantiate an object is the
object's CLSID. COM has an API of its own that includes
activation functions for creating object instances. The most
commonly used activation function is CoCreateInstance, which
accepts a CLSID and returns an interface pointer to an object.
The following statements instantiate the COM class whose
CLSID is CLSID_Object and cache a pointer to the object's
IMath interface in pMath:

IMath* pMath;
CoCreateInstance (CLSID_Object, NULL,
 CLSCTX_SERVER, IID_IMath, (void**) &pMath);

IID_IMath is simply a variable that holds IMath's 128-bit
interface ID.

Once it has an interface pointer, a C++ client can call methods
on that interface using the -> operator. The following
statements call IMath::Add to add a pair of numbers:

int sum;

Programming Windows With MFC

 1143

pMath->Add (2, 2, &sum);

Add doesn't return the sum of the two inputs directly; instead, it
copies the result to an address specified by the caller—in this
case, to the variable named sum. That's because COM methods
return special 32-bit values called HRESULTs. An HRESULT
tells the caller whether a call succeeded or failed. It can also
provide detailed information about the nature of the failure if
the call doesn't succeed. You might think that a method as
simple as Add can never fail, but it could fail if the object that
implements the method is running on a remote network server
and the client is unable to contact the server because a cable has
been disconnected. If that happens, the system steps in and
returns an HRESULT informing the caller that the call didn't go
through.

One aspect of COM that newcomers frequently find confusing
is the fact that every externally creatable COM class (that is,
every COM class that can be instantiated by passing a CLSID
to CoCreateInstance) is accompanied by a class object. A class
object is also a COM object. Its sole purpose in life is to create
other COM objects. Passing a CLSID to CoCreateInstance
appears to instantiate an object directly, but internally,
CoCreateInstance first instantiates the object's class object and
then asks the class object to create the object. Most class
objects implement a special COM interface known as
IClassFactory (or IClassFactory2, a newer version of the
interface that is a functional superset of IClassFactory). A class
object that implements IClassFactory is called a class factory.
Given an IClassFactory interface pointer, a client creates an
object instance by calling IClassFactory::CreateInstance. This
method— CreateInstance—has been described as the COM
equivalent of the new operator in C++.

Not all COM classes are externally creatable. Some are
intended only for private use and can't be instantiated with
CoCreateInstance because they have no CLSIDs and no class
factories. C++ programmers instantiate these objects by calling
new on the C++ classes that implement the objects. Typically,
these objects play a part in implementing a COM-based
protocol such as drag-and-drop data transfers. Some of MFC's
COM classes fit this profile. You'll learn more about them

Programming Windows With MFC

 1144

when we discuss the various COM and ActiveX technologies
that MFC supports.

18.1.2. Object Lifetimes

C++ programmers are used to creating heap-based objects
using the C++ new operator. They're also accustomed to calling
delete to delete the objects that they create with new. COM
differs from C++ in this respect, because clients create object
instances but they don't delete them. Instead, COM objects
delete themselves. Here's why.

Suppose two or more clients are using the same instance of an
object. Client A creates the object, and Client B attaches to the
object by somehow acquiring an interface pointer. If Client A,
unaware that Client B exists, deletes the object, Client B is left
with an interface pointer that no longer points to anything.
Because a COM client typically doesn't know (and doesn't care)
whether it's the sole user of an object or one of many users,
COM leaves it up to the object to delete itself. Deletion occurs
when an internal reference count maintained by the object
drops to 0. The reference count is a running count of the
number of clients holding pointers to the object's interfaces.

For COM classes implemented in C++, the reference count is
typically stored in a member variable. The count is incremented
when AddRef is called and decremented when Release is called.
(Remember that because AddRef and Release are IUnknown
methods, they can be called through any interface pointer.)
Implementations of AddRef and Release are normally no more
complicated than this:

ULONG __stdcall CComClass::AddRef ()
{
 return ++m_lRef;
}

ULONG __stdcall CComClass::Release ()
{
 if (—m_lRef == 0) {
 delete this;
 return 0;
 }
 return m_lRef;

Programming Windows With MFC

 1145

}

In this example, CComClass is a C++ class that represents a
COM class. m_lRef is the member variable that holds the
object's reference count. If every client calls Release when it's
finished using an interface, the object conveniently deletes
itself when the last client calls Release.

A bit of protocol is involved in using AddRef and Release. It's
the responsibility of the object—not the client—to call AddRef
whenever it hands out an interface pointer. However, it's the
client's responsibility to call Release. Clients sometimes call
AddRef themselves to indicate that they're making a copy of the
interface pointer. In such cases, it's still up to the client (or
whomever the client hands the copied interface pointer to) to
call Release when the interface pointer is no longer needed.

18.1.3. Acquiring Interface Pointers

The CoCreateInstance example we examined earlier created an
object and asked for an IMath interface pointer. Now suppose
that the object also implements ISpelling. How would a client
that holds an IMath pointer ask the object for an ISpelling
pointer?

That's what the third of the three IUnknown methods is for.
Given an interface pointer, a client can call QueryInterface
through that pointer to get a pointer to any other interface that
the object supports. Here's how it looks in code:

IMath* pMath;
HRESULT hr = CoCreateInstance (CLSID_Object, NULL,
 CLSCTX_SERVER, IID_IMath, (void**) &pMath);

if (SUCCEEDED (hr)) { // CoCreateInstance worked.

 ISpelling* pSpelling;
 hr = pMath->QueryInterface (IID_ISpelling, (void**)
&pSpelling);
 if (SUCCEEDED (hr)) {
 // Got the interface pointer!

 pSpelling->Release ();
 }

Programming Windows With MFC

 1146

 pMath->Release ();
}

Notice that this time, the client checks the HRESULT returned
by CoCreateInstance to make sure that the activation request
succeeded. Sometime after the object is created, the client uses
QueryInterface to request an ISpelling pointer, once more
checking the HRESULT rather than simply assuming that the
pointer is valid. (The SUCCEEDED macro tells a client
whether an HRESULT code signifies success or failure. A
related macro named FAILED can be used to test for failure.)
Both interfaces are released when they're no longer needed.
When Release is called through the IMath pointer, the object
deletes itself if no other clients are holding interface pointers.

NOTE

There is no COM function that you can call to enumerate all of an object's
interfaces. The assumption is that the client knows what interfaces an object
supports, so it can call QueryInterface to obtain pointers to any and all interfaces.
An object can publish a list of the interfaces that it supports using a mechanism
known as type information. Some COM objects make type information available to
their clients, and some don't. Certain types of COM objects, ActiveX controls
included, are required to publish type information. You'll see why when we examine
the ActiveX control architecture in Chapter 21.

18.1.4. COM Servers

If COM is to create objects in response to activation requests, it
must know where to find each object's executable file. An
executable that implements a COM object is called a COM
server. The HKEY_CLASSES_ROOT\CLSID section of the
registry contains information that correlates CLSIDs and
executable files. For example, if a server named MathSvr.exe
implements Math objects and a client calls CoCreateInstance
with Math's CLSID, COM looks up the CLSID in the registry,
extracts the path to MathSvr.exe, and launches the EXE. The
EXE, in turn, hands COM a class factory, and COM calls the
class factory's CreateInstance method to create an instance of
the Math object.

COM servers come in two basic varieties: in-process and
out-of-process. In-process servers (often referred to as in-proc
servers) are DLLs. They're called in-procs because in the
Win32 environment, a DLL loads and runs in the same address

Programming Windows With MFC

 1147

space as its client. EXEs, in contrast, run in separate address
spaces that are physically isolated from one another. In most
cases, calls to in-proc objects are very fast because they're little
more than calls to other addresses in memory. Calling a method
on an in-proc object is much like calling a subroutine in your
own application.

Out-of-process servers (also known as out-of-proc servers)
come in EXEs. One advantage to packaging COM objects in
EXEs is that clients and objects running in two different
processes are protected from one another if one crashes. The
disadvantage is speed. Calls to objects in other processes are
roughly 1,000 times slower than calls to in-proc objects
because of the overhead incurred when a method call crosses
process boundaries.

Microsoft Windows NT 4.0 introduced Distributed COM
(DCOM), which gives out-of-proc servers the freedom to run
on remote network servers. It's simple to take an out-of-proc
server that has been written, tested, and debugged locally and
deploy it on a network. (As of Windows NT 4.0 Service Pack 2,
in-proc servers can also run remotely using a mechanism that
relies on surrogate EXEs to host the DLLs.) CoCreateInstance
and other COM activation functions are fully capable of
creating objects that reside elsewhere on the network. Even
legacy COM servers written before DCOM came into existence
can be remoted with a few minor registry changes.

To differentiate out-of-proc servers that serve up objects on the
same machine from out-of-proc servers that run on remote
machines, COM programmers use the terms local server and
remote server. A local server is an EXE that runs on the same
machine as its client; a remote server, in contrast, runs
elsewhere on the network. Although there are important
structural differences between in-proc and out-of-proc servers,
there are no differences between local and remote servers.
Objects designed with DCOM in mind are often tweaked to
leverage the operating system's underlying security model or to
improve performance. But optimizations aside, the fact remains
that local servers and remote servers share the exact same
server and object architectures.

Programming Windows With MFC

 1148

18.1.5. Location Transparency

One of COM's most powerful features is location transparency.
Simply put, location transparency means that a client neither
knows nor cares where an object lives. The exact same
sequence of instructions that calls a method on an object
running in the same address space as the client also calls a
method on an object running in another process or even on
another machine. A lot of magic goes on behind the scenes to
make location transparency work, but COM handles the bulk of
it.

When a method call goes out to an object in another process or
on another machine, COM remotes the call. As part of the
remoting process, COM marshals the method's parameters and
return values. Marshaling comes in many forms, but the most
common type of marshaling essentially reproduces the caller's
stack frame in the call recipient's address space. Proxies and
stubs carry out most marshaling and remoting. When a client is
handed an interface pointer to an object running in a process
other than its own, COM creates an interface proxy in the client
process and an interface stub in the server process. Interface
pointers held by the client are really interface pointers to the
proxy, which implements the same interfaces and methods as
the real object. When a client calls a method on the object, the
call goes to the proxy, which uses some type of interprocess
communication (IPC) to forward the call to the stub. The stub
unpackages the method parameters, calls the object, and
marshals any return values back to the proxy. Figure 18-2
illustrates the relationship between clients, objects, proxies, and
stubs.

Figure 18-2. Proxies and stubs.

Programming Windows With MFC

 1149

Where do proxies and stubs come from? If an object uses only
standard interfaces, COM supplies the proxies and stubs. If an
object uses custom interfaces, it's up to the object implementor
to provide the proxies and stubs in the form of a proxy/stub
DLL. The good news is that you rarely need to write a
proxy/stub DLL by hand. Visual C++ comes with a tool called
the MIDL (Microsoft Interface Definition Language) compiler
that "compiles" IDL (Interface Definition Language) files,
producing the source code for proxy/stub DLLs. The bad news
is that now you have to learn another language—IDL. IDL has
been called the lingua franca of COM. The better you know
your IDL, the better equipped you are to optimize the
performance of local and remote servers. You can avoid IDL
and MIDL altogether by using an alternative marshaling
strategy known as custom marshaling, but custom marshaling
is so difficult to implement correctly that proxies and stubs are
the way to go unless you have clear and compelling reasons to
do otherwise. You can opt for other ways to avoid writing
proxies and stubs if you're willing to make a few trade-offs in
flexibility and performance. One of those other ways is
Automation, which we'll discuss in Chapter 20.

The key to location transparency is the fact that when clients
communicate with objects in other processes, they don't know
that they're really communicating through proxies and stubs.
All a client knows is that it has an interface pointer and that
method calls through that interface pointer work. Now you
know why.

18.1.6. Object Linking and Embedding

Before there was COM, there was object linking and
embedding, better known by the acronym OLE. OLE allows
you to place content objects created by one application in
documents created by another application. One use for OLE is
to place Excel spreadsheets inside Word documents. (See
Figure 18-3.) In such a scenario, Excel acts as an OLE server
by serving up an embedded or linked spreadsheet object (a
"content object") and Word acts as an OLE container by
hosting the object.

OLE is a complex software protocol that describes how OLE
servers talk to OLE containers and vice versa. Microsoft built

Programming Windows With MFC

 1150

OLE 1.0 on top of Dynamic Data Exchange (DDE). DDE
proved to be a less than ideal IPC mechanism, so Microsoft
invented COM to serve as the underlying IPC mechanism for
OLE 2.0. For a long time, Microsoft affixed the OLE label to
all new COM technologies: Automation became OLE
Automation, ActiveX controls were named OLE controls, and
so on. Microsoft even went so far as to say that OLE was no
longer an acronym; it was a word. It wasn't until the term
ActiveX was coined in 1995 that Microsoft reversed itself and
said, in effect, "We've changed our minds; OLE once again
stands for object linking and embedding." Despite this reversal,
many programmers still (erroneously) use the terms COM and
OLE interchangeably. They are not synonymous. COM is the
object model that forms the foundation for all OLE and
ActiveX technologies. OLE is the technology that allows you to
place Excel spreadsheets inside Word documents. Get used to
this new world order, and you'll avoid the confusion that has
stricken so many programmers.

Programming Windows With MFC

 1151

Figure 18-3. A Microsoft Excel chart embedded in a Microsoft Word
document.

Just how does OLE use COM? When an OLE server such as
Excel serves up a spreadsheet object to a container such as
Word, it creates one or more COM objects that implement
certain standard interfaces such as IOleObject and IViewObject.
Word, too, creates COM objects that conform to published
specifications. The architecture is generic in that it isn't limited
only to Word and Excel; any application can be an OLE
container or server, or both. The container and the server
communicate by calling methods through interface pointers.
Thanks to location transparency, it doesn't matter that the
container and the server are running in different processes,
although some of OLE's COM interfaces must be implemented
in proc to work around certain limitations of Windows.
Because device context handles aren't portable between
processes (for example, when a container asks a server to draw

Programming Windows With MFC

 1152

an object in the container's window), that part of the server
must be implemented in proc.

Figure 18-4 shows a schematic of a simple embedding
container. For each content object embedded in the container's
document, the container implements a site object. At a
minimum, a site object must implement the COM interfaces
IOleClientSite and IAdviseSink. To talk to the container, the
server calls methods through pointers to these interfaces. The
simplicity of this diagram belies the inward complexity of
real-life linking and embedding servers, but it nonetheless
illustrates the role that COM plays as an enabling technology.

Figure 18-4. A simple embedding container.

For the record, linked objects and embedded objects are
fundamentally different. Embedded objects are stored in the
container's document file alongside the container's native
document data. Linked objects, on the other hand, are stored in
external files. The container's document stores only a link to the
object, which is a fancy way of saying that the container stores
the name of and path to the file that holds the object's data.
Links can be more sophisticated than that. If you create a link
to a range of cells in an Excel spreadsheet, for example, the link
includes information identifying the range as well as the path to
the file.

18.1.7. Active Documents

In my opinion, OLE is the least interesting of all the COM
technologies that Microsoft has defined, so I won't cover it
further in this book. (If you want to learn more about it, start
with the OLE lessons in the Scribble tutorial that comes with

Programming Windows With MFC

 1153

Visual C++.) However, one COM-based technology that has
grown out of OLE at least deserves mention because it is
potentially very useful. That technology is Active Documents.

The Active Documents protocol is a superset of object linking
and embedding. It permits Active Document containers such as
Microsoft Internet Explorer to open document files created by
Active Document servers such as Word and Excel. Ever notice
how you can open a Word DOC file or an Excel XLS file inside
Internet Explorer? Internet Explorer appears to understand the
Word and Excel file formats. It doesn't. What's really
happening is that Internet Explorer talks to Word or Excel
through—you guessed it—COM interfaces. Word or Excel runs
in the background (you can prove that by viewing the task list
while a DOC or XLS file is open in Internet Explorer) and
essentially takes over the interior of Internet Explorer's window.
You're really using Word or Excel, although it certainly doesn't
look that way.

Active Documents really pay off when you post a Word or an
Excel document on a Web site. If the machine on which
Internet Explorer is running has Word and Excel installed, you
can view DOC and XLS files as effortlessly as you do HTML
pages. That's Active Documents at work.

18.1.8. ActiveX

First there was OLE. Next there was COM. And then along
came ActiveX. When Microsoft turned its attention to the
Internet in 1995, the software giant coined the term ActiveX to
refer to a suite of COM-based technologies designed to make
the Internet—and the World Wide Web in particular—more
interactive. ActiveX controls are probably the best-known
ActiveX technology, but there are others. If "Active" is in the
name, it's an ActiveX technology: ActiveX controls, ActiveX
Data Objects (ADO), Active Server Pages (ASP), and Active
Documents, to name but a few. The roster is growing every
day.

The one thing all ActiveX technologies have in common is that
they're all COM-based. ActiveX controls, for example, are
COM objects that conform to the rules of behavior set forth in
Microsoft's OLE control (OCX) specifications. Applications

Programming Windows With MFC

 1154

that host ActiveX controls also implement COM interfaces;
officially, they're known as ActiveX control containers.

Writing a full-blown ActiveX control—that is, one that can be
plugged into a Web page or displayed in a window or a dialog
box—is not a trivial undertaking. The ActiveX control
architecture is complex. A typical ActiveX control implements
more than a dozen COM interfaces, some of which contain
more than 20 methods. Even something as seemingly simple as
plugging an ActiveX control into a dialog box is far more
complex than most people realize. To host an ActiveX control,
a dialog box has to be an ActiveX control container, and
containers must implement a number of COM interfaces of
their own.

Fortunately, MFC does an excellent job of wrapping ActiveX
controls and control containers. Check a box in AppWizard,
and any dialog box instantly becomes a control container. You
don't have to write a single line of code because MFC provides
all the necessary infrastructure. MFC also simplifies ActiveX
control development. Writing an ActiveX control from scratch
can easily require two months of development time, but do it
with MFC and you can write a fully functional control in a
matter of hours. Why? Because MFC provides stock
implementations of COM's ActiveX control interfaces. All you
have to do is override a virtual function here and there and add
the elements that make your control different from the rest.

18.2. MFC and COM

The primary reason why MFC makes COM, OLE, and ActiveX
programming simpler is that it provides canned
implementations of common COM interfaces in classes such as
COleControl and COleControlSite. COM has been described as
an "empty API," which means that Microsoft defines the
interfaces and the methods and tells you what the methods are
supposed to do but leaves it up to you, the object implementor,
to write the code. The good news is that as long as you're
writingActiveX controls, Automation servers, or other types of
components that MFC explicitly supports, MFC implements the
necessary COM interfaces for you.

Programming Windows With MFC

 1155

In the next three chapters, you'll get acquainted with many of
the MFC classes that implement COM interfaces. Right now, I
want you to understand how MFC classes implement COM
interfaces. To do that, you must understand the two techniques
that COM programmers use to write C++ classes representing
COM objects. The first is multiple inheritance. The second is
nested classes. MFC uses only nested classes, but let's look at
both techniques so that we can compare the relative merits of
each.

18.2.1. Multiple Inheritance

C++ programmers define COM interfaces using the following
syntax:

interface IUnknown
{
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv) = 0;
 virtual ULONG __stdcall AddRef () = 0;
 virtual ULONG __stdcall Release () = 0;
};

The keyword interface is an alias for struct. Therefore, to the
C++ programmer, an interface definition is a set of pure virtual
functions logically bound together as members of a common
structure. And because structures and classes are treated almost
identically in C++, it's perfectly legal to derive one interface
from another, like this.

interface IMath : public IUnknown
{
 virtual HRESULT __stdcall Add (int a, int b, int* pResult) = 0;
 virtual HRESULT __stdcall Subtract (int a, int b, int* pResult) =
0;
};

You can take advantage of the fact that interface definitions are
merely sets of pure virtual functions when you develop C++
classes that represent COM objects. For example, you can
declare a class that implements IMath like this:

class CComClass : public IMath

Programming Windows With MFC

 1156

{
protected:
 long m_lRef; // Reference count
public:
 CComClass ();
 virtual ~CComClass ();
 // IUnknown methods
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv);
 virtual ULONG __stdcall AddRef ();
 virtual ULONG __stdcall Release ();
 // IMath methods
 virtual HRESULT __stdcall Add (int a, int b, int* pResult);
 virtual HRESULT __stdcall Subtract (int a, int b, int* pResult);
};

With this setup, you can implement QueryInterface, AddRef,
Release, Add, and Subtract as member functions of class
CComClass.

Now, suppose you want CComClass to implement not just one
COM interface, but two. How do you do it? One approach is to
derive CComClass from both IMath and another interface by
using multiple inheritance, like so:

class CComClass : public IMath, public ISpelling
{
protected:
 long m_lRef; // Reference count
public:
 CComClass ();
 virtual ~CComClass ();
 // IUnknown methods
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv);
 virtual ULONG __stdcall AddRef ();
 virtual ULONG __stdcall Release ();
 // IMath methods
 virtual HRESULT __stdcall Add (int a, int b, int* pResult);
 virtual HRESULT __stdcall Subtract (int a, int b, int* pResult);
 // ISpelling methods
 virtual HRESULT __stdcall CheckSpelling (wchar_t* pString);
};

This approach has a couple of advantages. First, it's simple. To
declare a class that implements n interfaces, you simply include
all n interfaces in the class's list of base classes. Second, you

Programming Windows With MFC

 1157

have to implement IUnknown only once. If each interface were
truly implemented separately, you'd have to implement
QueryInterface, AddRef, and Release for each one. But with
multiple inheritance, all methods supported by all interfaces are
essentially merged into one implementation.

One of the more interesting aspects of using multiple
inheritance to write COM classes is what happens when a client
calls QueryInterface asking for an interface pointer. Let's say
that the client asks for an IMath pointer. The proper way to
return the interface pointer is to cast the this pointer to an
IMath*:

ppv = (IMath) this;

If the client asks for an ISpelling pointer instead, you cast to
ISpelling*:

ppv = (ISpelling) this;

If you omit the casts, the code will compile just fine but will
probably blow up when one of the two interfaces is used. Why?
Because a class formed with multiple inheritance contains
multiple vtables and multiple vtable pointers, and without the
cast, you don't know which vtable the this pointer references. In
other words, the two casts shown here return different numeric
values, even though this never varies. If a client asks for an
ISpelling pointer and you return a plain (uncasted) this pointer,
and if this happens to reference IMath's vtable, the client calls
ISpelling methods through an IMath vtable. That's a formula for
disaster and is why COM classes that use multiple inheritance
always cast to retrieve the proper vtable pointer.

18.2.2. Nested Classes

What's wrong with using multiple inheritance to implement
COM classes? Nothing—provided that no two interfaces have
methods with the same names and signatures. If IMath and
ISpelling both contained methods named Init that had identical
parameter lists but required separate implementations, you
wouldn't be able to use multiple inheritance to define a class
that implements both of them. Why? Because with multiple

Programming Windows With MFC

 1158

inheritance, the class would have just one member function
named Init. It would therefore be impossible to implement Init
separately for IMath and ISpelling.

This limitation is the reason MFC uses the nested class
approach to implementing COM interfaces. Nested classes are a
little more work and slightly less intuitive than multiple
inheritance, but they're also suitably generic. You can use the
nested class approach to implement any combination of COM
interfaces in a single C++ class, regardless of the interfaces'
characteristics. Here's how it works.

Suppose that CComClass implements IMath and ISpelling and
that both interfaces have a method named Init that accepts no
parameters.

virtual HRESULT __stdcall Init () = 0;

You can't use multiple inheritance in this case because of C++'s
inability to support two semantically identical functions in one
class. So instead, you define two subclasses, each of which
implements one interface:

class CMath : public IMath
{
protected:
 CComClass* m_pParent; // Back pointer to parent
public:
 CMath ();
 virtual ~CMath ();
 // IUnknown methods
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv);
 virtual ULONG __stdcall AddRef ();
 virtual ULONG __stdcall Release ();
 // IMath methods
 virtual HRESULT __stdcall Add (int a, int b, int* pResult);
 virtual HRESULT __stdcall Subtract (int a, int b, int* pResult);
 virtual HRESULT __stdcall Init () = 0;
};

class CSpelling : public ISpelling
{
protected:
 CComClass* m_pParent; // Back pointer to parent

Programming Windows With MFC

 1159

public:
 CSpelling ();
 virtual ~CSpelling ();
 // IUnknown methods
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv);
 virtual ULONG __stdcall AddRef ();
 virtual ULONG __stdcall Release ();
 // ISpelling methods
 virtual HRESULT __stdcall CheckSpelling (wchar_t* pString);
 virtual HRESULT __stdcall Init () = 0;
};

To make CMath and CSpelling nested classes, you declare
them inside CComClass. Then you include in CComClass a
pair of data members that are instances of CMath and
CSpelling:

class CComClass : public IUnknown
{
protected:
 long m_lRef; // Reference count
 class CMath : public IMath
 {
 [...]
 };
 CMath m_objMath; // CMath object
 class CSpelling : public ISpelling
 {
 [...]
 };
 CSpelling m_objSpell; // CSpelling object
public:
 CComClass ();
 virtual ~CComClass ();
 // IUnknown methods
 virtual HRESULT __stdcall QueryInterface (REFIID riid, void**
ppv);
 virtual ULONG __stdcall AddRef ();
 virtual ULONG __stdcall Release ();
};

Notice that CComClass now derives only from IUnknown. It
doesn't derive from IMath or ISpelling because the nested
classes provide implementations of both interfaces. If a client
calls QueryInterface asking for an IMath pointer, CComClass
simply passes out a pointer to the CMath object:

Programming Windows With MFC

 1160

ppv = (IMath) &m_objMath;

Similarly, if asked for an ISpelling pointer, CComClass returns
a pointer to m_objSpell:

ppv = (ISpelling) &m_objSpell;

A key point to understand about the nested class approach is
that the subobjects must delegate all calls to their IUnknown
methods to the equivalent methods in the parent class. Notice
that in place of a member variable that stores a reference count,
each nested class stores a CComClass pointer. That pointer is a
"back pointer" to the subobject's parent. Delegation is
performed by calling CComClass's IUnknown methods through
the back pointer. Typically, the parent's constructor initializes
the back pointers:

CComClass::CComClass ()
{
 [...] // Normal initialization stuff goes here.
 m_objMath.m_pParent = this;
 m_objSpell.m_pParent = this;
}

The nested classes' implementations of IUnknown look like
this:

HRESULT __stdcall CComClass::CMath::QueryInterface (REFIID
riid, void** ppv)
{
 return m_pParent->QueryInterface (riid, ppv);
}

ULONG __stdcall CComClass::CMath::AddRef ()
{
 return m_pParent->AddRef ();
}

ULONG __stdcall CComClass::CMath::Release ()
{
 return m_pParent->Release ();
}

Programming Windows With MFC

 1161

Delegation of this sort is necessary for two reasons. First, if a
client calls AddRef or Release on an interface implemented by a
subobject, the parent's reference count should be adjusted, not
the subobject's. Second, if a client calls QueryInterface on one
of the subobjects, the parent must field the call because only the
parent knows which nested classes are present and therefore
which interfaces it implements.

18.2.3. MFC and Nested Classes

If you browse through the source code for MFC classes such as
COleControl, you won't see anything that resembles the code in
the previous section. That's because MFC hides its nested
classes behind macros.

MFC's COleDropTarget class is a case in point. It's one of the
simpler MFC COM classes, and it implements just one COM
interface—a standard interface named IDropTarget. If you look
inside Afxole.h, you'll see these statements near the end of
COleDropTarget's class declaration:

BEGIN_INTERFACE_PART(DropTarget, IDropTarget)
 [...]
 STDMETHOD(DragEnter)(LPDATAOBJECT, DWORD, POINTL,
LPDWORD);
 STDMETHOD(DragOver)(DWORD, POINTL, LPDWORD);
 STDMETHOD(DragLeave)();
 STDMETHOD(Drop)(LPDATAOBJECT, DWORD, POINTL pt,
LPDWORD);
END_INTERFACE_PART(DropTarget)

MFC's BEGIN_INTERFACE_PART macro defines a nested
class that implements one COM interface. The class is named
by prepending a capital X to the first parameter in the macro's
parameter list. In this example, the nested class's name is
XDropTarget. The END_INTERFACE_PART macro declares
a member variable that's an instance of the nested class. Here's
the code generated by the preprocessor:

class XDropTarget : public IDropTarget
{
public:
 STDMETHOD_(ULONG, AddRef)();
 STDMETHOD_(ULONG, Release)();
 STDMETHOD(QueryInterface)(REFIID iid, LPVOID* ppvObj);
 STDMETHOD(DragEnter)(LPDATAOBJECT, DWORD, POINTL,

Programming Windows With MFC

 1162

LPDWORD);
 STDMETHOD(DragOver)(DWORD, POINTL, LPDWORD);
 STDMETHOD(DragLeave)();
 STDMETHOD(Drop)(LPDATAOBJECT, DWORD, POINTL pt,
LPDWORD);
} m_xDropTarget;
friend class XDropTarget;

Do you see the resemblance between the preprocessor output
and the nested class example we looked at earlier? Notice that
the name of the nested class instance is m_x plus the first
parameter in the macro's parameter list—in this case,
m_xDropTarget.

The nested class implements the three IUnknown methods plus
the methods listed between BEGIN_INTERFACE_PART and
END_INTERFACE_PART. IDropTarget has four methods—
DragEnter, DragOver, DragLeave, and Drop—hence the
methods named in the preceding code listing. Here's an excerpt
from the MFC source code file Oledrop2.cpp showing how
IDropTarget's methods are implemented in the nested
XDropTarget class:

STDMETHODIMP_(ULONG)
COleDropTarget::XDropTarget::AddRef()
{
 [...]
}

STDMETHODIMP_(ULONG)
COleDropTarget::XDropTarget::Release()
{
 [...]
}

STDMETHODIMP
COleDropTarget::XDropTarget::QueryInterface(...)
{
 [...]
}

STDMETHODIMP COleDropTarget::XDropTarget::DragEnter(...)
{
 [...]
}

STDMETHODIMP COleDropTarget::XDropTarget::DragOver(...)

Programming Windows With MFC

 1163

{
 [...]
}

STDMETHODIMP COleDropTarget::XDropTarget::DragLeave(...)
{
 [...]
}

STDMETHODIMP COleDropTarget::XDropTarget::Drop(...)
{
 [...]
}

The code inside the method implementations is unimportant for
now. The key here is that a few innocent-looking macros in an
MFC source code listing turn into a nested class that
implements a full-blown COM interface. You can create a class
that implements several COM interfaces by including one
BEGIN_INTERFACE_PART/END_INTERFACE_PART
block for each interface. Moreover, you needn't worry about
conflicts if two or more interfaces contain identical methods
because the nested class technique permits each interface (and
its methods) to be implemented independently.

18.2.4. How MFC Implements IUnknown

Let's go back and look more closely at COleDropTarget's
implementation of QueryInterface, AddRef, and Release. Here's
the complete, unabridged version:

STDMETHODIMP_(ULONG) COleDropTarget::XDropTarget::AddRef()
{
 METHOD_PROLOGUE_EX_(COleDropTarget, DropTarget)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) COleDropTarget::XDropTarget::Release()
{
 METHOD_PROLOGUE_EX_(COleDropTarget, DropTarget)
 return pThis->ExternalRelease();
}

STDMETHODIMP COleDropTarget::XDropTarget::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 METHOD_PROLOGUE_EX_(COleDropTarget, DropTarget)
 return pThis->ExternalQueryInterface(&iid, ppvObj);

Programming Windows With MFC

 1164

}

Once more, what MFC is doing is hidden behind a macro. In
this case, the macro is METHOD_PROLOGUE_EX_, which
creates a stack variable named pThis that points to
XDropTarget's parent—that is, the COleDropTarget object of
which the XDropTarget object is a member. Knowing this, you
can see that XDropTarget's IUnknown methods delegate to
COleDropTarget. Which begs a question or two: What do
COleDropTarget's ExternalAddRef, ExternalRelease, and
ExternalQueryInterface functions do, and where do they come
from?

The second question is easy to answer. All three functions are
members of CCmdTarget, and COleDropTarget is derived
from CCmdTarget. To answer the first question, we need to
look at the function implementations inside CCmdTarget.
Here's an excerpt from the MFC source code file Oleunk.cpp:

DWORD CCmdTarget::ExternalAddRef()
{
 [...]
 return InternalAddRef();
}

DWORD CCmdTarget::ExternalRelease()
{
 [...]
 return InternalRelease();
}

DWORD CCmdTarget::ExternalQueryInterface(const void* iid,
 LPVOID* ppvObj)
{
 [...]
 return InternalQueryInterface(iid, ppvObj);
}

ExternalAddRef, ExternalRelease, and ExternalQueryInterface
call another set of CCmdTarget functions named
InternalAddRef, InternalRelease, and InternalQueryInterface.
The Internal functions are a little more complicated, but if you
look at them, you'll find that they do just what AddRef, Release,
and QueryInterface are supposed to do, albeit in an MFC way.
So now we know that the nested class's IUnknown methods
delegate to the parent class and that the parent class inherits

Programming Windows With MFC

 1165

implementations of these methods from CCmdTarget. Let's
keep going.

18.2.5. Interface Maps

The most interesting Internal function is
InternalQueryInterface. If you peek at it in Oleunk.cpp, you'll
see that it calls a little-known function named GetInterface,
which belongs to a little-known class named CUnknown.
GetInterface does a table lookup to determine whether this
class supports the specified interface. It then retrieves a pointer
to the nested class that implements the interface and returns it
to InternalQueryInterface. So MFC uses a table-driven
mechanism to implement QueryInterface. But where do the
tables come from?

Once more, we can look to COleDropTarget for an example.
At the very end of COleDropTarget's class declaration is the
statement

DECLARE_INTERFACE_MAP()

And in COleDropTarget's implementation is this set of related
statements:

BEGIN_INTERFACE_MAP(COleDropTarget, CCmdTarget)
 INTERFACE_PART(COleDropTarget, IID_IDropTarget, DropTarget)
END_INTERFACE_MAP()

DECLARE_INTERFACE_MAP is an MFC macro that
declares an interface map—a table containing one entry for
each interface that a class (in reality, a nested class) implements.
BEGIN_INTERFACE_MAP and END_INTERFACE_MAP
are also macros. They define the contents of the interface map.
Just as message maps tell MFC which messages a class
provides handlers for, interface maps tell MFC which COM
interfaces a class supports and which nested classes provide the
interface implementations. Each INTERFACE_PART macro
that appears between BEGIN_INTERFACE_MAP and
END_INTERFACE_MAP constitutes one entry in the table. In
this example, the INTERFACE_PART statement tells MFC
that the interface map is a member of COleDropTarget, that
COleDropTarget implements the IDropTarget interface, and

Programming Windows With MFC

 1166

that the nested class containing the actual IDropTarget
implementation is XDropTarget. INTERFACE_PART
prepends an X to the class name in the same manner as
BEGIN_INTERFACE_PART.

Because an interface map can contain any number of
INTERFACE_PART macros, MFC classes aren't limited to one
COM interface each; they can implement several. For each
INTERFACE_PART entry that appears in a class's interface
map, there is one
BEGIN_INTERFACE_PART/END_INTERFACE_PART
block in the class declaration. Take a look at COleControl's
interface map in Ctlcore.cpp and the numerous
BEGIN_INTERFACE_PART/END_INTERFACE_PART
blocks in AfxCtl.h and you'll see what I mean.

18.2.6. MFC and Aggregation

Does it seem curious that CCmdTarget has two sets of
functions with QueryInterface, AddRef, and Release in their
names? When I showed you the source code for the External
functions, I omitted (for clarity) the part that explains why.
Here it is again, but this time in unabbreviated form:

DWORD CCmdTarget::ExternalAddRef()
{
 // delegate to controlling unknown if aggregated
 if (m_pOuterUnknown != NULL)
 return m_pOuterUnknown->AddRef();

 return InternalAddRef();
}

DWORD CCmdTarget::ExternalRelease()
{
 // delegate to controlling unknown if aggregated
 if (m_pOuterUnknown != NULL)
 return m_pOuterUnknown->Release();

 return InternalRelease();
}

DWORD CCmdTarget::ExternalQueryInterface(const void* iid,
 LPVOID* ppvObj)
{
 // delegate to controlling unknown if aggregated

Programming Windows With MFC

 1167

 if (m_pOuterUnknown != NULL)
 return m_pOuterUnknown->QueryInterface(*(IID*)iid,
ppvObj);

 return InternalQueryInterface(iid, ppvObj);
}

Observe that the External functions call the Internal functions
only if m_pOuterUnknown holds a NULL value.
m_pOuterUnknown is a CCmdTarget member variable that
holds an object's controlling unknown. If m_pOuterUnknown is
not NULL, the External functions delegate through the pointer
held in m_pOuterUnknown. If you're familiar with COM
aggregation, you can probably guess what's going on here. But
if aggregation is new to you, the preceding code requires
further explanation.

COM has never supported inheritance in the way that C++ does.
In other words, you can't derive one COM object from another
in the way that you can derive one C++ class from another.
However, COM does support two mechanisms— containment
and aggregation—for object reuse.

Containment is the simpler of the two. To illustrate how it
works, let's say you've written an object that contains a pair of
methods named Add and Subtract. Now suppose someone else
has written a COM object with Multiply and Divide methods
that you'd like to incorporate into your object. One way to
"borrow" the other object's methods is to have your object
create the other object with CoCreateInstance and call its
methods as needed. Your object is the outer object, the other
object is the inner object, and if m_pInnerObject holds a pointer
to the interface on the inner object that implements Multiply
and Divide, you might also include Multiply and Divide
methods in your object and implement them like this:

HRESULT __stdcall CComClass::Multiply (int a, int b, int* pResult)
{
 return m_pInnerObject->Multiply (a, b, pResult);
}

HRESULT __stdcall CComClass::Divide (int a, int b, int* pResult)
{
 return m_pInnerObject->Divide (a, b, pResult);

Programming Windows With MFC

 1168

}

That's containment in a nutshell. Figure 18-5 shows the
relationship between the inner and outer objects. Notice that the
inner object's interface is exposed only to the outer object, not
to the clients of the outer object.

Figure 18-5. Containment.

Aggregation is altogether different. When one object
aggregates another, the aggregate object exposes the interfaces
of both the inner and the outer objects. (See Figure 18-6.) The
client has no idea that the object is actually an aggregate of two
or more objects.

Figure 18-6. Aggregation.

Aggregation is similar to containment in that the outer object
creates the inner object. But the similarities end there. For
aggregation to work, the inner object and the outer object must
work together to create the illusion that they're really one object.
Both objects must adhere to a strict set of rules governing their
behavior. One of those rules says that the outer object must
pass its own IUnknown pointer to the inner object. This pointer
becomes the inner object's controlling unknown. If a client calls
an IUnknown method on the inner object, the inner object must
delegate to the outer object by calling QueryInterface, AddRef,
or Release through the controlling unknown. That's what

Programming Windows With MFC

 1169

happens when CCmdTarget's External functions call
QueryInterface, AddRef, or Release through
m_pOuterUnknown. If the object is aggregated,
m_pOuterUnknown is non-NULL and the External functions
delegate to the outer object. Otherwise, the object isn't
aggregated and the Internal functions are called instead.

A key difference between containment and aggregation is that
any object can be contained by another object, but only objects
that specifically support aggregation can be aggregated. MFC
makes aggregation easy because it builds in aggregation
support for free.

18.2.7. MFC and Class Factories

Any class library that places a friendly wrapper around COM
should include support for class factories. COM class factories
typically contain a lot of boilerplate code that varies little from
one application to the next, so they're perfect candidates to be
hidden away inside a C++ class.

MFC provides a canned implementation of COM class factories
in COleObjectFactory. MFC's COleObjectFactory class
implements two COM interfaces: IClassFactory and
IClassFactory2. IClassFactory2 is a superset of IClassFactory;
it supports all of IClassFactory's methods and adds licensing
methods that are used primarily by ActiveX controls.

When you create a COleObjectFactory, you feed its constructor
four critical pieces of information. The first is the CLSID of the
object that the class factory creates. The second is a
RUNTIME_CLASS pointer identifying the C++ class that
implements objects of that type. The third is a BOOL that tells
COM whether this server, if it's an EXE, is capable of creating
multiple object instances. If this parameter is TRUE and 10
clients call CoCreateInstance on the COM class that this server
implements, 10 different instances of the EXE are launched. If
the parameter is FALSE, one instance of the EXE serves all 10
clients. The fourth and final parameter to COleObjectFactory's
constructor is the ProgID of the object that the class factory
creates. ProgID is short for Program ID; it's a human-readable
name (for example, "Math.Object") that can be used in lieu of a
CLSID to identify a COM class. The following code fragment

Programming Windows With MFC

 1170

creates a COleObjectFactory that instantiates CComClass when
CLSID_Math is passed to a COM activation function:

COleObjectFactory cf (
 CLSID_Math, // The object's CLSID
 RUNTIME_CLASS (CComClass), // Class representing the
object
 FALSE, // Many clients, one EXE
 _T ("Math.Object") // The object's ProgID
);

Most MFC applications don't explicitly declare an instance of
COleObjectFactory; instead, they use MFC's
DECLARE_OLECREATE and IMPLEMENT_OLECREATE
macros. When the preprocessor encounters

// In the class declaration
DECLARE_OLECREATE (CComClass)

// In the class implementation
IMPLEMENT_OLECREATE (CComClass, "Math.Object",
0x708813ac,
 0x88d6, 0x11d1, 0x8e, 0x53, 0x00, 0x60, 0x08, 0xa8, 0x27,
0x31)

it outputs this:

// In the class declaration
public:
 static COleObjectFactory factory;
 static const GUID guid;

// In the class implementation
COleObjectFactory CComClass::factory(CComClass::guid,
 RUNTIME_CLASS(CComClass), FALSE, _T("Math.Object"));
const GUID CComClass::guid =
 { 0x708813ac, 0x88d6, 0x11d1, { 0x8e, 0x53, 0x00,
 0x60, 0x08, 0xa8, 0x27, 0x31} };

The one drawback to the OLECREATE macros is that they
contain hardcoded references to COleObjectFactory. If you
derive a class from COleObjectFactory and want to use it in an
application, you must either discard the macros and hand-code
the references to the derived class or write your own
OLECREATE macros. Programmers occasionally do find it
useful to derive their own classes from COleObjectFactory to

Programming Windows With MFC

 1171

modify the class factory's behavior. By overriding the virtual
OnCreateObject function, for example, you can create a
"singleton" class factory—a class factory that creates an object
the first time IClassFactory::CreateInstance is called and
hands out pointers to the existing object in response to
subsequent activation requests.

Internally, MFC maintains a linked list of all the
COleObjectFactory objects that an application creates. (Look
inside COleObjectFactory's constructor and you'll see the code
that adds each newly instantiated object to the list.)
COleObjectFactory includes handy member functions for
registering all an application's class factories with the operating
system and for registering the objects that the class factories
create in the system registry. The statement

COleObjectFactory::UpdateRegistryAll ();

adds to the registry all the information required to create any
object that is served up by this application's class factories.
That's powerful, because the alternative is to write low-level
code that relies on Win32 registry functions to update the
registry yourself.

18.2.8. Putting It All in Perspective

Has this chapter covered everything there is to know about the
relationship between MFC and COM? Hardly. There's plenty
more, as you'll discover in the next three chapters. But this
chapter has set the stage for the ones that follow. Now when
you see a diagram like the one in Figure 18-1, you'll understand
what you're looking at and have a pretty good idea of how MFC
implements it. Plus, when you look over a wizard-generated
source code listing or dig down into the MFC source code,
you'll know what statements like INTERFACE_PART and
IMPLEMENT_OLECREATE mean.

If COM is new to you, you're probably feeling a little
overwhelmed right now. Don't despair. Learning COM is a lot
like learning to program Windows: You endure the obligatory
six months of mental fog before it all begins to make sense. The
good news is that you don't have to be an expert on COM to
build COM-based applications with MFC. In fact, you don't

Programming Windows With MFC

 1172

have to know much about COM at all. But if you believe (as I
do) that the best programmers are the ones who understand
what goes on under the hood, the information presented in this
chapter will serve you well in the long run.

Programming Windows With MFC

 1173

Chapter 19. The Clipboard and
OLE Drag-and-Drop

Since version 1.0, Microsoft Windows has supported the
transfer of data through the clipboard. The clipboard is a
centralized location where data can be stored en route from one
application to another or on its way to another part of the same
application. Even novices quickly grasp the clipboard's simple
cut/copy/paste paradigm: select the data, cut it or copy it to the
clipboard, and paste it somewhere else. Many applications
feature Cut, Copy, and Paste commands in their Edit menus,
and millions of Windows users know Ctrl-X, Ctrl-C, and
Ctrl-V as the keyboard equivalents of these basic clipboard
commands.

The original clipboard (which I'll refer to as the legacy
clipboard or simply as the clipboard) is still present in
Windows 98 and Windows 2000, but programmers are
encouraged to forego using it in favor of a newer, more capable
clipboard known as the OLE clipboard. The OLE clipboard is
backward-compatible with the legacy clipboard, meaning that
one application can copy data to the OLE clipboard and another
application can retrieve that data from the legacy clipboard, and
vice versa. More important, the OLE clipboard lets
programmers do a few things that the legacy clipboard doesn't.
To transfer a large bitmap using the legacy clipboard, for
example, you must allocate enough memory to store the entire
bitmap. Transfer the same bitmap through the OLE clipboard,
however, and you can store the bitmap in a more sensible
storage medium, such as in a file on a hard disk.

Closely related to the OLE clipboard is a visual method of
transferring data called OLE drag-and-drop. OLE
drag-and-drop simplifies cut/copy/paste by eliminating the
middleman. Rather than requiring one command to move the
data to the clipboard and another to paste it into a document,
OLE drag-and-drop lets you grab a piece of data with the
mouse and drag it to the desired location. Under the hood, a
mechanism much like the OLE clipboard is used to facilitate
the data transfer. But to the user, the transfer appears
seamless—and very intuitive.

Programming Windows With MFC

 1174

MFC doesn't provide explicit support for operations involving
the legacy clipboard, but it does support the OLE clipboard and
OLE drag-and-drop. Writing code to use either of these data
transfer mechanisms is no picnic if you're doing it from scratch,
but MFC makes it surprisingly simple.

The best way to understand the mechanics of the OLE
clipboard and OLE drag-and-drop is to first understand how the
legacy clipboard works. To that end, I'll begin this chapter with
an overview of the legacy clipboard and a review of the
Windows API functions used to access it. I'll then introduce the
OLE clipboard and OLE drag-and-drop and demonstrate how
to use MFC to develop applications that support both of them
in no time flat.

19.1. The Legacy Clipboard

Data is transferred to and from the legacy clipboard using a
small subset of Windows API functions. The following table
briefly summarizes those functions.

Clipboard API Functions

Function Description

OpenClipboard Opens the clipboard

CloseClipboard Closes the clipboard

EmptyClipboard Deletes the current contents of the clipboard

GetClipboardData Retrieves data from the clipboard

SetClipboardData Transfers data to the clipboard

Placing data on the clipboard is a four-step process:

1. Open the clipboard with ::OpenClipboard.
2. Discard any data presently stored in the clipboard

with ::EmptyClipboard.
3. Use ::SetClipboardData to transfer ownership of a global memory block

or other object (for example, a bitmap handle) containing clipboard data
to the clipboard.

4. Close the clipboard with ::CloseClipboard.

A global memory block is a block of memory allocated with
the ::GlobalAlloc API function. ::GlobalAlloc returns a handle
of type HGLOBAL, which can be treated as a generic

Programming Windows With MFC

 1175

HANDLE in a Win32 application. A related function
named ::GlobalLock takes an HGLOBAL and returns a pointer
to the memory block. Windows programmers don't
use ::GlobalAlloc much anymore because ::HeapAlloc
superseded it in the Win32 API. But ::GlobalAlloc is still
useful for clipboard programming because the clipboard
requires a memory handle, not a pointer.

The following code places a text string on the clipboard by
copying the text string to a global memory block and handing
the memory block over to the clipboard:

char szText[]= "Hello, world"; // ANSI characters
if (::OpenClipboard (m_hWnd)) {
 ::EmptyClipboard ();

 HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, ::lstrlen
(szText) + 1);
 LPSTR pData = (LPSTR) ::GlobalLock (hData);
 ::lstrcpy (pData, szText);
 ::GlobalUnlock (hData);

 ::SetClipboardData (CF_TEXT, hData);
 ::CloseClipboard ();
}

Once a global memory block is handed over to the clipboard,
the application that allocated the block should neither use it nor
delete it. The clipboard now owns the memory and will release
it at the appropriate time—specifically, the next time an
application calls ::EmptyClipboard.

The sole parameter passed to ::OpenClipboard is the handle of
the window that "owns" the clipboard while the clipboard is
open. In an MFC application, of course, you can retrieve a
CWnd's window handle from its m_hWnd data
member. ::OpenClipboard will fail if another application has
the clipboard open. Forcing every application to open the
clipboard before using it is the way that Windows synchronizes
access to this shared resource and ensures that the clipboard's
contents don't change while an application is using it.

Retrieving data from the clipboard is equally simple. Here are
the steps:

Programming Windows With MFC

 1176

1. Open the clipboard with ::OpenClipboard.
2. Use ::GetClipboardData to retrieve the handle of the global memory

block or other object containing clipboard data.
3. Make a local copy of the data by copying it from the global memory

block.
4. Close the clipboard with ::CloseClipboard.

Here's how you can retrieve the text string placed on the
clipboard in the previous example:

char szText[BUFLEN];
if (::OpenClipboard (m_hWnd)) {
 HANDLE hData = ::GetClipboardData (CF_TEXT);
 if (hData != NULL) {
 LPCSTR pData = (LPCSTR) ::GlobalLock (hData);
 if (::lstrlen (pData) < BUFLEN)
 ::lstrcpy (szText, pData);
 ::GlobalUnlock (hData);
 }
 ::CloseClipboard ();
}

If a text string is available from the clipboard, szText will hold a
copy of it when this routine finishes.

19.1.1. Clipboard Formats

Both ::SetClipboardData and ::GetClipboardData accept an
integer value specifying a clipboard format, which identifies the
type of data involved in the transfer. The examples in the
previous section used CF_TEXT, which identifies the data as
ANSI text. Windows uses a separate clipboard format ID for
Unicode text. (That's why both examples used the char data
type instead of TCHAR.) CF_TEXT is one of several
predefined clipboard formats that Windows supports. A partial
list of clipboard formats is shown in the following table.

Commonly Used Clipboard Formats

Format Data Type

CF_BITMAP Windows bitmap

CF_DIB Device-independent bitmap

CF_ENHMETAFILE GDI enhanced metafile

CF_METAFILEPICT Old-style (nonenhanced) GDI metafile with sizing and

Programming Windows With MFC

 1177

mapping-mode information attached

CF_HDROP List of file names in HDROP format

CF_PALETTE GDI palette

CF_TEXT Text composed of 8-bit ANSI characters

CF_TIFF Bitmap in TIFF format

CF_UNICODETEXT Text composed of 16-bit Unicode characters

CF_WAVE Audio data in WAV format

You can use the predefined clipboard formats to transfer
bitmaps, palettes, enhanced metafiles, and other objects as
easily as you can transfer text. For example, if m_bitmap is a
CBitmap data member that holds a bitmap, here's one way to
make a copy of the bitmap and place it on the clipboard:

if (::OpenClipboard (m_hWnd)) {
 // Make a copy of the bitmap.
 BITMAP bm;
 CBitmap bitmap;
 m_bitmap.GetObject (sizeof (bm), &bm);
 bitmap.CreateBitmapIndirect (&bm);

 CDC dcMemSrc, dcMemDest;
 dcMemSrc.CreateCompatibleDC (NULL);
 CBitmap* pOldBitmapSrc = dcMemSrc.SelectObject
(&m_bitmap);
 dcMemDest.CreateCompatibleDC (NULL);
 CBitmap* pOldBitmapDest = dcMemDest.SelectObject
(&bitmap);

 dcMemDest.BitBlt (0, 0, bm.bmWidth, bm.bmHeight,
&dcMemSrc,
 0, 0, SRCCOPY);
 HBITMAP hBitmap = (HBITMAP) bitmap.Detach ();

 dcMemDest.SelectObject (pOldBitmapDest);
 dcMemSrc.SelectObject (pOldBitmapSrc);

 // Place the copy on the clipboard.
 ::EmptyClipboard ();
 ::SetClipboardData (CF_BITMAP, hBitmap);
 ::CloseClipboard ();
}

Programming Windows With MFC

 1178

To retrieve a bitmap from the clipboard,
call ::GetClipboardData and pass it a CF_BITMAP parameter:

if (::OpenClipboard (m_hWnd)) {
 HBITMAP hBitmap = (HBITMAP) ::GetClipboardData
(CF_BITMAP);
 if (hBitmap != NULL) {
 // Make a local copy of the bitmap.
 }
 ::CloseClipboard ();
}

Notice the pattern here. The application that places data on the
clipboard tells Windows the data type. The application that
retrieves the data asks for a particular data type. If data isn't
available in that format, ::GetClipboardData returns NULL. In
the example above, ::GetClipboardData returns NULL if the
clipboard contains no CF_BITMAP-type data and the code that
copies the bitmap is bypassed.

The system silently converts some clipboard formats to related
data types when ::GetClipboardData is called. For example, if
application A copies a string of ANSI text to the clipboard
(CF_TEXT) and application B calls ::GetClipboardData
requesting Unicode text(CF_UNICODETEXT), Windows 2000
converts the text to Unicode and ::GetClipboardData returns a
valid memory handle. Bitmaps benefit from implicit data
conversions, too. Both Windows 98 and Windows 2000 convert
a CF_BITMAP bitmap into a CF_DIB, and vice versa. This
adds a welcome measure of portability to clipboard formats that
represent different forms of the same basic data types.

19.1.1.1. The CF_HDROP Clipboard Format

One of the more interesting—and least documented—clipboard
formats is CF_HDROP. When you retrieve
CF_HDROP-formatted data from the clipboard, you get back
an HDROP, which is actually a handle to a global memory
block. Inside the memory block is a list of file names. Rather
than read the file names by parsing the contents of the memory
block, you can use the ::DragQueryFile function. The
following code retrieves an HDROP from the clipboard and
stuffs all the file names into the list box referenced by the
CListBox pointer pListBox:

Programming Windows With MFC

 1179

if (::OpenClipboard (m_hWnd)) {
 HDROP hDrop = (HDROP) ::GetClipboardData (CF_HDROP);
 if (hDrop != NULL) {
 // Find out how many file names the HDROP contains.
 int nCount = ::DragQueryFile (hDrop, (UINT) -1, NULL,
0);
 // Enumerate the file names.
 if (nCount) {
 TCHAR szFile[MAX_PATH];
 for (int i=0; i<nCount; i++) {
 ::DragQueryFile (hDrop, i, szFile,
 sizeof (szFile) / sizeof (TCHAR));
 pListBox->AddString (szFile);
 }
 }
 }
 ::CloseClipboard ();
}

Extracting file names from an HDROP is easy; inserting them
is a bit more work. The memory block that an HDROP
references contains a DROPFILES structure followed by a list
of file names terminated by two consecutive NULL characters.
DROPFILES is defined as follows in Shlobj.h:

typedef struct _DROPFILES {
 DWORD pFiles; // Offset of file list
 POINT pt; // Drop coordinates
 BOOL fNC; // Client or nonclient
area
 BOOL fWide; // ANSI or Unicode text
} DROPFILES, FAR * LPDROPFILES;

To create your own HDROP, you allocate a global memory
block, initialize a DROPFILES structure inside it, and append a
list of file names. The only DROPFILES fields you need to
initialize are pFiles, which holds the offset relative to the
beginning of the memory block of the first character in the list
of file names, and fWide, which indicates whether the file
names are composed of ANSI (fWide=FALSE) or Unicode
(fWide=TRUE) characters. To illustrate, the following
statements create an HDROP containing two file names and
place the HDROP on the clipboard:

TCHAR szFiles[3][32] = {

Programming Windows With MFC

 1180

 _T ("C:\\My Documents\\Book\\Chap20.doc"),
 _T ("C:\\My Documents\\Book\\Chap21.doc"),
 _T ("")
};

if (::OpenClipboard (m_hWnd)) {
 ::EmptyClipboard ();
 int nSize = sizeof (DROPFILES) + sizeof (szFiles);
 HANDLE hData = ::GlobalAlloc (GHND, nSize);
 LPDROPFILES pDropFiles = (LPDROPFILES) ::GlobalLock
(hData);
 pDropFiles->pFiles = sizeof (DROPFILES);

#ifdef UNICODE
 pDropFiles->fWide = TRUE;
#else
 pDropFiles->fWide = FALSE;
#endif

 LPBYTE pData = (LPBYTE) pDropFiles + sizeof
(DROPFILES);
 ::CopyMemory (pData, szFiles, sizeof (szFiles));
 ::GlobalUnlock (hData);
 ::SetClipboardData (CF_HDROP, hData);
 ::CloseClipboard ();
}

The GHND parameter passed to ::GlobalAlloc in this example
combines the GMEM_MOVEABLE and GMEM_ZEROINIT
flags. GMEM_ZEROINIT tells ::GlobalAlloc to initialize all
the bytes in the block to 0, which ensures that the uninitialized
members of the DROPFILES structures are set to 0. As an
aside, the GMEM_MOVEABLE flag is no longer necessary
when you allocate global memory blocks to hand over to the
clipboard in the Win32 environment, despite what the
documentation might say. Its presence here is a tip of the hat to
16-bit Windows, which required us to allocate clipboard
memory with both the GMEM_MOVEABLE and
GMEM_DDESHARE flags.

HDROPs might seem like a curious way to pass around lists of
file names. However, the Windows 98 and Windows 2000
shells use this format to cut, copy, and paste files. Here's a
simple experiment you can perform to see for yourself how the
shell uses HDROPs. Copy the sample code into an application,
and change the file names to reference real files on your hard

Programming Windows With MFC

 1181

disk. Execute the code to transfer the HDROP to the clipboard.
Then open a window onto a hard disk folder and select Paste
from the window's Edit menu. The shell will respond by
moving the files whose names appear in the HDROP into the
folder.

19.1.2. Private Clipboard Formats

CF_TEXT, CF_BITMAP, and other predefined clipboard
formats cover a wide range of data types, but they can't
possibly include every type of data that an application might
want to transfer through the clipboard. For this reason,
Windows allows you to register your own private clipboard
formats and use them in lieu of or in conjunction with standard
clipboard formats.

Let's say you're writing a Widget application that creates
widgets. You'd like your users to be able to cut or copy widgets
to the clipboard and paste them elsewhere in the document (or
perhaps into an entirely different document). To support such
functionality, call the Win32 API
function ::RegisterClipboardFormat to register a private
clipboard format for widgets:

UINT nID = ::RegisterClipboardFormat (_T ("Widget"));

The UINT you get back is the ID of your private clipboard
format. To copy a widget to the clipboard, copy all the data
needed to define the widget into a global memory block, and
then call ::SetClipboardData with the private clipboard format
ID and the memory handle:

::SetClipboardData (nID, hData);

To retrieve the widget from the clipboard, pass the widget's
clipboard format ID to ::GetClipboardData:

HANDLE hData = ::GetClipboardData (nID);

Then lock the block to get a pointer and reconstruct the widget
from the data in the memory block. The key here is that if 10
different applications (or 10 different instances of the same

Programming Windows With MFC

 1182

application) call ::RegisterClipboardFormat with the same
format name, all 10 will receive the same clipboard format ID.
Thus, if application A copies a widget to the clipboard and
application B retrieves it, the process will work just fine as long
as both applications specify the same format name when they
call ::RegisterClipboardFormat.

19.1.3. Providing Data in Multiple Formats

Placing multiple items on the clipboard is perfectly legal as
long as each item represents a different format. Applications do
it all the time. It's an effective way to make data available to a
wide range of applications—even those that don't understand
your private clipboard formats.

Microsoft Excel is a good example of an application that uses
multiple clipboard formats. When you select a range of
spreadsheet cells in Excel and copy the selection to the
clipboard, Excel places up to 30 items on the clipboard. One of
those items uses a private clipboard format that represents
native Excel spreadsheet data. Another is a CF_BITMAP
rendition of the cells. The Paint utility that comes with
Windows doesn't understand Excel's private clipboard format,
but it can paste Excel spreadsheet cells into a bitmap. At least it
appears that Paint can paste spreadsheet cells. In truth, it pastes
a bitmapped image of those cells, not real spreadsheet cells.
You can even paste Excel data into Notepad because one of the
formats that Excel places on the clipboard is—you guessed
it—CF_TEXT. By making spreadsheet data available in a wide
range of formats, Excel increases the portability of its clipboard
data.

How do you place two or more items on the clipboard? It's easy:
Just call ::SetClipboardData once for each format:

::SetClipboardData (nID, hPrivateData);
::SetClipboardData (CF_BITMAP, hBitmap);
::SetClipboardData (CF_TEXT, hTextData);

Now if an application calls ::GetClipboardData asking for data
in CF_TEXT format, CF_BITMAP format, or the private
format specified by nID, the call will succeed and the caller
will receive a non-NULL data handle in return.

Programming Windows With MFC

 1183

19.1.4. Querying for Available Data Formats

One way to find out whether clipboard data is available in a
particular format is to call ::GetClipboardData and check for a
NULL return value. Sometimes, however, you'll want to know
in advance whether ::GetClipboardData will succeed or to see
all the formats that are currently available enumerated so that
you can pick the one that best fits your needs. The following
Win32 API functions let you do all this and more:

Function Description

CountClipboardFormats Returns the number of formats currently
available

EnumClipboardFormats Enumerates all available clipboard formats

IsClipboardFormatAvailable Indicates whether data is available in a particular
format

GetPriorityClipboardFormat Given a prioritized list of formats, indicates
which one is the first available

::IsClipboardFormatAvailable is the simplest of the four
functions. To find out whether data is available in CF_TEXT
format, call ::IsClipboardFormatAvailable like this.

if (::IsClipboardFormatAvailable (CF_TEXT)) {
 // Yes, it's available.
}
else {
 // No, it's not available.
}

This function is often used to implement update handlers for
the Edit menu's Paste command. Refer to Chapter 7 for an
example of this usage.

::IsClipboardFormatAvailable works even if the clipboard isn't
open. But don't forget that clipboard data is subject to change
when the clipboard isn't open. Don't make the mistake of
writing code like this:

if (::IsClipboardFormatAvailable (CF_TEXT)) {
 if (::OpenClipboard (m_hWnd)) {
 HANDLE hData = ::GetClipboardData (CF_TEXT);

Programming Windows With MFC

 1184

 LPCSTR pData = (LPCSTR) ::GlobalLock (hData);

 ::CloseClipboard ();
 }
}

This code is buggy because in a multitasking environment,
there's a small but very real chance that the data on the
clipboard will be replaced after ::IsClipboardFormatAvailable
executes but before ::GetClipboardData is called. You can
avoid this risk by opening the clipboard prior to
calling ::IsClipboardFormatAvailable:

if (::OpenClipboard (m_hWnd)) {
 if (::IsClipboardFormatAvailable (CF_TEXT)) {
 HANDLE hData = ::GetClipboardData (CF_TEXT);
 LPCSTR pData = (LPCSTR) ::GlobalLock (hData);

 }
 ::CloseClipboard ();
}

This code will work just fine because only the application that
has the clipboard open can change the clipboard's contents.

You can use ::EnumClipboardFormats to iterate through a list
of all available clipboard formats. Here's an example:

if (::OpenClipboard (m_hWnd)) {
 UINT nFormat = 0; // Must be 0 to start the iteration.
 while (nFormat = ::EnumClipboardFormats (nFormat)) {
 // Next clipboard format is in nFormat.
 }
 ::CloseClipboard ();
}

Because ::EnumClipboardFormats returns 0 when it reaches
the end of the list, the loop falls through after retrieving the last
available format. If you simply want to know how many data
formats are available on the clipboard,
call ::CountClipboardFormats.

The final clipboard data availability
function, ::GetPriorityClipboardFormat, simplifies the process
of checking for not just one clipboard format, but several.

Programming Windows With MFC

 1185

Suppose your application is capable of pasting data in a private
format stored in nID, in CF_TEXT format, or in CF_BITMAP
format. You would prefer the private format, but if that's not
available, you'll take CF_TEXT instead, or if all else fails,
CF_BITMAP. Rather than write

if (::OpenClipboard (m_hWnd)) {
 if (::IsClipboardFormatAvailable (nID)) {
 // Perfect!
 }
 else if (::IsClipboardFormatAvailable (CF_TEXT)) {
 // Not the best, but I'll take it.
 }
 else if (::IsClipboardFormatAvailable (CF_BITMAP)) {
 // Better than nothing.
 }
 ::CloseClipboard ();
}

you can write

UINT nFormats[3] = {
 nID, // First choice
 CF_TEXT, // Second choice
 CF_BITMAP // Third choice
};

if (::OpenClipboard (m_hWnd)) {
 UINT nFormat = ::GetPriorityClipboardFormat (nFormats, 3);
 if (nFormat > 0) {
 // nFormat holds nID, CF_TEXT, or CF_BITMAP.
 }
 ::CloseClipboard ();
}

::GetPriorityClipboardFormat's return value is the ID of the
first format in the list that matches a format that is currently
available. ::GetPriorityClipboardFormat returns -1 if none of
the formats is available or 0 if the clipboard is empty.

19.1.5. Delayed Rendering

One of the limitations of the legacy clipboard is that all data
placed on it is stored in memory. For text strings and other
simple data types, memory-based data transfers are both fast
and efficient. But suppose someone copies a 10-MB bitmap to
the clipboard. Until the clipboard is emptied, the bitmap will

Programming Windows With MFC

 1186

occupy 10 MB of RAM. And if no one pastes the bitmap, the
memory allocated to hold it will have been used for naught.

To avoid such wastefulness, Windows supports delayed
rendering. Delayed rendering allows an application to say, "I
have data that I'll make available through the clipboard, but I'm
not going to copy it to the clipboard until someone asks for it."
How does delayed rendering work? First you
call ::SetClipboardData with a valid clipboard format ID but a
NULL data handle. Then you respond to
WM_RENDERFORMAT messages by physically placing the
data on the clipboard with ::SetClipboardData. The
WM_RENDERFORMAT message is sent if and when an
application calls ::GetClipboardData asking for data in that
particular format. If no one asks for the data, the message is
never sent, and you'll never have to allocate that 10 MB of
memory. Keep in mind that a WM_RENDERFORMAT
message handler should not call ::OpenClipboard
and ::CloseClipboard because the window that receives the
message implicitly owns the clipboard at the time the message
is received.

An application that processes WM_RENDERFORMAT
messages must process WM_RENDERALLFORMATS
messages, too. The WM_RENDERALLFORMATS message is
sent if an application terminates while the clipboard holds
NULL data handles that the application put there. The message
handler's job is to open the clipboard, transfer to it the data that
the application promised to provide through delayed rendering,
and close the clipboard. Putting the data on the clipboard
ensures that the data will be available to other applications after
an application that uses delayed rendering is long gone.

A third clipboard message, WM_DESTROYCLIPBOARD,
also plays a role in delayed rendering. This message informs an
application that it's no longer responsible for providing
delay-rendered data. It's sent when another application
calls ::EmptyClipboard. It's also sent after a
WM_RENDERALLFORMATS message. If you're holding on
to any resources in order to respond to
WM_RENDERFORMAT and
WM-_RENDERALLFORMATS messages, you can safely free

Programming Windows With MFC

 1187

those resources when a WM_DESTROYCLIPBOARD
message arrives.

Here's how an MFC application might use delayed rendering to
place a bitmap on the clipboard:

// In CMyWindow's message map
ON_COMMAND (ID_EDIT_COPY, OnEditCopy)
ON_WM_RENDERFORMAT ()
ON_WM_RENDERALLFORMATS ()

// Elsewhere in CMyWindow
void CMyWindow::OnEditCopy ()
{
 ::SetClipboardData (CF_BITMAP, NULL);
}

void CMyWindow::OnRenderFormat (UINT nFormat)
{
 if (nFormat == CF_BITMAP) {
 // Make a copy of the bitmap, and store the handle in
hBitmap.

 ::SetClipboardData (CF_BITMAP, hBitmap);
 }
}

void CMyWindow::OnRenderAllFormats ()
{
 ::OpenClipboard (m_hWnd);
 OnRenderFormat (CF_BITMAP);
 ::CloseClipboard ();
}

This example isn't entirely realistic because if there's a
possibility that the bitmap could change between the time it's
copied to the clipboard and the time it's retrieved (a distinct
possibility if the application is a bitmap editor and the bitmap is
open for editing), OnEditCopy is obliged to make a copy of the
bitmap in its current state. But think about it. If OnEditCopy
makes a copy of the bitmap, the whole purpose of using
delayed rendering is defeated. Delayed rendering is a tool for
conserving memory, but if an application is obliged to make a
copy of each item that is "copied" to the clipboard for delayed
rendering, shouldn't it just copy the item to the clipboard
outright?

Programming Windows With MFC

 1188

Not necessarily. The snapshot can be stored on disk. Here's a
revised version of the code that demonstrates how delayed
rendering can conserve memory even if the data is subject to
change:

// In CMyWindow's message map
ON_COMMAND (ID_EDIT_COPY, OnEditCopy)
ON_WM_RENDERFORMAT ()
ON_WM_RENDERALLFORMATS ()
ON_WM_DESTROYCLIPBOARD ()

// Elsewhere in CMyWindow
void CMyWindow::OnEditCopy ()
{
 // Save the bitmap to a temporary disk file.

 ::SetClipboardData (CF_BITMAP, NULL);
}

void CMyWindow::OnRenderFormat (UINT nFormat)
{
 if (nFormat == CF_BITMAP) {
 // Re-create the bitmap from the data in the temporary file.

 ::SetClipboardData (CF_BITMAP, hBitmap);
 }
}

void CMyWindow::OnRenderAllFormats ()
{
 ::OpenClipboard (m_hWnd);
 OnRenderFormat (CF_BITMAP);
 ::CloseClipboard ();
}

void CMyWindow::OnDestroyClipboard ()
{
 // Delete the temporary file.
}

The idea is to save a copy of the bitmap to a file in OnEditCopy
and re-create the bitmap from the file in OnRenderFormat.
Disk space is orders of magnitude cheaper than RAM, so this
trade-off is acceptable in most situations.

Programming Windows With MFC

 1189

19.1.6. Building a Reusable Clipboard Class

Given the nature of the clipboard, you might be surprised to
discover that MFC doesn't provide a CClipboard class that
encapsulates the clipboard API. You could write your own
clipboard class without much difficulty, but there's really no
good reason to bother. Why? Because the OLE clipboard does
everything that the legacy clipboard does and then some, and
because MFC does a thorough job of wrapping the OLE
clipboard. Operations involving the OLE clipboard are
considerably more complex than operations involving the
legacy clipboard, but MFC levels the playing field. In fact, with
MFC to lend a hand, using the OLE clipboard is no more
difficult than using the legacy clipboard. The next several
sections explain why.

19.2. The OLE Clipboard

The OLE clipboard is a modern-day version of the legacy
clipboard. It is also backward-compatible. Thanks to some
magic built into the OLE libraries, you can put a text string, a
bitmap, or some other item on the OLE clipboard and an
application that knows nothing about OLE can paste that item
just as if it had come from the legacy clipboard. Conversely, an
application can use the OLE clipboard to retrieve data from the
legacy clipboard.

What's different about the OLE clipboard, and why is it
superior to the old clipboard? There are two major differences
between the two. First, the OLE clipboard is completely
COM-based; all data is transferred by calling methods through
pointers to COM interfaces. Second, the OLE clipboard
supports storage media other than global memory. The legacy
clipboard, in contrast, uses memory for all data transfers, which
effectively limits the size of items transferred through the
clipboard to the amount of memory available. Because of the
legacy clipboard's inability to use media other than memory for
data transfers, the compatibility between the legacy clipboard
and the OLE clipboard is subject to the limitation that only
items transferred through memory can be copied to one and
retrieved from the other.

Programming Windows With MFC

 1190

The first reason alone isn't enough to justify forsaking the
legacy clipboard. COM is trendy and objects are cool, but
without MFC, code that interacts with the OLE clipboard is
much more complex than legacy clipboard code. But the
second reason—the freedom to use alternative storage
media—is just cause to use the OLE clipboard. Transferring a
4-GB bitmap through the legacy clipboard is impossible
because current versions of Windows don't support memory
objects that large. With the OLE clipboard, however, you can
transfer anything that will fit on your hard disk. In fact, with a
little ingenuity, you can transfer anything at all—even items too
large to fit on a hard disk. Given the huge volumes of
information that many modern applications are forced to deal
with, the OLE clipboard can be a very handy tool indeed.

19.2.1. OLE Clipboard Basics

The first and most fundamental notion to understand about the
OLE clipboard is that when you place an item of data on it, you
don't actually place the data itself. Instead, you place a COM
data object that encapsulates the data. A data object is a COM
object that implements the IDataObject interface. IDataObject
has two methods that play key roles in the operation of the OLE
clipboard: SetData and GetData. Assuming that the data object
is a generic data repository (as opposed to an object that is
custom-fit to handle a particular set of data), a data provider
stuffs data into the data object with IDataObject::SetData. It
then places the object on the OLE clipboard
with ::OleSetClipboard. A data consumer
calls ::OleGetClipboard to get the clipboard data object's
IDataObject pointer, and then it calls IDataObject::GetData to
retrieve the data.

Figure 19-1 provides a conceptual look at OLE clipboard
operations. This is a simplified view in that the IDataObject
pointer returned by ::OleGetClipboard isn't really the
IDataObject pointer that was passed to ::OleSetClipboard.
Rather, it's a pointer to the IDataObject interface implemented
by a system-provided clipboard data object that wraps the data
object provided to ::OleSetClipboard and also allows
consumers to access data on the legacy clipboard. Fortunately,
this bit of indirection doesn't affect the code you write one iota.

Programming Windows With MFC

 1191

You simply use the IDataObject interface to interact with the
data object. The system does the rest.

Figure 19-1. Transferring data through the OLE clipboard.

Using the OLE clipboard sounds reasonably simple, but
nothing is simple when COM and OLE are involved. The hard
part is writing the code for a data object and implementing not
only IDataObject::GetData and IDataObject::SetData but also
the other IDataObject methods. But first things first. Assuming
that you've already implemented a data object and that pdo
holds a pointer to the object's IDataObject interface, here's one
way to place a text string on the OLE clipboard:

// Copy the text string to a global memory block.
char szText[] = "Hello, world";
HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, ::lstrlen (szText) + 1);
LPSTR pData = (LPSTR) ::GlobalLock (hData);
::lstrcpy (pData, szText);
::GlobalUnlock (hData);

// Initialize a FORMATETC structure and a STGMEDIUM structure that
// describe the data and the location at which it's stored.
FORMATETC fe;
fe.cfFormat = CF_TEXT; // Clipboard format=CF_TEXT
fe.ptd = NULL; // Target device=Screen
fe.dwAspect = DVASPECT_CONTENT; // Level of detail=Full content
fe.lindex = -1; // Index=Not applicable
fe.tymed = TYMED_HGLOBAL; // Storage medium=Memory

STGMEDIUM stgm;
stgm.tymed = TYMED_HGLOBAL; // Storage medium=Memory

Programming Windows With MFC

 1192

stgm.hGlobal = hData; // Handle to memory block
stgm.pUnkForRelease = NULL; // Use ReleaseStgMedium

// Place the data object on the OLE clipboard.
pdo->SetData (&fe, &stgm, FALSE);
::OleSetClipboard (pdo);
pdo->Release ();

The Release call in the final statement assumes that the
application that created the data object has no more use for it
after handing it off to the OLE clipboard. Calling Release on
the data object won't cause the object to self-delete
because ::OleSetClipboard performs an AddRef on the
IDataObject pointer passed to it.

Retrieving the text string is a little less work because we don't
have to create a data object. But the process still isn't quite as
straightforward as the one for retrieving a string from the
legacy clipboard:

char szText[BUFLEN];
IDataObject* pdo;
STGMEDIUM stgm;

FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL
};

if (SUCCEEDED (::OleGetClipboard (&pdo))) {
 if (SUCCEEDED (pdo->GetData (&fe, &stgm) && stgm.hGlobal !=
NULL)) {
 LPCSTR pData = (LPCSTR) ::GlobalLock (stgm.hGlobal);
 if (::lstrlen (pData) < BUFLEN)
 ::lstrcpy (szText, pData);
 ::GlobalUnlock (stgm.hGlobal);
 ::ReleaseStgMedium (&stgm);
 }
 pdo->Release ();
}

If the data object can't provide the requested data, it returns an
HRESULT signifying failure. The SUCCEEDED macro used
in this example is the same one that we used to test HRESULTs
in Chapter 18.

Two structures play key roles in the operation of SetData and
GetData: FORMATETC and STGMEDIUM. FORMATETC
describes the format of the data and identifies the type of

Programming Windows With MFC

 1193

storage medium (for example, global memory block or file) that
holds the data. Here's how FORMATETC is defined in
Objidl.h:

typedef struct tagFORMATETC {
 CLIPFORMAT cfFormat; // Clipboard format
 DVTARGETDEVICE *ptd; // Target device
 DWORD dwAspect; // Level of detail
 LONG lindex; // Page number or other index
 DWORD tymed; // Type of storage medium
} FORMATETC;

The two most important fields are cfFormat and tymed.
cfFormat holds a clipboard format ID. The ID can be a standard
clipboard format ID such as CF_TEXT or CF_BITMAP, or it
can be a private clipboard format ID. tymed identifies the type
of storage medium and can be any one of the values listed in
the following table. Most OLE clipboard data transfers still use
old-fashioned global memory blocks, but as you can plainly see,
FORMATETC supports other media types as well.

IDataObject Storage Media Types

tymed Flag Storage Medium Type

TYMED_HGLOBAL Global memory block

TYMED_FILE File

TYMED_ISTREAM Stream object (implements interface IStream)

TYMED_ISTORAGE Storage object (implements interface IStorage)

TYMED_GDI GDI bitmap

TYMED_MFPICT Metafile picture

TYMED_ENHMF GDI enhanced metafile

FORMATETC identifies the storage medium type, but the
STGMEDIUM structure identifies the storage medium itself.
For example, if data is stored in a global memory block, the
STGMEDIUM structure holds an HGLOBAL. If the data lives
in a file instead, the STGMEDIUM holds a pointer to a
character string that specifies the file name. STGMEDIUM
holds other information as well. Here's how the structure is
defined:

Programming Windows With MFC

 1194

typedef struct tagSTGMEDIUM {
 DWORD tymed;
 union {
 HBITMAP hBitmap; // TYMED_GDI
 HMETAFILEPICT hMetaFilePict; //
TYMED_MFPICT
 HENHMETAFILE hEnhMetaFile; //
TYMED_ENHMF
 HGLOBAL hGlobal; //
TYMED_HGLOBAL
 LPOLESTR lpszFileName; // TYMED_FILE
 IStream *pstm; // TYMED_STREAM
 IStorage *pstg; // TYMED_STORAGE
 };
 IUnknown *pUnkForRelease;
} STGMEDIUM;

Here tymed holds a TYMED value that identifies the storage
medium type, just as FORMATETC's tymed field does.
hBitmap, hMetaFilePict, and other members of the embedded
union identify the actual storage. Finally, pUnkForRelease
holds a pointer to the COM interface whose Release method
releases the storage medium. When an application retrieves an
item from the OLE clipboard with IDataObject::GetData, that
application is responsible for releasing the storage medium
when it's no longer needed. For a memory block, "release"
means to free the block; for a file, it means to delete the file.
COM provides an API function named ::ReleaseStgMedium
that an application can call to release a storage medium. If you
simply set pUnkForRelease to NULL when you initialize a
STGMEDIUM, ::ReleaseStgMedium will free the storage
medium using logic that is appropriate for the storage medium
type.

There's much more that could be written about these data
structures, but the description offered here should be enough to
enable you to understand the examples in the previous section.
The first example initialized a FORMATETC structure to
describe an ANSI text string (cfFormat=CF_TEXT) stored in a
global memory block (tymed=TYMED_HGLOBAL). It also
wrapped the memory block with a STGMEDIUM
(hGlobal=hData and tymed=TYMED_HGLOBAL). Both
structures were passed by address to IDataObject::SetData.

Programming Windows With MFC

 1195

In the second example, a FORMATETC structure was
initialized with the same parameters and the STGMEDIUM
structure was left uninitialized. Both were passed to
IDataObject::GetData to retrieve the text string. In this case,
the parameters in the FORMATETC structure told the data
object what kind of data and what type of storage medium the
caller wanted. On return from IDataObject::GetData, the
STGMEDIUM structure held the HGLOBAL through which
the data could be accessed.

By now, you're probably beginning to understand why
programming the OLE clipboard is more involved than
programming the legacy clipboard. You haven't seen the half of
it yet, however, because I haven't shown the code for the data
object. Remember, a data object is a COM object that
implements the IDataObject interface. IDataObject is part of a
COM-based data transfer protocol that Microsoft has christened
Uniform Data Transfer, or UDT. I mentioned earlier that
GetData and SetData are just two of the IDataObject methods
you must wrestle with. The table below contains a complete
list.

IDataObject Methods

Method Description

GetData Retrieves data from the data object (object provides
the storage medium)

GetDataHere Retrieves data from the data object (caller provides
the storage medium)

QueryGetData Determines whether data is available in a particular
format

GetCanonicalFormatEtc Creates a different but logically equivalent
FORMATETC

SetData Provides data to the data object

EnumFormatEtc Used to enumerate available data formats

DAdvise Establishes an advisory connection to the data object

DUnadvise Terminates an advisory connection

EnumDAdvise Enumerates existing advisory connections

You don't have to implement all these methods to perform a
simple clipboard data transfer (some methods can simply return

Programming Windows With MFC

 1196

the special COM error code E_NOTIMPL), but implementing
IDataObject is still a nontrivial task. Copying a simple text
string to the legacy clipboard requires just a few lines of code.
Copying the same text string to the OLE clipboard can require
several hundred lines, primarily because of the added overhead
of implementing a full-blown COM data object.

If having to write hundreds of lines of code to copy a string to
the clipboard seems silly, take heart. MFC greatly simplifies
matters by providing the data object for you and by wrapping it
in friendly C++ classes that hide the FORMATETC structures
and the STGMEDIUM structures and other low-level nuts and
bolts of the IDataObject interface. Generally speaking, using
the OLE clipboard in an MFC application is no more difficult
than using the legacy clipboard, particularly when you use
global memory as the storage medium. And you retain the
option of using files and other storage media as alternatives to
global memory. All things considered, MFC's abstraction of the
OLE clipboard is a big win for programmers. Let's see if you
agree.

19.2.2. MFC, Global Memory, and the OLE
Clipboard

MFC's OLE clipboard support is concentrated in two classes.
The first, COleDataSource, models the provider side of
clipboard operations. The second, COleDataObject, models the
consumer side. In other words, you use COleDataSource to
place data on the OLE clipboard and COleDataObject to
retrieve it. Not surprisingly, COleDataSource contains a
generic implementation of COM's IDataObject interface. You
can see this implementation for yourself in the MFC source
code file Oledobj2.cpp. If you're not familiar with the manner
in which MFC classes implement COM interfaces, you might
want to review Chapter 18 before reading the source code.

Placing an item that's stored in global memory on the OLE
clipboard is easy when you let COleDataSource do the dirty
work. Here are the steps:

1. Create a COleDataSource object on the heap (not on the stack).
2. Call COleDataSource::CacheGlobalData to hand the HGLOBAL to the

COleDataSource object.

Programming Windows With MFC

 1197

3. Place the object on the OLE clipboard by calling
COleDataSource::SetClipboard.

The following example uses COleDataSource to make an
ANSI text string available through the OLE clipboard:

char szText[] = "Hello, world"; // ANSI characters
HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, ::lstrlen (szText) + 1);
LPSTR pData = (LPSTR) ::GlobalLock (hData);
::lstrcpy (pData, szText);
::GlobalUnlock (hData);

COleDataSource* pods = new COleDataSource;
pods->CacheGlobalData (CF_TEXT, hData);
pods->SetClipboard ();

Notice that the COleDataSource object is created on the heap,
not on the stack. That fact is important because the object must
remain in memory until a call to IUnknown::Release drops the
data object's reference count to 0, at which time the object
self-deletes. If you were to create the COleDataSource on the
stack, the object would be deleted the moment it went out of
scope.

MFC's COleDataObject provides a handy mechanism for
retrieving items from the OLE clipboard. Here's the procedure
for retrieving an item stored in global memory:

1. Create a COleDataObject object.
2. Call COleDataObject::AttachClipboard to connect the COleDataObject

to the OLE clipboard.
3. Use COleDataObject::GetGlobalData to retrieve the item.
4. Free the global memory block returned by GetGlobalData.

And here's how the text string placed on the OLE clipboard in
the previous example is retrieved using COleDataObject:

char szText[BUFLEN];
COleDataObject odo;
odo.AttachClipboard ();
HANDLE hData = odo.GetGlobalData (CF_TEXT);

if (hData != NULL) {
 LPCSTR pData = (LPCSTR) ::GlobalLock (hData);
 if (::lstrlen (pData) < BUFLEN)
 ::lstrcpy (szText, pData);
 ::GlobalUnlock (hData);
 ::GlobalFree (hData);
}

Programming Windows With MFC

 1198

The AttachClipboard function creates a logical connection
between a COleDataObject and the OLE clipboard. Once the
connection is made, MFC transforms calls to GetGlobalData
and other COleDataObject data retrieval functions into
GetData calls through the IDataObject pointer returned
by ::OleGetClipboard. Don't forget that it's your responsibility
to free the global memory block returned by GetGlobalData.
That requirement explains the call to ::GlobalFree in the
preceding example.

19.2.3. Using Alternative Storage Media

All the examples presented so far in this chapter have used
global memory as the transfer medium. But remember that the
OLE clipboard supports other media types, too.
COleDataSource::CacheGlobalData and
COleDataObject::GetGlobalData are hardwired to use global
memory blocks. You can use the more generic
COleDataSource::CacheData and COleDataObject::GetData
functions to transfer data in other types of storage media.

The next example demonstrates how to transfer a text string
through the OLE clipboard using a file as the transfer medium.
The string is first copied into a temporary file. Then
FORMATETC and STGMEDIUM structures are initialized
with information describing the file and the data that it contains.
Finally, the information is passed to
COleDataSource::CacheData, and the data object is placed on
the OLE clipboard with COleDataSource::SetClipboard:

char szText[] = "Hello, world";
TCHAR szPath[MAX_PATH], szFileName[MAX_PATH];
::GetTempPath (sizeof (szPath) / sizeof (TCHAR), szPath);
::GetTempFileName (szPath, _T ("tmp"), 0, szFileName);

CFile file;
if (file.Open (szFileName, CFile::modeCreate | CFile::modeWrite)) {
 file.Write (szText, ::lstrlen (szText) + 1);
 file.Close ();

 LPWSTR pwszFileName =
 (LPWSTR) ::CoTaskMemAlloc (MAX_PATH * sizeof (WCHAR));

#ifdef UNICODE
 ::lstrcpy (pwszFileName, szFileName);
#else
 ::MultiByteToWideChar (CP_ACP, MB_PRECOMPOSED, szFileName,

Programming Windows With MFC

 1199

-1,
 pwszFileName, MAX_PATH);
#endif

 FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_FILE
 };

 STGMEDIUM stgm;
 stgm.tymed = TYMED_FILE;
 stgm.lpszFileName = pwszFileName;
 stgm.pUnkForRelease = NULL;

 COleDataSource* pods = new COleDataSource;
 pods->CacheData (CF_TEXT, &stgm, &fe);
 pods->SetClipboard ();
}

The file name whose address is copied to the STGMEDIUM
structure prior to calling CacheData must be composed of
Unicode characters. This is always true, even in Windows 98.
You must also allocate the file name buffer using the COM
function ::CoTaskMemAlloc. Among other things, this ensures
that the buffer is properly freed when ::ReleaseStgMedium
calls ::CoTaskMemFree on the buffer pointer.

On the consumer side, you can use COleDataObject::GetData
to retrieve the string from the clipboard:

char szText[BUFLEN];
STGMEDIUM stgm;

FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_FILE
};

COleDataObject odo;
odo.AttachClipboard ();

if (odo.GetData (CF_TEXT, &stgm, &fe) && stgm.tymed == TYMED_FILE) {
 TCHAR szFileName[MAX_PATH];

#ifdef UNICODE
 ::lstrcpy (szFileName, stgm.lpszFileName);
#else
 ::WideCharToMultiByte (CP_ACP, 0, stgm.lpszFileName,
 -1, szFileName, sizeof (szFileName) / sizeof (TCHAR), NULL,
NULL);
#endif

 CFile file;
 if (file.Open (szFileName, CFile::modeRead)) {

Programming Windows With MFC

 1200

 DWORD dwSize = file.GetLength ();
 if (dwSize < BUFLEN)
 file.Read (szText, (UINT) dwSize);
 file.Close ();
 }
 ::ReleaseStgMedium (&stgm);
}

When you retrieve data with COleDataObject::GetData, you
are responsible for freeing the storage medium, which is
why ::ReleaseStgMedium is called in the final statement of this
example.

Of course, transferring small text strings through files rather
than global memory blocks doesn't make much sense. If the
item being transferred is a large bitmap, however, such a
transfer might make a lot of sense—especially if the bitmap is
already stored on disk somewhere. I used text strings in this
section's examples to make the code as simple and uncluttered
as possible, but the principle represented here applies to data of
all types.

19.2.4. Treating the OLE Clipboard as a CFile

MFC's COleDataObject::GetFileData function provides a
handy abstraction of the OLE clipboard that enables data stored
in any of the following storage media to be retrieved as if the
clipboard were an ordinary CFile:

x TYMED_HGLOBAL
x TYMED_FILE
x TYMED_MFPICT
x TYMED_ISTREAM

If successful, GetFileData returns a pointer to a CFile object
that wraps the item retrieved from the clipboard. You can call
CFile::Read through that pointer to read the data out.

The following example demonstrates how to use GetFileData
to retrieve a string from the OLE clipboard:

char szText[BUFLEN];
COleDataObject odo;
odo.AttachClipboard ();

CFile* pFile = odo.GetFileData (CF_TEXT);

Programming Windows With MFC

 1201

if (pFile != NULL) {
 DWORD dwSize = pFile->GetLength ();
 if (dwSize < BUFLEN)
 pFile->Read (szText, (UINT) dwSize);
 delete pFile; // Don't forget this!
}

Again, notice that you are responsible for deleting the CFile
object whose address is returned by GetFileData. If you forget
to delete it, you'll suffer memory leaks.

The code above is the functional equivalent of the GetData
example presented in the previous section, but with two added
benefits. One, it's simpler. Two, it works whether data is stored
in a global memory block, a file, or a stream. In other words,
one size fits all. To get the same results with GetData, you'd
have to do something like this:

char szText[BUFLEN];
STGMEDIUM stgm;

COleDataObject odo;
odo.AttachClipboard ();

FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1,
 TYMED_FILE | TYMED_HGLOBAL | TYMED_ISTREAM
};

if (odo.GetData (CF_TEXT, &stgm, &fe)) {
 switch (stgm.tymed) {

 case TYMED_FILE:
 // Read the string from a file.
 .
 .
 .
 break;

 case TYMED_HGLOBAL:
 // Read the string from a global memory block.
 .
 .
 .
 break;

 case TYMED_ISTREAM:
 // Read the string from a stream object.
 .
 .
 .

Programming Windows With MFC

 1202

 break;
 }
 ::ReleaseStgMedium (&stgm);
}

Notice the use of multiple TYMED flags in the FORMATETC
structure passed to GetData. TYMED flags can be OR'd
together in this manner to inform a data object that the caller
will accept data in a variety of different storage media.

19.2.5. Multiple Formats and Multiple Storage
Media

A data provider can call CacheData or CacheGlobalData as
many times as necessary to make data available to data
consumers in a variety of formats. The following code offers an
item in two formats: a private format registered
with ::RegisterClipboardFormat (nFormat) and a CF_TEXT
format:

COleDataSource* pods = new COleDataSource;
pods->CacheGlobalData (nFormat, hPrivateData);
pods->CacheGlobalData (CF_TEXT, hTextData);
pods->SetClipboard ();

You can also make multiple data items available in the same
format but in different storage media. Suppose you want to
make CF_TEXT data available ineither a global memory block
or a file. Assuming that pwszFileName has already been
initialized to point to a file name (expressed in Unicode
characters), here's how you go about it:

FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_FILE
};

STGMEDIUM stgm;
stgm.tymed = TYMED_FILE;
stgm.lpszFileName = pwszFileName;
stgm.pUnkForRelease = NULL;

COleDataSource* pods = new COleDataSource;
pods->CacheGlobalData (CF_TEXT, hTextData); // TYMED_HGLOBAL
pods->CacheData (CF_TEXT, &stgm, &fe); // TYMED_FILE
pods->SetClipboard ();

Programming Windows With MFC

 1203

Calling CacheData and CacheGlobalData more than once and
then placing the data object on the clipboard is analogous to
calling ::SetClipboardData multiple times to place two or more
formats on the legacy clipboard. However, the legacy clipboard
won't accept two items that are of the same format. The OLE
clipboard will—as long as each FORMATETC structure has a
unique tymed value, which is another way of saying that the
items are stored indifferent types of storage media.

19.2.6. Checking Data Availability

The API function ::IsClipboardFormatAvailable allows users
of the legacy clipboard to find out whether data is available in a
certain format. COleDataObject::IsDataAvailable lets OLE
clipboard users do the same. The following code fragment
checks to see whether CF_TEXT data is available in an
HGLOBAL:

COleDataObject odo;
odo.AttachClipboard ();
if (odo.IsDataAvailable (CF_TEXT)) {
 // CF_TEXT is available in an HGLOBAL.
}
else {
 // CF_TEXT is not available in an HGLOBAL.
}

To check for storage media types other than global memory,
you simply initialize a FORMATETC structure and pass its
address to IsDataAvailable, as shown here:

COleDataObject odo;
odo.AttachClipboard ();

FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_ISTREAM
};

if (odo.IsDataAvailable (CF_TEXT, &fe)) {
 // CF_TEXT is available in a stream object.
}
else {
 // CF_TEXT is not available in a stream object.
}

If you want to, you can OR several TYMED flags into the
tymed field of the FORMATETC structure passed to

Programming Windows With MFC

 1204

IsDataAvailable. The return value will be nonzero if data is
available in any of the requested storage media.

NOTE

As a result of a bug in MFC 6.0, COleDataObject::IsDataAvailable sometimes
returns a nonzero value if the requested data is available in any storage medium. In
effect, the media type information passed to IsDataAvailable in a FORMATETC
structure is ignored. Significantly, the bug manifests itself only if IsDataAvailable is
called on a COleDataObject that's attached to the OLE clipboard, and it affects
some data types (notably CF_TEXT data) more than others. IsDataAvailable works
as advertised when COleDataObject is used to implement an OLE drop target.

Data consumers can use the COleDataObject functions
BeginEnumFormats and GetNextFormat to enumerate the
various formats available. The following code fragment
enumerates all the formats available on the OLE clipboard:

COleDataObject odo;
odo.AttachClipboard ();

FORMATETC fe;
odo.BeginEnumFormats ();
while (odo.GetNextFormat (&fe)) {
 // FORMATETC structure describes the next available format.
}

If a particular data format is available in two or more types of
storage media, GetNextFormat is supposed to either initialize
the FORMATETC structure's tymed field with bit flags
identifying each storage medium type or return a unique
FORMATETC structure for each tymed. However, an
interesting (and potentially aggravating) anomaly can occur. If
the OLE clipboard contains two data items with identical
cfFormats but different tymeds, GetNextFormat will return
information for only one of them. This appears to be a bug in
the system-supplied clipboard data objectwhose IDataObject
pointer is returned by ::OleGetClipboard. If you need to know
what media types a given clipboard format is available in, use
IsDataAvailable to query for individual combinations of
clipboard formats and storage media.

19.2.7. Delayed Rendering with COleDataSource

Does the OLE clipboard support delayed rendering? The short
answer is yes, although in truth, MFC's implementation of

Programming Windows With MFC

 1205

COleDataSource, not the OLE clipboard, makes delayed
rendering work. A glimpse under the hood of COleDataSource
explains why.

A COleDataSource object is first and foremost a data cache.
Internally, it maintains an array of FORMATETC and
STGMEDIUM structures that describe the data that is currently
available. When an application calls CacheData or
CacheGlobalData, a STGMEDIUM structure with a tymed
value that describes the storage medium type is added to the
array. If an application calls DelayRenderData instead, a
STGMEDIUM structure that contains a NULL tymed value is
added to the array. When asked to retrieve that data, the
COleDataSource sees the NULL tymed value and knows that
the data was promised via delayed rendering. COleDataSource
responds by calling a virtual function named OnRenderData.
Your job is to override this function in a derived class so that
you can provide the data on request.

Here's an example that demonstrates how to place a bitmap on
the OLE clipboard using delayed rendering. The first step is to
make a copy of the bitmap and store it in a file. (You could
store it in memory, but that might defeat the purpose of using
delayed rendering in the first place.) The second step is to call
DelayRenderData:

FORMATETC fe = {
 CF_BITMAP, NULL, DVASPECT_CONTENT, -1, TYMED_GDI
};

CMyDataSource* pmds = new CMyDataSource;
pmds->DelayRenderData (CF_BITMAP, &fe);
pmds->SetClipboard ();

CMyDataSource is a COleDataSource derivative. Here's the
OnRenderData function that renders the bitmap to a
TYMED_GDI storage medium when the data source is asked to
hand over the bitmap:

BOOL CMyDataSource::OnRenderData (LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium)
{
 if (COleDataSource::OnRenderData (lpFormatEtc, lpStgMedium))
 return TRUE;

Programming Windows With MFC

 1206

 if (lpFormatEtc->cfFormat == CF_BITMAP &&
 lpFormatEtc->tymed & TYMED_GDI) {

 // Re-create the bitmap from the file, and store the
 // handle in hBitmap.
 .
 .
 .
 lpFormatEtc->cfFormat = CF_BITMAP;
 lpFormatEtc->ptd = NULL;
 lpFormatEtc->dwAspect = DVASPECT_CONTENT;
 lpFormatEtc->lindex = -1;
 lpFormatEtc->tymed = TYMED_GDI;

 lpStgMedium->tymed = TYMED_GDI;
 lpStgMedium->hBitmap = hBitmap;
 lpStgMedium->pUnkForRelease = NULL;

 CacheData (CF_BITMAP, lpStgMedium, lpFormatEtc);
 return TRUE;
 }
 return FALSE;
}

Other than the fact that you have to derive a class and override
OnRenderData, delayed rendering with a COleDataSource isn't
much different from immediate rendering.

Other COleDataSource functions can sometimes simplify the
delayed rendering code that you write. For example, if you
intend to render data only to HGLOBAL storage media, you
can override OnRenderGlobalData instead of OnRenderData.
You can use a separate set of COleDataSource functions named
DelayRenderFileData and OnRenderFileData functions to
delay-render data using CFile output functions.

One detail to be aware of when you use, COleDataSource
delayed rendering is that if the storage type is
TYMED_HGLOBAL, TYMED_FILE, TYMED_ISTREAM,
or TYMED_ISTORAGE, the storage medium might be
allocated before OnRenderData is called. If the storage medium
is preallocated, OnRenderData must render the data into the
existing storage medium rather than create a new storage
medium itself. The tymed value in the STGMEDIUM structure
whose address is passed to OnRenderData tells the tale. If
lpStgMedium->tymed is TYMED_NULL, OnRenderData is
responsible for allocating the storage medium. If
lpStgMedium->tymed holds any other value, the caller has

Programming Windows With MFC

 1207

supplied the storage medium and lpStgMedium->tymed
identifies the storage type. The following code sample
demonstrates proper handling of OnRenderData for media
types that are subject to preallocation:

BOOL CMyDataSource::OnRenderData (LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium)
{
 if (COleDataSource::OnRenderData (lpFormatEtc, lpStgMedium))
 return TRUE;

 if (lpStgMedium->tymed == TYMED_NULL) { // Medium is not
preallocated.
 if (lpFormatEtc->tymed & TYMED_HGLOBAL) {
 // Allocate a global memory block, render the data
 // into it, and then copy the handle to lpStgMedium->hGlobal.
 }
 }
 else { // Medium is preallocated.
 if (lpStgMedium->tymed == TYMED_HGLOBAL) {
 // Render the data into the global memory block whose
 // handle is stored in lpStgMedium->hGlobal.
 }
 }
}

This example addresses only the case in which the storage
medium is an HGLOBAL, but the principle should be clear
nonetheless.

The most common reason for using COleDataSource's brand of
delayed rendering is to provide data in a variety of storage
media without having to allocate each and every storage
medium up front. If you're willing to provide, say, CF_TEXT
data in several different media, you can call DelayRenderData
and pass in a FORMATETC structure whose tymed field
contains bit flags representing each of the media types that you
support. Then you can render the data in any medium that the
data consumer requests by inspecting the tymed field of the
FORMATETC structure passed to OnRenderData. If the
consumer asks for the data in a medium that you don't support,
you can simply fail the call to OnRenderData by returning
FALSE.

Programming Windows With MFC

 1208

19.2.8. COleDataSource and COleDataObject in
Review

You now know how to use MFC's COleDataSource and
COleDataObject classes to interact with the OLE clipboard.
Just to put things in perspective (and to reinforce what you've
already learned), the following tables provide a brief summary
of the most useful COleDataSource and COleDataObject
member functions. These classes have other functions as well,
but those listed here are the ones that you're most likely to
need.

Key COleDataSource Member Functions

Function Description

SetClipboard Places the COleDataSource on the OLE clipboard

CacheData Provides data to the COleDataSource

CacheGlobalData Provides data stored in global memory to the
COleDataSource

DelayRenderData Offers data for delayed rendering

DelayRenderFileData Offers data for delayed rendering using CFile output
functions

OnRenderData Called to render data to an arbitrary storage medium

OnRenderFileData Called to render data to a CFile

OnRenderGlobalData Called to render data to an HGLOBAL

Key COleDataObject Member Functions

Function Description

AttachClipboard Attaches the COleDataObject to the OLE clipboard

GetData Retrieves data from the data object to which the
COleDataObject is attached

GetFileData Retrieves data using CFile functions

GetGlobalData Retrieves data in an HGLOBAL

IsDataAvailable Determines whether data is available in a particular
format and storage medium

BeginEnumFormats Begins the process of enumerating available data formats

GetNextFormat Fills a FORMATETC structure with information

Programming Windows With MFC

 1209

describing the next available data format

Earlier, I said that the primary reason to use the OLE clipboard
is to gain the ability to use storage media other than global
memory. That's true, but there's another reason, too. Thanks to
the abstractions offered by COleDataSource and
COleDataObject, once you write MFC code to utilize the OLE
clipboard, you only have to do a little more work to add support
for an even more convenient form of data transfer: OLE
drag-and-drop. OLE drag-and-drop lets the user transfer data by
grabbing it with the mouse and dragging it. Writing OLE
drag-and-drop code without a class library to help out isn't any
fun, but MFC makes the process as hassle-free as possible.

19.3. OLE Drag-and-Drop

If you've never seen OLE drag-and-drop in action, you can
perform a simple demonstration using the source code editor in
Visual C++. Begin by opening a source code file and
highlighting a line of text. Grab the highlighted text with the
left mouse button, and with the button held down, drag it down
a few lines. Then release the mouse button. The text will
disappear from its original location and appear where you
dropped it, just as if you had performed a cut-and-paste
operation. Repeat the operation with the Ctrl key held down,
and the text will be copied rather than moved. That's OLE
drag-and-drop. You used it to transfer text from one part of a
document to another, but it works just as well if the destination
is a different document or even a different application. And just
as with the OLE clipboard, you can use OLE drag-and-drop to
transfer any kind of data—not just text.

Programmatically, OLE drag-and-drop is very similar to the
OLE clipboard. The data provider, or drop source, creates a
data object that encapsulates the data and makes an
IDataObject pointer available. The data consumer, or drop
target, retrieves the IDataObject pointer and uses it to extract
data from the data object.

One difference between OLE drag-and-drop and the OLE
clipboard is how the IDataObject pointer changes hands. The
OLE clipboard uses ::OleSetClipboard and ::OleGetClipboard
to transfer the pointer from sender to receiver. In OLE

Programming Windows With MFC

 1210

drag-and-drop, the drop source initiates a drag-and-drop
operation by passing an IDataObject pointer to ::DoDragDrop.
On the other end, any window interested in being a drop target
registers itself with the system by calling the API
function ::RegisterDragDrop. If a drop occurs over a window
that's registered in this way, the drop target is handed the
IDataObject pointer passed to ::DoDragDrop.

If that's all there was to it, OLE drag-and-drop wouldn't be
difficult at all. What complicates matters is that OLE
drag-and-drop requires three COM objects instead of just one:

x A data object that implements IDataObject
x A drop source object that implements IDropSource
x A drop target object that implements IDropTarget

The data object is identical to the one used for OLE clipboard
transfers. The drop source and drop target objects are new.
Figure 19-2 shows a schematic representation of the
participants in a drag-and-drop data transfer. On the sending
end of the transaction is an application that implements two
COM objects: a data object and a drop source object. (There's
nothing to prevent one object from supporting both interfaces,
but in practice, the objects are usually implemented separately.)
On the receiving end is an application that implements a drop
target object. Neither the drop source nor the drop target
receives an IDropSource or IDropTarget pointer that references
the other. Instead, the system acts as an intermediary and calls
methods on both interfaces at the appropriate times.

Programming Windows With MFC

 1211

Figure 19-2. Participants in an OLE drag-and-drop operation.

19.3.1. Anatomy of a Drop Source

An OLE drag-and-drop operation begins when an application
calls ::DoDragDrop and passes in four key pieces of
information:

x An IDataObject pointer
x An IDropSource pointer
x An input value containing one or more DROPEFFECT codes specifying

what types of operations are allowed on the data (for example, move,
copy, or both move and copy)

x A pointer to a DWORD that receives a DROPEFFECT code specifying
what happened on the other end (for example, did a drop occur, and if it
did, was the data moved or copied?)

::DoDragDrop returns when either of two conditions is met:

x A drop occurs.
x The operation is canceled.

The action that cancels a drag-and-drop operation varies from
application to application and is ultimately determined by the
drop source. In most cases, the stimulus is a press of the Esc
key. If the operation is canceled or the drop target rejects the
drop, ::DoDragDrop copies the value DROPEFFECT_NONE
to the address in the fourth parameter. If the drop is

Programming Windows With MFC

 1212

successful, ::DoDragDrop copies one of the DROPEFFECT
codes passed in the third parameter to the address in the fourth
parameter so that the drop source will know precisely what
occurred.

Assume that pdo and pds hold IDataObject and IDropSource
pointers, respectively. The following statements initiate a
drag-and-drop operation in which the data encapsulated in the
data object can be either moved or copied:

DWORD dwEffect;
HRESULT hr = ::DoDragDrop (pdo, pds,
 DROPEFFECT_MOVE | DROPEFFECT_COPY, &dwEffect);

When ::DoDragDrop returns, dwEffect tells the drop source
what transpired on the other end. If dwEffect equals
DROPEFFECT_NONE or DROPEFFECT_COPY, the drop
source doesn't need to do anything more. If dwEffect equals
DROPEFFECT_MOVE, however, the drop source must delete
the data from the source document:

if (SUCCEEDED (hr) && dwEffect == DROPEFFECT_MOVE) {
 // Delete the original data from the document.
}

The code that deletes the data isn't shown because, obviously,
it's application-specific.

Calls to ::DoDragDrop are synchronous; that
is, ::DoDragDrop doesn't return until the operation has been
completed or canceled. However, as a drag-and-drop operation
is being performed, the system communicates with the drop
source through the IDropSource pointer provided
to ::DoDragDrop. IDropSource is a simple interface that
contains just two methods besides the IUnknown methods
common to all COM interfaces:

IDropSource Methods

Method Description

GiveFeedback Called each time the cursor moves or a key state changes
to allow the drop source to update the cursor

Programming Windows With MFC

 1213

QueryContinueDrag Called when a key state or mouse button state changes to
allow the drop source to specify whether to continue the
operation, cancel it, or execute a drop

Whenever a change occurs in the state of a key or mouse button
that might be of interest to the drop source, the drop source
object's QueryContinueDrag method is called.
QueryContinueDrag receives two parameters: a BOOL
indicating whether the Esc key has been pressed and a
DWORD containing flags that reflect the current state of the
mouse buttons as well as the Ctrl, Alt, and Shift keys. Using
this information, QueryContinueDrag must return one of three
values telling the system what to do next:

Return Value Description

S_OK Continue the drag-and-drop operation

DRAGDROP_S_DROP End the operation by executing a drop

DRAGDROP_S_CANCEL Cancel the drag-and-drop operation

Typical responses are to cancel the operation if the Esc key has
been pressed, to execute a drop if the left mouse button has
been released, or to allow the operation to continue if neither of
the first two conditions is true. The following
QueryContinueDrag implementation embodies this logic:

HRESULT __stdcall CDropSource::QueryContinueDrag (BOOL fEscape,
 DWORD grfKeyState)
{
 if (fEscape)
 return DRAGDROP_S_CANCEL; // Esc key was pressed.
 if (!(grfKeyState & MK_LBUTTON))
 return DRAGDROP_S_DROP; // Left mouse button was
released.
 return S_OK; // Let the operation continue.
}

This code assumes that the drag-and-drop operation began
when the left mouse button was depressed. If you're
implementing right-button drag instead, check the right mouse
button (MK_RBUTTON) to determine whether to execute the
drop. If you prefer to use a key other than Esc to cancel the
operation, you can call ::GetAsyncKeyState to read the key's
state and use that value rather than fEscape to decide whether to
return DRAGDROP_S_CANCEL.

Programming Windows With MFC

 1214

As a drag-and-drop operation unfolds, the drop source receives
a flurry of calls to its IDropSource::GiveFeedback method.
GiveFeedback receives one function parameter: a
DROPEFFECT code that tells the drop source what would
happen if a drop were to occur right now. (As you'll see in the
next section, this information comes from the drop target
because ultimately it's the drop target that controls what
happens on the other end.) GiveFeedback's job is to inspect this
parameter and update the cursor to provide visual feedback to
the user. When you see the cursor change shape as it moves
from window to window during a drag-and-drop data transfer
or when you see a little plus sign appear next to the cursor
when the Ctrl key is pressed, what you're actually seeing is the
drop source's response to IDropSource::GiveFeedback.

If you want to, you can create your own cursors and display
them each time GiveFeedback is called; however, the system
provides several predefined cursors for just this purpose. To use
them, simply return
DRAGDROP_S_USEDEFAULTCURSORS from your
GiveFeedback implementation. Rather than do this:

HRESULT __stdcall CDropSource::GiveFeedback (DWORD
dwEffect)
{
 HCURSOR hCursor;
 switch (dwEffect) {
 // Inspect dwEffect, and load a cursor handle in hCursor.
 }
 ::SetCursor (hCursor);
 return S_OK;
}

you can do this:

HRESULT __stdcall CDropSource::GiveFeedback (DWORD
dwEffect)
{
 return DRAGDROP_S_USEDEFAULTCURSORS;
}

That's all there is to most implementations of
IDropSource::GiveFeedback. You can do more if you'd like,

Programming Windows With MFC

 1215

but you might as well use the default cursors unless you have
compelling reasons to do otherwise.

19.3.2. Anatomy of a Drop Target

A window becomes an OLE drop target when an application
calls ::RegisterDragDrop and passes in the window's handle
and a pointer to an IDropTarget interface:

::RegisterDragDrop (hWnd, pdt);

You unregister a drop target by calling ::RevokeDragDrop.
Although the system will clean up after you if you fail to call
this function before a drop target window is destroyed, calling
it yourself is good form.

When the cursor enters, leaves, or moves over a drop target
window during a drag-and-drop operation, the system apprises
the drop target of that fact by calling IDropTarget methods
through the IDropTarget pointer provided
to ::RegisterDragDrop. IDropTarget has just the four methods
listed in the following table.

IDropTarget Methods

Method Description

DragEnter Called when the cursor enters the drop target window

DragOver Called as the cursor moves over the drop target window

DragLeave Called when the cursor leaves the drop target window or if the
operation is canceled while the cursor is over the window

Drop Called when a drop occurs

Both DragEnter and DragOver receive a pointer to a DWORD
(among other things) in their parameter lists. When either of
these methods is called, the drop target must let the drop source
know what would happen if a drop were to occur by copying a
DROPEFFECT value to the DWORD. The value copied to the
DWORD is the value passed to the drop source's GiveFeedback
method. DragEnter and DragOver also receive a set of cursor
coordinates (in case the outcome of a drop depends on the
current cursor position) and flags that specify the status of the

Programming Windows With MFC

 1216

Ctrl, Alt, and Shift keys and each of the mouse buttons. In
addition, DragEnter receives an IDataObject pointer that it can
use to query the data object. The following implementations of
DragEnter and DragOver return DROPEFFECT_NONE,
DROPEFFECT_MOVE, or DROPEFFECT_COPY to the data
source depending on whether text is available from the data
object and whether the Ctrl key is up (move) or down (copy):

HRESULT __stdcall CDropTarget::DragEnter (IDataObject*
pDataObject,
 DWORD grfKeyState, POINTL pt, DWORD* pdwEffect)
{
 FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1,
TYMED_HGLOBAL
 };

 if (pDataObject->QueryGetData (&fe) == S_OK) {
 m_bCanAcceptData = TRUE;
 *pdwEffect = (grfKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
 }
 else {
 m_bCanAcceptData = FALSE;
 *pdwEffect = DROPEFFECT_NONE;
 }
 return S_OK;
}

HRESULT __stdcall CDropTarget::DragOver (DWORD grfKeyState,
 POINTL pt, DWORD* pdwEffect)
{
 if (m_bCanAcceptData)
 *pdwEffect = (grfKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
 else
 *pdwEffect = DROPEFFECT_NONE;
 return S_OK;
}

m_bCanAcceptData is a BOOL member variable that keeps a
record of whether the data offered by the drop source is in a
format that the drop target will accept. When DragOver is
called, the drop target uses this value to determine whether to
indicate that it's willing to accept a drop.

Programming Windows With MFC

 1217

The drop target's DragLeave method is called if the cursor
leaves the drop target window without executing a drop or if
the drag-and-drop operation is canceled while the cursor is over
the drop target window. The call to DragLeave gives the drop
target the opportunity to clean up after itself by freeing any
resources allocated in DragEnter or DragOver if the
anticipated drop doesn't occur.

The final IDropTarget method, Drop, is called if (and only if) a
drop occurs. Through its parameter list, Drop receives all the
information it needs to process the drop, including an
IDataObject pointer; a DWORD that specifies the state of the
Ctrl, Alt, and Shift keys and the mouse buttons; and cursor
coordinates. It also receives a DWORD pointer to which it must
copy a DROPEFFECT value that informs the data source what
happened as a result of the drop. The following Drop
implementation retrieves a text string from the data object,
provided that a text string is available:

HRESULT __stdcall CDropTarget::Drop (IDataObject* pDataObject,
 DWORD grfKeyState, POINTL pt, DWORD* pdwEffect)
{
 if (m_bCanAcceptData) {
 FORMATETC fe = {
 CF_TEXT, NULL, DVASPECT_CONTENT, -1,
TYMED_HGLOBAL
 };

 STGMEDIUM stgm;

 if (SUCCEEDED (pDataObject->GetData (&fe, &stgm))
&&
 stgm.hGlobal != NULL) {
 // Copy the string from the global memory block.
 .
 .
 .
 ::ReleaseStgMedium (&stgm);
 *pdwEffect = (grfKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
 return S_OK;
 }
 }
 // If we make it to here, the drop did not succeed.
 *pdwEffect = DROPEFFECT_NONE;
 return S_OK;

Programming Windows With MFC

 1218

}

A call to Drop isn't followed by a call to DragLeave, so if
there's any cleaning up to do after the drop is completed, the
Drop method should do it.

19.3.3. MFC Support for OLE Drag-and-Drop

Most of the work in writing OLE drag-and-drop code lies in
implementing the COM objects. Fortunately, MFC will
implement them for you. The same COleDataSource class that
provides data objects for OLE clipboard operations works with
OLE drag-and-drop, too. COleDropSource provides a handy
implementation of the drop source object, and COleDropTarget
provides the drop target object. Very often, you don't even have
to instantiate COleDropSource yourself because
COleDataSource does it for you. You will have to instantiate
COleDropTarget, but you usually do that simply by adding a
COleDropTarget member variable to the application's view
class.

Suppose you'd like to transfer a text string using OLE
drag-and-drop in an MFC application. Here's how to do it using
a global memory block as the storage medium:

char szText[] = "Hello, world";
HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, ::lstrlen
(szText) + 1)
LPSTR pData = (LPSTR) ::GlobalLock (hData);
::lstrcpy (pData, szText);
::GlobalUnlock (hData);

COleDataSource ods;
ods.CacheGlobalData (CF_TEXT, hData);

DROPEFFECT de =
 ods.DoDragDrop (DROPEFFECT_MOVE |
DROPEFFECT_COPY)

if (de == DROPEFFECT_MOVE) {
 // Delete the string from the document.
}

This code is strikingly similar to the code presented earlier in
this chapter that used COleDataSource to place a text string on

Programming Windows With MFC

 1219

the OLE clipboard. Other than the fact that the
COleDataSource object is created on the stack rather than on
the heap (which is correct because, in this case, the object
doesn't need to outlive the function that created it), the only real
difference is that COleDataSource::DoDragDrop is called
instead of COleDataSource::SetClipboard.
COleDataSource::DoDragDrop is a wrapper around the API
function of the same name. In addition to
calling ::DoDragDrop for you, it also creates the
COleDropSource object whose IDropSource interface pointer
is passed to ::DoDragDrop.

If you'd rather create your own COleDropSource object, you
can do so and pass it by address to
COleDataSource::DoDragDrop in that function's optional third
parameter. The only reason to create this object yourself is if
you want to derive a class from COleDropSource and use it
instead of COleDropSource. Programmers occasionally derive
from COleDropSource and override its GiveFeedback and
QueryContinueDrag member functions to provide custom
responses to the IDropSource methods of the same names.

MFC makes acting as a target for OLE drag-and-drop data
transfers relatively easy, too. The first thing you do is add a
COleDropTarget data member to the application's view class:

// In CMyView's class declaration
COleDropTarget m_oleDropTarget;

Then, in the view's OnCreate function, you call
COleDropTarget::Register and pass in a pointer to the view
object:

m_oleDropTarget.Register (this);

Finally, you override the view's OnDragEnter, OnDragOver,
OnDragLeave, and OnDrop functions or some combination of
them. These CView functions are coupled to the similarly
named IDropTarget methods. For example, when the drop
target object's IDropTarget::Drop method is called,
COleDropTarget::OnDrop calls your view's OnDrop function.
To respond to calls to IDropTarget::Drop, you simply override
CView::OnDrop.

Programming Windows With MFC

 1220

Here's an example that demonstrates how to override
OnDragEnter, OnDragOver, and OnDrop in a
CScrollView-derived class to make the view a drop target for
text. OnDragLeave isn't overridden in this example because
nothing special needs to be done when it's called. Notice that a
preallocated COleDataObject is provided in each function's
parameter list. This COleDataObject wraps the IDataObject
pointer passed to the drop target's IDropTarget methods:

DROPEFFECT CMyView::OnDragEnter (COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 CScrollView::OnDragEnter (pDataObject, dwKeyState, point);
 if (!pDataObject->IsDataAvailable (CF_TEXT))
 return DROPEFFECT_NONE;
 return (dwKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
}

DROPEFFECT CMyView::OnDragOver (COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 CScrollView::OnDragOver (pDataObject, dwKeyState, point);
 if (!pDataObject->IsDataAvailable (CF_TEXT))
 return DROPEFFECT_NONE;
 return (dwKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
}

BOOL CMyView::OnDrop (COleDataObject* pDataObject, DROPEFFECT
dropEffect,
 CPoint point)
{
 CScrollView::OnDrop (pDataObject, dropEffect, point);
 HANDLE hData = pDataObject->GetGlobalData (CF_TEXT);
 if (hData != NULL) {
 // Copy the string from the global memory block.

 .
 .
 .
 ::GlobalFree (hData);
 return TRUE; // Drop succeeded.
 }
 return FALSE; // Drop failed.
}

This code looks a lot like the non-MFC version presented in the
previous section. OnDragEnter and OnDragOver call
COleDataObject::IsDataAvailable through the pointer
provided in their parameter lists to determine whether text is
available. If the answer is no, both functions return

Programming Windows With MFC

 1221

DROPEFFECT_NONE to indicate that they won't accept the
drop. The drop source, in turn, will probably display a
"no-drop" cursor. If text is available, OnDragEnter and
OnDragOver return either DROPEFFECT_MOVE or
DROPEFFECT_COPY, depending on whether the Ctrl key is
down. OnDrop uses COleDataObject::GetGlobalData to
retrieve the data when a drop occurs.

19.3.4. Drop Target Scrolling

The examples in the previous section assume that the drop
target is a view-based application. You can use
COleDropTarget to implement drop targeting in applications
that don't have views by deriving your own class from
COleDropTarget and overriding OnDragEnter, OnDragOver,
OnDragLeave, and OnDrop. However, using a view as a drop
target offers one very attractive benefit if the drop target has
scroll bars: you get drop target scrolling for free, courtesy of
MFC.

What is drop target scrolling? Suppose a drag-and-drop
operation has begun and the user wants to drop the data at a
location in a CScrollView that is currently scrolled out of sight.
If the cursor pauses within a few pixels of the view's border, a
CScrollView will automatically scroll itself for as long as the
cursor remains in that vicinity. Thus, the user can move the
cursor to the edge of the window and wait until the drop point
scrolls into view. This is just one more detail you'd have to
handle yourself if MFC didn't do if for you.

19.4. Putting It All Together: The Widget
Application

The application shown in Figure 19-3 demonstrates one way to
apply the concepts, principles, and code fragments presented in
this chapter to the real world. Widget creates triangular
"widgets" of various colors in response to commands on the
Insert menu. You can transfer widgets to and from the OLE
clipboard using the commands on the Edit menu. Before you
can use the Cut and Copy commands, you must select a widget
by clicking it. The widget will turn green to indicate that it is in
a selected state. You can also move and copy widgets using
OLE drag-and-drop. If you hold down the Ctrl key when a drop

Programming Windows With MFC

 1222

is performed, the widget is copied; otherwise, it's moved. For a
graphical demonstration of OLE drag-and-drop in action, run
two instances of Widget side by side and drag widgets back and
forth between them.

Figure 19-4 shows the pertinent parts of Widget's source code.
WidgetView.cpp contains most of the good stuff, including the
handlers for the Cut, Copy, and Paste commands. It also
contains the overridden versions of OnDragEnter,
OnDragOver, OnDragLeave, and OnDrop as well as the code
that initiates a drag-and-drop data transfer when the left mouse
button is clicked. (See OnLButtonDown.) Widgets are
transferred through global memory. Widget registers a private
clipboard format for widgets and uses it in calls to
COleDataSource::CacheGlobalData and
COleDataObject::GetGlobalData. The ID is stored in the
application object and retrieved using
CWidgetApp::GetClipboardFormat.

Figure 19-3. The Widget window.

Figure 19-4. The Widget application.

Widget.h
// Widget.h : main header file for the WIDGET application
//

#if !defined(AFX_WIDGET_H__02909A45_3F5C_11D2_AC89_006008A8274D__INCLUDE

Programming Windows With MFC

 1223

D_)
#define AFX_WIDGET_H__02909A45_3F5C_11D2_AC89_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CWidgetApp:
// See Widget.cpp for the implementation of this class
//

class CWidgetApp : public CWinApp
{
public:
 UINT GetClipboardFormat ();
 CWidgetApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWidgetApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation
 //{{AFX_MSG(CWidgetApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
protected:
 UINT m_nFormat;
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_WIDGET_H__02909A45_3F5C_11D2_AC89_006008A8274D__INCLUDED
_)

Widget.cpp
// Widget.cpp : Defines the class behaviors for the application.
//

Programming Windows With MFC

 1224

#include "stdafx.h"
#include "Widget.h"

#include "MainFrm.h"
#include "WidgetDoc.h"
#include "WidgetView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CWidgetApp

BEGIN_MESSAGE_MAP(CWidgetApp, CWinApp)
 //{{AFX_MSG_MAP(CWidgetApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CWidgetApp construction

CWidgetApp::CWidgetApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CWidgetApp object

CWidgetApp theApp;

///
// CWidgetApp initialization

BOOL CWidgetApp::InitInstance()
{
 if (!AfxOleInit ()) {
 AfxMessageBox (_T ("AfxOleInit failed"));
 return FALSE;
 }

 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(); // Load standard INI file
 // options (including MRU)

Programming Windows With MFC

 1225

 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CWidgetDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame
window
 RUNTIME_CLASS(CWidgetView));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 //
 // Register a private clipboard format for widgets.
 //
 m_nFormat = ::RegisterClipboardFormat (_T ("Widget"));
 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV

Programming Windows With MFC

 1226

support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CWidgetApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CWidgetApp message handlers

UINT CWidgetApp::GetClipboardFormat()
{
 return m_nFormat;
}

WidgetDoc.h
// WidgetDoc.h : interface of the CWidgetDoc class
//
///

#if !defined(

AFX_WIDGETDOC_H__02909A4B_3F5C_11D2_AC89_006008A8274D__INCLUDED_)
#define
AFX_WIDGETDOC_H__02909A4B_3F5C_11D2_AC89_006008A8274D__INCLUDED_

#if _MSC_VER > 1000

Programming Windows With MFC

 1227

#pragma once
#endif // _MSC_VER > 1000
#include "WidgetObj.h"
typedef CTypedPtrArray<CObArray, CWidget*> CWidgetArray;

class CWidgetDoc : public CDocument
{
protected: // create from serialization only
 CWidgetDoc();
 DECLARE_DYNCREATE(CWidgetDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWidgetDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 BOOL RemoveWidget (int nIndex);
 int AddWidget (int x, int y, COLORREF color);
 CWidget* GetWidget (int nIndex);
 int GetWidgetCount ();
 virtual ~CWidgetDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 CWidgetArray m_arrWidgets;

// Generated message map functions
protected:
 //{{AFX_MSG(CWidgetDoc)
 afx_msg void OnInsertRedWidget();
 afx_msg void OnInsertBlueWidget();
 afx_msg void OnInsertYellowWidget();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

Programming Windows With MFC

 1228

#endif
// !defined(
//
AFX_WIDGETDOC_H__02909A4B_3F5C_11D2_AC89_006008A8274D__INCLUDED_)

WidgetDoc.cpp
CWidgetDoc::~CWidgetDoc()
{
}

BOOL CWidgetDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 return TRUE;
}

///
// CWidgetDoc serialization

void CWidgetDoc::Serialize(CArchive& ar)
{
 m_arrWidgets.Serialize (ar);
}

///
// CWidgetDoc diagnostics

#ifdef _DEBUG
void CWidgetDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CWidgetDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CWidgetDoc commands

void CWidgetDoc::DeleteContents()
{
 int i = m_arrWidgets.GetSize ();
 while (i)
 delete m_arrWidgets[--i];
 m_arrWidgets.RemoveAll ();
 CDocument::DeleteContents();
}

Programming Windows With MFC

 1229

int CWidgetDoc::GetWidgetCount()
{
 return m_arrWidgets.GetSize ();
}

CWidget* CWidgetDoc::GetWidget(int nIndex)
{
 if (nIndex >= m_arrWidgets.GetSize ())
 return NULL;
 return (CWidget*) m_arrWidgets[nIndex];
}

int CWidgetDoc::AddWidget(int x, int y, COLORREF color)
{
 int nIndex = -1;
 CWidget* pWidget = NULL;

 try {
 pWidget = new CWidget (x, y, color);
 nIndex = m_arrWidgets.Add (pWidget);
 SetModifiedFlag ();
 }
 catch (CMemoryException* e) {
 AfxMessageBox (_T ("Out of memory"));
 if (pWidget != NULL)
 delete pWidget;
 e->Delete ();
 return -1;
 }
 return nIndex;
}

BOOL CWidgetDoc::RemoveWidget(int nIndex)
{
 if (nIndex >= m_arrWidgets.GetSize ())
 return FALSE;

 delete m_arrWidgets[nIndex];
 m_arrWidgets.RemoveAt (nIndex);
 return TRUE;
}

void CWidgetDoc::OnInsertBlueWidget()
{
 AddWidget (10, 10, RGB (0, 0, 255));
 UpdateAllViews (NULL);
}

void CWidgetDoc::OnInsertRedWidget()
{
 AddWidget (10, 10, RGB (255, 0, 0));
 UpdateAllViews (NULL);
}

void CWidgetDoc::OnInsertYellowWidget()
{

Programming Windows With MFC

 1230

 AddWidget (10, 10, RGB (255, 255, 0));
 UpdateAllViews (NULL);
}

WidgetView.h
// WidgetView.h : interface of the CWidgetView class
//
///

#if !defined(

AFX_WIDGETVIEW_H__02909A4D_3F5C_11D2_AC89_006008A8274D__INCLUDED_)
#define
AFX_WIDGETVIEW_H__02909A4D_3F5C_11D2_AC89_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

typedef struct tagWIDGETINFO {
 int x; // x coordinate of widget's upper left corner
 int y; // y coordinate of widget's upper left corner
 int cx; // Horizontal drag offset
 int cy; // Vertical drag offset
 COLORREF color; // The widget's color
} WIDGETINFO;

class CWidgetView : public CScrollView
{
protected: // create from serialization only
 CWidgetView();
 DECLARE_DYNCREATE(CWidgetView)

// Attributes
public:
 CWidgetDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWidgetView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual DROPEFFECT OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point);
 virtual DROPEFFECT OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point);
 virtual void OnDragLeave();
 virtual BOOL OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point);
 protected:
 virtual void OnInitialUpdate(); // called first time after construct
 //}}AFX_VIRTUAL

Programming Windows With MFC

 1231

// Implementation
public:
 virtual ~CWidgetView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 CWidget* m_pTempWidget;
 CSize m_offset;
 CPoint m_pointLastImage;
 CPoint m_pointLastMsg;
 int m_nSel;
 COleDropTarget m_oleDropTarget;

// Generated message map functions
protected:
 //{{AFX_MSG(CWidgetView)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnEditCut();
 afx_msg void OnEditCopy();
 afx_msg void OnEditPaste();
 afx_msg void OnEditDelete();
 afx_msg void OnUpdateEditCut(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnUpdateEditDelete(CCmdUI* pCmdUI);
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 afx_msg void OnKillFocus(CWnd* pNewWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in WidgetView.cpp
inline CWidgetDoc* CWidgetView::GetDocument()
 { return (CWidgetDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_WIDGETVIEW_H__02909A4D_3F5C_11D2_AC89_006008A8274D__INCLUDED_)

WidgetView.cpp
// WidgetView.cpp : implementation of the CWidgetView class
//

Programming Windows With MFC

 1232

#include "stdafx.h"
#include "Widget.h"
#include "WidgetDoc.h"
#include "WidgetView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CWidgetView

IMPLEMENT_DYNCREATE(CWidgetView, CScrollView)

BEGIN_MESSAGE_MAP(CWidgetView, CScrollView)
 //{{AFX_MSG_MAP(CWidgetView)
 ON_WM_CREATE()
 ON_WM_LBUTTONDOWN()
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_COMMAND(ID_EDIT_DELETE, OnEditDelete)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCut)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_DELETE,
OnUpdateEditDelete)
 ON_WM_SETFOCUS()
 ON_WM_KILLFOCUS()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CWidgetView construction/destruction

CWidgetView::CWidgetView()
{
}

CWidgetView::~CWidgetView()
{
}

BOOL CWidgetView::PreCreateWindow(CREATESTRUCT& cs)
{
 return CScrollView::PreCreateWindow(cs);
}
///
// CWidgetView drawing

void CWidgetView::OnDraw(CDC* pDC)
{
 CWidgetDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

Programming Windows With MFC

 1233

 int nCount = pDoc->GetWidgetCount ();
 if (nCount) {
 //
 // Draw all widgets.
 //
 for (int i=0; i<nCount; i++)
 pDoc->GetWidget (i)->Draw (pDC);

 //
 // Draw the selected widget if this view has the input focus.
 //
 if (m_nSel != -1 && CWnd::GetFocus () == this)
 pDoc->GetWidget (m_nSel)->DrawSelected (pDC);
 }
}

void CWidgetView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 SetScrollSizes(MM_TEXT, CSize (1280, 1024));
 m_pTempWidget = NULL;
 m_nSel = -1;
}

///
// CWidgetView diagnostics

#ifdef _DEBUG
void CWidgetView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CWidgetView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CWidgetDoc* CWidgetView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CWidgetDoc)));
 return (CWidgetDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CWidgetView message handlers

DROPEFFECT CWidgetView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 CScrollView::OnDragEnter(pDataObject, dwKeyState, point);

 //
 // If a widget is available from the drop source, create a temporary

Programming Windows With MFC

 1234

 // widget for drag imaging.
 //
 UINT nFormat = ((CWidgetApp*) AfxGetApp ())->GetClipboardFormat
();
 HGLOBAL hData = pDataObject->GetGlobalData (nFormat);

 if (hData != NULL) {
 WIDGETINFO* pWidgetInfo = (WIDGETINFO*) ::GlobalLock
(hData);
 int x = point.x - pWidgetInfo->cx;
 int y = point.y - pWidgetInfo->cy;
 m_offset.cx = pWidgetInfo->cx;
 m_offset.cy = pWidgetInfo->cy;
 COLORREF color = pWidgetInfo->color;
 ::GlobalUnlock (hData);
 ::GlobalFree (hData);

 m_pTempWidget = new CWidget (x, y, color);
 m_pointLastImage.x = m_pointLastImage.y = -32000;
 m_pointLastMsg = point;

 //
 // Return DROPEFFECT_COPY if the Ctrl key is down, or
 // DROPEFFECT_MOVE if it is not.
 //
 return (dwKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
 }
 //
 // The cursor isn't carrying a widget. Indicate that the drop target
 // will not accept a drop.
 //
 m_pTempWidget = NULL;
 return DROPEFFECT_NONE;
}

DROPEFFECT CWidgetView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 CScrollView::OnDragOver(pDataObject, dwKeyState, point);

 //
 // Return now if the object being dragged is not a widget.
 //
 if (m_pTempWidget == NULL)
 return DROPEFFECT_NONE;

 //
 // Convert the drag point to logical coordinates.
 //
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&point);

 //
 // If the cursor has moved, erase the old drag image and

Programming Windows With MFC

 1235

 // draw a new one.
 //
 if (point != m_pointLastMsg) {
 CPoint pt (point.x - m_offset.cx, point.y - m_offset.cy);
 m_pTempWidget->DrawDragImage (&dc, m_pointLastImage);
 m_pTempWidget->DrawDragImage (&dc, pt);
 m_pointLastImage = pt;
 m_pointLastMsg = point;
 }

 //
 // Return DROPEFFECT_COPY if the Ctrl key is down, or
DROPEFFECT_MOVE
 // if it is not.
 //
 return (dwKeyState & MK_CONTROL) ?
 DROPEFFECT_COPY : DROPEFFECT_MOVE;
}

void CWidgetView::OnDragLeave()
{
 CScrollView::OnDragLeave();

 //
 // Erase the last drag image and delete the temporary widget.
 //
 if (m_pTempWidget != NULL) {
 CClientDC dc (this);
 OnPrepareDC (&dc);
 m_pTempWidget->DrawDragImage (&dc, m_pointLastImage);
 delete m_pTempWidget;
 m_pTempWidget = NULL;
 }
}

BOOL CWidgetView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 CScrollView::OnDrop(pDataObject, dropEffect, point);

 //
 // Convert the drop point to logical coordinates.
 //
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&point);

 //
 // Erase the last drag image and delete the temporary widget.
 //
 if (m_pTempWidget != NULL) {
 m_pTempWidget->DrawDragImage (&dc, m_pointLastImage);
 delete m_pTempWidget;
 m_pTempWidget = NULL;
 }

Programming Windows With MFC

 1236

 //
 // Retrieve the HGLOBAL from the data object and create a widget.
 //
 UINT nFormat = ((CWidgetApp*) AfxGetApp ())->GetClipboardFormat
();
 HGLOBAL hData = pDataObject->GetGlobalData (nFormat);

 if (hData != NULL) {
 WIDGETINFO* pWidgetInfo = (WIDGETINFO*) ::GlobalLock
(hData);
 int x = point.x - pWidgetInfo->cx;
 int y = point.y - pWidgetInfo->cy;
 COLORREF color = pWidgetInfo->color;
 ::GlobalUnlock (hData);
 ::GlobalFree (hData);

 CWidgetDoc* pDoc = GetDocument ();
 m_nSel = pDoc->AddWidget (x, y, color);
 pDoc->UpdateAllViews (NULL);
 return TRUE;
 }
 return FALSE;
}

int CWidgetView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CScrollView::OnCreate(lpCreateStruct) == -1)
 return -1;

 m_oleDropTarget.Register (this);
 return 0;
}

void CWidgetView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CScrollView::OnLButtonDown(nFlags, point);

 CWidgetDoc* pDoc = GetDocument ();
 int nCount = pDoc->GetWidgetCount ();

 if (nCount) {
 //
 // Convert the click point to logical coordinates.
 //
 CClientDC dc (this);
 OnPrepareDC (&dc);
 dc.DPtoLP (&point);

 //
 // Find out whether a widget was clicked.
 //
 int i;
 BOOL bHit = FALSE;
 for (i=nCount - 1; i>=0 && !bHit; i--) {
 CWidget* pWidget = pDoc->GetWidget (i);
 if (pWidget->PtInWidget (point)) {

Programming Windows With MFC

 1237

 bHit = TRUE;
 }
 }

 //
 // If no widget was clicked, change the selection to NULL and exit.
 //
 if (!bHit) {
 m_nSel = -1;
 InvalidateRect (NULL, FALSE);
 return;
 }
 //
 // Select the widget that was clicked.
 //
 int nWidgetIndex = i + 1;

 if (m_nSel != nWidgetIndex) {
 m_nSel = nWidgetIndex;
 InvalidateRect (NULL, FALSE);
 UpdateWindow ();
 }

 //
 // Begin a drag-and-drop operation involving the selected widget.
 //
 HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, sizeof
(WIDGETINFO));

 WIDGETINFO* pWidgetInfo = (WIDGETINFO*) ::GlobalLock
(hData);
 CWidget* pWidget = pDoc->GetWidget (nWidgetIndex);
 ASSERT (pWidget != NULL);
 CRect rect = pWidget->GetRect ();
 pWidgetInfo->cx = point.x - rect.left;
 pWidgetInfo->cy = point.y - rect.top;
 pWidgetInfo->color = pWidget->GetColor ();
 ::GlobalUnlock (hData);

 COleDataSource ods;
 UINT nFormat = ((CWidgetApp*) AfxGetApp
())->GetClipboardFormat ();
 ods.CacheGlobalData (nFormat, hData);

 int nOldSel = m_nSel;
 DROPEFFECT de = ods.DoDragDrop (DROPEFFECT_COPY |
DROPEFFECT_MOVE);

 if (de == DROPEFFECT_MOVE) {
 pDoc->RemoveWidget (nWidgetIndex);
 int nCount = pDoc->GetWidgetCount ();
 if (nOldSel == m_nSel || nCount == 0)
 m_nSel = -1;
 else if (m_nSel >= nCount)
 m_nSel = nCount - 1;
 pDoc->UpdateAllViews (NULL);

Programming Windows With MFC

 1238

 }
 }
}

void CWidgetView::OnEditCut()
{
 if (m_nSel != -1) {
 OnEditCopy ();
 OnEditDelete ();
 }
}

void CWidgetView::OnEditCopy()
{
 if (m_nSel != -1) {
 //
 // Copy data describing the currently selected widget to a
 // global memory block.
 //
 HANDLE hData = ::GlobalAlloc (GMEM_MOVEABLE, sizeof
(WIDGETINFO));

 WIDGETINFO* pWidgetInfo = (WIDGETINFO*) ::GlobalLock
(hData);
 CWidgetDoc* pDoc = GetDocument ();
 CWidget* pWidget = pDoc->GetWidget (m_nSel);
 ASSERT (pWidget != NULL);
 CRect rect = pWidget->GetRect ();
 pWidgetInfo->x = rect.left;
 pWidgetInfo->y = rect.top;
 pWidgetInfo->color = pWidget->GetColor ();
 ::GlobalUnlock (hData);

 //
 // Place the widget on the clipboard.
 //
 COleDataSource* pods = new COleDataSource;
 UINT nFormat = ((CWidgetApp*) AfxGetApp
())->GetClipboardFormat ();
 pods->CacheGlobalData (nFormat, hData);
 pods->SetClipboard ();
 }
}

void CWidgetView::OnEditPaste()
{
 //
 // Create a COleDataObject and attach it to the clipboard.
 //
 COleDataObject odo;
 odo.AttachClipboard ();

 //
 // Retrieve the HGLOBAL from the clipboard and create a widget.
 //
 UINT nFormat = ((CWidgetApp*) AfxGetApp ())->GetClipboardFormat

Programming Windows With MFC

 1239

();
 HGLOBAL hData = odo.GetGlobalData (nFormat);

 if (hData != NULL) {
 WIDGETINFO* pWidgetInfo = (WIDGETINFO*) ::GlobalLock
(hData);
 int x = pWidgetInfo->x;
 int y = pWidgetInfo->y;
 COLORREF color = pWidgetInfo->color;
 ::GlobalUnlock (hData);
 ::GlobalFree (hData);

 CWidgetDoc* pDoc = GetDocument ();
 m_nSel = pDoc->AddWidget (x, y, color);
 pDoc->UpdateAllViews (NULL);
 }
}

void CWidgetView::OnEditDelete()
{
 if (m_nSel != -1) {
 CWidgetDoc* pDoc = GetDocument ();
 pDoc->RemoveWidget (m_nSel);
 m_nSel = -1;
 pDoc->UpdateAllViews (NULL);
 }
}

void CWidgetView::OnUpdateEditCut(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (m_nSel != -1);
}

void CWidgetView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (m_nSel != -1);
}

void CWidgetView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 UINT nFormat = ((CWidgetApp*) AfxGetApp ())->GetClipboardFormat
();
 pCmdUI->Enable (::IsClipboardFormatAvailable (nFormat));
}

void CWidgetView::OnUpdateEditDelete(CCmdUI* pCmdUI)
{
 pCmdUI->Enable (m_nSel != -1);
}

void CWidgetView::OnKillFocus(CWnd* pNewWnd)
{
 CScrollView::OnKillFocus(pNewWnd);
 InvalidateRect (NULL, FALSE);
}

Programming Windows With MFC

 1240

void CWidgetView::OnSetFocus(CWnd* pOldWnd)
{
 CScrollView::OnSetFocus(pOldWnd);
 InvalidateRect (NULL, FALSE);
}

WidgetObj.h
#if !defined(

AFX_WIDGETOBJ_H__02909A57_3F5C_11D2_AC89_006008A8274D__INCLUDED_)
#define
AFX_WIDGETOBJ_H__02909A57_3F5C_11D2_AC89_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// WidgetObj.h : header file
//

///
// CWidget command target

class CWidget : public CObject
{
 DECLARE_SERIAL(CWidget)

// Attributes
public:

// Operations
public:
 CWidget();
 CWidget (int x, int y, COLORREF color);
 virtual ~CWidget();
 void DrawSelected (CDC* pDC);
 BOOL PtInWidget (POINT point);
 virtual void DrawDragImage (CDC* pDC, POINT point);
 virtual void Draw (CDC* pDC);
 COLORREF GetColor ();
 CRect GetRect ();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CWidget)
 //}}AFX_VIRTUAL
 virtual void Serialize (CArchive& ar);

// Implementation
protected:
 COLORREF m_color;
 CRect m_rect;
};

///

Programming Windows With MFC

 1241

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_WIDGETOBJ_H__02909A57_3F5C_11D2_AC89_006008A8274D__INCLUDED_)

WidgetObj.cpp
// WidgetObj.cpp : implementation file
//

#include "stdafx.h"
#include "Widget.h"
#include "WidgetObj.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CWidget

IMPLEMENT_SERIAL(CWidget, CObject, 1)

CWidget::CWidget()
{
 m_rect = CRect (0, 0, 90, 90);
 m_color = RGB (255, 0, 0);
}
CWidget::CWidget (int x, int y, COLORREF color)
{
 m_rect = CRect (x, y, x + 90, y + 90);
 m_color = color;
}

CWidget::~CWidget()
{
}

///
// CWidget message handlers

CRect CWidget::GetRect()
{
 return m_rect;
}

COLORREF CWidget::GetColor()
{
 return m_color;
}

Programming Windows With MFC

 1242

void CWidget::Serialize (CArchive& ar)
{
 CObject::Serialize (ar);

 if (ar.IsStoring ())
 ar << m_rect << m_color;
 else
 ar >> m_rect >> m_color;
}

void CWidget::Draw(CDC *pDC)
{
 CBrush brush (m_color);
 CBrush* pOldBrush = pDC->SelectObject (&brush);

 CPoint points[3];
 points[0].x = m_rect.left;
 points[0].y = m_rect.bottom;
 points[1].x = m_rect.left + (m_rect.Width () / 2);
 points[1].y = m_rect.top;
 points[2].x = m_rect.right;
 points[2].y = m_rect.bottom;
 pDC->Polygon (points, 3);

 pDC->SelectObject (pOldBrush);
}

void CWidget::DrawSelected(CDC *pDC)
{
 CBrush brush (RGB (0, 255, 0));
 CBrush* pOldBrush = pDC->SelectObject (&brush);

 CPoint points[3];
 points[0].x = m_rect.left;
 points[0].y = m_rect.bottom;
 points[1].x = m_rect.left + (m_rect.Width () / 2);
 points[1].y = m_rect.top;
 points[2].x = m_rect.right;
 points[2].y = m_rect.bottom;
 pDC->Polygon (points, 3);

 pDC->SelectObject (pOldBrush);
}

void CWidget::DrawDragImage(CDC *pDC, POINT point)
{
 int nOldMode = pDC->SetROP2 (R2_NOT);
 CBrush* pOldBrush = (CBrush*) pDC->SelectStockObject
(NULL_BRUSH);

 CPoint points[3];
 points[0].x = point.x;
 points[0].y = point.y + m_rect.Height ();
 points[1].x = point.x + (m_rect.Width () / 2);
 points[1].y = point.y;
 points[2].x = point.x + m_rect.Width ();

Programming Windows With MFC

 1243

 points[2].y = point.y + m_rect.Height ();
 pDC->Polygon (points, 3);

 pDC->SelectObject (pOldBrush);
 pDC->SetROP2 (nOldMode);
}

BOOL CWidget::PtInWidget(POINT point)
{
 if (!m_rect.PtInRect (point))
 return FALSE;

 int cx = min (point.x - m_rect.left, m_rect.right - point.x);
 return ((m_rect.bottom - point.y) <= (2 * cx));
}

Widgets are represented by objects of the CWidget class, whose
source code is found in WidgetObj.h and WidgetObj.cpp. To
derive CWidget, I used ClassWizard to derive from
CCmdTarget and then manually edited the source code to
change the base class to CObject. I also changed the
DYNCREATE macros inserted by ClassWizard into SERIAL
macros and overrode CObject::Serialize to make CWidget a
serializable class. These tweaks reduced the document's
Serialize function to one simple statement:

m_arrWidgets.Serialize (ar);

m_arrWidgets is the CWidgetDoc member variable that stores
CWidget pointers. A CWidget object is created when a
command is selected from the Insert menu, when a widget is
pasted from the clipboard, and when a widget is dropped over
the Widget window.

The CWidget class has a pair of member functions named Draw
and DrawSelected that draw a widget to an output device. Draw
draws the widget in the unselected state; DrawSelected draws it
in the selected state. The view's OnDraw code is a simple loop
that retrieves CWidget pointers from the document one by one
and asks each widget to draw itself. If the view has the input
focus and a widget is currently selected (that is, if
CWidgetView::m_nSel != -1), the selected widget is drawn
again after all the other widgets are drawn:

for (int i=0; i<nCount; i++)

Programming Windows With MFC

 1244

 pDoc->GetWidget (i)->Draw (pDC);
if (m_nSel != -1 && CWnd::GetFocus () == this)
 pDoc->GetWidget (m_nSel)->DrawSelected (pDC);

Drawing the selected widget last ensures that it is always
visible on top of the others.

Another CWidget drawing function, DrawDragImage, is used
for drag imaging. As you drag a widget across the screen,
notice the triangular outline that follows the cursor. That's drag
imaging. The operating system shell uses drag images for a
similar effect when file system objects are dragged. Because
the drop source is responsible for displaying the cursor during a
drag-and-drop operation, programmers often assume that the
drop source draws drag images by making them part of the
cursor. That's generally not true. What really happens is that the
drop target (not the drop source) draws the drag image in
OnDragOver. For this to work, the drop target has to know
what kind of payload the cursor is carrying so that it can draw
an outline on the screen.

Widget handles drag imaging by creating a temporary widget
object in OnDragEnter, caching the pointer in
CWidgetView::m_pTempWidget, and calling the object's
DrawDragImage function each time OnDragOver is called.
Actually, OnDragOver calls DrawDragImage twice: once to
erase the old drag image and once to draw a new one.
DrawDragImage does its drawing in the R2_NOT drawing
mode, so drawing a drag image on top of an old one effectively
erases the old drag image. The position of the previous drag
image is stored in CWidgetView's m_pointLastImage data
member. The temporary widget is deleted when OnDragLeave
or OnDrop is called. This example demonstrates why
overriding OnDragLeave is sometimes useful. In this case,
OnDragEnter allocates a resource that must be freed even if a
drop doesn't occur.

You can see drop target scrolling in action by dragging a
widget and pausing within a few pixels of the view's lower or
right border. After a brief delay, the view will begin scrolling
and will continue scrolling until a drop occurs or the cursor
moves away from the border. Drop target scrolling enables you

Programming Windows With MFC

 1245

to drop a widget in any part of the view without taking your
finger off the mouse button to click a scroll bar. Again, drop
target scrolling comes absolutely for free when the drop target
is a CScrollView.

19.4.1. The AfxOleInit Function

When I used AppWizard to create the Widget project, I selected
none of the OLE options in Step 3. When AppWizard is run
this way, the generated source code doesn't include a call to the
all-important AfxOleInit function, which initializes the OLE
libraries. This function must be called before an MFC
application touches COM or OLE in any way. Therefore, I
added a call to AfxOleInit to the beginning of the application
class's InitInstance function. This meant that I also had to add
the statement

#include <afxole.h>

to Stdafx.h. Otherwise, the call to AfxOleInit wouldn't have
compiled.

I mention this because if you write an application that uses
COM or OLE but you don't select one of the OLE options in
AppWizard, you must add the AfxOleInit call and the statement
that #includes Afxole.h manually. If you don't, your application
will compile just fine, but calls to functions such as
COleDataSource::DoDragDrop will fail. I once lost half a day
of work wondering why my clipboard code wasn't working
when, by all appearances, I had done everything right. Then I
realized that I had forgotten to include these crucial statements
in my source code. If you write an application and find that
calls to DoDragDrop or other OLE functions mysteriously fail,
make sure that AfxOleInit is called when the application starts
up. You'll save yourself a lot of grief.

Programming Windows With MFC

 1246

Programming Windows With MFC

 1247

Chapter 20. Automation
Imagine a world in which you could program any Microsoft
Windows application using a sophisticated yet easy-to-use
scripting language. Imagine further that all scripting languages
were the same so that once you learned to write scripts for one
application, you could write scripts for others, too. While you're
at it, consider how useful it would be if programs written in
Microsoft Visual C++, Microsoft Visual Basic, and other
programming languages could also access the features exposed
to this hypothetical language.

Sound too good to be true? It's not. Thanks to the COM-based
technology known as Automation, any MFC application can be
turned into a scriptable application. Automation is a
standardized means for exposing an application's features to
clients written in Visual Basic; Visual Basic for Applications
(VBA); Visual Basic, Scripting Edition (VBScript); and other
languages. It solves the problem posed by these languages'
inability to talk to COM objects using conventional COM
interfaces, but it isn't restricted to dialects of Visual Basic;
clients written in C++ and other languages can also use
Automation.

Microsoft is actively encouraging application developers to
build Automation support into their programs and has led the
way by building Automation capabilities into many of its
flagship applications. Microsoft Excel, for example, is a
powerful Automation server. So are Microsoft Word, Microsoft
PowerPoint, and other Microsoft Office applications. By
exposing an application's feature set through Automation, you
make that application a powerful tool in the hands of users who
are willing to learn a scripting language. You also give
developers the means to use your application as a platform for
building their own applications.

Automation is a versatile tool with talents that extend beyond
mere scripting. It's also used to build software components for
Active Server Pages, and it's one of the key technologies
employed by ActiveX controls. In this chapter, you'll learn
what Automation is, how it works, and how you can use MFC
to write Automation-enabled applications. A Visual C++
programmer can have a simple Automation server up and

Programming Windows With MFC

 1248

running in no time flat. With a little know-how, you can build
Automation servers that expose complex, hierarchically
structured object models. Visual C++ and MFC also simplify
the creation of Automation clients—programs that use the
services provided by Automation servers.

20.1. Automation Basics

Unlike a typical COM object, which exposes interfaces and
methods, an Automation object exposes methods and properties.
A method is a function that can be called by the object's clients.
A property is an attribute of the object, such as a color or a file
name.

Automation-aware languages such as Visual Basic shield the
programmer from reference counting, interface pointers, and
other idioms of COM. They also permit you to access
Automation methods and properties as easily as you access
local subroutines and variables. The following Visual Basic
statements instantiate an Automation object and invoke a
method named Add to add 2 and 2:

Dim Math as Object
Set Math = CreateObject ("Math.Object")
Sum = Math.Add (2, 2)
Set Math = Nothing

In this example, Math is a variable of type Object.
"Math.Object" is the Automation object's ProgID. (Recall from
Chapter 18 that a ProgID is the string analogue of a COM
CLSID.) The final statement frees the object by performing the
Visual Basic equivalent of calling Release through an interface
pointer.

In Visual Basic, accessing an Automation property is
syntactically similar to calling an Automation method. The next
example creates a bank account object and sets the balance in
the account by assigning a value to a property named Balance:

Dim Account as Object
Set Account = CreateObject ("BankAccount.Object")
Account.Balance = 100

Programming Windows With MFC

 1249

Checking the balance in the account is as simple as reading the
property value:

Amount = Account.Balance

Reading or writing an Automation property is analogous to
accessing a public member variable in a C++ class. In truth,
COM objects can't expose member variables any more than
C++ objects can expose private data members. The illusion that
an Automation object can expose values as well as methods is
part of the magic of Automation.

Automation clients written in VBScript look very much like
Automation clients written in Visual Basic. The following
script uses VBScript's built-in FileSystemObject object, which
is in reality an Automation object, to create a text file
containing the string "Hello, world":

Set fso = CreateObject ("Scripting.FileSystemObject")
Set TextFile = fso.CreateTextFile ("C:\Hello.txt", True)
TextFile.WriteLine ("Hello, world")
TextFile.Close

To try this script for yourself, use Notepad or a program editor
to enter these statements in a text file and save the file with the
extension .vbs. Then double-click the file in the operating
system shell or type START filename.vbs in a command
prompt window. On Windows 98 and Windows 2000 systems,
this will invoke the built-in Windows Scripting Host, which
will open the file and execute the statements found inside it.

You can also write Automation clients in C++. The next section
shows you how, but be warned that it isn't pretty because a C++
client doesn't have the Visual Basic run-time or a scripting
engine to serve as a mediator between it and the Automation
server. The good news is that Visual C++ aids in the creation of
Automation clients by generating easy-to-use wrapper classes
based on MFC's COleDispatchDriver class. You'll see what I
mean later in this chapter.

Programming Windows With MFC

 1250

20.1.1. IDispatch: The Root of All Automation

Automation looks fairly simple from the outside, and for a
Visual Basic programmer, Automation is simple. But the fact
that COM is involved should be a clue that what goes on under
the hood is a far different story.

The key to understanding how Automation works lies in
understanding the COM interface known as IDispatch. An
Automation object is a COM object that implements IDispatch.
IDispatch contains four methods (which are listed in the table
below), not counting the three IUnknown methods common to
all COM interfaces. Of the four, Invoke and GetIDsOfNames
are the most important. A client calls Invoke to call an
Automation method or to read or write an Automation property.
Invoke doesn't accept a method or a property name such as
"Add" or "Balance." Instead, it accepts an integer dispatch ID,
or dispid, that identifies the property or method.
GetIDsOfNames converts a property name or a method name
into a dispatch ID that can be passed to Invoke. Collectively,
the methods and properties exposed through an IDispatch
interface form a dispinterface.

The IDispatch Interface

Method Description

Invoke Calls an Automation method or accesses an Automation
property

GetIDsOfNames Returns the dispatch ID of a property or a method

GetTypeInfo Retrieves an ITypeInfo pointer (if available) for accessing
the Automation object's type information

GetTypeInfoCount Returns 0 if the Automation object doesn't offer type
information; returns 1 if it does

When Visual Basic encounters a statement like

Sum = Math.Add (2, 2)

it calls GetIDsOfNames to convert "Add" into a dispatch ID. It
then calls Invoke, passing in the dispatch ID retrieved from
GetIDsOfNames. Before calling Invoke, Visual Basic initializes
an array of structures with the values of the method

Programming Windows With MFC

 1251

parameters—in this case, 2 and 2. It passes the array's address
to Invoke along with the address of an empty structure that
receives the method's return value (the sum of the two input
parameters). The Automation object examines the dispatch ID,
sees that it corresponds to the Add method, unpacks the input
values, adds them together, and copies the sum to the structure
provided by the caller.

A good way to picture this process is to see how a C++
programmer would call an Automation method. The following
code is the C++ equivalent of the first example in the previous
section:

// Convert the ProgID into a CLSID.
CLSID clsid;
::CLSIDFromProgID (OLESTR ("Math.Object"), &clsid);

// Create the object, and get a pointer to its IDispatch interface.
IDispatch* pDispatch;
::CoCreateInstance (clsid, NULL, CLSCTX_SERVER, IID_IDispatch,
 (void**) &pDispatch);

// Get the Add method's dispatch ID.
DISPID dispid;
OLECHAR* szName = OLESTR ("Add");
pDispatch->GetIDsOfNames (IID_NULL, &szName, 1,
 ::GetUserDefaultLCID (), &dispid);

// Prepare an argument list for the Add method.
VARIANTARG args[2];
DISPPARAMS params = { args, NULL, 2, 0 };
for (int i=0; i<2; i++) {
 ::VariantInit (&args[i]); // Initialize the VARIANT.
 args[i].vt = VT_I4; // Data type = 32-bit long
 V_I4 (&args[i]) = 2; // Value = 2
}

// Call Add to add 2 and 2.
VARIANT result;
::VariantInit (&result);
pDispatch->Invoke (dispid, IID_NULL, ::GetUserDefaultLCID (),
 DISPATCH_METHOD, ¶ms, &result, NULL, NULL);

// Extract the result.
long lResult = V_I4 (&result);

// Clear the VARIANTs.
::VariantClear (&args[0]);
::VariantClear (&args[1]);
::VariantClear (&result);

// Release the Automation object.

Programming Windows With MFC

 1252

pDispatch->Release ();

You can plainly see the calls to IDispatch::GetIDsOfNames
and IDispatch::Invoke, as well as the ::CoCreateInstance
statement that creates the Automation object. You can also see
that input and output parameters are packaged in structures
called VARIANTARGs, a subject that's covered in the next
section.

You also use IDispatch::Invoke to access Automation
properties. You can set the fourth parameter, which was equal
to DISPATCH_METHOD in the preceding example, to
DISPATCH_PROPERTYPUT or
DISPATCH_PROPERTYGET to indicate that the value of the
property named by the dispatch ID in parameter 1 is being set
or retrieved. In addition, IDispatch::Invoke can return error
information in an EXCEPINFO structure provided by the caller.
The structure's address is passed in Invoke's seventh parameter;
a NULL pointer means the caller isn't interested in such
information. Invoke also supports Automation methods and
properties with optional and named arguments, which matters
little to C++ clients but can simplify client code written in
Visual Basic.

It should be evident from these examples that Automation
leaves something to be desired for C++ programmers. It's faster
and more efficient for C++ clients to call conventional COM
methods than it is for them to call Automation methods.
Automation looks easy in Visual Basic for the simple reason
that Visual Basic goes to great lengths to make it look easy.
Peel away the façade, however, and Automation looks very
different indeed.

20.1.2. Automation Data Types

One of the more interesting aspects of IDispatch::Invoke is how
it handles input and output parameters. In Automation, all
parameters are passed in data structures called VARIANTs.
(Technically, input parameters are passed in VARIANTARGs
and output parameters in VARIANTs, but because these
structures are identical, developers often use the term
VARIANT to describe both.) A VARIANT is, in essence, a
self-describing data type. Inside a VARIANT is a union of data

Programming Windows With MFC

 1253

types for holding the VARIANT's data and a separate field for
defining the data type. Here's how the structure is defined in
Oaidl.idl:

struct tagVARIANT {
 union {
 struct __tagVARIANT {
 VARTYPE vt;
 WORD wReserved1;
 WORD wReserved2;
 WORD wReserved3;
 union {
 LONG lVal; /* VT_I4
*/
 BYTE bVal; /* VT_UI1
*/
 SHORT iVal; /* VT_I2
*/
 FLOAT fltVal; /* VT_R4
*/
 DOUBLE dblVal; /* VT_R8
*/
 VARIANT_BOOL boolVal; /* VT_BOOL
*/
 _VARIANT_BOOL bool; /* (obsolete)
*/
 SCODE scode; /* VT_ERROR
*/
 CY cyVal; /* VT_CY
*/
 DATE date; /* VT_DATE
*/
 BSTR bstrVal; /* VT_BSTR
*/
 IUnknown * punkVal; /* VT_UNKNOWN
*/
 IDispatch * pdispVal; /* VT_DISPATCH
*/
 SAFEARRAY * parray; /* VT_ARRAY
*/
 BYTE * pbVal; /* VT_BYREFVT_UI1
*/
 SHORT * piVal; /* VT_BYREFVT_I2
*/
 LONG * plVal; /* VT_BYREFVT_I4
*/
 FLOAT * pfltVal; /* VT_BYREFVT_R4
*/
 DOUBLE * pdblVal; /* VT_BYREFVT_R8
*/
 VARIANT_BOOL *pboolVal; /*
VT_BYREFVT_BOOL */
 _VARIANT_BOOL *pbool; /* (obsolete)
*/
 SCODE * pscode; /*

Programming Windows With MFC

 1254

VT_BYREFVT_ERROR */
 CY * pcyVal; /* VT_BYREFVT_CY
*/
 DATE * pdate; /*
VT_BYREFVT_DATE */
 BSTR * pbstrVal; /* VT_BYREFVT_BSTR
*/
 IUnknown ** ppunkVal; /*
VT_BYREFVT_UNKNOWN */
 IDispatch ** ppdispVal; /*
VT_BYREFVT_DISPATCH */
 SAFEARRAY ** pparray; /*
VT_BYREFVT_ARRAY */
 VARIANT * pvarVal; /*
VT_BYREFVT_VARIANT */
 PVOID byref; /* Generic ByRef
*/
 CHAR cVal; /* VT_I1
*/
 USHORT uiVal; /* VT_UI2
*/
 ULONG ulVal; /* VT_UI4
*/
 INT intVal; /* VT_INT
*/
 UINT uintVal; /* VT_UINT
*/
 DECIMAL * pdecVal; /*
VT_BYREFVT_DECIMAL */
 CHAR * pcVal; /* VT_BYREFVT_I1
*/
 USHORT * puiVal; /* VT_BYREFVT_UI2
*/
 ULONG * pulVal; /* VT_BYREFVT_UI4
*/
 INT * pintVal; /* VT_BYREFVT_INT
*/
 UINT * puintVal; /* VT_BYREFVT_UINT
*/
 struct __tagBRECORD {
 PVOID pvRecord;
 IRecordInfo * pRecInfo;
 } __VARIANT_NAME_4; /* VT_RECORD
*/
 } __VARIANT_NAME_3;
 } __VARIANT_NAME_2;

 DECIMAL decVal;
 } __VARIANT_NAME_1;
};

The vt field holds one or more VT_ flags identifying the data
type. Another field holds the actual value. For example, a
VARIANT that represents a 32-bit long equal to 128 has a vt
equal to VT_I4 and an lVal equal to 128. The header file

Programming Windows With MFC

 1255

Oleauto.h defines macros for reading and writing data
encapsulated in VARIANTs. In addition, the system file
Oleaut32.dll includes API functions, such as ::VariantInit
and ::VariantClear, for managing and manipulating
VARIANTs, and MFC's COleVariant class places a friendly
wrapper around VARIANT data structures and the operations
that can be performed on them.

When you write Automation objects, you must use
Automation-compatible data types—that is, data types that can
be represented with VARIANTs—for all the objects' properties
and methods. The table on the below summarizes the available
data types.

VARIANT-Compatible Data Types

Data Type Description

BSTR Automation string

BSTR* Pointer to Automation string

BYTE 8-bit byte

BYTE* Pointer to 8-bit byte

BYTE 8-bit byte

CHAR 8-bit character

CHAR* Pointer to 8-bit character

CY* 64-bit currency value

DATE 64-bit date and time value

DATE* Pointer to 64-bit date and time value

DECIMAL* Pointer to DECIMAL data structure

DOUBLE Double-precision floating point value

DOUBLE* Pointer to double-precision floating point value

FLOAT Single-precision floating point value

FLOAT* Pointer to single-precision floating point value

IDispatch* IDispatch interface pointer

IDispatch** Pointer to IDispatch interface pointer

INT Signed integer (32 bits on Win32 platforms)

INT* Pointer to signed integer

Programming Windows With MFC

 1256

IUnknown* COM interface pointer*

IUnknown** Pointer to COM interface pointer

LONG 32-bit signed integer

LONG* Pointer to 32-bit signed integer

PVOID Untyped pointer

SAFEARRAY* SAFEARRAY pointer

SAFEARRAY** Pointer to SAFEARRAY pointer

SCODE COM HRESULT

SCODE* Pointer to COM HRESULT

SHORT 16-bit signed integer

SHORT* Pointer to 16-bit signed integer

UINT Pointer unsigned integer

UINT* Pointer unsigned integer

ULONG 32-bit unsigned integer

ULONG* Pointer to 32-bit unsigned integer

USHORT 16-bit unsigned integer

USHORT* Pointer to 16-bit unsigned integer

VARIANT* Pointer to VARIANT data structure

VARIANT_BOOL Automation Boolean

VARIANT_BOOL* Pointer to Automation Boolean

Generally speaking, Automation's dependence on
VARIANT-compatible data types is a limitation that can
frustrate developers who are accustomed to building "pure"
COM objects—objects that use conventional COM interfaces
rather than dispinterfaces and are therefore less restricted in the
types of data that they can use. However, using only
Automation-compatible data types offers one advantage: COM
knows how to marshal VARIANTs, so Automation objects
don't require custom proxy/stub DLLs. The trade-off is that you
can't use structures (or pointers to structures) in methods'
parameter lists, and arrays require special handling because
they must be encapsulated in structures called SAFEARRAYs.

The BSTR Data Type

Programming Windows With MFC

 1257

Most of the data types presented in the preceding section are
self-explanatory. Two, however, merit further explanation.
BSTR (pronounced "Bee'-ster") is Automation's string data type.
Unlike a C++ string, which is an array of characters followed
by a zero delimiter, a BSTR is a counted string. The first four
bytes hold the number of bytes (not characters) in the string;
subsequent bytes hold the characters themselves. All characters
in a BSTR are 16-bit Unicode characters. A BSTR value is
actually a pointer to the first character in the string. (See Figure
20-1.) The string is, in fact, zero-delimited, which means that
you can convert a BSTR into a C++ string pointer by casting it
to an LPCWSTR.

Figure 20-1. The BSTR data type.

In MFC, dealing with BSTRs frequently means converting
CStrings to BSTRs and BSTRs to CStrings.
CString::AllocSysString creates a BSTR from a CString:
CString string = _T ("Hello, world");
BSTR bstr = string.AllocSysString ();

AllocSysString will automatically convert ANSI characters to
Unicode characters if the preprocessor symbol _UNICODE is
not defined, indicating that this is an ANSI program build.
CString also includes a member function named SetSysString
that can be used to modify an existing BSTR. Converting a
BSTR into a CString is equally easy. CString's LPCWSTR
operator initializes a CString from a BSTR and conveniently
converts the characters to 8-bit ANSI characters if the CString
is of the ANSI variety:
CString string = (LPCWSTR) bstr;

Be aware that if a BSTR contains embedded zeros (a very real
possibility since BSTRs are counted strings), turning it into a
CString in this way will effectively truncate the string.
The SAFEARRAY Data Type
SAFEARRAY is Automation's array data type. It's called a

Programming Windows With MFC

 1258

"safe" array because in addition to holding the data comprising
the array elements, it houses information regarding the number
of dimensions in the array, the bounds of each dimension, and
more.
A SAFEARRAY is actually a structure. It is defined this way in
Oaidl.h:
typedef struct tagSAFEARRAY
 {
 USHORT cDims;
 USHORT fFeatures;
 ULONG cbElements;
 ULONG cLocks;
 PVOID pvData;
 SAFEARRAYBOUND rgsabound[1];
 } SAFEARRAY;

SAFEARRAYBOUND is also a structure. It is defined like this:
typedef struct tagSAFEARRAYBOUND
 {
 ULONG cElements;
 LONG lLbound;
 } SAFEARRAYBOUND;

The cDims field holds the number of dimensions in the
SAFEARRAY. rgsabound is an embedded array that contains
one element for each dimension. Each element defines the
bounds (number of storage elements) of one dimension as well
as the index of that dimension's lower bound. Unlike C++
arrays, which number their elements from 0 to n, a
SAFEARRAY's elements can be numbered using any
contiguous range of integers—for example, -5 to n-5. fFeatures
holds flags specifying what kind of data the SAFEARRAY
stores and how the SAFEARRAY is allocated. cbElements
holds the size, in bytes, of each element. Finally, pvData points
to the elements themselves.
The Windows API includes numerous functions for creating
and using SAFEARRAYs; all begin with the name SafeArray.
MFC has its own way of dealing with SAFEARRAYs in the
form of a class named COleSafeArray. The following code
creates a COleSafeArray object that represents a
one-dimensional SAFEARRAY containing the integers 1
through 10:
COleSafeArray sa;
LONG lValues[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
sa.CreateOneDim (VT_I4, 10, lValues);

The address of the VARIANT data structure in which the
SAFEARRAY is stored can be retrieved with COleSafeArray's

Programming Windows With MFC

 1259

LPVARIANT or LPCVARIANT operator:
VARIANT* pVariant = (LPVARIANT) sa;

One-dimensional arrays are relatively easy to create with
COleSafeArray, but multidimensional arrays require more
effort. Suffice it to say that even COleSafeArray can't make
SAFEARRAYs as palatable to C++ programmers as ordinary
arrays.

20.1.3. Late Binding vs. Early Binding

A C++ programmer seeing Automation for the first time might
wonder why dispinterfaces should even exist: the reason for
them is far from obvious. Given that Automation objects are
inherently more complex and less efficient than their
conventional COM counterparts, why not use custom COM
interfaces instead of IDispatch interfaces and save developers a
lot of time and trouble?

Dispinterfaces were created to allow Visual Basic programmers
to use COM objects at a time when Visual Basic flatly didn't
support conventional COM interfaces. In its early incarnations,
Visual Basic couldn't call COM methods through ordinary
interface pointers. Current versions of Visual Basic have
partially eliminated this limitation, but to this day, many
scripting languages, including VBScript, can talk to COM
objects only through IDispatch interfaces.

What's so special about IDispatch? In a nutshell, it prevents a
compiler (or an interpreter, as the case may be) from having to
understand vtables. A COM interface pointer is really a pointer
to a location inside the object that holds the address of a table
of function pointers—in C++ parlance, a virtual function table,
or vtable. If pMath holds an IMath interface pointer, when a
C++ compiler encounters a statement like

pMath->Add (2, 2, &sum);

it resolves the call by emitting code that extracts the address of
the Add method from the interface's vtable. It knows the
vtable's layout because the interface definition was #included in
a header file. And therein lies the problem. Scripting languages
don't understand C++ interface definitions. These languages

Programming Windows With MFC

 1260

can't resolve a statement like the following one unless they can
somehow pass the method name to the object and ask the object
itself to resolve the call:

Sum = Math.Add (2, 2)

Scripting languages may not understand vtables, but they know
IDispatch very well. Given a pointer to an IDispatch interface,
they know where they can go in the vtable to find the addresses
of GetIDsOfNames and Invoke. It's therefore a simple matter
for them to call IDispatch::Invoke and "bind" to a method at
run time.

That's the crux of IDispatch: shifting the responsibility for
resolving method calls from the client to the object.
Programmers call this late binding because the actual binding is
done at run time. By contrast, we say that C++ clients use early
binding because the bulk of the work required to resolve a
method call is performed at compile time.

20.1.4. Dual Interfaces

The drawback to late binding is that it requires a run-time
lookup that's not necessary in early binding. That impacts
performance. And because of IDispatch's reliance on dispatch
IDs, each property or method access nominally requires two
round-trips to the server: a call to GetIDsOfNames followed by
a call to Invoke. A smart Automation client can minimize
round-trips by caching dispatch IDs, but the fact remains that
late binding is inherently less efficient than early binding.

The choice between an IDispatch interface and a conventional
COM interface is a choice between flexibility and speed. An
object that exposes its features through an IDispatch interface
serves a wider variety of clients, but an object that uses
ordinary COM interfaces serves late binding clients
(particularly C++ clients) more efficiently.

Dual interfaces are the COM equivalent of having your cake
and eating it, too. A dual interface is an interface that derives
from IDispatch. Its vtable includes entries for IDispatch
methods (GetIDsOfNames, Invoke, and so on) as well as
custom methods. Figure 20-2 shows the layout of the vtable for

Programming Windows With MFC

 1261

a dual interface that permits methods named Add and Subtract
to be accessed indirectly through IDispatch::Invoke or directly
through the vtable. Clients that rely exclusively on IDispatch
can call Add and Subtract through IDispatch::Invoke; they
won't even realize that the custom portion of the vtable exists.
C++ clients, on the other hand, will effectively ignore the
IDispatch section of the vtable and use early binding to call
Add and Subtract. Thus, the same object can support early and
late binding. Notice that methods defined in the custom half of
the vtable must use Automation-compatible data types, just as
methods exposed through IDispatch::Invoke must.

Figure 20-2. Virtual function table for a dual interface.

For MFC programmers, the greatest impediment to dual
interfaces is the amount of effort required to implement them.
MFC Technical Note 65 describes how to add dual interfaces to
an MFC Automation server, but the procedure isn't for the faint
of heart. The best way to do dual interfaces today is to forego
MFC and instead use the Active Template Library (ATL),
which makes creating dual interfaces truly effortless.

20.1.5. Type Libraries

Most Automation servers are accompanied by type libraries. In
his book Inside COM (1997, Microsoft Press), Dale Rogerson
describes a type library as "a bag of information about
interfaces and components." Given a type library, a client can
find out all sorts of interesting things about a COM object,
including which interfaces it implements, what methods are
present in those interfaces, and what each method's parameter

Programming Windows With MFC

 1262

list looks like. A type library can be provided in a separate file
(usually with the extension .tlb, although .olb is sometimes
used instead) or as a resource embedded in the object's
executable file. Regardless of how they're packaged, type
libraries are registered in the registry so that clients can easily
locate them.

Type libraries can be used in a variety of ways. ActiveX
controls, for example, use type information (the kind of data
found in type libraries) to tell control containers what kinds of
events they're capable of firing. Type libraries can also be used
to implement IDispatch interfaces and to provide information
to object browsers. But the big reason type libraries are
important to Automation programmers is that they permit
Visual Basic clients to access a server's Automation methods
and properties using the custom portion of a dual interface.
Given type information, today's Visual Basic programs can
even use conventional COM objects—ones that expose their
functionality through custom COM interfaces instead of
IDispatch interfaces. Type libraries aren't only for Visual Basic
users, however; C++ programmers can use them, too. Shortly,
you'll see how you can use ClassWizard to generate wrapper
classes that simplify the writing of MFC Automation clients.
Significantly, ClassWizard can work its magic only if a type
library is available.

How do type libraries get created? You can create them
programmatically using COM API functions and methods, but
most are created from IDL files. MIDL will read an IDL file
and produce a type library from the statements inside it. You
can also create type libraries by defining objects and their
interfaces in ODL files and compiling them with a special tool
called MkTypeLib. IDL files are the preferred method, but
Visual C++ still uses ODL files for MFC Automation servers.
The following ODL statements define a type library that
contains descriptions of an Automation component named
Math and a dispinterface named IAutoMath:

[uuid (B617CC83-3C57-11D2-8E53-006008A82731), version (1.0)]
library AutoMath
{
 importlib ("stdole32.tlb");

 [uuid (B617CC84-3C57-11D2-8E53-006008A82731)]

Programming Windows With MFC

 1263

 dispinterface IAutoMath
 {
 properties:
 [id(1)] double Pi;
 methods:
 [id(2)] long Add (long a, long b);
 [id(3)] long Subtract (long a, long b);
 };

 [uuid (B617CC82-3C57-11D2-8E53-006008A82731)]
 coclass Math
 {
 [default] dispinterface IAutoMath;
 };
};

The importlib statement in ODL is analogous to #include in
C++. uuid assigns a GUID to an object or interface, and
dispinterface defines a dispinterface. Statements inside a
dispinterface block declare Automation methods and properties
as well as their dispatch IDs. The object in this example
features a property named Pi and methods named Add and
Subtract. Their dispatch IDs are 1, 2, and 3, respectively.

When you write an MFC Automation server, AppWizard
creates an ODL file and adds it to the project. Each time a
method or property is added, ClassWizard modifies the ODL
file so that the next build will produce an up-to-date type
library. As long as you use the MFC wizards to craft MFC
Automation servers, type libraries are a natural consequence of
the build process and require no extra effort to generate.

20.2. MFC Automation Servers

You can use MFC to write stand-alone Automation components,
but more often, you'll use its Automation support to expose an
application's features to Automation clients. Exposing features
this way has the very desirable effect of making the application
scriptable.

You don't have to be an expert on IDispatch interfaces and
VARIANTs to write MFC Automation servers because MFC
disguises methods and properties as ordinary class member
functions. In fact, it's so easy to write an MFC Automation
server that Visual C++ programmers often use Automation

Programming Windows With MFC

 1264

components in situations where ordinary COM objects might
make more sense.

Writing MFC Automation servers is easy because of the
wizards. AppWizard adds the infrastructure needed to
transform an application into an Automation server.
ClassWizard reduces the chore of adding methods and
properties to a few button clicks. The code generated by these
wizards relies extensively on the Automation support already
present in MFC. Before we go over the steps required to build
an Automation server, let's look inside MFC and see what it
does to make Automation possible.

20.2.1. MFC, IDispatch, and Dispatch Maps

The cornerstone of MFC's support for Automation servers is a
built-in implementation of IDispatch. That implementation
comes from a class named COleDispatchImpl, which is
instantiated and folded into a CCmdTarget object by the
CCmdTarget::EnableAutomation function. This correctly
implies that an MFC class that supports Automation must be
derived, either directly or indirectly, from CCmdTarget.
EnableAutomation is typically called in the class constructor.

When MFC's implementation of IDispatch::Invoke is called,
MFC must somehow translate the method call or property
access into a call to a class member function. Similarly, when
IDispatch::GetIDsOfNames is called, MFC must translate the
accompanying property or method name into a dispatch ID. It
accomplishes both tasks using a dispatch map.

A dispatch map is a table that begins with
BEGIN_DISPATCH_MAP and ends with
END_DISPATCH_MAP. Statements in between define the
object's methods and properties. Through the dispatch map,
MFC's implementation of IDispatch::Invoke translates calls to
Automation methods into calls to member functions in the class
that houses the dispatch map. Automation properties are
accessed through the dispatch map, too. The following dispatch
map defines a method named DebitAccount and a property
named Balance in a CCmdTarget-derived class named
CAutoClass:

Programming Windows With MFC

 1265

BEGIN_DISPATCH_MAP (CAutoClass, CCmdTarget)
 DISP_FUNCTION (CAutoClass, "DebitAccount", Debit, VT_I4, VTS_I4)
 DISP_PROPERTY_EX (CAutoClass, "Balance", GetBalance, SetBalance,
 VT_I4)
END_DISPATCH_MAP()

The DISP_FUNCTION macro names an Automation method
and the member function that's called when the method is
called. The VT_ and VTS_ values passed in the macro's
argument list identify the method's return type and the types of
arguments it accepts. DISP_PROPERTY_EX defines an
Automation property and the get and set functions used to read
and write the property's value. The fifth parameter to
DISP_PROPERTY_EX defines the property's type. In this
example, CAutoClass::Debit will be called when the
Automation object's DebitAccount method is called.
CAutoClass::GetBalance will be called to read Balance, and
CAutoClass::SetBalance will be called to assign a value to it.
DISP_FUNCTION and DISP_PROPERTY_EX are just two of
several dispatch map macros defined in Afxdisp.h.

You might have noticed that neither of the dispatch map
macros shown in the previous paragraph accepts a dispatch ID.
MFC has a curious way of assigning dispatch IDs to methods
and properties based on their position in the dispatch map and
the derivation depth. MFC Technical Note 39 has the gory
details. The positional dependency of the items in a dispatch
map has one very serious implication for Automation
programmers: The order of those items must agree with the
dispatch IDs in the ODL file. This means that if you hand-edit a
wizard-generated dispatch map and change the order of the
items in any way, you must edit the ODL file, too. You can get
away with editing the dispatch map and leaving the ODL file
unchanged for clients that use late binding, but early binding
clients will get terribly confused if the type library says one
thing and IDispatch says another. For this reason, MFC
provides alternative dispatch map macros that accept dispatch
IDs; they, too, are documented in Technical Note 39. You still
have to make sure that the dispatch IDs in the dispatch map and
the ODL file agree, but the order of the statements in a dispatch
map built with these macros is inconsequential. ClassWizard
doesn't use the dispatch ID macros, so if you want to take
advantage of them, you'll have to code them yourself.

Programming Windows With MFC

 1266

20.2.2. Writing an Automation Server

You can write dispatch maps by hand if you want to, but it's
more convenient to let ClassWizard write them for you. Here
are the three basic steps involved in writing an MFC
Automation server:

1. Run AppWizard and check the Automation box in the Step 3 dialog box
(Step 2 if you choose Dialog Based in Step 1), as shown in Figure 20-3.
In the Step 4 dialog box, click the Advanced button and type the server's
ProgID into the File Type ID box. (See Figure 20-4.)

Figure 20-3. Creating an MFC Automation server.

2. Use the Add Method button on ClassWizard's Automation page to add
Automation methods. (See Figure 20-5.)

3. Use the Add Property button on ClassWizard's Automation page to add
Automation properties.

Programming Windows With MFC

 1267

Figure 20-4. Specifying an Automation server's ProgID.

Figure 20-5. ClassWizard's Automation Page.

By default, only one of the classes present in an application
created by AppWizard can have Automation properties and
methods added to it. For a doc/view application, that class is the
document class. For a dialog-based application, the
"Automatable" class is a proxy class that's derived from
CCmdTarget and attached to the dialog class. Why are these the

Programming Windows With MFC

 1268

only classes that will support Automation methods and
properties? Because these are the only classes that AppWizard
endows with the infrastructure necessary to act as Automation
objects. Later in this chapter, you'll learn how to add other
Automatable classes to an MFC Automation server so that it
can host as many Automation objects as you like.

20.2.2.1. Adding Automation Methods

Adding an Automation method to an MFC Automation server
is as simple as clicking ClassWizard's Add Method button and
filling in the Add Method dialog box. (See Figure 20-6.) In the
dialog box, External Name is the Automation method's name,
and Internal Name is the name of the corresponding member
function. The two names don't have to be the same, although
they usually are. Return Type is the method's return type; it can
be any Automation-compatible data type. Method parameters
are defined in the Parameter List box. MFC handles the chore
of unpackaging the VARIANTARGs containing the method
parameters and packaging the method's return value in the
VARIANT passed to IDispatch::Invoke.

Figure 20-6. ClassWizard's Add Method dialog box.

When it adds an Automation method, ClassWizard makes four
modifications to the project's source code files:

Programming Windows With MFC

 1269

x The function that implements the method is declared in the class's header
file.

x An empty function implementation is added to the class's CPP file.
x A DISP_FUNCTION statement is added to the class's dispatch map.
x The method and its dispatch ID are added to the project's ODL file.

After ClassWizard is finished, it's your job to implement the
method by filling in the empty function body.

20.2.2.2. Adding Automation Properties

You can also use ClassWizard to add Automation properties.
MFC distinguishes between two types of Automation
properties:

x Member variable properties
x Get/set properties

A member variable property exposes a member variable as an
Automation property. A get/set property is a property that's
implemented by get and set functions in your source code. A
member variable property makes sense if the property value
lends itself to being stored in a class member variable and if the
Automation server doesn't need control over values assigned to
the property. You should use a get/set property instead if any of
the following conditions is true:

x The property value can't be stored in a simple member variable. For
example, a Visible property controlling the visibility of an Automation
server's window is usually implemented as a get/set property so that the
get function can call CWnd::IsWindowVisible and the set function can
call CWnd::ShowWindow.

x The server wants to control the values assigned to a property. For
example, if legitimate values range from 1 to 10, the set function could
constrain property values to numbers in this range.

x The property is a read-only property. In this case, the set function should
call the SetNotSupported function an Automatable class inherits from
CCmdTarget to generate a run-time error if a client attempts to alter the
property value.

x The property is a write-only property—for example, a password. A
write-only property's get function should call GetNotSupported to
generate a run-time error if a client attempts to read the property value.

To add a member variable property, click ClassWizard's Add
Property button and select Member Variable. Then fill in the
other fields of the Add Property dialog box pictured in Figure
20-7. External Name specifies the property name. Type is the
property's Automation-compatible data type. Variable Name

Programming Windows With MFC

 1270

identifies the member variable that stores the property value.
ClassWizard will add this member variable for you and wire it
into the dispatch map. Notification Function specifies the name
of the member function that's called when a client assigns a
value to the property. You can enter any name you want into
this box, and ClassWizard will add the function for you. If you
don't care when the property value changes, leave this box
blank, and no notification function will be added. Notification
functions are useful when you want to respond immediately to
changes in property values—for example, to repaint a window
whose background color is exposed as a member variable
property.

Under the hood, ClassWizard adds a DISP_PROPERTY
statement to the class's dispatch map when a member variable
property without a notification function isadded and a
DISP_PROPERTY_NOTIFY macro when a member variable
property with a notification function is added. It also declares
the property in the project's ODL file.

Figure 20-7. Adding a member variable Automation property.

If the Add Property dialog box's Get/Set Methods option is
checked, ClassWizard adds a get/set property to the
Automation server. (See Figure 20-8.) Besides adding member
functions named GetPropertyName and SetPropertyName to
the Automation class and declaring the property in the ODL file,
ClassWizard adds either a DISP_PROPERTY_EX or a

Programming Windows With MFC

 1271

DISP_PROPERTY_PARAM statement to the class's dispatch
map. DISP_PROPERTY_PARAM defines a property with
parameters; DISP_PROPERTY_EX defines a property without
parameters. If you define parameters in the Parameter List box,
a client must supply those input parameters when reading or
writing the property. Automation servers sometimes use get/set
properties with parameters to implement indexed properties,
which are described later in this chapter in the section "A More
Complex Automation Server"

Figure 20-8. Adding a get/set Automation property.

20.2.2.3. A Simple Automation Server

To get your feet wet writing a living, breathing MFC
Automation server, try this simple exercise:

1. Use AppWizard to start a new project named AutoMath. Choose Single
Document in AppWizard's Step 1 dialog box to make the server a single
document interface (SDI) application. Check the Automation box in Step
3 to make the application an Automation server, and in Step 4, click the
Advanced button and type AutoMath.Object into the File Type ID box.
This is the Automation object's ProgID.

2. On ClassWizard's Automation page, select CAutoMathDoc from the
Class Name drop-down list, click Add Method, and fill in the Add
Method dialog box as shown in Figure 20-9. Click OK followed by Edit
Code to go to the method's empty function body, and implement it as
follows:

Programming Windows With MFC

 1272

long CAutoMathDoc::Add (long a, long b)
{
 return a + b;
}

Figure 20-9. Adding the Add method.

3. Repeat step 2 to add an Automation method named Subtract. Implement
the method as follows:

long CAutoMathDoc::Subtract (long a, long b)
{
 return a - b;
}

4. On ClassWizard's Automation page, click Add Property and add a get/set
property named Pi. (See Figure 20-10.) Implement the property's get and
set functions like this:

double CAutoMathDoc::GetPi ()
{
 return 3.1415926;
}

void CAutoMathDoc::SetPi (double newValue)
{

Programming Windows With MFC

 1273

 SetNotSupported ();
}

Figure 20-10. Adding the Pi property.

5. Build the application and run it once to register it on your system. (An
MFC Automation server registers itself each time it's run. Registration
involves writing the server's ProgID and other information to the host
system's registry.)

Now you're ready to test the AutoMath server that you just
created. To perform the test, enter the following VBScript
statements into a text file named Test.vbs:

Set Math = CreateObject ("AutoMath.Object")
Sum = Math.Add (2, 2)
MsgBox ("2 + 2 = " + CStr (Sum))
MsgBox ("pi = " + CStr (Math.Pi))

Then execute the script by double-clicking the Test.vbs file
icon. This will run the script under the auspices of the Windows
Scripting Host. Two message boxes should appear on the
screen. The first displays the sum of 2 and 2. The second
displays the value of pi.

See? Automation is easy when you use MFC!

Programming Windows With MFC

 1274

20.2.3. Automation Hierarchies

You can build Automation servers of arbitrary complexity by
adding methods and properties ad infinitum. But Automation
servers can grow unwieldy if they're weighted down with
hundreds of methods and properties. That's why Automation
programmers often "objectify" their servers' feature sets by
implementing Automation hierarchies.

An Automation hierarchy is a set of Automation objects joined
together to form a tree-structured object model. Figure 20-11
shows the top four levels of Microsoft Excel's Automation
hierarchy. Rather than hang all its methods and properties off a
single object, Excel divides them among a top-level Application
object and numerous subobjects. The following Visual Basic
code starts Excel and turns on the Caps Lock Correct feature,
which gives Excel permission to fIX wORDS lIKE tHESE:

Dim Excel as Object
Set Excel = CreateObject ("Excel.Application")
Excel.AutoCorrect.CorrectCapsLock = 1

Caps Lock Correct is exposed to Automation clients as a
property of the AutoCorrect object. AutoCorrect, in turn, is a
subobject of the Application object. A hierarchical object model
such as this one lends organization to the server's dispinterfaces
and makes the programming model easier to learn.

Figure 20-11. The Excel object model.

Programming Windows With MFC

 1275

How difficult is it to implement Automation hierarchies in
MFC Automation servers? Not difficult at all—once you know
how. The secret is twofold. First, you add one Automatable
class to the application for each subobject you want to
implement. To each Automatable class, you add Automation
methods and properties. Second, you wire up the hierarchy by
connecting child objects to their parents. An object is made a
child of another by adding a get/set property of type
LPDISPATCH to the parent object and implementing the get
function by returning the child's IDispatch interface pointer.
You can retrieve the child object's IDispatch pointer by calling
the GetIDispatch function the child object inherits from
CCmdTarget.

Adding Automatable classes is easy, too. Simply click
ClassWizard's Add Class button, select New, enter a class name,
select CCmdTarget as the base class, and check the Automation
option near the bottom of the dialog box. (See Figure 20-12.)
To make the class externally createable (that is, to give it its
own ProgID so that it, too, can be created by Automation
clients), check Createable By Type ID instead and enter a
ProgID in the box to its right.

Figure 20-12. Adding an Automatable class.

Programming Windows With MFC

 1276

20.2.4. A More Complex Automation Server

The AutoPie application in Figure 20-13 is an MFC
Automation server that implements the two-level object model
shown in Figure 20-14. AutoPie draws pie charts depicting
quarterly revenue values. The revenue values are exposed
through an indexed property named Revenue, which belongs to
the Chart object. The property is said to be indexed because
accesses to it must be accompanied by a number from 1 to 4
specifying a quarter (first quarter, second quarter, and so on).
Internally, Revenue is implemented as a get/set Automation
property with one parameter in its parameter list.

Figure 20-13. The AutoPie window.

Figure 20-14. AutoPie's object model.

Revenue is just one of several properties that AutoPie exposes.
The following list identifies all the Automation methods and

Programming Windows With MFC

 1277

properties that AutoPie supports as well as the objects to which
those methods and properties belong:

Object Properties Methods

Application N/A Quit ()

Chart Revenue (quarter) Save (pathname)

Window Visible Refresh ()

Toolbar Visible N/A

The top-level Application object represents the application
itself. Its lone method, Quit, terminates the application. The
Chart object represents the pie chart. Save saves the quarterly
revenue values to disk. Window represents the application's
window. Its Visible property can be used to hide or display the
window, and Refresh forces the window (and the chart
displayed inside it) to repaint. Finally, the Toolbar object
represents the window's toolbar, which can be toggled on and
off by setting Visible to a 0 (off) or a nonzero (on) value.

You can test AutoPie using the following VBScript applet:

Set Pie = CreateObject ("AutoPie.Application")
Pie.Chart.Revenue (1) = 420
Pie.Chart.Revenue (2) = 234
Pie.Chart.Revenue (3) = 380
Pie.Chart.Revenue (4) = 640
Pie.Window.Visible = 1
MsgBox ("Click OK to double third-quarter revenues")
Pie.Chart.Revenue (3) = Pie.Chart.Revenue (3) * 2
Pie.Window.Refresh
Pie.Chart.Save ("C:\Chart.pie")
MsgBox ("Test completed")

When executed, the script starts the Automation server by
passing AutoPie's ProgID to CreateObject. It then assigns
revenue values and makes the AutoPie window visible. (By
default, MFC Automation servers that aren't dialog-based don't
show their windows when they're started by Automation
clients.) Next the script displays a message box. When the
message box is dismissed, the third-quarter revenue is read,
multiplied by 2, and written back to the Automation server.
Afterward, Refresh is called to update the pie chart. Finally, the

Programming Windows With MFC

 1278

Chart object's Save method is called to save the pie chart to a
file, and a message box is displayed announcing that the test is
complete.

Pertinent portions of AutoPie's source code are reproduced in
Figure 20-15. The top-level Application object is represented
by the application's document class. When I used AppWizard to
generate the project, I entered "AutoPie.Application" for the
ProgID. Because AppWizard automated the document class,
CAutoPieDoc became a proxy of sorts for the Application
object at the top of the hierarchy. The subobjects are
represented by CAutoChart, CAutoWindow, and CAutoToolbar,
which I derived from CCmdTarget using ClassWizard. Each is
an Automatable class. (Refer to Figure 20-12.) After generating
these classes, I used ClassWizard to add Automation methods
and properties.

Figure 20-15. The AutoPie program.

AutoPie.h
// AutoPie.h : main header file for the AUTOPIE application
//

#if !defined(
 AFX_AUTOPIE_H__3B5BA30B_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define AFX_AUTOPIE_H__3B5BA30B_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFX)WIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CAutoPieApp:
// See AutoPie.cpp for the implementation of this class
//

class CAutoPieApp : public CWinApp
{
public:
 CAutoPieApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoPieApp)
 public:

Programming Windows With MFC

 1279

 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation
 COleTemplateServer m_server;
 // Server object for document creation
 //{{AFX_MSG(CAutoPieApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_AUTOPIE_H__3B5BA30B_3B72_11D2_AC82_006008A8274D__INCLUDE
D_)

AutoPie.cpp

// AutoPie.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "AutoPie.h"

#include "MainFrm.h"
#include "AutoPieDoc.h"
#include "AutoPieView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoPieApp

BEGIN_MESSAGE_MAP(CAutoPieApp, CWinApp)
 //{{AFX_MSG_MAP(CAutoPieApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping
macros here.
 // DO NOT EDIT what you see in these blocks of
generated code!

Programming Windows With MFC

 1280

 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CAutoPieApp construction

CAutoPieApp::CAutoPieApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CAutoPieApp object

CAutoPieApp theApp;

// This identifier was generated to be statistically unique for your app.
// You may change it if you prefer to choose a specific identifier.

// {3B5BA306-3B72-11D2-AC82-006008A8274D}
static const CLSID clsid =
{ 0x3b5ba306, 0x3b72, 0x11d2,
 { 0xac, 0x82, 0x0, 0x60, 0x8, 0xa8, 0x27, 0x4d } };

///
// CAutoPieApp initialization

BOOL CAutoPieApp::InitInstance()
{
 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the
following
 // the specific initialization routines you do not need.

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something
appropriate

Programming Windows With MFC

 1281

 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated
Applications"));

 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)

 // Register the application's document templates. Document
templates
 // serve as the connection between documents, frame windows
and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CAutoPieDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI
frame window
 RUNTIME_CLASS(CAutoPieView));
 AddDocTemplate(pDocTemplate);

 // Connect the COleTemplateServer to the document template.
 // The COleTemplateServer creates new documents on behalf
 // of requesting OLE containers by using information
 // specified in the document template.

 m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);
 // Note: SDI applications register server objects only if
/Embedding
 // or /Automation is present on the command line.

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file
open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Check to see if launched as OLE server
 if (cmdInfo.m_bRunEmbedded œœ cmdInfo.m_bRunAutomated)
 {
 // Register all OLE server (factories) as running. This
enables
 // the OLE libraries to create objects from other
applications.
 COleTemplateServer::RegisterAll();

Programming Windows With MFC

 1282

 // Application was run with /Embedding or /Automation.
 // Don't show themain window in this case.
 return TRUE;
 }

 // When a server application is launched stand-alone, it is a good
idea
 // to update the system registry in case it has been damaged.
 m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);
 COleObjectFactory::UpdateRegistryAll();

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and
update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); //
DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)

Programming Windows With MFC

 1283

 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CAutoPieApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}
///
// CAutoPieApp message handlers

AutoPieDoc.h
// AutoPieDoc.h : interface of the CAutoPieDoc class
//
///

#if !defined(

AFX_AUTOPIEDOC_H__3B5BA312_3B72_11D2_AC82_006008A8274D__INC
LUDED_)
#define
AFX_AUTOPIEDOC_H__3B5BA312_3B72_11D2_AC82_006008A8274D__INC
LUDED_

#include "AutoChart.h" // Added by ClassView
#include "AutoWindow.h" // Added by ClassView
#include "AutoToolbar.h" // Added by ClassView
#if _MSC_VER > 1000
#pragma once

Programming Windows With MFC

 1284

#endif // _MSC_VER > 1000

class CAutoPieDoc : public CDocument
{
protected: // create from serialization only
 CAutoPieDoc();
 DECLARE_DYNCREATE(CAutoPieDoc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoPieDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL

// Implementation
public:
 void SetRevenue (int nQuarter, int nNewValue);

 int GetRevenue (int nQuarter);
 virtual ~CAutoPieDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 CAutoToolbar m_autoToolbar;
 CAutoWindow m_autoWindow;
 CAutoChart m_autoChart;
 int m_nRevenues[4];
 //{{AFX_MSG(CAutoPieDoc)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CAutoPieDoc)
 afx_msg LPDISPATCH GetChart();
 afx_msg void SetChart(LPDISPATCH newValue);
 afx_msg LPDISPATCH GetWindow();
 afx_msg void SetWindow(LPDISPATCH newValue);
 afx_msg LPDISPATCH GetToolbar();
 afx_msg void SetToolbar(LPDISPATCH newValue);

Programming Windows With MFC

 1285

 afx_msg void Quit();
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_AUTOPIEDOC_H__3B5BA312_3B72_11D2_AC82_006008A8274D__INC
LUDED_)

AutoPieDoc.cpp
// AutoPieDoc.cpp : implementation of the CAutoPieDoc class
//

#include "stdafx.h"
#include "AutoPie.h"

#include "AutoPieDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoPieDoc

IMPLEMENT_DYNCREATE(CAutoPieDoc, CDocument)

BEGIN_MESSAGE_MAP(CAutoPieDoc, CDocument)
 //{{AFX_MSG_MAP(CAutoPieDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CAutoPieDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CAutoPieDoc)
 DISP_PROPERTY_EX(CAutoPieDoc, "Chart", GetChart, SetChart,
VT_DISPATCH)
 DISP_PROPERTY_EX(CAutoPieDoc, "Window", GetWindow,
 SetWindow, VT_DISPATCH)
 DISP_PROPERTY_EX(CAutoPieDoc, "Toolbar", GetToolbar,
 SetToolbar, VT_DISPATCH)
 DISP_FUNCTION(CAutoPieDoc, "Quit", Quit, VT_EMPTY,
VTS_NONE)

Programming Windows With MFC

 1286

 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IAutoPie to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {3B5BA308-3B72-11D2-AC82-006008A8274D}
static const IID IID_IAutoPie =
{ 0x3b5ba308, 0x3b72, 0x11d2,

 { 0xac, 0x82, 0x0, 0x60, 0x8, 0xa8, 0x27, 0x4d } };

BEGIN_INTERFACE_MAP(CAutoPieDoc, CDocument)
 INTERFACE_PART(CAutoPieDoc, IID_IAutoPie, Dispatch)
END_INTERFACE_MAP()

///
// CAutoPieDoc construction/destruction

CAutoPieDoc::CAutoPieDoc()
{
 EnableAutomation();

 AfxOleLockApp();
}

CAutoPieDoc::~CAutoPieDoc()
{
 AfxOleUnlockApp();
}

BOOL CAutoPieDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_nRevenues[0] = 1;
 m_nRevenues[1] = 1;
 m_nRevenues[2] = 1;
 m_nRevenues[3] = 1;
 return TRUE;
}

///
// CAutoPieDoc serialization

void CAutoPieDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 for (int i=0; i<4; i++)
 ar << m_nRevenues[i];
 }
 else
 {

Programming Windows With MFC

 1287

 for (int i=0; i<4; i++)
 ar >> m_nRevenues[i];

 }
}

///
// CAutoPieDoc diagnostics

#ifdef _DEBUG
void CAutoPieDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CAutoPieDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CAutoPieDoc commands

int CAutoPieDoc::GetRevenue(int nQuarter)
{
 ASSERT (nQuarter >= 0 && nQuarter <= 3);
 return m_nRevenues[nQuarter];
}

void CAutoPieDoc::SetRevenue(int nQuarter, int nNewValue)
{
 ASSERT (nQuarter >= 0 && nQuarter <= 3);
 m_nRevenues[nQuarter] = nNewValue;
}

void CAutoPieDoc::Quit()
{
 AfxGetMainWnd ()->PostMessage (WM_CLOSE, 0, 0);
}

LPDISPATCH CAutoPieDoc::GetChart()
{
 return m_autoChart.GetIDispatch (TRUE);
}

void CAutoPieDoc::SetChart(LPDISPATCH newValue)
{
 SetNotSupported ();
}

LPDISPATCH CAutoPieDoc::GetWindow()
{
 return m_autoWindow.GetIDispatch (TRUE);
}

Programming Windows With MFC

 1288

void CAutoPieDoc::SetWindow(LPDISPATCH newValue)
{
 SetNotSupported ();
}

LPDISPATCH CAutoPieDoc::GetToolbar()
{
 return m_autoToolbar.GetIDispatch (TRUE);
}

void CAutoPieDoc::SetToolbar(LPDISPATCH newValue)
{
 SetNotSupported ();
}

AutoChart.h
#if !defined(

AFX_AUTOCHART_H__3B5BA31E_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_AUTOCHART_H__3B5BA31E_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// AutoChart.h : header file
//

#define ID_ERROR_OUTOFRANGE 100

///
// CAutoChart command target

class CAutoChart : public CCmdTarget
{
 DECLARE_DYNCREATE(CAutoChart)

 CAutoChart(); // protected constructor used by dynamic creation

// Attributes
public:
 virtual ~CAutoChart();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoChart)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:

Programming Windows With MFC

 1289

 // Generated message map functions
 //{{AFX_MSG(CAutoChart)
 // NOTE - the ClassWizard will add and remove member functions
here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CAutoChart)
 afx_msg BOOL Save(LPCTSTR pszPath);
 afx_msg long GetRevenue(short nQuarter);
 afx_msg void SetRevenue(short nQuarter, long nNewValue);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_AUTOCHART_H__3B5BA31E_3B72_11D2_AC82_006008A8274D__INCLUDED_)

AutoChart.cpp
// AutoChart.cpp : implementation file
//

#include "stdafx.h"
#include "AutoPie.h"
#include "AutoChart.h"
#include "AutoPieDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoChart

IMPLEMENT_DYNCREATE(CAutoChart, CCmdTarget)

CAutoChart::CAutoChart()
{
 EnableAutomation();
}

CAutoChart::~CAutoChart()
{
}

Programming Windows With MFC

 1290

void CAutoChart::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // deletes the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CAutoChart, CCmdTarget)
 //{{AFX_MSG_MAP(CAutoChart)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CAutoChart, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAutoChart)
 DISP_FUNCTION(CAutoChart, "Save", Save, VT_BOOL, VTS_BSTR)
 DISP_PROPERTY_PARAM(CAutoChart, "Revenue", GetRevenue,
 SetRevenue, VT_I4, VTS_I2)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IAutoChart to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {3B5BA31D-3B72-11D2-AC82-006008A8274D}
static const IID IID_IAutoChart =
{ 0x3b5ba31d, 0x3b72, 0x11d2,
 { 0xac, 0x82, 0x0, 0x60, 0x8, 0xa8, 0x27, 0x4d } };

BEGIN_INTERFACE_MAP(CAutoChart, CCmdTarget)
 INTERFACE_PART(CAutoChart, IID_IAutoChart, Dispatch)
END_INTERFACE_MAP()

///
// CAutoChart message handlers

BOOL CAutoChart::Save(LPCTSTR pszPath)
{
 CFrameWnd* pFrame = (CFrameWnd*) AfxGetMainWnd ();
 CAutoPieDoc* pDoc = (CAutoPieDoc*) pFrame->GetActiveDocument ();
 return pDoc->OnSaveDocument (pszPath);
}

long CAutoChart::GetRevenue(short nQuarter)
{
 long lResult = -1;

 if (nQuarter >= 1 && nQuarter <= 4) {
 CFrameWnd* pFrame = (CFrameWnd*) AfxGetMainWnd ();
 CAutoPieDoc* pDoc = (CAutoPieDoc*)

Programming Windows With MFC

 1291

pFrame->GetActiveDocument ();
 lResult = (long) pDoc->GetRevenue (nQuarter - 1);
 }
 else {
 //
 // If the quarter number is out of range, fail the call
 // and let the caller know precisely why it failed.
 //
 AfxThrowOleDispatchException (ID_ERROR_OUTOFRANGE,
 _T ("Invalid parameter specified when reading Revenue"));
 }
 return lResult;
}

void CAutoChart::SetRevenue(short nQuarter, long nNewValue)
{
 if (nQuarter >= 1 && nQuarter <= 4) {
 CFrameWnd* pFrame = (CFrameWnd*) AfxGetMainWnd ();
 CAutoPieDoc* pDoc = (CAutoPieDoc*)
pFrame->GetActiveDocument ();
 pDoc->SetRevenue (nQuarter - 1, nNewValue);
 }
 else {
 //
 // If the quarter number is out of range, fail the call
 // and let the caller know precisely why it failed.
 //
 AfxThrowOleDispatchException (ID_ERROR_OUTOFRANGE,
 _T ("Invalid parameter specified when setting Revenue"));
 }
}

AutoWindow.h
#if !defined(

AFX_AUTOWINDOW_H__3B5BA321_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_AUTOWINDOW_H__3B5BA321_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// AutoWindow.h : header file
//

///
// CAutoWindow command target

class CAutoWindow : public CCmdTarget
{
 DECLARE_DYNCREATE(CAutoWindow)

 CAutoWindow(); // protected constructor used by dynamic creation

// Attributes
public:

Programming Windows With MFC

 1292

 virtual ~CAutoWindow();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoWindow)
 public:

virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CAutoWindow)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CAutoWindow)
 afx_msg BOOL GetVisible();
 afx_msg void SetVisible(BOOL bNewValue);
 afx_msg void Refresh();
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_AUTOWINDOW_H__3B5BA321_3B72_11D2_AC82_006008A8274D__INCLUDED_)

AutoWindow.cpp
// AutoWindow.cpp : implementation file
//

#include "stdafx.h"
#include "AutoPie.h"
#include "AutoWindow.h"
#include "AutoPieDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

Programming Windows With MFC

 1293

#endif
///
// CAutoWindow

IMPLEMENT_DYNCREATE(CAutoWindow, CCmdTarget)

CAutoWindow::CAutoWindow()
{
 EnableAutomation();
}

CAutoWindow::~CAutoWindow()
{
}

void CAutoWindow::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // deletes the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CAutoWindow, CCmdTarget)
 //{{AFX_MSG_MAP(CAutoWindow)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CAutoWindow, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAutoWindow)
 DISP_PROPERTY_EX(CAutoWindow, "Visible", GetVisible,
 SetVisible, VT_BOOL)
 DISP_FUNCTION(CAutoWindow, "Refresh", Refresh, VT_EMPTY,
VTS_NONE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IAutoWindow to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {3B5BA320-3B72-11D2-AC82-006008A8274D}
static const IID IID_IAutoWindow =
{ 0x3b5ba320, 0x3b72, 0x11d2,
 { 0xac, 0x82, 0x0, 0x60, 0x8, 0xa8, 0x27, 0x4d } };

BEGIN_INTERFACE_MAP(CAutoWindow, CCmdTarget)
 INTERFACE_PART(CAutoWindow, IID_IAutoWindow, Dispatch)
END_INTERFACE_MAP()

///
// CAutoWindow message handlers

Programming Windows With MFC

 1294

void CAutoWindow::Refresh()
{
 CFrameWnd* pFrame = (CFrameWnd*) AfxGetMainWnd ();
 CAutoPieDoc* pDoc = (CAutoPieDoc*) pFrame->GetActiveDocument ();
 pDoc->UpdateAllViews (NULL);
}

BOOL CAutoWindow::GetVisible()
{
 return AfxGetMainWnd ()->IsWindowVisible ();
}

void CAutoWindow::SetVisible(BOOL bNewValue)
{
 AfxGetMainWnd ()->ShowWindow (bNewValue ? SW_SHOW :
SW_HIDE);
}

AutoToolbar.h
#if !defined(

AFX_AUTOTOOLBAR_H__3B5BA324_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_AUTOTOOLBAR_H__3B5BA324_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// AutoToolbar.h : header file
//

///
// CAutoToolbar command target

class CAutoToolbar : public CCmdTarget
{
 DECLARE_DYNCREATE(CAutoToolbar)

 CAutoToolbar(); // protected constructor used by dynamic creation
// Attributes
public:
 virtual ~CAutoToolbar();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoToolbar)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:

Programming Windows With MFC

 1295

 // Generated message map functions
 //{{AFX_MSG(CAutoToolbar)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CAutoToolbar)
 afx_msg BOOL GetVisible();
 afx_msg void SetVisible(BOOL bNewValue);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_AUTOTOOLBAR_H__3B5BA324_3B72_11D2_AC82_006008A8274D__INCLUDED_)

AutoToolbar.cpp
// AutoToolbar.cpp : implementation file
//

#include "stdafx.h"
#include "AutoPie.h"
#include "AutoToolbar.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoToolbar

IMPLEMENT_DYNCREATE(CAutoToolbar, CCmdTarget)

CAutoToolbar::CAutoToolbar()
{
 EnableAutomation();
}

CAutoToolbar::~CAutoToolbar()
{
}

void CAutoToolbar::OnFinalRelease()

Programming Windows With MFC

 1296

{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // deletes the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CAutoToolbar, CCmdTarget)
 //{{AFX_MSG_MAP(CAutoToolbar)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CAutoToolbar, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAutoToolbar)
 DISP_PROPERTY_EX(CAutoToolbar, "Visible", GetVisible,
 SetVisible, VT_BOOL)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IAutoToolbar to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {3B5BA323-3B72-11D2-AC82-006008A8274D}
static const IID IID_IAutoToolbar =
{ 0x3b5ba323, 0x3b72, 0x11d2,
 { 0xac, 0x82, 0x0, 0x60, 0x8, 0xa8, 0x27, 0x4d } };

BEGIN_INTERFACE_MAP(CAutoToolbar, CCmdTarget)
 INTERFACE_PART(CAutoToolbar, IID_IAutoToolbar, Dispatch)
END_INTERFACE_MAP()

///
// CAutoToolbar message handlers

BOOL CAutoToolbar::GetVisible()
{
 CMainFrame* pFrame = (CMainFrame*) AfxGetMainWnd ();
 return (pFrame->m_wndToolBar.GetStyle () & WS_VISIBLE) ?
 TRUE : FALSE;
}

void CAutoToolbar::SetVisible(BOOL bNewValue)
{
 CMainFrame* pFrame = (CMainFrame*) AfxGetMainWnd ();
 pFrame->ShowControlBar (&pFrame->m_wndToolBar, bNewValue,
FALSE);
}

AutoPieView.h
// AutoPieView.h : interface of the CAutoPieView class
//

Programming Windows With MFC

 1297

///

#if !defined(

AFX_AUTOPIEVIEW_H__3B5BA314_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_AUTOPIEVIEW_H__3B5BA314_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define PI 3.1415926

class CAutoPieView : public CView
{
protected: // create from serialization only
 CAutoPieView();
 DECLARE_DYNCREATE(CAutoPieView)

// Attributes
public:
 CAutoPieDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAutoPieView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CAutoPieView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CAutoPieView)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in AutoPieView.cpp

Programming Windows With MFC

 1298

inline CAutoPieDoc* CAutoPieView::GetDocument()
 { return (CAutoPieDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_AUTOPIEVIEW_H__3B5BA314_3B72_11D2_AC82_006008A8274D__INCLUDED_)

AUTOPIEVIEW.CPP
// AUTOPIEVIEW.CPP : IMPLEMENTATION OF THE CAUTOPIEVIEW
CLASS
//

#include "stdafx.h"
#include "AutoPie.h"
#include "AutoPieDoc.h"
#include "AutoPieView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoPieView

IMPLEMENT_DYNCREATE(CAutoPieView, CView)

BEGIN_MESSAGE_MAP(CAutoPieView, CView)
 //{{AFX_MSG_MAP(CAutoPieView)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CAutoPieView construction/destruction

CAutoPieView::CAutoPieView()
{
 // TODO: add construction code here

}

CAutoPieView::~CAutoPieView()
{
}

Programming Windows With MFC

 1299

BOOL CAutoPieView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);
}

///
// CAutoPieView drawing

void CAutoPieView::OnDraw(CDC* pDC)
{
 CAutoPieDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CRect rect;
 GetClientRect (&rect);

 //
 // Initialize the mapping mode.
 //
 pDC->SetMapMode (MM_ANISOTROPIC);
 pDC->SetWindowExt (500, 500);
 pDC->SetWindowOrg (-250, -250);
 pDC->SetViewportExt (rect.Width (), rect.Height ());

 //
 // Create a set of brushes.
 //
 CBrush brFillColor[4];
 brFillColor[0].CreateSolidBrush (RGB (255, 0, 0)); // Red
 brFillColor[1].CreateSolidBrush (RGB (255, 255, 0)); // Yellow
 brFillColor[2].CreateSolidBrush (RGB (255, 0, 255)); // Magenta
 brFillColor[3].CreateSolidBrush (RGB (0, 255, 255)); // Cyan

 //
 // Draw the pie chart.
 //
 int nTotal = 0;
 for (int i=0; i<4; i++)
 nTotal += pDoc->GetRevenue (i);

 int x1 = 0;
 int y1 = -1000;
 int nSum = 0;

 for (i=0; i<4; i++) {
 int nRevenue = pDoc->GetRevenue (i);
 if (nRevenue != 0) {
 nSum += nRevenue;
 int x2 = (int) (sin ((((double) nSum * 2 * PI) /
 (double) nTotal) + PI) * 1000);
 int y2 = (int) (cos ((((double) nSum * 2 * PI) /
 (double) nTotal) + PI) * 1000);

Programming Windows With MFC

 1300

 pDC->SelectObject (&brFillColor[i]);
 pDC->Pie (-200, -200, 200, 200, x1, y1, x2, y2);
 x1 = x2;
 y1 = y2;
 }
 }
 pDC->SelectStockObject (WHITE_BRUSH);
}

///
// CAutoPieView diagnostics

#ifdef _DEBUG
void CAutoPieView::AssertValid() const
{
 CView::AssertValid();
}

void CAutoPieView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CAutoPieDoc* CAutoPieView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CAutoPieDoc)));
 return (CAutoPieDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CAutoPieView message handlers

To expose CAutoWindow, CAutoChart , and CAutoToolbar as
subobjects of the Application object, I added CAutoWindow,
CAutoChart, and CAutoToolbar data members named
m_autoWindow, m_autoChart, and m_autoToolbar to the
document class. I then added LPDISPATCH get/set properties
named Window, Chart, and Toolbar to the document class and
implemented the get functions by calling GetIDispatch on the
embedded objects. If a client tries to write to these properties,
the SetNotSupported calls in the set functions will serve notice
that the properties are read-only:

LPDISPATCH CAutoPieDoc::GetChart()
{
 return m_autoChart.GetIDispatch (TRUE);
}

void CAutoPieDoc::SetChart(LPDISPATCH newValue)
{

Programming Windows With MFC

 1301

 SetNotSupported ();
}

LPDISPATCH CAutoPieDoc::GetWindow()
{
 return m_autoWindow.GetIDispatch (TRUE);
}

void CAutoPieDoc::SetWindow(LPDISPATCH newValue)
{
 SetNotSupported ();
}

LPDISPATCH CAutoPieDoc::GetToolbar()
{
 return m_autoToolbar.GetIDispatch (TRUE);
}

void CAutoPieDoc::SetToolbar(LPDISPATCH newValue)
{
 SetNotSupported ();
}

Passing TRUE to GetIDispatch ensures that AddRef is called on
the IDispatch pointers retrieved from the subobjects. This
protects the subobjects from premature deletion. It's up to the
client to release the IDispatch pointers. Fortunately, VBScript
clients do this automatically.

20.2.4.1. The AfxThrowOleDispatchException Function

SetNotSupported uses MFC's AfxThrowOleDispatchException
function to fail attempts to write to read-only Automation
properties. Sometimes it's useful to call
AfxThrowOleDispatchException yourself. AutoPie does just
that if a client specifies an invalid quarter number (a value
outside the range 1 through 4) when reading or writing the
Chart object's Revenue property. Here's an excerpt from
AutoChart.cpp:

AfxThrowOleDispatchException (ID_ERROR_OUTOFRANGE,
 _T ("Invalid parameter specified when reading Revenue"));

AfxThrowOleDispatchException fails the call and provides a
descriptive error message to the client. Most clients,

Programming Windows With MFC

 1302

particularly VBScript clients, display this error message to their
users.

20.3. MFC Automation Clients

MFC vastly simplifies the writing of Automation servers, but
what about Automation clients? Good news: with a little help
from ClassWizard, it's almost as easy to write an Automation
client with MFC as it is to write it with Visual Basic.

The key is a class named COleDispatchDriver, which puts a
friendly face on IDispatch pointers exported by running
Automation servers. The COleDispatchDriver helper functions
InvokeHelper, SetProperty, and GetProperty simplify method
and property accesses, but interacting with an Automation
object using these functions is only slightly better than calling
IDispatch::Invoke directly. The real value of
COleDispatchDriver lies in creating type-safe classes whose
member functions provide easy access to Automation methods
and properties. After all, it's easier for a C++ programmer to
call a class member function than to call IDispatch::Invoke.

To derive a class from COleDispatchDriver that's tailored to a
specific Automation server, click ClassWizard's Add Class
button, select From A Type Library, and point ClassWizard to
the server's type library. ClassWizard will read the type library
and generate the new class. Inside that class you'll find member
functions for calling the server's methods and get and set
functions for accessing its properties. For example, if the server
supports a method named Add and a property named Pi, the
ClassWizard-generated class will include a member function
named Add and accessor functions named GetPi and SetPi. If
the wrapper class were named CAutoMath and the object's
ProgID were "Math.Object," the object could be instantiated
and programmed using statements like these:

CAutoMath math;
math.CreateDispatch (_T ("Math.Object"));
int sum = math.Add (2, 2);
double pi = math.GetPi ();

CreateDispatch uses ::CoCreateInstance to create the
Automation object. It caches the object's IDispatch pointer in a

Programming Windows With MFC

 1303

member variable named m_lpDispatch. Method calls and
property accesses performed via CAutoMath member functions
are translated into IDispatch calls to the object by InvokeHelper
and other COleDispatchDriver functions.

20.3.1. The PieClient Application

Let's close out this chapter with an MFC Automation client.
PieClient, a picture of which appears in Figure 20-16 and
whose source code appears in Figure 20-17, is a dialog-based
application whose main window features edit controls for
entering and editing quarterly revenue values. Values entered in
the controls are charted by AutoPie. PieClient drives AutoPie
via Automation.

Figure 20-16. PieClient acting as an Automation client to AutoPie.

When started, PieClient calls CreateDispatch on a CAutoPie
object named m_autoPie to start the Automation server:

BOOL bSuccess = m_autoPie.CreateDispatch (_T
("AutoPie.Application"));

When its Set button is clicked, PieClient gathers the revenue
values from the edit controls and transmits them to the server
by writing them to the Chart object's Revenue property:

Programming Windows With MFC

 1304

m_autoChart.SetRevenue (1, GetDlgItemInt (IDC_Q1));
m_autoChart.SetRevenue (2, GetDlgItemInt (IDC_Q2));
m_autoChart.SetRevenue (3, GetDlgItemInt (IDC_Q3));
m_autoChart.SetRevenue (4, GetDlgItemInt (IDC_Q4));

It then repaints the pie chart by calling the Window object's
Refresh method:

m_autoWindow.Refresh ();

Conversely, if the Get button is clicked, PieClient reads the
property values from the Automation object and displays them
in the edit controls.

m_autoChart and m_autoWindow are instances of CAutoChart
and CAutoWindow. These classes and others—namely,
CAutoPie and CAutoToolbar—are COleDispatchDriver
derivatives that ClassWizard created from AutoPie's type
library. CAutoPie represents the server's top-level Application
object. The remaining classes represent the Chart, Window, and
Toolbar subobjects. m_autoPie is initialized by CreateDispatch,
but m_autoChart and m_autoWindow must be initialized
separately because the corresponding subobjects are
automatically created when the server is started. These
initializations are performed by passing the IDispatch pointers
returned by CAutoPie's GetChart and GetWindow functions to
AttachDispatch:

m_autoChart.AttachDispatch (m_autoPie.GetChart ());
m_autoWindow.AttachDispatch (m_autoPie.GetWindow ());

Because m_autoPie, m_autoChart, and m_autoWindow are
embedded data members, they're automatically destroyed when
the dialog object is destroyed. And when a
COleDispatchDriver-object is destroyed, the IDispatch pointer
that it wraps is released by the class destructor. That's why
AutoPie closes when PieClient is closed. When the last pointer
to an MFC Automation server's dispinterface is released, the
server obediently shuts itself down.

Figure 20-17. The PieClient program.

Programming Windows With MFC

 1305

PieClient.h
// PieClient.h : main header file for the PIECLIENT application
//

#if !defined(

AFX_PIECLIENT_H__3B5BA32A_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_PIECLIENT_H__3B5BA32A_3B72_11D2_AC82_006008A8274D__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CPieClientApp:
// See PieClient.cpp for the implementation of this class
//

class CPieClientApp : public CWinApp
{
public:
 CPieClientApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPieClientApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CPieClientApp)
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_PIECLIENT_H__3B5BA32A_3B72_11D2_AC82_006008A8274D__INCLUDED_)

Programming Windows With MFC

 1306

PieClient.cpp
// PieClient.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "PieClient.h"
#include "PieClientDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CPieClientApp

BEGIN_MESSAGE_MAP(CPieClientApp, CWinApp)
 //{{AFX_MSG_MAP(CPieClientApp)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CPieClientApp construction

CPieClientApp::CPieClientApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CPieClientApp object

CPieClientApp theApp;

///
// CPieClientApp initialization

BOOL CPieClientApp::InitInstance()
{
 if (!AfxOleInit ()) {
 AfxMessageBox (_T ("AfxOleInit failed"));
 return FALSE;
 }
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 CPieClientDlg dlg;
 m_pMainWnd = &dlg;

Programming Windows With MFC

 1307

 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;
}

PieClientDlg.h
// PieClientDlg.h : header file
//

#if !defined(

AFX_PIECLIENTDLG_H__3B5BA32C_3B72_11D2_AC82_006008A8274D__INCLUDED_)
#define
AFX_PIECLIENTDLG_H__3B5BA32C_3B72_11D2_AC82_006008A8274D__INCLUDED_

#include "autopie.h" // Added by ClassView
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CPieClientDlg dialog

class CPieClientDlg : public CDialog
{
// Construction
public:
 CPieClientDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CPieClientDlg)
 enum { IDD = IDD_PIECLIENT_DIALOG };
 CButton m_wndSet;
 CButton m_wndGet;
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CPieClientDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation

Programming Windows With MFC

 1308

protected:
 CAutoWindow m_autoWindow;
 CAutoChart m_autoChart;
 CAutoPie m_autoPie;
 HICON m_hIcon;

 // Generated message map functions
 //{{AFX_MSG(CPieClientDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 afx_msg void OnGet();
 afx_msg void OnSet();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_PIECLIENTDLG_H__3B5BA32C_3B72_11D2_AC82_006008A8274D__INCLUDED_)

PieClientDlg.cpp
// PieClientDlg.cpp : implementation file
//

#include "stdafx.h"
#include "PieClient.h"
#include "PieClientDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CPieClientDlg dialog

CPieClientDlg::CPieClientDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CPieClientDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CPieClientDlg)
 //}}AFX_DATA_INIT
 // Note that LoadIcon does not require a subsequent
 // DestroyIcon in Win32
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CPieClientDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);

Programming Windows With MFC

 1309

 //{{AFX_DATA_MAP(CPieClientDlg)
 DDX_Control(pDX, IDC_SET, m_wndSet);
 DDX_Control(pDX, IDC_GET, m_wndGet);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPieClientDlg, CDialog)
 //{{AFX_MSG_MAP(CPieClientDlg)
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 ON_BN_CLICKED(IDC_GET, OnGet)
 ON_BN_CLICKED(IDC_SET, OnSet)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CPieClientDlg message handlers

BOOL CPieClientDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 //
 // Start the Automation server.
 //
 BOOL bSuccess = m_autoPie.CreateDispatch (_T
("AutoPie.Application"));

 //
 // If CreateDispatch succeeded, initialize the m_autoChart and
 // m_autoWindow data members to represent the Chart and Window
 // subobjects, respectively. Then initialize the controls in
 // the dialog and make the server window visible.
 //
 if (bSuccess) {
 m_autoChart.AttachDispatch (m_autoPie.GetChart ());
 ASSERT (m_autoChart.m_lpDispatch != NULL);
 m_autoWindow.AttachDispatch (m_autoPie.GetWindow ());
 ASSERT (m_autoWindow.m_lpDispatch != NULL);
 OnGet ();
 m_autoWindow.SetVisible (TRUE);
 }

 //
 // If CreateDispatch failed, let the user know about it.
 //
 else {
 MessageBox (_T ("Error launching AutoPie. Run it once to " \
 "register it on this system and then try again."), _T ("Error"));
 m_wndGet.EnableWindow (FALSE);
 m_wndSet.EnableWindow (FALSE);
 }
 return TRUE; // return TRUE unless you set the focus to a control
}

Programming Windows With MFC

 1310

void CPieClientDlg::OnPaint()
{
 if (IsIconic())
 {
 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

 // Center icon in client rectangle.
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon.
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

HCURSOR CPieClientDlg::OnQueryDragIcon()
{
 return (HCURSOR) m_hIcon;
}

void CPieClientDlg::OnGet()
{
 //
 // Retrieve revenue values from the Automation server and display them.
 //
 SetDlgItemInt (IDC_Q1, m_autoChart.GetRevenue (1));
 SetDlgItemInt (IDC_Q2, m_autoChart.GetRevenue (2));
 SetDlgItemInt (IDC_Q3, m_autoChart.GetRevenue (3));
 SetDlgItemInt (IDC_Q4, m_autoChart.GetRevenue (4));
}

void CPieClientDlg::OnSet()
{
 //
 // Retrieve the revenue values displayed in the edit controls
 // and provide them to the Automation server.
 //
 m_autoChart.SetRevenue (1, GetDlgItemInt (IDC_Q1));
 m_autoChart.SetRevenue (2, GetDlgItemInt (IDC_Q2));
 m_autoChart.SetRevenue (3, GetDlgItemInt (IDC_Q3));
 m_autoChart.SetRevenue (4, GetDlgItemInt (IDC_Q4));

 //
 // Repaint the pie chart.

Programming Windows With MFC

 1311

 //
 m_autoWindow.Refresh ();
}

AutoPie.h
// Machine generated IDispatch wrapper class(es) created with ClassWizard
///
// CAutoPie wrapper class

class CAutoPie : public COleDispatchDriver
{
public:
 CAutoPie() {} // Calls COleDispatchDriver default constructor
 CAutoPie(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 CAutoPie(const CAutoPie& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 LPDISPATCH GetChart();
 void SetChart(LPDISPATCH);
 LPDISPATCH GetWindow();
 void SetWindow(LPDISPATCH);
 LPDISPATCH GetToolbar();
 void SetToolbar(LPDISPATCH);

// Operations
public:
 void Quit();
};
///
// CAutoChart wrapper class

class CAutoChart : public COleDispatchDriver
{
public:
 CAutoChart() {} // Calls COleDispatchDriver default constructor
 CAutoChart(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch)
{}
 CAutoChart(const CAutoChart& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:

// Operations
public:
 BOOL Save(LPCTSTR pszPath);
 long GetRevenue(short nQuarter);
 void SetRevenue(short nQuarter, long nNewValue);
};
///
// CAutoWindow wrapper class

class CAutoWindow : public COleDispatchDriver
{

Programming Windows With MFC

 1312

public:
 CAutoWindow() {} // Calls COleDispatchDriver default
constructor
 CAutoWindow(LPDISPATCH pDispatch) :
COleDispatchDriver(pDispatch) {}
 CAutoWindow(const CAutoWindow& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 BOOL GetVisible();
 void SetVisible(BOOL);

// Operations
public:
 void Refresh();
};
///
// CAutoToolbar wrapper class

class CAutoToolbar : public COleDispatchDriver
{
public:
 CAutoToolbar() {} // Calls COleDispatchDriver default constructor
 CAutoToolbar(LPDISPATCH pDispatch) :
COleDispatchDriver(pDispatch) {}
 CAutoToolbar(const CAutoToolbar& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 BOOL GetVisible();
 void SetVisible(BOOL);

// Operations
public:
};

AutoPie.cpp
// Machine generated IDispatch wrapper class(es) created with ClassWizard

#include "stdafx.h"
#include "autopie.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CAutoPie properties

LPDISPATCH CAutoPie::GetChart()
{
 LPDISPATCH result;
 GetProperty(0x1, VT_DISPATCH, (void*)&result);

Programming Windows With MFC

 1313

 return result;
}

void CAutoPie::SetChart(LPDISPATCH propVal)
{
 SetProperty(0x1, VT_DISPATCH, propVal);
}

LPDISPATCH CAutoPie::GetWindow()
{
 LPDISPATCH result;
 GetProperty(0x2, VT_DISPATCH, (void*)&result);
 return result;
}

void CAutoPie::SetWindow(LPDISPATCH propVal)
{
 SetProperty(0x2, VT_DISPATCH, propVal);
}

LPDISPATCH CAutoPie::GetToolbar()
{
 LPDISPATCH result;
 GetProperty(0x3, VT_DISPATCH, (void*)&result);
 return result;
}

void CAutoPie::SetToolbar(LPDISPATCH propVal)
{
 SetProperty(0x3, VT_DISPATCH, propVal);
}

///
// CAutoPie operations

void CAutoPie::Quit()
{
 InvokeHelper(0x4, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

///
// CAutoChart properties

///
// CAutoChart operations

BOOL CAutoChart::Save(LPCTSTR pszPath)
{
 BOOL result;
 static BYTE parms[] =
 VTS_BSTR;
 InvokeHelper(0x1, DISPATCH_METHOD, VT_BOOL, (void*)&result,
parms,
 pszPath);
 return result;
}

Programming Windows With MFC

 1314

long CAutoChart::GetRevenue(short nQuarter)
{
 long result;
 static BYTE parms[] =
 VTS_I2;
 InvokeHelper(0x2, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, parms,
 nQuarter);
 return result;
}

void CAutoChart::SetRevenue(short nQuarter, long nNewValue)
{
 static BYTE parms[] =
 VTS_I2 VTS_I4;
 InvokeHelper(0x2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL,
parms,
 nQuarter, nNewValue);
}

///
// CAutoWindow properties

 BOOL CAutoWindow::GetVisible()
{
 BOOL result;
 GetProperty(0x1, VT_BOOL, (void*)&result);
 return result;
}

void CAutoWindow::SetVisible(BOOL propVal)
{
 SetProperty(0x1, VT_BOOL, propVal);
}

///
// CAutoWindow operations

void CAutoWindow::Refresh()
{
 InvokeHelper(0x2, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

///
// CAutoToolbar properties

BOOL CAutoToolbar::GetVisible()
{
 BOOL result;
 GetProperty(0x1, VT_BOOL, (void*)&result);
 return result;
}

void CAutoToolbar::SetVisible(BOOL propVal)
{
 SetProperty(0x1, VT_BOOL, propVal);

Programming Windows With MFC

 1315

}

///
// CAutoToolbar operations

stdafx.h
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#if !defined(AFX_STDAFX_H__3B5BA32E_3B72_11D2_AC82_006008A8274D__INCLUDE
D_)
#define AFX_STDAFX_H__3B5BA32E_3B72_11D2_AC82_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows
headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdtctl.h> // MFC support for Internet Explorer 4
 // Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT
#include <afxdisp.h>

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_STDAFX_H__3B5BA32E_3B72_11D2_AC82_006008A8274D__INCLUDED
_)

Keep in mind that checking the Automation box in AppWizard
makes an application an Automation server, not an Automation
client. With the Automation option unchecked, however,
AppWizard will not add an AfxOleInit call to InitInstance, nor
will it #include Afxdisp.h in Stdafx.h. Both are necessary for
Automation clients, so I added them by hand to PieClient.
Without these additions, the code will compile just fine, but
CreateDispatch will fail every time.

Programming Windows With MFC

 1316

20.3.2. Connecting to a Running Automation
Server

Thanks to ClassWizard-generated wrapper classes and their
member functions, accessing an Automation server's methods
and properties from a C++ program is almost as easy as
accessing them from Visual Basic. But what if you want to
connect two or more instances of PieClient to one instance of
AutoPie? As it stands now, that's not possible because each
instance of PieClient calls CreateDispatch, which creates a
brand new instance of the Automation object.

You can modify PieClient and AutoPie to support multiple
simultaneous connections by adding a few lines of code to each.
On the server side, AutoPie needs to call the API
function ::RegisterActiveObject to register itself as an active
object. Here's a modified version of CAutoPieDoc's constructor
that demonstrates how.

CAutoPieDoc::CAutoPieDoc ()
{
 // Wizard-generated code
 EnableAutomation ();
 AfxOleLockApp ();

 // Additional code that registers the running object
 IUnknown* pUnknown;
 GetIDispatch (FALSE)->
 QueryInterface (IID_IUnknown, (void**) &pUnknown);
 GetIDispatch (FALSE)->Release (); // Undo the AddRef
 // performed by QueryInterface.
 ::RegisterActiveObject (pUnknown, clsid, ACTIVEOBJECT_WEAK,
&m_ulID);
}

In this example, m_ulID is an unsigned long member variable
added to CAutoPieDoc. It receives a 32-bit value identifying
the entry that ::RegisterActiveObject added to COM's running
object table. clsid is the object's CLSID; it's declared in
AutoPie.cpp and made visible in AutoPieDoc.cpp by adding the
statement

extern CLSID clsid;

Programming Windows With MFC

 1317

to AutoPieDoc.cpp. For this extern statement to compile and
link, you must remove the keywords static and const from the
variable declaration in AutoPie.cpp.

So that clients won't attempt to connect to an Automation
server that is no longer running, a version of AutoPie that
registers itself in the running object table must unregister itself
before it shuts down. The best way to do this is to override
OnFinalRelease in CAutoPieDoc and
call ::RevokeActiveObject, as shown here:

void CAutoPieDoc::OnFinalRelease()
{
 ::RevokeActiveObject (m_ulID, NULL);
 CDocument::OnFinalRelease();
}

::RevokeActiveObject does the opposite
of ::RegisterActiveObject: Given a registration ID, it removes
an object from the running object table. OnFinalRelease is a
CCmdTarget function that's called just before an MFC COM
object self-deletes.

The final modification needed to support multiple connections
applies to the client, not the server. Before calling
CreateDispatch to create the Automation object, PieClient
should call ::GetActiveObject to find out whether the object is
already running. The following code connects to an existing
object instance if such an instance exists or creates a new
instance if it doesn't:

BOOL bSuccess = FALSE;

CLSID clsid;
if (SUCCEEDED (CLSIDFromProgID (OLESTR ("AutoPie.Application"),
&clsid))) {
 IUnknown* pUnknown;
 if (SUCCEEDED (::GetActiveObject (clsid, NULL, &pUnknown))) {
 IDispatch* pDispatch;
 if (SUCCEEDED (pUnknown->QueryInterface (IID_IDispatch,
 (void**) &pDispatch))) {
 pDispatch->Release (); // Undo the AddRef performed
 // by QueryInterface.
 m_autoPie.AttachDispatch (pDispatch);
 bSuccess = TRUE;
 }
 }

Programming Windows With MFC

 1318

}

if (!bSuccess)
 bSuccess = m_autoPie.CreateDispatch (_T ("AutoPie.Application"));

if (!bSuccess) {
 // Error: Unable to connect to an existing object instance or
 // launch a new one.
}

If you apply these modifications to AutoPie and PieClient,
you'll find that no matter how many instances of PieClient you
start, each will connect to the same Automation object. One
drawback to the ::RegisterActiveObject/::GetActiveObject
method is that it's powerless over a network, even though
Automation itself works just fine between machines. Attaching
multiple clients to an Automation server on another machine
requires an altogether different approach to the problem. That,
however, is a topic for another day.

Programming Windows With MFC

 1319

Chapter 21. ActiveX Controls
In the minds of most people, the term ActiveX conjures up
visions of ActiveX controls displaying fancy animations and
video streams in Web pages. In truth, ActiveX controls are just
one piece of the puzzle called ActiveX. But as the penultimate
COM technology and the most visible member of the ActiveX
family, ActiveX controls enjoy a special distinction that sets
them apart from run-of-the-mill COM objects.

ActiveX controls began their life in 1994 as "OLE controls."
The first version of the OLE control specification, which is now
referred to as OCX 94, outlined the structure of what would one
day be known as ActiveX controls and was intended to provide
developers with a generic, COM-based architecture for building
reusable Microsoft Windows controls. The OLE control of
1994 was a replacement for custom control DLLs and Visual
Basic controls (VBXs). The specification was revised in 1996
(OCX 96), and later that same year, OLE controls were
officially renamed ActiveX controls and Microsoft Internet
Explorer gained the ability to host ActiveX controls in Web
pages. To this day, ActiveX controls serve a dual purpose. (See
Figure 21-1.) Application developers can use them to enhance
their programs, and Web developers can use them to create
interactive Web content—"interactive" because unlike Active
Server Pages and Common Gateway Interface (CGI) scripts,
ActiveX controls execute on the client side of an HTTP
connection.

Programming Windows With MFC

 1320

Figure 21-1. Two instances of an ActiveX calendar control displayed side
by side—in Internet Explorer and in an application program.

Microsoft provides a number of tools for writing ActiveX
controls, but none offer the balance of power and ease of use
that Visual C++ and MFC do. Writing an ActiveX control from
scratch can require weeks or even months of development time.
You can write the same control with MFC in a matter of hours.
In fact, you can write a simple control that works equally well
in an application or a Web page in minutes with the tools that
Visual C++ provides. One of those tools is the MFC ActiveX
ControlWizard, which generates the initial source code for a
control project. But make no mistake: it's MFC that's the belle
of the ball, and without MFC or a similar class library to help
out, writing an ActiveX control would be right up there on a list
of fun things to do with having your fingernails pulled out.

In this chapter, I'll begin with an overview of ActiveX controls
and an explanation of how they work. I'll conclude with a few
topics that aren't treated at length elsewhere in the chapter. In
between, you'll learn how MFC supports ActiveX controls.
Then you'll write your own control and an application that uses
the control. You'll even test the control in a Web page. When
you're done, I think you'll agree that even a subject as complex
as ActiveX controls can be downright enjoyable when MFC is
there to do the bulk of the work.

Programming Windows With MFC

 1321

21.1. ActiveX Control Basics

So just what is an ActiveX control? Simply put, an ActiveX
control is a COM object. But it's not just any COM object; it's a
COM object that implements a certain set of interfaces that
enable it to look and act like a control. There's some confusion
over exactly what that set of interfaces is because technically,
the only interface that's required is IUnknown. When I use the
term ActiveX control in this chapter, I'm talking about a
full-blown control: an ActiveX control that works equally well
in an MFC dialog, a Visual Basic form, or a Web page.

ActiveX controls leverage many of the technologies found
elsewhere in COM. For example, most ActiveX controls
expose methods and properties just as Automation servers do.
They do it by implementing IDispatch. Most are also capable of
being in-place activated, as OLE embedding servers are. They
do that by implementing IOleObject, IOleInPlaceActiveObject,
and other interfaces. ActiveX controls that expose properties
generally provide a means for those properties to be stored
persistently. They do that by implementing persistence
interfaces such as IPersistStreamInit and IPersistPropertyBag.
In short, ActiveX controls are complex objects that implement
not just one COM interface, but many. In a moment, we'll
examine those interfaces and the roles that they play in a
control's operation.

Methods, Properties, and Events

Controls implement properties so that people using them can
customize them to fit the needs of a particular application or
Web page. For example, the calendar control that we'll build in
this chapter exposes its background color as a property so that
users can change its color. When you design an ActiveX
control, try to anticipate all the things a user might want to
change about its appearance or behavior and then make those
characteristics of the control programmable by exposing them
as properties.

Controls implement methods so that they can be called to do
useful work. A calculator control might support methods for
computing square roots and medians. A clock control wouldn't
be complete without a method for setting the time. Control

Programming Windows With MFC

 1322

methods are nothing more than Automation methods, and
they're added to a control the same way methods are added to
an Automation server. You already know how to add methods
to an Automation server (refer to Chapter 20 if you need a
refresher), so you know how to add methods to an ActiveX
control, too.

One feature that sets ActiveX controls apart from Automation
servers is their ability to fire events. An event is a notification
sent from a control to its container. A container is a window
that hosts an ActiveX control. Windows controls send
notifications to their owners by sending messages; ActiveX
controls send notifications to their containers by firing events.
Events are fired by calling Automation methods through
interfaces—normally IDispatch interfaces—provided by
control containers. A portion of the ActiveX control
specification is devoted to the issue of how a control obtains a
pointer to a container's IDispatch interface.

When you design an ActiveX control, you should think about
what kinds of things could happen inside the control that a
container might be interested in and code them as ActiveX
events. For instance, an ActiveX push button control should fire
an event when it's clicked. Remember that it's better to fire too
many events than too few because a container can ignore those
in which it has no interest.

Custom vs. Stock

Another feature that differentiates ActiveX controls from
Automation servers is the fact that a control's methods,
properties, and events come in two varieties: custom and stock.
Custom methods, properties, and events are ordinary
Automation methods, properties, and events: ones for which
you pick the names and dispatch IDs. Stock methods, properties,
and events are "standard" methods, properties, and events that
use names and dispatch IDs prescribed in the ActiveX control
specification. The idea behind stock attributes is that if a
control exposes, say, its background color as a property, using a
standard name (BackColor) and dispatch ID (-501) will
promote uniformity among otherwise unrelated controls. If a
Visual Basic user sees that your control has a property named
BackColor, he or she will know exactly what that property does.

Programming Windows With MFC

 1323

If you call it something else, the meaning might be less
obvious.

The control specification contains a rather lengthy list of stock
methods, properties, and events, complete with names and
dispatch IDs. MFC contains built-in implementations of most
of them, and ClassWizard makes adding stock methods,
properties, and events to a control a piece of cake.

Of course, you can forget about stock methods, properties, and
events if you want to and make everything custom. But a savvy
control designer will use them wherever applicable.

Ambient Properties

Another unique and interesting aspect of the ActiveX control
architecture is that containers, too, can expose properties. Many
times, a control needs to know something about the
environment in which it's running before it can decide how to
look or act. For example, if you want a control to blend in with
its container, you might want to know the container's
background color so that the control can paint its own
background the same color. You can obtain these and other
items of information by reading the container's ambient
properties. An ambient property is an Automation property
that's exposed through—you guessed it— IDispatch. The
difference is that the container—not the control—implements
the interface.

Like stock control properties, ambient properties have
well-known names and dispatch IDs. (You'll see a list of the
ambient properties that a container can support in a subsequent
section of this chapter.) The ambient property named
BackColor, for example, exposes the container's background
color. A control can read the ambient property named
UserMode to find out whether it's running in a design-time
environment (for example, in the Visual Basic forms editor or
the Visual C++ dialog editor) or a "user" environment (for
example, in a Web page or a running application). All it needs
is an IDispatch interface pointer and a dispatch ID. The
IDispatch interface pointer comes from the container; the
dispatch ID comes from the control specification.

Control States

Programming Windows With MFC

 1324

At any given time, a control can be in either of two states:
active or inactive. These terms have roots in object linking and
embedding, but they can be defined accurately enough for our
purposes without resorting to the usual OLE technojargon.

An active control is one that's alive and running in a container.
The control's DLL is loaded (ActiveX controls are in-proc
COM servers, so they live in DLLs), the control has a window
of its own, and the control is able to paint to that window and
respond to user input. I should say the control might have a
window of its own, because one of the enhancements
introduced in OCX 96 was the option to write windowless
controls—controls that borrow real estate from their container
and literally paint themselves into the container's window. A
windowless control doesn't have a window even when it's
active, but conceptually it's accurate to think of that control as
having a window because both it and the container work very
hard to foster that illusion.

An inactive control, by contrast, doesn't have a window of its
own. It therefore consumes fewer system resources and is dead
to user input. When a container deactivates a control, it asks the
control for a metafile image that it can use to represent the
control in the container's window. Then it destroys the control's
window and draws the metafile to make it appear that the
control is still there. The control will typically remain inactive
until it's clicked. OCX 96 defines a new COM interface named
IPointerInactive that an inactive control can use to sense mouse
movements or change the shape of the cursor, or to request that
the container activate it as soon as the mouse enters the control
rectangle. The net result is the illusion that the control is active
and accepting input all the while; the user is usually none the
wiser.

Does it matter whether a control is active or inactive? It might,
depending on what type of control you write. If your ActiveX
control creates child window controls, for example, those child
windows might render poorly into a metafile. Therefore, you
might decide to do whatever you can to prevent the control
from being deactivated. One of the options you have as a
control designer is to tell the container you'd like the control to
be active whenever it's visible. The container isn't absolutely
required to honor that request, but most containers will.

Programming Windows With MFC

 1325

Another reason to be aware of activation states is that controls
repaint when they transition from one state to the other. If the
control looks the same whether it's active or inactive (most do),
this repainting can produce an annoying flicker. The solution to
this problem is yet another OCX 96 enhancement called
flicker-free drawing. I'll have more to say about these and other
ActiveX control options when we examine the MFC ActiveX
ControlWizard.

The ActiveX Control Architecture

Because an ActiveX control is a COM object, it can be defined
in terms of the interfaces that it supports. However, because no
one set of interfaces makes an ActiveX control an ActiveX
control, the best we can hope to do is to diagram a typical
ActiveX control and use it to paint a broad picture of the
ActiveX control architecture. Figure 21-2 contains one such
diagram.

Figure 21-2. A typical ActiveX control.

Programming Windows With MFC

 1326

The control depicted in Figure 21-2 is precisely what you get
when you write an ActiveX control with MFC. The control
object is housed in a Win32 DLL that's commonly referred to
as an OCX. The "OC" in OCX stands for OLE Control. An
OCX can house one control or several controls. It usually has
a .ocx file name extension, but that's left to the discretion of the
control creator. Some OCXs have the extension .dll instead.

Figure 21-2 is the perfect illustration of a full-blown ActiveX
control, which can be more fully defined now as one that draws
a visible manifestation of itself in a window; that supports
methods, properties, and events; and that is equally at home in
an application or on a Web page. Though technically none of
these COM interfaces is required of an ActiveX control, as a
practical matter, many of them are required if the control is to
support the kinds of features normally associated with ActiveX
controls. For example, a control must implement
IConnectionPointContainer if it's to fire events. And it can't
expose methods and properties without an IDispatch interface.
In that sense, then, Figure 21-2 is a reasonable depiction of the
objects that most people think of as ActiveX controls.

So just what do all those interfaces do? One could easily write a
book about each interface and the role that it plays in the
operation of an ActiveX control, but that level of detail isn't
necessary here. The following table briefly describes each
interface.

ActiveX Control Interfaces

Interface Comments

IConnectionPointContainer Exposes connection points for event interfaces

IDataObject Makes presentation data available to the control
container

IDispatch Exposes the control's methods and properties

IOleCache Controls the presentation data cache

IOleControl Base interface for ActiveX controls

IOleInPlaceActiveObject Base interface for embedded objects that
support in-place activation

IOleInPlaceObjectWindowless Allows the container to manage the activation
and deactivation of both windowed and

Programming Windows With MFC

 1327

windowless controls

IOleObject Base interface for embedded objects

IQuickActivate Speeds control creation in containers that
recognize this interface

IPerPropertyBrowsing Allows containers to acquire information about
control properties, such as each property's
name

IPersistMemory Allows the control to write property values to
memory and read them back

IPersistPropertyBag Allows the control to save property values in
"property bag" objects provided by the
container

IPersistStorage Allows the control to save property values in
storage objects

IPersistStreamInit Allows the control to save property values in
stream objects

IProvideClassInfo2 Makes type information available to the control
container

ISpecifyPropertyPages Allows the control to add pages to property
sheets displayed by the container

IViewObjectEx Allows the container to acquire images of
inactive controls and paint windowless controls

IConnectionPointContainer indirectly enables containers to
provide IDispatch interface pointers to controls for event firing.
You already know that to fire an event, a control calls an
Automation method on its container's IDispatch interface. To
find out what kinds of events the control is capable of firing
(and by extension, what methods the container must implement
in order to respond to control events), most containers read the
control's type information. Type information is accessed by
calling the control's IProvideClassInfo2::GetClassInfo method
and calling ITypeInfo methods through the returned ITypeInfo
pointer.

If you were writing an ActiveX control from scratch (that is,
without the aid of a class library), you'd have to understand the
semantics of all these interfaces and others to the nth degree.
But write a control with MFC and MFC will implement the
interfaces for you. You don't even have to know that the
interfaces are there; they just work.

Programming Windows With MFC

 1328

ActiveX Control Containers

ActiveX control containers are complex COM objects in their
own right. That's right: to host an ActiveX control, a container
must implement COM interfaces, too. The exact set of
interfaces required depends somewhat on the nature of the
control that's being hosted, but control containers tend to be
more uniform in the interfaces that they implement than
controls are.

Figure 21-3 shows a typical ActiveX control container. For
each control that it hosts, the container implements a control
site object. Apart from the individual site objects, it also
implements COM's IOleContainer and IOleInPlaceFrame
interfaces. As the diagram shows, most containers provide two
separate implementations of IDispatch. One exposes the
container's ambient properties, and the other is provided to the
control for event firing. The following table provides brief
descriptions of commonly used ActiveX control container
interfaces.

Figure 21-3. A typical ActiveX control container.

ActiveX Control Container Interfaces

Interface Comments

IOleContainer Base interface for embedding containers

IOleInPlaceFrame Base interface for OLE containers that support in-place
activation

IOleClientSite Base interface for OLE containers

Programming Windows With MFC

 1329

IOleInPlaceSite Base interface for OLE containers that support in-place
activation

IOleControlSite Base interface for ActiveX control sites

IDispatch Exposes the container's ambient properties

IDispatch Traps events fired by a control

IPropertyNotifySink Allows the control to notify the container about property
changes and to ask permission before changing them

Writing a control container involves more than just
implementing the required COM interfaces; you have to wrestle
with a protocol, too. For example, when a control is created, a
conversation ensues between it and its container. Among other
things, the two exchange interface pointers, the container plugs
IDispatch and IPropertyNotifySink (and perhaps other)
interface pointers into connection points implemented by the
control, and the container usually activates the control by
calling its IOleObject::DoVerb method. In some cases, the
container reads type information from the control so it will
know what to do when events are fired through its IDispatch
interface. The conversations don't stop after the control is
initialized; the control and its container are constantly
responding to calls from the other by placing calls of their own.
In other words, hosting an ActiveX control is a big job. That's
all the more reason to build ActiveX control containers with
MFC, which does an excellent job of hiding all these
complexities under the hood and making it very easy to host
ActiveX controls in any CWnd-derived object.

MFC Support for ActiveX Controls

MFC simplifies the writing of ActiveX controls and control
containers by providing built-in implementations of the
required COM interfaces and encapsulating the protocol that
links ActiveX controls and control containers. For those COM
methods that can't be implemented in a generic fashion, MFC
provides virtual functions that you can override in a derived
class to implement control-specific behavior. To a large extent,
writing an ActiveX control with MFC is a matter of deriving
from MFC base classes and overriding virtual functions here
and there to add the logic that makes your control unique.

Programming Windows With MFC

 1330

Though by no means exhaustive, the following sections
highlight the MFC classes that provide the foundation for
MFC's ActiveX control support.

COleControl

Much of MFC's ActiveX control support is found in
COleControl. The base class for all MFC ActiveX controls,
COleControl is a large and complex class that implements most
of the COM interfaces shown in Figure 21-2. It also includes
handlers for dozens of Windows messages and provides built-in
implementations of stock methods, properties, and events.

When you derive a class from COleControl to represent an
ActiveX control, you'll override some of its virtual functions,
too. COleControl includes about sixty virtual functions, each of
which is important in its own right. The two functions listed in
the following table, however, stand out for their utter
importance in the operation of a control:

Key Virtual COleControl Functions

Function Description

OnDraw Called to paint the control. Override to add control-specific
painting logic.

DoPropExchange Called to save or load a control's persistent properties.
Override to support persistent control properties.

Both functions are overridden for you if you use the MFC
ActiveX ControlWizard to create the control project. Issues that
you should be aware of when implementing these functions in a
derived class are covered later in this chapter.

COleControl also includes a diverse assortment of nonvirtual
functions that a control programmer should be aware of. One of
those functions is InvalidateControl. It should be used in lieu of
CWnd::Invalidate to repaint a control because unlike Invalidate,
it works with both windowed and windowless controls. The
following table lists some of the nonvirtual functions that are
useful when you're writing ActiveX controls with MFC.

Key Nonvirtual COleControl Functions

Programming Windows With MFC

 1331

Function Description

Ambientxxx Retrieves an ambient property value from the container
(for example, AmbientBackColor)

Firexxx Fires a stock event (for example, FireClick)

GetAmbientProperty Retrieves the values of an ambient property for which no
Ambientxxx function is defined

Getxxx Retrieves the value of a stock property (for example,
GetBackColor)

InitializeIIDs Makes the IDs of the control's event interface and
IDispatch interface known to MFC; normally called from
the class constructor

InvalidateControl Repaints the control

SerializeStockProps Serializes the control's stock properties

SetModifiedFlag Marks the control as dirty or not dirty (A "dirty" control
is one that contains unsaved property changes.)

SetNotSupported Generates an error when a client attempts to write to a
read-only property

ThrowError Signals that an error occurred; used in method
implementations and property accessor functions

TranslateColor Translates an OLE_COLOR value into a COLORREF
value

You'll see some of these functions used in this chapter's sample
control. Two of them— InitializeIIDs and
SerializeStockProps—are automatically added to
COleControl-derived classes by ControlWizard.

COleControlModule

Every MFC application includes a global instance of a
CWinApp-derived class that represents the application itself.
COleControlModule is to MFC ActiveX controls what
CWinApp is to conventional MFC applications: it represents the
server module (that is, the DLL) in which the control is housed.

COleControlModule is a thin class that adds little to the
functionality it inherits from its base class, CWinApp. Its
primary contribution is an InitInstance function that calls
AfxOleInitModule to enable COM support in an MFC DLL. It
follows that if you override InitInstance in a
COleControlModule-derived class, you should call the base

Programming Windows With MFC

 1332

class's InitInstance function before executing any code of your
own. When ControlWizard creates an ActiveX control project,
it adds the call for you.

COlePropertyPage

Most ActiveX controls expose their properties to developers by
implementing property sheet pages that are displayed by the
control container. In ActiveX land, property pages are COM
objects, complete with CLSIDs. A property page
object—sometimes referred to as an OLE property page—is
one that implements COM's IPropertyPage or IPropertyPage2
interface.

MFC's COlePropertyPage class makes creating OLE property
pages a snap by implementing IPropertyPage2 for you. You
simply derive from COlePropertyPage and add a bit of
infrastructure; MFC does the rest. (Of course, ControlWizard
and ClassWizard are happy to do the derivation for you and add
the necessary infrastructure themselves.) Typically, you don't
even have to override any virtual functions except for
DoDataExchange, which links the controls in the property page
to properties exposed by the ActiveX control. I'll describe
exactly how this linkage is performed later in this chapter.

CConnectionPoint and COleConnPtContainer

ActiveX controls use COM's connectable object protocol to
accept interface pointers from their containers for event firing.
A connectable object is one that implements one or more
connection points. Logically, a connection point is a receptacle
that interfaces can be plugged into. Physically, a connection
point is a COM object that implements the IConnectionPoint
interface. To expose its connection points to clients, a
connectable object implements COM's
IConnectionPointContainer interface. Implementing
IConnectionPoint and IConnectionPointContainer also means
implementing a pair of enumerator interfaces named
IEnumConnectionPoints and IEnumConnections. All this just
so a control can fire events to its container.

The details of connectable object interfaces are beyond the
scope of this discussion, but suffice it to say that implementing
them is no picnic. Enter MFC, which provides default

Programming Windows With MFC

 1333

implementations of all four in classes such as
CConnectionPoint and COleConnPtContainer. The
implementations are generic enough that they can be used even
outside the ActiveX control architecture, but it is ActiveX
controls that benefit the most from their existence. For the most
part, you don't even know these classes are there because
they're tucked away deep inside COleControl.

COleControlContainer and COleControlSite

The bulk of MFC's support for ActiveX control containers is
found inside the classes COleControlContainer and
COleControlSite. The former implements IOleContainer and
IOleInPlaceFrame, and the latter contributes stock
implementations of IOleClientSite, IOleControlSite,
IOleInPlaceSite, and other per-control interfaces required of
ActiveX control containers. When you build a control container
with MFC, you get a container that looks very much like the
one in Figure 21-3 with three additional interfaces thrown in:

x IBoundObjectSite
x INotifyDBEvents
x IRowsetNotify

These interfaces are used to bind ActiveX controls to external
data sources—specifically, RDO (Remote Data Object) and
OLE DB data sources.

COleControlContainer and COleControlSite are complex
classes, and they work in conjunction with a similarly complex
(and undocumented) class named COccManager. Fortunately,
it's rare to have to interact with any of these classes directly. As
you'll see, simply checking a box in AppWizard or adding a
statement to InitInstance is enough to endow any MFC
application with the ability to host ActiveX controls. Five
minutes with MFC can save you literally weeks of coding time.

21.2. Building ActiveX Controls

Armed with this knowledge of the ActiveX control architecture
and the manner in which MFC encapsulates it, you're almost
ready to build your first control. But first, you need to know
more about the process of writing ActiveX controls with Visual
C++ and MFC. The following sections provide additional

Programming Windows With MFC

 1334

information about the nature of ActiveX controls from an MFC
control writer's perspective and describe some of the basic
skills required to write a control—for example, how to add
methods, properties, and events, and what impact these actions
have on the underlying source code.

Running ControlWizard

The first step in writing an MFC ActiveX control is to create a
new project and select MFC ActiveX ControlWizard as the
project type. This runs ControlWizard, which asks a series of
questions before generating the project's source code files.

The first series of questions is posed in ControlWizard's Step 1
dialog box, shown in Figure 21-4. By default, the OCX
generated when this project is built will contain just one control.
If you'd rather it implement more, enter a number in the How
Many Controls Would You Like Your Project To Have box.
ControlWizard will respond by including multiple control
classes in the project. Another option is Would You Like The
Controls In This Project To Have A Runtime License? If you
answer yes, ControlWizard builds in code that prevents the
control from being instantiated in the absence of a valid
run-time license. Implemented properly, this can be an effective
means of preventing just anyone from using your control. But
because ControlWizard's license-checking scheme is easily
circumvented, enforcing run-time licensing requires extra effort
on the part of the control's implementor. For details, see the
section "Control Licensing" at the close of this chapter.

Programming Windows With MFC

 1335

Figure 21-4. ControlWizard's Step 1 dialog box.

ControlWizard's Step 2 dialog box is shown in Figure 21-5.
Clicking the Edit Names button displays a dialog box in which
you can enter names for the classes ControlWizard will
generate, the names of those classes' source code files, and
ProgIDs for the control and its property page. If you'd like the
control to wrap a built-in control type such as a slider control or
a tree view control, choose a WNDCLASS name from the list
attached to the Which Window Class, If Any, Should This
Control Subclass box. The "Control Subclassing" section later
in this chapter explains what this does to your source code and
what implications it has for the code you write.

Programming Windows With MFC

 1336

Figure 21-5. ControlWizard's Step 2 dialog box.

The options under Which Features Would You Like This
Control To Have? can have profound effects on a control's
appearance and behavior. The defaults are normally just fine,
but it's hard to understand what these options really mean from
the scant descriptions provided in the online help. Therefore,
here's a brief synopsis of each one. The term miscellaneous
status bits refers to a set of bit flags that communicate certain
characteristics of the control to the control container. A
container can acquire a control's miscellaneous status bits from
the control itself or, if the control isn't running, from the
registry.

x Activates When Visible—Sets a flag in the control's miscellaneous
status bits informing the container that the control wants to be active
whenever it's visible. Disabling this option gives the container the option
of disabling the control, which it might do to conserve resources or speed
start-up time. If you uncheck this box, you should check the Mouse
Pointer Notifications When Inactive box described below if your control
processes WM_MOUSEMOVE or WM_SETCURSOR messages.

x Invisible At Runtime—Sets a flag in the control's miscellaneous status
bits indicating that the control wants to be visible in design mode but
invisible in user mode. In other words, the control should be visible in a
design-time environment such as the Visual C++ dialog editor, but
invisible when the application that uses the control is running. One
example of a control that might choose to exercise this option is a timer
control that fires events at specified intervals. The control doesn't need to
be seen at run time, but it should be visible at design time so that the user
can display its property sheet.

Programming Windows With MFC

 1337

x Available In "Insert Object" Dialog—Because most ActiveX controls
implement a functional superset of the interfaces required to act as object
linking and embedding servers, most of them can, if asked, masquerade
as object linking and embedding servers. When this option is selected,
the control gets registered not only as an ActiveX control but also as an
OLE server, which causes it to appear in the Insert Object dialog box
found in Microsoft Word, Microsoft Excel, and other OLE containers.
Checking this box is generally a bad idea because most OLE containers
don't know how to interact with ActiveX controls. Except in isolated
cases, the best strategy is to forget that this option even exists.

x Has An "About" Box—If checked, adds a method named AboutBox to
the control that displays an About dialog box. Select this option if you'd
like developers using your control to be able to learn more about it and
its creator from an About box. ControlWizard creates a simple dialog
resource for you; it's up to you to add a professional touch.

x Acts As A Simple Frame Control—Tells ControlWizard to add an
ISimpleFrameSite interface to the control, and sets a flag in the
miscellaneous status bits identifying this as a "simple frame" control. A
simple frame control is one that hosts other controls but delegates much
of the work to its own control container. Use this option for controls,
such as group box controls, whose primary purpose is to provide a site
for (and visual grouping of) other controls.

You can access still more options by clicking the Advanced
button in the Step 2 dialog box, which displays the window
shown in Figure 21-6. All are relatively recent additions to the
ActiveX control specification (most come directly from OCX
96), and none are universally supported by control containers.
Nevertheless, they're worth knowing about, if for no other
reason than the fact that ControlWizard exposes them to you.

Figure 21-6. ControlWizard's Advanced ActiveX Features dialog box.

Here's a brief summary of the options found in the Advanced ActiveX Features
dialog box:

x Windowless Activation—Makes the control a windowless control. If the
container doesn't support windowless activation, the control will be

Programming Windows With MFC

 1338

instantiated in a window as if it were a regular windowed control.
Windowless controls are discussed at length later in this chapter.

x Unclipped Device Context—According to the documentation, this
option, if selected, speeds redraws ever so slightly by preventing
COleControl::OnPaint from calling CDC::IntersectClipRect on the
device context passed to the control to prevent the control from
inadvertently painting outside its own window. Despite what the
documentation says, this option has no effect whatsoever on the control's
behavior in MFC 6.0.

x Flicker-Free Activation—Most ActiveX controls are activated when
they're created and remain active indefinitely. If a container deactivates
an active control, however, the container repaints the control. And if an
inactive control becomes active, the control repaints itself. For controls
that look the same whether active or inactive, this repainting is
unnecessary and can cause unsightly flicker. The flicker-free activation
option eliminates redrawing induced by state transitions in containers
that support it.

x Mouse Pointer Notifications When Inactive—Allows containers to
forward WM_SETCURSOR and WM_MOUSEMOVE messages to
inactive controls via an MFC-provided implementation of
IPointerInactive. This option is typically used with controls that don't
use the Activates When Visible option but want to alter the appearance of
the mouse cursor or respond to mouse movements even while inactive.

x Optimized Drawing Code—When IViewObjectEx::Draw is called to
draw a windowless control, the control is responsible for leaving the
device context in the same state in which it found it. Some containers
free the control from this obligation, in which case the control can speed
repainting by reducing the number of GDI calls. To take advantage of
this feature in supportive containers, select this option and call
COleControl::IsOptimizedDraw each time OnDraw is called. If
IsOptimizedDraw returns nonzero, there's no need to clean up the device
context.

x Loads Properties Asynchronously—Indicates that this control supports
datapath properties. Unlike standard control properties, datapath
properties are downloaded asynchronously, typically from a URL. For
controls designed to sit in Web pages, implementing properties that
encapsulate large volumes of data as datapath properties can improve
performance dramatically. MFC makes implementing datapath properties
relatively easy, but (in my opinion, anyway) controls designed for the
Internet should be written with the Active Template Library, not with
MFC. For more information about implementing datapath properties in
MFC, see the article "Internet First Steps: ActiveX Controls" in the
online documentation.

When you select any of the advanced options—with the
exception of Loads Properties
Asynchronously—ControlWizard overrides a COleControl
function named GetControlFlags in the derived control class
and selectively sets or clears bit flags in the control flags that
the function returns. For example, selecting Flicker-Free
Activation ORs a noFlickerActivate flag into the return value.
Some options prompt ControlWizard to make more extensive

Programming Windows With MFC

 1339

modifications to the source code. For example, selecting
Optimized Drawing Code adds canOptimizeDraw to the control
flags and inserts a call to IsOptimizedDraw into OnDraw. MFC
calls GetControlFlags at various times to find out about
relevant characteristics of the control.

When ControlWizard is done, you're left with an ActiveX
control project that will actually compile into a do-nothing
ActiveX control—one that has no methods, properties, or
events, and does no drawing other than erase its background
and draw a simple ellipse, but one that satisfies all the criteria
for an ActiveX control. That project includes these key
elements:

x A COleControlModule-derived class representing the control's OCX.
x A COleControl-derived class representing the control. ControlWizard

overrides OnDraw, DoPropExchange, and other virtual functions in the
derived class, so you don't have to. The control class also includes
essential infrastructure such as a COM class factory and dispinterfaces
for methods, properties, and events.

x A COlePropertyPage-derived class and a dialog resource representing
the control's property page.

x An ODL file that ClassWizard will later modify as methods, properties,
and events are added and from which the control's type library will be
generated.

x A toolbar button bitmap that will represent the control on toolbars in
design-time environments such as Visual Basic.

ControlWizard does nothing that you couldn't do by hand, but it
provides a welcome jump start on writing an ActiveX control.
I'm not a big fan of code-generating wizards, and there's much
more I wish ControlWizard would do, but all things considered,
it's a tool that would be hard to live without.

Implementing OnDraw

When a control needs repainting, MFC calls its OnDraw
function. OnDraw is a virtual function inherited from
COleControl. It's prototyped like this:

virtual void OnDraw (CDC* pDC, const CRect& rcBounds,
 const CRect& rcInvalid)

pDC points to the device context in which the control should
paint itself. rcBounds describes the rectangle in which painting
should be performed. rcInvalid describes the portion of the

Programming Windows With MFC

 1340

control rectangle (rcBounds) that is invalid; it could be
identical to rcBounds, or it could be smaller. Use it to optimize
drawing performance the same way you'd use GetClipBox in a
conventional MFC application.

OnDraw can be called for three reasons:

x A windowed control receives a WM_PAINT message.
x IViewObjectEx::Draw is called on an inactive control (or one that's about

to become inactive) to retrieve a metafile for the control container. If
you'd like to draw the control differently when it's inactive, override
COleControl::OnDrawMetafile. The default implementation calls
OnDraw.

x IViewObjectEx::Draw is called on a windowless control to ask it to paint
itself into the container's window.

Regardless of why it's called, OnDraw's job is to draw the
control. The device context is provided for you in the parameter
list, and you can use CDC output functions to do the drawing.
Just be careful to abide by the following rules:

x Assume nothing about the state of the device context passed in
OnDraw's parameter list. You shouldn't assume, for example, that a
black pen or a white brush is selected in. Prepare the device context as if
its initial attributes were all wrong.

x Leave the device context in the same state you found it in, which means
not only selecting out the GDI objects you selected in, but also
preserving the drawing mode, text color, and other attributes of the
device context. As an alternative, you can check the Optimized Drawing
Code box in ControlWizard to advertise the control's intent not to
preserve the state of the device context. But because many containers
don't support this option, you must call COleControl::IsOptimizedDraw
inside OnDraw to find out whether it's OK.

x Limit your drawing to the rectangular area described by the rcBounds
parameter included in OnDraw's parameter list. For a windowed control,
rcBounds' upper left corner will be (0,0). For a windowless control, these
coordinates can be nonzero because they describe an area inside the
container's window.

x Begin OnDraw by erasing the control's background—the rectangle
described by rcBounds. This is typically accomplished by creating a
brush of the desired color and calling CDC::FillRect. If the control is
windowless, you can effect a transparent background by skipping this
step.

These rules exist primarily for the benefit of windowless
controls, but it's important to heed them when writing controls
that are designed to work equally well whether they're
windowed or windowless. To determine at run time whether a
control is windowed or windowless, check the control's

Programming Windows With MFC

 1341

m_bInPlaceSiteWndless data member. A nonzero value means
the control is windowless.

Using Ambient Properties

Ambient properties allow a control to query its container for
pertinent characteristics of the environment in which the
control is running. Because ambient properties are Automation
properties implemented by the container, they are read by
calling IDispatch::Invoke on the container. COleControl
simplifies the retrieval of ambient property values by supplying
wrapper functions that call IDispatch::Invoke for you.
COleControl::AmbientBackColor, for example, returns the
ambient background color. The following table lists several of
the ambient properties that are available, their dispatch IDs, and
the corresponding COleControl member functions. To read
ambient properties for which property-specific retrieval
functions don't exist, you can call GetAmbientProperty and
pass in the property's dispatch ID.

Ambient Properties

Property Name Dispatch ID COleControl
Retrieval Function

BackColor DISPID_AMBIENT_BACKCOLOR AmbientBackColor

DisplayName DISPID_AMBIENT_
DISPLAYNAME

AmbientDisplayNa
me

Font DISPID_AMBIENT_ FONT AmbientFont

ForeColor DISPID_AMBIENT_ FORECOLOR AmbientForeColor

LocaleID DISPID_AMBIENT_ LOCALEID AmbientLocaleID

MessageReflect DISPID_AMBIENT_MESSAGEREFL
ECT

GetAmbientPropert
y

ScaleUnits DISPID_AMBIENT_SCALEUNITS AmbientScaleUnits

TextAlign DISPID_AMBIENT_TEXTALIGN AmbientTextAlign

UserMode DISPID_AMBIENT_USERMODE AmbientUserMode

UIDead DISPID_AMBIENT_UIDEAD AmbientUIDead

DISPID_AMBIENT- AmbientShow-
ShowGrabHandles

_SHOWGRABHANDLES GrabHandles

ShowHatching DISPID_AMBIENT_SHOWHATCHI AmbientShowHatc

Programming Windows With MFC

 1342

NG hing

DisplayAsDefaultBu
tton

DISPID_AMBIENT_DISPLAYASDEF
AULT

GetAmbientPropert
y

DISPID_AMBIENT-
SupportsMnemonics

_SUPPORTSMNEMONICS

GetAmbientPropert
y

AutoClip DISPID_AMBIENT_AUTOCLIP GetAmbientPropert
y

Appearance DISPID_AMBIENT_APPEARANCE GetAmbientPropert
y

Palette DISPID_AMBIENT_PALETTE GetAmbientPropert
y

TransferPriority DISPID_AMBIENT_TRANSFERPRI
ORITY

GetAmbientPropert
y

The following code, which would probably be found in a
control's OnDraw function, queries the container for the
ambient background color and paints the control background
the same color:

CBrush brush (TranslateColor (AmbientBackColor ()));
pdc->FillRect (rcBounds, &brush);

Notice the use of COleControl::TranslateColor to convert the
OLE_COLOR color value returned by AmbientBackColor into
a Windows COLORREF value. OLE_COLOR is ActiveX's
native color data type.

If your OnDraw implementation relies on one or more ambient
properties, you should override
COleControl::OnAmbientPropertyChange in the derived
control class. This function is called when the container notifies
the control that one or more ambient properties have changed.
Overriding it allows the control to respond immediately to
changes in the environment surrounding it. A typical response
is to repaint the control by calling InvalidateControl:

void CMyControl::OnAmbientPropertyChange (DISPID dispid)
{
 InvalidateControl (); // Repaint.
}

Programming Windows With MFC

 1343

The dispid parameter holds the dispatch ID of the ambient
property that changed, or DISPID_UNKNOWN if two or more
properties have changed. A smart control could check this
parameter and refrain from calling InvalidateControl
unnecessarily.

Adding Methods

Adding a custom method to an ActiveX control is just like
adding a method to an Automation server. The procedure,
which was described in Chapter 20, involves going to
ClassWizard's Automation page, selecting the control class in
the Class Name box, clicking Add Method, filling in the Add
Method dialog box, and then filling in the empty function body
created by ClassWizard.

Adding a stock method is even easier. You once again click the
Add Method button, but rather than enter a method name, you
choose one from the drop-down list attached to the External
Name box. COleControl provides the method implementation,
so there's literally nothing more to do. You can call a stock
method on your own control by calling the corresponding
COleControl member function. The stock methods supported
by COleControl and the member functions used to call them
are listed in the following table.

Stock Methods Implemented by COleControl

Method Name Dispatch ID Call with

DoClick DISPID_DOCLICK DoClick

Refresh DISPID_REFRESH Refresh

When you add a custom method to a control, ClassWizard does
the same thing it does when you add a method to an
Automation server: it adds the method and its dispatch ID to the
project's ODL file, adds a function declaration and body to the
control class's H and CPP files, and adds a DISP_FUNCTION
statement to the dispatch map.

Stock methods are treated in a slightly different way.
ClassWizard still updates the ODL file, but because the
function implementation is provided by COleControl, no
function is added to your source code. Furthermore, rather than

Programming Windows With MFC

 1344

add a DISP_FUNCTION statement to the dispatch map,
ClassWizard adds a DISP_STOCKFUNC statement. The
following dispatch map declares two methods—a custom
method named Foo and the stock method Refresh:

BEGIN_DISPATCH_MAP (CMyControl, COleControl)
 DISP_FUNCTION (CMyControl, "Foo", Foo, VT_EMPTY,
VTS_NONE)
 DISP_STOCKFUNC_REFRESH ()
END_DISPATCH_MAP ()

DISP_STOCKFUNC_REFRESH is defined in Afxctl.h. It
maps the Automation method named Refresh to
COleControl::Refresh. A related macro named
DISP_STOCKFUNC_DOCLICK adds the stock method
DoClick to an ActiveX control.

Adding Properties

Adding a custom property to an ActiveX control is just like
adding a property to an MFC Automation server. ActiveX
controls support member variable properties and get/set
properties just like Automation servers do, so you can add
either type.

You add a stock property by choosing the property name from
the list that drops down from the Add Property dialog box's
External Name box. COleControl supports most, but not all, of
the stock properties defined in the ActiveX control
specification. The following table lists the ones that it supports.

Stock Properties Implemented by COleControl

Property
Name

Dispatch ID Retrieve with Notification Function

Appearanc
e

DISPID_APPEARANCE GetAppearance OnAppearanceChange
d

BackColor DISPID_BACKCOLOR GetBackColor OnBackColorChanged

BorderStyle DISPID_BORDERSTYL
E

GetBorderStyle OnBorderStyleChange
d

Caption DISPID_CAPTION GetText or
InternalGetText

OnTextChanged

Enabled DISPID_ENABLED GetEnabled OnEnabledChanged

Programming Windows With MFC

 1345

Font DISPID_FONT GetFont or
InternalGetFon
t

OnFontChanged

ForeColor DISPID_FORECOLOR GetForeColor OnForeColorChanged

hWnd DISPID_HWND GetHwnd N/A

ReadyState DISPID_READYSTATE GetReadyState N/A

Text DISPID_TEXT GetText or
InternalGetText

OnTextChanged

To retrieve the value of a stock property that your control
implements, call the corresponding COleControl get function.
(COleControl also provides functions for setting stock
property values, but they're rarely used.) To find out when the
value of a stock property changes, override the corresponding
notification function in your derived class. Generally, it's a
good idea to repaint the control any time a stock property
changes if the control indeed uses stock properties.
COleControl provides default notification functions that repaint
the control by calling InvalidateControl, so unless you want to
do more than simply repaint the control when a stock property
value changes, there's no need to write a custom notification
function.

Under the hood, adding a custom property to a control modifies
the control's source code files as if a property had been added to
an Automation server. Stock properties are handled differently.
In addition to declaring the property in the ODL file,
ClassWizard adds a DISP_STOCKPROP statement to the
control's dispatch map. The following dispatch map declares a
custom member variable property named SoundAlarm and the
stock property BackColor:

BEGIN_DISPATCH_MAP (CMyControl, COleControl)
 DISP_PROPERTY_EX (CMyControl, "SoundAlarm", m_bSoundAlarm,
VT_BOOL)
 DISP_STOCKPROP_BACKCOLOR ()
END_DISPATCH_MAP ()

DISP_STOCKPROP_BACKCOLOR is one of several stock
property macros defined in Afxctl.h. It associates the property
with a pair of COleControl functions named GetBackColor and
SetBackColor. Similar macros are defined for the other stock
properties that COleControl supports.

Programming Windows With MFC

 1346

Making Properties Persistent

After adding a custom property to a control, the very next thing
you should do is add a statement to the control's
DoPropExchange function making that property persistent. A
persistent property is one whose value is saved to some storage
medium (usually a disk file) and later read back. When a Visual
C++ programmer drops an ActiveX control into a dialog and
modifies the control's properties, the control is eventually asked
to serialize its property values. The dialog editor saves those
values in the project's RC file so that they will "stick." The
saved values are reapplied when the control is re-created.
Controls implement persistence interfaces such as
IPersistPropertyBag for this reason.

To make an MFC control's properties persistent, you don't have
to fuss with low-level COM interfaces. Instead, you override
the DoPropExchange function that a control inherits from
COleControl and add statements to it—one per property. The
statements are actually calls to PX functions. MFC provides
one PX function for each possible property type, as listed in the
following table.

PX Functions for Serializing Control Properties

Function Description

PX_Blob Serializes a block of binary data

PX_Bool Serializes a BOOL property

PX_Color Serializes an OLE_COLOR property

PX_Currency Serializes a CURRENCY property

PX_DataPath Serializes a CDataPathProperty property

PX_Double Serializes a double-precision floating point property

PX_Float Serializes a single-precision floating point property

PX_Font Serializes a CFontHolder property

PX_IUnknown Serializes properties held by another object

PX_Long Serializes a signed 32-bit integer property

PX_Picture Serializes a CPictureHolder property

PX_Short Serializes a signed 16-bit integer property

Programming Windows With MFC

 1347

PX_String Serializes a CString property

PX_ULong Serializes an unsigned 32-bit integer property

PX_UShort Serializes an unsigned 16-bit integer property

If your control implements a custom member variable property
of type BOOL named SoundAlarm, the following statement in
the control's DoPropExchange function makes the property
persistable:

PX_Bool (pPX, _T ("SoundAlarm"), m_bSoundAlarm, TRUE);

pPX is a pointer to a CPropExchange object; it's provided to
you in DoPropExchange's parameter list. SoundAlarm is the
property name, and m_bSoundAlarm is the variable that stores
the property's value. The fourth parameter specifies the
property's default value. It is automatically assigned to
m_bSoundAlarm when the control is created.

If SoundAlarm were a get/set property instead of a member
variable property, you'd need to retrieve the property value
yourself before calling PX_Bool:

BOOL bSoundAlarm = GetSoundAlarm ();
PX_Bool (pPX, _T ("SoundAlarm"), bSoundAlarm);

In this case, you would use the form of PX_Bool that doesn't
accept a fourth parameter. Custom get/set properties don't
require explicit initialization because they are initialized
implicitly by their get functions.

Which brings up a question. Given that custom properties are
initialized either inside DoPropExchange or by their get
functions, how (and when) do stock properties get initialized? It
turns out that MFC initializes them for you using commonsense
values. A control's default BackColor property, for example, is
set equal to the container's ambient BackColor property when
the control is created. The actual initialization is performed by
COleControl::ResetStockProps, so if you want to initialize
stock properties yourself, you can override this function and
initialize the property values manually after calling the base
class implementation of ResetStockProps.

Programming Windows With MFC

 1348

When you create a control project with ControlWizard,
DoPropExchange is overridden in the derived control class
automatically. Your job is to add one statement to it for each
custom property that you add to the control. There's no wizard
that does this for you, so you must do it by hand. Also, you
don't need to modify DoPropExchange when you add stock
properties because MFC serializes stock properties for you.
This serialization is performed by the
COleControl::DoPropExchange function. That's why
ControlWizard inserts a call to the base class when it overrides
DoPropExchange in a derived control class.

Customizing a Control's Property Sheet

One other detail you must attend to when adding properties to
an ActiveX control is to make sure that all those properties,
whether stock or custom, are accessible through the control's
property sheet. The property sheet is displayed by the container,
usually at the request of a user. For example, when a Visual
C++ programmer drops an ActiveX control into a dialog,
right-clicks the control, and selects Properties from the context
menu, the dialog editor displays the control's property sheet.

To make its properties accessible through a property sheet, a
control implements one or more property pages and makes
them available through its ISpecifyPropertyPages interface. To
display the control's property sheet, the container asks the
control for a list of CLSIDs by calling its
ISpecifyPropertyPages::GetPages method. Each CLSID
corresponds to one property page. The container passes the
CLSIDs to ::OleCreatePropertyFrame
or ::OleCreatePropertyFrameIndirect, which instantiates the
property page objects and inserts them into an empty property
sheet. Sometimes the container will insert property pages of its
own. That's why a control's property sheet will have extra pages
in some containers but not in others.

MFC simplifies matters by implementing
ISpecifyPropertyPages for you. It even gives you a free
implementation of property page objects in the form of
COlePropertyPage. ControlWizard adds an empty dialog
resource representing a property page to the project for you;
your job is to add controls to that page and link those controls

Programming Windows With MFC

 1349

to properties of the ActiveX control. You accomplish the first
task with the dialog editor. You connect a control on the page
to an ActiveX control property by using ClassWizard's Add
Variable button to add a member variable to the property page
class and specifying the Automation name of the ActiveX
control property in the Add Member Variable dialog box's
Optional Property Name field. (You'll see what I mean when
you build a control later in this chapter.)

Under the hood, ClassWizard links a dialog control to an
ActiveX control property by modifying the derived
COlePropertyPage class's DoDataExchange function. The
DDP_Check and DDX_Check statements in the following
DoDataExchange function link the check box whose ID is
IDC_CHECKBOX to an ActiveX control property named
SoundAlarm:

void CMyOlePropertyPage::DoDataExchange(CDataExchange*
pDX)
{
 DDP_Check (pDX, IDC_CHECKBOX, m_bSoundAlarm, _T
("SoundAlarm"));
 DDX_Check (pDX, IDC_CHECKBOX, m_bSoundAlarm);
 DDP_PostProcessing (pDX);
}

DDP functions work hand in hand with their DDX counterparts
to transfer data between property page controls and ActiveX
control properties.

Adding Pages to a Control's Property Sheet

When ControlWizard creates an ActiveX control project, it
includes just one property page. You can add extra pages by
modifying the control's property page map, which is found in
the derived control class's CPP file. Here's what a typical
property page map looks like:

BEGIN_PROPPAGEIDS (CMyControl, 1)
 PROPPAGEID (CMyControlPropPage::guid)
END_PROPPAGEIDS (CMyControl)

The 1 in BEGIN_PROPPAGEIDS' second parameter tells
MFC's implementation of ISpecifyPropertyPages that this

Programming Windows With MFC

 1350

control has just one property page; the PROPPAGEID
statement specifies that page's CLSID.
(CMyControlPropPage::guid is a static variable declared by
the IMPLEMENT_OLECREATE_EX macro that
ControlWizard includes in the property page class's CPP file.)

Adding a property page is as simple as incrementing the
BEGIN_PROPPAGEIDS count from 1 to 2 and adding a
PROPPAGEID statement specifying the page's CLSID. The big
question is, Where does that property page (and its CLSID)
come from?

There are two possible answers. The first is a stock property
page. The system provides three stock property pages that
ActiveX controls can use as they see fit: a color page for color
properties, a picture page for picture properties, and a font page
for font properties. Their CLSIDs are CLSID_CColorPropPage,
CLSID_CPicturePropPage, and CLSID_CFontPropPage,
respectively. The most useful of these is the stock color page
(shown in Figure 21-7), which provides a standard user
interface for editing any color properties implemented by your
control. The following property page map includes a color page
as well as the default property page:

BEGIN_PROPPAGEIDS (CMyControl, 2)
 PROPPAGEID (CMyOlePropertyPage::guid)
 PROPPAGEID (CLSID_CColorPropPage)
END_PROPPAGEIDS (CMyControl)

Figure 21-7. The stock color property page.

Programming Windows With MFC

 1351

The second possibility is that the PROPPAGEID statement you
add to the property page map identifies a custom property page
that you created yourself. Although the process for creating a
custom property page and wiring it into the control isn't
difficult, it isn't automatic either. The basic procedure is to add
a new dialog resource to the project, derive a class from
COlePropertyPage and associate it with the dialog resource,
add the page to the property page map, edit the control's string
table resource, and make a couple of manual changes to the
derived property page class. I won't provide a blow-by-blow
here because the Visual C++ documentation already includes
one. See "ActiveX controls, adding property pages" in the
online help for details.

Adding Events

Thanks to ClassWizard, adding a custom event to an ActiveX
control built with MFC is no more difficult than adding a
method or a property. Here's how you add a custom event:

1. Invoke ClassWizard, and go to the ActiveX Events page. (See Figure
21-8.)

Figure 21-8. ClassWizard's ActiveX Events page.

2. Click the Add Event button.
3. In the Add Event dialog box (shown in Figure 21-9), enter the event's

name (External Name), the name of the member function that you'd like
to call to fire the event (Internal Name), and, optionally, the arguments
that accompany the event. Because an event is an Automation method
implemented by a container, events can have parameter lists.

Programming Windows With MFC

 1352

Figure 21-9. The Add Event dialog box.

For each custom event that you add to a control, ClassWizard
adds a member function to the control class that you can use to
fire events of that type. By default, the function name is Fire
followed by the event name, but you can enter any name you
like in the Add Event dialog box. These custom event-firing
functions do little more than call COleControl::FireEvent,
which uses a form of COleDispatchDriver::InvokeHelper to
call Automation methods on the container's IDispatch pointer.

Adding a stock event is as simple as selecting an event name
from the list attached to the Add Event dialog box's External
Name box. The following table lists the stock events you can
choose from, their dispatch IDs, and the COleControl member
functions used to fire them.

Stock Events Implemented by COleControl

Event Name Dispatch ID Fire with

Click DISPID_CLICK FireClick

DblClick DISPID_DBLCLICK FireDblClick

Error DISPID_ERROREVENT FireError

KeyDown DISPID_KEYDOWN FireKeyDown

KeyPress DISPID_KEYPRESS FireKeyPress

KeyUp DISPID_KEYUP FireKeyUp

Programming Windows With MFC

 1353

MouseDown DISPID_MOUSEDOWN FireMouseDown

MouseMove DISPID_MOUSEMOVE FireMouseMove

MouseUp DISPID_MOUSEUP FireMouseUp

ReadyStateChange DISPID_READYSTATECHANGE FireReadyStateChange

The Fire functions in this table are inline functions that call
FireEvent with the corresponding event's dispatch ID. With the
exception of FireReadyStateChange and FireError, these
functions are rarely used directly because when you add a Click,
DblClick, KeyDown, KeyUp, KeyPress, MouseDown, MouseUp,
or MouseMove event to a control, MFC automatically fires the
corresponding event for you when a keyboard or mouse event
occurs.

Technically speaking, a COM interface that's implemented by a
control container to allow a control to fire events is known as
an event interface. Event interfaces are defined just like regular
interfaces in both the Interface Definition Language (IDL) and
the Object Description Language (ODL), but they're marked
with the special source attribute. In addition to adding Fire
functions for the custom events that you add to a control,
ClassWizard also declares events in the project's ODL file. In
ODL, an event is simply a method that belongs to an event
interface. Here's how the event interface is defined in the ODL
file for a control named MyControl that fires PriceChanged
events:

[uuid(D0C70155-41AA-11D2-AC8B-006008A8274D),
 helpstring("Event interface for MyControl Control")]
dispinterface _DMyControlEvents
{
 properties:
 // Event interface has no properties
 methods:
 [id(1)] void PriceChanged(CURRENCY price);
};

// Class information for CMyControl

[uuid(D0C70156-41AA-11D2-AC8B-006008A8274D),
 helpstring("MyControl Control"), control]
coclass MyControl
{
 [default] dispinterface _DMyControl;
 [default, source] dispinterface _DMyControlEvents;
};

Programming Windows With MFC

 1354

The dispinterface block defines the interface itself; coclass
identifies the interfaces that the control supports. In this
example, _DMyControl is the IDispatch interface through
which the control's methods and properties are accessed, and
_DMyControlEvents is the IDispatch interface for events. The
leading underscore in the interface names is a convention COM
programmers often use to denote internal interfaces. The capital
D following the underscore indicates that these are
dispinterfaces rather than conventional COM interfaces.

Event Maps

Besides adding Fire functions and modifying the control's ODL
file when events are added, ClassWizard also adds one entry
per event (stock or custom) to the control's event map. An event
map is a table that begins with BEGIN_EVENT_MAP and
ends with END_EVENT_MAP. Statements in between
describe to MFC what events the control is capable of firing
and what functions are called to fire them. An
EVENT_CUSTOM macro declares a custom event, and
EVENT_STOCK macros declare stock events. The following
event map declares a custom event named PriceChanged and
the stock event Click:

BEGIN_EVENT_MAP(CMyControlCtrl, COleControl)
 EVENT_CUSTOM("PriceChanged", FirePriceChanged, VTS_CY)
 EVENT_STOCK_CLICK()
END_EVENT_MAP()

MFC uses event maps to determine whether to fire stock events
at certain junctures in a control's lifetime. For example,
COleControl's WM_LBUTTONUP handler fires a Click event
if the event map contains an EVENT_STOCK_CLICK entry.
MFC currently doesn't use the EVENT_CUSTOM entries
found in a control's event map.

Building an ActiveX Control

Now that you understand the basics of the ActiveX control
architecture and MFC's support for the same, it's time to write
an ActiveX control. The control that you'll build is the calendar
control featured in Figure 21-1. It supports the following
methods, properties, and events:

Programming Windows With MFC

 1355

Name Description

Methods

GetDate Returns the calendar's current date

SetDate Sets the calendar's current date

Properties

BackColor Controls the calendar's background color

RedSundays Determines whether Sundays are highlighted in red

Events

NewDay Fired when a new date is selected

Because Calendar is a full-blown ActiveX control, it can be
used in Web pages and in applications written in
ActiveX-aware languages such as Visual Basic and Visual C++.
Following is a step-by-step account of how to build it.

1. Create a new MFC ActiveX ControlWizard project named Calendar.
Accept the default options in ControlWizard's Step 1 and Step 2 dialog
boxes.

2. Add three int member variables named m_nYear, m_nMonth, and
m_nDay to CCalendarCtrl. CCalendarCtrl is the class that represents
the control. The member variables that you added will store the control's
current date.

3. Add the following code to CCalendarCtrl's constructor to initialize the
member variables:

CTime time = CTime::GetCurrentTime ();
m_nYear = time.GetYear ();
m_nMonth = time.GetMonth ();
m_nDay = time.GetDay ();

4. Add the following variable declaration to the CCalendarCtrl in
CalendarCtrl.h:

static const int m_nDaysPerMonth[];

Then add these lines to CalendarCtrl.cpp to initialize the
m_nDaysPerMonth array with the number of days in
each month:

Programming Windows With MFC

 1356

const int CCalendarCtrl::m_nDaysPerMonth[] = {
 31, // January
 28, // February
 31, // March
 30, // April
 31, // May
 30, // June
 31, // July
 31, // August
 30, // September
 31, // October
 30, // November
 31, // December
};

5. Add the following protected member function to CCalendarCtrl:

BOOL CCalendarCtrl::LeapYear(int nYear)
{
 return (nYear % 4 == 0) ^ (nYear % 400 == 0) ^
 (nYear % 100 == 0);
}

This function returns a nonzero value if nYear is a leap year, or
0 if it isn't. The rule is that nYear is a leap year if it's evenly
divisible by 4, unless it's divisible by 100 but not by 400.

6. Add a BackColor property to the control by clicking the Add Property
button on ClassWizard's Automation page and selecting BackColor from
the External Name list in the Add Property dialog box. (See Figure
21-10.)

Programming Windows With MFC

 1357

Figure 21-10. Adding the BackColor property.

7. Modify the property page map in CalendarCtrl.cpp as shown below to
add a stock color page to the control's property sheet. Users will use this
property page to customize the control's background color:

BEGIN_PROPPAGEIDS (CCalendarCtrl, 2)
 PROPPAGEID (CCalendarCtrl::guid)
 PROPPAGEID (CLSID_CColorPropPage)
END_PROPPAGEIDS (CCalendarCtrl)

8. Fill in the Add Property dialog box as shown in Figure 21-11 to add a
custom member variable property named RedSundays. In response,
ClassWizard will add a member variable named m_redSundays (which
you can then change to m_bRedSundays) and a notification function
named OnRedSundaysChanged to the control class. Follow up by adding
the following statement to the notification function so that the control
will automatically repaint when the property value changes:

InvalidateControl ();

Programming Windows With MFC

 1358

Figure 21-11. Adding the RedSundays property.

9. Add the following statement to CCalendarCtrl::DoPropExchange to
make RedSundays persistent and to assign it a default value equal to
TRUE:

PX_Bool (pPX, _T ("RedSundays"), m_bRedSundays, TRUE);

10. Switch to ResourceView, and add a checkbox control to the dialog
resource whose ID is IDD_PROPPAGE_CALENDAR. (See Figure
21-12.) This is the resource that represents the control's property page.
Assign the check box the ID IDC_REDSUNDAYS and the text "Show
Sundays in &red."

Figure 21-12. The modified property page.

11. On ClassWizard's Member Variables page, select the property page's class
name (CCalendarPropPage) in the Class Name box, click the Add Variable
button, and fill in the Add Member Variable dialog box as shown in Figure
21-13. This will connect the check box control to the property named
RedSundays.

Programming Windows With MFC

 1359

Figure 21-13. Associating the check box with
RedSundays.

12. Implement the control's OnDraw function. See the CalendarCtrl.cpp
listing in Figure 21-18 for the finished code. Notice that OnDraw uses
GetBackColor to retrieve the value of the BackColor property and then
uses that value to paint the control's background. Also notice that it
checks the value of m_bRedSundays and sets the text color to red before
drawing a date corresponding to a Sunday if m_bRedSundays is nonzero.
This explains how the two properties that you added affect the control's
appearance.

13. Add methods named GetDate and SetDate. To add a method, click the
Add Method button on ClassWizard's Automation page. Pick DATE as
GetDate's return type (as in Figure 21-14) and BOOL as SetDate's return
type. Include three parameters in SetDate's parameter list: a short named
nYear, a short named nMonth, and a short named nDay (as in Figure
21-15). See Figure 21-18 for the method implementations.

Programming Windows With MFC

 1360

Figure 21-14. Adding the GetDate method.

Figure 21-15. Adding the SetDate method.

14. Add a NewDay event to the control by clicking the Add Event button on
ClassWizard's ActiveX Events page and filling in the Add Event dialog
box as shown in Figure 21-16.

Programming Windows With MFC

 1361

Figure 21-16. Adding the NewDay event.

15. Add a WM_LBUTTONDOWN handler to the control class that sets the
current date to the date that was clicked on the calendar. You add a
message handler to a control the same way you add a message handler to
a conventional MFC application. Refer to Figure 21-18 for the
implementation of OnLButtonDown. Notice the call to FireNewDay near
the end of the function.

16. In ResourceView, customize the control's toolbar button bitmap to look
like the one shown in Figure 21-17. You'll find the button bitmap under
the project's list of bitmap resources. The bitmap's resource ID is
IDB_CALENDAR.

Figure 21-17. The calendar control's toolbar button bitmap.

17. Build the control.

With that, you've just built your first ActiveX control. It
probably didn't seem very complicated, but rest assured that's
only because of the thousands of lines of code MFC supplied to
implement all those COM interfaces. Selected portions of the
finished source code appear in Figure 21-18.

Figure 21-18. The calendar control's source code.

Programming Windows With MFC

 1362

CalendarCtl.h
#if !defined(

AFX_CALENDARCTL_H__68932D29_CFE2_11D2_9282_00C04F8ECF0C__INCLUDED_)
#define
AFX_CALENDARCTL_H__68932D29_CFE2_11D2_9282_00C04F8ECF0C__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// CalendarCtl.h : Declaration of the CCalendarCtrl ActiveX Control class.
///
// CCalendarCtrl : See CalendarCtl.cpp for implementation.

class CCalendarCtrl : public COleControl
{
 DECLARE_DYNCREATE(CCalendarCtrl)

// Constructor
public:
 CCalendarCtrl();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CCalendarCtrl)
 public:
 virtual void OnDraw(CDC* pdc, const CRect& rcBounds,
 const CRect& rcInvalid);
 virtual void DoPropExchange(CPropExchange* pPX);
 virtual void OnResetState();
 //}}AFX_VIRTUAL

// Implementation
protected:
 BOOL LeapYear(int nYear);
 static const int m_nDaysPerMonth[];
 int m_nDay;
 int m_nMonth;
 int m_nYear;
 ~CCalendarCtrl();

 DECLARE_OLECREATE_EX(CCalendarCtrl) // Class factory and guid
 DECLARE_OLETYPELIB(CCalendarCtrl) // GetTypeInfo
 DECLARE_PROPPAGEIDS(CCalendarCtrl) // Property page IDs
 DECLARE_OLECTLTYPE(CCalendarCtrl) // Type name and misc
status

// Message maps
 //{{AFX_MSG(CCalendarCtrl)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

// Dispatch maps
 //{{AFX_DISPATCH(CCalendarCtrl)

Programming Windows With MFC

 1363

 BOOL m_bRedSundays;
 afx_msg void OnRedSundaysChanged();
 afx_msg DATE GetDate();
 afx_msg BOOL SetDate(short nYear, short nMonth, short nDay);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()

 afx_msg void AboutBox();

// Event maps
 //{{AFX_EVENT(CCalendarCtrl)
 void FireNewDay(short nDay)
 {FireEvent(eventidNewDay,EVENT_PARAM(VTS_I2), nDay);}
 //}}AFX_EVENT
 DECLARE_EVENT_MAP()

// Dispatch and event IDs
public:
 enum {
 //{{AFX_DISP_ID(CCalendarCtrl)
 dispidRedSundays = 1L,
 dispidGetDate = 2L,
 dispidSetDate = 3L,
 eventidNewDay = 1L,
 //}}AFX_DISP_ID
 };
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_CALENDARCTL_H__68932D29_CFE2_11D2_9282_00C04F8ECF0C__INCLUDED)

CalendarCtl.cpp
// CalendarCtl.cpp : Implementation of the
// CCalendarCtrl ActiveX Control class.

#include "stdafx.h"
#include "Calendar.h"
#include "CalendarCtl.h"
#include "CalendarPpg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

IMPLEMENT_DYNCREATE(CCalendarCtrl, COleControl)

const int CCalendarCtrl::m_nDaysPerMonth[] = {
 31, // January

Programming Windows With MFC

 1364

 28, // February
 31, // March
 30, // April
 31, // May
 30, // June
 31, // July
 31, // August
 30, // September
 31, // October
 30, // November
 31, // December
};

///
// Message map

BEGIN_MESSAGE_MAP(CCalendarCtrl, COleControl)
 //{{AFX_MSG_MAP(CCalendarCtrl)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)
END_MESSAGE_MAP()

///
// Dispatch map

BEGIN_DISPATCH_MAP(CCalendarCtrl, COleControl)
 //{{AFX_DISPATCH_MAP(CCalendarCtrl)
 DISP_PROPERTY_NOTIFY(CCalendarCtrl, "RedSundays",
m_bRedSundays,
 OnRedSundaysChanged, VT_BOOL)
 DISP_FUNCTION(CCalendarCtrl, "GetDate", GetDate, VT_DATE,
VTS_NONE)
 DISP_FUNCTION(CCalendarCtrl, "SetDate", SetDate, VT_BOOL,
 VTS_I2 VTS_I2 VTS_I2)
 DISP_STOCKPROP_BACKCOLOR()
 //}}AFX_DISPATCH_MAP
 DISP_FUNCTION_ID(CCalendarCtrl, "AboutBox",
DISPID_ABOUTBOX,
 AboutBox, VT_EMPTY, VTS_NONE)
END_DISPATCH_MAP()

///
// Event map

BEGIN_EVENT_MAP(CCalendarCtrl, COleControl)
 //{{AFX_EVENT_MAP(CCalendarCtrl)
 EVENT_CUSTOM("NewDay", FireNewDay, VTS_I2)
 //}}AFX_EVENT_MAP
END_EVENT_MAP()

///
// Property pages

// TODO: Add more property pages as needed.
// Remember to increase the count!

Programming Windows With MFC

 1365

BEGIN_PROPPAGEIDS(CCalendarCtrl, 2)
 PROPPAGEID(CCalendarPropPage::guid)
 PROPPAGEID (CLSID_CColorPropPage)
END_PROPPAGEIDS(CCalendarCtrl)

///
// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CCalendarCtrl,
"CALENDAR.CalendarCtrl.1",
 0xed780d6b, 0xcc9f, 0x11d2, 0x92, 0x82, 0, 0xc0, 0x4f, 0x8e, 0xcf, 0xc)

///
// Type library ID and version

IMPLEMENT_OLETYPELIB(CCalendarCtrl, _tlid, _wVerMajor,
_wVerMinor)

///
// Interface IDs

const IID BASED_CODE IID_DCalendar =
 { 0x68932d1a, 0xcfe2, 0x11d2,
 { 0x92, 0x82, 0, 0xc0, 0x4f, 0x8e, 0xcf, 0xc } };
const IID BASED_CODE IID_DCalendarEvents =
 { 0x68932d1b, 0xcfe2, 0x11d2,
 { 0x92, 0x82, 0, 0xc0, 0x4f, 0x8e, 0xcf, 0xc } };

///
// Control type information

static const DWORD BASED_CODE _dwCalendarOleMisc =
 OLEMISC_ACTIVATEWHENVISIBLE œ
 OLEMISC_SETCLIENTSITEFIRST œ
 OLEMISC_INSIDEOUT œ
 OLEMISC_CANTLINKINSIDE œ
 OLEMISC_RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CCalendarCtrl, IDS_CALENDAR,
_dwCalendarOleMisc)

///
// CCalendarCtrl::CCalendarCtrlFactory::UpdateRegistry -
// Adds or removes system registry entries for CCalendarCtrl

BOOL CCalendarCtrl::CCalendarCtrlFactory::UpdateRegistry(BOOL
bRegister)
{
 // TODO: Verify that your control follows apartment-model
 // threading rules. Refer to MFC TechNote 64 for more information.
 // If your control does not conform to the apartment-model rules, then
 // you must modify the code below, changing the 6th parameter from
 // afxRegApartmentThreading to 0.

 if (bRegister)
 return AfxOleRegisterControlClass(

Programming Windows With MFC

 1366

 AfxGetInstanceHandle(),
 m_clsid,
 m_lpszProgID,
 IDS_CALENDAR,
 IDB_CALENDAR,
 afxRegApartmentThreading,
 _dwCalendarOleMisc,
 _tlid,
 _wVerMajor,
 _wVerMinor);
 else
 return AfxOleUnregisterClass(m_clsid, m_lpszProgID);
}

///
// CCalendarCtrl::CCalendarCtrl - Constructor

CCalendarCtrl::CCalendarCtrl()
{
 InitializeIIDs(&IID_DCalendar, &IID_DCalendarEvents);

 CTime time = CTime::GetCurrentTime ();
 m_nYear = time.GetYear ();
 m_nMonth = time.GetMonth ();
 m_nDay = time.GetDay ();
}

///
// CCalendarCtrl::~CCalendarCtrl - Destructor

CCalendarCtrl::~CCalendarCtrl()
{
 // TODO: Cleanup your control's instance data here.
}

///
// CCalendarCtrl::OnDraw - Drawing function

void CCalendarCtrl::OnDraw(
 CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{
 //
 // Paint the control's background.
 //
 CBrush brush (TranslateColor (GetBackColor ()));
 pdc->FillRect (rcBounds, &brush);

 //
 // Compute the number of days in the month, which day of the week
 // the first of the month falls on, and other information needed to
 // draw the calendar.
 //
 int nNumberOfDays = m_nDaysPerMonth[m_nMonth - 1];
 if (m_nMonth == 2 && LeapYear (m_nYear))
 nNumberOfDays++;

Programming Windows With MFC

 1367

 CTime time (m_nYear, m_nMonth, 1, 12, 0, 0);
 int nFirstDayOfMonth = time.GetDayOfWeek ();
 int nNumberOfRows = (nNumberOfDays + nFirstDayOfMonth + 5) / 7;

 int nCellWidth = rcBounds.Width () / 7;
 int nCellHeight = rcBounds.Height () / nNumberOfRows;

 int cx = rcBounds.left;
 int cy = rcBounds.top;

 //
 // Draw the calendar rectangle.
 //
 CPen* pOldPen = (CPen*) pdc->SelectStockObject (BLACK_PEN);
 CBrush* pOldBrush = (CBrush*) pdc->SelectStockObject
(NULL_BRUSH);

 pdc->Rectangle (rcBounds.left, rcBounds.top,
 rcBounds.left + (7 * nCellWidth),
 rcBounds.top + (nNumberOfRows * nCellHeight));
 //
 // Draw rectangles representing the days of the month.
 //
 CFont font;
 font.CreatePointFont (80, _T ("MS Sans Serif"));
 CFont* pOldFont = pdc->SelectObject (&font);

 COLORREF clrOldTextColor = pdc->SetTextColor (RGB (0, 0, 0));
 int nOldBkMode = pdc->SetBkMode (TRANSPARENT);

 for (int i=0; i<nNumberOfDays; i++) {
 int nGridIndex = i + nFirstDayOfMonth - 1;
 int x = ((nGridIndex % 7) * nCellWidth) + cx;
 int y = ((nGridIndex / 7) * nCellHeight) + cy;
 CRect rect (x, y, x + nCellWidth, y + nCellHeight);

 if (i != m_nDay - 1) {
 pdc->Draw3dRect (rect, RGB (255, 255, 255),
 RGB (128, 128, 128));
 pdc->SetTextColor (RGB (0, 0, 0));
 }
 else {
 pdc->SelectStockObject (NULL_PEN);
 pdc->SelectStockObject (GRAY_BRUSH);
 pdc->Rectangle (rect);
 pdc->Draw3dRect (rect, RGB (128, 128, 128),
 RGB (255, 255, 255));
 pdc->SetTextColor (RGB (255, 255, 255));
 }

 CString string;
 string.Format (_T ("%d"), i + 1);
 rect.DeflateRect (nCellWidth / 8, nCellHeight / 8);

 if (m_bRedSundays && nGridIndex % 7 == 0)
 pdc->SetTextColor (RGB (255, 0, 0));

Programming Windows With MFC

 1368

 pdc->DrawText (string, rect, DT_SINGLELINE œ DT_LEFT œ
DT_TOP);
 }

 //
 // Clean up and exit.
 //
 pdc->SetBkMode (nOldBkMode);
 pdc->SetTextColor (clrOldTextColor);
 pdc->SelectObject (pOldFont);
 pdc->SelectObject (pOldBrush);
 pdc->SelectObject (pOldPen);
}

///
// CCalendarCtrl::DoPropExchange - Persistence support

void CCalendarCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);
 PX_Bool (pPX, _T ("RedSundays"), m_bRedSundays, TRUE);
}

///
// CCalendarCtrl::OnResetState - Reset control to default state

void CCalendarCtrl::OnResetState()
{
 COleControl::OnResetState(); // Resets defaults found in DoPropExchange

 // TODO: Reset any other control state here.
}

///
// CCalendarCtrl::AboutBox - Display an "About" box to the user

void CCalendarCtrl::AboutBox()
{
 CDialog dlgAbout(IDD_ABOUTBOX_CALENDAR);
 dlgAbout.DoModal();
}

///
// CCalendarCtrl message handlers

BOOL CCalendarCtrl::LeapYear(int nYear)
{
 return (nYear % 4 == 0) ^ (nYear % 400 == 0) ^ (nYear % 100 == 0);
}

void CCalendarCtrl::OnRedSundaysChanged()
{
 InvalidateControl ();
 SetModifiedFlag();

Programming Windows With MFC

 1369

}

DATE CCalendarCtrl::GetDate()
{
 COleDateTime date (m_nYear, m_nMonth, m_nDay, 12, 0, 0);
 return (DATE) date;
}

BOOL CCalendarCtrl::SetDate(short nYear, short nMonth, short nDay)
{
 //
 // Make sure the input date is valid.
 //
 if (nYear < 1970 œœ nYear > 2037)
 return FALSE;

 if (nMonth < 1 œœ nMonth > 12)
 return FALSE;

 int nNumberOfDays = m_nDaysPerMonth[m_nMonth - 1];
 if (nMonth == 2 && LeapYear (nYear))
 nNumberOfDays++;

 if (nDay < 1 œœ nDay > nNumberOfDays)
 return FALSE;

 //
 // Update the date, repaint the control, and fire a NewDay event.
 //
 m_nYear = nYear;
 m_nMonth = nMonth;
 m_nDay = nDay;
 InvalidateControl ();
 return TRUE;
}

void CCalendarCtrl::OnLButtonDown(UINT nFlags, CPoint point)
{
 int nNumberOfDays = m_nDaysPerMonth[m_nMonth - 1];
 if (m_nMonth == 2 && LeapYear (m_nYear))
 nNumberOfDays++;

 CTime time (m_nYear, m_nMonth, 1, 12, 0, 0);
 int nFirstDayOfMonth = time.GetDayOfWeek ();
 int nNumberOfRows = (nNumberOfDays + nFirstDayOfMonth + 5) / 7;

 CRect rcClient;
 GetClientRect (&rcClient);
 int nCellWidth = rcClient.Width () / 7;
 int nCellHeight = rcClient.Height () / nNumberOfRows;

 for (int i=0; i<nNumberOfDays; i++) {
 int nGridIndex = i + nFirstDayOfMonth - 1;
 int x = rcClient.left + (nGridIndex % 7) * nCellWidth;
 int y = rcClient.top + (nGridIndex / 7) * nCellHeight;
 CRect rect (x, y, x + nCellWidth, y + nCellHeight);

Programming Windows With MFC

 1370

 if (rect.PtInRect (point)) {
 m_nDay = i + 1;
 FireNewDay (m_nDay);
 InvalidateControl ();
 }
 }
 COleControl::OnLButtonDown(nFlags, point);
}

Testing and Debugging an ActiveX Control

Now that you've built the control, you'll want to test it, too.
Visual C++ comes with the perfect tool for testing ActiveX
controls: the ActiveX Control Test Container. You can start it
from Visual C++'s Tools menu or by launching Tstcon32.exe.
Once the ActiveX Control Test Container is running, go to its
Edit menu, select the Insert New Control command, and select
Calendar Control from the Insert Control dialog box to insert
your control into the test container, as shown in Figure 21-19.

Figure 21-19. The ActiveX Control Test Container.

Initially, the control's background will probably be white
because MFC's implementation of the stock property
BackColor defaults to the container's ambient background color.
This presents a wonderful opportunity to test the BackColor
property you added to the control. With the control selected in
the test container window, select Properties from the Edit menu.

Programming Windows With MFC

 1371

The control's property sheet will be displayed. (See Figure
21-20.) Go to the Colors page, and select light gray as the
background color. Then click Apply. The control should turn
light gray. Go back to the property sheet's General page and
toggle Show Sundays In Red on and off a time or two. The
control should repaint itself each time you click the Apply
button. Remember the OnRedSundaysChanged notification
function in which you inserted a call to InvalidateControl? It's
that call that causes the control to update when the property
value changes.

Figure 21-20. The calendar control's property sheet.

You can test a control's methods in the ActiveX Control Test
Container, too. To try it, select the Invoke Methods command
from the Control menu. The Invoke Methods dialog box, which
is pictured in Figure 21-21, knows which methods the control
implements because it read the control's type information. (That
type information was generated from the control's ODL file and
linked into the control's OCX as a binary resource.) To call a
method, select the method by name in the Method Name box,
enter parameter values (if applicable) in the Parameters box,
and click the Invoke button. The method's return value will
appear in the Return Value box. Incidentally, properties show
up in the Invoke Methods dialog box with PropGet and PropPut
labels attached to them. A PropGet method reads a property
value, and a PropPut method writes it.

Programming Windows With MFC

 1372

Figure 21-21. The ActiveX Control Test Container's Invoke Methods
dialog box.

The ActiveX Control Test Container also lets you test a
control's events. To demonstrate, choose the Logging command
from the Options menu and make sure Log To Output Window
is selected. Then click a few dates in the calendar. A NewDay
event should appear in the output window with each click, as in
Figure 21-22. The event is fired because you included a call to
FireNewDay in the control's OnLButtonDown function.

Programming Windows With MFC

 1373

Figure 21-22. Events are reported in the ActiveX Control Test Container's
output window.

If your control uses any of the container's ambient properties,
you can customize those properties to see how the control
reacts. To change an ambient property, use the Ambient
Properties command in the Container menu.

What happens if your control doesn't behave as expected and
you need to debug it? Fortunately, you can do that, too.
Suppose you want to set a breakpoint in your code, see it hit,
and single-step through the code. It's easy. Just open the control
project in Visual C++ and set the breakpoint. Then go to the
Build menu and select Start Debug-Go. When Visual C++ asks
you for an executable file name, click the arrow next to the edit
control and select ActiveX Control Test Container. Insert the
control into the container and do something to cause the
breakpoint to be hit. That should pop you into the Visual C++
debugger with the arrow on the instruction at the breakpoint.
The same debugging facilities that Visual C++ places at your
disposal for debugging regular MFC applications are available
for debugging controls, too.

Registering an ActiveX Control

Like any COM object, an ActiveX control can't be used unless
it is registered on the host system. Registering an ActiveX

Programming Windows With MFC

 1374

control means adding entries to the registry identifying the
control's CLSID, the DLL that houses the control, and other
information. When you build an ActiveX control with Visual
C++, the control is automatically registered as part of the build
process. If you give the control to another user, that user will
need to register it on his or her system before it can be used.
Here are two ways to register a control on another system.

The first way is to provide a setup program that registers the
control programmatically. Because an OCX is a self-registering
in-proc COM server, the setup program can load the OCX as if
it were an ordinary DLL, find the address of its
DllRegisterServer function, and call the function.
DllRegisterServer, in turn, will register any and all of the
controls in the OCX. The following code demonstrates how this
is done if the OCX is named Calendar.ocx:

HINSTANCE hOcx = ::LoadLibrary (_T ("Calendar.ocx"));
if (hOcx != NULL) {
 FARPROC lpfn = ::GetProcAddress (hOcx, _T
("DllRegisterServer"));
 if (lpfn != NULL)
 (*lpfn) (); // Register the control(s).
 ::FreeLibrary (hOcx);
}

To implement an uninstall feature, use the same code but
change the second parameter passed to ::GetProcAddress from
"DllRegisterServer" to "DllUnregisterServer."

To register an ActiveX control on someone else's system
without writing a setup program, use the Regsvr32 utility that
comes with Visual C++. If Calendar.ocx is in the current
directory, typing the following command into a command
prompt window will register the OCX's controls:

Regsvr32 Calendar.ocx

By the same token, passing a /U switch to Regsvr32 unregisters
the controls in an OCX:

Regsvr32 /U Calendar.ocx

Programming Windows With MFC

 1375

Regsvr32 isn't a tool you should foist on end users, but it's a
handy utility to have when testing and debugging a control
prior to deployment.

21.3. Using ActiveX Controls in MFC
Applications

Now you know how to write ActiveX controls. But what about
control containers? Not just any window can host an ActiveX
control; to do it, someone must implement the requisite COM
interfaces. Fortunately, MFC will provide those interfaces for
you. All you have to do is check a box in AppWizard and insert
the control into the project. The control will then appear in the
dialog editor's control toolbar, where it can be inserted into any
MFC dialog.

Here are the steps required to use an ActiveX control in an
MFC application:

1. In AppWizard's Step 2 dialog box (for dialog-based applications) or Step
3 dialog box (for nondialog-based applications), check the ActiveX
Controls box, as shown in Figure 21-23.

Figure 21-23. Checking AppWizard's ActiveX Controls box makes
any MFC dialog an ActiveX control container.

2. When AppWizard is done, use Visual C++'s Project-Add To
Project-Components And Controls command to insert the control into
the project. This command displays the Components And Controls

Programming Windows With MFC

 1376

Gallery dialog box. The Registered ActiveX Controls folder contains a
list of all the ActiveX controls installed on this system. (See Figure
21-24.)

Figure 21-24. The Components And Controls Gallery dialog box
showing a list of registered ActiveX controls.

3. When the Confirm Classes dialog box (shown in Figure 21-25) appears,
either edit the class name and file names or accept the defaults. Visual
C++ will create a wrapper class that the container can use to interact
with the control. Member functions in the wrapper class will provide
access to the control's methods and properties. Visual C++ gets the
information it needs to build the wrapper class from the control's type
library.

Programming Windows With MFC

 1377

Figure 21-25. The Confirm Classes dialog box.

4. Close the Components And Controls Gallery dialog box.

If you now switch to ResourceView and open a dialog resource,
the dialog editor's controls toolbar will contain a button
representing the control. Adding the control to a dialog is a
simple matter of clicking the button and drawing the control
into the dialog. You can display the control's property sheet by
right-clicking the control and selecting Properties from the
context menu. Any changes you make to the control's
properties will be serialized into the project's RC file and
reapplied when the dialog is displayed.

Calling an ActiveX Control's Methods

Can it really be that easy? You bet. But that's not all. You can
program the control—call its methods and read and write its
properties programmatically—using the wrapper class
generated when the control was added to the project. First,
though, you must instantiate the wrapper class and connect it to
a running control. Here's how to do it:

1. Go to ClassWizard's Member variables page, and select the ActiveX
control's ID in the Control IDs box.

2. Click the Add Variable button, and choose the wrapper class's name (for
example, CCalendar) in the Variable Type box. Enter a name for the
instantiated class in the Member Variable Name box, too.

Programming Windows With MFC

 1378

3. Click OK.

After that, you can call a control method or access a control
property by calling the corresponding member function on the
object whose name you entered in the Member Variable Name
box. For a calendar control object named m_ctlCalendar, the
following statement calls the control's SetDate method to set
the date to January 1, 2000:

m_ctlCalendar.SetDate (2000, 1, 1);

The next statement sets the control's background color to light
gray:

m_ctlCalendar.SetBackColor (OLE_COLOR (RGB (192, 192, 192)));

It works because ClassWizard added a DDX_Control statement
to the dialog's DoDataExchange function that connects
m_ctlCalendar to the running ActiveX control. You could add
this statement yourself, but regardless of how you choose to do
it, the fact remains that accessing the control from your
program's source code is now no more difficult than calling a
C++ member function.

Processing Events

You might want to do one more thing with an ActiveX control
in an MFC application: process events. In Chapter 1, you
learned that MFC uses message maps to correlate messages to
member functions. Similarly, it uses event sink maps to
correlate events fired by ActiveX controls to member functions.
Here's a simple event sink map that connects NewDay events
fired by our calendar control to a CMyDialog member function
named OnNewDay:

BEGIN_EVENTSINK_MAP (CMyDialog, CDialog)
 ON_EVENT (CMyDialog, IDC_CALENDAR, 1, OnNewDay, VTS_I2)
END_EVENTSINK_MAP ()

The second parameter passed to ON_EVENT is the control ID.
The third is the event's dispatch ID. The fourth is the member
function that's called when the event is fired, and the final
parameter specifies the types of parameters included in the

Programming Windows With MFC

 1379

event's parameter list—in this case, a 16-bit integer (VTS_I2).
An event sink map can hold any number of ON_EVENT
entries, making it a simple matter for an MFC container to
respond to all manner of control events.

How do you write event sink maps? You don't have to write
them by hand because ClassWizard will write them for you. To
write an event handler, go to ClassWizard's Message Maps
page, select the class that hosts the control in the Class Name
box, and select the control's ID in the Object IDs box. You'll
see a list of events that the control is capable of firing in the
Messages box. (See Figure 21-26.) Select an event, and click
the Add Function button. Enter a name for the member function
you want to be called when the event is fired, and ClassWizard
will add the member function to the class and an entry to the
event sink map. When an event of that type is fired, the
member function will be called just as if it were an ordinary
message handler.

Figure 21-26. Adding an event handler with ClassWizard.

The CalUser Application

The CalUser application shown in Figure 21-1 is a dialog-based
MFC application that hosts the MFC calendar control. Selecting
a new month or year changes the calendar by calling its SetDate
method. Clicking a square in the calendar pops up a message
box that echoes the date that was clicked. The message box is
displayed by an event handler named OnNewDay that's called

Programming Windows With MFC

 1380

each time the control fires a NewDay event. Relevant portions
of CalUser's source code are reproduced in Figure 21-27.

Figure 21-27. The CalUser application.

CalUserDlg.h
// CalUserDlg.h : header file
//
//{{AFX_INCLUDES()
#include "calendar.h"
//}}AFX_INCLUDES

#if !defined(

AFX_CALUSERDLG_H__85FDD589_470B_11D2_AC96_006008A8274D__INCLUDED_)
#define
AFX_CALUSERDLG_H__85FDD589_470B_11D2_AC96_006008A8274D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CCalUserDlg dialog

class CCalUserDlg : public CDialog
{
// Construction
public:
 CCalUserDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CCalUserDlg)
 enum { IDD = IDD_CALUSER_DIALOG };
 CComboBox m_ctlYear;
 CComboBox m_ctlMonth;
 CCalendar m_ctlCalendar;
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CCalUserDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //}}AFX_VIRTUAL

// Implementation
protected:
 static const CString m_strMonths[];
 void InitListOfYears ();
 void InitListOfMonths ();
 HICON m_hIcon;

 // Generated message map functions
 //{{AFX_MSG(CCalUserDlg)

Programming Windows With MFC

 1381

 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 afx_msg void OnChangeDate();
 afx_msg void OnNewDay(short nDay);
 DECLARE_EVENTSINK_MAP()
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(
//
AFX_CALUSERDLG_H__85FDD589_470B_11D2_AC96_006008A8274D__INCLUDED_)

CalUserDlg.cpp
// CalUserDlg.cpp : implementation file
//

#include "stdafx.h"
#include "CalUser.h"
#include "CalUserDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CCalUserDlg dialog

CCalUserDlg::CCalUserDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CCalUserDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CCalUserDlg)
 //}}AFX_DATA_INIT
 // Note that LoadIcon does not require a subsequent
 // DestroyIcon in Win32
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CCalUserDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CCalUserDlg)
 DDX_Control(pDX, IDC_YEAR, m_ctlYear);
 DDX_Control(pDX, IDC_MONTH, m_ctlMonth);
 DDX_Control(pDX, IDC_CALENDAR, m_ctlCalendar);
 //}}AFX_DATA_MAP
}

Programming Windows With MFC

 1382

BEGIN_MESSAGE_MAP(CCalUserDlg, CDialog)
 //{{AFX_MSG_MAP(CCalUserDlg)
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 ON_CBN_SELENDOK(IDC_MONTH, OnChangeDate)
 ON_CBN_SELENDOK(IDC_YEAR, OnChangeDate)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

const CString CCalUserDlg::m_strMonths[] = {
 _T ("January"),
 _T ("February"),
 _T ("March"),
 _T ("April"),
 _T ("May"),
 _T ("June"),
 _T ("July"),
 _T ("August"),
 _T ("September"),
 _T ("October"),
 _T ("November"),
 _T ("December")
};
///
// CCalUserDlg message handlers

BOOL CCalUserDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 //
 // Initialize the Month control.
 //
 COleDateTime date = m_ctlCalendar.GetDate ();
 int nMonth = date.GetMonth ();
 int nYear = date.GetYear ();

 InitListOfMonths ();
 m_ctlMonth.SetCurSel (nMonth - 1);

 //
 // Initialize the Year control.
 //
 InitListOfYears ();
 m_ctlYear.SetCurSel (nYear - 1970);

 return TRUE;
}

void CCalUserDlg::OnPaint()
{
 if (IsIconic())
 {

Programming Windows With MFC

 1383

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

HCURSOR CCalUserDlg::OnQueryDragIcon()
{
 return (HCURSOR) m_hIcon;
}

void CCalUserDlg::InitListOfMonths()
{
 for (int i=0; i<12; i++)
 m_ctlMonth.AddString (m_strMonths[i]);
}

void CCalUserDlg::InitListOfYears()
{
 for (int i=1970; i<=2037; i++) {
 CString string;
 string.Format (_T ("%d"), i);
 m_ctlYear.AddString (string);
 }
}

void CCalUserDlg::OnChangeDate()
{
 int nMonth = m_ctlMonth.GetCurSel () + 1;
 int nYear = GetDlgItemInt (IDC_YEAR);
 ASSERT (nYear != 0);
 m_ctlCalendar.SetDate (nYear, nMonth, 1);
}

BEGIN_EVENTSINK_MAP(CCalUserDlg, CDialog)
 //{{AFX_EVENTSINK_MAP(CCalUserDlg)
 ON_EVENT(CCalUserDlg, IDC_CALENDAR, 1 /* NewDay */,
OnNewDay, VTS_I2)
 //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

Programming Windows With MFC

 1384

void CCalUserDlg::OnNewDay(short nDay)
{
 static const CString strDays[] = {
 _T ("Sunday"),
 _T ("Monday"),
 _T ("Tuesday"),
 _T ("Wednesday"),
 _T ("Thursday"),
 _T ("Friday"),
 _T ("Saturday"),
 };

 COleDateTime date = m_ctlCalendar.GetDate ();
 int nMonth = date.GetMonth ();
 int nYear = date.GetYear ();

 CTime time (nYear, nMonth, nDay, 12, 0, 0);
 int nDayOfWeek = time.GetDayOfWeek () - 1;

 CString string;
 string.Format (_T ("%s, %s %d, %d"), strDays[nDayOfWeek],
 m_strMonths[nMonth - 1], nDay, nYear);

 MessageBox (string);
}

Using ActiveX Controls in Nondialog Windows

MFC and ClassWizard make it wonderfully easy to use
ActiveX controls in dialogs, but what about nondialog windows?
It turns out that MFC allows any CWnd object to host ActiveX
controls. You can create ActiveX controls just about anywhere
in an MFC application, but outside of dialog windows, you
have to do some manual coding to make it happen.

Here's how to add the MFC calendar control to a view:

1. Insert the control into the project. Name the wrapper class CCalendar.
2. Add a CCalendar member variable named m_ctlCalendar to the view.
3. Add the following statement to the view's OnCreate handler:

m_ctlCalendar.Create (NULL, WS_VISIBLE,
 CRect (0, 0, 400, 300), this, IDC_CALENDAR);

When the view is created, the calendar control will be created
in the view's upper left corner and assigned the control ID
IDC_CALENDAR. Most of the work is done by
CCalendar::Create, which calls the CreateControl function
CCalendar inherits from CWnd. CWnd::CreateControl

Programming Windows With MFC

 1385

indirectly calls COleControlSite::CreateControl, which creates
an ActiveX control and wires it up to its container.

So far, so good. But what if you want the view to process
control events, too? This is where it gets tricky. ClassWizard
will add event handlers to dialogs, but not to nondialogs. So
you code the event sink map by hand. That wouldn't be too bad
if it weren't for the fact that an event's parameter list has to be
coded into the ON_EVENT statement in the form of VTS flags.
Some programmers get around this by doing the following:

1. Add a dummy dialog to the application.
2. Insert the ActiveX control into the dialog.
3. Use ClassWizard to write event handlers into the dialog.
4. Copy the event sink map from the dialog to the view.
5. Delete the dummy dialog.

I didn't say it was pretty. But it works. If you use this technique,
don't forget to copy the DECLARE_EVENTSINK_MAP
statement from the dialog's header file to the view's header file.
DECLARE_EVENTSINK_MAP declares an event sink map
just as DECLARE_MESSAGE_MAP declares a message map.

All this assumes, of course, that you checked AppWizard's
ActiveX Controls box when you created the project. If you
didn't, you can add container support to the application after the
fact by adding an

AfxEnableControlContainer ();

statement to InitInstance.

Using ActiveX Controls in Web Pages

One of the reasons ActiveX controls exist is to make Web
content more interactive. An <OBJECT> tag in an HTML page
denotes an ActiveX control. The control's methods and
properties are accessible from within the HTML code, and
events can be processed as well. The following HTML page
displays this chapter's calendar control and responds to
NewDay events by popping up a message box announcing
which date was clicked:

<HTML>

Programming Windows With MFC

 1386

<BODY>
<OBJECT
 CLASSID="CLSID:ED780D6B-CC9F-11D2-9282-00C04F8ECF0C"
 WIDTH=400
 HEIGHT=300
 ID="Calendar"
>
<PARAM NAME="BackColor" VALUE=12632256>
</OBJECT>
</BODY>
<SCRIPT LANGUAGE=VBScript>
Sub Calendar_NewDay(day)
 dt = Calendar.GetDate
 yr = DatePart ("yyyy", dt)
 mon = DatePart ("m", dt)
 MsgBox (CStr (mon) + "/" + CStr (day) + "/" + CStr (yr))
End Sub
</SCRIPT>
</HTML>

You can try out these statements by typing them into an HTML
file and opening the file with Internet Explorer. You'll have to
modify the CLSID in the <OBJECT> tag if you create the
control yourself because your control's CLSID will differ from
mine. And remember that for the page to display properly, the
control must be installed on your system. (In real life, the
<OBJECT> tag would include a CODEBASE attribute and a
URL telling Internet Explorer where to find the control if it's
not already installed.) Notice the WIDTH and HEIGHT
statements that specify the size of the control and the PARAM
statement that sets the control's background color to light gray.
The VBScript code in the SCRIPT block is called whenever a
NewDay event is fired. It calls the control's GetDate method
and displays the resultant date.

21.4. Advanced Topics

No chapter can possibly cover everything there is to know
about ActiveX controls. You've learned the essentials, but there
are some additional issues that every control developer should
be aware of. The following sections present three such issues.

Windowless Controls

Although ActiveX controls have existed in one form or another
since 1994, 1996 was the year that they came of age. OCX 94
defined the baseline control architecture; OCX 96 introduced a

Programming Windows With MFC

 1387

number of enhancements designed to allow controls to run
faster and more efficiently and consume fewer resources while
doing so. One of those enhancements was the windowless
control.

OCX 94_style controls are always created with windows of
their own. This is consistent with the behavior of Windows
controls, which also have their own windows. That's fine when
you're hosting just one or two controls, but if a container
creates tens, perhaps hundreds, of ActiveX controls, giving
each a window of its own introduces an appreciable amount of
overhead in terms of resource requirements and instantiation
time.

It turns out that most controls don't really need windows of
their own if their containers are willing to help out by
performing a few small chores such as simulating the input
focus and forwarding mouse messages. This interaction
between the control and the container—the physical
mechanisms that permit a windowless ActiveX control to
borrow a portion of its container's window—was standardized
in OCX 96.

Here, in a nutshell, is how it works. A windowless control
implements the COM interface IOleInPlaceObjectWindowless;
a container that supports windowless controls implements
IOleInPlaceSiteWindowless. When a windowless control is
created, it has no window, which means it can't receive mouse
or keyboard input. Therefore, the container forwards mouse
messages and, if the control has the conceptual input focus,
keyboard messages to the control by calling its
IOleInPlaceObjectWindowless::OnWindowMessage method.
Another IOleInPlaceObjectWindowless method named
GetDropTarget permits the container to get a pointer to the
control's IDropTarget interface if the control is an OLE drop
target. (Recall from Chapter 19 that registering as an OLE drop
target requires a CWnd pointer or a window handle.) To draw a
windowless control, the container calls the control's
IViewObjectEx::Draw method and passes in a device context
for the container window. A windowless control receives no
WM_PAINT messages, so it's up to the container to tell the
control when to draw.

Programming Windows With MFC

 1388

Clearly, the container shoulders an extra burden when it
supports windowless controls, but the control also has to do
certain things differently, too. For example, if it wants to
repaint itself, a windowless control can't just call Invalidate
because it has no window to invalidate. Nor can it get a device
context by calling GetDC. So instead it calls
IOleInPlaceSiteWindowless::InvalidateRect on its container to
invalidate itself, or IOleInPlaceSiteWindowless::GetDC to get a
device context. There's more, but you probably get the picture.

Obviously, windowlessness requires extra effort on the part of
both the control and the control container. The good news is
that COleControl supports both windowed and windowless
controls, and it abstracts the differences between them so that
you write to one programming model and the control will work
either way. Many COleControl functions behave differently in
a windowed control than they do in a windowless control.
COleControl::InvalidateControl, for example, calls
CWnd::Invalidate if the control is windowed or
IOleInPlaceSiteWindowless::InvalidateRect if it isn't.
COleControl::GetClientRect calls CWnd::GetClientRect for a
windowed control, but for a nonwindowed control, it obtains
the control rectangle from the control's m_rcPos data member.

Another example demonstrating how COleControl masks the
differences between windowed and windowless controls relates
to the message map. When a container forwards a message to a
windowless control via
IOleInPlaceObjectWindowless::OnWindowMessage,
COleControl routes the message through the message map.
This means that if you register an OnLButtonDown handler in a
control's message map, the handler will be called when a
windowed control receives a WM_LBUTTONDOWN message
or when a windowless control receives a
pseudo-WM_LBUTTONDOWN message. In fact,
COleControl does such a good job making windowless controls
behave just like windowed controls that you almost have to
deliberately set out to write COleControl code that won't work
in windowless controls. Even so, you'll want to avoid these
three common mistakes:

x Don't use Invalidate to force a repaint; use InvalidateControl instead.
x Don't trap messages directly; use the message map.

Programming Windows With MFC

 1389

x Don't rely on window-oriented messages such as WM_CREATE and
WM_DESTROY; windowless controls don't receive them.

Another common problem is using the rcBounds parameter
passed to OnDraw or the rectangle returned by GetClientRect
and forgetting that the upper left corner might not be (0,0) for a
windowless control. The following code, which computes the
center point of the control, is fine in a windowed control, but
flawed in a windowless control:

CRect rect;
GetClientRect (&rect);
int x = rect.Width () / 2;
int y = rect.Height () / 2;

Why is this code in error? Because if rect's upper left corner is
anywhere other than (0,0), the calculation must take that into
account. Here's the corrected code:

CRect rect;
GetClientRect (&rect);
int x = rect.left + (rect.Width () / 2);
int y = rect.top + (rect.Height () / 2);

Windows programmers have been conditioned to treat client
rectangles as if the upper left corner coordinates are always
(0,0). You must break this habit if you want to write
windowless controls that work.

Don't forget that a control created using ControlWizard's
default options is strictly a windowed control. To enable the
windowless option, check the Windowless Activation box in
ControlWizard's Advanced ActiveX Features dialog box. You
can convert a windowed control to a windowless control after
the fact by overriding GetControlFlags in the derived control
class and implementing it like this:

DWORD CMyControl::GetControlFlags ()
{
 return COleControl::GetControlFlags () œ windowlessActivate;
}

If GetControlFlags is already overridden, simply add
windowlessActivate to the list of control flags.

Programming Windows With MFC

 1390

What happens if you build a windowless control and it's
instantiated in a container that doesn't support windowless
controls? An MFC control will simply fall back and run in a
window. Which brings up an interesting point: even though
MFC has supported windowless controls for a while now, the
test container that ships with Visual C++ didn't support
windowless controls prior to version 6.0. Don't make the
mistake I once did and attempt to test a windowless control's
windowless behavior in the Visual C++ 5.0 test container,
because the control will always be created in a window. You
can selectively enable and disable windowless support in
version 6.0's test container using the Options command in the
Container menu.

Control Subclassing

One of the questions that ControlWizard asks you before
creating an ActiveX control project is, Which Window Class, If
Any, Should This Control Subclass? (See Figure 21-5.) The
default is none, but if you select a WNDCLASS name,
ControlWizard will create an ActiveX control that wraps a
Windows control. This makes it relatively easy to write
ActiveX controls that look and act like tree view controls, slider
controls, and other built-in control types.

Subclassing a control seems simple, but there's more to it than
meets the eye. When a "subclassing" control is created, MFC
automatically creates the corresponding Windows control. To
do that, MFC must know the control's type—that is, its
WNDCLASS. ControlWizard makes the WNDCLASS name
you selected in the Which Window Class, If Any, Should This
Control Subclass box known to MFC by overriding
COleControl::PreCreateWindow and copying the class name to
CREATESTRUCT's lpszClass data member. Programmers
frequently modify ControlWizard's implementation to apply
default styles to the Windows control, as shown here:

BOOL CMyControl::PreCreateWindow (CREATESTRUCT& cs)
{
 cs.lpszClass = _T ("SysTreeView32"); // Tree view control
 // Apply default control styles here.
 return COleControl::PreCreateWindow (cs);
}

Programming Windows With MFC

 1391

Furthermore, at certain points in an ActiveX control's lifetime,
MFC needs to know whether the control has subclassed a
Windows control. Consequently, a subclassing control must
override COleControl::IsSubclassedControl and return TRUE:

BOOL CMyControl::IsSubclassedControl()
{
 return TRUE;
}

ControlWizard writes this function for you if you check the
Which Window Class, If Any, Should This Control Subclass
box.

When a subclassing control is created, MFC silently creates a
"reflector" window that bounces notification messages emitted
by the Windows control back to the ActiveX control. The
message IDs change en route: WM_COMMAND becomes
OCM_COMMAND, WM_NOTIFY becomes OCM_NOTIFY,
and so on. To process these messages in your control, you must
modify the derived control class's message map to direct OCM
messages to the appropriate handling functions. The following
code demonstrates how an ActiveX control that subclasses a
push button control might turn button clicks into Click events
by processing BN_CLICKED notifications:

BEGIN_MESSAGE_MAP (CMyControl, COleControl)
 ON_MESSAGE (OCM_COMMAND, OnOcmCommand)
END_MESSAGE_MAP ()
 .
 .
 .
LRESULT CMyControl::OnOcmCommand (WPARAM wParam, LPARAM
lParam)
{
 WORD wNotifyCode = HIWORD (wParam);
 if (wNotifyCode == BN_CLICKED)
 FireClick ();
 return 0;
}

ControlWizard adds an empty OnOcmCommand handler
similar to this one to the control class, but if you want to
process other types of OCM messages, you must add the
handlers and message map entries yourself.

Programming Windows With MFC

 1392

It's also your job to add any methods, properties, and events
you would like the control to have. They're added to a
subclassing control the same way they're added to a regular
control. If you need to access the Windows control from the
ActiveX control's method implementations, you can get to it
through the m_hWnd data member. To illustrate, the following
code fragment adds strings to a list box that has been
subclassed by an ActiveX control:

static const CString strMonthsOfTheYear[] = {
 _T ("January"), _T ("February"), _T ("March"),
 _T ("April"), _T ("May"), _T ("June"),
 _T ("July"), _T ("August"), _T ("September"),
 _T ("October"), _T ("November"), _T ("December")
};

for (int i=0; i<12; i++)
 ::SendMessage (m_hWnd, LB_ADDSTRING, 0,
 (LPARAM) (LPCTSTR) strMonthsOfTheYear[i]);

Subclassing Windows controls has a dark side; it has to do with
painting. ControlWizard writes an OnDraw function that looks
like this:

void CMyControl::OnDraw(CDC* pdc, const CRect& rcBounds,
 const CRect& rcInvalid)
{
 DoSuperclassPaint(pdc, rcBounds);
}

DoSuperclassPaint is a COleControl function that paints a
subclassed control by simulating a WM_PAINT message. It
works fine as long as the ActiveX control is active. But if the
control goes inactive, the Windows control it wraps is asked to
paint itself into a metafile device context. Some controls don't
render well into a metafile, which leaves you to write the code
that paints an inactive control by overriding OnDrawMetafile.
That can be quite a lot of work. As a rule, subclassing Windows
common controls works better than subclassing classic
controls—list boxes, combo boxes, and so on—because the
common controls' internal painting logic is more
metafile-friendly.

You can mostly avoid this problem by checking
ControlWizard's Activates When Visible box. If the container

Programming Windows With MFC

 1393

honors your request (remember, however, that this isn't
guaranteed), the control will be active whenever it's visible on
the screen. This means the control's metafile will never be seen.
And if it's never seen, it doesn't matter how good (or bad) it
looks.

Incidentally, a similar set of issues arises when writing ActiveX
controls that create child controls. Rather than open a new can
of worms, I'll refer you to an excellent discussion of this matter
in the "Converting a VBX and Subclassing Windows Controls"
chapter of Adam Denning's ActiveX Controls Inside Out (1997,
Microsoft Press).

Control Licensing

Most COM objects in the world today are accompanied by
class factories that implement COM's IClassFactory interface.
Anyone who has the DLL or EXE (or OCX) that houses such
an object can create object instances by calling
IClassFactory::CreateInstance or a wrapper function such
as ::CoCreateInstance. This is exactly what happens under the
hood when a container instantiates an ActiveX control.

If you check the Yes, Please box in response to the question
Would You Like The Controls In This Project To Have A
Runtime License? in ControlWizard's Step 1 dialog box,
ControlWizard inserts a special class factory that implements
IClassFactory2 instead of IClassFactory. IClassFactory2 adds
licensing methods to IClassFactory and affords the control's
implementor veto power over instantiation requests. Exercised
properly, this feature can be used to restrict the use of an
ActiveX control to individuals (or applications) who are legally
authorized to use it.

Here's how licensing works in an MFC ActiveX control. When
the licensing option is selected, ControlWizard overrides a pair
of virtual functions named VerifyUserLicense and
GetLicenseKey in the control's embedded class factory class.
Exactly when these functions are called depends on the context
in which the control is being used. Here's what happens when
you drop a licensed control into a dialog in Visual C++'s dialog
editor:

Programming Windows With MFC

 1394

1. VerifyUserLicense is called. Its job is to verify that the control is licensed
for use in a design-time environment. Returning 0 prevents the control
from being instantiated; a nonzero return allows instantiation to proceed.

2. If VerifyUserLicense returns a nonzero value, GetLicenseKey is called.
Its job is to return a licensing string that Visual C++ can embed in the
compiled executable. This string becomes the control's run-time license.

Now suppose you compile and run the application. When the
application is executed and the container attempts to instantiate
the ActiveX control, a different series of events ensues:

1. The MFC-provided class factory's VerifyLicenseKey function is called
and passed the licensing string embedded in the control container. Its job:
to check the string and determine whether it represents a valid run-time
license.

2. VerifyLicenseKey calls GetLicenseKey to retrieve the run-time licensing
string from the control and compares that string to the one supplied by
the container. If the strings don't match, VerifyLicenseKey returns 0 and
the class factory will refuse to create the control. If the strings match,
instantiation proceeds as normal.

VerifyLicenseKey is a third virtual function that plays a role in
licensing. ControlWizard doesn't override it because the default
implementation compares the strings and does the right thing,
but you can override it manually if you want to implement a
custom run-time verification algorithm.

These semantics might vary somewhat from container to
container, but the result is the same. In effect, the control
supports two separate licenses: a design-time license and a
run-time license. At first, this dichotomy might seem odd, but it
makes terrific sense when you think about it. If a developer
uses your control in an application, you can make sure that he
or she has the right to do so. But once the application is built,
you probably don't want to force individual users to be licensed,
too. Design-time licenses and run-time licenses are treated
separately for precisely this reason.

The licensing scheme implemented by ControlWizard is
exceedingly weak, so if you really want to build a licensed
control, you must do some work yourself. Here's how
ControlWizard implements VerifyUserLicense and
GetLicenseKey:

static const TCHAR BASED_CODE _szLicFileName[] =
_T("License.lic");
static const WCHAR BASED_CODE _szLicString[] = L"Copyright

Programming Windows With MFC

 1395

(c) 1999 ";
BOOL CMyControl::CMyClassFactory::VerifyUserLicense()
{
 return AfxVerifyLicFile(AfxGetInstanceHandle(),
_szLicFileName,
 _szLicString);
}

BOOL CMyControl::CMyClassFactory::GetLicenseKey(DWORD
dwReserved,
 BSTR FAR* pbstrKey)
{
 if (pbstrKey == NULL)
 return FALSE;

 *pbstrKey = SysAllocString(_szLicString);
 return (*pbstrKey != NULL);
}

AfxVerifyLicFile is an MFC helper function that scans the first
n characters in the file whose name is specified in the second
parameter for the string passed in the third, where n is the string
length. Visual C++ places a text file named License.lic in the
same folder as the control's OCX. Inside that file is the text
string "Copyright (c) 1999." If the file is present and it begins
with the expected string, AfxVerifyLicFile returns a nonzero
value, allowing the control to be instantiated. Otherwise, it
returns 0. In other words, the control's design-time license
amounts to a simple text file that anyone could create with
Notepad.

There are endless ways to modify ControlWizard's code to
strengthen the licensing policy. You could, for example, have
VerifyUserLicense display a dialog box prompting the
developer to enter a password. Or you could have it check the
registry for an entry created by the control's setup program.
However you choose to do it, keep in mind that determined
users will be able to circumvent just about any scheme you
come up with, and many will steer clear of copy-protected
products, period, if at all possible. For these reasons, most
ActiveX control writers have opted not to license their controls.
You be the judge.

	2.Drawing in a Window
	3.The Mouse and the Keyboard
	4.Menus

