
ContentsContents

 Deployment documentation
 Overview

 Overview of deployment
 Quickstarts

 First look at deployment
 Deploy to Azure App Service
 Deploy to App Service for Linux
 Deploy to a web site
 Deploy to a local folder

 Tutorials
 .NET

 Deploy a .NET Core Application with the Publish tool
 Package a desktop app for Microsoft Store (Desktop Bridge)
 Deploy a desktop app using ClickOnce
 Build ClickOnce Applications from the Command Line

 ASP.NET
 Publish an ASP.NET Core app to Azure
 Import publish settings and deploy to IIS
 Import publish settings and deploy to Azure
 Continuous deployment of ASP.NET Core to Azure with Git
 Publish to Kubernetes with Visual Studio Kubernetes tools

 C++
 Deploy a C/C++ app
 Package a desktop app for Microsoft Store (Desktop Bridge)
 Deploy a C++/CLR app using ClickOnce...

 UWP
 Package a UWP app by using Visual Studio

 Node.js
 Publish to Linux App Service

https://docs.microsoft.com/dotnet/core/deploying/deploy-with-vs
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net
https://docs.microsoft.com/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/aspnet/core/publishing/azure-continuous-deployment
https://docs.microsoft.com/cpp/ide/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net
https://docs.microsoft.com/cpp/ide/clickonce-deployment-for-visual-cpp-applications
https://docs.microsoft.com/windows/uwp/packaging/packaging-uwp-apps
https://docs.microsoft.com/visualstudio/javascript/publish-nodejs-app-azure

 Python
 Publish to Azure App Service

 How-to guides
 ClickOnce Security and Deployment

 ClickOnce Security and Deployment
 Choose a ClickOnce Deployment Strategy
 ClickOnce Cache Overview
 ClickOnce and Application Settings
 ClickOnce Deployment on Windows Vista
 Localize ClickOnce Applications

 Localize ClickOnce Applications
 Publish a Project That Has a Specific Locale

 Secure ClickOnce Applications
 Secure ClickOnce Applications
 ClickOnce and Authenticode
 Trusted Application Deployment Overview
 Code Access Security for ClickOnce Applications
 Enable ClickOnce Security Settings
 Set a Security Zone for a ClickOnce Application
 Set Custom Permissions for a ClickOnce Application
 Debug a ClickOnce Application with Restricted Permissions
 Add a Trusted Publisher to a Client Computer
 Re-sign Application and Deployment Manifests
 Configure the ClickOnce Trust Prompt Behavior
 Sign Setup Files with SignTool.exe (ClickOnce)

 Publish ClickOnce Applications
 Publish ClickOnce Applications
 Publish a ClickOnce Application using the Publish Wizard
 Create ClickOnce Applications for Others to Deploy
 Deploy Apps For Test and Production Servers without Resigning
 Access Local and Remote Data in ClickOnce Applications
 Deploy COM Components with ClickOnce

https://docs.microsoft.com/visualstudio/python/publishing-python-web-applications-to-azure-from-visual-studio

 Build ClickOnce Applications from the Command Line
 Specify Where Visual Studio Copies the Files
 Specify the Location Where End Users Will Install From
 Specify the ClickOnce Offline or Online Install Mode
 Set the ClickOnce Publish Version
 Automatically Increment the ClickOnce Publish Version
 Specify Which Files Are Published by ClickOnce

 Specify Which Files Are Published by ClickOnce
 Include a Data File in a ClickOnce Application

 Install Prerequisites with a ClickOnce Application
 Include Prerequisites with a ClickOnce Application
 Manage Updates for a ClickOnce Application
 Change the Publish Language for a ClickOnce Application
 Specify a Start Menu Name for a ClickOnce Application
 Specify a Link for Technical Support

 Specify a Link for Technical Support
 Specify a Support URL for Individual Prerequisites

 Specify a Publish Page for a ClickOnce Application
 Specify a Publish Page for a ClickOnce Application
 Customize the Default Web Page for a ClickOnce Application

 Enable AutoStart for CD Installations
 Create File Associations For a ClickOnce Application
 Retrieve Query String Information in an Online ClickOnce Application
 Disable URL Activation of ClickOnce Applications by Using the Designer

 Disable URL Activation of ClickOnce Applications by Using the Designer
 Disable URL Activation of ClickOnce Applications

 Deploy Apps That Can Run on Multiple Versions of the .NET Framework
 Publish a WPF Application with Visual Styles Enabled
 Walkthrough: Download Assemblies on Demand Using the Designer

 Walkthrough: Download Assemblies on Demand Using the Designer
 Walkthrough: Download Assemblies on Demand

 Walkthrough: Download Satellite Assemblies on Demand Using the Designer

 Walkthrough: Manually Deploy a ClickOnce Application
 Walkthrough: Manually Deploy a ClickOnce Application
 Walkthrough: Manually Deploy an App that Does Not Require Re-Signing

 Walkthrough: Download Satellite Assemblies on Demand
 Walkthrough: Create a Custom Installer

 Choose a ClickOnce Update Strategy
 Choose a ClickOnce Update Strategy
 How ClickOnce Performs Application Updates
 Check for Application Updates Programmatically
 Specify an Alternate Location for Deployment Updates

 ClickOnce Deployment Samples and Walkthroughs
 Troubleshoot ClickOnce Deployments

 Troubleshoot ClickOnce Deployments
 Set a Custom Log File Location for ClickOnce Deployment Errors
 Specify Verbose Log Files for ClickOnce Deployments
 Server and Client Configuration Issues in ClickOnce Deployments
 Security, Versioning, and Manifest Issues in ClickOnce Deployments
 Troubleshoot Specific Errors in ClickOnce Deployments
 Debug ClickOnce Applications That Use System.Deployment.Application

 Application Deployment Prerequisites
 Application Deployment Prerequisites
 Deploy Prerequisites for 64-bit Applications
 Create bootstrapper packages
 Create a product manifest
 Create a package manifest
 Create a localized bootstrapper package
 Walkthrough: Create a custom bootstrapper with a privacy prompt
 Product and Package Schema Reference

 Product and Package Schema Reference
 <Product> Element (Bootstrapper)
 <Package> Element (Bootstrapper)
 <RelatedProducts> Element (Bootstrapper)

 <InstallChecks> Element (Bootstrapper)
 <Commands> Element (Bootstrapper)
 <PackageFiles> Element (Bootstrapper)
 <Strings> Element (Bootstrapper)
 <Schedules> Element (Bootstrapper)

 Reference
 ClickOnce Reference

 ClickOnce Reference
 ClickOnce Application Manifest

 ClickOnce Application Manifest
 <assembly> Element (ClickOnce Application)
 <assemblyIdentity> Element (ClickOnce Application)
 <trustInfo> Element (ClickOnce Application)
 <entryPoint> Element (ClickOnce Application)
 <dependency> Element (ClickOnce Application)
 <file> Element (ClickOnce Application)
 <fileAssociation> Element (ClickOnce Application)

 ClickOnce Deployment Manifest
 ClickOnce Deployment Manifest
 <assembly> Element (ClickOnce Deployment)
 <assemblyIdentity> Element (ClickOnce Deployment)
 <description> Element (ClickOnce Deployment)
 <deployment> Element (ClickOnce Deployment)
 <compatibleFrameworks> Element (ClickOnce Deployment)
 <dependency> Element (ClickOnce Deployment)
 <publisherIdentity> Element (ClickOnce Deployment)
 <Signature> Element (ClickOnce Deployment)
 <customErrorReporting> Element (ClickOnce Deployment)

 ClickOnce Unmanaged API Reference

Experience Visual Studio deployment with 5-minute Quickstarts

Go deeper with tutorials

Visual Studio provides several different tools to help you deploy your apps.

First look at deployment optionsFirst look at deployment options

Deploy to a local folderDeploy to a local folder

Deploy to a website or network shareDeploy to a website or network share

Deploy to Azure App ServiceDeploy to Azure App Service

Deploy to App Service on LinuxDeploy to App Service on Linux

Deploy ASP.NET to AzureDeploy ASP.NET to Azure

Import publish settings and deploy ASP.NET to IISImport publish settings and deploy ASP.NET to IIS

Deploy a .NET Core appDeploy a .NET Core app

Package a UWP app for Microsoft StorePackage a UWP app for Microsoft Store

Import publish settings and deploy to Azure App ServiceImport publish settings and deploy to Azure App Service

Package a desktop app for Microsoft Store (C#, C++)Package a desktop app for Microsoft Store (C#, C++)

Deploy Python to AzureDeploy Python to Azure

Deploy a desktop app using ClickOnce (C#)Deploy a desktop app using ClickOnce (C#)

Deploy a C/C++ appDeploy a C/C++ app

Deploy a C++/CLR appDeploy a C++/CLR app

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/deploying-applications-services-and-components
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/quickstart-deploy-to-local-folder
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/quickstart-deploy-to-a-web-site
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/quickstart-deploy-to-azure
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/quickstart-deploy-to-linux
https://docs.microsoft.com/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/tutorial-import-publish-settings-iis
https://docs.microsoft.com/dotnet/core/deploying/deploy-with-vs
https://docs.microsoft.com/windows/uwp/packaging/packaging-uwp-apps
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/tutorial-import-publish-settings-azure
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net
https://docs.microsoft.com/visualstudio/python/publishing-python-web-applications-to-azure-from-visual-studio
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/deployment/how-to-publish-a-clickonce-application-using-the-publish-wizard
https://docs.microsoft.com/cpp/windows/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project

https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications

Overview of deployment in Visual Studio
5/28/2019 • 5 minutes to read • Edit Online

What publishing options are right for me?

Azure App Service

By deploying an application, service, or component, you distribute it for installation on other computers, devices,
servers, or in the cloud. You choose the appropriate method in Visual Studio for the type of deployment that you
need.

For many common app types, you can deploy your application right from Solution Explorer in Visual Studio. For a
quick tour of this capability, see First look at deployment.

From within Visual Studio, applications can be published directly to the following targets:

Azure App Service
Azure Virtual Machines
File system
Custom targets (IIS, FTP, etc.), which includes all arbitrary web servers.

On the Publish tab, you can select an existing publish profile, import an existing one, or create a new one using the
options described here. For a tour of the publishing options in the IDE for different app types, see First look at
deployment.

Azure App Service and App Service on Linux help developers quickly create a variety of scalable web applications
and services without maintaining infrastructure.

You determine how much computing power an App Service has by choosing a pricing tier or plan for the

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deploying-applications-services-and-components-resources.md
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/app-service/containers/app-service-linux-intro
https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview

When to choose Azure App ServiceWhen to choose Azure App Service

Azure Virtual Machines

When to choose Azure App Virtual MachinesWhen to choose Azure App Virtual Machines

File system

containing App Service. You can have multiple Web apps (and other app types) share the same App Service
without changing the pricing tier. For example, you can host development, staging, and production Web apps
together on the same App Service.

An App Service runs on cloud-hosted virtual machines in Azure, but those virtual machines are managed for you.
Each app in an App Service will be assigned a unique *.azurewebsites.net URL; all pricing tiers other than Free
allow assigning custom domain names to the site.

You want to deploy a web application that's accessible through the Internet.
You want to automatically scale your web application according to demand without needing to redeploy.
You don't want to maintain server infrastructure (including software updates).
You don't need any machine-level customizations on the servers that host your web application.

If you want to use Azure App Service in your own datacenter or other on-premises computers, you can do so
using the Azure Stack.

For more information on publishing to App Service, see Quickstart - Publish to Azure App Service and Quickstart -
Publish ASP.NET Core to Linux.

Azure Virtual Machines (VMs) let you create and manage any number of computing resources in the cloud. By
assuming responsibility for all software and updates on the VMs, you can customize them as much as desired as
required by your application. You can access the virtual machines directly through Remote Desktop, and each one
will maintain its assigned IP address as long as desired.

Scaling an application that's hosted on virtual machines involves spinning up additional VMs according to demand
and then deploying the necessary software. This additional level of control lets you scale differently in different
global regions. For example, if your application is serving employees in a variety of regional offices, you can scale
your VMs according to the number of employees in those regions, potentially reducing costs.

For additional information, refer to the detailed comparison between Azure App Service, Azure Virtual Machines,
and other Azure services that you can use as a deployment target using the Custom option in Visual Studio.

You want to deploy a web application that's accessible through the Internet, with full control over the lifetime of
assigned IP addresses.
You need machine-level customizations on your servers, which includes additional software such as a
specialized database system, specific networking configurations, disk partitions, and so forth.
You want a fine level of control over scaling of your web application.
You need direct access to the servers hosting your application for any other reason.

If you want to use Azure Virtual Machines in your own datacenter or other on-premises computers, you can do
so using the Azure Stack.

Deploying to the file system means to simply copy your application's files to a specific folder on your own
computer. This is most often used for testing purposes, or to deploy the application for use by a limited number of
people if the computer is also running a server. If the target folder is shared on a network, then deploying to the file
system can make the web application files available to others who might then deploy it to specific servers.

Any local machines that are running a server can make your application available through the Internet or an

https://azure.microsoft.com/overview/azure-stack/
https://azure.microsoft.com/documentation/services/virtual-machines/
https://azure.microsoft.com/documentation/articles/choose-web-site-cloud-service-vm/
https://azure.microsoft.com/overview/azure-stack/

When to choose file system deploymentWhen to choose file system deployment

Custom targets (IIS, FTP)

When to choose custom deploymentWhen to choose custom deployment

Next steps

Intranet depending on how it's configured and the networks to which it's connected. (If you do connect a computer
directly to the Internet, be especially careful to protect it from external security threats.) Because you manage these
machines, you're in complete control of the software and hardware configurations.

Note that if for any reason (such as machine access) you are not able to use cloud services like Azure App Service
or Azure Virtual Machines, you can use the Azure Stack in your own datacenter. The Azure Stack allows you to
manage and use computing resources through Azure App Service and Azure Virtual Machines while yet keeping
everything on-premises.

You need only deploy the application to a file share from which others will deploy it to different servers.
You need only a local test deployment.
You want to examine and potentially modify the application files independently before sending them onto
another deployment target.

For more information, see Quickstart - Deploy to a local folder

A custom target lets you deploy your application to a target other than Azure App Service, Azure Virtual Machines,
or the local file system. It can deploy to a file system or any other server (Internet or Intranet) to which you have
access, including those on other cloud services. It can work with web deploy (files or .ZIP) and FTP.

When choosing a custom target, Visual Studio prompts you for a profile name, and then collect additional
Connection information including the target server or location, a site name, and credentials. You can control the
following behaviors on the Settings tab:

The configuration you want to deploy.
Whether to remove existing files from the destination.
Whether to precompile during publishing.
Whether to exclude files in the App_Data folder from deployment.

You can create any number of Custom deployment profiles in Visual Studio, making it possible to manage profiles
with different settings.

You're using cloud services on a provider other than Azure that can be accessed through URLs.
You want to deploy using credentials other than the ones that you use within Visual Studio, or those tied directly
to your Azure accounts.
You want to delete files from the target each time you deploy.

For more information, see Quickstart - Deploy to a web site

Tutorials:

Deploy a .NET Core application with the publish tool
Publish an ASP.NET core app to Azure
Deployment in Visual C++
Deploy UWP apps
Publish a Node.js app to Azure using Web Deploy
Publish a Python app to Azure App Service

https://azure.microsoft.com/overview/azure-stack/
https://docs.microsoft.com/dotnet/core/deploying/deploy-with-vs?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://docs.microsoft.com/aspnet/core/tutorials/publish-to-azure-webapp-using-vs?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://docs.microsoft.com/cpp/windows/deployment-in-visual-cpp
https://docs.microsoft.com/windows/uwp/packaging/packaging-uwp-apps?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://github.com/Microsoft/nodejstools/wiki/Publish-to-Azure-Website-using-Web-Deploy?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/python/publishing-python-web-applications-to-azure-from-visual-studio

First look at deployment in Visual Studio
5/28/2019 • 5 minutes to read • Edit Online

Deploy to local folder

Publish to Azure

By deploying an application, service, or component, you distribute it for installation on other computers, devices,
or servers, or in the cloud. You choose the appropriate method in Visual Studio for the type of deployment that
you need. (Many app types support other deployment tools such as command line deployment or NuGet that are
not described here.)

See the Quickstarts and Tutorials for step-by-step deployment instructions. For an overview of deployment
options, see What publishing options are right for me?.

Deployment to a local folder is typically used for testing, or to begin a staged deployment in which another tool is
used for final deployment.

ASP.NET, ASP.NET Core, Node.js, Python, and .NET Core: Use the Publish tool to deploy to a local
folder. The exact options available depend on your app type. In Solution Explorer, right-click your project
and choose Publish. (If you have not previously configured any publishing profiles, you must then click
Create new profile.) Next, choose Folder. For more information, see Deploy to a local folder.

Windows desktop You can publish a Windows desktop application to a folder using ClickOnce
deployment. Users can then install the application with a single click. For more information, see Deploy a
desktop app using ClickOnce (C# and Visual Basic). For C++/CLR, see Deploy a native app using
ClickOnce or, for C/C++, see Deploy a native app using a Setup project.

ASP.NET, ASP.NET Core, Python, and Node.js: Publish to Azure App Service or Azure App Service
Linux (using containers) using one of the following methods.

For continuous (or automated) deployment of apps, use Azure DevOps with Azure Pipelines.

For one-time (or manual) deployment of apps, use the Publish tool in Visual Studio.

For deployment that provides more customized configuration of the server, you can also use the Publish
tool to deploy apps to an Azure Virtual Machine.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deploying-applications-services-and-components.md
https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications
https://docs.microsoft.com/cpp/windows/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project
https://docs.microsoft.com/azure/devops/pipelines/get-started-yaml?view=azdevops

Publish to Web or deploy to network share

NOTENOTE

To use the Publish tool, right-click the project in Solution Explorer and choose Publish. (If you have
previously configured any publishing profiles, you must then click Create new profile.) In the Publish
dialog box, choose either App Service or Azure Virtual Machines, and then follow the configuration
steps.

Starting in Visual Studio 2017 version 15.7, you can deploy ASP.NET Core apps to App Service for Linux.

For Python apps, also see Python - Publishing to Azure App Service.

For a quick introduction, see Publish to Azure and Publish to Linux. Also, see Publish an ASP.NET Core app
to Azure. For deployment using Git, see Continuous deployment of ASP.NET Core to Azure with Git.

For information on importing a publish profile from Azure App Service to Visual Studio, see Import publish
settings and deploy to Azure.

If you do not already have an Azure account, you can sign up here.

ASP.NET, ASP.NET Core, Node.js, and Python: You can use the Publish tool to deploy to a website using
FTP or Web Deploy. For more information, see Deploy to a web site.

In Solution Explorer, right-click the project and choose Publish. (If you have previously configured any
publishing profiles, you must then click Create new profile.) In the Publish tool, choose the option you
want and follow the configuration steps.

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/python/publishing-python-web-applications-to-azure-from-visual-studio
https://docs.microsoft.com/aspnet/core/tutorials/publish-to-azure-webapp-using-vs
https://docs.microsoft.com/aspnet/core/publishing/azure-continuous-deployment
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=doc&utm_campaign=visualstudio

Publish to Microsoft Store

For information on importing a publish profile in Visual Studio, see Import publish settings and deploy to
IIS.

You can also deploy ASP.NET applications and services in a number of other ways. For more information,
see Deploying ASP.NET web applications and services.

Windows desktop You can publish a Windows desktop application to a web server or a network file share
using ClickOnce deployment. Users can then install the application with a single click. For more
information, see Deploy a desktop app using ClickOnce (C# and Visual Basic). For C++/CLR, see Deploy a
native app using ClickOnce or, for C/C++, see Deploy a native app using a Setup project.

From Visual Studio, you can create app packages for deployment to Microsoft Store.

UWP : You can package your app and deploy it using menu items. For more information, see Package a
UWP app by using Visual Studio.

http://www.asp.net/aspnet/overview/deployment
https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications
https://docs.microsoft.com/cpp/windows/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project
https://docs.microsoft.com/windows/uwp/packaging/packaging-uwp-apps

Deploy to a device (UWP)

Create an installer package (Windows desktop)

Deploy to test lab

Continuous deployment

Deployment for other app types

Windows desktop: You can deploy to the Microsoft Store using the Desktop Bridge starting in Visual
Studio 2017 version 15.4. To do this, start by creating a Windows Application Packaging Project. For more
information, see Package a desktop app for Microsoft Store (Desktop Bridge).

If you are deploying a UWP app for testing on a device, see Run UWP apps on a remote machine in Visual Studio.

If you require more a complex installation of a desktop application than ClickOnce can provide, you can create a
Windows Installer package (MSI or EXE installation file) or a custom bootstrapper.

An MSI-based installer package can be created using the WiX Toolset Visual Studio 2017 Extension. This is
a command-line toolset.

An MSI or EXE installer package can be created using InstallShield from Flexera Software. InstallShield
may be used with Visual Studio 2017 and later versions (Community Edition not supported). Note that
InstallShield Limited Edition is no longer included with Visual Studio and is not supported in Visual Studio
2017 and later versions; check with Flexera Software about future availability.

An MSI or EXE installer package can be created using a Setup project (vdproj). To use this option, install the
Visual Studio Installer Projects extension.

You can also install prerequisite components for desktop applications by configuring a generic installer,
which is known as a bootstrapper. For more information, see Application Deployment Prerequisites.

You can enable more sophisticated development and testing by deploying your applications into virtual
environments. For more information, see Test on a lab environment.

You can use Azure Pipelines to enable continuous deployment of your app. For more information, see Azure
Pipelines and Deploy to Azure.

https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/debugger/run-windows-store-apps-on-a-remote-machine
https://marketplace.visualstudio.com/items?itemName=RobMensching.WixToolsetVisualStudio2017Extension
https://www.flexerasoftware.com/producer/products/software-installation/installshield-software-installer/tab/requirements
http://learn.flexerasoftware.com/content/IS-EVAL-InstallShield-Limited-Edition-Visual-Studio
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.MicrosoftVisualStudio2017InstallerProjects#overview
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/test/lab-management/using-a-lab-environment-for-your-application-lifecycle
https://docs.microsoft.com/azure/devops/pipelines/index?view=vsts
https://docs.microsoft.com/azure/devops/deploy-azure/index?view=vsts

APP TYPE DEPLOYMENT SCENARIO LINK

Office app You can publish an add-in for Office
from Visual Studio.

Deploy and publish your Office add-in

WCF or OData service Other applications can use WCF RIA
services that you deploy to a web
server.

Developing and deploying WCF Data
Services

LightSwitch LightSwitch is no longer supported
starting in Visual Studio 2017, but can
still be deployed from Visual Studio
2015 and earlier.

Deploying LightSwitch Applications

Next steps
In this tutorial, you took a quick look at deployment options for different applications.

What publishing options are right for me?

https://dev.office.com/docs/add-ins/publish/publish
https://docs.microsoft.com/dotnet/framework/data/wcf/developing-and-deploying-wcf-data-services
https://msdn.microsoft.com/Library/4818d933-295c-4ecc-9148-7ad9ca28dcdb

Publish a Web app to Azure App Service using Visual
Studio
5/15/2019 • 2 minutes to read • Edit Online

Prerequisites

Publish to Azure App Service

For ASP.NET, ASP.NET Core, Node.js, and .NET Core apps, publish to Azure App Service or Azure App Service
Linux (using containers) using one of the following methods.

For continuous (or automated) deployment of apps, use Azure DevOps with Azure Pipelines.

For one-time (or manual) deployment of apps, use the Publish tool in Visual Studio to deploy ASP.NET,
ASP.NET Core, Node.js, and .NET Core apps to Azure App Service or App Service for Linux (using
containers). For Python apps, follow the steps on Python - Publish to Azure App Service.

This article describes how to use the Publish tool for one-time deployment.

Visual Studio 2019 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Node.js: Node.js development

Visual Studio 2017 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Node.js: Node.js development

An Azure subscription. If you do not already have subscription, sign up for free, which includes $200 in
credit for 30 days and 12 months of popular free services.

An ASP.NET, ASP.NET Core, .NET Core, or Node.js project. If you don't already have a project, select an
option below:

ASP.NET Core: Follow Quickstart: Use Visual Studio to create your first ASP.NET Core web app, or use
File > New Project, select Visual C# > .NET Core, then select ASP.NET Core Web Application.
When prompted, select the Web Application (Model-View-Controller) template, make sure that No
Authentication is selected, and then select OK.
Node.js: Follow Quickstart: Use Visual Studio to create your first Node.js app, or use File > New
Project, select JavaScript, then select Blank Node.js Web Application.

Make sure you build the project using the Build > Build Solution menu command before following the
deployment steps.

1. In Solution Explorer, right-click the project and choose Publish (or use the Build > Publish menu item).

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/quickstart-deploy-to-azure.md
https://docs.microsoft.com/azure/devops/pipelines/get-started-yaml?view=azdevops
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/python/publishing-python-web-applications-to-azure-from-visual-studio
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://visualstudio.microsoft.com/vs/older-downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=vs+2017+download
https://azure.microsoft.com/free/dotnet/
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-aspnet-core
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-nodejs

2. If you have previously configured any publishing profiles, the Publish pane appears, in which case select
Create new profile.

3. In the Pick a publish target dialog box, choose App Service.

4. Select Publish. The Create App Service dialog box appears. Sign in with you Azure account, if necessary,
then the default app service settings populate the fields.

Clean up resources

5. Select Create. Visual Studio deploys the app to your Azure App Service, and the web app loads in your
browser. The project properties Publish pane shows the site URL and other details.

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these
resources in the future, you can delete them by deleting the resource group. From the left menu in the Azure
portal, select Resource groups and then select myResourceGroup. On the resource group page, make sure that
the listed resources are the ones you want to delete. Select Delete, type myResourceGroup in the text box, and
then select Delete.

Next steps
In this quickstart, you learned how to use Visual Studio to create a publishing profile for deployment to Azure. You
can also configure a publishing profile by importing publish settings from Azure App Service.

Import publish settings and deploy to Azure

Publish an ASP.NET Core app to App Service on
Linux using Visual Studio
5/15/2019 • 2 minutes to read • Edit Online

Prerequisites

Publish to App Service on Linux

Starting in Visual Studio 2017 version 15.7, you can publish ASP.NET Core apps to Azure App Service Linux
(using containers) using one of the following methods.

For continuous (or automated) deployment of apps, use Azure DevOps with Azure Pipelines.

For one-time (or manual) deployment of apps, use the Publish tool in Visual Studio to publish ASP.NET
Core apps to App Service for Linux (using containers).

This article describes how to use the Publish tool for one-time deployment.

Visual Studio 2019 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development

Visual Studio 2017 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development

An Azure subscription. If you do not already have subscription, sign up for free, which includes $200 in
credit for 30 days and 12 months of popular free services.

An ASP.NET Core project. If you don’t have one already, follow Quickstart: Use Visual Studio to create your
first ASP.NET Core web app, or use File > New Project, select Visual C# > .NET Core, then select
ASP.NET Core Web Application. When prompted, select the Web Application (Model-View-
Controller) template, make sure that No Authentication is selected, and then select OK.

Make sure you build the project using the Build > Build Solution menu command before following the
deployment steps.

1. In Solution Explorer, right-click the project and choose Publish (or use the Build > Publish menu item).

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/quickstart-deploy-to-linux.md
https://docs.microsoft.com/azure/devops/pipelines/get-started-yaml?view=azdevops
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://visualstudio.microsoft.com/vs/older-downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=vs+2017+download
https://azure.microsoft.com/free/dotnet/
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-aspnet-core

2. If you have previously configured any publishing profiles, the Publish pane appears, in which case select
Create new profile.

3. In the Pick a publish target dialog box, choose App Service Linux.

4. Select Publish. The Create App Service dialog box appears. Sign in with you Azure account, if necessary,
then the default app service settings populate the fields.

5. Select Create. Visual Studio deploys the app to your Azure App Service, and the web app loads in your
browser. The project properties Publish pane shows the site URL and other details.

Clean up resources

Next steps

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these
resources in the future, you can delete them by deleting the resource group. From the left menu in the Azure
portal, select Resource groups and then select myResourceGroup. On the resource group page, make sure that
the listed resources are the ones you want to delete. Select Delete, type myResourceGroup in the text box, and
then select Delete.

In this quickstart, you learned how to use Visual Studio to create a publishing profile for deployment to App
Service on Linux. You may want more information on publishing to Linux using Azure.

Linux App Service

https://docs.microsoft.com/azure/app-service/containers/app-service-linux-intro

Publish a Web app to a web site using Visual Studio
5/28/2019 • 2 minutes to read • Edit Online

Prerequisites

NOTENOTE

Publish to a Web site

You can use the Publish tool to publish ASP.NET, ASP.NET Core, .NET Core, and Python apps to a website from
Visual Studio. For Node.js, the steps are supported but the user interface is different.

Visual Studio 2019 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Python: Python development
Node.js: Node.js development

Visual Studio 2017 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Python: Python development
Node.js: Node.js development

An ASP.NET, ASP.NET Core, Python, or Node.js project. If you don't already have a project, select an option
below:

ASP.NET Core: Follow Quickstart: Use Visual Studio to create your first ASP.NET Core web app, or use
File > New Project, select Visual C# > .NET Core, then select ASP.NET Core Web Application.
When prompted, select the Web Application (Model-View-Controller) template, make sure that No
Authentication is selected, and then select OK.
Python: Follow Quickstart: Create your first Python web app using Visual Studio, or use File > New
Project, select Python, then select Flask Web Project.
Node.js: Follow Quickstart: Use Visual Studio to create your first Node.js app, or use File > New
Project, select JavaScript, then select Blank Node.js Web Application.

Make sure you build the project using the Build > Build Solution menu command before following the
deployment steps.

If you need to publish a Windows desktop application to a network file share, see Deploy a desktop app using ClickOnce (C#
or Visual Basic). For C++/CLR, see Deploy a native app using ClickOnce or, for C/C++, see Deploy a native app using a Setup
project.

1. In Solution Explorer, right-click the project and choose Publish (or use the Build > Publish menu item).

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/quickstart-deploy-to-a-web-site.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://visualstudio.microsoft.com/vs/older-downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=vs+2017+download
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-aspnet-core
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-python
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-nodejs
https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications
https://docs.microsoft.com/cpp/windows/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project

2. If you have previously configured any publishing profiles, the Publish pane appears. Select Create new
profile.

3. In the Pick a publish target dialog box, choose IIS, FTP, etc.

4. Select Publish. The profile publish settings dialog box opens.

5. In the Publish method field, choose a method such as Web Deploy or FTP . The settings that you see next
correspond to your publishing method. Web Deploy simplifies deployment of Web applications and Web
sites to IIS servers, and must be installed as an application on the server. Use the Web platform installer to
install it.

6. Configure required settings for the publish method and select Validate Connection. If the server or target
is available and your settings are correct, a message that indicates the connection is validated, and you're
ready to publish.

https://www.microsoft.com/web/downloads/platform.aspx

Next steps

7. Select Settings to configure other deployment settings, such as whether to deploy a Debug or Release
configuration, and then select Save. If you're debugging remotely, a Debug configuration is required.

8. To publish, select Publish. The Output window shows deployment progress and results.

In this quickstart, you learned how to use Visual Studio to create a publishing profile. You can also configure a
publishing profile by importing publish settings.

Import publish settings and deploy to IIS

Deploy an app to a local folder using Visual Studio
5/28/2019 • 2 minutes to read • Edit Online

Prerequisites

NOTENOTE

Deploy to a local folder

You can use the Publish tool to publish ASP.NET, ASP.NET Core, .NET Core, and Python apps to a local folder
from Visual Studio. For Node.js, the steps are supported but the user interface is different.

Visual Studio 2019 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Python: Python development
Node.js: Node.js development

Visual Studio 2017 installed with the appropriate workloads for your language of choice:
ASP.NET: ASP.NET and web development
Python: Python development
Node.js: Node.js development

An ASP.NET, ASP.NET Core, Python, or Node.js project. If you don't already have a project, select an option
below:

ASP.NET Core: Follow Quickstart: Use Visual Studio to create your first ASP.NET Core web app, or use
File > New Project, select Visual C# > .NET Core, then select ASP.NET Core Web Application.
When prompted, select the Web Application (Model-View-Controller) template, make sure that No
Authentication is selected, and then select OK.
Python: Follow Quickstart: Create your first Python web app using Visual Studio, or use File > New
Project, select Python, then select Flask Web Project.
Node.js: Follow Quickstart: Use Visual Studio to create your first Node.js app, or use File > New
Project, select JavaScript, then select Blank Node.js Web Application.

Make sure you build the project using the Build > Build Solution menu command before following the
deployment steps.

If you need to publish a Windows desktop application to a local folder, see Deploy a desktop app using ClickOnce (C# or
Visual Basic). For C++/CLR, see Deploy a native app using ClickOnce or, for C/C++, see Deploy a native app using a Setup
project.

1. In Solution Explorer, right-click the project and choose Publish (or use the Build > Publish menu item).

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/quickstart-deploy-to-local-folder.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://visualstudio.microsoft.com/vs/older-downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=vs+2017+download
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-aspnet-core
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-python
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/quickstart-nodejs
https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications
https://docs.microsoft.com/cpp/windows/walkthrough-deploying-a-visual-cpp-application-by-using-a-setup-project

2. If you have previously configured any publishing profiles, the Publish pane appears. Select Create new
profile.

3. In the Pick a publish target dialog box, choose Folder.

4. Enter a path or select Browse to specify a local folder.

5. Select Publish. Visual Studio builds the project and publishes it to the specified folder. The project
properties Publish pane appears, showing a profile summary.

Next steps

6. To configure deployment settings, select Configure in the profile summary and select the Settings tab.

7. Configure options such as whether to deploy a Debug or Release configuration, and then select Save.

8. To republish, select Publish.

Deploy the published files in any way you like. For example, you can package them in a .zip file, use a simple copy
command, or deploy them with any installation package of your choice.

Deploy a .NET Core Application with the Publish tool
Package a desktop app for Microsoft Store (Desktop Bridge)
(.NET) Deploy the .NET Framework and applications

https://docs.microsoft.com/dotnet/core/deploying/deploy-with-vs?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net?toc=/visualstudio/deployment/toc.json&bc=/visualstudio/deployment/_breadcrumb/toc.json
https://docs.microsoft.com/dotnet/framework/deployment/

How to: Publish a ClickOnce application using the
Publish Wizard
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To publish to a file share or path

To make a ClickOnce application available to users, you must publish it to a file share or path, FTP server, or
removable media. You can publish the application by using the Publish Wizard; additional properties related to
publishing are available on the Publish page of the Project Designer. For more information, see Publishing
ClickOnce applications.

Before you run the Publish Wizard, you should set the publishing properties appropriately. For example, if you
want to designate a key to sign your ClickOnce application, you can do so on the Signing page of the Project
Designer. For more information, see Secure ClickOnce applications.

When you install more than one version of an application by using ClickOnce, the installation moves earlier versions of the
application into a folder named Archive, in the publish location that you specify. Archiving earlier versions in this manner
keeps the installation directory clear of folders from the earlier version.

The dialog boxes and menu commands you see might differ from those described in Help, depending on your active settings
or edition. To change your settings, click Import and Export Settings on the Tools menu. For more information, see Reset
settings.

1. In Solution Explorer, select the application project.

2. On the Build menu, click Publish Projectname.

The Publish Wizard appears.

3. In the Where do you want to publish the application? page, enter a valid FTP server address or a valid
file path using one of the formats shown, and then click Next.

4. In the How will users install the application? page, select the location where users will go to install the
application:

If users will install from a Web site, click From a Web site and enter a URL that corresponds to the
file path entered in the previous step. Click Next. (This option is typically used when you specify an
FTP address as the publishing location. Direct download from FTP is not supported. Therefore, you
have to enter a URL here.)

If users will install the application directly from the file share, click From a UNC path or file share,
and then click Next. (This is for publishing locations of the form c:\deploy\myapp or \\server\myapp.)

If users will install from removable media, click From a CD-ROM or DVD-ROM, and then click
Next.

5. On the Will the application be available offline? page, click the appropriate option:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-publish-a-clickonce-application-using-the-publish-wizard.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/environment-settings

To publish to a CD-ROM or DVD-ROM

See also

If you want to enable the application to be run when the user is disconnected from the network, click
Yes, this application will be available online or offline. A shortcut on the Start menu will be
created for the application.

If you want to run the application directly from the publish location, click No, this application is
only available online. A shortcut on the Start menu will not be created.

Click Next to continue.

6. Click Finish to publish the application.

Publishing status is displayed in the status notification area.

NOTENOTE

NOTENOTE

1. In Solution Explorer, right-click the application project and click Properties.

The Project Designer appears.

2. Click the Publish tab to open the Publish page in the Project Designer, and click the Publish Wizard
button.

The Publish Wizard appears.

3. In the Where do you want to publish the application? page, enter the file path or FTP location where the
application will be published, for example d:\deploy. Then click Next to continue.

4. On the How will users install the application? page, click From a CD-ROM or DVD-ROM, and then click
Next.

If you want the installation to run automatically when the CD-ROM is inserted into the drive, open the Publish page
in the Project Designer and click the Options button, and then, in the Publish Options wizard, select For CD
installations, automatically start Setup when CD is inserted.

5. If you distribute your application on CD-ROM, you might want to provide updates from a Web site. In the
Where will the application check for updates? page, choose an update option:

If the application will check for updates, click The application will check for updates from the
following location and enter the location where updates will be posted. This can be a file location,
Web site, or FTP server.

If the application will not check for updates, click The application will not check for updates.

Click Next to continue.

6. Click Finish to publish the application.

Publishing status is displayed in the status notification area.

After publishing is complete, you will have to use a CD-Rewriter or DVD-Rewriter to copy the files from the location
specified in step 3 to the CD-ROM or DVD-ROM media.

ClickOnce security and deployment
Secure ClickOnce applications
Deploying an Office solution by using ClickOnce

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/vsto/deploying-an-office-solution-by-using-clickonce

Build ClickOnce applications from the command line
3/28/2019 • 7 minutes to read • Edit Online

Use MSBuild to reproduce ClickOnce application deployments

Create and build a basic ClickOnce application with MSBuild
To create and publish a ClickOnce projectTo create and publish a ClickOnce project

To reproduce the build from the command lineTo reproduce the build from the command line

In Visual Studio, you can build projects from the command line, even if they are created in the integrated
development environment (IDE). In fact, you can rebuild a project created with Visual Studio on another computer
that has only the .NET Framework installed. This allows you to reproduce a build using an automated process, for
example, in a central build lab or using advanced scripting techniques beyond the scope of building the project
itself.

When you invoke msbuild /target:publish at the command line, it tells the MSBuild system to build the project and
create a ClickOnce application in the publish folder. This is equivalent to selecting the Publish command in the IDE.

This command executes msbuild.exe, which is on the path in the Visual Studio command-prompt environment.

A "target" is an indicator to MSBuild on how to process the command. The key targets are the "build" target and
the "publish" target. The build target is the equivalent to selecting the Build command (or pressing F5) in the IDE. If
you only want to build your project, you can achieve that by typing msbuild . This command works because the
build target is the default target for all projects generated by Visual Studio. This means you do not explicitly need to
specify the build target. Therefore, typing msbuild is the same operation as typing msbuild /target:build .

The /target:publish command tells MSBuild to invoke the publish target. The publish target depends on the build
target. This means that the publish operation is a superset of the build operation. For example, if you made a
change to one of your Visual Basic or C# source files, the corresponding assembly would automatically be rebuilt
by the publish operation.

For information on generating a full ClickOnce deployment using the Mage.exe command-line tool to create your
ClickOnce manifest, see Walkthrough: Manually deploy a ClickOnce application.

1. Open Visual Studio and create a new project.

Choose the Windows Desktop Application project template and name the project CmdLineDemo .

2. From the Build menu, click the Publish command.

This step ensures that the project is properly configured to produce a ClickOnce application deployment.

The Publish Wizard appears.

3. In the Publish Wizard, click Finish.

Visual Studio generates and displays the default Web page, called Publish.htm.

4. Save your project, and make note of the folder location in which it is stored.

The steps above create a ClickOnce project which has been published for the first time. Now you can
reproduce the build outside of the IDE.

1. Exit Visual Studio.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/building-clickonce-applications-from-the-command-line.md

Publish properties

<AssemblyOriginatorKeyFile>WindowsApplication3.snk</AssemblyOriginatorKeyFile>
<GenerateManifests>true</GenerateManifests>
<TargetZone>LocalIntranet</TargetZone>
<PublisherName>Microsoft</PublisherName>
<ProductName>CmdLineDemo</ProductName>
<PublishUrl>http://localhost/CmdLineDemo</PublishUrl>
<Install>true</Install>
<ApplicationVersion>1.0.0.*</ApplicationVersion>
<ApplicationRevision>1</ApplicationRevision>
<UpdateEnabled>true</UpdateEnabled>
<UpdateRequired>false</UpdateRequired>
<UpdateMode>Foreground</UpdateMode>
<UpdateInterval>7</UpdateInterval>
<UpdateIntervalUnits>Days</UpdateIntervalUnits>
<UpdateUrlEnabled>false</UpdateUrlEnabled>
<IsWebBootstrapper>true</IsWebBootstrapper>
<BootstrapperEnabled>true</BootstrapperEnabled>

msbuild /target:publish /property:BootstrapperEnabled=false

2. From the Windows Start menu, click All Programs, then Microsoft Visual Studio, then Visual Studio
Tools, then Visual Studio Command Prompt. This should open a command prompt in the root folder of
the current user.

3. In the Visual Studio Command Prompt, change the current directory to the location of the project you
just built above. For example, type chdir My Documents\Visual Studio\Projects\CmdLineDemo .

4. To remove the existing files produced in "To create and publish a ClickOnce project," type rmdir /s publish .

This step is optional, but it ensures that the new files were all produced by the command-line build.

5. Type msbuild /target:publish .

The above steps will produce a full ClickOnce application deployment in a subfolder of your project named
Publish. CmdLineDemo.application is the ClickOnce deployment manifest. The folder
CmdLineDemo_1.0.0.0 contains the files CmdLineDemo.exe and CmdLineDemo.exe.manifest, the ClickOnce
application manifest. Setup.exe is the bootstrapper, which by default is configured to install the .NET
Framework. The DotNetFX folder contains the redistributables for the .NET Framework. This is the entire set
of files you need to deploy your application over the Web or via UNC or CD/DVD.

When you publish the application in the above procedures, the following properties are inserted into your project
file by the Publish Wizard. These properties directly influence how the ClickOnce application is produced.

In CmdLineDemo.vbproj / CmdLineDemo.csproj:

You can override any of these properties at the command line without altering the project file itself. For example,
the following will build the ClickOnce application deployment without the bootstrapper:

Publishing properties are controlled in Visual Studio from the Publish, Security, and Signing property pages of
the Project Designer. Below is a description of the publishing properties, along with an indication of how each is
set in the various property pages of the application designer :

AssemblyOriginatorKeyFile determines the key file used to sign your ClickOnce application manifests. This
same key may also be used to assign a strong name to your assemblies. This property is set on the Signing
page of the Project Designer.

The following properties are set on the Security page:

Enable ClickOnce Security Settings determines whether ClickOnce manifests are generated. When a
project is initially created, ClickOnce manifest generation is off by default. The wizard will automatically turn
this flag on when you publish for the first time.

TargetZone determines the level of trust to be emitted into your ClickOnce application manifest. Possible
values are "Internet", "LocalIntranet", and "Custom". Internet and LocalIntranet will cause a default
permission set to be emitted into your ClickOnce application manifest. LocalIntranet is the default, and it
basically means full trust. Custom specifies that only the permissions explicitly specified in the base
app.manifest file are to be emitted into the ClickOnce application manifest. The app.manifest file is a partial
manifest file that contains just the trust information definitions. It is a hidden file, automatically added to
your project when you configure permissions on the Security page.

The following properties are set on the Publish page:

PublishUrl is the location where the application will be published to in the IDE. It is inserted into the
ClickOnce application manifest if neither the InstallUrl or UpdateUrl property is specified.

ApplicationVersion specifies the version of the ClickOnce application. This is a four-digit version number. If
the last digit is a "*", then the ApplicationRevision is substituted for the value inserted into the manifest at
build time.

ApplicationRevision specifies the revision. This is an integer which increments each time you publish in the
IDE. Notice that it is not automatically incremented for builds performed at the command-line.

Install determines whether the application is an installed application or a run-from-Web application.

InstallUrl (not shown) is the location where users will install the application from. If specified, this value is
burned into the setup.exe bootstrapper if the IsWebBootstrapper property is enabled. It is also inserted into
the application manifest if the UpdateUrl is not specified.

SupportUrl (not shown) is the location linked in the Add/Remove Programs dialog box for an installed
application.

The following properties are set in the Application Updates dialog box, accessed from the Publish page.

UpdateEnabled indicates whether the application should check for updates.

UpdateMode specifies either Foreground updates or Background updates.

UpdateInterval specifies how frequently the application should check for updates.

UpdateIntervalUnits specifies whether the UpdateInterval value is in units of hours, days, or weeks.

UpdateUrl (not shown) is the location from which the application will receive updates. If specified, this value
is inserted into the application manifest.

The following properties are set in the Publish Options dialog box, accessed from the Publish page.

PublisherName specifies the name of the publisher displayed in the prompt shown when installing or
running the application. In the case of an installed application, it is also used to specify the folder name on
the Start menu.

ProductName specifies the name of the product displayed in the prompt shown when installing or running
the application. In the case of an installed application, it is also used to specify the shortcut name on the
Start menu.

The following properties are set in the Prerequisites dialog box, accessed from the Publish page.

BootstrapperEnabled determines whether to generate the setup.exe bootstrapper.

InstallURL, SupportUrl, PublishURL, and UpdateURL

URL OPTION DESCRIPTION

PublishURL Required if you are publishing your ClickOnce application to a
Web site.

InstallURL Optional. Set this URL option if the installation site is different
than the PublishURL . For example, you could set the
PublishURL to an FTP path and set the InstallURL to a

Web URL.

SupportURL Optional. Set this URL option if the support site is different
than the PublishURL . For example, you could set the
SupportURL to your company's customer support Web site.

UpdateURL Optional. Set this URL option if the update location is different
than the InstallURL . For example, you could set the
PublishURL to an FTP path and set the UpdateURL to a

Web URL.

See also

IsWebBootstrapper determines whether the setup.exe bootstrapper works over the Web or in disk-based
mode.

The following table shows the four URL options for ClickOnce deployment.

GenerateBootstrapper
GenerateApplicationManifest
GenerateDeploymentManifest
ClickOnce security and deployment
Walkthrough: Manually deploy a ClickOnce application

https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generatebootstrapper
https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generateapplicationmanifest
https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generatedeploymentmanifest

Publish an application to IIS by importing publish
settings in Visual Studio
5/15/2019 • 6 minutes to read • Edit Online

NOTENOTE

Prerequisites

Create a new ASP.NET project in Visual Studio

You can use the Publish tool to import publish settings and then deploy your app. In this article, we use publish
settings for IIS, but you can use similar steps to import publish settings for Azure App Service. In some scenarios,
use of a publish settings profile can be faster than manually configuring deployment to IIS for each installation of
Visual Studio.

These steps apply to ASP.NET, ASP.NET Core, and .NET Core apps in Visual Studio.

In this tutorial, you will:

Configure IIS so that you can generate a publish settings file
Create a publish settings file
Import the publish settings file into Visual Studio
Deploy the app to IIS

A publish settings file (*.publishsettings) is different than a publishing profile (*.pubxml) created in Visual Studio. A
publish settings file is created by IIS or Azure App Service, or it can be manually created, and then it can be
imported into Visual Studio.

If you just need to copy a Visual Studio publishing profile (*.pubxml file) from one installation of Visual Studio to another, you
can find the publishing profile, <profilename>.pubxml, in the \<projectname>\Properties\PublishProfiles folder for
managed project types. For websites, look under the \App_Data folder. The publishing profiles are MSBuild XML files.

You must have Visual Studio 2019 installed and the ASP.NET and web development workload.

If you haven't already installed Visual Studio, go to the Visual Studio downloads page to install it for free.

You must have Visual Studio 2017 installed and the ASP.NET and web development workload.

If you haven't already installed Visual Studio, go to the Visual Studio downloads page to install it for free.

On your server, you must be running Windows Server 2012 or Windows Server 2016, and you must have the
IIS Web Server role correctly installed (required to generate the publish settings file (*.publishsettings)). Either
ASP.NET 4.5 or ASP.NET Core must also be installed on the server. To set up ASP.NET 4.5, see IIS 8.0 Using
ASP.NET 3.5 and ASP.NET 4.5. To set up ASP.NET Core, see Host ASP.NET Core on Windows with IIS.

1. On the computer running Visual Studio, create a new project.

Choose the correct template. In this example, choose either ASP.NET Web Application (.NET
Framework) or (for C# only) ASP.NET Core Web Application, and then click OK.

If you don't see the specified project templates, click the Open Visual Studio Installer link in the left pane

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/tutorial-import-publish-settings-iis.md
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/iis/get-started/whats-new-in-iis-8/iis-80-using-aspnet-35-and-aspnet-45
https://docs.microsoft.com/iis/get-started/whats-new-in-iis-8/iis-80-using-aspnet-35-and-aspnet-45
https://docs.microsoft.com/aspnet/core/publishing/iis?tabs=aspnetcore2x#iis-configuration

Install and configure Web Deploy on Windows Server

of the New Project dialog box. The Visual Studio Installer launches. Install the ASP.NET and web
development workload.

The project template you choose (ASP.NET or ASP.NET Core) must correspond to the version of ASP.NET
installed on the web server.

2. Choose either MVC (.NET Framework) or Web Application (Model-View-Controller) (for .NET Core),
and make sure that No Authentication is selected, and then click OK.

3. Type a name like MyWebApp and click OK.

Visual Studio creates the project.

4. Choose Build > Build Solution to build the project.

Web Deploy 3.6 for Hosting Servers provides additional configuration features that enable the creation of the
publish settings file from the UI.

1. If you have Web Deploy 3.6 already installed on Windows Server, uninstall it using Control Panel >
Programs > Uninstall a Program.

2. Next, install Web Deploy 3.6 for Hosting Servers on Windows Server.

To install Web Deploy for Hosting Servers, use the Web Platform Installer (WebPI). (To find the Web
Platform Installer link from IIS, select IIS in the left pane of Server Manager. Right-click the server and
select Internet Information Services (IIS) Manager.)

In the Web Platform Installer, you find Web Deploy for Hosting Servers in the Applications tab.

3. If you did not already install IIS Management Scripts and Tools, install it now.

Go to Select server roles > Web Server (IIS) > Management Tools, and then select the IIS
Management Scripts and Tools role, click Next, and then install the role.

https://www.microsoft.com/web/downloads/platform.aspx

Create the publish settings file in IIS on Windows Server

The scripts and tools are required to enable the generation of the publish settings file.

4. (Optional) Verify that Web Deploy is running correctly by opening Control Panel > System and Security
> Administrative Tools > Services and make sure that Web Deployment Agent Service is running
(the service name is different in older versions).

If the agent service is not running, start it. If it is not present at all, go to Control Panel > Programs >
Uninstall a program, find Microsoft Web Deploy <version>. Choose to Change the installation and
make sure that you choose Will be installed to the local hard drive for the Web Deploy components.
Complete the change installation steps.

1. Close and reopen the IIS Management Console to show updated configuration options in the UI.

2. In IIS, right-click the Default Web Site, choose Deploy > Configure Web Deploy Publishing.

3. In the Configure Web Deploy Publishing dialog box, examine the settings.

4. Click Setup.

In the Results panel, the output shows that access rights are granted to the specified user, and that a file
with a .publishsettings file extension has been generated in the location shown in the dialog box.

Import the publish settings in Visual Studio and deploy

<?xml version="1.0" encoding="utf-8"?>
<publishData>
 <publishProfile
 publishUrl="https://myhostname:8172/msdeploy.axd"
 msdeploySite="Default Web Site"
 destinationAppUrl="http://myhostname:80/"
 mySQLDBConnectionString=""
 SQLServerDBConnectionString=""
 profileName="Default Settings"
 publishMethod="MSDeploy"
 userName="myhostname\myusername" />
</publishData>

Depending on your Windows Server and IIS configuration, you see different values in the XML file. Here
are a few details about the values that you see:

NOTENOTE

The msdeploy.axd file referenced in the publishUrl attribute is a dynamically generated HTTP
handler file for Web Deploy. (For testing purposes, http://myhostname:8172 generally works as well.)

The publishUrl port is set to port 8172, which is the default for Web Deploy.

The destinationAppUrl port is set to port 80, which is the default for IIS.

If you are unable to connect to the remote host in Visual Studio using the host name (in later steps),
test the IP address in place of the host name.

If you are publishing to IIS running on an Azure VM, you must open the Web Deploy and IIS ports in the
Network Security group. For detailed information, see Install and run IIS.

5. Copy this file to the computer where you are running Visual Studio.

1. On the computer where you have the ASP.NET project open in Visual Studio, right-click the project in
Solution Explorer, and choose Publish.

2. If you have previously configured any publishing profiles, the Publish pane appears. Click Create new
profile.

3. In the Pick a publish target dialog box, click Import Profile.

https://docs.microsoft.com/azure/virtual-machines/windows/quick-create-portal#install-web-server

4. Navigate to the location of the publish settings file that you created in the previous section.

5. In the Import Publish Settings File dialog box, navigate to and select the profile that you created in the
previous section, and click Open.

Visual Studio begins the deployment process, and the Output window shows progress and results.

If you get an any deployment errors, click Settings to edit settings. Modify settings and click Validate to
test new settings. If the host name is not found, try the IP address instead of the host name in the Server
and Destination URL fields.

Next steps

After the app deploys successfully, it should start automatically. If it does not start from Visual Studio, start the app
in IIS. For ASP.NET Core, you need to make sure that the Application pool field for the DefaultAppPool is set to
No Managed Code.

In this tutorial, you created a publish settings file, imported it into Visual Studio, and deployed an ASP.NET app to
IIS. You may want an overview of other publishing options in Visual Studio.

First look at deployment

Publish an application to Azure App Service by
importing publish settings in Visual Studio
5/15/2019 • 3 minutes to read • Edit Online

NOTENOTE

Prerequisites

Create a new ASP.NET project in Visual Studio

You can use the Publish tool to import publish settings and then deploy your app. In this article, we use publish
settings for Azure App Service, but you can use similar steps to import publish settings from IIS. In some
scenarios, use of a publish settings profile can be faster than manually configuring deployment to the service for
each installation of Visual Studio.

These steps apply to ASP.NET, ASP.NET Core, and .NET Core apps in Visual Studio. You can also import publish
settings for Python apps.

In this tutorial, you will:

Generate a publish settings file from Azure App Service
Import the publish settings file into Visual Studio
Deploy the app to Azure App Service

A publish settings file (*.publishsettings) is different than a publishing profile (*.pubxml) created in Visual Studio. A
publish settings file is created by Azure App Service, and then it can be imported into Visual Studio.

If you just need to copy a Visual Studio publishing profile (*.pubxml file) from one installation of Visual Studio to another,
you can find the publishing profile, <profilename>.pubxml, in the \<projectname>\Properties\PublishProfiles folder for
managed project types. For websites, look under the \App_Data folder. The publishing profiles are MSBuild XML files.

You must have Visual Studio 2019 installed and the ASP.NET and web development workload.

If you haven't already installed Visual Studio, go to the Visual Studio downloads page to install it for free.

You must have Visual Studio 2017 installed and the ASP.NET and web development workload.

If you haven't already installed Visual Studio, go to the Visual Studio downloads page to install it for free.

Create an Azure App Service. For detailed instructions, see Deploy an ASP.NET Core web app to Azure using
Visual Studio.

1. On the computer running Visual Studio, create a new project.

Choose the correct template. In this example, choose either ASP.NET Web Application (.NET
Framework) or (for C# only) ASP.NET Core Web Application, and then click OK.

If you don't see the specified project templates, click the Open Visual Studio Installer link in the left pane
of the New Project dialog box. The Visual Studio Installer launches. Install the ASP.NET and web
development workload.

The project template you choose (ASP.NET or ASP.NET Core) must correspond to the version of ASP.NET

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/tutorial-import-publish-settings-azure.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/python/publishing-python-web-applications-to-azure-from-visual-studio
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/aspnet/core/tutorials/publish-to-azure-webapp-using-vs

Create the publish settings file in Azure App Service

Import the publish settings in Visual Studio and deploy

installed on the web server.

2. Choose either MVC (.NET Framework) or Web Application (Model-View-Controller) (for .NET Core),
and make sure that No Authentication is selected, and then click OK.

3. Type a name like MyWebApp and click OK.

Visual Studio creates the project.

4. Choose Build > Build Solution to build the project.

<publishData>
 <publishProfile
 profileName="DeployASPDotNetCore - Web Deploy"
 publishMethod="MSDeploy"
 publishUrl="deployaspdotnetcore.scm.azurewebsites.net:443"
 msdeploySite="DeployASPDotNetCore"
 userName="$DeployASPDotNetCore"
 userPWD="abcdefghijklmnopqrstuzwxyz"
 destinationAppUrl="http://deployaspdotnetcore20180508031824.azurewebsites.net"
 SQLServerDBConnectionString=""
 mySQLDBConnectionString=""
 hostingProviderForumLink=""
 controlPanelLink="http://windows.azure.com"
 webSystem="WebSites">
 <databases />
 </publishProfile>
</publishData>

1. In the Azure portal, open the Azure App Service.

2. Click Get publish profile and save the profile locally.

A file with a .publishsettings file extension has been generated in the location where you saved it. The
following code shows a partial example of the file (in a more readable formatting).

Typically, the preceding *.publishsettings file contains two publishing profiles that you can use in Visual
Studio, one to deploy using Web Deploy, and one to deploy using FTP. The preceding code shows the Web
Deploy profile. Both profiles will be imported later when you import the profile.

1. On the computer where you have the ASP.NET project open in Visual Studio, right-click the project in
Solution Explorer, and choose Publish.

2. If you have previously configured any publishing profiles, the Publish pane appears. Click Create new
profile.

3. In the Pick a publish target dialog box, click Import Profile.

4. Navigate to the location of the publish settings file that you created in the previous section.

5. In the Import Publish Settings File dialog box, navigate to and select the profile that you created in the
previous section, and click Open.

Visual Studio begins the deployment process, and the Output window shows progress and results.

If you get an any deployment errors, click Settings to edit settings. Modify settings and click Validate to
test new settings. If the host name is not found, try the IP address instead of the host name in the Server
and Destination URL fields.

Next steps
In this tutorial, you created a publish settings file, imported it into Visual Studio, and deployed an ASP.NET app to
Azure App Service. You may want an overview of publishing options in Visual Studio.

First look at deployment

Get started with Visual Studio Kubernetes Tools
5/28/2019 • 4 minutes to read • Edit Online

Prerequisites

Create a new Kubernetes project

The Visual Studio Kubernetes Tools help streamline the development of containerized applications targeting
Kubernetes. Visual Studio can automatically create the configuration-as-code files needed to support Kubernetes
deployment, such as Dockerfiles and Helm charts. You can debug your code in a live Azure Kubernetes Service
(AKS) cluster using Azure Dev Spaces, or publish directly to an AKS cluster from inside Visual Studio.

This tutorial covers using Visual Studio to add Kubernetes support to an project and publish to AKS. If you are
primarily interested in using Azure Dev Spaces to debug and test your project running in AKS, you can jump to the
Azure Dev Spaces tutorial instead.

To leverage this new functionality, you'll need:

The latest version of Visual Studio 2017 with the ASP.NET and web development workload.
The Kubernetes tools for Visual Studio, available as a separate download.

Visual Studio 2019 with the ASP.NET and web development workload.

Docker Desktop installed on your development workstation (that is, where you run Visual Studio), if you wish to
build Docker images, debug Docker containers running locally, or publish to AKS. (Docker is not required for
building and debugging Docker containers in AKS using Azure Dev Spaces.)

If you wish to publish to AKS from Visual Studio (not required for debugging in AKS using Azure Dev
Spaces):

1. The AKS publishing tools, available as a separate download.

2. An Azure Kubernetes Service cluster. For more information, see Creating an AKS cluster. Be sure to
connect to the cluster from your development workstation.

3. Helm CLI installed on your development workstation. For more information see Installing Helm.

4. Helm configured against your AKS cluster by using the helm init command. For more information
on how to do this, see How to configure Helm.

Once you have the appropriate tools installed, launch Visual Studio and create a new project. Under Cloud, choose
the Container Application for Kubernetes project type. Select this project type and choose OK.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/containers/tutorial-kubernetes-tools.md
https://aka.ms/get-azds
https://docs.microsoft.com/azure/dev-spaces/get-started-netcore-visualstudio
https://visualstudio.microsoft.com/vs/older-downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=vs+2017+download
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vs-tools-for-kubernetes
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vs-tools-for-kubernetes
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal#create-an-aks-cluster
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://github.com/kubernetes/helm/blob/master/docs/install.md
https://docs.microsoft.com/azure/aks/kubernetes-helm#configure-helm

In the Visual Studio start window, search for Kubernetes, and choose the Container Application for Kubernetes.

Provide the project name.

You can then choose which type of ASP.NET Core web application to create. Choose Web Application. The usual
Enable Docker Support option does not appear on this dialog. Docker support is enabled by default for a
container application for Kubernetes.

Add Kubernetes support to an existing project
Alternatively, you can add Kubernetes support to an existing ASP.NET Core web application project. To do this,
right-click on the project, and choose Add > Container Orchestrator Support.

In the dialog box, select Kubernetes/Helm and choose OK.

What Visual Studio creates for you
After creating a new Container Application for Kubernetes project or adding Kubernetes container orchestrator
support to an existing project, you see some additional files in your project that facilitate deploying to Kubernetes.

The added files are:

a Dockerfile, which allows you to generate a Docker container image hosting this web application. As you'll
see, the Visual Studio tooling leverages this Dockerfile when debugging and deploying to Kubernetes. If you
prefer to work directly with the Docker image, you can right-click on the Dockerfile and choose Build
Docker Image.

Publish to Azure Kubernetes Service (AKS)

a Helm chart, and a charts folder. These yaml files make up the Helm chart for the application, which you can
use to deploy it to Kubernetes. For more information on Helm, see https://www.helm.sh.

azds.yaml. This contains settings for Azure Dev Spaces, which provides a rapid, iterative debugging
experience in Azure Kubernetes Service. For more information, see the Azure Dev Spaces documentation.

With all these files in place, you can use the Visual Studio IDE to write and debug your application code, just as you
always have. You can also use Azure Dev Spaces to quickly run and debug your code running live in an AKS cluster.
For more information, please reference the Azure Dev Spaces tutorial

Once you have your code running the way you want, you can publish directly from Visual Studio to an AKS cluster.

To do this, you first need to double-check that you've installed everything as described in the Prerequisites section
under the item for publishing to AKS, and run through all the command line steps given in the links. Then, set up a
publish profile that publishes your container image to Azure Container Registry (ACR). Then AKS can pull your
container image from ACR and deploy it into the cluster.

1. In Solution Explorer, right-click on your project and choose Publish.

2. In the Publish screen, choose Container Registry as the publish target, and follow the prompts to select
your container registry. If you don't already have a container registry, choose Create New Azure
Container Registry to create one from Visual Studio. For more information, see Publish your container to
Azure Container Registry.

https://www.helm.sh
https://docs.microsoft.com/azure/dev-spaces/azure-dev-spaces
https://aka.ms/get-azds
https://docs.microsoft.com/azure/dev-spaces/get-started-netcore-visualstudio
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/containers/vs-azure-tools-docker-hosting-web-apps-in-docker

3. Back in Solution Explorer, right click on your solution and click Publish to Azure AKS.

4. Choose your subscription and your AKS cluster, along with the ACR publish profile that you just created.
Then click OK.

This takes you to the Publish to Azure AKS screen.

5. Choose the Configure Helm link to update the command line used to install the Helm charts on the server.

Updating the command line is useful if there are custom command line arguments that you wish to specify,
such as a different Kubernetes context or chart name.

Next steps

6. When you are ready to deploy, click the Publish button to publish your application to AKS.

Congratulations! You can now use the full power of Visual Studio for all your Kubernetes app development.

Learn more about Kubernetes development on Azure by reading the AKS documentation.

Learn more about Azure Dev Spaces by reading the Azure Dev Spaces documentation

https://docs.microsoft.com/azure/aks
https://aka.ms/get-azds

ClickOnce security and deployment
5/28/2019 • 8 minutes to read • Edit Online

What is a ClickOnce application?

How ClickOnce security works

ClickOnce is a deployment technology that enables you to create self-updating Windows-based applications
that can be installed and run with minimal user interaction. Visual Studio provides full support for publishing
and updating applications deployed with ClickOnce technology if you have developed your projects with Visual
Basic and Visual C#. For information about deploying Visual C++ applications, see ClickOnce Deployment for
Visual C++ Applications.

ClickOnce deployment overcomes three major issues in deployment:

Difficulties in updating applications. With Microsoft Windows Installer deployment, whenever an
application is updated, the user can install an update, an msp file, and apply it to the installed product;
with ClickOnce deployment, you can provide updates automatically. Only those parts of the application
that have changed are downloaded, and then the full, updated application is reinstalled from a new side-
by-side folder.

Impact to the user's computer. With Windows Installer deployment, applications often rely on shared
components, with the potential for versioning conflicts; with ClickOnce deployment, each application is
self-contained and cannot interfere with other applications.

Security permissions. Windows Installer deployment requires administrative permissions and allows
only limited user installation; ClickOnce deployment enables non-administrative users to install and
grants only those Code Access Security permissions necessary for the application.

In the past, these issues sometimes caused developers to decide to create Web applications instead of
Windows-based applications, sacrificing a rich user interface for ease of installation. By using applications
deployed using ClickOnce, you can have the best of both technologies.

A ClickOnce application is any Windows Presentation Foundation (.xbap), Windows Forms (.exe), console
application (.exe), or Office solution (.dll) published using ClickOnce technology. You can publish a ClickOnce
application in three different ways: from a Web page, from a network file share, or from media such as a CD-
ROM. A ClickOnce application can be installed on an end user's computer and run locally even when the
computer is offline, or it can be run in an online-only mode without permanently installing anything on the end
user's computer. For more information, see Choose a ClickOnce deployment strategy.

ClickOnce applications can be self-updating; they can check for newer versions as they become available and
automatically replace any updated files. The developer can specify the update behavior; a network administrator
can also control update strategies, for example, marking an update as mandatory. Updates can also be rolled
back to an earlier version by the end user or by an administrator. For more information, see Choose a ClickOnce
update strategy.

Because ClickOnce applications are isolated, installing or running a ClickOnce application cannot break existing
applications. ClickOnce applications are self-contained; each ClickOnce application is installed to and run from a
secure per-user, per-application cache. ClickOnce applications run in the Internet or Intranet security zones. If
necessary, the application can request elevated security permissions. For more information, see Secure
ClickOnce applications.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-security-and-deployment.md
https://docs.microsoft.com/cpp/windows/clickonce-deployment-for-visual-cpp-applications

CertificatesCertificates

Code access securityCode access security

ClickOnce trust promptClickOnce trust prompt

How ClickOnce deployment works

Publish ClickOnce applicationsPublish ClickOnce applications

Deploy ClickOnce applicationsDeploy ClickOnce applications

Install ClickOnce applicationsInstall ClickOnce applications

The core ClickOnce security is based on certificates, code access security policies, and the ClickOnce trust
prompt.

Authenticode certificates are used to verify the authenticity of the application's publisher. By using Authenticode
for application deployment, ClickOnce helps prevent a harmful program from portraying itself as a legitimate
program coming from an established, trustworthy source. Optionally, certificates can also be used to sign the
application and deployment manifests to prove that the files have not been tampered with. For more
information, see ClickOnce and Authenticode. Certificates can also be used to configure client computers to
have a list of trusted publishers. If an application comes from a trusted publisher, it can be installed without any
user interaction. For more information, see Trusted application deployment overview.

Code access security helps limit the access that code has to protected resources. In most cases, you can choose
the Internet or Local Intranet zones to limit the permissions. Use the Security page in the ProjectDesigner to
request the zone appropriate for the application. You can also debug applications with restricted permissions to
emulate the end-user experience. For more information, see Code access security for ClickOnce applications.

If the application requests more permissions than the zone allows, the end user can be prompted to make a trust
decision. The end user can decide if ClickOnce applications such as Windows Forms applications, Windows
Presentation Foundation applications, console applications, XAML browser applications, and Office solutions
are trusted to run. For more information, see How to: Configure the ClickOnce trust prompt behavior.

The core ClickOnce deployment architecture is based on two XML manifest files: an application manifest and a
deployment manifest. The files are used to describe where the ClickOnce applications are installed from, how
they are updated, and when they are updated.

The application manifest describes the application itself. This includes the assemblies, the dependencies and files
that make up the application, the required permissions, and the location where updates will be available. The
application developer authors the application manifest by using the Publish Wizard in Visual Studio or the
Manifest Generation and Editing Tool (Mage.exe) in the Windows Software Development Kit (SDK). For more
information, see How to: Publish a ClickOnce application using the Publish Wizard.

The deployment manifest describes how the application is deployed. This includes the location of the application
manifest, and the version of the application that clients should run.

After it is created, the deployment manifest is copied to the deployment location. This can be a Web server,
network file share, or media such as a CD. The application manifest and all the application files are also copied
to a deployment location that is specified in the deployment manifest. This can be the same as the deployment
location, or it can be a different location. When using the Publish Wizard in Visual Studio, the copy operations
are performed automatically.

After it is deployed to the deployment location, end users can download and install the application by clicking an
icon representing the deployment manifest file on a Web page or in a folder. In most cases, the end user is
presented with a simple dialog box asking the user to confirm installation, after which installation proceeds and
the application is started without additional intervention. In cases where the application requires elevated
permissions or if the application is not signed by a trusted certificate, the dialog box also asks the user to grant
permission before the installation can continue. Though ClickOnce installs are per-user, permission elevation

NOTENOTE

Update ClickOnce applicationsUpdate ClickOnce applications

NOTENOTE

Third party installersThird party installers

ClickOnce tools

TOOL DESCRIPTION

Security Page, Project Designer Signs the application and deployment manifests.

Publish Page, Project Designer Generates and edits the application and deployment
manifests for Visual Basic and Visual C# applications.

may be required if there are prerequisites that require administrator privileges. For more information about
elevated permissions, see Securing ClickOnce applications.

Certificates can be trusted at the machine or enterprise level, so that ClickOnce applications signed with a
trusted certificate can install silently. For more information about trusted certificates, see Trusted application
deployment overview.

The application can be added to the user's Start menu and to the Add or Remove Programs group in the
Control Panel. Unlike other deployment technologies, nothing is added to the Program Files folder or the
registry, and no administrative rights are required for installation

It is also possible to prevent the application from being added to the Start menu and Add or Remove Programs group,
in effect making it behave like a Web application. For more information, see Choose a ClickOnce deployment strategy.

When the application developers create an updated version of the application, they generate a new application
manifest and copy files to a deployment location—usually a sibling folder to the original application deployment
folder. The administrator updates the deployment manifest to point to the location of the new version of the
application.

The Publish Wizard in Visual Studio can be used to perform these steps.

In addition to the deployment location, the deployment manifest also contains an update location (a Web page
or network file share) where the application checks for updated versions. ClickOnce Publish properties are used
to specify when and how often the application should check for updates. Update behavior can be specified in the
deployment manifest, or it can be presented as user choices in the application's user interface by means of the
ClickOnce APIs. In addition, Publish properties can be employed to make updates mandatory or to roll back to
an earlier version. For more information, see Choosing a ClickOnce update strategy.

You can customize your ClickOnce installer to install third-party components along with your application. You
must have the redistributable package (.exe or .msi file) and describe the package with a language-neutral
product manifest and a language-specific package manifest. For more information, see Creating bootstrapper
packages.

The following table shows the tools that you can use to generate, edit, sign, and re-sign the application and
deployment manifests.

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/security-page-project-designer
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/publish-page-project-designer

Mage.exe (Manifest Generation and Editing Tool) Generates the application and deployment manifests for
Visual Basic, Visual C#, and Visual C++ applications.

Signs and re-signs the application and deployment
manifests.

Can be run from batch scripts and the command prompt.

MageUI.exe (Manifest Generation and Editing Tool, Graphical
Client)

Generates and edits the application and deployment
manifests.

Signs and re-signs the application and deployment
manifests.

GenerateApplicationManifest task Generates the application manifest.

Can be run from MSBuild. For more information, see
MSBuild reference.

GenerateDeploymentManifest task Generates the deployment manifest.

Can be run from MSBuild. For more information, see
MSBuild reference.

SignFile task Signs the application and deployment manifests.

Can be run from MSBuild. For more information, see
MSBuild reference.

Microsoft.Build.Tasks.Deployment.ManifestUtilities Develop your own application to generate the application
and deployment manifests.

TOOL DESCRIPTION

BROWSER .NET FRAMEWORK VERSION

Internet Explorer 2.0, 3.0, 3.5, 3.5 SP1, 4

Firefox 2.0 SP1, 3.5 SP1, 4

See also

The following table shows the .NET Framework version required to support ClickOnce applications in these
browsers.

ClickOnce deployment on Windows Vista
Publish ClickOnce applications
Secure ClickOnce applications
Deploy COM components with ClickOnce
Build ClickOnce applications from the command line
Debug ClickOnce applications that use System.Deployment.Application

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/generateapplicationmanifest-task
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/msbuild-reference
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/generatedeploymentmanifest-task
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/msbuild-reference
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/signfile-task
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/msbuild-reference
https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.deployment.manifestutilities(v=vs.140).aspx

Choose a ClickOnce deployment strategy
4/23/2019 • 3 minutes to read • Edit Online

Install from the Web or a network share

Start the application from the Web or a network share

NOTENOTE

There are three different strategies for deploying a ClickOnce application; the strategy that you choose depends
primarily on the type of application that you are deploying. The three deployment strategies are as follows:

NOTENOTE

Install from the Web or a Network Share

Install from a CD

Start the application from the Web or a Network Share

In addition to selecting a deployment strategy, you will also want to select a strategy for providing application
updates. For more information, see Choose a ClickOnce update strategy.

When you use this strategy, your application is deployed to a Web server or a network file share. When an end
user wants to install the application, he or she clicks an icon on a Web page or double-clicks an icon on the file
share. The application is then downloaded, installed, and started on the end user's computer. Items are added to
the Start menu and Add or Remove Programs in Control Panel.

Because this strategy depends on network connectivity, it works best for applications that will be deployed to
users who have access to a local-area network or a high-speed Internet connection.

If you deploy the application from the Web, you can pass arguments into the application when it is activated
using a URL. For more information, see How to: Retrieve query string information in an online ClickOnce
application. You cannot pass arguments into an application that is activated by using any of the other methods
described in this document.

To enable this deployment strategy in Visual Studio, click From the Web or From a UNC path or file share on
the How Installed page of the Publish Wizard.

This is the default deployment strategy.

This strategy is like the first, except the application behaves like a Web application. When the user clicks a link on
a Web page (or double-clicks an icon on the file share), the application is started. When users close the
application, it is no longer available on their local computer ; nothing is added to the Start menu or Add or
Remove Programs in Control Panel.

Technically, the application is downloaded and installed to an application cache on the local computer, just as a Web
application is downloaded to the Web cache. As with the Web cache, the files are eventually scavenged from the application
cache. However, the perception of the user is that the application is being run from the Web or file share.

This strategy works best for applications that are used infrequently—for example, an employee-benefits tool that

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/choosing-a-clickonce-deployment-strategy.md

Install from a CD

Web browser support

See also

is typically run only one time each year.

To enable this deployment strategy in Visual Studio, click Do not install the application on the Install or Run
From Web page of the Publish Wizard.

To enable this deployment strategy, manually, change the install tag in the deployment manifest. (Its value can be
true or false. In Mage.exe, use the Online Only option in the Application Type list.)

When you use this strategy, your application is deployed to removable media such as a CD-ROM or DVD. As
with the previous option, when the user chooses to install the application, it is installed and started, and items are
added to the Start menu and Add or Remove Programs in Control Panel.

This strategy works best for applications that will be deployed to users without persistent network connectivity or
with low-bandwidth connections. Because the application is installed from removable media, no network
connection is necessary for installation; however, network connectivity is still required for application updates.

To enable this deployment strategy in Visual Studio, click From a CD-ROM or DVD-ROM on the How
Installed page of the Publish Wizard.

To enable this deployment strategy manually, change the deploymentProvider tag in the deployment manifest.
(In Visual Studio, this property is exposed as Installation URL on the Publish page of the Project Designer. In
Mage.exe it is Start Location.)

Applications that target .NET Framework 3.5 can be installed using any browser.

Applications that target .NET Framework 2.0 require Internet Explorer.

ClickOnce security and deployment
Choose a ClickOnce update strategy
How to: Publish a ClickOnce application with the Publish Wizard
Securing ClickOnce applications

ClickOnce cache overview
2/21/2019 • 2 minutes to read • Edit Online

Cache storage quota

See also

All ClickOnce applications, whether they are installed locally or hosted online, are stored on the client computer in
a ClickOnceapplication cache. A ClickOnce cache is a family of hidden directories under the Local Settings
directory of the current user's Documents and Settings folder. This cache holds all the application's files, including
the assemblies, configuration files, application and user settings, and data directory. The cache is also responsible
for migrating the application's data directory to the latest version. For more information about data migration, see
Accessing Local and Remote Data in ClickOnce Applications.

By providing a single location for application storage, ClickOnce takes over the task of managing the physical
installation of an application from the user. The cache also helps isolate applications by keeping the assemblies and
data files for all applications and their distinct versions separate from one another. For example, when you upgrade
a ClickOnce application, that version and its data resources are supplied with their own directories in the cache.

ClickOnce applications that are hosted online are restricted in the amount of space they can occupy by a quota that
constrains the size of the ClickOnce cache. The cache size applies to all the user's online applications; a single
partially-trusted, online application is limited to occupying half of the quota space. Installed applications are not
limited by the cache size and do not count against the cache limit. For all ClickOnce applications, the cache retains
only the current version and the previously installed version.

By default, client computers have 250 MB of storage for online ClickOnce applications. Data files do not count
toward this limit. A system administrator can enlarge or reduce this quota on a particular client computer by
changing the registry key,
HKEY_CURRENT_USER\Software\Classes\Software\Microsoft\Windows\CurrentVersion\Deployment\
OnlineAppQuotaInKB, which is a DWORD value that expresses the cache size in kilobytes. For example, in order
to reduce the cache size to 50 MB, you would change this value to 51200.

Access local and remote data in ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-cache-overview.md

ClickOnce and application settings
2/21/2019 • 2 minutes to read • Edit Online

Application settings files

Version upgrades

TYPE OF CHANGE UPGRADE ACTION

Setting added to <app>.exe.config The new setting is merged into the current version's
<app>.exe.config

Setting removed from <app>.exe.config The old setting is removed from the current version's
<app>.exe.config

Setting's default changed; local setting still set to original
default in user.config

The setting is merged into the current version's user.config
with the new default as the value

Application settings for Windows Forms makes it easy to create, store, and maintain custom application and user
preferences on the client. The following document describes how application settings files work in a ClickOnce
application, and how ClickOnce migrates settings when the user upgrades to the next version.

The information below applies only to the default application settings provider, the
<xref:System.Configuration.LocalFileSettingsProvider> class. If you supply a custom provider, that provider will
determine how it stores its data and how it upgrades its settings between versions. For more information on
application settings providers, see Application settings architecture.

Application settings consumes two files: <app>.exe.config and user.config, where app is the name of your Windows
Forms application. user.config is created on the client the first time your application stores user-scoped settings.
<app>.exe.config, by contrast, will exist prior to deployment if you define default values for settings. Visual Studio
will include this file automatically when you use its Publish command. If you create your ClickOnce application
using Mage.exe or MageUI.exe, you must make sure this file is included with your application's other files when
you populate your application manifest.

In a Windows Forms applications not deployed using ClickOnce, an application's <app>.exe.config file is stored in
the application directory, while the user.config file is stored in the user's Documents and Settings folder. In a
ClickOnce application, <app>.exe.config lives in the application directory inside of the ClickOnce application cache,
and user.config lives in the ClickOnce data directory for that application.

Regardless of how you deploy your application, application settings ensures safe read access to <app>.exe.config,
and safe read/write access to user.config.

In a ClickOnce application, the size of the configuration files used by application settings is constrained by the size
of the ClickOnce cache. For more information, see ClickOnce cache overview.

Just as each version of a ClickOnce application is isolated from all other versions, the application settings for a
ClickOnce application are isolated from the settings for other versions as well. When your user upgrades to a later
version of your application, application settings compares most recent (highest-numbered) version's settings
against the settings supplied with the updated version and merges the settings into a new set of settings files.

The following table describes how application settings decides which settings to copy.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-and-application-settings.md
https://docs.microsoft.com/dotnet/framework/winforms/advanced/application-settings-architecture

Setting's default changed; setting set to non-default in
user.config

The setting is merged into the current version's user.config
with the non-default value retained

TYPE OF CHANGE UPGRADE ACTION

ClickOnce and roaming settings

See also

If you have created your own application settings wrapper class and wish to customize the update logic, you can
override the <xref:System.Configuration.ApplicationSettingsBase.Upgrade%2A> method.

ClickOnce does not work with roaming settings, which allows your settings file to follow you across machines on a
network. If you need roaming settings, you will need either to implement an application settings provider that
stores settings over the network, or develop your own custom settings classes for storing settings on a remote
computer. For more information in settings providers, see Application settings architecture.

ClickOnce security and deployment
Application settings overview
ClickOnce cache overview
Access local and remote data in ClickOnce applications

https://docs.microsoft.com/dotnet/framework/winforms/advanced/application-settings-architecture
https://docs.microsoft.com/dotnet/framework/winforms/advanced/application-settings-overview

ClickOnce deployment on Windows Vista
2/21/2019 • 2 minutes to read • Edit Online

See also

Building applications in Visual Studio for User Account Control (UAC) on Windows Vista normally generates an
embedded manifest, encoded as binary XML data in the application's executable file. ClickOnce and Registration-
Free COM applications require an external manifest, so Visual Studio generates a file for these projects containing
the UAC data instead of an embedded manifest. For ClickOnce and Registration-Free COM deployments, Visual
Studio uses information from a file called app.manifest to generate external UAC manifest information. For all
other cases, Visual Studio embeds the UAC data in the application's executable file.

Visual Studio provides the following options for manifest generation:

Use an embedded manifest. Embed UAC data in the application's executable file and run as a normal user.

This is the default setting (unless you use ClickOnce). This setting supports the usual manner in which
Visual Studio operates on Windows Vista, with the generation of both an internal and an external manifest
using AsInvoker .

Use an external manifest. Generate an external manifest by using app.manifest.

This generates only the external manifest by using the information in app.manifest. When you publish an
application by using ClickOnce or Registration-Free COM, Visual Studio adds app.manifest to the project
and then adds this option.

Use no manifest. Create the application without a manifest.

This approach is also known as virtualization. Use this option for compatibility with existing applications
from earlier versions of Visual Studio.

The new properties are available on the Application page of the Project Designer (for Visual C# projects
only) and in the MSBuild project file format.

The method for configuring UAC manifest generation in the Visual Studio IDE differs depending on the
project type (Visual C# or Visual Basic).

For information about configuring Visual C# projects for manifest generation, see Application Page,
Project Designer (C#).

For information about configuring Visual Basic projects for manifest generation, see Application
Page, Project Designer (Visual Basic).

ClickOnce security and deployment
User permissions and Visual Studio
Application Page, Project Designer (C#)
Application Page, Project Designer (Visual Basic)

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-deployment-on-windows-vista.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/application-page-project-designer-csharp
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/application-page-project-designer-visual-basic
https://msdn.microsoft.com/library/d5c55084-1e7b-4b61-b478-137db01c0fc0
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/application-page-project-designer-csharp
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/application-page-project-designer-visual-basic

Localize ClickOnce applications
4/23/2019 • 4 minutes to read • Edit Online

Including All Satellite Assemblies in a Deployment

NOTENOTE

Generate one deployment for each culture

Localization is the process of making your application appropriate for a specific culture. This process involves
translating user interface (UI) text to a region-specific language, using correct date and currency formatting,
adjusting the size of controls on a form, and mirroring controls from right to left if necessary.

Localizing your application results in the creation of one or more satellite assemblies. Each assembly contains UI
strings, images, and other resources specific to a given culture. (Your application's main executable file contains the
strings for the default culture for your application.)

This topic describes three ways to deploy a ClickOnce application for other cultures:

Include all satellite assemblies in a single deployment.

Generate one deployment for each culture, with a single satellite assembly included in each.

Download satellite assemblies on demand.

Instead of publishing multiple ClickOnce deployments, you can publish a single ClickOnce deployment that
contains all of the satellite assemblies.

This method is the default in Visual Studio. To use this method in Visual Studio, you do not have to do any
additional work.

To use this method with MageUI.exe, you must set the culture for your application to neutral in MageUI.exe. Next,
you must manually include all of the satellite assemblies in your deployment. In MageUI.exe, you can add the
satellite assemblies by using the Populate button on the Files tab of your application manifest.

The benefit of this approach is that it creates a single deployment and simplifies your localized deployment story.
At run time, the appropriate satellite assembly will be used, depending on the default culture of the user's
Windows operating system. A drawback of this approach is that it downloads all satellite assemblies whenever the
application is installed or updated on a client computer. If your application has a large number of strings, or your
customers have a slow network connection, this process can affect performance during application update.

This approach assumes that your application adjusts the height, width, and position of controls automatically to
accommodate different text string sizes in different cultures. Windows Forms contains a variety of controls and technologies
that enable you to design your form to make it easily localizable, including the FlowLayoutPanel and TableLayoutPanel
controls as well as the AutoSize property. Also see How to: Support localization on Windows forms using AutoSize and the
TableLayoutPanel control.

In this deployment strategy, you generate multiple deployments. In each deployment, you include only the satellite
assembly needed for a specific culture, and you mark the deployment as specific to that culture.

To use this method in Visual Studio, set the Publish Language property on the Publish tab to the desired region.
Visual Studio will automatically include the satellite assembly required for the region you select, and will exclude
all other satellite assemblies from the deployment.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/localizing-clickonce-applications.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.autosize
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/1zkt8b33(v=vs.100)

Download satellite assemblies on demand

Testing localized ClickOnce applications before deployment

See also

You can accomplish the same thing by using the MageUI.exe tool in the Microsoft Windows Software
Development Kit (SDK). Use the Populate button on the Files tab of your application manifest to exclude all other
satellite assemblies from the application directory, and then set the Culture field on the Name tab for your
deployment manifest in MageUI.exe. These steps not only include the correct satellite assembly, but they also set
the language attribute on the assemblyIdentity element in your deployment manifest to the corresponding
culture.

After publishing the application, you must repeat this step for each additional culture your application supports.
You must make sure that you publish to a different Web server directory or file share directory every time,
because each application manifest will reference a different satellite assembly, and each deployment manifest will
have a different value for the language attribute.

If you decide to include all satellite assemblies in a single deployment, you can improve performance by using on-
demand downloading, which enables you to mark assemblies as optional. The marked assemblies will not be
downloaded when the application is installed or updated. You can install the assemblies when you need them by
calling the DownloadFileGroup method on the ApplicationDeployment class.

Downloading satellite assemblies on demand differs slightly from downloading other types of assemblies on
demand. For more information and code examples on how to enable this scenario using the Windows SDK tools
for ClickOnce, see Walkthrough: Downloading Satellite Assemblies on Demand with the ClickOnce Deployment
API.

You can also enable this scenario in Visual Studio. Also see Walkthrough: Downloading Satellite Assemblies on
Demand with the ClickOnce Deployment API Using the Designer or Walkthrough: Downloading Satellite
Assemblies on Demand with the ClickOnce Deployment API Using the Designer.

A satellite assembly will be used for a Windows Forms application only if the CurrentUICulture property for the
main thread of the application is set to the satellite assembly's culture. Customers in local markets will probably
already be running a localized version of Windows with their culture set to the appropriate default.

You have three options for testing localized deployments before you make your application available to customers:

You can run your ClickOnce application on the appropriate localized versions of Windows.

You can set the CurrentUICulture property programmatically in your application. (This property must be set
before you call the Run method.)

<assemblyIdentity> element
ClickOnce security and deployment
Globalize Windows forms

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.downloadfilegroup
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2012/ms366788(v=vs.110)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2013/ms366788(v=vs.120)
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.windows.forms.application.run
https://docs.microsoft.com/dotnet/framework/winforms/advanced/globalizing-windows-forms

How to: Publish a project that has a specific locale
4/23/2019 • 4 minutes to read • Edit Online

NOTENOTE

To create the publishing macroTo create the publishing macro

It is not uncommon for an application to contain components that have different locales. In this scenario, you
would create a solution that has several projects, and then publish separate projects for each locale. This procedure
shows how to use a macro to publish the first project in a solution by using the 'en' locale. If you want to try this
procedure with a locale other than 'en', make sure to set localeString in the macro to match the locale that you
are using (for example, 'de' or 'de-DE').

When you use this macro, the Publish Location should be a valid URL or Universal Naming Convention (UNC) share. Also,
Internet Information Services (IIS) has to be installed on your computer. To install IIS, on the Start menu, click Control Panel.
Double-click Add or Remove Programs. In Add or Remove Programs, click Add/Remove Windows Components. In
the Windows Components Wizard, select the Internet Information Services (IIS) check box in the Components list.
Then click Finish to close the wizard.

Module PublishSpecificCulture
 Sub PublishProjectFirstProjectWithEnLocale()
 ' Note: You should publish projects by using the IDE at least once
 ' before you use this macro. Items such as the certificate and the
 ' security zone must be set.
 Dim localeString As String = "en"

 ' Get first project.
 Dim proj As Project = DTE.Solution.Projects.Item(1)
 Dim publishProperties As Object = proj.Properties.Item("Publish").Value

 ' GenerateManifests and SignManifests must always be set to
 ' True for publishing to work.
 proj.Properties.Item("GenerateManifests").Value = True
 proj.Properties.Item("SignManifests").Value = True

 'Set the publish language.
 'This will set the deployment language and pick up all
 ' en resource dlls:
 Dim originalTargetCulture As String = _
 publishProperties.Item("TargetCulture").Value
 publishProperties.Item("TargetCulture").Value = localeString

 'Append 'en' to end of publish, install, and update URLs if needed:
 Dim originalPublishUrl As String = _
 publishProperties.Item("PublishUrl").Value
 Dim originalInstallUrl As String = _
 publishProperties.Item("InstallUrl").Value
 Dim originalUpdateUrl As String = _

1. To open the Macro Explorer, on the Tools menu, point to Macros, and then click Macro Explorer.

2. Create a new macro module. In the Macro Explorer, select MyMacros. On the Tools menu, point to
Macros, and then click New Macro Module. Name the module PublishSpecificCulture.

3. In the Macro Explorer, expand the MyMacros node, and then open the PublishAllProjects module by
double-clicking it (or, from the Tools menu, point to Macros, and then click Macros IDE).

4. In the Macros IDE, add the following code to the module, after the Import statements:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-publish-a-project-that-has-a-specific-locale.md

To publish a project for a specific localeTo publish a project for a specific locale

 Dim originalUpdateUrl As String = _
 publishProperties.Item("UpdateUrl").Value
 publishProperties.Item("PublishUrl").Value = _
 AppendStringToUrl(localeString, New Uri(originalPublishUrl))
 If originalInstallUrl <> String.Empty Then
 publishProperties.Item("InstallUrl").Value = _
 AppendStringToUrl(localeString, New Uri(originalInstallUrl))
 End If
 If originalUpdateUrl <> String.Empty Then
 publishProperties.Item("UpdateUrl").Value = _
 AppendStringToUrl(localeString, New Uri(originalUpdateUrl))
 End If
 proj.Save()

 Dim slnbld2 As SolutionBuild2 = _
 CType(DTE.Solution.SolutionBuild, SolutionBuild2)
 slnbld2.Clean(True)

 slnbld2.BuildProject(_
 proj.ConfigurationManager.ActiveConfiguration.ConfigurationName, _
 proj.UniqueName, True)

 ' Only publish if build is successful.
 If slnbld2.LastBuildInfo <> 0 Then
 MsgBox("Build failed for " & proj.UniqueName)
 Else
 slnbld2.PublishProject(_
 proj.ConfigurationManager.ActiveConfiguration.ConfigurationName, _
 proj.UniqueName, True)
 If slnbld2.LastPublishInfo = 0 Then
 MsgBox("Publish succeeded for " & proj.UniqueName _
 & vbCrLf & "." _
 & " Publish Language was '" & localeString & "'.")
 Else
 MsgBox("Publish failed for " & proj.UniqueName)
 End If
 End If

 ' Return URLs and target culture to their previous state.
 publishProperties.Item("PublishUrl").Value = originalPublishUrl
 publishProperties.Item("InstallUrl").Value = originalInstallUrl
 publishProperties.Item("UpdateUrl").Value = originalUpdateUrl
 publishProperties.Item("TargetCulture").Value = originalTargetCulture
 proj.Save()
 End Sub

 Private Function AppendStringToUrl(ByVal str As String, _
 ByVal baseUri As Uri) As String
 Dim returnValue As String = baseUri.OriginalString
 If baseUri.IsFile OrElse baseUri.IsUnc Then
 returnValue = IO.Path.Combine(baseUri.OriginalString, str)
 Else
 If Not baseUri.ToString.EndsWith("/") Then
 returnValue = baseUri.OriginalString & "/" & str
 Else
 returnValue = baseUri.OriginalString & str
 End If
 End If
 Return returnValue
 End Function
End Module

5. Close the Macros IDE. The focus will return to Visual Studio.

1. To create a Visual Basic Windows Application project, on the File menu, point to New, and then click
Project.

See also

2. In the New Project dialog box, select Windows Application from the Visual Basic node. Name the
project PublishLocales.

3. Click Form1. In the Properties window, under Design, change the Language property from (Default) to
English. Change the Text property of the form to MyForm.

Note that the localized resource DLLs are not created until they are needed. For example, they are created
when you change the text of the form or one of its controls after you have specified the new locale.

4. Publish PublishLocales by using the Visual Studio IDE.

In Solution Explorer, select PublishLocales. On the Project menu, select Properties. In the Project
Designer, on the Publish page, specify a publishing location of http://localhost/PublishLocales, and then
click Publish Now.

When the publish Web page appears, close it. (For this step, you only have to publish the project; you do not
have to install it.)

5. Publish PublishLocales again by invoking the macro in the Visual Studio Command Prompt window. To view
the Command Prompt window, on the View menu, point to Other Windows and then click Command
Window, or press Ctrl+Alt+A. In the Command Prompt window, type macros ; auto-complete will provide
a list of available macros. Select the following macro and press ENTER:

Macros.MyMacros.PublishSpecificCulture.PublishProjectFirstProjectWithEnLocale

6. When the publish process succeeds, it will generate a message that says "Publish succeeded for
PublishLocales\PublishLocales.vbproj. Publish language was 'en'." Click OK in the message box. When the
publish Web page appears, click Install.

7. Look in C:\Inetpub\wwwroot\PublishLocales\en. You should see the installed files such as the manifests,
setup.exe, and the publish Web page file, in addition to the localized resource DLL. (By default ClickOnce
appends a .deploy extension on EXEs and DLLs; you can remove this extension after deployment.)

Publish ClickOnce applications
Macros development environment
Macro Explorer window
How to: Edit and programmatically create macros

https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/fb30sxt3(v=vs.100)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/wwkx67sw(v=vs.100)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/k91y6132(v=vs.100)

Secure ClickOnce applications
4/23/2019 • 5 minutes to read • Edit Online

Zones

DEPLOYMENT LOCATION SECURITY ZONE

Run from Web Internet Zone

Install from Web Internet Zone

Install from network file share Local Intranet Zone

Install from CD-ROM Full Trust

Code access security policies

ClickOnce applications are subject to code access security constraints in the .NET Framework to help limit the
access that code has to protected resources and operations. For that reason, it is important that you
understand the implications of code access security to write your ClickOnce applications accordingly. Your
applications can use Full Trust or use partial zones, such as the Internet and Intranet zones, to limit access.

Additionally, ClickOnce uses certificates to verify the authenticity of the application's publisher, and to sign the
application and deployment manifests to prove that the files have not been tampered with. Signing is an
optional step, which makes it easier to change the application files after the manifests are generated. However,
without signed manifests, it is difficult to ensure that the application installer is not tampered in man-in-the-
middle security attacks. For this reason, we recommend that you sign your application and deployment
manifests to help secure your applications.

Applications that are deployed using ClickOnce technology are restricted to a set of permissions and actions
that are defined by the security zone. Security zones are defined in Internet Explorer, and are based on the
location of the application. The following table lists the default permissions based on the deployment location:

The default permissions are based on the location from which the original version of the application was
deployed; updates to the application will inherit those permissions. If the application is configured to check for
updates from a Web or network location and a newer version is available, the original installation can receive
permissions for the Internet or Intranet zone instead of full-trust permissions. To prevent users from being
prompted, a System Administrator can specify a ClickOnce deployment policy that defines a specific
application publisher as a trusted source. For computers on which this policy is deployed, permissions will be
granted automatically and the user will not be prompted. For more information, see Trusted Application
Deployment Overview. To configure trusted application deployment, the certificate can be installed to the
machine or enterprise level. For more information, see How to: Add a Trusted Publisher to a Client Computer
for ClickOnce Applications.

Permissions for an application are determined by the settings in the <trustInfo> Element element of the
application manifest. Visual Studio automatically generates this information based on the settings on the
project's Security property page. A ClickOnce application is granted only the specific permissions that it
requests. For example, where file access requires full-trust permissions, if the application requests file-access
permission, it will only be granted file-access permission, not full-trust permissions. When developing your
ClickOnce application, you should make sure that you request only the specific permissions that the

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/securing-clickonce-applications.md

Code-signing certificates

ASP.NET form-based authentication

Pass arguments

application needs. In most cases, you can use the Internet or Local Intranet zones to limit your application to
partial trust. For more information, see How to: Set a security zone for a ClickOnce application. If your
application requires custom permissions, you can create a custom zone. For more information, see How to: Set
custom permissions for a ClickOnce application.

Including a permission that is not part of the default permission set for the zone from which the application is
deployed will cause the end user to be prompted to grant permission at install or update time. To prevent users
from being prompted, a system administrator can specify a ClickOnce deployment policy that defines a specific
application publisher as a trusted source. On computers where this policy is deployed, permissions will
automatically be granted and the user will not be prompted.

As a developer, it is your responsibility to make sure that your application will run with the appropriate
permissions. If the application requests permissions outside of a zone during run time, a security exception
may appear. Visual Studio enables you to debug your application in the target security zone. and provides help
in developing secure applications. For more information, see How to: Debug a ClickOnce application with
restricted permissions.

For more information about code access security and ClickOnce, see Code access security for ClickOnce
applications.

To publish an application by using ClickOnce deployment, you can sign the application and deployment
manifests for the application by using a public/private key pair. The tools for signing a manifest are available
on the Signing page of the Project Designer. For more information, see Signing Page, Project Designer.
Alternatively, you can sign the manifests with a key file during the publishing process, using the Publish
Wizard.

After the manifests are signed, the publisher information based on the Authenticode signature will be
displayed to the user in the permissions dialog box during installation, to show the user that the application
originated from a trusted source.

For more information about ClickOnce and certificates, see ClickOnce and Authenticode.

If you want to control which deployments each user can access, you should not enable anonymous access to
ClickOnce applications deployed on a Web server. Rather, you would enable users access to the deployments
you have installed based on a user's identity using Windows authentication.

ClickOnce does not support ASP.NET forms-based authentication because it uses persistent cookies; these
present a security risk because they reside in the Internet Explorer cache and can be hacked. Therefore, if you
are deploying ClickOnce applications, any authentication scenario besides Windows authentication is
unsupported.

An additional security consideration occurs if you have to pass arguments into a ClickOnce application.
ClickOnce enables developers to supply a query string to applications deployed over the Web. The query
string takes the form of a series of name-value pairs at the end of the URL used to start the application:

http://servername.adatum.com/WindowsApp1.application?username=joeuser

By default, query-string arguments are disabled. To enable them, the attribute trustUrlParameters must be set
in the application's deployment manifest. This value can be set from Visual Studio and from MageUI.exe. For
detailed steps on how to enable passing query strings, see How to: Retrieve query string information in an

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/signing-page-project-designer

NOTENOTE

Deploying obfuscated assemblies

See also

online ClickOnce application.

You should never pass arguments retrieved through a query string to a database or to the command line
without checking the arguments to make sure that they are safe. Unsafe arguments are ones that include
database or command line escape characters that could allow a malicious user to manipulate your application
into executing arbitrary commands.

Query-string arguments are the only way to pass arguments to a ClickOnce application at startup. You cannot pass
arguments to a ClickOnce application from the command line.

Visual Studio includes the free PreEmptive Protection - Dotfuscator Community, which you can use to protect
your ClickOnce applications through code obfuscation and active protection measures. For details, please see
the ClickOnce section of the Dotfuscator Community User Guide.

ClickOnce security and deployment
Choose a ClickOnce deployment strategy

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/dotfuscator/index
https://www.preemptive.com/dotfuscator/ce/docs/help/5.27/advanced_clickonce.html

ClickOnce and Authenticode
4/18/2019 • 3 minutes to read • Edit Online

Authenticode and code signing

How using certificate authorities helps usersHow using certificate authorities helps users

TimestampsTimestamps

Authenticode is a Microsoft technology that uses industry-standard cryptography to sign application code with
digital certificates that verify the authenticity of the application's publisher. By using Authenticode for application
deployment, ClickOnce reduces the risk of a Trojan horse. A Trojan horse is a virus or other harmful program that
a malicious third party misrepresents as a legitimate program coming from an established, trustworthy source.
Signing ClickOnce deployments with a digital certificate is an optional step to verify that the assemblies and files
are not tampered.

The following sections describe the different types of digital certificates used in Authenticode, how certificates are
validated using Certificate Authorities (CAs), the role of time-stamping in certificates, and the methods of storage
available for certificates.

A digital certificate is a file that contains a cryptographic public/private key pair, along with metadata describing
the publisher to whom the certificate was issued and the agency that issued the certificate.

There are various types of Authenticode certificates. Each one is configured for different types of signing. For
ClickOnce applications, you must have an Authenticode certificate that is valid for code signing. If you attempt to
sign a ClickOnce application with another type of certificate, such as a digital e-mail certificate, it will not work.
For more information, see Introduction to code signing.

You can obtain a certificate for code signing in one of three ways:

Purchase one from a certificate vendor.

Receive one from a group in your organization responsible for creating digital certificates.

Generate your own certificate by using the New-SelfSignedCertificate PowerShell cmdlet, or by using
MakeCert.exe, which is included with the Windows Software Development Kit (SDK).

A certificate generated using New-SelfSignedCertificate or the MakeCert.exe utility is commonly called a self-cert
or a test cert. This kind of certificate works much the same way that a .snk file works in the .NET Framework. It
consists solely of a public/private cryptographic key pair, and contains no verifiable information about the
publisher. You can use self-certs to deploy ClickOnce applications with high trust on an intranet. However, when
these applications run on a client computer, ClickOnce will identify them as coming from an Unknown Publisher.
By default, ClickOnce applications signed with self-certs and deployed over the Internet cannot utilize Trusted
Application Deployment.

By contrast, if you receive a certificate from a CA, such as a certificate vendor, or a department within your
enterprise, the certificate offers more security for your users. It not only identifies the publisher of the signed
software, but it verifies that identity by checking with the CA that signed it. If the CA is not the root authority,
Authenticode will also "chain" back to the root authority to verify that the CA is authorized to issue certificates. For
greater security, you should use a certificate issued by a CA whenever possible.

For more information about generating self-certs, see New-SelfSignedCertificate or MakeCert.

The certificates used to sign ClickOnce applications expire after a certain length of time, typically twelve months.
In order to remove the need to constantly re-sign applications with new certificates, ClickOnce supports

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-and-authenticode.md
http://go.microsoft.com/fwlink/?LinkId=179452
https://technet.microsoft.com/itpro/powershell/windows/pkiclient/new-selfsignedcertificate
https://docs.microsoft.com/windows/desktop/SecCrypto/makecert

Update expired certificatesUpdate expired certificates

Store certificatesStore certificates

See also

timestamp. When an application is signed with a timestamp, its certificate will continue to be accepted even after
expiration, provided the timestamp is valid. This allows ClickOnce applications with expired certificates, but valid
timestamps, to download and run. It also allows installed applications with expired certificates to continue to
download and install updates.

To include a timestamp in an application server, a timestamp server must be available. For information about how
to select a timestamp server, see How to: Sign Application and Deployment Manifests.

In earlier versions of the .NET Framework, updating an application whose certificate had expired could cause that
application to stop functioning. To resolve this problem, use one of the following methods:

Update the .NET Framework to version 2.0 SP1 or later on Windows XP, or version 3.5 or later on
Windows Vista.

Uninstall the application, and reinstall a new version with a valid certificate.

Create a command-line assembly that updates the certificate. Step-by-step information about this process
can be found at Microsoft Support Article 925521.

You can store certificates as a .pfx file on your file system, or you can store them inside of a key container. A
user on a Windows domain can have a number of key containers. By default, MakeCert.exe will store
certificates in your personal key container, unless you specify that it should save it to a .pfx instead. Mage.exe
and MageUI.exe, the Windows SDK tools for creating ClickOnce deployments, enable you to use certificates
stored in either fashion.

ClickOnce security and deployment
Secure ClickOnce applications
Trusted application deployment overview
Mage.exe (Manifest Generation and Editing Tool)

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/how-to-sign-application-and-deployment-manifests
http://go.microsoft.com/fwlink/?LinkId=179454
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

Trusted Application Deployment overview
4/23/2019 • 5 minutes to read • Edit Online

NOTENOTE

Trusted Application Deployment basics

OBJECT OR ROLE DESCRIPTION

administrator The organizational entity responsible for updating and
maintaining client computers

trust manager The subsystem within the common language runtime (CLR)
responsible for enforcing client application security.

publisher The entity that writes and maintains the application.

deployer The entity that packages and distributes the application to
users.

certificate A cryptographic signature that consists of a public and
private key; generally issued by a certification authority (CA)
that can vouch for its authenticity.

Authenticode certificate A certificate with embedded metadata describing, among
other things, the uses for which the certificate can be
employed.

certification authority An organization that verifies the identity of publishers and
issues them certificates embedded with the publisher's
metadata.

root authority A certification authority that authorizes other Certificate
Authorities to issue certificates.

This topic provides an overview of how to deploy ClickOnce applications that have elevated permissions by
using the Trusted Application Deployment technology.

Trusted Application Deployment, part of the ClickOnce deployment technology, makes it easier for organizations
of any size to grant additional permissions to a managed application in a safer, more secure manner without
user prompting. With Trusted Application Deployment, an organization can just configure a client computer to
have a list of trusted publishers, who are identified using Authenticode certificates. Thereafter, any ClickOnce
application signed by one of these trusted publishers receives a higher level of trust.

Trusted Application Deployment requires one-time configuration of a user's computer. In managed desktop environments,
this configuration can be performed by using global policy. If this is not what you want for your application, use
permission elevation instead. For more information, see Securing ClickOnce Applications.

The following table shows the objects and roles that are involved in Trusted Application Deployment.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/trusted-application-deployment-overview.md

key container A logical storage space in Microsoft Windows for storing
certificates.

trusted publisher A publisher whose Authenticode certificate has been added
to a certificate trust list (CTL) on a client computer.

OBJECT OR ROLE DESCRIPTION

Obtain a certificate for the publisherObtain a certificate for the publisher

Add the publisher to the trusted publishers storeAdd the publisher to the trusted publishers store

Create a ClickOnce ApplicationCreate a ClickOnce Application

In larger organizations, the publisher and deployer are frequently two separate entities:

The publisher is the group that creates the ClickOnce application.

The deployer is the group, typically the information technology (IT) department, that distributes
ClickOnce application to corporate enterprise desktop computers.

You must follow these steps to take advantage of Trusted Application Deployment:

1. Obtain a certificate for the publisher.

2. Add the publisher to the trusted publishers store on all clients.

3. Create your ClickOnce application.

4. Sign the deployment manifest with the publisher's certificate.

5. Publish the application deployment to client computers.

Digital certificates are a core component of the Microsoft Authenticode authentication and security system.
Authenticode is a standard part of the Windows operating system. All ClickOnce applications must be signed
with a digital certificate, regardless of whether they participate in Trusted Application Deployment. For a full
explanation of how Authenticode works with ClickOnce, see ClickOnce and Authenticode.

For your ClickOnce application to receive a higher level of trust, you must add your certificate as a trusted
publisher to each client computer on which the application will run. Performing this task is a one-time
configuration. After it is completed, you can deploy as many ClickOnce applications signed with your publisher's
certificate as you want, and they will all run with high trust.

If you are deploying your application in a managed desktop environment; for example, a corporate intranet
running the Windows operating system; you can add trusted publishers to a client's store by creating a new
certificate trust list (CTL) with Group Policy. For more information, see Create a certificate trust list for a Group
Policy object.

If you are not deploying your application in a managed desktop environment, you have the following options for
adding a certificate to the trusted publisher store:

The System.Security.Cryptography namespace.

CertMgr.exe, which is a component of Internet Explorer and therefore exists on Windows 98 and all later
versions. For more information, see Certmgr.exe (Certificate Manager Tool).

A ClickOnce application is a .NET Framework client application combined with manifest files that describe the
application and supply installation parameters. You can turn your program into a ClickOnce application by using
the Publish command in Visual Studio. Alternatively, you can generate all the files required for ClickOnce
deployment by using tools that are included with the Windows Software Development Kit (SDK). For detailed
steps about ClickOnce deployment, see Walkthrough: Manually Deploying a ClickOnce Application.

http://go.microsoft.com/fwlink/?LinkId=102576
https://docs.microsoft.com/dotnet/api/system.security.cryptography
https://docs.microsoft.com/dotnet/framework/tools/certmgr-exe-certificate-manager-tool

Sign the deploymentSign the deployment

C a u t i o nC a u t i o n

Publish the applicationPublish the application

Trusted Application Deployment and Permission Elevation

Limitations of Trusted Application Deployment

See also

Trusted Application Deployment is specific to ClickOnce, and can only be used with ClickOnce applications.

After obtaining your certificate, you must use it to sign your deployment. If you are deploying your application
by using the Visual Studio Publish wizard, the wizard will automatically generate a test certificate for you if you
have not specified a certificate yourself. You can also use the Visual Studio Project Designer window, however, to
supply a certificate provided by a CA. Also see How to: Publish a ClickOnce Application using the Publish
Wizard.

We do not recommend that the application be deployed with a test certificate.

You can also sign the application by using the Mage.exe or MageUI.exe SDK tools. For more information, see
Walkthrough: Manually deploy a ClickOnce application. For a full list of command-line options related to
deployment signing, see Mage.exe (Manifest Generation and Editing Tool).

As soon as you have signed your ClickOnce manifests, the application is ready to publish to your install location.
The installation location can be a Web server, a file share, or the local disk. When a client accesses the
deployment manifest for the first time, the trust manager must choose whether the ClickOnce application has
been granted authority or not to run at a higher level of trust by an installed trusted publisher. The trust manager
makes this choice by comparing the certificate used to sign the deployment with the certificates stored in the
client's trusted publisher store. If the trust manager finds a match, the application runs with high trust.

If the current publisher is not a trusted publisher, trust manager will use Permission Elevation to query the user
about whether he or she wants to grant your application elevated permissions. If permission elevation is
disabled by the administrator, however, the application cannot obtain permission to run. The application will not
run and no notification will be displayed to the user. For more information about Permission Elevation, see
Securing ClickOnce Applications.

You can use Trusted Application Deployment to grant elevated trust to ClickOnce applications deployed over the
Web or through an enterprise file share. You do not have to use Trusted Application Deployment for ClickOnce
applications distributed on a CD, because, by default, these applications are granted full trust.

Mage.exe (Manifest Generation and Editing Tool)
Walkthrough: Manually deploy a ClickOnce application

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

Code access security for ClickOnce applications
4/23/2019 • 4 minutes to read • Edit Online

Default ClickOnce code access security

Configure security permissions

ClickOnce applications are based on the .NET Framework and are subject to code access security constraints. For
this reason, it is important that you understand the implications of code access security and write your ClickOnce
applications accordingly.

Code access security is a mechanism in the .NET Framework that helps limit the access that code has to protected
resources and operations. You should configure the code access security permissions for your ClickOnce
application to use the zone appropriate for the location of the application installer. In most cases, you can choose
the Internet zone for a limited set of permissions or the Local Intranet zone for a greater set of permissions.

By default, a ClickOnce application receives Full Trust permissions when it is installed or run on a client computer.

NOTENOTE

An application that has Full Trust permissions has unrestricted access to resources such as the file system
and the registry. This potentially allows your application (and the end user's system) to be exploited by
malicious code.

When an application requires Full Trust permissions, the end user may be prompted to grant permissions
to the application. This means that the application does not truly provide a ClickOnce experience, and the
prompt can potentially be confusing to less experienced users.

When installing an application from removable media such as a CD-ROM, the user is not prompted. In addition, a
network administrator can configure network policy so that users are not prompted when they install an application
from a trusted source. For more information, see Trusted application deployment overview.

To restrict the permissions for a ClickOnce application, you can modify the code access security
permissions for your application to request the zone that best fits the permissions that your application
requires. In most cases, you can select the zone from which the application is being deployed. For example,
if your application is an enterprise application, you can use the Local Intranet zone. If your application is
an internet application, you can use the Internet zone.

You should always configure your ClickOnce application to request the appropriate zone to limit the code access
security permissions. You can configure security permissions on the Security page of the Project Designer.

The Security page in the Project Designer contains an Enable ClickOnce Security Settings check box. When
this check box is selected, security permission requests are added to the deployment manifest for your
application. At installation time, the user will be prompted to grant permissions if the requested permissions
exceed the default permissions for the zone from which the application is deployed. For more information, see
How to: Enable ClickOnce security settings.

Applications deployed from different locations are granted different levels of permissions without prompting. For
example, when an application is deployed from the Internet, it receives a highly restrictive set of permissions.
When installed from a local Intranet, it receives more permissions, and when installed from a CD-ROM, it
receives Full Trust permissions.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/code-access-security-for-clickonce-applications.md

Debug an application that has restricted permissions

Security permissions for browser-hosted applications

See also

As a starting point for configuring permissions, you can select a security zone from the Zone list on the Security
page. If your application will potentially be deployed from more than one zone, select the zone with the least
permissions. For more information, see How to: Set a security zone for a ClickOnce application.

The properties that can be set vary by permission set; not all permission sets have configurable properties. For
more information about the full list of permissions that your application can request, see
System.Security.Permissions. For more information about how to set permissions for a custom zone, see How to:
Set custom permissions for a ClickOnce application.

As a developer, you most likely run your development computer with Full Trust permissions. Therefore, you do
not see the same security exceptions when you debug the application that users may see when they run it with
restricted permissions.

In order to catch these exceptions, you have to debug the application with the same permissions as the end user.
Debugging with restricted permissions can be enabled on the Security page of the Project Designer.

When you debug an application with restricted permissions, exceptions will be raised for any code security
demands that have not been enabled on the Security page. An exception helper will appear, providing
suggestions about how to modify your code to prevent the exception.

In addition, when you write code, the IntelliSense feature in the Code Editor will disable any members that are not
included in the security permissions that you have configured.

For more information, see How to: Debug a ClickOnce Application with Restricted Permissions.

Visual Studio provides the following project types for Windows Presentation Foundation (WPF) applications:

WPF Windows Application

WPF Web Browser Application

WPF Custom Control Library

WPF Service Library

Of these project types, only WPF Web Browser Applications are hosted in a Web browser and therefore
require special deployment and security settings. The default security settings for these applications are as
follows:

Enable ClickOnce Security Settings

This is a partial trust application

Internet zone (with default permission set for WPF Web Browser Applications selected)

In the Advanced Security Settings dialog box, the Debug this application with the selected
permission set check box is selected and disabled. This is because Debug In Zone cannot be turned off for
browser-hosted applications.

Secure ClickOnce applications
How to: Enable ClickOnce security settings
How to: Set a security zone for a ClickOnce application

https://docs.microsoft.com/dotnet/api/system.security.permissions

How to: Set custom permissions for a ClickOnce application
How to: Debug a ClickOnce application with restricted permissions
Trusted application deployment overview
Security Page, Project Designer

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/security-page-project-designer

How to: Enable ClickOnce security settings
4/23/2019 • 2 minutes to read • Edit Online

To enable ClickOnce security settingsTo enable ClickOnce security settings

To disable ClickOnce security settingsTo disable ClickOnce security settings

See also

Code access security for ClickOnce applications must be enabled in order to publish the application. This is done
automatically when you publish an application using the Publish wizard.

In some cases, enabling code access security can impact performance when building or debugging your
application; in these cases, you may wish to temporarily disable the security settings.

ClickOnce security settings can be enabled or disabled on the Security page of the Project Designer.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Security tab.

3. Select the Enable ClickOnce Security Settings check box.

You can now customize the security settings for your application on the Security page.

This check box is automatically selected each time the application is published with the Publish wizard.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Security tab.

3. Clear the Enable ClickOnce Security Settings check box.

Your application will be run with the full trust security settings; any settings on the Security page will be
ignored.

Each time the application is published with the Publish wizard, this check box will be selected; you must clear it again
after each successful publish.

Secure ClickOnce applications
Code access security for ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-enable-clickonce-security-settings.md

How to: Set a security zone for a ClickOnce
application
4/18/2019 • 2 minutes to read • Edit Online

To set a security zoneTo set a security zone

See also

When setting code access security permissions for a ClickOnce application, you need to start with a base set of
permissions on the Security page of the Project Designer.

In most cases, you can also choose the Internet zone which contains a limited set of permissions, or the Local
Intranet zone which contains a greater set of permissions. If your application requires custom permissions, you
can do so by choosing the Custom security zone. For more information about setting custom permissions, see
How to: Set Custom Permissions for a ClickOnce Application.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Click the Security tab.

3. Select the Enable ClickOnce Security Settings check box.

4. Select the This is a partial trust application option button.

The controls in the ClickOnce security permissions section are enabled.

5. In the Zone your application will be installed from drop-down list, select a security zone.

How to: Set custom permissions for a ClickOnce application
Secure ClickOnce applications
Code access security for ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-set-a-security-zone-for-a-clickonce-application.md

How to: Set custom permissions for a ClickOnce
application
4/23/2019 • 2 minutes to read • Edit Online

To customize a permissionTo customize a permission

See also

You can deploy a ClickOnce application that uses default permissions for the Internet or Local Intranet zones.
Alternatively, you can create a custom zone for the specific permissions that the application needs. You can do
this by customizing the security permissions on the Security page of the Project Designer.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Security tab.

3. Select the Enable ClickOnce Security Settings check box.

4. Select the This is a partial trust application option button.

The controls in the ClickOnce security permissions section are enabled.

5. From the Zone your application will be installed from drop-down list, click (Custom).

6. Click Edit Permissions XML.

The app.manifest file opens in the XML Editor.

7. Before the </applicationRequestMinimum> element, add XML code for permissions that your application
requires.

You can use the ToXml method of a permission set to generate the XML code for the application manifest. For
example, to generate the XML for the EnvironmentPermission permission set, call the ToXml method.

Secure ClickOnce Applications
Code access security for ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-set-custom-permissions-for-a-clickonce-application.md
https://docs.microsoft.com/dotnet/api/system.security.permissions.environmentpermission
https://docs.microsoft.com/dotnet/api/system.security.permissions.environmentpermission.toxml

How to: Debug a ClickOnce application with
restricted permissions
5/28/2019 • 2 minutes to read • Edit Online

To enable debugging with restricted permissionsTo enable debugging with restricted permissions

To specify a URL for debuggingTo specify a URL for debugging

See Also

As a developer, you most likely are running your development computer with Full Trust permissions, so you will
not see the same security exceptions when debugging a ClickOnce application that the end user may see when
running it with restricted permissions.

In order to catch these exceptions, you need to debug the application with the same permissions as the end user.
Debugging with restricted permissions can be enabled on the Security page of the Project Designer.

In addition, when you develop applications that call Web services, those Web services often reside on your
development computer. Once deployed, the end user will access those Web services from a different URL. In
order to emulate the end user experience during debugging, you can specify a URL and the debugger will treat
the Web services as if they were being called from that URL.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. In the Project Designer, click the Security tab.

3. Select the Enable ClickOnce Security Setting check box, and then click the This is a partial trust
application option button.

4. Click the Advanced button.

5. Select the Debug this application with the selected permission set check box, and then click OK.

When you debug the application, any attempts to access a permission that isn't part of the permission set
will raise a security exception.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. In the Project Designer, click the Security tab.

3. Select the Enable ClickOnce Security Setting check box, and then click the This is a partial trust
application option button.

4. Click the Advanced button.

5. Select the Debug this application with the selected permission set check box, and then click OK.

6. In the Debug this application as if it were downloaded from the following URL text box, enter a
URL or network path.

How to: Set custom permissions for a ClickOnce application
Secure ClickOnce applications
Code access security for ClickOnce applications
Secure ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-debug-a-clickonce-application-with-restricted-permissions.md

How to: Add a trusted publisher to a client computer
for ClickOnce applications
5/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add a certificate to the Trusted Publishers store under the trusted rootTo add a certificate to the Trusted Publishers store under the trusted root

To add a certificate to the Trusted Publishers store under a different rootTo add a certificate to the Trusted Publishers store under a different root

See also

With Trusted Application Deployment, you can configure client computers so that your ClickOnce applications run
with a higher level of trust without prompting the user. The following procedures show how to use the command-
line tool CertMgr.exe to add a publisher's certificate to the Trusted Publishers store on a client computer.

The commands you use vary slightly depending on whether the certificate authority (CA) that issued your
certificate is part of a client's trusted root. If a Windows client computer is part of a domain, it will contain, in a list,
CAs that are considered trusted roots. This list is usually configured by the system administrator. If your certificate
was issued by one of these trusted roots, or by a CA that chains to one of these trusted roots, you can add the
certificate to the client's trusted root store. If, on the other hand, your certificate was not issued by one of these
trusted roots, you must add the certificate to both the client's Trusted Root store and Trusted Publisher store.

You must add certificates this way on every client computer to which you plan to deploy a ClickOnce application that
requires elevated permissions. You add the certificates either manually or through an application you deploy to your clients.
You only need to configure these computers once, after which you can deploy any number of ClickOnce applications signed
with the same certificate.

You may also add a certificate to a store programmatically using the X509Store class.

For an overview of Trusted Application Deployment, see Trusted application deployment overview.

1. Obtain a digital certificate from a CA.

2. Export the certificate into the Base64 X.509 (.cer) format. For more information about certificate formats,
see Export a certificate.

3. From the command prompt on client computers, run the following command:

certmgr.exe -add certificate.cer -c -s -r localMachine TrustedPublisher

1. Obtain a digital certificate from a CA.

2. Export the certificate into the Base64 X.509 (.cer) format. For more information about certificate formats,
see Export a Certificate.

3. From the command prompt on client computers, run the following command:

certmgr.exe -add good.cer -c -s -r localMachine Root

certmgr.exe -add good.cer -c -s -r localMachine TrustedPublisher

Walkthrough: Manually deploy a ClickOnce application
Secure ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-add-a-trusted-publisher-to-a-client-computer-for-clickonce-applications.md
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509store
http://go.microsoft.com/fwlink/?LinkId=164793
http://go.microsoft.com/fwlink/?LinkId=164793

Code access security for ClickOnce applications
ClickOnce and Authenticode
Trusted application deployment overview
How to: Enable ClickOnce security settings
How to: Set a security zone for a ClickOnce application
How to: Set custom permissions for a ClickOnce application
How to: Debug a ClickOnce application with restricted permissions
How to: Add a trusted publisher to a client computer for ClickOnce applications
How to: Re-sign application and deployment manifests
How to: Configure the ClickOnce trust prompt behavior

How to: Re-sign application and deployment
manifests
4/18/2019 • 3 minutes to read • Edit Online

Re-sign the Application and Deployment Manifests

To re-sign the application and deployment manifests with Mage.exeTo re-sign the application and deployment manifests with Mage.exe

After you make changes to deployment properties in the application manifest for Windows Forms applications,
Windows Presentation Foundation applications (xbap), or Office solutions, you must re-sign both the application
and deployment manifests with a certificate. This process helps ensure that tampered files are not installed on end
user computers.

Another scenario where you might re-sign the manifests is when your customers want to sign the application and
deployment manifests with their own certificate.

This procedure assumes that you have already made changes to your application manifest file (.manifest). For
more information, see How to: Change deployment properties.

mage -sign ManifestFileName.manifest -CertFile Certificate -Password Password

mage -sign WindowsFormsApplication1.exe.manifest -CertFile ..\WindowsFormsApplication1_TemporaryKey.pfx
mage -sign ExcelAddin1.dll.manifest -CertFile ..\ExcelAddIn1_TemporaryKey.pfx
mage -sign WpfBrowserApplication1.exe.manifest -CertFile ..\WpfBrowserApplication1_TemporaryKey.pfx

mage -update DeploymentManifest -appmanifest ApplicationManifest -CertFile Certificate -Password
Password

1. Open a Visual Studio Command Prompt window.

2. Change directories to the folder that contains the manifest files that you want to sign.

3. Type the following command to sign the application manifest file. Replace ManifestFileName with the
name of your manifest file plus the extension. Replace Certificate with the relative or fully qualified path of
the certificate file and replace Password with the password for the certificate.

For example, you could run the following command to sign an application manifest for an add-in, a
Windows Form application, or a Windows Presentation Foundation browser application. Temporary
certificates created by Visual Studio are not recommended for deployment into production environments.

4. Type the following command to update and sign the deployment manifest file, replacing the placeholder
names as in the previous step.

For example, you could run the following command to update and sign a deployment manifest for an Excel
add-in, a Windows Forms application, or a Windows Presentation Foundation browser application.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-re-sign-application-and-deployment-manifests.md
https://msdn.microsoft.com/library/66052a3a-8127-4964-8147-2477ef5d1472

Update and re-sign the application and deployment manifests

To update and re-sign the application and deployment manifests with Mage.exeTo update and re-sign the application and deployment manifests with Mage.exe

mage -update WindowsFormsApplication1.application -appmanifest WindowsFormsApplication1.exe.manifest -
CertFile ..\WindowsFormsApplication1_TemporaryKey.pfx
mage -update ExcelAddin1.vsto -appmanifest ExcelAddin1.dll.manifest -CertFile
..\ExcelAddIn1_TemporaryKey.pfx
mage -update WpfBrowserApplication1.xbap -appmanifest WpfBrowserApplication1.exe.manifest -CertFile
..\WpfBrowserApplication1_TemporaryKey.pfx

5. Optionally, copy the master deployment manifest (publish\<appname>.application) to your version
deployment directory (publish\Application Files\<appname>_<version>).

This procedure assumes that you have already made changes to your application manifest file (.manifest), but that
there are other files that were updated. When files are updated, the hash that represents the file must also be
updated.

mage -update ManifestFileName.manifest -CertFile Certificate -Password Password

mage -update WindowsFormsApplication1.exe.manifest -CertFile
..\WindowsFormsApplication1_TemporaryKey.pfx
mage -update ExcelAddin1.dll.manifest -CertFile ..\ExcelAddIn1_TemporaryKey.pfx
mage -update WpfBrowserApplication1.exe.manifest -CertFile ..\WpfBrowserApplication1_TemporaryKey.pfx

mage -update DeploymentManifest -appmanifest ApplicationManifest -CertFile Certificate -Password
Password

mage -update WindowsFormsApplication1.application -appmanifest WindowsFormsApplication1.exe.manifest -
CertFile ..\WindowsFormsApplication1_TemporaryKey.pfx
mage -update ExcelAddin1.vsto -appmanifest ExcelAddin1.dll.manifest -CertFile
..\ExcelAddIn1_TemporaryKey.pfx
mage -update WpfBrowserApplication1.xbap -appmanifest WpfBrowserApplication1.exe.manifest -CertFile
..\WpfBrowserApplication1_TemporaryKey.pfx

1. Open a Visual Studio Command Prompt window.

2. Change directories to the folder that contains the manifest files that you want to sign.

3. Remove the .deploy file extension from the files in the publish output folder.

4. Type the following command to update the application manifest with the new hashes for the updated files
and sign the application manifest file. Replace ManifestFileName with the name of your manifest file plus
the extension. Replace Certificate with the relative or fully qualified path of the certificate file and replace
Password with the password for the certificate.

For example, you could run the following command to sign an application manifest for an add-in, a
Windows Form application, or a Windows Presentation Foundation browser application. Temporary
certificates created by Visual Studio are not recommended for deployment into production environments.

5. Type the following command to update and sign the deployment manifest file, replacing the placeholder
names as in the previous step.

For example, you could run the following command to update and sign a deployment manifest for an Excel
add-in, a Windows Forms application, or a Windows Presentation Foundation browser application.

See also

6. Add the .deploy file extension back to the files, except the application and deployment manifest files.

7. Optionally, copy the master deployment manifest (publish\<appname>.application) to your version
deployment directory (publish\Application Files\<appname>_<version>).

Secure ClickOnce applications
Code access security for ClickOnce applications
ClickOnce and Authenticode
Trusted application deployment overview
How to: Enable ClickOnce security settings
How to: Set a security zone for a ClickOnce application
How to: Set custom permissions for a ClickOnce application
How to: Debug a ClickOnce application with restricted permissions
How to: Add a trusted publisher to a client computer for ClickOnce applications
How to: Configure the ClickOnce trust prompt behavior

How to: Configure the ClickOnce trust prompt
behavior
4/18/2019 • 4 minutes to read • Edit Online

OPTION REGISTRY SETTING VALUE DESCRIPTION

Enable the trust prompt. Enabled The ClickOnce trust prompt is display
so that end users can grant trust to
ClickOnce applications.

Restrict the trust prompt. AuthenticodeRequired The ClickOnce trust prompt is only
displayed if ClickOnce applications are
signed with a certificate that identifies
the publisher.

Disable the trust prompt. Disabled The ClickOnce trust prompt is not
displayed for any ClickOnce applications
that are not signed with an explicitly
trusted certificate.

ZONE APPLICATIONS OFFICE SOLUTIONS

MyComputer Enabled Enabled

LocalIntranet Enabled Enabled

TrustedSites Enabled Enabled

Internet Enabled AuthenticodeRequired

UntrustedSites Disabled Disabled

Enable the ClickOnce trust prompt

To enable the ClickOnce trust prompt by using the registry editorTo enable the ClickOnce trust prompt by using the registry editor

You can configure the ClickOnce trust prompt to control whether end users are given the option of installing
ClickOnce applications, such as Windows Forms applications, Windows Presentation Foundation applications,
console applications, WPF browser applications, and Office solutions. You configure the trust prompt by setting
registry keys on each end user's computer.

The following table shows the configuration options that can be applied to each of the five zones (Internet,
UntrustedSites, MyComputer, LocalIntranet, and TrustedSites).

The following table shows the default behavior for each zone. The Applications column refers to Windows Forms
applications, Windows Presentation Foundation applications, WPF browser applications, and console applications.

You can override these settings by enabling, restricting, or disabling the ClickOnce trust prompt.

Enable the trust prompt for a zone when you want end users to be presented with the option of installing and
running any ClickOnce application that comes from that zone.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-configure-the-clickonce-trust-prompt-behavior.md

To enable the ClickOnce trust prompt programmaticallyTo enable the ClickOnce trust prompt programmatically

STRING VALUE SUBKEY VALUE

Internet Enabled

UntrustedSites Disabled

MyComputer Enabled

LocalIntranet Enabled

TrustedSites Enabled

1. Open the registry editor:

a. Click Start, and then click Run.

b. In the Open box, type regedit , and then click OK.

2. Find the following registry key:

\HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\.NETFramework\Security\TrustManager\Pr
omptingLevel

If the key does not exist, create it.

3. Add the following subkeys as String Value, if they do not already exist, with the associated values shown in
the following table.

For Office solutions, Internet has the default value AuthenticodeRequired and UntrustedSites has the
value Disabled . For all others, Internet has the default value Enabled .

Dim key As Microsoft.Win32.RegistryKey
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\MICROSOFT\.NETFramework\Security\TrustMana
ger\PromptingLevel")
key.SetValue("MyComputer", "Enabled")
key.SetValue("LocalIntranet", "Enabled")
key.SetValue("Internet", "Enabled")
key.SetValue("TrustedSites", "Enabled")
key.SetValue("UntrustedSites", "Disabled")
key.Close()

Microsoft.Win32.RegistryKey key;
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\\MICROSOFT\\.NETFramework\\Security\\Trust
Manager\\PromptingLevel");
key.SetValue("MyComputer", "Enabled");
key.SetValue("LocalIntranet", "Enabled");
key.SetValue("Internet", "AuthenticodeRequired");
key.SetValue("TrustedSites", "Enabled");
key.SetValue("UntrustedSites", "Disabled");
key.Close();

1. Create a Visual Basic or Visual C# console application in Visual Studio.

2. Open the Program.vb or Program.cs file for editing and add the following code.

Restrict the ClickOnce trust prompt

To restrict the ClickOnce trust prompt by using the registry editorTo restrict the ClickOnce trust prompt by using the registry editor

To restrict the ClickOnce trust prompt programmaticallyTo restrict the ClickOnce trust prompt programmatically

3. Build and run the application.

Restrict the trust prompt so that solutions must be signed with Authenticode certificates that have known identity
before users are prompted for a trust decision.

STRING VALUE SUBKEY VALUE

UntrustedSites Disabled

Internet AuthenticodeRequired

MyComputer AuthenticodeRequired

LocalIntranet AuthenticodeRequired

TrustedSites AuthenticodeRequired

1. Open the registry editor:

a. Click Start, and then click Run.

b. In the Open box, type regedit , and then click OK.

2. Find the following registry key:

\HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\.NETFramework\Security\TrustManager\Pr
omptingLevel

If the key does not exist, create it.

3. Add the following subkeys as String Value, if they do not already exist, with the associated values shown in
the following table.

Dim key As Microsoft.Win32.RegistryKey
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\MICROSOFT\.NETFramework\Security\TrustMana
ger\PromptingLevel")
key.SetValue("MyComputer", "AuthenticodeRequired")
key.SetValue("LocalIntranet", "AuthenticodeRequired")
key.SetValue("Internet", "AuthenticodeRequired")
key.SetValue("TrustedSites", "AuthenticodeRequired")
key.SetValue("UntrustedSites", "Disabled")
key.Close()

1. Create a Visual Basic or Visual C# console application in Visual Studio.

2. Open the Program.vb or Program.cs file for editing and add the following code.

Disable the ClickOnce trust prompt

To disable the ClickOnce trust prompt by using the registry editorTo disable the ClickOnce trust prompt by using the registry editor

To disable the ClickOnce trust prompt programmaticallyTo disable the ClickOnce trust prompt programmatically

Microsoft.Win32.RegistryKey key;
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\\MICROSOFT\\.NETFramework\\Security\\Trust
Manager\\PromptingLevel");
key.SetValue("MyComputer", "AuthenticodeRequired");
key.SetValue("LocalIntranet", "AuthenticodeRequired");
key.SetValue("Internet", "AuthenticodeRequired");
key.SetValue("TrustedSites", "AuthenticodeRequired");
key.SetValue("UntrustedSites", "Disabled");
key.Close();

3. Build and run the application.

You can disable the trust prompt so that end users are not given the option to install solutions that are not already
trusted in their security policy.

STRING VALUE SUBKEY VALUE

UntrustedSites Disabled

Internet Disabled

MyComputer Disabled

LocalIntranet Disabled

TrustedSites Disabled

1. Open the registry editor:

a. Click Start, and then click Run.

b. In the Open box, type regedit , and then click OK.

2. Find the following registry key:

\HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\.NETFramework\Security\TrustManager\Pr
omptingLevel

If the key does not exist, create it.

3. Add the following subkeys as String Value, if they do not already exist, with the associated values shown in
the following table.

1. Create a Visual Basic or Visual C# console application in Visual Studio.

2. Open the Program.vb or Program.cs file for editing and add the following code.

See also

Dim key As Microsoft.Win32.RegistryKey
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\MICROSOFT\.NETFramework\Security\TrustMana
ger\PromptingLevel")
key.SetValue("MyComputer", "Disabled")
key.SetValue("LocalIntranet", "Disabled")
key.SetValue("Internet", "Disabled")
key.SetValue("TrustedSites", "Disabled")
key.SetValue("UntrustedSites", "Disabled")
key.Close()

Microsoft.Win32.RegistryKey key;
key =
Microsoft.Win32.Registry.LocalMachine.CreateSubKey("SOFTWARE\\MICROSOFT\\.NETFramework\\Security\\Trust
Manager\\PromptingLevel");
key.SetValue("MyComputer", "Disabled");
key.SetValue("LocalIntranet", "Disabled");
key.SetValue("Internet", "Disabled");
key.SetValue("TrustedSites", "Disabled");
key.SetValue("UntrustedSites", "Disabled");
key.Close();

3. Build and run the application.

Secure ClickOnce applications
Code access security for ClickOnce applications
ClickOnce and Authenticode
Trusted application deployment overview
How to: Enable ClickOnce security settings
How to: Set a security zone for a ClickOnce application
How to: Set custom permissions for a ClickOnce application
How to: Debug a ClickOnce application with restricted permissions
How to: Add a trusted publisher to a client computer for ClickOnce applications
How to: Re-sign application and deployment manifests

How to: Sign setup files with SignTool.exe (ClickOnce)
4/18/2019 • 2 minutes to read • Edit Online

To generate an unsigned Setup program and sign laterTo generate an unsigned Setup program and sign later

You can use SignTool.exe to sign a Setup program (setup.exe). This process helps ensure that tampered files are not
installed on end-user computers.

By default, ClickOnce has signed manifests and a signed Setup program. However, if you want to change the
parameters of the Setup program later, you must sign the Setup program later. If you change the parameters after
the Setup program is signed, the signature becomes corrupted.

The following procedure generates unsigned manifests and an unsigned Setup program. Then, ClickOnce signing
is enabled in Visual Studio to generate signed manifests. The Setup program is left unsigned so that the customer
can sign the executable with their own certificate.

signtool sign /sha1 CertificateHash Setup.exe
signtool sign /f CertFileName Setup.exe

signtool sign /sha1 CCB... Setup.exe
signtool sign /f CertFileName Setup.exe

1. On the development computer, install the certificate that you want the sign the manifests with.

2. Select the project in Solution Explorer.

3. On the Project menu, click ProjectName Properties.

4. In the Signing page, clear Sign the ClickOnce manifests.

5. In the Publish page, click Prerequisites.

6. Verify that all the prerequisites are selected, and then click OK.

7. In the Publish page, verify the publish settings and then click Publish Now.

The solution publishes the unsigned application manifest, unsigned deployment manifest, version-specific
files, and unsigned Setup program to the publishing folder location.

8. In the Publish page, click Prerequisites.

9. In the Prerequisites dialog box, clear Create setup program to install prerequisite components.

10. In the Publish page, verify the publish settings and then click Publish Now.

The solution publishes the signed application manifest, signed deployment manifest, and version-specific
files to the publishing folder location. The unsigned Setup program is not overwritten by the publish
process.

11. At the customer site, open a command prompt.

12. Change to the directory that contains the .exe file.

13. Sign the .exe file with the following command:

For example, to sign the Setup program, use one of the following commands:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-sign-setup-files-with-signtool-exe-clickonce.md

See also
How to: Re-sign application and deployment manifests

Publish ClickOnce applications
4/11/2019 • 5 minutes to read • Edit Online

Publish Wizard

Publish Page

TITLE DESCRIPTION

How to: Specify where Visual Studio copies the files Describes how to set where Visual Studio puts the
application files and manifests.

How to: Specify the location where end users will install from Describes how to set the location where users go to
download and install the application.

How to: Specify the ClickOnce offline or online install mode Describes how to set whether the application will be
available offline or online.

How to: Set the ClickOnce publish version Describes how to set the ClickOnce Publish Version
property, which determines whether or not the application
that you are publishing will be treated as an update.

How to: Automatically increment the ClickOnce publish
version

Describes how to automatically increment the Revision
number of the PublishVersion each time you publish the
application.

Application Files dialog boxApplication Files dialog box

When publishing a ClickOnce application for the first time, publish properties can be set using the Publish
Wizard. Only a few of the properties are available in the wizard; all other properties are set to their default
values.

Subsequent changes to publish properties are made on the Publish page in the Project Designer.

You can use the Publish Wizard to set the basic settings for publishing your application. This includes the
following publishing properties:

Publishing Folder Location - where Visual Studio will copy the files (local computer, network file share,
FTP server, or Web site)

Installation Folder Location - where end users will install from (network file share, FTP server, Web site,
CD/DVD)

Online or Offline availability - if end users can access the application with or without a network
connection

Update frequency - how often the application checks for new updates.

For more information, see How to: Publish a ClickOnce application using the Publish Wizard.

The Publish page of the Project Designer is used to configure properties for ClickOnce deployment. The
following table lists topics.

For more information, see Publish Page, Project Designer

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/publishing-clickonce-applications.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/publish-page-project-designer

Prerequisites dialog boxPrerequisites dialog box

Application Updates dialog boxApplication Updates dialog box

Publish Options dialog boxPublish Options dialog box

How to: Change the publish language for a ClickOnce
application

Describes how to specify a language and culture to match
the localized version.

How to: Specify a Start menu name for a ClickOnce
application

Describes how to change the display name for a ClickOnce
application.

How to: Specify a link for Technical Support Describes how to set the Support URL property, which
identifies a Web page or file share where users can go to get
information about the application.

How to: Specify a Support URL for individual prerequisites in
a ClickOnce deployment

Demonstrated how to manually alter an application
manifest to include individual support URLs for each
prerequisite.

How to: Specify a publish page for a ClickOnce application Describes how to generate and publish a default Web page
(publish.htm) along with the application

How to: Customize the ClickOnce default Web page Describes how to customize the Web page that is
automatically generated and published along with the
application.

How to: Enable AutoStart for CD installations Describes how to enable AutoStart so that the ClickOnce
application is automatically launched when the media is
inserted.

Related topics
TITLE DESCRIPTION

How to: Create file associations For a ClickOnce application Describes how to add file name extension support to a
ClickOnce application.

How to: Retrieve query string information in an online
ClickOnce application

Demonstrates how to retrieve parameters passed in the
URL used to run a ClickOnce application.

This dialog box allows you to specify how the files in your project are categorized for publishing, dynamic
downloading, and updating. It contains a grid that lists the project files that are not excluded by default, or that
have a download group.

To exclude files, mark files as data files or prerequisites, and create groups of files for conditional installation in
the Visual Studio UI, see How to: Specify which files are published by ClickOnce. You can also mark data files
by using the Mage.exe. For more information, see How to: Include a data file in a ClickOnce application.

This dialog box specifies which prerequisite components are installed, as well as how they are installed. For
more information, see How to: Install prerequisites with a ClickOnce application and Prerequisites dialog box.

This dialog box specifies how the application installation should check for updates. For more information, see
How to: Manage updates for a ClickOnce application.

The Publish Options dialog box specifies an application's deployment options.

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/prerequisites-dialog-box

How to: Disable URL activation of ClickOnce applications by
using the designer

Describes how to force users to start the application from
the Start menu by using the designer.

How to: Disable URL activation of ClickOnce applications Describes how to force users to start the application from
the Start menu.

Walkthrough: Downloading assemblies on demand with the
ClickOnce deployment API using the Designer

Explains how to download application assemblies only when
they are first used by the application using the designer.

Walkthrough: Download assemblies on demand with the
ClickOnce deployment API

Explains how to download application assemblies only when
they are first used by the application.

Walkthrough: Download satellite assemblies on demand
with the ClickOnce deployment API

Describes how to mark your satellite assemblies as optional,
and download only the assembly a client machine needs for
its current culture settings.

Walkthrough: Manually deploy a ClickOnce application Explains how to use .NET Framework utilities to deploy your
ClickOnce application.

Walkthrough: Manually deploy a ClickOnce application that
does not require re-signing and that preserves branding
information

Explains how to use .NET Framework utilities to deploy your
ClickOnce application without re-signing the manifests.

How to: Configure projects to target platforms Explains how to publish for a 64-bit processor by changing
the Target CPU or Platform target property in your
project.

Walkthrough: Enable a ClickOnce application to run on
multiple .NET Framework versions

Explains how to enable a ClickOnce application to install and
run on multiple versions of the NET Framework.

Walkthrough: Create a custom installer for a ClickOnce
application

Explains how to create a custom installer to install a
ClickOnce application.

How to: Publish a WPF application with visual styles enabled Provides step-by-step instructions to resolve an error that
appears when you attempt to publish a WPF application
that has visual styles enabled.

TITLE DESCRIPTION

See also
ClickOnce security and deployment
ClickOnce reference

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/how-to-configure-projects-to-target-platforms
https://msdn.microsoft.com/library/7f4383af-ed87-4853-b4d4-02a3967a5fd9

How to: Publish a ClickOnce application using the
Publish Wizard
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To publish to a file share or path

To make a ClickOnce application available to users, you must publish it to a file share or path, FTP server, or
removable media. You can publish the application by using the Publish Wizard; additional properties related
to publishing are available on the Publish page of the Project Designer. For more information, see
Publishing ClickOnce applications.

Before you run the Publish Wizard, you should set the publishing properties appropriately. For example, if
you want to designate a key to sign your ClickOnce application, you can do so on the Signing page of the
Project Designer. For more information, see Secure ClickOnce applications.

When you install more than one version of an application by using ClickOnce, the installation moves earlier versions of
the application into a folder named Archive, in the publish location that you specify. Archiving earlier versions in this
manner keeps the installation directory clear of folders from the earlier version.

The dialog boxes and menu commands you see might differ from those described in Help, depending on your active
settings or edition. To change your settings, click Import and Export Settings on the Tools menu. For more
information, see Reset settings.

1. In Solution Explorer, select the application project.

2. On the Build menu, click Publish Projectname.

The Publish Wizard appears.

3. In the Where do you want to publish the application? page, enter a valid FTP server address or a
valid file path using one of the formats shown, and then click Next.

4. In the How will users install the application? page, select the location where users will go to install
the application:

If users will install from a Web site, click From a Web site and enter a URL that corresponds to
the file path entered in the previous step. Click Next. (This option is typically used when you
specify an FTP address as the publishing location. Direct download from FTP is not supported.
Therefore, you have to enter a URL here.)

If users will install the application directly from the file share, click From a UNC path or file
share, and then click Next. (This is for publishing locations of the form c:\deploy\myapp or
\\server\myapp.)

If users will install from removable media, click From a CD-ROM or DVD-ROM, and then click
Next.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-publish-a-clickonce-application-using-the-publish-wizard.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/environment-settings

To publish to a CD-ROM or DVD-ROM

5. On the Will the application be available offline? page, click the appropriate option:

If you want to enable the application to be run when the user is disconnected from the network,
click Yes, this application will be available online or offline. A shortcut on the Start menu
will be created for the application.

If you want to run the application directly from the publish location, click No, this application
is only available online. A shortcut on the Start menu will not be created.

Click Next to continue.

6. Click Finish to publish the application.

Publishing status is displayed in the status notification area.

NOTENOTE

NOTENOTE

1. In Solution Explorer, right-click the application project and click Properties.

The Project Designer appears.

2. Click the Publish tab to open the Publish page in the Project Designer, and click the Publish
Wizard button.

The Publish Wizard appears.

3. In the Where do you want to publish the application? page, enter the file path or FTP location
where the application will be published, for example d:\deploy. Then click Next to continue.

4. On the How will users install the application? page, click From a CD-ROM or DVD-ROM, and
then click Next.

If you want the installation to run automatically when the CD-ROM is inserted into the drive, open the Publish
page in the Project Designer and click the Options button, and then, in the Publish Options wizard, select
For CD installations, automatically start Setup when CD is inserted.

5. If you distribute your application on CD-ROM, you might want to provide updates from a Web site. In
the Where will the application check for updates? page, choose an update option:

If the application will check for updates, click The application will check for updates from
the following location and enter the location where updates will be posted. This can be a file
location, Web site, or FTP server.

If the application will not check for updates, click The application will not check for updates.

Click Next to continue.

6. Click Finish to publish the application.

Publishing status is displayed in the status notification area.

After publishing is complete, you will have to use a CD-Rewriter or DVD-Rewriter to copy the files from the
location specified in step 3 to the CD-ROM or DVD-ROM media.

See also
ClickOnce security and deployment
Secure ClickOnce applications
Deploying an Office solution by using ClickOnce

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/vsto/deploying-an-office-solution-by-using-clickonce

Create ClickOnce applications for others to deploy
2/21/2019 • 9 minutes to read • Edit Online

Issues involved in creating deployments for customers

Require the customer to sign the deployment manifestRequire the customer to sign the deployment manifest

The impact of customer signing on ClickOnce application securityThe impact of customer signing on ClickOnce application security

Not all developers who are creating ClickOnce deployments plan to deploy the applications themselves. Many of
them just package their application by using ClickOnce and then hand the files off to a customer, such as a large
corporation. The customer becomes the one responsible for hosting the application on its network. This topic
discusses some of the problems inherent in such deployments in versions of the .NET Framework prior to version
3.5. It then describes a new solution provided by using the new "use manifest for trust" feature in the .NET
Framework 3.5. Finally, it concludes with recommended strategies for creating ClickOnce deployments for
customers who are still using older versions of the .NET Framework.

Several issues occur when you plan to supply a deployment to a customer. The first issue concerns code signing. In
order to be deployed across a network, the deployment manifest and application manifest of a ClickOnce
deployment must both be signed with a digital certificate. This raises the question of whether to use the
developer's certificate or the customer's certificate when signing the manifests.

The question of which certificate to use is critical, as a ClickOnce application's identity is based on the digital
signature of the deployment manifest. If the developer signs the deployment manifest, it could lead to conflicts if
the customer is a large company, and more than one division of the company deploys a customized version of the
application.

For example, say that Adventure Works has a finance department and a human resources department. Both
departments license a ClickOnce application from Microsoft Corporation that generates reports from data stored
in a SQL database. Microsoft supplies each department with a version of the application that is customized for
their data. If the applications are signed with the same Authenticode certificate, a user who tries to use both
applications would encounter an error, as ClickOnce would regard the second application as being identical to the
first. In this case, the customer could experience unpredictable and unwanted side effects that include the loss of
any data stored locally by the application.

An additional problem related to code signing is the deploymentProvider element in the deployment manifest,
which tells ClickOnce where to look for application updates. This element must be added to the deployment
manifest prior to signing it. If this element is added afterward, the deployment manifest must be re-signed.

One solution to this problem of non-unique deployments is to have the developer sign the application manifest,
and the customer sign the deployment manifest. While this approach works, it introduces other issues. Since an
Authenticode certificate must remain a protected asset, the customer cannot just give the certificate to the
developer to sign the deployment. While the customer can sign the deployment manifest themselves by using
tools freely available with the .NET Framework SDK, this may require more technical knowledge than the customer
is willing or able to provide. In such cases, the developer usually creates an application, Web site, or other
mechanism through which the customer can submit their version of the application for signing.

Even if the developer and the customer agree that the customer should sign the application manifest, this raises
other issues that surround the application's identity, especially as it applies to trusted application deployment. (For
more information about this feature, see Trusted application deployment overview.) Say that Adventure Works
wants to configure its client computers so that any application provided to them by Microsoft Corporation runs
with full trust. If Adventure Works signs the deployment manifest, then ClickOnce will use Adventure Work's

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/creating-clickonce-applications-for-others-to-deploy.md

Create customer deployments by using application manifest for trust

How application manifest for trust works at runtimeHow application manifest for trust works at runtime

Create customer deployments for earlier versions

Sign deployments on behalf of customerSign deployments on behalf of customer

security signature to determine the trust level of the application.

ClickOnce in the .NET Framework 3.5 contains a new feature that gives developers and customers a new solution
to the scenario of how the manifests should be signed. The ClickOnce application manifest supports a new element
named <useManifestForTrust> that enables a developer to signify that the digital signature of the application
manifest is what should be used for making trust decisions. The developer uses ClickOnce packaging tools—such
as Mage.exe, MageUI.exe, and Visual Studio—to include this element in the application manifest, as well as to
embed both their Publisher name and the name of the application in the manifest.

When using <useManifestForTrust> , the deployment manifest does not have to be signed with an Authenticode
certificate issued by a certification authority. Instead, it can be signed with what is known as a self-signed
certificate. A self-signed certificate is generated by either the customer or the developer by using standard .NET
Framework SDK tools, and then applied to the deployment manifest by using the standard ClickOnce deployment
tools. For more information, see MakeCert.

Using a self-signed certificate for the deployment manifest presents several advantages. By eliminating the need
for the customer to obtain or create their own Authenticode certificate, <useManifestForTrust> simplifies
deployment for the customer, while allowing the developer to maintain their own branding identity on the
application. The result is a set of signed deployments that are more secure and have unique application identities.
This eliminates the potential conflict that may occur from deploying the same application to multiple customers.

For step-by-step information about how to create a ClickOnce deployment with <useManifestForTrust> enabled,
see Walkthrough: Manually deploy a ClickOnce application that does not require re-signing and that preserves
branding information.

To get a better understanding of how using the application manifest for trust works at runtime, consider the
following example. A ClickOnce application that targets the .NET Framework 3.5 is created by Microsoft. The
application manifest uses the <useManifestForTrust> element and is signed by Microsoft. Adventure Works signs
the deployment manifest by using a self-signed certificate. Adventure Works clients are configured to trust any
application signed by Microsoft.

When a user clicks a link to the deployment manifest, ClickOnce installs the application on the user's computer. The
certificate and deployment information identify the application uniquely to ClickOnce on the client computer. If the
user tries to install the same application again from a different location, ClickOnce can use this identity to
determine that the application already exists on the client.

Next, ClickOnce examines the Authenticode certificate that is used to sign the application manifest, which
determines the level of trust that ClickOnce will grant. Since Adventure Works has configured its clients to trust
any application signed by Microsoft, this ClickOnce application is granted full trust. For more information, see
Trusted application deployment overview.

What if a developer is deploying ClickOnce applications to customers who are using older versions of the .NET
Framework? The following sections summarize several recommended solutions, together with the benefits and
drawbacks of each.

One possible deployment strategy is for the developer to create a mechanism to sign deployments on behalf of
their customers, by using the customer's own private key. This prevents the developer from having to manage
private keys or multiple deployment packages. The developer just provides the same deployment to each customer.
It is up to the customer to customize it for their environment by using the signing service.

https://docs.microsoft.com/windows/desktop/SecCrypto/makecert

Deploy using a setup packageDeploy using a setup package

Have customer generate deployment manifestHave customer generate deployment manifest

See also

One drawback to this method is the time and expense that are required to implement it. While such a service can
be built by using the tools provided in the .NET Framework SDK, it will add more development time to the product
life cycle.

As noted earlier in this topic, another drawback is that each customer's version of the application will have the
same application identity, which could lead to conflicts. If this is a concern, the developer can change the Name
field that is used when generating the deployment manifest to give each application a unique name. This will create
a separate identity for each version of the application, and eliminate any potential identity conflicts. This field
corresponds to the -Name argument for Mage.exe, and to the Name field on the Name tab in MageUI.exe.

For example, say that the developer has created an application named Application1. Instead of creating a single
deployment with the Name field set to Application1, the developer can create several deployments with a
customer-specific variation on this name, such as Application1-CustomerA, Application1-CustomerB, and so on.

A second possible deployment strategy is to generate a Microsoft Setup project to perform the initial deployment
of the ClickOnce application. This can be provided in one of several different formats: as an MSI deployment, as a
setup executable (.EXE), or as a cabinet (.cab) file together with a batch script.

Using this technique, the developer would provide the customer a deployment that includes the application files,
the application manifest, and a deployment manifest that serves as a template. The customer would run the setup
program, which would prompt them for a deployment URL (the server or file share location from which users will
install the ClickOnce application), as well as a digital certificate. The setup application may also choose to prompt
for additional ClickOnce configuration options, such as update check interval. Once this information is gathered,
the setup program would generate the real deployment manifest, sign it, and publish the ClickOnce application to
the designated server location.

There are three ways that the customer can sign the deployment manifest in this situation:

1. The customer can use a valid certificate issued by a certification authority (CA).

2. As a variation on this approach, the customer can choose to sign their deployment manifest with a self-
signed certificate. The drawback to this is that it will cause the application to display the words "Unknown
Publisher" when the user is asked whether to install it. However, the benefit is that it prevents smaller
customers from having to spend the time and money required for a certificate issued by a certification
authority.

3. Finally, the developer can include their own self-signed certificate in the setup package. This introduces the
potential problems with application identity discussed earlier in this topic.

The drawback to the setup deployment project method is the time and expense required to build a custom
deployment application.

A third possible deployment strategy is to hand off only the application files and application manifest to the
customer. In this scenario, the customer is responsible for using the .NET Framework SDK to generate and sign the
deployment manifest.

The drawback of this method is that it requires the customer to install the .NET Framework SDK tools, and to have
a developer or system administrator who is skilled at using them. Some customers may demand a solution that
requires little or no technical effort on their part.

Deploy ClickOnce applications for testing and production servers without resigning
Walkthrough: Manually deploying a ClickOnce application

Walkthrough: Manually deploying a ClickOnce application that does not require re-signing and that preserves
branding information

Deploy ClickOnce applications for testing and
production servers without resigning
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

Exclude deploymentProvider from deployment manifests

deploymentProvider and application updates

This article describes a feature of ClickOnce introduced in the .NET Framework version 3.5 that enables the
deployment of ClickOnce applications from multiple network locations without re-signing or changing the
ClickOnce manifests.

Resigning is still the preferred method for deploying new versions of applications. Whenever possible, use the resigning
method. For more information, see Mage.exe (Manifest Generation and Editing Tool).

Third-party developers and ISVs can opt in to this feature, making it easier for their customers to update their
applications. This feature can be used in the following situations:

When updating an application, not for the first installation of an application.

When there is only one configuration of the application on a computer. For example, if an application is
configured to point to two different databases, you cannot use this feature.

In the .NET Framework 2.0 and the .NET Framework 3.0, any ClickOnce application that installs on the system for
offline availability must list a deploymentProvider in its deployment manifest. The deploymentProvider is often
referred to as the update location; it is the location where ClickOnce checks for application updates. This
requirement, along with the need for application publishers to sign their deployments, made it difficult for a
company to update a ClickOnce application from a vendor or other third party. It also makes it more difficult to
deploy the same application from multiple locations on the same network.

With changes that were made to ClickOnce in the .NET Framework 3.5, it is possible for a third party to provide a
ClickOnce application to another organization, which can then deploy the application on its own network.

In order to take advantage of this feature, developers of ClickOnce applications must exclude deploymentProvider

from their deployment manifests. This requirement means that you must exclude the -providerUrl argument
when you create deployment manifests with Mage.exe. Or, if you are generating deployment manifests with
MageUI.exe, you must make sure that the Launch Location text box on the Application Manifest tab is left
blank.

Starting with the .NET Framework 3.5, you no longer have to specify a deploymentProvider in your deployment
manifest in order to deploy a ClickOnce application for both online and offline usage. This change supports the
scenario where you need to package and sign the deployment yourself, but allow other companies to deploy the
application over their networks.

The important point to remember is that applications that exclude a deploymentProvider cannot change their
install location during updates, until they ship an update that includes the deploymentProvider tag again.

Here are two examples to clarify this point. In the first example, you publish a ClickOnce application that has no

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deploying-clickonce-applications-for-testing-and-production-without-resigning.md
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

Create a deployment

See also

deploymentProvider tag, and you ask users to install it from http://www.adatum.com/MyApplication/. If you decide
you want to publish the next update of the application from http://subdomain.adatum.com/MyApplication/, you
have no way of signifying this in the deployment manifest that resides in http://www.adatum.com/MyApplication/.
You can do one of two things:

Tell your users to uninstall the previous version, and install the new version from the new location.

Include an update on http://www.adatum.com/MyApplication/ that includes a deploymentProvider pointing
to http://www.adatum.com/MyApplication/. Then, release another update later with deploymentProvider

pointing to http://subdomain.adatum.com/MyApplication/.

In the second example, you publish a ClickOnce application that specifies deploymentProvider , and you then
decide to remove it. Once the new version without deploymentProvider is downloaded to clients, you cannot
redirect the path used for updates until you release a version of your application that has
deploymentProvider restored. As with the first example, deploymentProvider must initially point to the

current update location, not your new location. In this case, if you attempt to insert a deploymentProvider

that refers to http://subdomain.adatum.com/MyApplication/, then the next update fails.

For step by step guidance on creating deployments that can be deployed from different network locations, see
Walkthrough: Manually deploy a ClickOnce application that does not require re-signing and that preserves
branding information.

Mage.exe (Manifest Generation and Editing Tool)
MageUI.exe (Manifest Generation and Editing Tool, Graphical Client)

http://www.adatum.com/MyApplication/
http://subdomain.adatum.com/MyApplication/
http://www.adatum.com/MyApplication/
http://www.adatum.com/MyApplication/
http://www.adatum.com/MyApplication/
http://subdomain.adatum.com/MyApplication/
http://subdomain.adatum.com/MyApplication/
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client

Access local and remote data in ClickOnce
applications
4/23/2019 • 7 minutes to read • Edit Online

Local Data

ClickOnce data directoryClickOnce data directory

NOTENOTE

Mark data files in a ClickOnce distributionMark data files in a ClickOnce distribution

Read from and write to the data directoryRead from and write to the data directory

NOTENOTE

Most applications consume or produce data. ClickOnce gives you a variety of options for reading and writing data,
both locally and remotely.

With ClickOnce, you can load and store data locally by using any one of the following methods:

ClickOnce Data Directory

Isolated Storage

Other Local Files

Every ClickOnce application installed on a local computer has a data directory, stored in the user's Documents and
Settings folder. Any file included in a ClickOnce application and marked as a "data" file is copied to this directory
when an application is installed. Data files can be of any file type, the most frequently used being text, XML, and
database files such as Microsoft Access .mdb files.

The data directory is intended for application-managed data, which is data that the application explicitly stores and
maintains. All static, nondependency files not marked as "data" in the application manifest will instead reside in
the Application Directory. This directory is where the application's executable (.exe) files and assemblies reside.

When a ClickOnce application is uninstalled, its Data Directory is also removed. Never use the Data Directory to store end-
user-managed data, such as documents.

To put an existing file inside the Data Directory, you must mark the existing file as a data file in your ClickOnce
application's application manifest file. For more information, see How to: Include a data file in a ClickOnce
application.

Reading from the Data Directory requires that your ClickOnce application request Read permission; similarly,
writing to the directory requires Write permission. Your application will automatically have this permission if it is
configured to run with Full Trust. For more information about elevating permissions for your application by using
either Permission Elevation or Trusted Application Deployment, see Secure ClickOnce applications.

If your organization does not use Trusted Application Deployment and has turned off Permission Elevation, asserting
permissions will fail.

After your application has these permissions, it can access the Data Directory by using method calls on classes
within the System.IO. You can obtain the path of the Data Directory within a Windows Forms ClickOnce

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/accessing-local-and-remote-data-in-clickonce-applications.md
https://docs.microsoft.com/dotnet/api/system.io

if (ApplicationDeployment.IsNetworkDeployed)
{
 try
 {
 using (StreamReader sr = new StreamReader(ApplicationDeployment.CurrentDeployment.DataDirectory +
@"\CSV.txt"))
 {
 MessageBox.Show(sr.ReadToEnd());
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show("Could not read file. Error message: " + ex.Message);
 }
}

If (ApplicationDeployment.IsNetworkDeployed) Then
 Dim SR As StreamReader = Nothing

 Try
 SR = New StreamReader(ApplicationDeployment.CurrentDeployment.DataDirectory & "\CSV.txt")
 MessageBox.Show(SR.ReadToEnd())
 Catch Ex As Exception
 MessageBox.Show("Could not read file.")
 Finally
 SR.Close()
 End Try
End If

Data directory and application versionsData directory and application versions

application by using the DataDirectory property defined on the CurrentDeployment property of
ApplicationDeployment. This is the most convenient and recommended way to access your data. The following
code example demonstrates how to do this for a text file named CSV.txt that you have included in your
deployment as a data file.

For more information on marking files in your deployment as data files, see How to: Include a Data File in a
ClickOnce Application.

You can also obtain the data directory path using the relevant variables on the Application class, such as
LocalUserAppDataPath.

Manipulating other types of files might require additional permissions. For example, if you want to use an Access
database (.mdb) file, your application must assert full trust in order to use the relevant <xref:System.Data> classes.

Each version of an application has its own Data Directory, which is isolated from other versions. ClickOnce creates
this directory regardless of whether any data files are included in the deployment so that the application has a
location to create new data files at run time. When a new version of an application is installed, ClickOnce will copy
all the existing data files from the previous version's Data Directory into the new version's Data Directory—
whether they were included in the original deployment or created by the application.

ClickOnce will replace the older version of the file with the newer version of the server if a data file has a different
hash value in the old version of the application as in the new version. Also, if the earlier version of the application
created a new file that has the same name as a file included in the new version's deployment, ClickOnce will
overwrite the old version's file with the new file. In both cases, the old files will be included in a subdirectory inside
the data directory named .pre , so that the application can still access the old data for migration purposes.

If you need finer-grained migration of data, you can use the ClickOnce Deployment API to perform custom
migration from the old Data Directory to the new Data Directory. You will have to test for an available download
by using IsFirstRun, download the update using Update or UpdateAsync, and do any custom data migration work

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.datadirectory
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.currentdeployment
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment
https://docs.microsoft.com/dotnet/api/system.windows.forms.application
https://docs.microsoft.com/dotnet/api/system.windows.forms.application.localuserappdatapath
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.isfirstrun
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.update
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.updateasync

Isolated storageIsolated storage

Other local filesOther local files

Remote data

Access files with HTTPAccess files with HTTP

DEPLOYMENT TYPE DEFAULT NETWORK PERMISSIONS

Web Install Can only access the Web server from which the application
was installed

File Share Install Cannot access any Web servers

CD-ROM Install Can access any Web servers

Access data through an XML Web serviceAccess data through an XML Web service

in your own after the update is finished.

Isolated Storage provides an API for creating and accessing files by using a simple API. The actual location of the
stored files is hidden from both the developer and the user.

Isolated Storage works in all versions of the .NET Framework. Isolated Storage also works in partially trusted
applications without the need for additional permission grants. You should use Isolated Storage if your application
must run in partial trust, but must maintain application-specific data.

For more information, see Isolated Storage.

If your application must work with or save end-user data such as reports, images, music, and so on, your
application will require FileIOPermission to read and write data to the local file system.

At some point, your application will likely have to retrieve information from a remote Web site, such as customer
data or market information. This section discusses the most common techniques for retrieving remote data.

You can access data from a Web server by using either the WebClient or the HttpWebRequest class in the
System.Net namespace. The data can be either static files or ASP.NET applications that return raw text or XML
data. If your data is in XML format, the fastest way to retrieve the data is by using the XmlDocument class, whose
Load method takes a URL as an argument. For an example, see Read an XML document into the DOM.

You have to consider security when your application accesses remote data over HTTP. By default, your ClickOnce
application's access to network resources may be restricted, depending on how your application was deployed.
These restrictions are applied to prevent malicious programs from gaining access to privileged remote data or
from using a user's computer to attack other computers on the network.

The following table lists the deployment strategies you might use and their default Web permissions.

If your ClickOnce application cannot access a Web server because of security restrictions, the application must
assert WebPermission for that Web site. For more information about increasing security permissions for a
ClickOnce application, see Secure ClickOnce applications.

If you expose your data as an XML Web service, you can access the data by using an XML Web service proxy. The
proxy is a .NET Framework class you create by using either Visual Studio. The operations of the XML Web service
—such as retrieving customers, placing orders, and so on—are exposed as methods on the proxy. This makes Web
services much easier to use than raw text or XML files.

If your XML Web service operates over HTTP, the service will be bound by the same security restrictions as the
WebClient and HttpWebRequest classes.

https://docs.microsoft.com/dotnet/standard/io/isolated-storage
https://docs.microsoft.com/dotnet/api/system.security.permissions.fileiopermission
https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument.load
https://docs.microsoft.com/dotnet/standard/data/xml/reading-an-xml-document-into-the-dom
https://docs.microsoft.com/dotnet/api/system.net.webpermission
https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest

Access a database directlyAccess a database directly

See also

You can use the classes within the System.Data namespace to establish direct connections with a database server
such as SQL Server on your network, but you must account for the security issues. Unlike HTTP requests,
database connection requests are always forbidden by default under partial trust; you will only have such
permission by default if you install your ClickOnce application from a CD-ROM. This gives your application full
trust. To enable access to a specific SQL Server database, your application must request SqlClientPermission to it;
to enable access to a database other than SQL Server, it must request OleDbPermission.

Most of the time, you will not have to access the database directly, but will access it instead through a Web server
application written in ASP.NET or an XML Web service. Accessing the database in this manner is frequently the
best method if your ClickOnce application is deployed from a Web server. You can access the server in partial
trust without elevating your application's permissions.

How to: Include a data file in a ClickOnce application

https://docs.microsoft.com/dotnet/api/system.data
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlclientpermission
https://docs.microsoft.com/dotnet/api/system.data.oledb.oledbpermission

Deploy COM components with ClickOnce
4/23/2019 • 9 minutes to read • Edit Online

Registration-free COM

Deploy registration-free COM components using ClickOnce

Example of isolating and deploying a simple COM componentExample of isolating and deploying a simple COM component

Deployment of legacy COM components has traditionally been a difficult task. Components need to be globally
registered and thus can cause undesirable side effects between overlapping applications. This situation is generally
not a problem in .NET Framework applications because components are completely isolated to an application or
are side-by-side compatible. Visual Studio allows you to deploy isolated COM components on the Windows XP or
higher operating system.

ClickOnce provides an easy and safe mechanism for deploying your .NET applications. However, if your
applications use legacy COM components, you will need to take additional steps for deploying them. This topic
describes how to deploy isolated COM components and reference native components (for example, from Visual
Basic 6.0 or Visual C++).

For more information on deploying isolated COM components, see Simplify App Deployment with ClickOnce and
Registration-Free COM.

Registration-free COM is a new technology for deploying and activating isolated COM components. It works by
putting all the component's type-library and registration information that is typically installed into the system
registry into an XML file called a manifest, stored in the same folder as the application.

Isolating a COM component requires that it be registered on the developer's machine, but it does not have to be
registered on the end user's computer. To isolate a COM component, all you need to do is set its reference's
Isolated property to True. By default, this property is set to False, indicating that it should be treated as a
registered COM reference. If this property is True, it causes a manifest to be generated for this component at build
time. It also causes the corresponding files to be copied to the application folder during installation.

When the manifest generator encounters an isolated COM reference, it enumerates all of the CoClass entries in
the component's type library, matching each entry with its corresponding registration data, and generating
manifest definitions for all the COM classes in the type library file.

ClickOnce deployment technology is well-suited for deploying isolated COM components, because both ClickOnce
and registration-free COM require that a component have a manifest in order to be deployed.

Typically, the author of the component should provide a manifest. If not, however, Visual Studio is capable of
generating a manifest automatically for a COM component. The manifest generation is performed during the
ClickOnce Publish process; for more information, see Publishing ClickOnce Applications. This feature also allows
you to leverage legacy components that you authored in earlier development environments such as Visual Basic
6.0.

There are two ways that ClickOnce deploys COM components:

Use the bootstrapper to deploy your COM components; this works on all supported platforms.

Use native component isolation (also known as registration-free COM) deployment. However, this will only
work on a Windows XP or higher operating system.

In order to demonstrate registration-free COM component deployment, this example will create a Windows-based

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deploying-com-components-with-clickonce.md
https://web.archive.org/web/20050326005413/msdn.microsoft.com/msdnmag/issues/05/04/RegFreeCOM/default.aspx

To c r e a t e a n a t i v e C O M c o m p o n e n tTo c r e a t e a n a t i v e C O M c o m p o n e n t

NOTENOTE

To c r e a t e a W i n d o w s- b a se d a p p l i c a t i o n u s i n g a C O M c o m p o n e n tTo c r e a t e a W i n d o w s- b a se d a p p l i c a t i o n u s i n g a C O M c o m p o n e n t

application in Visual Basic that references an isolated native COM component created using Visual Basic 6.0, and
deploy it using ClickOnce.

First you will need to create the native COM component:

NOTENOTE

Public Sub SayHello()
 MsgBox "Message from the VB6Hello COM component"
End Sub

1. Using Visual Basic 6.0, from the File menu, click New, then Project.

2. In the New Project dialog box, select the Visual Basic node and select an ActiveX DLL project. In the
Name box, type VB6Hello .

Only ActiveX DLL and ActiveX Control project types are supported with registration-free COM; ActiveX EXE and
ActiveX Document project types are not supported.

3. In Solution Explorer, double-click Class1.vb to open the text editor.

4. In Class1.vb, add the following code after the generated code for the New method:

5. Build the component. From the Build menu, click Build Solution.

Registration-free COM supports only DLLs and COM controls project types. You cannot use EXEs with registration-free
COM.

Now you can create a Windows-based application and add a reference to the COM component to it.

1. Using Visual Basic, from the File menu, click New, then Project.

2. In the New Project dialog box, select the Visual Basic node and select Windows Application. In the
Name box, type RegFreeComDemo .

3. In Solution Explorer, click the Show All Files button to display the project references.

4. Right-click the References node and select Add Reference from the context menu.

5. In the Add Reference dialog box, click the Browse tab, navigate to VB6Hello.dll, then select it.

A VB6Hello reference appears in the references list.

6. Point to the Toolbox, select a Button control, and drag it to the Form1 form.

7. In the Properties window, set the button's Text property to Hello.

8. Double-click the button to add handler code, and in the code file, add code so that the handler reads as
follows:

To i so l a t e a C O M c o m p o n e n tTo i so l a t e a C O M c o m p o n e n t

NOTENOTE

To p u b l i sh a n a p p l i c a t i o n u p d a t e w i t h a n i so l a t e d C O M c o m p o n e n tTo p u b l i sh a n a p p l i c a t i o n u p d a t e w i t h a n i so l a t e d C O M c o m p o n e n t

Reference native assemblies

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim VbObj As New VB6Hello.Class1
 VbObj.SayHello()
End Sub

9. Run the application. From the Debug menu, click Start Debugging.

Next you need to isolate the control. Each COM component that your application uses is represented in
your project as a COM reference. These references are visible under the References node in the Solution
Explorer window. (Notice that you can add references either directly using the Add Reference command
on the Project menu, or indirectly by dragging an ActiveX control onto your form.)

The following steps show how to isolate the COM component and publish the updated application
containing the isolated control:

1. In Solution Explorer, in the References node, select the VB6Hello reference.

2. In the Properties window, change the value of the Isolated property from False to True.

3. From the Build menu, click Build Solution.

Now, when you press F5, the application works as expected, but it is now running under registration-free
COM. In order to prove this, try unregistering the VB6Hello.dll component and running
RegFreeComDemo1.exe outside of the Visual Studio IDE. This time when the button is clicked, it still works.
If you temporarily rename the application manifest, it will again fail.

You can simulate the absence of a COM component by temporarily unregistering it. Open a command prompt, go to your
system folder by typing cd /d %windir%\system32 , then unregister the component by typing
regsvr32 /u VB6Hello.dll . You can register it again by typing regsvr32 VB6Hello.dll .

The final step is to publish the application using ClickOnce:

1. From the Build menu, click Publish RegFreeComDemo.

The Publish Wizard appears.

2. In the Publish Wizard, specify a location on the local computer's disk where you can access and examine the
published files.

3. Click Finish to publish the application.

If you examine the published files, you will note that the sysmon.ocx file is included. The control is totally
isolated to this application, meaning that if the end user's machine has another application using a different
version of the control, it cannot interfere with this application.

Visual Studio supports references to native Visual Basic 6.0 or C++ assemblies; such references are called native
references. You can tell whether a reference is native by verifying that its File Type property is set to Native or
ActiveX.

To add a native reference, use the Add Reference command, then browse to the manifest. Some components
place the manifest inside the DLL. In this case, you can simply choose the DLL itself and Visual Studio will add it as

Limitations of registration-free COM component deployment

a native reference if it detects that the component contains an embedded manifest. Visual Studio will also
automatically include any dependent files or assemblies listed in the manifest if they are in the same folder as the
referenced component.

COM control isolation makes it easy to deploy COM components that do not already have manifests. However, if a
component is supplied with a manifest, you can reference the manifest directly. In fact, you should always use the
manifest supplied by the author of the component wherever possible rather than using the Isolated property.

Registration-free COM provides clear advantages over traditional deployment techniques. However, there are a
few limitations and caveats that should also be pointed out. The greatest limitation is that it only works on
Windows XP or higher. The implementation of registration-free COM required changes to the way in which
components are loaded in the core operating system. Unfortunately, there is no down-level support layer for
registration-free COM.

Not every component is a suitable candidate for registration-free COM. A component is not a suitable if any of the
following are true:

The component is an out-of-process server. EXE servers are not supported; only DLLs are supported.

The component is part of the operating system, or is a system component, such as XML, Internet Explorer,
or Microsoft Data Access Components (MDAC). You should follow the redistribution policy of the
component author ; check with your vendor.

The component is part of an application, such as Microsoft Office. For example, you should not attempt to
isolate Microsoft Excel Object Model. This is part of Office and can only be used on a computer with the full
Office product installed.

The component is intended for use as an add-in or a snap-in, for example an Office add-in or a control in a
Web browser. Such components typically require some kind of registration scheme defined by the hosting
environment that is beyond the scope of the manifest itself.

The component manages a physical or virtual device for the system, for example, a device driver for a print
spooler.

The component is a Data Access redistributable. Data applications generally require a separate Data Access
redistributable to be installed before they can run. You should not attempt to isolate components such as the
Microsoft ADO Data Control, Microsoft OLE DB, or Microsoft Data Access Components (MDAC). Instead, if
your application uses MDAC or SQL Server Express, you should set them as prerequisites; see How to:
Install Prerequisites with a ClickOnce Application.

In some cases, it may be possible for the developer of the component to redesign it for registration-free
COM. If this is not possible, you can still build and publish applications that depend on them through the
standard registration scheme using the Bootstrapper. For more information, see Creating Bootstrapper
Packages.

A COM component can only be isolated once per application. For example, you can't isolate the same COM
component from two different Class Library projects that are part of the same application. Doing so will
result in a build warning, and the application will fail to load at run time. In order to avoid this problem,
Microsoft recommends that you encapsulate COM components in a single class library.

There are several scenarios in which COM registration is required on the developer's machine, even though
the application's deployment does not require registration. The Isolated property requires that the COM
component be registered on the developer's machine in order to auto-generate the manifest during the
build. There are no registration-capturing capabilities that invoke the self-registration during the build. Also,
any classes not explicitly defined in the type library will not be reflected in the manifest. When using a COM

See also

component with a pre-existing manifest, such as a native reference, the component may not need to be
registered at development time. However, registration is required if the component is an ActiveX control
and you want to include it in the Toolbox and the Windows Forms designer.

ClickOnce security and deployment

Build ClickOnce applications from the command line
3/28/2019 • 7 minutes to read • Edit Online

Use MSBuild to reproduce ClickOnce application deployments

Create and build a basic ClickOnce application with MSBuild
To create and publish a ClickOnce projectTo create and publish a ClickOnce project

To reproduce the build from the command lineTo reproduce the build from the command line

In Visual Studio, you can build projects from the command line, even if they are created in the integrated
development environment (IDE). In fact, you can rebuild a project created with Visual Studio on another computer
that has only the .NET Framework installed. This allows you to reproduce a build using an automated process, for
example, in a central build lab or using advanced scripting techniques beyond the scope of building the project
itself.

When you invoke msbuild /target:publish at the command line, it tells the MSBuild system to build the project and
create a ClickOnce application in the publish folder. This is equivalent to selecting the Publish command in the
IDE.

This command executes msbuild.exe, which is on the path in the Visual Studio command-prompt environment.

A "target" is an indicator to MSBuild on how to process the command. The key targets are the "build" target and
the "publish" target. The build target is the equivalent to selecting the Build command (or pressing F5) in the IDE.
If you only want to build your project, you can achieve that by typing msbuild . This command works because the
build target is the default target for all projects generated by Visual Studio. This means you do not explicitly need
to specify the build target. Therefore, typing msbuild is the same operation as typing msbuild /target:build .

The /target:publish command tells MSBuild to invoke the publish target. The publish target depends on the
build target. This means that the publish operation is a superset of the build operation. For example, if you made a
change to one of your Visual Basic or C# source files, the corresponding assembly would automatically be rebuilt
by the publish operation.

For information on generating a full ClickOnce deployment using the Mage.exe command-line tool to create your
ClickOnce manifest, see Walkthrough: Manually deploy a ClickOnce application.

1. Open Visual Studio and create a new project.

Choose the Windows Desktop Application project template and name the project CmdLineDemo .

2. From the Build menu, click the Publish command.

This step ensures that the project is properly configured to produce a ClickOnce application deployment.

The Publish Wizard appears.

3. In the Publish Wizard, click Finish.

Visual Studio generates and displays the default Web page, called Publish.htm.

4. Save your project, and make note of the folder location in which it is stored.

The steps above create a ClickOnce project which has been published for the first time. Now you can
reproduce the build outside of the IDE.

1. Exit Visual Studio.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/building-clickonce-applications-from-the-command-line.md

Publish properties

<AssemblyOriginatorKeyFile>WindowsApplication3.snk</AssemblyOriginatorKeyFile>
<GenerateManifests>true</GenerateManifests>
<TargetZone>LocalIntranet</TargetZone>
<PublisherName>Microsoft</PublisherName>
<ProductName>CmdLineDemo</ProductName>
<PublishUrl>http://localhost/CmdLineDemo</PublishUrl>
<Install>true</Install>
<ApplicationVersion>1.0.0.*</ApplicationVersion>
<ApplicationRevision>1</ApplicationRevision>
<UpdateEnabled>true</UpdateEnabled>
<UpdateRequired>false</UpdateRequired>
<UpdateMode>Foreground</UpdateMode>
<UpdateInterval>7</UpdateInterval>
<UpdateIntervalUnits>Days</UpdateIntervalUnits>
<UpdateUrlEnabled>false</UpdateUrlEnabled>
<IsWebBootstrapper>true</IsWebBootstrapper>
<BootstrapperEnabled>true</BootstrapperEnabled>

msbuild /target:publish /property:BootstrapperEnabled=false

2. From the Windows Start menu, click All Programs, then Microsoft Visual Studio, then Visual Studio
Tools, then Visual Studio Command Prompt. This should open a command prompt in the root folder of
the current user.

3. In the Visual Studio Command Prompt, change the current directory to the location of the project you
just built above. For example, type chdir My Documents\Visual Studio\Projects\CmdLineDemo .

4. To remove the existing files produced in "To create and publish a ClickOnce project," type rmdir /s publish .

This step is optional, but it ensures that the new files were all produced by the command-line build.

5. Type msbuild /target:publish .

The above steps will produce a full ClickOnce application deployment in a subfolder of your project named
Publish. CmdLineDemo.application is the ClickOnce deployment manifest. The folder
CmdLineDemo_1.0.0.0 contains the files CmdLineDemo.exe and CmdLineDemo.exe.manifest, the
ClickOnce application manifest. Setup.exe is the bootstrapper, which by default is configured to install the
.NET Framework. The DotNetFX folder contains the redistributables for the .NET Framework. This is the
entire set of files you need to deploy your application over the Web or via UNC or CD/DVD.

When you publish the application in the above procedures, the following properties are inserted into your project
file by the Publish Wizard. These properties directly influence how the ClickOnce application is produced.

In CmdLineDemo.vbproj / CmdLineDemo.csproj:

You can override any of these properties at the command line without altering the project file itself. For example,
the following will build the ClickOnce application deployment without the bootstrapper:

Publishing properties are controlled in Visual Studio from the Publish, Security, and Signing property pages of
the Project Designer. Below is a description of the publishing properties, along with an indication of how each is
set in the various property pages of the application designer :

AssemblyOriginatorKeyFile determines the key file used to sign your ClickOnce application manifests. This
same key may also be used to assign a strong name to your assemblies. This property is set on the Signing
page of the Project Designer.

The following properties are set on the Security page:

Enable ClickOnce Security Settings determines whether ClickOnce manifests are generated. When a
project is initially created, ClickOnce manifest generation is off by default. The wizard will automatically turn
this flag on when you publish for the first time.

TargetZone determines the level of trust to be emitted into your ClickOnce application manifest. Possible
values are "Internet", "LocalIntranet", and "Custom". Internet and LocalIntranet will cause a default
permission set to be emitted into your ClickOnce application manifest. LocalIntranet is the default, and it
basically means full trust. Custom specifies that only the permissions explicitly specified in the base
app.manifest file are to be emitted into the ClickOnce application manifest. The app.manifest file is a partial
manifest file that contains just the trust information definitions. It is a hidden file, automatically added to
your project when you configure permissions on the Security page.

The following properties are set on the Publish page:

PublishUrl is the location where the application will be published to in the IDE. It is inserted into the
ClickOnce application manifest if neither the InstallUrl or UpdateUrl property is specified.

ApplicationVersion specifies the version of the ClickOnce application. This is a four-digit version number. If
the last digit is a "*", then the ApplicationRevision is substituted for the value inserted into the manifest at
build time.

ApplicationRevision specifies the revision. This is an integer which increments each time you publish in the
IDE. Notice that it is not automatically incremented for builds performed at the command-line.

Install determines whether the application is an installed application or a run-from-Web application.

InstallUrl (not shown) is the location where users will install the application from. If specified, this value is
burned into the setup.exe bootstrapper if the IsWebBootstrapper property is enabled. It is also inserted into
the application manifest if the UpdateUrl is not specified.

SupportUrl (not shown) is the location linked in the Add/Remove Programs dialog box for an installed
application.

The following properties are set in the Application Updates dialog box, accessed from the Publish page.

UpdateEnabled indicates whether the application should check for updates.

UpdateMode specifies either Foreground updates or Background updates.

UpdateInterval specifies how frequently the application should check for updates.

UpdateIntervalUnits specifies whether the UpdateInterval value is in units of hours, days, or weeks.

UpdateUrl (not shown) is the location from which the application will receive updates. If specified, this value
is inserted into the application manifest.

The following properties are set in the Publish Options dialog box, accessed from the Publish page.

PublisherName specifies the name of the publisher displayed in the prompt shown when installing or
running the application. In the case of an installed application, it is also used to specify the folder name on
the Start menu.

ProductName specifies the name of the product displayed in the prompt shown when installing or running
the application. In the case of an installed application, it is also used to specify the shortcut name on the
Start menu.

The following properties are set in the Prerequisites dialog box, accessed from the Publish page.

InstallURL, SupportUrl, PublishURL, and UpdateURL

URL OPTION DESCRIPTION

PublishURL Required if you are publishing your ClickOnce application to a
Web site.

InstallURL Optional. Set this URL option if the installation site is different
than the PublishURL . For example, you could set the
PublishURL to an FTP path and set the InstallURL to a

Web URL.

SupportURL Optional. Set this URL option if the support site is different
than the PublishURL . For example, you could set the
SupportURL to your company's customer support Web site.

UpdateURL Optional. Set this URL option if the update location is different
than the InstallURL . For example, you could set the
PublishURL to an FTP path and set the UpdateURL to a

Web URL.

See also

BootstrapperEnabled determines whether to generate the setup.exe bootstrapper.

IsWebBootstrapper determines whether the setup.exe bootstrapper works over the Web or in disk-based
mode.

The following table shows the four URL options for ClickOnce deployment.

GenerateBootstrapper
GenerateApplicationManifest
GenerateDeploymentManifest
ClickOnce security and deployment
Walkthrough: Manually deploy a ClickOnce application

https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generatebootstrapper
https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generateapplicationmanifest
https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.generatedeploymentmanifest

How to: Specify where Visual Studio copies the files
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

To specify a publishing locationTo specify a publishing location

See also

When you publish an application by using ClickOnce, the Publish Location property specifies the location where
the application files and manifest are put. This can be a file path or the path to an FTP server.

You can specify the Publish Location property on the Publish page of the Project Designer, or by using the
Publish Wizard. For more information, see How to: Publish a ClickOnce Application using the Publish Wizard.

When you install more than one version of an application by using ClickOnce, the installation moves earlier versions of the
application into a folder named Archive, in the publish location that you specify. Archiving earlier versions in this manner
keeps the installation directory clear of folders from the earlier version.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. In the Publish Location field, enter the publishing location by using one of the following formats:

To publish to a file share or disk path, enter the path by using either a UNC path
(\\Server\ApplicationName) or a file path (C:\Deploy\ApplicationName).

To publish to an FTP server, enter the path using the format
ftp://ftp.microsoft.com/<ApplicationName>.

Note that text must be present in the Publishing Location box in order for the Browse (...) button to
work.

Publishing ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-where-visual-studio-copies-the-files.md

How to: Specify the location where end users will
install from
4/18/2019 • 2 minutes to read • Edit Online

To specify an Installation URLTo specify an Installation URL

See also

When publishing a ClickOnce application, the location where users go to download and install the application is
not necessarily the location where you initially publish the application. For example, in some organizations a
developer might publish an application to a staging server, and then an administrator would move the application
to a Web server.

In this case, you can use the Installation URL property to specify the Web server where users will go to download
the application. This is necessary so that the application manifest knows where to look for updates.

The Installation URL property can be set on the Publish page of the Project Designer.

Note The Installation URL property can also be set using the PublishWizard. For more information, see How
to: Publish a ClickOnce application using the Publish Wizard.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. In the Installation URL field, enter the installation location using a fully qualified URL using the format
http://www.microsoft.com/ApplicationName, or a UNC path using the format \\Server\ApplicationName.

How to: Specify where Visual Studio copies the files
Publishing ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-the-location-where-end-users-will-install-from.md
http://www.microsoft.com/ApplicationName

How to: Specify the ClickOnce offline or online install
mode
4/18/2019 • 2 minutes to read • Edit Online

To make a ClickOnce application available online onlyTo make a ClickOnce application available online only

To make a ClickOnce application available online or offlineTo make a ClickOnce application available online or offline

See also

The Install Mode for a ClickOnce application determines whether the application will be available offline or
online. When you choose The application is available online only, the user must have access to the ClickOnce
publishing location (either a Web page or a file share) in order to run the application. When you choose The
application is available offline as well, the application adds entries to the Start menu and the Add or Remove
Programs dialog box; the user is able to run the application when they are not connected.

The Install Mode can be set on the Publish page of the Project Designer.

Note The Install Mode can also be set using the Publish wizard. For more information, see How to: Publish a
ClickOnce application using the Publish Wizard.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. In the Install Mode and Settings area, click the The application is available online only option button.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. In the Install Mode and Settings area, click the The application is available offline as well option
button.

When installed, the application adds entries to the Start menu and to Add or Remove Programs in
Control Panel.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard
Choose a ClickOnce deployment strategy

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-the-clickonce-offline-or-online-install-mode.md

How to: Set the ClickOnce publish version
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

To change the publish versionTo change the publish version

See also

The ClickOnce Publish Version property determines whether or not the application that you are publishing will
be treated as an update. Each time version is incremented, the application will be published as an update.

The Publish Version property can be set on the Publish page of the Project Designer.

There is a project option that will automatically increment the Publish Version property each time the application is
published; this option is enabled by default. For more information, see How to: Automatically Increment the ClickOnce
Publish Version.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Click the Publish tab.

3. In Publish Version field, increment the Major, Minor, Build, or Revision version numbers.

You should never decrement a version number; doing so could cause unpredictable update behavior.

Choose a ClickOnce update strategy
How to: Automatically increment the ClickOnce publish version
Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-set-the-clickonce-publish-version.md

How to: Automatically increment the ClickOnce
publish version
4/18/2019 • 2 minutes to read • Edit Online

NOTENOTE

To disable automatically incrementing the publish version

See also

When publishing a ClickOnce application, changing the Publish Version property causes the application to be
published as an update. By default, Visual Studio automatically increments the Revision number of the
Publish Version each time you publish the application.

You can disable this behavior on the Publish page of the Project Designer.

The dialog boxes and menu commands you see might differ from those described in Help depending on your active settings
or edition. To change your settings, choose Import and Export Settings on the Tools menu. For more information, see
Reset settings.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. In the Publish Version section, clear the Automatically increment revision with each release check
box.

How to: Set the ClickOnce publish version
Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-automatically-increment-the-clickonce-publish-version.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/environment-settings

How to: Specify which files are published by
ClickOnce
4/23/2019 • 3 minutes to read • Edit Online

To add files to the Application Files dialog boxTo add files to the Application Files dialog box

To exclude files from ClickOnce publishingTo exclude files from ClickOnce publishing

To mark files as data filesTo mark files as data files

When publishing a ClickOnce application, all non-code files in the project are deployed along with the application.
In some cases, you may not want or need to publish certain files, or you may want to install certain files based on
conditions. Visual Studio provides the capabilities to exclude files, mark files as data files or prerequisites, and
create groups of files for conditional installation.

Files for a ClickOnce application are managed in the Application Files dialog box, accessible from the Publish
page of the Project Designer.

Initially, there is a single file group named (Required). You can create additional file groups and assign files to
them. You cannot change the Download Group for files that are required for the application to run. For example,
the application's .exe or files marked as data files must belong to the (Required) group.

The default publish status value of a file is tagged with (Auto). For example, the application's .exe has a publish
status of Include (Auto) by default.

Files with the Build Action property set to Content are designated as application files and will be marked as
included by default. They can be included, excluded, or marked as data files. The exceptions are as follows:

Data files such as SQL Database (.mdf and .mdb) files and XML files will be marked as data files by default.

References to assemblies (.dll files) are designated as follows when you add the reference: If Copy Local is
False, it is marked by default as a prerequisite assembly (Prerequisite (Auto)) that must be present in the
GAC before the application is installed. If Copy Local is True, the assembly is marked by default as an
application assembly (Include (Auto)) and will be copied into the application folder at installation. A COM
reference will appear in the Application Files dialog box (as an .ocx file) only if its Isolated property is set
to True. By default, it will be included.

1. Select a data file in Solution Explorer.

2. In the Properties window, change the Build Action property to the Content value.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Application Files button to open the Application Files dialog box.

4. In the Application Files dialog box, select the file that you wish to exclude.

5. In the Publish Status field, select Exclude from the drop-down list.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Application Files button to open the Application Files dialog box.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-which-files-are-published-by-clickonce.md

To mark files as prerequisitesTo mark files as prerequisites

To add a new file groupTo add a new file group

To add a file to a groupTo add a file to a group

See also

4. In the Application Files dialog box, select the file that you wish to mark as data.

5. In the Publish Status field, select Data File from the drop-down list.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Application Files button to open the Application Files dialog box.

4. In the Application Files dialog box, select the application assembly (.dll file) that you wish to mark as a
prerequisite. Note that your application must have a reference to the application assembly in order for it to
appear in the list.

5. In the Publish Status field, select Prerequisite from the drop-down list.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Application Files button to open the Application Files dialog box.

4. In the Application Files dialog box, select the Group field for a file that you wish to include in the new
group.

Files must have the Build Action property set to Content before the file names appear in the Application Files
dialog box.

5. In the Download Group field, select <New...> from the drop-down list.

6. In the New Group dialog box, enter a name for the group, and then click OK.

NOTENOTE

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Application Files button to open the Application Files dialog box.

4. In the Application Files dialog box, select the Group field for a file that you wish to include in the new
group.

5. In the Download Group field, select a group from the drop-down list.

You cannot change the Download Group for files that are required for the application to run.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

How to: Include a data file in a ClickOnce application
4/18/2019 • 2 minutes to read • Edit Online

To include a data file by using Mage.exeTo include a data file by using Mage.exe

To include a data file by using MageUI.exeTo include a data file by using MageUI.exe

Each ClickOnce application you install is assigned a data directory on the destination computer's local disk where
the application can manage its own data. Data files can include files of any type: text files, XML files, or even
Microsoft Access database (.mdb) files. The following procedures show you how to add a data file of any type into
your ClickOnce application.

1. Add the data file to your application directory with the rest of your application's files.

Typically, your application directory will be a directory labeled with the deployment's current version—for
example, v1.0.0.0.

2. Update your application manifest to list the data file.

mage -u v1.0.0.0\Application.manifest -FromDirectory v1.0.0.0

Performing this task re-creates the list of files in your application manifest and also automatically generates
the hash signatures.

3. Open the application manifest in your preferred text or XML editor and find the file element for your
recently added file.

If you added an XML file named Data.xml , the file will look similar to the following code example.

<file name="Data.xml" hash="23454C18A2DC1D23E5B391FEE299B1F235067C59" hashalg="SHA1" asmv2:size="39500"
/>

4. Add the attribute type to this element, and supply it with a value of data .

<file name="Data.xml" writeableType="applicationData" hash="23454C18A2DC1D23E5B391FEE299B1F235067C59"
hashalg="SHA1" asmv2:size="39500" />

5. Re-sign your application manifest by using your key pair or certificate, and then re-sign your deployment
manifest.

You must re-sign your deployment manifest because its hash of the application manifest has changed.

mage -s app manifest -cf cert_file -pwd password

mage -u deployment manifest -appm app manifest

mage -s deployment manifest -cf certfile -pwd password

1. Add the data file to your application directory with the rest of your application's files.

2. Typically, your application directory will be a directory labeled with the deployment's current version—for
example, v1.0.0.0.

3. On the File menu, click Open to open your application manifest.

4. Select the Files tab.

5. In the text box at the top of the tab, enter the directory that contains your application's files, and then click
Populate.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-include-a-data-file-in-a-clickonce-application.md

See also

Your data file will appear in the grid.

6. Set the File Type value of the data file to Data.

7. Save the application manifest, and then re-sign the file.

MageUI.exe will prompt you to re-sign the file.

8. Re-sign your deployment manifest

You must re-sign your deployment manifest because its hash of the application manifest has changed.

Access local and remote data in ClickOnce applications

How to: Install prerequisites with a ClickOnce
application
4/23/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

To specify prerequisites to install with a ClickOnce applicationTo specify prerequisites to install with a ClickOnce application

To specify a different download location for prerequisitesTo specify a different download location for prerequisites

All ClickOnce applications require that the correct version of the .NET Framework is installed on a computer
before they can be run; many applications have other prerequisites as well. When publishing a ClickOnce
application, you can choose a set of prerequisite components to be packaged along with your application. At
installation time, a check will be performed for each prerequisite to determine if it already exists; if not it will be
installed prior to installing the ClickOnce application.

Instead of packaging and publishing prerequisites, you can also specify a download location for the components.
For example, rather than including prerequisites with every application that you publish, you might use a
centralized file share or Web location that contains the installers for all of your prerequisites—at install time, the
components will be downloaded and installed from that location.

You should add prerequisite installer packages to your development computer before you publish your first ClickOnce
application. For more information, see How to: Include Prerequisites with a ClickOnce Application.

Prerequisites are managed in the Prerequisites dialog box, accessible from the Publish pane of the Project
Designer.

In addition to the predetermined list of prerequisites, you can add your own components to the list. For more information,
see Creating bootstrapper packages.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Select the Publish pane.

3. Click the Prerequisites button to open the Prerequisites dialog box.

4. In the Prerequisites dialog box, make sure that the Create setup program to install prerequisite
components check box is selected.

5. In the Prerequisites list, check the components that you wish to install, and then click OK.

The selected components will be packaged and published along with your application.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Select the Publish pane.

3. Click the Prerequisites button to open the Prerequisites dialog box.

4. In the Prerequisites dialog box, make sure that the Create setup program to install prerequisite
components check box is selected.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-install-prerequisites-with-a-clickonce-application.md

See also

NOTENOTE

5. In the Specify the install location for prerequisites section, select Download prerequisites from the
following location.

6. Select a location from the drop-down list, or enter a URL, file path, or FTP location, and then click OK.

You must make sure that installers for the specified components exist at the specified location.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

How to: Include prerequisites with a ClickOnce
application
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an installer package by using Package.xml

See also

Before you can distribute prerequisite software with a ClickOnce application, you must first download the installer
packages for those prerequisites to your development computer. When you publish an application and choose
Download prerequisites from the same location as my application, an error will occur if the installer
packages aren't in the Packages folder.

To add an installer package for the .NET Framework, see .NET Framework Deployment Guide for Developers.

NOTENOTE

IMPORTANTIMPORTANT

1. In File Explorer, open the Packages folder.

By default, the path is %ProgramFiles(x86)%\Microsoft SDKs\ClickOnce Bootstrapper\Packages\ .

2. Open the folder for the prerequisite that you want to add, and then open the language folder for your
installed version of Visual Studio (for example, en for English).

3. In Notepad, open the Package.xml file.

4. Locate the Name element that contains http://go.microsoft.com/fwlink, and copy the URL. Include the
LinkID portion.

If no Name element contains http://go.microsoft.com/fwlink, open the Product.xml file in the root folder for the
prerequisite and locate the fwlink string.

Some prerequisites have multiple installer packages (for example, for 32-bit or 64-bit systems). If multiple Name
elements contain fwlink, you must repeat the remaining steps for each of them.

5. Paste the URL into the address bar of your browser, and then, when you are prompted to run or save,
choose Save.

This step downloads the installer file to your computer.

6. Copy the file to the root folder for the prerequisite.

For example, for the Windows Installer 4.5 prerequisite, copy the file to the \Packages\WindowsInstaller4_5
folder.

You can now distribute the installer package with your application.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-include-prerequisites-with-a-clickonce-application.md
https://docs.microsoft.com/dotnet/framework/deployment/deployment-guide-for-developers
http://go.microsoft.com/fwlink
http://go.microsoft.com/fwlink

How to: Install prequisites with a ClickOnce application

How to: Manage updates for a ClickOnce application
4/18/2019 • 4 minutes to read • Edit Online

To check for updates before the application startsTo check for updates before the application starts

To check for updates in the background after the application startsTo check for updates in the background after the application starts

To specify a minimum required version for the applicationTo specify a minimum required version for the application

ClickOnce applications can check for updates automatically or programmatically. As a developer, you have lots of
flexibility in specifying when and how update checks are performed, whether updates are mandatory, and where
the application should check for updates.

You can configure the application to check for updates automatically before the application starts, or at set
intervals after the application starts. In addition you can specify a minimum required version; that is, an update is
installed if the user's version is lower than the required version.

You can configure the application to check for updates programmatically based on an event such as a user request.
The procedure "To check for updates programmatically" in this topic shows how you would write code that uses
the ApplicationDeployment class to check for updates based on an event.

You can also deploy your application from one location and update it from another. See the procedure "To specify a
different update location."

For more information, see Choosing a ClickOnce Update Strategy.

Update behavior is managed in the Application Updates dialog box, available from the Publish page of the
Project Designer.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Updates button to open the Application Updates dialog box.

4. In the Application Updates dialog box, make sure that the The application should check for updates
check box is selected.

5. In the Choose when the application should check for updates section, select Before the application
starts. This ensures that users connected to the network always run the application with the latest updates.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Updates button to open the Application Updates dialog box.

4. In the Application Updates dialog box, make sure that the check box The application should check for
updates is selected.

5. In the Choose when the application should check for updates section, select After the application
starts. The application will start more quickly this way, and then it will check for updates in the background,
and only notify the user when an update is available. Once installed, updates will not take effect until the
application is restarted.

6. In the Specify how frequently the application should check for updates section, select either Check
every time the application runs (the default) or Check every and enter a number and time interval.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-manage-updates-for-a-clickonce-application.md
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment

To specify a different update locationTo specify a different update location

To check for updates programmaticallyTo check for updates programmatically

See also

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Updates button to open the Application Updates dialog box.

4. In the Application Updates dialog box, make sure that the The application should check for updates
check box is selected.

5. Select the Specify a minimum required version for this application check box, and then enter Major,
Minor, Build, and Revision numbers for the application.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Updates button to open the Application Updates dialog box.

4. In the Application Updates dialog box, make sure that the The application should check for updates
check box is selected.

5. In the Update location field, enter the update location with a fully qualified URL, using the format
http://Hostname/ApplicationName, or a UNC path using the format \\Server\ApplicationName, or click the
Browse button to browse for the update location.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Updates button to open the Application Updates dialog box.

4. In the Application Updates dialog box, make sure that the The application should check for updates
check box is cleared. (Optionally, you can select this check box to check for updates programmatically and
also let the ClickOnce runtime check for updates automatically.)

5. In the Update location field, enter the update location with a fully qualified URL, using the format
http://Hostname/ApplicationName, or a UNC path using the format \\Server\ApplicationName, or click the
Browse button to browse for the update location. The update location is where the application will look for
an updated version of itself.

6. Create a button, menu item, or other user interface item on a Windows Form that users will select to check
for updates. From that item's event handler, call a method to check for and install updates. You can find an
example of Visual Basic and Visual C# code for such a method in How to: Check for application updates
programmatically using the ClickOnce deployment API.

7. Build your application.

ApplicationDeployment
Application updates dialog box
Choose a ClickOnce update strategy
Publish ClickOnce aplications
How to: Publish a ClickOnce application using the Publish Wizard
How to: Check for application updates programmatically using the ClickOnce deployment API

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/axw1fa38(v=vs.100)

How to: Change the publish language for a
ClickOnce application
5/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

To change the publish language

See also

When publishing a ClickOnce application, the user interface displayed during installation defaults to the language
and culture of your development computer. If you are publishing a localized application, you will need to specify a
language and culture to match the localized version. This is determined by the Publish language property for your
project.

The Publish language property can be set in the Publish Options dialog box, accessible from the Publish page
of the Project Designer.

The dialog boxes and menu commands you see might differ from those described in Help depending on your active settings
or edition. To change your settings, choose Import and Export Settings on the Tools menu. For more information, see
Reset settings.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Options button to open the Publish Options dialog box.

4. Click Description.

5. In the Publish Options dialog box, select a language and culture from the Publish language drop-down
list, and then click OK.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-change-the-publish-language-for-a-clickonce-application.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/environment-settings

How to: Specify a Start menu name for a ClickOnce
application
4/18/2019 • 2 minutes to read • Edit Online

To specify a Start menu nameTo specify a Start menu name

See also

When a ClickOnce application is installed for both online and offline use, an entry is added to the Start menu and
the Add or Remove Programs list. By default, the display name is the same as the name of the application
assembly, but you can change the display name by setting Product name in the Publish Options dialog box.

Product name will be displayed on the publish.htm page; for an installed offline application, it will be the name of
the entry in the Start menu, and it will also be the name that shows in Add or Remove Programs.

Publisher name will appear on the publish.htm page above Product name, and for an installed offline
application, it will also be the name of the folder that contains the application's icon in the Start menu.

The Start menu shortcut or app reference gets created in %appdata%\Microsoft\Windows\Start Menu\Programs\
<publisher name>. The shortcut or app reference has the same name as the product name.

You can set the Product name and Publisher name properties in the Publish Options dialog box, available on
the Publish page of the Project Designer.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Options button to open the Publish Options dialog box.

4. Click Description.

5. In the Publish Options dialog box, enter the name to display in Product name.

6. Optionally, you can enter a publisher name in Publisher name.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-a-start-menu-name-for-a-clickonce-application.md

How to: Specify a link for Technical Support
4/18/2019 • 2 minutes to read • Edit Online

To specify a support URLTo specify a support URL

See also

When publishing a ClickOnce application, the Support URL property identifies a Web page or file share where
users can go to get information about the application. This property is optional; if provided, the URL will be
displayed in the application's entry Add or Remove Programs dialog box.

The Support URL property can be set on the Publish page of the Project Designer.

1. With a project selected in Solution Explorer, on the Project menu, click Properties.

2. Click the Publish tab.

3. Click the Options button to open the Publish Options dialog box.

4. Click Description.

5. In the Support URL field, enter a fully qualified path to a Web site, Web page, or UNC share.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-a-link-for-technical-support.md

How to: Specify a support URL for individual
prerequisites in a ClickOnce deployment
5/28/2019 • 2 minutes to read • Edit Online

Specify a support URL for an individual prerequisiteSpecify a support URL for an individual prerequisite

A ClickOnce deployment can test for a number of prerequisites that must be available on the client computer for
the ClickOnce application to run. These dependencies include the required minimum version of the .NET
Framework, the version of the operating system, and any assemblies that must be preinstalled in the global
assembly cache (GAC). ClickOnce, however, cannot install any of these prerequisites itself; if a prerequisite is not
found, it simply halts installation and displays a dialog box explaining why the installation failed.

There are two methods for installing prerequisites. You can install them using a bootstrapper application.
Alternatively, you can specify a support URL for individual prerequisites, which is displayed to users on the dialog
box if the prerequisite is not found. The page referenced by that URL can contain links to instructions for installing
the required prerequisite. If an application does not specify a support URL for an individual prerequisite, ClickOnce
displays the support URL specified in the deployment manifest for the application as a whole, if it is defined.

While Visual Studio, Mage.exe, and MageUI.exe can all be used to generate ClickOnce deployments, none of these
tools directly support specifying a support URL for individual prerequisites. This document describes how to
modify your deployment's application manifest and deployment manifest to include these support URLs.

 <dependency>
 <dependentOS supportUrl="http://www.adatum.com/MyApplication/wrongOSFound.htm">
 <osVersionInfo>
 <os majorVersion="5" minorVersion="1" buildNumber="2600" servicePackMajor="0"
servicePackMinor="0" />
 </osVersionInfo>
 </dependentOS>
 </dependency>

 <dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true" supportUrl="
http://www.adatum.com/MyApplication/wrongClrVersionFound.htm">
 <assemblyIdentity name="Microsoft.Windows.CommonLanguageRuntime" version="4.0.30319.0" />
 </dependentAssembly>
 </dependency>

1. Open the application manifest (the .manifest file) for your ClickOnce application in a text editor.

2. For an operating system prerequisite, add the supportUrl attribute to the dependentOS element:

3. For a prerequisite for a certain version of the common language runtime, add the supportUrl attribute to
the dependentAssembly entry that specifies the common language runtime dependency:

4. For a prerequisite for an assembly that must be preinstalled in the global assembly cache, set the
supportUrl for the dependentAssembly element that specifies the required assembly:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-a-support-url-for-individual-prerequisites-in-a-clickonce-deployment.md

.NET Framework security

See also

 <dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true" supportUrl="
http://www.adatum.com/MyApplication/missingSampleGACAssembly.htm">
 <assemblyIdentity name="SampleGACAssembly" version="5.0.0.0" publicKeyToken="04529dfb5da245c5"
processorArchitecture="msil" language="neutral" />
 </dependentAssembly>
 </dependency>

<compatibleFrameworks xmlns="urn:schemas-microsoft-com:clickonce.v2"
supportUrl="http://adatum.com/MyApplication/CompatibleFrameworks.htm">
 <framework targetVersion="4.0" profile="Client" supportedRuntime="4.0.30319" />
 <framework targetVersion="4.0" profile="Full" supportedRuntime="4.0.30319" />
</compatibleFrameworks>

5. Optional. For applications that target the .NET Framework 4, open the deployment manifest (the
.application file) for your ClickOnce application in a text editor.

6. For a .NET Framework 4 prerequisite, add the supportUrl attribute to the compatibleFrameworks element:

7. Once you have manually altered the application manifest, you must re-sign the application manifest using
your digital certificate, then update and re-sign the deployment manifest as well. Use the Mage.exe or
MageUI.exe SDK tools to accomplish this task, as regenerating these files using Visual Studio erases your
manual changes. For more information on using Mage.exe to re-sign manifests, see How to: Re-sign
Application and Deployment Manifests.

The support URL is not displayed on the dialog box if the application is marked to run in partial trust.

Mage.exe (Manifest Generation and Editing Tool)
Walkthrough: Manually deploy a ClickOnce application
<compatibleFrameworks> element
ClickOnce and Authenticode
Application deployment prerequisites

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

How to: Specify a publish page for a ClickOnce
application
4/18/2019 • 2 minutes to read • Edit Online

To specify a custom Web page for a ClickOnce applicationTo specify a custom Web page for a ClickOnce application

To prevent the publish page from launching each time you publishTo prevent the publish page from launching each time you publish

See also

When publishing a ClickOnce application, a default Web page (publish.htm) is generated and published along with
the application. This page contains the name of the application, a link to install the application and/or any
prerequisites, and a link to a Help topic describing ClickOnce. The Publish Page property for your project allows
you to specify a name for the Web page for your ClickOnce application.

Once the publish page has been specified, the next time you publish, it will be copied to the publish location; it will
not be overwritten if you publish again. If you wish to customize the appearance of the page, you can do so
without worrying about losing your changes. For more information, see How to: Customize the ClickOnce default
Web page.

The Publish Page property can be set in the Publish Options dialog box, accessible from the Publish pane of
the Project Designer.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Select the Publish pane.

3. Click the Options button to open the Publish Options dialog box.

4. Click Deployment.

5. In the Publish Options dialog box, make sure that the Open deployment web page after publish check
box is selected (it should be selected by default).

6. In the Deployment web page box, enter the name for your Web page, and then click OK.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Select the Publish pane.

3. Click the Options button to open the Publish Options dialog box.

4. Click Deployment.

5. In the Publish Options dialog box, clear the Open deployment web page after publish check box.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard
How to: Customize the ClickOnce default Web page

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-a-publish-page-for-a-clickonce-application.md

How to: Customize the default Web page for a
ClickOnce application
5/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To customize the publish Web pageTo customize the publish Web page

See also

When publishing a ClickOnce application to the Web, a Web page is automatically generated and published along
with the application. The default page contains the name of the application and links to install the application,
install prerequisites, or access help on MSDN.

The actual links that you see on the page depend on the computer where the page is being viewed and what prerequisites
you are including.

The default name for the Web page is Publish.htm; you can change the name in the Project Designer. For more
information, see How to: Specify a publish page for a ClickOnce application.

The Publish.htm Web page is published only if a newer version is detected.

Changes that you make to your Publish settings will not affect the Publish.htm page, with one exception: if you add or
remove prerequisites after initially publishing, the list of prerequisites will no longer be accurate. You will need to edit the text
for the prerequisite link to reflect the changes.

1. Publish your ClickOnce application to a Web location. For more information, see How to: Publish a
ClickOnce application using the Publish Wizard.

2. On the Web server, open the Publish.htm file in Visual Web Designer or another HTML editor.

3. Customize the page as desired and save it.

4. Optional. To prevent Visual Studio from overwriting your customized publish Web page, uncheck
Automatically generate deployment Web page after every publish in the Publish Options dialog
box.

ClickOnce security and deployment
Publishing ClickOnce applications
How to: Install prerequisites with a ClickOnce application
How to: Specify a publish page for a ClickOnce application

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-customize-the-default-web-page-for-a-clickonce-application.md

How to: Enable AutoStart for CD installations
4/18/2019 • 2 minutes to read • Edit Online

To enable AutoStartTo enable AutoStart

See also

When deploying a ClickOnce application by means of removable media such as CD-ROM or DVD-ROM, you can
enable AutoStart so that the ClickOnce application is automatically launched when the media is inserted.

AutoStart can be enabled on the Publish page of the Project Designer.

1. With a project selected in Solution Explorer, on the Project menu click Properties.

2. Click the Publish tab.

3. Click the Options button.

The Publish Options dialog box appears.

4. Click Deployment.

5. Select the For CD installations, automatically start Setup when CD is inserted check box.

An Autorun.inf file will be copied to the publish location when the application is published.

Publish ClickOnce applications
How to: Publish a ClickOnce application using the Publish Wizard

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-enable-autostart-for-cd-installations.md

How to: Create file associations for a ClickOnce
application
2/21/2019 • 2 minutes to read • Edit Online

To create file associations for a ClickOnce applicationTo create file associations for a ClickOnce application

See also

ClickOnce applications can be associated with one or more file name extensions, so that the application will be
started automatically when the user opens a file of those types. Adding file name extension support to a ClickOnce
application is straightforward.

1. Create a ClickOnce application normally, or use your existing ClickOnce application.

2. Open the application manifest with a text or XML editor, such as Notepad.

3. Find the assembly element. For more information, see ClickOnce application manifest.

4. As a child of the assembly element, add a fileAssociation element. The fileAssociation element has four
attributes:

extension : The file name extension you want to associate with the application.

description : A description of the file type, which will appear in the Windows shell.

progid : A string uniquely identifying the file type, to mark it in the registry.

defaultIcon : An icon to use for this file type. The icon must be added as a file resource in the
application manifest. For more information, see How to: Include a Data File in a ClickOnce
Application.

For an example of the file and fileAssociation elements, see <fileAssociation> Element.

5. If you want to associate more than one file type with the application, add additional fileAssociation

elements. Note that the progid attribute should be different for each.

6. Once you have finished with the application manifest, re-sign the manifest. You can do this from the
command line by using Mage.exe.

mage -Sign WindowsFormsApp1.exe.manifest -CertFile mycert.pfx

For more information, see Mage.exe (Manifest Generation and Editing Tool)

<fileAssociation> element
ClickOnce application manifest
Mage.exe (Manifest Generation and Editing Tool)

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-create-file-associations-for-a-clickonce-application.md
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

How to: Retrieve query string information in an
online ClickOnce application
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

NOTENOTE

NOTENOTE

To obtain query string information from a ClickOnce applicationTo obtain query string information from a ClickOnce application

The query string is the portion of a URL beginning with a question mark (?) that contains arbitrary information in
the form name=value. Suppose you have a ClickOnce application named WindowsApp1 that you host on
servername , and you want to pass in a value for the variable username when the application launches. Your URL

might look like the following:

http://servername/WindowsApp1.application?username=joeuser

The following two procedures show how to use a ClickOnce application to obtain query string information.

You can only pass information in a query string when your application is being launched using HTTP, instead of using a file
share or the local file system.

The first procedure shows how your ClickOnce application can use a small piece of code to read these values
when the application launches.

The next procedure shows how to configure your ClickOnce application using MageUI.exe so that it can accept
query string parameters. You will need to do this whenever you publish your application.

See the "Security" section later in this topic before you make a decision to enable this feature.

For information about how to create a ClickOnce deployment using Mage.exe or MageUI.exe, see Walkthrough:
Manually deploy a ClickOnce application.

Starting in .NET Framework 3.5 SP1, it is possible to pass command-line arguments to an offline ClickOnce application. If you
want to supply arguments to the application, you can pass in parameters to the shortcut file with the .APPREF-MS
extension.

1. Place the following code in your project. In order for this code to function, you will have to have a reference
to System.Web and add using or Imports statements for System.Web, System.Collections.Specialized,
and System.Deployment.Application.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-retrieve-query-string-information-in-an-online-clickonce-application.md

To enable query string passing in a ClickOnce application with MageUI.exeTo enable query string passing in a ClickOnce application with MageUI.exe

NOTENOTE

Robust programming

private NameValueCollection GetQueryStringParameters()
{
 NameValueCollection nameValueTable = new NameValueCollection();

 if (ApplicationDeployment.IsNetworkDeployed)
 {
 string queryString = ApplicationDeployment.CurrentDeployment.ActivationUri.Query;
 nameValueTable = HttpUtility.ParseQueryString(queryString);
 }

 return (nameValueTable);
}

Private Function GetQueryStringParameters() As NameValueCollection
 Dim NameValueTable As New NameValueCollection()

 If (ApplicationDeployment.IsNetworkDeployed) Then
 Dim QueryString As String = ApplicationDeployment.CurrentDeployment.ActivationUri.Query
 NameValueTable = HttpUtility.ParseQueryString(QueryString)
 End If

 GetQueryStringParameters = NameValueTable
End Function

2. Call the function defined previously to retrieve a Dictionary of the query string parameters, indexed by
name.

MageUI

1. Open the .NET Command Prompt and type:

2. From the File menu, select Open, and open the deployment manifest for your ClickOnce application,
which is the file ending in the .application extension.

3. Select the Deployment Options panel in the left-hand navigation window, and select the Allow URL
parameters to be passed to application check box.

4. From the File menu, select Save.

Alternately, you can enable query string passing in Visual Studio. Select the Allow URL parameters to be passed to
application check box, which can be found by opening the Project Properties, selecting the Publish tab, clicking the
Options button, and then selecting Manifests.

When you use query string parameters, you must give careful consideration to how your application is installed
and activated. If your application is configured to install on the user's computer from the Web or from a network
share, it is likely that the user will activate the application only once through the URL. After that, the user will
usually activate your application using the shortcut in the Start menu. As a result, your application is guaranteed
to receive query string arguments only once during its lifetime. If you choose to store these arguments on the
user's machine for future use, you are responsible for storing them in a safe and secure manner.

If your application is online only, it will always be activated through a URL. Even in this case, however, your

https://docs.microsoft.com/dotnet/api/system.collections.dictionarybase.dictionary

.NET Framework security

See also

application must be written to function properly if the query string parameters are missing or corrupted.

Allow passing URL parameters to your ClickOnce application only if you plan to cleanse the input of any
malicious characters before using it. A string embedded with quotes, slashes, or semicolons, for example, might
perform arbitrary data operations if used unfiltered in a SQL query against a database. For more information on
query string security, see Script exploits overview.

Secure ClickOnce applications

https://msdn.microsoft.com/Library/772c7312-211a-4eb3-8d6e-eec0aa1dcc07

How to: Disable URL activation of ClickOnce
applications by using the Designer
5/28/2019 • 2 minutes to read • Edit Online

Procedure
To disable URL activation for your applicationTo disable URL activation for your application

See also

Typically, a ClickOnce application will start automatically immediately after it is installed from a Web server. For
security reasons, you may decide to disable this behavior, and tell users to start the application from the Start
menu instead. The following procedure describes how to disable URL activation.

This technique can be used only for ClickOnce applications installed on the user's computer from a Web server. It
cannot be used for online-only applications, which can be started only by using their URL. For more information
about the difference between online-only and installed applications, see Choosing a ClickOnce Deployment
Strategy.

This procedure uses Visual Studio. You can also accomplish this task by using the Windows Software Development
Kit (SDK). For more information, see How to: Disable URL Activation of ClickOnce Applications.

1. Right-click your project name in Solution Explorer, and click Properties.

2. On the Properties page, click the Publish tab.

3. Click Options.

4. Click Manifests.

5. Select the check box labeled Block application from being activated via a URL.

6. Deploy your application.

Publishing ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-disable-url-activation-of-clickonce-applications-by-using-the-designer.md

How to: Disable URL activation of ClickOnce
applications
4/18/2019 • 2 minutes to read • Edit Online

Procedure
To disable URL activation for your applicationTo disable URL activation for your application

See also

Typically, a ClickOnce application will launch automatically immediately after it is installed from a Web server. For
security reasons, you may decide to disable this behavior, and tell users to launch the application from the Start
menu instead. The following procedure describes how to disable URL activation.

This technique can be used only for ClickOnce applications installed on the user's computer from a Web server. It
cannot be used for online-only applications, which can be launched only by using their URL. For more information
on the difference between online-only and installed applications, see Choosing a ClickOnce Deployment Strategy.

This procedure uses the Windows Software Development Kit (SDK) tool MageUI.exe. For more information on
this tool, see MageUI.exe (Manifest Generation and Editing Tool, Graphical Client). You can also perform this
procedure using Visual Studio.

1. Open your deployment manifest in MageUI.exe. If you have not yet created one, follow the steps in
Walkthrough: Manually deploy a ClickOnce application.

2. Select the Deployment Options tab.

3. Clear the Automatically run application after installing check box.

4. Save and sign the manifest.

Publish ClickOnce applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-disable-url-activation-of-clickonce-applications.md
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client

How to: Use ClickOnce to deploy applications that
can run on multiple versions of the .NET framework
5/28/2019 • 2 minutes to read • Edit Online

NOTENOTE

To generate the application and deployment manifestsTo generate the application and deployment manifests

To change the deployment manifest to list the multiple .NET Framework versionsTo change the deployment manifest to list the multiple .NET Framework versions

You can deploy an application that targets multiple versions of the .NET Framework by using the ClickOnce
deployment technology. This requires that you generate and update the application and deployment manifests.

Before you change the application to target multiple versions of the .NET Framework, you should ensure that your application
runs with multiple versions of the .NET Framework. The version common language runtime is different between .NET
Framework 4 versus .NET Framework 2.0, .NET Framework 3.0, and .NET Framework 3.5.

This process requires the following steps:

1. Generate the application and deployment manifests.

2. Change the deployment manifest to list the multiple .NET Framework versions.

3. Change the app.config file to list the compatible .NET Framework runtime versions.

4. Change the application manifest to mark dependent assemblies as .NET Framework assemblies.

5. Sign the application manifest.

6. Update and sign the deployment manifest.

Use the Publish Wizard or the Publish Page of the Project Designer to publish the application and generate the
application and deployment manifest files. For more information, see How to: Publish a ClickOnce application
using the Publish Wizard or Publish Page, Project Designer.

.NET FRAMEWORK VERSION XML

4 Client <framework targetVersion="4.0" profile="Client"
supportedRuntime="4.0.30319" />

4 Full <framework targetVersion="4.0" profile="Full"
supportedRuntime="4.0.30319" />

1. In the publish directory, open the deployment manifest by using the XML Editor in Visual Studio. The
deployment manifest has the .application file name extension.

2. Replace the XML code between the <compatibleFrameworks xmlns="urn:schemas-microsoft-com:clickonce.v2">

and </compatibleFrameworks> elements with XML that lists the supported .NET Framework versions for your
application.

The following table shows some of the available .NET Framework versions and the corresponding XML that
you can add to the deployment manifest.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-use-clickonce-to-deploy-applications-that-can-run-on-multiple-versions-of-the-dotnet-framework.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/publish-page-project-designer

To change the app.config file to list the compatible .NET Framework runtime versionsTo change the app.config file to list the compatible .NET Framework runtime versions

To change the application manifest to mark dependent assemblies as .NET Framework assembliesTo change the application manifest to mark dependent assemblies as .NET Framework assemblies

To update and re-sign the application and deployment manifestsTo update and re-sign the application and deployment manifests

3.5 Client <framework targetVersion="3.5" profile="Client"
supportedRuntime="2.0.50727" />

3.5 Full <framework targetVersion="3.5" profile="Full"
supportedRuntime="2.0.50727" />

3.0 <framework targetVersion="3.0"
supportedRuntime="2.0.50727" />

.NET FRAMEWORK VERSION XML

.NET FRAMEWORK RUNTIME VERSION XML

4 Client <supportedRuntime version="v4.0.30319"
sku=".NETFramework,Version=v4.0,Profile=Client" />

4 Full <supportedRuntime version="v4.0.30319"
sku=".NETFramework,Version=v4.0" />

3.5 Full <supportedRuntime version="v2.0.50727"/>

3.5 Client <supportedRuntime version="v2.0.50727" sku="Client"/>

1. In Solution Explorer, open the app.config file by using the XML Editor in Visual Studio.

2. Replace (or add) the XML code between the <startup> and </startup> elements with XML that lists the
supported .NET Framework runtimes for your application.

The following table shows some of the available .NET Framework versions and the corresponding XML that
you can add to the deployment manifest.

<dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true" group="framework">

<dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true">
 <assemblyIdentity name="Microsoft.Windows.CommonLanguageRuntime" version="2.0.50727.0" />
 </dependentAssembly>
</dependency>

1. In the publish directory, open the application manifest by using the XML Editor in Visual Studio. The
deployment manifest has the .manifest file name extension.

2. Add group="framework" to the dependency XML for the sentinel assemblies (System.Core , WindowsBase ,
Sentinel.v3.5Client , and System.Data.Entity). For example, the XML should look like the following:

3. Update the version number of the <assemblyIdentity> element for
Microsoft.Windows.CommonLanguageRuntime to the version number for the .NET Framework that is the
lowest common denominator. For example, if the application targets .NET Framework 3.5 and .NET
Framework 4, use the 2.0.50727.0 version number and the XML should look like the following:

Update and re-sign the application and deployment manifests. For more information, see How to: Re-sign

See also

application and deployment manifests.

Publish ClickOnce applications
<compatibleFrameworks> element
<dependency> element
ClickOnce deployment manifest
Configuration file schema

https://docs.microsoft.com/dotnet/framework/configure-apps/file-schema/index

How to: Publish a WPF application with visual styles
enabled
4/18/2019 • 5 minutes to read • Edit Online

Publish the solution without visual styles enabled

Visual styles enable the appearance of common controls to change based on the theme chosen by the user. By
default, visual styles are not enabled for Windows Presentation Foundation (WPF) applications, so you must
enable them manually. However, enabling visual styles for a WPF application and then publishing the solution
causes an error. This topic describes how to resolve this error and the process for publishing a WPF application
with visual styles enabled. For more information about visual styles, see Visual styles overview. For more
information about the error message, see Troubleshoot specific errors in ClickOnce deployments.

To resolve the error and to publish the solution, you must perform the following tasks:

Publish the solution without visual styles enabled.

Create a manifest file.

Embed the manifest file into the executable file of the published solution.

Sign the application and deployment manifests.

Then, you can move the published files to the location from which you want end users to install the
application.

<dependency>
 <dependentAssembly>
 <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0"
processorArchitecture="*" publicKeyToken="6595b64144ccf1df" language="*" />
 </dependentAssembly>
</dependency>

1. Ensure that your project does not have visual styles enabled. First, check your project's manifest file for the
following XML. Then, if the XML is present, enclose the XML with a comment tag.

By default, visual styles are not enabled.

The following procedures show how to open the manifest file associated with your project.

To open the manifest file in a Visual Basic project

a. On the menu bar, choose Project, ProjectName Properties, where ProjectName is the name of your
WPF project.

The property pages for your WPF project appear.

b. On the Application tab, choose View Windows Settings.

The app.manifest file opens in the Code Editor.

To open the manifest file in a C# project

a. On the menu bar, choose Project, ProjectName Properties, where ProjectName is the name of your
WPF project.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-publish-a-wpf-application-with-visual-styles-enabled.md
https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview

Create a manifest file

Embed the manifest file into the executable file of the published
solution

NOTENOTE

The property pages for your WPF project appear.

b. On the Application tab, make a note of the name that appears in the manifest field. This is the name
of the manifest that is associated with your project.

If Embed manifest with default settings or Create application without manifest appear in the manifest
field, visual styles are not enabled. If the name of a manifest file appears in the manifest field, proceed to the
next step in this procedure.

c. In Solution Explorer, choose Show All Files.

This button shows all project items, including those that have been excluded and those that are
normally hidden. The manifest file appears as a project item.

2. Build and publish your solution. For more information about how to publish the solution, see How to:
Publish a ClickOnce application using the Publish Wizard.

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0"
 xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <dependency>
 <dependentAssembly>
 <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0"
processorArchitecture="*" publicKeyToken="6595b64144ccf1df" language="*" />
 </dependentAssembly>
 </dependency>
</asmv1:assembly>

NOTENOTE

1. Paste the following XML into a Notepad file.

This XML describes the assembly that contains controls that support visual styles.

2. In Notepad, click File, and then click Save As.

3. In the Save As dialog box, in the Save as type drop-down list, select All Files.

4. In the File name box, name the file and append .manifest to the end of the file name. For example:
themes.manifest.

5. Choose the Browse Folders button, select any folder, and then click Save.

The remaining procedures assume that the name of this file is themes.manifest and that the file is saved to the
C:\temp directory on your computer.

1. Open the Visual Studio Command Prompt.

 Sign the application and deployment manifests

NOTENOTE

cd "%UserProfile%\Documents\Visual Studio 2010\Projects\MyWPFProject\publish\Application
Files\WPFApp_1_0_0_0"

mt -manifest c:\temp\themes.manifest -outputresource:MyWPFApp.exe.deploy

For more information about how to open the Visual Studio Command Prompt, see Command prompts.

The remaining steps make the following assumptions about your solution:

The name of the solution is MyWPFProject.

The solution is located in the following directory:
%UserProfile%\Documents\Visual Studio 2010\Projects\ .

The solution is published to the following directory:
%UserProfile%\Documents\Visual Studio 2010\Projects\publish .

The most recent version of the published application files is located in the following directory:
%UserProfile%\Documents\Visual Studio 2010\Projects\publish\Application Files\WPFApp_1_0_0_0

You do not have to use the name or the directory locations described above. The name and locations described
above are used only to illustrate the steps required to publish your solution.

2. At the command prompt, change the path to the directory that contains the most recent version of the
published application files. The following example demonstrates this step.

3. At the command prompt, run the following command to embed the manifest file into the executable file of
the application.

ren MyWPFApp.exe.deploy MyWPFApp.exe

NOTENOTE

mage -u MyWPFApp.exe.manifest -cf ..\..\..\MyWPFApp_TemporaryKey.pfx

1. At the command prompt, run the following command to remove the .deploy extension from the executable
file in the current directory.

This example assumes that only one file has the .deploy file extension. Make sure that you rename all files in this
directory that have the .deploy file extension.

2. At the command prompt, run the following command to sign the application manifest.

https://docs.microsoft.com/dotnet/framework/tools/developer-command-prompt-for-vs

See also

NOTENOTE

ren MyWPFApp.exe MyWPFApp.exe.deploy

NOTENOTE

mage -u ..\..\MyWPFApp.application -appm MyWPFApp.exe.manifest -cf ..\..\..\MyWPFApp_TemporaryKey.pfx

NOTENOTE

This example assumes that you sign the manifest by using the .pfx file of the project. If you are not signing the
manifest, you can omit the -cf parameter that is used in this example. If you are signing the manifest with a
certificate that requires a password, specify the -password option (
For example: mage -u MyWPFApp.exe.manifest -cf ..\..\..\MyWPFApp_TemporaryKey.pfx - password
Password

).

3. At the command prompt, run the following command to add the .deploy extension to the name of the file
that you renamed in a previous step of this procedure.

This example assumes that only one file had a .deploy file extension. Make sure that you rename all files in this
directory that previously had the .deploy file name extension.

4. At the command prompt, run the following command to sign the deployment manifest.

This example assumes that you sign the manifest by using the .pfx file of the project. If you are not signing the
manifest, you can omit the -cf parameter that is used in this example. If you are signing the manifest with a
certificate that requires a password, specify the -password option, as in this example:
For example: mage -u MyWPFApp.exe.manifest -cf ..\..\..\MyWPFApp_TemporaryKey.pfx - password
Password

.

After you have performed these steps, you can move the published files to the location from which you
want end users to install the application. If you intend to update the solution often, you can move these
commands into a script and run the script each time that you publish a new version.

-Troubleshooting Specific Errors in ClickOnce Deployments

Visual Styles Overview
Enabling Visual Styles
Command Prompts

https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview
https://docs.microsoft.com/windows/desktop/Controls/cookbook-overview
https://docs.microsoft.com/dotnet/framework/tools/developer-command-prompt-for-vs

Walkthrough: Download assemblies on demand with
the ClickOnce deployment API using the Designer
5/28/2019 • 6 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Create the projects
To create a project that uses an on-demand assembly with Visual StudioTo create a project that uses an on-demand assembly with Visual Studio

By default, all the assemblies included in a ClickOnce application are downloaded when the application is first run.
However, there might be parts of your application that are used by a small set of the users. In this case, you want
to download an assembly only when you create one of its types. The following walkthrough demonstrates how to
mark certain assemblies in your application as "optional", and how to download them by using classes in the
System.Deployment.Application namespace when the common language runtime demands them.

Your application will have to run in full trust to use this procedure.

The dialog boxes and menu commands you see might differ from those described in Help depending on your active settings
or edition. To change your settings, click Import and Export Settings on the Tools menu. For more information, see Reset
settings.

NOTENOTE

Public Class DynamicClass
 Sub New()

 End Sub

 Public ReadOnly Property Message() As String
 Get
 Message = "Hello, world!"
 End Get
 End Property
End Class

1. Create a new Windows Forms project in Visual Studio. On the File menu, point to Add, and then click New
Project. Choose a Class Library project in the dialog box and name it ClickOnceLibrary .

In Visual Basic, we recommend that you modify the project properties to change the root namespace for this project
to Microsoft.Samples.ClickOnceOnDemand or to a namespace of your choice. For simplicity, the two projects in this
walkthrough are in the same namespace.

2. Define a class named DynamicClass with a single property named Message .

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-downloading-assemblies-on-demand-with-the-clickonce-deployment-api-using-the-designer.md
https://docs.microsoft.com/dotnet/api/system.deployment.application
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/environment-settings

using System;
using System.Collections.Generic;
using System.Text;

namespace Microsoft.Samples.ClickOnceOnDemand
{
 public class DynamicClass
 {
 public DynamicClass() {}

 public string Message
 {
 get
 {
 return ("Hello, world!");
 }
 }
 }
}

NOTENOTE

using System.Reflection;
using System.Deployment.Application;
using Microsoft.Samples.ClickOnceOnDemand;
using System.Security.Permissions;

Imports System.Reflection
Imports System.Deployment.Application
Imports System.Collections.Generic
Imports Microsoft.Samples.ClickOnceOnDemand
Imports System.Security.Permissions

3. Select the Windows Forms project in Solution Explorer. Add a reference to the
System.Deployment.Application assembly and a project reference to the ClickOnceLibrary project.

In Visual Basic, we recommend that you modify the project properties to change the root namespace for this project
to Microsoft.Samples.ClickOnceOnDemand or to a namespace of your choice. For simplicity, the two projects in this
walkthrough are located in the same namespace.

4. Right-click the form, click View Code from the menu, and add the following references to the form.

5. Add the following code to download this assembly on demand. This code shows how to map a set of
assemblies to a group name using a generic Dictionary class. Because we are only downloading a single
assembly in this walkthrough, there is only one assembly in our group. In a real application, you would
likely want to download all assemblies related to a single feature in your application at the same time. The
mapping table enables you to do this easily by associating all the DLLs that belong to a feature with a
download group name.

https://docs.microsoft.com/dotnet/api/system.deployment.application
https://docs.microsoft.com/dotnet/api/system.collections.dictionarybase.dictionary

// Maintain a dictionary mapping DLL names to download file groups. This is trivial for this sample,
// but will be important in real-world applications where a feature is spread across multiple DLLs,
// and you want to download all DLLs for that feature in one shot.
Dictionary<String, String> DllMapping = new Dictionary<String, String>();

[SecurityPermission(SecurityAction.Demand, ControlAppDomain=true)]
public Form1()
{
 InitializeComponent();

 DllMapping["ClickOnceLibrary"] = "ClickOnceLibrary";
 AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve);
}

/*
 * Use ClickOnce APIs to download the assembly on demand.
 */
private Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
{
 Assembly newAssembly = null;

 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment deploy = ApplicationDeployment.CurrentDeployment;

 // Get the DLL name from the Name argument.
 string[] nameParts = args.Name.Split(',');
 string dllName = nameParts[0];
 string downloadGroupName = DllMapping[dllName];

 try
 {
 deploy.DownloadFileGroup(downloadGroupName);
 }
 catch (DeploymentException de)
 {
 MessageBox.Show("Downloading file group failed. Group name: " + downloadGroupName + "; DLL
name: " + args.Name);
 throw (de);
 }

 // Load the assembly.
 // Assembly.Load() doesn't work here, as the previous failure to load the assembly
 // is cached by the CLR. LoadFrom() is not recommended. Use LoadFile() instead.
 try
 {
 newAssembly = Assembly.LoadFile(Application.StartupPath + @"\" + dllName + ".dll");
 }
 catch (Exception e)
 {
 throw (e);
 }
 }
 else
 {
 //Major error - not running under ClickOnce, but missing assembly. Don't know how to recover.
 throw (new Exception("Cannot load assemblies dynamically - application is not deployed using
ClickOnce."));
 }

 return (newAssembly);
}

' Maintain a dictionary mapping DLL names to download file groups. This is trivial for this sample,
' but will be important in real-world applications where a feature is spread across multiple DLLs,
' and you want to download all DLLs for that feature in one shot.
Dim DllMappingTable As New Dictionary(Of String, String)()

<SecurityPermission(SecurityAction.Demand, ControlAppDomain:=True)> _
Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.
 DllMappingTable("ClickOnceLibrary") = "ClickOnceLibrary"
End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
 AddHandler AppDomain.CurrentDomain.AssemblyResolve, AddressOf Me.CurrentDomain_AssemblyResolve
End Sub

Private Function CurrentDomain_AssemblyResolve(ByVal sender As Object, ByVal args As ResolveEventArgs)
As System.Reflection.Assembly
 Dim NewAssembly As Assembly = Nothing

 If (ApplicationDeployment.IsNetworkDeployed) Then
 Dim Deploy As ApplicationDeployment = ApplicationDeployment.CurrentDeployment

 ' Get the DLL name from the argument.
 Dim NameParts As String() = args.Name.Split(",")
 Dim DllName As String = NameParts(0)
 Dim DownloadGroupName As String = DllMappingTable(DllName)

 Try
 Deploy.DownloadFileGroup(DownloadGroupName)
 Catch ex As Exception
 MessageBox.Show("Could not download file group from Web server. Contact administrator.
Group name: " & DownloadGroupName & "; DLL name: " & args.Name)
 Throw (ex)
 End Try

 ' Load the assembly.
 ' Assembly.Load() doesn't work here, as the previous failure to load the assembly
 ' is cached by the CLR. LoadFrom() is not recommended. Use LoadFile() instead.
 Try
 NewAssembly = Assembly.LoadFile(Application.StartupPath & "\" & DllName & ".dll")
 Catch ex As Exception
 Throw (ex)
 End Try
 Else
 ' Major error - not running under ClickOnce, but missing assembly. Don't know how to recover.
 Throw New Exception("Cannot load assemblies dynamically - application is not deployed using
ClickOnce.")
 End If

 Return NewAssembly
End Function

private void getAssemblyButton_Click(object sender, EventArgs e)
{
 DynamicClass dc = new DynamicClass();
 MessageBox.Show("Message: " + dc.Message);
}

6. On the View menu, click Toolbox. Drag a Button from the Toolbox onto the form. Double-click the button
and add the following code to the Click event handler.

https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.click

Mark assemblies as optional
To mark assemblies as optional in your ClickOnce application by using Visual StudioTo mark assemblies as optional in your ClickOnce application by using Visual Studio

To mark assemblies as optional in your ClickOnce application by using Manifest Generation and Editing Tool —To mark assemblies as optional in your ClickOnce application by using Manifest Generation and Editing Tool —
Graphical Client (MageUI.exe)Graphical Client (MageUI.exe)

Test the new assembly

See also

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim DC As New DynamicClass()
 MessageBox.Show("Message is " & DC.Message)
End Sub

1. Right-click the Windows Forms project in Solution Explorer and click Properties. Select the Publish tab.

2. Click the Application Files button.

3. Find the listing for ClickOnceLibrary.dll. Set the Publish Status drop-down box to Include.

4. Expand the Group drop-down box and select New. Enter the name ClickOnceLibrary as the new group
name.

5. Continue publishing your application as described in How to: Publish a ClickOnce application using the
Publish Wizard.

1. Create your ClickOnce manifests as described in Walkthrough: Manually deploy a ClickOnce application.

2. Before closing MageUI.exe, select the tab that contains your deployment's application manifest, and within
that tab select the Files tab.

3. Find ClickOnceLibrary.dll in the list of application files and set its File Type column to None. For the
Group column, type ClickOnceLibrary.dll .

To test your on-demand assembly:

1. Start your application deployed with ClickOnce.

2. When your main form appears, press the Button. You should see a string in a message box window that
reads, "Hello, World!"

ApplicationDeployment

https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment

Walkthrough: Download assemblies on demand with
the ClickOnce deployment API
5/28/2019 • 5 minutes to read • Edit Online

NOTENOTE

Prerequisites

Create the projects
To create a project that uses an on-demand assemblyTo create a project that uses an on-demand assembly

By default, all of the assemblies included in a ClickOnce application are downloaded when the application is first
run. However, you may have parts of your application that are used by a small set of your users. In this case, you
want to download an assembly only when you create one of its types. The following walkthrough demonstrates
how to mark certain assemblies in your application as "optional", and how to download them by using classes in
the System.Deployment.Application namespace when the common language runtime (CLR) demands them.

Your application will have to run in full trust to use this procedure.

You will need one of the following components to complete this walkthrough:

The Windows SDK. The Windows SDK can be downloaded from the Microsoft Download Center.

Visual Studio.

sn -k TestKey.snk

Public Class DynamicClass
 Sub New()

 End Sub

 Public ReadOnly Property Message() As String
 Get
 Message = "Hello, world!"
 End Get
 End Property
End Class

1. Create a directory named ClickOnceOnDemand.

2. Open the Windows SDK Command Prompt or the Visual Studio Command Prompt.

3. Change to the ClickOnceOnDemand directory.

4. Generate a public/private key pair using the following command:

5. Using Notepad or another text editor, define a class named DynamicClass with a single property named
Message .

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-downloading-assemblies-on-demand-with-the-clickonce-deployment-api.md
https://docs.microsoft.com/dotnet/api/system.deployment.application

using System;
using System.Collections.Generic;
using System.Text;

namespace Microsoft.Samples.ClickOnceOnDemand
{
 public class DynamicClass
 {
 public DynamicClass() {}

 public string Message
 {
 get
 {
 return ("Hello, world!");
 }
 }
 }
}

csc /target:library /keyfile:TestKey.snk ClickOnceLibrary.cs

vbc /target:library /keyfile:TestKey.snk ClickOnceLibrary.vb

sn -T ClickOnceLibrary.dll

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Reflection;
using System.Deployment.Application;
using Microsoft.Samples.ClickOnceOnDemand;

namespace ClickOnceOnDemand
{
 [System.Security.Permissions.SecurityPermission(System.Security.Permissions.SecurityAction.Demand,
Unrestricted=true)]
 public class Form1 : Form
 {
 // Maintain a dictionary mapping DLL names to download file groups. This is trivial for this
sample,
 // but will be important in real-world applications where a feature is spread across multiple
DLLs,
 // and you want to download all DLLs for that feature in one shot.
 Dictionary<String, String> DllMapping = new Dictionary<String, String>();

6. Save the text as a file named ClickOnceLibrary.cs or ClickOnceLibrary.vb, depending on the language you
use, to the ClickOnceOnDemand directory.

7. Compile the file into an assembly.

8. To get the public key token for the assembly, use the following command:

9. Create a new file using your text editor and enter the following code. This code creates a Windows Forms
application that downloads the ClickOnceLibrary assembly when it is required.

 public static void Main()
 {
 Form1 NewForm = new Form1();
 Application.Run(NewForm);
 }

 public Form1()
 {
 // Configure form.
 this.Size = new Size(500, 200);
 Button getAssemblyButton = new Button();
 getAssemblyButton.Size = new Size(130, getAssemblyButton.Size.Height);
 getAssemblyButton.Text = "Test Assembly";
 getAssemblyButton.Location = new Point(50, 50);
 this.Controls.Add(getAssemblyButton);
 getAssemblyButton.Click += new EventHandler(getAssemblyButton_Click);

 DllMapping["ClickOnceLibrary"] = "ClickOnceLibrary";
 AppDomain.CurrentDomain.AssemblyResolve += new
ResolveEventHandler(CurrentDomain_AssemblyResolve);
 }

 /*
 * Use ClickOnce APIs to download the assembly on demand.
 */
 private Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
 {
 Assembly newAssembly = null;

 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment deploy = ApplicationDeployment.CurrentDeployment;

 // Get the DLL name from the Name argument.
 string[] nameParts = args.Name.Split(',');
 string dllName = nameParts[0];
 string downloadGroupName = DllMapping[dllName];

 try
 {
 deploy.DownloadFileGroup(downloadGroupName);
 }
 catch (DeploymentException de)
 {
 MessageBox.Show("Downloading file group failed. Group name: " + downloadGroupName +
"; DLL name: " + args.Name);
 throw (de);
 }

 // Load the assembly.
 // Assembly.Load() doesn't work here, as the previous failure to load the assembly
 // is cached by the CLR. LoadFrom() is not recommended. Use LoadFile() instead.
 try
 {
 newAssembly = Assembly.LoadFile(Application.StartupPath + @"\" + dllName + ".dll," +
 "Version=1.0.0.0, Culture=en, PublicKeyToken=03689116d3a4ae33");
 }
 catch (Exception e)
 {
 throw (e);
 }
 }
 else
 {
 //Major error - not running under ClickOnce, but missing assembly. Don't know how to
recover.
 throw (new Exception("Cannot load assemblies dynamically - application is not deployed
using ClickOnce."));
 }

 }

 return (newAssembly);
 }

 private void getAssemblyButton_Click(object sender, EventArgs e)
 {
 DynamicClass dc = new DynamicClass();
 MessageBox.Show("Message: " + dc.Message);
 }
 }
}

Imports System
Imports System.Windows.Forms
Imports System.Deployment.Application
Imports System.Drawing
Imports System.Reflection
Imports System.Collections.Generic
Imports Microsoft.Samples.ClickOnceOnDemand

Namespace Microsoft.Samples.ClickOnceOnDemand
 <System.Security.Permissions.SecurityPermission(System.Security.Permissions.SecurityAction.Demand,
Unrestricted:=true)> _
 Class Form1
 Inherits Form

 ' Maintain a dictionary mapping DLL names to download file groups. This is trivial for this
sample,
 ' but will be important in real-world applications where a feature is spread across multiple
DLLs,
 ' and you want to download all DLLs for that feature in one shot.
 Dim DllMapping as Dictionary(Of String, String) = new Dictionary(of String, String)()

 Public Sub New()
 ' Add button to form.
 Dim GetAssemblyButton As New Button()
 GetAssemblyButton.Location = New Point(100, 100)
 GetAssemblyButton.Text = "Get assembly on demand"
 AddHandler GetAssemblyButton.Click, AddressOf GetAssemblyButton_Click

 Me.Controls.Add(GetAssemblyButton)

 DllMapping("ClickOnceLibrary") = "ClickOnceLibrary"
 AddHandler AppDomain.CurrentDomain.AssemblyResolve, AddressOf CurrentDomain_AssemblyResolve
 End Sub

 <STAThread()> _
 Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Form1())
 End Sub

 Private Function CurrentDomain_AssemblyResolve(ByVal sender As Object, ByVal args As
ResolveEventArgs) As Assembly
 If ApplicationDeployment.IsNetworkDeployed Then
 Dim deploy As ApplicationDeployment = ApplicationDeployment.CurrentDeployment

 ' Get the DLL name from the Name argument.
 Dim nameParts() as String = args.Name.Split(",")
 Dim dllName as String = nameParts(0)
 Dim downloadGroupName as String = DllMapping(dllName)

 Try
 deploy.DownloadFileGroup(downloadGroupName)

Mark assemblies as optional
To mark assemblies as optional in your ClickOnce application by using MageUI.exeTo mark assemblies as optional in your ClickOnce application by using MageUI.exe

Testing the new assembly
To test your on-demand assemblyTo test your on-demand assembly

 Catch de As DeploymentException

 End Try

 ' Load the assembly.
 Dim newAssembly As Assembly = Nothing

 Try
 newAssembly = Assembly.LoadFile(Application.StartupPath & "\\" & dllName & ".dll," &
_
 "Version=1.0.0.0, Culture=en, PublicKeyToken=03689116d3a4ae33")
 Catch ex As Exception
 MessageBox.Show("Could not download assembly on demand.")
 End Try

 CurrentDomain_AssemblyResolve = newAssembly
 Else
 CurrentDomain_AssemblyResolve = Nothing
 End If
 End Function

 Private Sub GetAssemblyButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 Dim ourClass As New DynamicClass()
 MessageBox.Show("DynamicClass string is: " + ourClass.Message)
 End Sub
 End Class
End Namespace

csc /target:exe /reference:ClickOnceLibrary.dll Form1.cs

vbc /target:exe /reference:ClickOnceLibrary.dll Form1.vb

10. In the code, locate the call to LoadFile.

11. Set PublicKeyToken to the value that you retrieved earlier.

12. Save the file as either Form1.cs or Form1.vb.

13. Compile it into an executable using the following command.

1. Using MageUI.exe, create an application manifest as described in Walkthrough: Manually deploy a
ClickOnce application. Use the following settings for the application manifest:

Name the application manifest ClickOnceOnDemand .

On the Files page, in the ClickOnceLibrary.dll row, set the File Type column to None.

On the Files page, in the ClickOnceLibrary.dll row, type ClickOnceLibrary.dll in the Group column.

2. Using MageUI.exe, create a deployment manifest as described in Walkthrough: Manually deploy a
ClickOnce application. Use the following settings for the deployment manifest:

Name the deployment manifest ClickOnceOnDemand .

https://docs.microsoft.com/dotnet/api/system.reflection.assembly.loadfile

See also

http://www.adatum.com/ClickOnceOnDemand/ClickOnceOnDemand.application

1. Upload your ClickOnce deployment to a Web server.

2. Start your application deployed with ClickOnce from a Web browser by entering the URL to the
deployment manifest. If you call your ClickOnce application ClickOnceOnDemand , and you upload it to the
root directory of adatum.com, your URL would look like this:

3. When your main form appears, press the Button. You should see a string in a message box window that
reads "Hello, World!".

ApplicationDeployment

https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment

Walkthrough: Download satellite assemblies on
demand with the ClickOnce deployment API using
the Designer
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

To mark satellite assemblies as optionalTo mark satellite assemblies as optional

To download satellite assemblies on demand in C#To download satellite assemblies on demand in C#

Windows Forms applications can be configured for multiple cultures through the use of satellite assemblies. A
satellite assembly is an assembly that contains application resources for a culture other than the application's
default culture.

As discussed in Localizing ClickOnce Applications, you can include multiple satellite assemblies for multiple
cultures within the same ClickOnce deployment. By default, ClickOnce will download all of the satellite assemblies
in your deployment to the client machine, although a single client will probably require only one satellite assembly.

This walkthrough demonstrates how to mark your satellite assemblies as optional, and download only the
assembly a client machine needs for its current culture settings.

For testing purposes, the following code examples programmatically set the culture to ja-JP . See the "Next Steps" section
later in this topic for information on how to adjust this code for a production environment.

1. Build your project. This will generate satellite assemblies for all of the cultures you are localizing to.

2. Right-click on your project name in Solution Explorer, and click Properties.

3. Click the Publish tab, and then click Application Files.

4. Select the Show all files check box to display satellite assemblies. By default, all satellite assemblies will be
included in your deployment and will be visible in this dialog box.

A satellite assembly will have a name in the form <isoCode>\ApplicationName.resources.dll, where
<isoCode> is a language identifier in RFC 1766 format.

5. Click New in the Download Group list for each language identifier. When prompted for a download group
name, enter the language identifier. For example, for a Japanese satellite assembly, you would specify the
download group name ja-JP .

6. Close the Application Files dialog box.

1. Open the Program.cs file. If you do not see this file in Solution Explorer, select your project, and on the
Project menu, click Show All Files.

2. Use the following code to download the appropriate satellite assembly and start your application.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-downloading-satellite-assemblies-on-demand-with-the-clickonce-deployment-api-using-the-designer.md

To download satellite assemblies on demand in Visual BasicTo download satellite assemblies on demand in Visual Basic

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Threading;
using System.Globalization;
using System.Deployment.Application;
using System.Reflection;

namespace ClickOnce.SatelliteAssemblies
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("ja-JP");

 // Call this before initializing the main form, which will cause the resource manager
 // to look for the appropriate satellite assembly.
 GetSatelliteAssemblies(Thread.CurrentThread.CurrentCulture.ToString());

 Application.Run(new Form1());
 }

 static void GetSatelliteAssemblies(string groupName)
 {
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment deploy = ApplicationDeployment.CurrentDeployment;

 if (deploy.IsFirstRun)
 {
 try
 {
 deploy.DownloadFileGroup(groupName);
 }
 catch (DeploymentException de)
 {
 // Log error. Do not report this error to the user, because a satellite
 // assembly may not exist if the user's culture and the application's
 // default culture match.
 }
 }
 }
 }

 }
}

Imports System.Deployment.Application
Imports System.Globalization
Imports System.Threading

1. In the Properties window for the application, click the Application tab.

2. At the bottom of the tab page, click View Application Events.

3. Add the following imports to the beginning of the ApplicationEvents.VB file.

4. Add the following code to the MyApplication class.

Next steps

See also

Private Sub MyApplication_Startup(ByVal sender As Object, ByVal e As
Microsoft.VisualBasic.ApplicationServices.StartupEventArgs) Handles Me.Startup
 Thread.CurrentThread.CurrentUICulture = New CultureInfo("ja-JP")
 GetSatelliteAssemblies(Thread.CurrentThread.CurrentUICulture.ToString())
End Sub

Private Shared Sub GetSatelliteAssemblies(ByVal groupName As String)
 If (ApplicationDeployment.IsNetworkDeployed) Then

 Dim deploy As ApplicationDeployment = ApplicationDeployment.CurrentDeployment

 If (deploy.IsFirstRun) Then
 Try
 deploy.DownloadFileGroup(groupName)
 Catch de As DeploymentException
 ' Log error. Do not report this error to the user, because a satellite
 ' assembly may not exist if the user's culture and the application's
 ' default culture match.
 End Try
 End If
 End If
End Sub

In a production environment, you will likely need to remove the line in the code examples that sets
CurrentUICulture to a specific value, because client machines will have the correct value set by default. When your
application runs on a Japanese client machine, for example, CurrentUICulture will be ja-JP by default. Setting it
programmatically is a good way to test your satellite assemblies before you deploy your application.

Walkthrough: Download satellite assemblies on demand with the ClickOnce deployment API
Localize ClickOnce applications

https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture

Walkthrough: Manually deploy a ClickOnce
application
4/23/2019 • 9 minutes to read • Edit Online

Prerequisites

If you cannot use Visual Studio to deploy your ClickOnce application, or you need to use advanced
deployment features, such as Trusted Application Deployment, you should use the Mage.exe command-line
tool to create your ClickOnce manifests. This walkthrough describes how to create a ClickOnce deployment
by using either the command-line version (Mage.exe) or the graphical version (MageUI.exe) of the Manifest
Generation and Editing Tool.

This walkthrough has some prerequisites and options that you need to choose before building a deployment.

NOTENOTE

Install Mage.exe and MageUI.exe.

Mage.exe and MageUI.exe are part of the Windows Software Development Kit (SDK). You must either
have the Windows SDK installed or the version of the Windows SDK included with Visual Studio. For
more information, see Windows SDK on MSDN.

Provide an application to deploy.

This walkthrough assumes that you have a Windows application that you are ready to deploy. This
application will be referred to as AppToDeploy.

Determine how the deployment will be distributed.

The distribution options include: Web, file share, or CD. For more information, see ClickOnce Security
and Deployment.

Determine whether the application requires an elevated level of trust.

If your application requires Full Trust—for example, full access to the user's system—you can use the
-TrustLevel option of Mage.exe to set this. If you want to define a custom permission set for your

application, you can copy the Internet or intranet permission section from another manifest, modify it
to suit your needs, and add it to the application manifest using either a text editor or MageUI.exe. For
more information, see Trusted Application Deployment overview.

Obtain an Authenticode certificate.

You should sign your deployment with an Authenticode certificate. You can generate a test certificate
by using Visual Studio, MageUI.exe, or MakeCert.exe and Pvk2Pfx.exe tools, or you can obtain a
certificate from a Certificate Authority (CA). If you choose to use Trusted Application Deployment, you
must also perform a one-time installation of the certificate onto all client computers. For more
information, see Trusted Application Deployment Overview.

You can also sign your deployment with a CNG certificate that you can obtain from a Certificate Authority.

Make sure that the application does not have a manifest with UAC information.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-manually-deploying-a-clickonce-application.md
http://go.microsoft.com/fwlink/?LinkId=158044

To deploy an application with the Mage.exe command-line toolTo deploy an application with the Mage.exe command-line tool

You need to determine whether your application contains a manifest with User Account Control (UAC)
information, such as an <dependentAssembly> element. To examine an application manifest, you can use
the Windows Sysinternals Sigcheck utility.

If your application contains a manifest with UAC details, you must re-build it without the UAC
information. For a C# project in Visual Studio, open the project properties and select the Application
tab. In the Manifest drop-down list, select Create application without a manifest. For a Visual
Basic project in Visual Studio, open the project properties, select the Application tab, and click View
UAC Settings. In the opened manifest file, remove all elements within the single <asmv1:assembly>

element.

Determine whether the application requires prerequisites on the client computer.

ClickOnce applications deployed from Visual Studio can include a prerequisite installation
bootstrapper (setup.exe) with your deployment. This walkthrough creates the two manifests required
for a ClickOnce deployment. You can create a prerequisite bootstrapper by using the
GenerateBootstrapper task.

NOTENOTE

mage -New Application -Processor x86 -ToFile AppToDeploy.exe.manifest -name "My App" -Version
1.0.0.0 -FromDirectory .

NOTENOTE

mage -Sign AppToDeploy.exe.manifest -CertFile mycert.pfx -Password passwd

1. Create a directory where you will store your ClickOnce deployment files.

2. In the deployment directory you just created, create a version subdirectory. If this is the first time that
you are deploying the application, name the version subdirectory 1.0.0.0.

The version of your deployment can be distinct from the version of your application.

3. Copy all of your application files to the version subdirectory, including executable files, assemblies,
resources, and data files. If necessary, you can create additional subdirectories that contain additional
files.

4. Open the Windows SDK or Visual Studio command prompt and change to the version subdirectory.

5. Create the application manifest with a call to Mage.exe. The following statement creates an application
manifest for code compiled to run on the Intel x86 processor.

Be sure to include the dot (.) after the -FromDirectory option, which indicates the current directory. If you do
not include the dot, you must specify the path to your application files.

6. Sign the application manifest with your Authenticode certificate. Replace mycert.pfx with the path to
your certificate file. Replace passwd with the password for your certificate file.

Starting with the .NET Framework 4.6.2 SDK, which is distributed with Visual Studio and with the
Windows SDK, mage.exe signs manifests with CNG as well as with Authenticode certificates. Use the
same command line parameters as with Authenticode certificates.

http://go.microsoft.com/fwlink/?LinkId=158035
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/generatebootstrapper-task

To deploy an application with the MageUI.exe graphical toolTo deploy an application with the MageUI.exe graphical tool

mage -New Deployment -Processor x86 -Install true -Publisher "My Co." -ProviderUrl
"\\myServer\myShare\AppToDeploy.application" -AppManifest 1.0.0.0\AppToDeploy.exe.manifest -ToFile
AppToDeploy.application

mage -Sign AppToDeploy.application -CertFile mycert.pfx -Password passwd

7. Change to the root of the deployment directory.

8. Generate the deployment manifest with a call to Mage.exe. By default, Mage.exe will mark your
ClickOnce deployment as an installed application, so that it can be run both online and offline. To make
the application available only when the user is online, use the -Install option with a value of false .
If you use the default, and users will install your application from a Web site or file share, make sure
that the value of the -ProviderUrl option points to the location of the application manifest on the Web
server or share.

9. Sign the deployment manifest with your Authenticode or CNG certificate.

10. Copy all of the files in the deployment directory to the deployment destination or media. This may be
either a folder on a Web site or FTP site, a file share, or a CD-ROM.

11. Provide your users with the URL, UNC, or physical media required to install your application. If you
provide a URL or a UNC, you must give your users the full path to the deployment manifest. For
example, if AppToDeploy is deployed to http://webserver01/ in the AppToDeploy directory, the full
URL path would be http://webserver01/AppToDeploy/AppToDeploy.application.

NOTENOTE

MageUI.exe

1. Create a directory where you will store your ClickOnce deployment files.

2. In the deployment directory you just created, create a version subdirectory. If this is the first time that
you are deploying the application, name the version subdirectory 1.0.0.0.

The version of your deployment is probably distinct from the version of your application.

3. Copy all of your application files to the version subdirectory, including executable files, assemblies,
resources, and data files. If necessary, you can create additional subdirectories that contain additional
files.

4. Start the MageUI.exe graphical tool.

5. Create a new application manifest by selecting File, New, Application Manifest from the menu.

6. On the default Name tab, type the name and version number of this deployment. Also specify the
Processor that your application is built for, such as x86.

7. Select the Files tab and click the ellipsis (...) button next to the Application directory text box. A
Browse For Folder dialog box appears.

8. Select the version subdirectory containing your application files, and then click OK.

9. If you will deploy from Internet Information Services (IIS), select the When populating add the
.deploy extension to any file that does not have it check box.

10. Click the Populate button to add all your application files to the file list. If your application contains
more than one executable file, mark the main executable file for this deployment as the startup
application by selecting Entry Point from the File Type drop-down list. (If your application contains
only one executable file, MageUI.exe will mark it for you.)

11. Select the Permissions Required tab and select the level of trust that you need your application to
assert. The default is FullTrust, which will be suitable for most applications.

12. Select File, Save As from the menu. A Signing Options dialog box appears prompting you to sign the
application manifest.

13. If you have a certificate stored as a file on your file system, use the Sign with certificate file option,
and select the certificate from the file system by using the ellipsis (...) button. Then type your certificate
password.

-or-

If your certificate is kept in a certificate store accessible from your computer, select the Sign with
stored certificate option, and select the certificate from the provided list.

14. Click OK to sign your application manifest. The Save As dialog box appears.

15. In the Save As dialog box, specify the version directory, and then click Save.

16. Select File, New, Deployment Manifest from the menu to create your deployment manifest.

17. On the Name tab, specify a name and version number for this deployment (1.0.0.0 in this example).
Also specify the Processor that your application is built for, such as x86.

18. Select the Description tab, and specify values for Publisher and Product. (Product is the name
given to your application on the Windows Start menu when your application installs on a client
computer for offline use.)

19. Select the Deployment Options tab, and in the Start Location text box, specify the location of the
application manifest on the Web server or share. For example,
\\myServer\myShare\AppToDeploy.application.

20. If you added the .deploy extension in a previous step, also select Use .deploy file name extension
here.

21. Select the Update Options tab, and specify how often you would like this application to update. If
your application uses UpdateCheckInfo to check for updates itself, clear the This application should
check for updates check box.

22. Select the Application Reference tab and then click the Select Manifest button. An open dialog box
appears.

23. Select the application manifest that you created earlier and then click Open.

24. Select File, Save As from the menu. A Signing Options dialog box appears prompting you to sign
the deployment manifest.

25. If you have a certificate stored as a file on your file system, use the Sign with certificate file option,
and select the certificate from the file system by using the ellipsis (...) button. Then type your certificate
password.

-or-

If your certificate is kept in a certificate store accessible from your computer, select the Sign with
stored certificate option, and select the certificate from the provided list.

https://docs.microsoft.com/dotnet/api/system.deployment.application.updatecheckinfo

Next steps

See also

26. Click OK to sign your deployment manifest. The Save As dialog box appears.

27. In the Save As dialog box, move up one directory to the root of your deployment and then click Save.

28. Copy all of the files in the deployment directory to the deployment destination or media. This may be
either a folder on a Web site or FTP site, a file share, or a CD-ROM.

29. Provide your users with the URL, UNC, or physical media required to install your application. If you
provide a URL or a UNC, you must give your users the full path the deployment manifest. For
example, if AppToDeploy is deployed to http://webserver01/ in the AppToDeploy directory, the full
URL path would be http://webserver01/AppToDeploy/AppToDeploy.application.

When you need to deploy a new version of the application, create a new directory named after the new
version—for example, 1.0.0.1—and copy the new application files into the new directory. Next, you need to
follow the previous steps to create and sign a new application manifest, and update and sign the deployment
manifest. Be careful to specify the same higher version in both the Mage.exe -New and -Update calls, as
ClickOnce only updates higher versions, with the left-most integer most significant. If you used MageUI.exe,
you can update the deployment manifest by opening it, selecting the Application Reference tab, clicking the
Select Manifest button, and then selecting the updated application manifest.

Mage.exe (Manifest Generation and Editing Tool)
MageUI.exe (Manifest Generation and Editing Tool, Graphical Client)
Publish ClickOnce applications
ClickOnce deployment manifest
ClickOnce application manifest

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client

Walkthrough: Manually deploy a ClickOnce
application that does not require re-signing and that
preserves branding information
5/28/2019 • 6 minutes to read • Edit Online

NOTENOTE

Prerequisites

To deploy a ClickOnce application with multiple deployment and branding support using Mage.exeTo deploy a ClickOnce application with multiple deployment and branding support using Mage.exe

When you create a ClickOnce application and then give it to a customer to publish and deploy, the customer has
traditionally had to update the deployment manifest and re-sign it. While that is still the preferred method in most
cases, the .NET Framework 3.5 enables you to create ClickOnce deployments that can be deployed by customers
without having to regenerate a new deployment manifest. For more information, see Deploy ClickOnce
applications for testing and production servers without resigning.

When you create a ClickOnce application and then give it to a customer to publish and deploy, the application can
use the customer's branding or can preserve your branding. For example, if the application is a single proprietary
application, you might want to preserve your branding. If the application is highly customized for each customer,
you might want to use the customer's branding. The .NET Framework 3.5 enables you to preserve your branding,
publisher information and security signature when you give an application to an organization to deploy. For more
information, see Create ClickOnce applications for others to deploy.

In this walkthrough you create deployments manually by using either the command-line tool Mage.exe or the graphical tool
MageUI.exe. For more information about manual deployments, see Walkthrough: Manually deploy a ClickOnce application.

To perform the steps in this walkthrough you need the following:

A Windows Forms application that you are ready to deploy. This application will be referred to as
WindowsFormsApp1.

Visual Studio or the Windows SDK.

NOTENOTE

1. Open a Visual Studio command prompt or a Windows SDK command prompt, and change to the directory
in which you will store your ClickOnce files.

2. Create a directory named after the current version of your deployment. If this is the first time that you are
deploying the application, you will likely choose 1.0.0.0.

The version of your deployment may be distinct from the version of your application files.

3. Create a subdirectory named bin and copy all of your application files here, including executable files,
assemblies, resources, and data files.

4. Generate the application manifest with a call to Mage.exe.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-manually-deploying-a-clickonce-app-no-re-signing-required.md

To deploy a ClickOnce application with multiple deployment and branding support using MageUI.exeTo deploy a ClickOnce application with multiple deployment and branding support using MageUI.exe

mage -New Application -ToFile 1.0.0.0\WindowsFormsApp1.exe.manifest -Name "Windows Forms App 1" -
Version 1.0.0.0 -FromDirectory 1.0.0.0\bin -UseManifestForTrust true -Publisher "A. Datum Corporation"

mage -Sign WindowsFormsApp1.exe.manifest -CertFile mycert.pfx

mage -New Deployment -ToFile WindowsFormsApp1.application -Name "Windows Forms App 1" -Version 1.0.0.0
-AppManifest 1.0.0.0\WindowsFormsApp1.manifest

makecert -r -pe -n "CN=Adventure Works" -sv MyCert.pvk MyCert.cer
pvk2pfx.exe -pvk MyCert.pvk -spc MyCert.cer -pfx MyCert.pfx

mage -Sign WindowsFormsApp1.application -CertFile MyCert.pfx

5. Sign the application manifest with your digital certificate.

6. Generate the deployment manifest with a call to Mage.exe. By default, Mage.exe will mark your ClickOnce
deployment as an installed application, so that it can be run both online and offline. To make the application
available only when the user is online, use the -i argument with a value of f . Since this application will
take advantage of the multiple deployment feature, exclude the -providerUrl argument to Mage.exe. (In
versions of the .NET Framework prior to version 3.5, excluding -providerUrl for an offline application will
result in an error.)

7. Do not sign the deployment manifest.

8. Provide all of the files to the customer, who will deploy the application on his network.

9. At this point, the customer must sign the deployment manifest with his own self-generated certificate. For
example, if the customer works for a company named Adventure Works, he can generate a self-signed
certificate using the MakeCert.exe tool. Next, use the Pvk2pfx.exe tool to combine the files created by
MakeCert.exe into a PFX file that can be passed to Mage.exe.

10. The customer next uses this certificate to sign the deployment manifest.

11. The customer deploys the application to their users.

NOTENOTE

1. Open a Visual Studio command prompt or a Windows SDK command prompt, and navigate to the
directory in which you will store your ClickOnce files.

2. Create a subdirectory named bin and copy all of your application files here, including executable files,
assemblies, resources, and data files.

3. Create a subdirectory named after the current version of your deployment. If this is the first time that you
are deploying the application, you will likely choose 1.0.0.0.

The version of your deployment may be distinct from the version of your application files.

4. Move the \bin directory into the directory you created in step 2.

5. Start the graphical tool MageUI.exe.

MageUI.exe

makecert -r -pe -n "CN=Adventure Works" -sv MyCert.pvk MyCert.cer
pvk2pfx.exe -pvk MyCert.pvk -spc MyCert.cer -pfx MyCert.pfx

6. Create a new application manifest by selecting File, New, Application Manifest from the menu.

7. On the default Name tab, enter the name and version number of this deployment. Also, supply a value for
Publisher, which will be used as the folder name for the application's shortcut link in the Start menu when
it is deployed.

8. Select the Application Options tab and click Use Application Manifest for Trust Information. This
will enable third-party branding for this ClickOnce application.

9. Select the Files tab and click the Browse button next to the Application Directory text box.

10. Select the directory that contains your application files that you created in step 2, and click OK on the folder
selection dialog box.

11. Click the Populate button to add all your application files to the file list. If your application contains more
than one executable file, mark the main executable file for this deployment as the startup application by
selecting Entry Point from the File Type drop-down list. (If your application only contains one executable
file, MageUI.exe will mark it for you.)

12. Select the Permissions Required tab and select the level of trust you need your application to assert. The
default is Full Trust, which will be appropriate for most applications.

13. Select File, Save from the menu, and save the application manifest. You will be prompted to sign the
application manifest when you save it.

14. If you have a certificate stored as a file on your file system, use the Sign as certificate file option, and
select the certificate from the file system using the ellipsis (...) button.

-or-

If your certificate is kept in a certificate store that can be accessed from your computer, select the Sign
with stored certificate option, and select the certificate from the list provided.

15. Select File, New, Deployment Manifest from the menu to create your deployment manifest, and then on
the Name tab, supply a name and version number (1.0.0.0 in this example).

16. Switch to the Update tab, and specify how often you want this application to update. If your application
uses the ClickOnce Deployment API to check for updates itself, clear the check box labeled This
application should check for updates.

17. Switch to the Application Reference tab. You can pre-populate all of the values on this tab by clicking the
Select Manifest button and selecting the application manifest you created in previous steps.

18. Choose Save and save the deployment manifest to disk. You will be prompted to sign the application
manifest when you save it. Click Cancel to save the manifest without signing it.

19. Provide all of the application files to the customer.

20. At this point, the customer must sign the deployment manifest with his own self-generated certificate. For
example, if the customer works for a company named Adventure Works, he can generate a self-signed
certificate using the MakeCert.exe tool. Next, use the Pvk2pfx.exe tool to combine the files created by
MakeCert.exe into a PFX file that can be passed to MageUI.exe.

See also

21. With the certificate generated, the customer now signs the deployment manifest by opening the
deployment manifest in MageUI.exe, and then saving it. When the signing dialog box appears, the
customer selects Sign as certificate file option, and chooses the PFX file he has saved on disk.

22. The customer deploys the application to their users.

Mage.exe (Manifest Generation and Editing Tool)
MageUI.exe (Manifest Generation and Editing Tool, Graphical Client)
MakeCert

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client
https://docs.microsoft.com/windows/desktop/SecCrypto/makecert

Walkthrough: Download satellite assemblies on
demand with the ClickOnce deployment API
5/28/2019 • 3 minutes to read • Edit Online

NOTENOTE

Prerequisites

To download satellite assemblies on demandTo download satellite assemblies on demand

Windows Forms applications can be configured for multiple cultures through the use of satellite assemblies. A
satellite assembly is an assembly that contains application resources for a culture other than the application's
default culture.

As discussed in Localize ClickOnce applications, you can include multiple satellite assemblies for multiple cultures
within the same ClickOnce deployment. By default, ClickOnce will download all of the satellite assemblies in your
deployment to the client machine, although a single client will probably require only one satellite assembly.

This walkthrough demonstrates how to mark your satellite assemblies as optional, and download only the
assembly a client machine needs for its current culture settings. The following procedure uses the tools available
in the Windows Software Development Kit (SDK). You can also perform this task in Visual Studio. Also see
Walkthrough: Download satellite assemblies on demand with the ClickOnce deployment API using the Designer
or Walkthrough: Download satellite assemblies on demand with the ClickOnce deployment API using the
Designer.

For testing purposes, the following code example programmatically sets the culture to ja-JP . See the "Next Steps" section
later in this topic for information on how to adjust this code for a production environment.

This topic assumes that you know how to add localized resources to your application using Visual Studio. For
detailed instructions, see Walkthrough: Localize Windows forms.

1. Add the following code to your application to enable on-demand downloading of satellite assemblies.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-downloading-satellite-assemblies-on-demand-with-the-clickonce-deployment-api.md
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2012/ms366788(v=vs.110)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2013/ms366788(v=vs.120)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/y99d1cd3(v=vs.100)

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Threading;
using System.Globalization;
using System.Deployment.Application;
using System.Reflection;

namespace ClickOnce.SatelliteAssemblies
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("ja-JP");

 // Call this before initializing the main form, which will cause the resource manager
 // to look for the appropriate satellite assembly.
 GetSatelliteAssemblies(Thread.CurrentThread.CurrentCulture.ToString());

 Application.Run(new Form1());
 }

 static void GetSatelliteAssemblies(string groupName)
 {
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment deploy = ApplicationDeployment.CurrentDeployment;

 if (deploy.IsFirstRun)
 {
 try
 {
 deploy.DownloadFileGroup(groupName);
 }
 catch (DeploymentException de)
 {
 // Log error. Do not report error to the user, as there may not be a satellite
 // assembly if the user's culture and the application's default culture match.
 }
 }
 }
 }

 }
}

Next steps

Imports System.Deployment.Application
Imports System.Globalization
Imports System.Threading

Public Class Form1
 Shared Sub Main(ByVal args As String())
 Application.EnableVisualStyles()

 Thread.CurrentThread.CurrentUICulture = New CultureInfo("ja-JP")
 GetSatelliteAssemblies(Thread.CurrentThread.CurrentUICulture.ToString())

 Application.Run(New Form1())
 End Sub

 Private Shared Sub GetSatelliteAssemblies(ByVal groupName As String)
 If (ApplicationDeployment.IsNetworkDeployed) Then

 Dim deploy As ApplicationDeployment = ApplicationDeployment.CurrentDeployment

 If (deploy.IsFirstRun) Then
 Try
 deploy.DownloadFileGroup(groupName)
 Catch de As DeploymentException
 ' Log error. Do not report error to the user, as there may not be a satellite
 ' assembly if the user's culture and the application's default culture match.

 End Try
 End If
 End If
 End Sub
End Class

2. Generate satellite assemblies for your application by using Resgen.exe (Resource File Generator) or Visual
Studio.

3. Generate an application manifest, or open your existing application manifest, by using MageUI.exe. For
more information about this tool, see MageUI.exe (Manifest Generation and Editing Tool, Graphical Client).

4. Click the Files tab.

5. Click the ellipsis button (...) and select the directory containing all of your application's assemblies and files,
including the satellite assemblies you generated using Resgen.exe. (A satellite assembly will have a name in
the form <isoCode>\ApplicationName.resources.dll, where <isoCode> is a language identifier in RFC
1766 format.)

6. Click Populate to add the files to your deployment.

7. Select the Optional check box for each satellite assembly.

8. Set the group field for each satellite assembly to its ISO language identifier. For example, for a Japanese
satellite assembly, you would specify a download group name of ja-JP . This will enable the code you
added in step 1 to download the appropriate satellite assembly, depending upon the user's
CurrentUICulture property setting.

In a production environment, you will likely need to remove the line in the code example that sets
CurrentUICulture to a specific value, because client machines will have the correct value set by default. When your
application runs on a Japanese client machine, for example, CurrentUICulture will be ja-JP by default. Setting
this value programmatically is a good way to test your satellite assemblies before you deploy your application.

https://docs.microsoft.com/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture

See also
Localize ClickOnce applications

Walkthrough: Create a custom installer for a
ClickOnce application
5/28/2019 • 6 minutes to read • Edit Online

Prerequisites
To create a custom ClickOnce application installerTo create a custom ClickOnce application installer

Any ClickOnce application based on an .exe file can be silently installed and updated by a custom installer. A
custom installer can implement custom user experience during installation, including custom dialog boxes for
security and maintenance operations. To perform installation operations, the custom installer uses the
InPlaceHostingManager class. This walkthrough demonstrates how to create a custom installer that silently installs
a ClickOnce application.

Imports System.Deployment.Application
Imports System.Windows.Forms

using System.Deployment.Application;
using System.Windows.Forms;

NOTENOTE

 Dim WithEvents iphm As InPlaceHostingManager = Nothing

 Public Sub InstallApplication(ByVal deployManifestUriStr As String)
 Try
 Dim deploymentUri As New Uri(deployManifestUriStr)
 iphm = New InPlaceHostingManager(deploymentUri, False)
 MessageBox.Show("Created the object.")
 Catch uriEx As UriFormatException
 MessageBox.Show("Cannot install the application: " & _
 "The deployment manifest URL supplied is not a valid URL." & _
 "Error: " & uriEx.Message)
 Return
 Catch platformEx As PlatformNotSupportedException
 MessageBox.Show("Cannot install the application: " & _

1. In your ClickOnce application, add references to System.Deployment and System.Windows.Forms.

2. Add a new class to your application and specify any name. This walkthrough uses the name MyInstaller .

3. Add the following Imports or using statements to the top of your new class.

4. Add the following methods to your class.

These methods call InPlaceHostingManager methods to download the deployment manifest, assert
appropriate permissions, ask the user for permission to install, and then download and install the
application into the ClickOnce cache. A custom installer can specify that a ClickOnce application is pre-
trusted, or can defer the trust decision to the AssertApplicationRequirements method call. This code pre-
trusts the application.

Permissions assigned by pre-trusting cannot exceed the permissions of the custom installer code.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-creating-a-custom-installer-for-a-clickonce-application.md
https://docs.microsoft.com/dotnet/api/system.deployment.application.inplacehostingmanager
https://docs.microsoft.com/dotnet/api/system.deployment.application.inplacehostingmanager
https://docs.microsoft.com/dotnet/api/system.deployment.application.inplacehostingmanager.assertapplicationrequirements

 MessageBox.Show("Cannot install the application: " & _
 "This program requires Windows XP or higher. " & _
 "Error: " & platformEx.Message)
 Return
 Catch argumentEx As ArgumentException
 MessageBox.Show("Cannot install the application: " & _
 "The deployment manifest URL supplied is not a valid URL." & _
 "Error: " & argumentEx.Message)
 Return
 End Try

 iphm.GetManifestAsync()
 End Sub

 Private Sub iphm_GetManifestCompleted(ByVal sender As Object, ByVal e As
GetManifestCompletedEventArgs) Handles iphm.GetManifestCompleted
 ' Check for an error.
 If (e.Error IsNot Nothing) Then
 ' Cancel download and install.
 MessageBox.Show("Could not download manifest. Error: " & e.Error.Message)
 Return
 End If

 ' Dim isFullTrust As Boolean = CheckForFullTrust(e.ApplicationManifest)

 ' Verify this application can be installed.
 Try
 ' the true parameter allows InPlaceHostingManager
 ' to grant the permissions requested in the application manifest.
 iphm.AssertApplicationRequirements(True)
 Catch ex As Exception
 MessageBox.Show("An error occurred while verifying the application. " & _
 "Error text: " & ex.Message)
 Return
 End Try

 ' Use the information from GetManifestCompleted() to confirm
 ' that the user wants to proceed.
 Dim appInfo As String = "Application Name: " & e.ProductName
 appInfo &= ControlChars.Lf & "Version: " & e.Version.ToString()
 appInfo &= ControlChars.Lf & "Support/Help Requests: "

 If Not (e.SupportUri Is Nothing) Then
 appInfo &= e.SupportUri.ToString()
 Else
 appInfo &= "N/A"
 End If

 appInfo &= ControlChars.Lf & ControlChars.Lf & _
 "Confirmed that this application can run with its requested permissions."

 ' If isFullTrust Then
 ' appInfo &= ControlChars.Lf & ControlChars.Lf & _
 ' "This application requires full trust in order to run."
 ' End If

 appInfo &= ControlChars.Lf & ControlChars.Lf & "Proceed with installation?"

 Dim dr As DialogResult = MessageBox.Show(appInfo, _
 "Confirm Application Install", MessageBoxButtons.OKCancel, MessageBoxIcon.Question)
 If dr <> System.Windows.Forms.DialogResult.OK Then
 Return
 End If

 ' Download the deployment manifest.
 ' Usually, this shouldn't throw an exception unless
 ' AssertApplicationRequirements() failed, or you did not call that method
 ' before calling this one.
 Try
 iphm.DownloadApplicationAsync()

 iphm.DownloadApplicationAsync()
 Catch downloadEx As Exception
 MessageBox.Show("Cannot initiate download of application. Error: " & downloadEx.Message)
 Return
 End Try
 End Sub

#If 0 Then
 Private Function CheckForFullTrust(ByVal appManifest As XmlReader) As Boolean
 Dim isFullTrust As Boolean = False

 If (appManifest Is Nothing) Then
 Throw New ArgumentNullException("appManifest cannot be null.")
 End If

 Dim xaUnrestricted As XAttribute
 xaUnrestricted = XDocument.Load(appManifest) _
 .Element("{urn:schemas-microsoft-com:asm.v1}assembly") _
 .Element("{urn:schemas-microsoft-com:asm.v2}trustInfo") _
 .Element("{urn:schemas-microsoft-com:asm.v2}security") _
 .Element("{urn:schemas-microsoft-com:asm.v2}applicationRequestMinimum") _
 .Element("{urn:schemas-microsoft-com:asm.v2}PermissionSet") _
 .Attribute("Unrestricted") ' Attributes never have a namespace

 If xaUnrestricted Then
 If xaUnrestricted.Value = "true" Then
 Return True
 End If
 End If

 Return False
 End Function
#End If

 Private Sub iphm_DownloadProgressChanged(ByVal sender As Object, ByVal e As
DownloadProgressChangedEventArgs) Handles iphm.DownloadProgressChanged
 ' you can show percentage of task completed using e.ProgressPercentage
 End Sub

 Private Sub iphm_DownloadApplicationCompleted(ByVal sender As Object, ByVal e As
DownloadApplicationCompletedEventArgs) Handles iphm.DownloadApplicationCompleted
 ' Check for an error.
 If (e.Error IsNot Nothing) Then
 ' Cancel download and install.
 MessageBox.Show("Could not download and install application. Error: " & e.Error.Message)
 Return
 End If

 ' Inform the user that their application is ready for use.
 MessageBox.Show("Application installed! You may now run it from the Start menu.")
 End Sub

InPlaceHostingManager iphm = null;

public void InstallApplication(string deployManifestUriStr)
{
 try
 {
 Uri deploymentUri = new Uri(deployManifestUriStr);
 iphm = new InPlaceHostingManager(deploymentUri, false);
 }
 catch (UriFormatException uriEx)
 {
 MessageBox.Show("Cannot install the application: " +
 "The deployment manifest URL supplied is not a valid URL. " +
 "Error: " + uriEx.Message);
 return;

 return;
 }
 catch (PlatformNotSupportedException platformEx)
 {
 MessageBox.Show("Cannot install the application: " +
 "This program requires Windows XP or higher. " +
 "Error: " + platformEx.Message);
 return;
 }
 catch (ArgumentException argumentEx)
 {
 MessageBox.Show("Cannot install the application: " +
 "The deployment manifest URL supplied is not a valid URL. " +
 "Error: " + argumentEx.Message);
 return;
 }

 iphm.GetManifestCompleted += new EventHandler<GetManifestCompletedEventArgs>
(iphm_GetManifestCompleted);
 iphm.GetManifestAsync();
}

void iphm_GetManifestCompleted(object sender, GetManifestCompletedEventArgs e)
{
 // Check for an error.
 if (e.Error != null)
 {
 // Cancel download and install.
 MessageBox.Show("Could not download manifest. Error: " + e.Error.Message);
 return;
 }

 // bool isFullTrust = CheckForFullTrust(e.ApplicationManifest);

 // Verify this application can be installed.
 try
 {
 // the true parameter allows InPlaceHostingManager
 // to grant the permissions requested in the application manifest.
 iphm.AssertApplicationRequirements(true) ;
 }
 catch (Exception ex)
 {
 MessageBox.Show("An error occurred while verifying the application. " +
 "Error: " + ex.Message);
 return;
 }

 // Use the information from GetManifestCompleted() to confirm
 // that the user wants to proceed.
 string appInfo = "Application Name: " + e.ProductName;
 appInfo += "\nVersion: " + e.Version;
 appInfo += "\nSupport/Help Requests: " + (e.SupportUri != null ?
 e.SupportUri.ToString() : "N/A");
 appInfo += "\n\nConfirmed that this application can run with its requested permissions.";
 // if (isFullTrust)
 // appInfo += "\n\nThis application requires full trust in order to run.";
 appInfo += "\n\nProceed with installation?";

 DialogResult dr = MessageBox.Show(appInfo, "Confirm Application Install",
 MessageBoxButtons.OKCancel, MessageBoxIcon.Question);
 if (dr != System.Windows.Forms.DialogResult.OK)
 {
 return;
 }

 // Download the deployment manifest.
 iphm.DownloadProgressChanged += new EventHandler<DownloadProgressChangedEventArgs>
(iphm_DownloadProgressChanged);
 iphm.DownloadApplicationCompleted += new EventHandler<DownloadApplicationCompletedEventArgs>

 iphm.DownloadApplicationCompleted += new EventHandler<DownloadApplicationCompletedEventArgs>
(iphm_DownloadApplicationCompleted);

 try
 {
 // Usually this shouldn't throw an exception unless AssertApplicationRequirements() failed,
 // or you did not call that method before calling this one.
 iphm.DownloadApplicationAsync();
 }
 catch (Exception downloadEx)
 {
 MessageBox.Show("Cannot initiate download of application. Error: " +
 downloadEx.Message);
 return;
 }
}

/*
private bool CheckForFullTrust(XmlReader appManifest)
{
 if (appManifest == null)
 {
 throw (new ArgumentNullException("appManifest cannot be null."));
 }

 XAttribute xaUnrestricted =
 XDocument.Load(appManifest)
 .Element("{urn:schemas-microsoft-com:asm.v1}assembly")
 .Element("{urn:schemas-microsoft-com:asm.v2}trustInfo")
 .Element("{urn:schemas-microsoft-com:asm.v2}security")
 .Element("{urn:schemas-microsoft-com:asm.v2}applicationRequestMinimum")
 .Element("{urn:schemas-microsoft-com:asm.v2}PermissionSet")
 .Attribute("Unrestricted"); // Attributes never have a namespace

 if (xaUnrestricted != null)
 if (xaUnrestricted.Value == "true")
 return true;

 return false;
}
*/

void iphm_DownloadApplicationCompleted(object sender, DownloadApplicationCompletedEventArgs e)
{
 // Check for an error.
 if (e.Error != null)
 {
 // Cancel download and install.
 MessageBox.Show("Could not download and install application. Error: " + e.Error.Message);
 return;
 }

 // Inform the user that their application is ready for use.
 MessageBox.Show("Application installed! You may now run it from the Start menu.");
}

void iphm_DownloadProgressChanged(object sender, DownloadProgressChangedEventArgs e)
{
 // you can show percentage of task completed using e.ProgressPercentage
}

5. To attempt installation from your code, call the InstallApplication method. For example, if you named
your class MyInstaller , you might call InstallApplication in the following way.

Next steps

See also

Dim installer As New MyInstaller()
installer.InstallApplication("\\myServer\myShare\myApp.application")
MessageBox.Show("Installer object created.")

MyInstaller installer = new MyInstaller();
installer.InstallApplication(@"\\myServer\myShare\myApp.application");
MessageBox.Show("Installer object created.");

A ClickOnce application can also add custom update logic, including a custom user interface to show during the
update process. For more information, see UpdateCheckInfo. A ClickOnce application can also suppress the
standard Start menu entry, shortcut, and Add or Remove Programs entry by using a <customUX> element. For
more information, see <entryPoint> element and ShortcutAppId.

ClickOnce application manifest
<entryPoint> element

https://docs.microsoft.com/dotnet/api/system.deployment.application.updatecheckinfo
https://docs.microsoft.com/dotnet/api/system.deployment.application.downloadapplicationcompletedeventargs.shortcutappid

Choose a ClickOnce update strategy
4/23/2019 • 6 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Check for updates after application startup

<!-- When to check for updates -->
<subscription>
 <update>
 <expiration maximumAge="6" unit="hours" />
 </update>
</subscription>

ClickOnce can provide automatic application updates. A ClickOnce application periodically reads its deployment
manifest file to see whether updates to the application are available. If available, the new version of the
application is downloaded and run. For efficiency, only those files that have changed are downloaded.

When designing a ClickOnce application, you have to determine which strategy the application will use to check
for available updates. There are three basic strategies that you can use: checking for updates on application
startup, checking for updates after application startup (running in a background thread), or providing a user
interface for updates.

In addition, you can determine how often the application will check for updates, and you can make updates
required.

Application updates require network connectivity. If a network connection is not present, the application will run without
checking for updates, regardless of the update strategy that you choose.

In .NET Framework 2.0 and .NET Framework 3.0, any time your application checks for updates, before or after startup, or
by using the <xref:System.Deployment.Application> APIs, you must set deploymentProvider in the deployment
manifest. The deploymentProvider element corresponds in Visual Studio to the Update location field on the Updates
dialog box of the Publish tab. This rule is relaxed in .NET Framework 3.5. For more information, see Deploying ClickOnce
Applications For Testing and Production Servers without Resigning.

By using this strategy, the application will attempt to locate and read the deployment manifest file in the
background while the application is running. If an update is available, the next time that the user runs the
application, he will be prompted to download and install the update.

This strategy works best for low-bandwidth network connections or for larger applications that might require
lengthy downloads.

To enable this update strategy, click After the application starts in the Choose when the application should
check for updates section of the Application Updates dialog box. Then specify an update interval in the
section Specify how frequently the application should check for updates.

This is the same as changing the Update element in the deployment manifest as follows:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/choosing-a-clickonce-update-strategy.md

Check for updates before application startup

<!-- When to check for updates -->
<subscription>
 <update>
 <beforeApplicationStartup />
 </update>
</subscription>

Make updates required

NOTENOTE

<deployment install="true" minimumRequiredVersion="1.0.0.0">

Specify update intervals

The default strategy is to try to locate and read the deployment manifest file before the application starts. By
using this strategy, the application will attempt to locate and read the deployment manifest file every time that
the user starts the application. If an update is available, it will be downloaded and started; otherwise, the existing
version of the application will be started.

This strategy works best for high-bandwidth network connections; the delay in starting the application may be
unacceptably long over low-bandwidth connections.

To enable this update strategy, click Before the application starts in the Choose when the application
should check for updates section of the Application Updates dialog box.

This is the same as changing the Update element in the deployment manifest as follows:

There may be occasions when you want to require users to run an updated version of your application. For
example, you might make a change to an external resource such as a Web service that would prevent the earlier
version of your application from working correctly. In this case, you would want to mark your update as required
and prevent users from running the earlier version.

Although you can require updates by using the other update strategies, checking Before the application starts is the
only way to guarantee that an older version cannot be run. When the mandatory update is detected on startup, the user
must either accept the update or close the application.

To mark an update as required, click Specify a minimum required version for this application in the
Application Updates dialog box, and then specify the publish version (Major, Minor, Build, Revision), which
specifies the lowest version number of the application that can be installed.

This is the same as setting the minimumRequiredVersion attribute of the Deployment element in the
deployment manifest; for example:

You can also specify how often the application checks for updates. To do this, specify that the application check
for updates after startup as described in "Checking for Updates After Application Startup" earlier in this topic.

To specify the update interval, set the Specify how frequently the application should check for updates
properties in the Application Updates dialog box.

This is the same as setting the maximumAge and unit attributes of the Update element in the deployment
manifest.

Provide a user interface for updates

Block update checking

Permission elevation and updates

See also

For example, you may want to check each time the application runs, or one time a week, or one time a month. If
a network connection is not present at the specified time, the update check is performed the next time that the
application runs.

When using this strategy, the application developer provides a user interface that enables the user to choose
when or how often the application will check for updates. For example, you might provide a "Check for Updates
Now" command, or an "Update Settings" dialog box that has choices for different update intervals. The
ClickOnce deployment APIs provide a framework for programming your own update user interface. For more
information, see the System.Deployment.Application namespace.

If your application uses deployment APIs to control its own update logic, you should block update checking as
described in "Blocking Update Checking" in the following section.

This strategy works best when you need different update strategies for different users.

It is also possible to prevent your application from ever checking for updates. For example, you might have a
simple application that will never be updated, but you want to take advantage of the ease of installation provide
by ClickOnce deployment.

You should also block update checking if your application uses deployment APIs to perform its own updates; see
"Provide a user interface for updates" earlier in this topic.

To block update checking, clear the The application should check for updates check box in the Application
Updates Dialog Box.

You can also block update checking by removing the <Subscription> tag from the deployment manifest.

If a new version of a ClickOnce application requires a higher level of trust to run than the previous version,
ClickOnce will prompt the user, asking him if he wants the application to be granted this higher level of trust. If
the user declines to grant the higher trust level, the update will not install. ClickOnce will prompt the user to
install the application again when it is next restarted. If the user declines to grant the higher level of trust at this
point, and the update is not marked as required, the old version of the application will run. However, if the
update is required, the application will not run again until the user accepts the higher trust level.

No prompting for trust levels will occur if you use Trusted Application Deployment. For more information, see
Trusted application deployment overview.

<xref:System.Deployment.Application>

ClickOnce security and deployment
Choose a ClickOnce deployment strategy
Secure ClickOnce applications
How ClickOnce performs application updates
How to: Manage updates for a ClickOnce application

https://docs.microsoft.com/dotnet/api/system.deployment.application

How ClickOnce performs application updates
2/21/2019 • 2 minutes to read • Edit Online

File patching

See also

ClickOnce uses the file version information specified in an application's deployment manifest to decide whether to
update the application's files. After an update begins, ClickOnce uses a technique called file patching to avoid
redundant downloading of application files.

When updating an application, ClickOnce does not download all of the files for the new version of the application
unless the files have changed. Instead, it compares the hash signatures of the files specified in the application
manifest for the current application against the signatures in the manifest for the new version. If a file's signatures
are different, ClickOnce downloads the new version. If the signatures match, the file has not changed from one
version to the next. In this case, ClickOnce copies the existing file and uses it in the new version of the application.
This approach prevents ClickOnce from having to download the entire application again, even if only one or two
files have changed.

File patching also works for assemblies that are downloaded on demand using the DownloadFileGroup and
DownloadFileGroupAsync methods.

If you use Visual Studio to compile your application, it will generate new hash signatures for all files whenever you
rebuild the entire project. In this case, all assemblies will be downloaded to the client, although only a few
assemblies may have changed.

File patching does not work for files that are marked as data and stored in the data directory. These are always
downloaded regardless of the file's hash signature. For more information on the data directory, see Access local
and remote data in ClickOnce applications.

Choose a ClickOnce update strategy
Choose a ClickOnce deployment strategy

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-clickonce-performs-application-updates.md
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.downloadfilegroup
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.downloadfilegroupasync

How to: Check for application updates
programmatically using the ClickOnce deployment
API
5/28/2019 • 4 minutes to read • Edit Online

NOTENOTE

To check for updates programmaticallyTo check for updates programmatically

ClickOnce provides two ways to update an application once it is deployed. In the first method, you can configure
the ClickOnce deployment to check automatically for updates at certain intervals. In the second method, you can
write code that uses the ApplicationDeployment class to check for updates based on an event, such as a user
request.

The following procedures show some code for performing a programmatic update and also describe how to
configure your ClickOnce deployment to enable programmatic update checks.

In order to update a ClickOnce application programmatically, you must specify a location for updates. This is
sometimes referred to as a deployment provider. For more information on setting this property, see Choose a
ClickOnce update strategy.

You can also use the technique described below to deploy your application from one location but update it from another. For
more information, see How to: Specify an alternate location for deployment updates.

private void InstallUpdateSyncWithInfo()
{
 UpdateCheckInfo info = null;

 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment ad = ApplicationDeployment.CurrentDeployment;

 try
 {
 info = ad.CheckForDetailedUpdate();

 }
 catch (DeploymentDownloadException dde)
 {
 MessageBox.Show("The new version of the application cannot be downloaded at this time.
\n\nPlease check your network connection, or try again later. Error: " + dde.Message);
 return;
 }
 catch (InvalidDeploymentException ide)
 {
 MessageBox.Show("Cannot check for a new version of the application. The ClickOnce
deployment is corrupt. Please redeploy the application and try again. Error: " + ide.Message);
 return;
 }
 catch (InvalidOperationException ioe)
 {

1. Create a new Windows Forms application using your preferred command-line or visual tools.

2. Create whatever button, menu item, or other user interface item you want your users to select to check for
updates. From that item's event handler, call the following method to check for and install updates.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-check-for-application-updates-programmatically-using-the-clickonce-deployment-api.md
https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment

 {
 MessageBox.Show("This application cannot be updated. It is likely not a ClickOnce
application. Error: " + ioe.Message);
 return;
 }

 if (info.UpdateAvailable)
 {
 Boolean doUpdate = true;

 if (!info.IsUpdateRequired)
 {
 DialogResult dr = MessageBox.Show("An update is available. Would you like to update the
application now?", "Update Available", MessageBoxButtons.OKCancel);
 if (!(DialogResult.OK == dr))
 {
 doUpdate = false;
 }
 }
 else
 {
 // Display a message that the app MUST reboot. Display the minimum required version.
 MessageBox.Show("This application has detected a mandatory update from your current " +
 "version to version " + info.MinimumRequiredVersion.ToString() +
 ". The application will now install the update and restart.",
 "Update Available", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }

 if (doUpdate)
 {
 try
 {
 ad.Update();
 MessageBox.Show("The application has been upgraded, and will now restart.");
 Application.Restart();
 }
 catch (DeploymentDownloadException dde)
 {
 MessageBox.Show("Cannot install the latest version of the application. \n\nPlease
check your network connection, or try again later. Error: " + dde);
 return;
 }
 }
 }
 }
}

public:
 void InstallUpdateSync()
 {
 if (ApplicationDeployment::IsNetworkDeployed)
 {
 bool isUpdateAvailable = false;
 ApplicationDeployment^ appDeployment =
 ApplicationDeployment::CurrentDeployment;

 try
 {
 isUpdateAvailable = appDeployment->CheckForUpdate();
 }
 catch (InvalidOperationException^ ex)
 {
 MessageBox::Show("The update check failed. Error: {0}",
 ex->Message);
 return;
 }

 if (isUpdateAvailable)
 {
 try
 {
 appDeployment->Update();
 MessageBox::Show(
 "The application has been upgraded, and will now " +
 "restart.");
 Application::Restart();
 }
 catch (Exception^ ex)
 {
 MessageBox::Show("The update failed. Error: {0}",
 ex->Message);
 return;
 }

 }
 }
 }

Use Mage.exe to deploy an application that checks for updates programmaticallyUse Mage.exe to deploy an application that checks for updates programmatically

Private Sub InstallUpdateSyncWithInfo()
 Dim info As UpdateCheckInfo = Nothing

 If (ApplicationDeployment.IsNetworkDeployed) Then
 Dim AD As ApplicationDeployment = ApplicationDeployment.CurrentDeployment

 Try
 info = AD.CheckForDetailedUpdate()
 Catch dde As DeploymentDownloadException
 MessageBox.Show("The new version of the application cannot be downloaded at this time. " +
ControlChars.Lf & ControlChars.Lf & "Please check your network connection, or try again later. Error: "
+ dde.Message)
 Return
 Catch ioe As InvalidOperationException
 MessageBox.Show("This application cannot be updated. It is likely not a ClickOnce
application. Error: " & ioe.Message)
 Return
 End Try

 If (info.UpdateAvailable) Then
 Dim doUpdate As Boolean = True

 If (Not info.IsUpdateRequired) Then
 Dim dr As DialogResult = MessageBox.Show("An update is available. Would you like to
update the application now?", "Update Available", MessageBoxButtons.OKCancel)
 If (Not System.Windows.Forms.DialogResult.OK = dr) Then
 doUpdate = False
 End If
 Else
 ' Display a message that the app MUST reboot. Display the minimum required version.
 MessageBox.Show("This application has detected a mandatory update from your current " &
_
 "version to version " & info.MinimumRequiredVersion.ToString() & _
 ". The application will now install the update and restart.", _
 "Update Available", MessageBoxButtons.OK, _
 MessageBoxIcon.Information)
 End If

 If (doUpdate) Then
 Try
 AD.Update()
 MessageBox.Show("The application has been upgraded, and will now restart.")
 Application.Restart()
 Catch dde As DeploymentDownloadException
 MessageBox.Show("Cannot install the latest version of the application. " &
ControlChars.Lf & ControlChars.Lf & "Please check your network connection, or try again later.")
 Return
 End Try
 End If
 End If
 End If
End Sub

3. Compile your application.

Follow the instructions for deploying your application using Mage.exe as explained in Walkthrough:
Manually deploy a ClickOnce application. When calling Mage.exe to generate the deployment manifest,
make sure to use the command-line switch providerUrl , and to specify the URL where ClickOnce should
check for updates. If your application will update from http://www.adatum.com/MyApp, for example, your
call to generate the deployment manifest might look like this:

http://www.adatum.com/MyApp

Using MageUI.exe to deploy an application that checks for updates programmaticallyUsing MageUI.exe to deploy an application that checks for updates programmatically

.NET Framework Security

See also

mage -New Deployment -ToFile WindowsFormsApp1.application -Name "My App 1.0" -Version 1.0.0.0 -
AppManifest 1.0.0.0\MyApp.manifest -providerUrl http://www.adatum.com/MyApp/MyApp.application

Follow the instructions for deploying your application using Mage.exe as explained in Walkthrough: Manually
deploy a ClickOnce application. On the Deployment Options tab, set the Start Location field to the
application manifest ClickOnce should check for updates. On the Update Options tab, clear the This
application should check for updates check box.

Your application must have full-trust permissions to use programmatic updating.

How to: Specify an alternate location for deployment updates
Choose a ClickOnce update strategy
Publish ClickOnce applications

How to: Specify an alternate location for deployment
updates
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

Specify an alternate location for updates by using MageUI.exe (Windows Forms-based utility)Specify an alternate location for updates by using MageUI.exe (Windows Forms-based utility)

Specify an alternate location for updates by using Mage.exeSpecify an alternate location for updates by using Mage.exe

.NET Framework Security

You can install your ClickOnce application initially from a CD or a file share, but the application must check for
periodic updates on the Web. You can specify an alternate location for updates in your deployment manifest so
that your application can update itself from the Web after its initial installation.

Your application must be configured to install locally to use this feature. For more information, see Walkthrough: Manually
deploy a ClickOnce application. In addition, if you install a ClickOnce application from the network, setting an alternate
location causes ClickOnce to use that location for both the initial installation and all subsequent updates. If you install your
application locally (for example, from a CD), the initial installation is performed using the original media, and all subsequent
updates will use the alternate location.

1. Open a .NET Framework command prompt and type:

mageui.exe

2. On the File menu, choose Open to open your application's deployment manifest.

3. Select the Deployment Options tab.

4. In the text box named Launch Location, enter the URL to the directory that will contain the deployment
manifest for application updates.

5. Save the deployment manifest.

NOTENOTE

1. Open a .NET Framework command prompt.

2. Set the update location using the following command. In this example, HelloWorld.exe.application is the
path to your ClickOnce application manifest, which always has the .application extension, and
http://adatum.com/Update/Path is the URL that ClickOnce will check for application updates.

Mage -Update HelloWorld.exe.application -ProviderUrl http://adatum.com/Update/Path

3. Save the file.

You now need to re-sign the file with Mage.exe. For more information, see Walkthrough: Manually deploy a
ClickOnce application.

If you install your application from an offline medium such as a CD, and the computer is online, ClickOnce first
checks the URL specified by the <deploymentProvider> tag in the deployment manifest to determine if the update
location contains a more recent version of the application. If it does, ClickOnce installs the application directly from

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-an-alternate-location-for-deployment-updates.md
http://adatum.com/Update/Path
http://adatum.com/Update/Path

See also

there, instead of from the initial installation directory, and the common language runtime (CLR) determines your
application's trust level using <deploymentProvider> . If the computer is offline, or <deploymentProvider> is
unreachable, ClickOnce installs from the CD, and the CLR grants trust based on the installation point; for a CD
install, this means your application receives full trust. All subsequent updates will inherit that trust level.

All ClickOnce applications that use <deploymentProvider> should explicitly declare the permissions they need in
their application manifest, so that the application does not receive different levels of trust on different computers.

Walkthrough: Manually deploy a ClickOnce application
ClickOnce deployment manifest
Secure ClickOnce applications
Choose a ClickOnce update strategy

ClickOnce deployment samples and walkthroughs
1/25/2019 • 2 minutes to read • Edit Online

ClickOnce deployment
TOPIC DESCRIPTION

Deploy a ClickOnce application manually Explains how to use .NET Framework utilities to deploy your
ClickOnce application.

Download assemblies on demand with the ClickOnce
deployment API

Demonstrates how to mark certain assemblies in your
application as "optional," and how to download them using
classes in the System.Deployment.Application namespace.

Download assemblies on demand with the ClickOnce
deployment API using the designer

Explains how to download application assemblies only when
they are first used by the application.

See also

This section contains sample applications, example code, and step-by-step walkthroughs that illustrate the syntax,
structure, and techniques used to deploy Windows Forms, WPF, and console applications.

The sample code is intended for instructional purposes, and should not be used in deployed solutions without
modifications. In particular, security must be taken into greater consideration.

Visual Studio walkthroughs

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-deployment-samples-and-walkthroughs.md
https://docs.microsoft.com/dotnet/api/system.deployment.application
https://msdn.microsoft.com/library/f5399a1f-2d3d-42fb-b989-134ccda2159f

Troubleshoot ClickOnce deployments
2/21/2019 • 2 minutes to read • Edit Online

Deployment considerations

See also

This topic helps you diagnose and resolve the most common issues with ClickOnce deployments.

In most cases, a ClickOnce application will download to a user's computer and run without any problems. There
are some cases, however, where Web server or application configuration issues can cause unforeseen problems.

How to: Set a custom log file location for ClickOnce deployment errors

Describes how to redirect all ClickOnce activation failures on a machine to a single log file.

How to: Specify verbose log files for ClickOnce deployments

Describes how to increase the detail that ClickOnce writes to log files.

Server and client configuration issues in ClickOnce deployments

Describes various issues with the configuration of your Web server that could cause difficulty downloading
ClickOnce applications.

Security, versioning, and manifest issues in ClickOnce deployments

Describes miscellaneous issues surrounding ClickOnce deployments.

Troubleshoot specific errors in ClickOnce deployments

Describes specific scenarios in which a ClickOnce deployment cannot succeed, and provides steps for resolving
them.

Debug ClickOnce applications that use System.Deployment.Application

Describes a technique for debugging ClickOnce applications that use System.Deployment.Application.

ClickOnce deployment manifest
ClickOnce application manifest

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/troubleshooting-clickonce-deployments.md

How to: Set a custom log file location for ClickOnce
deployment errors
5/28/2019 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

NOTENOTE

To set a custom log file locationTo set a custom log file location

See also

ClickOnce maintains activation log files for all deployments. These logs document any errors pertaining to
installing and initializing a ClickOnce deployment. By default, ClickOnce creates one log file for each deployment
activation. It stores these log files in the Temporary Internet Files folder. The log file for a deployment is displayed
to the user when an activation failure occurs, and the user clicks Details in the resulting error dialog box.

You can change this behavior for a specific client by using Registry Editor (regedit.exe) to set a custom log file
path. In this case, ClickOnce logs activation successes and failures for all deployments in a single file.

If you use Registry Editor incorrectly, you may cause serious problems that may require you to reinstall your
operating system. Use Registry Editor at your own risk.

You will need to truncate or delete the log file occasionally to prevent it from growing too large.

The following procedure describes how to set a custom log file location for a single client.

1. Open Regedit.exe.

2. Navigate to the node HKCU\Software\Classes\Software\Microsoft\Windows\CurrentVersion\Deployment .

3. Set the string value LogFilePath to the full path and filename of your preferred custom log location.

This location must be in a directory to which the user has write access. For example, on Windows Vista,
create the following folder structure and set LogFilePath to C:\Users\
<username>\Documents\Logs\ClickOnce\installation.log.

Troubleshoot ClickOnce deployments

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-set-a-custom-log-file-location-for-clickonce-deployment-errors.md

How to: Specify verbose log files for ClickOnce
deployments
4/23/2019 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

To specify verbose log filesTo specify verbose log files

See also

ClickOnce maintains activity log files for all deployments. These logs document details pertaining to installing,
initializing, updating, and uninstalling a ClickOnce deployment. To increase the detail that ClickOnce writes to these
log files, use Registry Editor (regedit.exe) to specify the verbosity level.

If you use Registry Editor incorrectly, you may cause serious problems that may require you to reinstall the
operating system. Use Registry Editor at your own risk.

The following procedure describes how to specify the verbosity level for ClickOnce log files for the current user. To
reduce the level of verbosity, remove this registry value.

1. Open Regedit.exe.

2. Navigate to the node
HKEY_CURRENT_USER\Software\Classes\Software\Microsoft\Windows\CurrentVersion\Deploy
ment.

3. If necessary, create a new string value named LogVerbosityLevel .

4. Set the LogVerbosityLevel value to 1 .

Troubleshoot ClickOnce deployments

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-specify-verbose-log-files-for-clickonce-deployments.md

Server and client configuration issues in ClickOnce
deployments
5/28/2019 • 8 minutes to read • Edit Online

ClickOnce and Secure Sockets Layer (SSL)

ClickOnce and proxy authentication

If you use Internet Information Services (IIS) on Windows Server, and your deployment contains a file type that
Windows does not recognize, such as a Microsoft Word file, IIS will refuse to transmit that file, and your
deployment will not succeed.

Additionally, some Web servers and Web application software, such as ASP.NET, contain a list of files and file
types that you cannot download. For example, ASP.NET prevents the download of all Web.config files. These files
may contain sensitive information such as user names and passwords.

Although this restriction should cause no problems for downloading core ClickOnce files such as manifests and
assemblies, this restriction may prevent you from downloading data files included as part of your ClickOnce
application. In ASP.NET, you can resolve this error by removing the handler that prohibits downloading of such
files from the IIS configuration manager. See the IIS server documentation for additional details.

Some Web servers might block files with extensions such as .dll, .config, and .mdf. Windows-based applications
typically include files with some of these extensions. If a user attempts to run a ClickOnce application that accesses
a blocked file on a Web server, an error will result. Rather than unblocking all file extensions, ClickOnce publishes
every application file with a .deploy file extension by default. Therefore, the administrator only needs to configure
the Web server to unblock the following three file extensions:

.application

.manifest

.deploy

However, you can disable this option by clearing the Use ".deploy" file extension option on the Publish
Options Dialog Box, in which case you must configure the Web server to unblock all file extensions used in
the application.

You will have to configure .manifest, .application, and .deploy, for example, if you are using IIS where you
have not installed the .NET Framework, or if you are using another Web server (for example, Apache).

A ClickOnce application will work fine over SSL, except when Internet Explorer raises a prompt about the SSL
certificate. The prompt can be raised when there is something wrong with the certificate, such as when the site
names do not match or the certificate has expired. To make ClickOnce work over an SSL connection, make sure
that the certificate is up-to-date, and that the certificate data matches the site data.

ClickOnce provides support for Windows Integrated proxy authentication starting in .NET Framework 3.5. No
specific machine.config directives are required. ClickOnce does not provide support for other authentication
protocols such as Basic or Digest.

You can also apply a hotfix to .NET Framework 2.0 to enable this feature. For more information, see
http://go.microsoft.com/fwlink/?LinkId=158730.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/server-and-client-configuration-issues-in-clickonce-deployments.md
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/7z83t16a(v=vs.100)
http://go.microsoft.com/fwlink/?LinkId=158730

ClickOnce and Web browser compatibility

NOTENOTE

Activate ClickOnce applications through browser scripting

Additional server configuration issues
A d m i n i s t r a t o r p e r m i ss i o n s r e q u i r e dA d m i n i s t r a t o r p e r m i ss i o n s r e q u i r e d

Se r v e r a u t h e n t i c a t i o n i s su e sSe r v e r a u t h e n t i c a t i o n i s su e s

"The files could not be downloaded from http://<remoteserver>/<myapplication>/. The remote server returned an
error: (401) Unauthorized."

NOTENOTE

Use third-party Web servers

For more information, see <defaultProxy> element (network settings).

Currently, ClickOnce installations will launch only if the URL to the deployment manifest is opened using Internet
Explorer. A deployment whose URL is launched from another application, such as Microsoft Office Outlook, will
launch successfully only if Internet Explorer is set as the default Web browser.

Mozilla Firefox is supported if the deployment provider is not blank or the Microsoft .NET Framework Assistant extension is
installed. This extension is packaged with .NET Framework 3.5 SP1. For XBAP support, the NPWPF plug-in is activated when
needed.

If you have developed a custom Web page that launches a ClickOnce application using Active Scripting, you may
find that the application will not launch on some machines. Internet Explorer contains a setting called Automatic
prompting for file downloads, which affects this behavior. This setting is available on the Security Tab in its
Options menu that affects this behavior. It is called Automatic prompting for file downloads, and it is listed
underneath the Downloads category. The property is set to Enable by default for intranet Web pages, and to
Disable by default for Internet Web pages. When this setting is set to Disable, any attempt to activate a
ClickOnce application programmatically (for example, by assigning its URL to the document.location property)
will be blocked. Under this circumstance, users can launch applications only through a user-initiated download, for
example, by clicking a hyperlink set to the application's URL.

You must have Administrator permissions on the target server if you are publishing with HTTP. IIS requires this
permissions level. If you are not publishing using HTTP, you only need write permission on the target path.

When you publish to a remote server that has "Anonymous Access" turned off, you will receive the following
warning:

You can make NTLM (NT challenge-response) authentication work if the site prompts for credentials other than your default
credentials, and, in the security dialog box, you click OK when you are prompted if you want to save the supplied credentials
for future sessions. However, this workaround will not work for basic authentication.

If you are deploying a ClickOnce application from a Web server other than IIS, you may experience a problem if
the server is returning the incorrect content type for key ClickOnce files, such as the deployment manifest and
application manifest. To resolve this problem, see your Web server's Help documentation about how to add new
content types to the server, and make sure that all the file name extension mappings listed in the following table
are in place.

https://docs.microsoft.com/dotnet/framework/configure-apps/file-schema/network/defaultproxy-element-network-settings

FILE NAME EX TENSION CONTENT TYPE

.application application/x-ms-application

.manifest application/x-ms-manifest

.deploy application/octet-stream

.msu application/octet-stream

.msp application/octet-stream

ClickOnce and mapped drives

FTP protocol not supported for installing applications

URL TYPE DESCRIPTION

ftp:// You can publish a ClickOnce application by using this protocol.

http:// You can install a ClickOnce application by using this protocol.

https:// You can install a ClickOnce application by using this protocol.

file:// You can install a ClickOnce application by using this protocol.

Windows XP SP2: Windows Firewall

Windows Server: Enable FrontPage server extensions

If you use Visual Studio to publish a ClickOnce application, you cannot specify a mapped drive as the installation
location. However, you can modify the ClickOnce application to install from a mapped drive by using the Manifest
Generator and Editor (Mage.exe and MageUI.exe). For more information, see Mage.exe (Manifest Generation and
Editing Tool) and MageUI.exe (Manifest Generation and Editing Tool, Graphical Client).

ClickOnce supports installing applications from any HTTP 1.1 Web server or file server. FTP, the File Transfer
Protocol, is not supported for installing applications. You can use FTP to publish applications only. The following
table summarizes these differences:

By default, Windows XP SP2 enables the Windows Firewall. If you are developing your application on a computer
that has Windows XP installed, you are still able to publish and run ClickOnce applications from the local server
that is running IIS. However, you cannot access that server that is running IIS from another computer unless you
open the Windows Firewall. See Windows Help for instructions on managing the Windows Firewall.

FrontPage Server Extensions from Microsoft is required for publishing applications to a Windows Web server that
uses HTTP.

By default, Windows Server does not have FrontPage Server Extensions installed. If you want to use Visual Studio
to publish to a Windows Server Web server that uses HTTP with FrontPage Server Extensions, you must install
FrontPage Server Extensions first. You can perform the installation by using the Manage Your Server
administration tool in Windows Server.

https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client

Windows Server: Locked-down content types

Content type mappings

HTTP compression issues

See also

IIS on Windows Server 2003 locks down all file types except for certain known content types (for example, .htm,
.html, .txt, and so on). To enable deployment of ClickOnce applications using this server, you need to change the IIS
settings to allow downloading files of type .application, .manifest, and any other custom file types used by your
application.

If you deploy using an IIS server, run inetmgr.exe and add new File Types for the default Web page:

For the .application and .manifest extensions, the MIME type should be "application/x-ms-application." For
other file types, the MIME type should be "application/octet-stream."

If you create a MIME type with extension "" and the MIME type "application/octet-stream," it will allow files
of unblocked file type to be downloaded. (However, blocked file types such as *.aspx and .asmx cannot be
downloaded.)

For specific instructions on configuring MIME types on Windows Server, refer to Microsoft Knowledge
Base article KB326965, "IIS 6.0 does not serve unknown MIME types" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;326965.

When publishing over HTTP, the content type (also known as MIME type) for the .application file should be
"application/x-ms-application." If you have .NET Framework 2.0 installed on the server, this will be set for you
automatically. If this is not installed, then you need to create a MIME type association for the ClickOnce application
vroot (or entire server).

If you deploy using an IIS server, run inetmgr.exe and add a new content type of "application/x-ms-application" for
the .application extension.

With ClickOnce, you can perform downloads that use HTTP compression, a Web server technology that uses the
GZIP algorithm to compress a data stream before sending the stream to the client. The client—in this case,
ClickOnce—decompresses the stream before reading the files.

If you are using IIS, you can easily enable HTTP compression. However, when you enable HTTP compression, it is
only enabled for certain file types—namely, HTML and text files. To enable compression for assemblies (.dll), XML
(.xml), deployment manifests (.application), and application manifests (.manifest), you must add these file types to
the list of types for IIS to compress. Until you add the file types to your deployment, only text and HTML files will
be compressed.

For detailed instructions for IIS, see How to specify additional document types for HTTP compression.

Troubleshoot ClickOnce deployments
Choose a ClickOnce deployment strategy
Application deployment prerequisites

http://support.microsoft.com/default.aspx?scid=kb;en-us;326965
http://go.microsoft.com/fwlink/?LinkId=178459

Security, versioning, and manifest issues in ClickOnce
deployments
5/28/2019 • 5 minutes to read • Edit Online

ClickOnce and Windows Vista User Account Control

Online application quotas and partial trust applications

Versioning issues

There are a variety of issues with ClickOnce security, application versioning, and manifest syntax and semantics
that can cause a ClickOnce deployment not to succeed.

In Windows Vista, applications by default run as a standard user, even if the current user is logged in with an
account that has administrator permissions. If an application must perform an action that requires administrator
permissions, it tells the operating system, which then prompts the user to enter their administrator credentials. This
feature, which is named User Account Control (UAC), prevents applications from making changes that may affect
the entire operating system without a user's explicit approval. Windows applications declare that they require this
permission elevation by specifying the requestedExecutionLevel attribute in the trustInfo section of their
application manifest.

Due to the risk of exposing applications to security elevation attacks, ClickOnce applications cannot request
permission elevation if UAC is enabled for the client. Any ClickOnce application that attempts to set its
requestedExecutionLevel attribute to requireAdministrator or highestAvailable will not install on Windows Vista.

In some cases, your ClickOnce application may attempt to run with administrator permissions because of installer
detection logic on Windows Vista. In this case, you can set the requestedExecutionLevel attribute in the application
manifest to asInvoker . This will cause the application itself to run without elevation. Visual Studio 2008
automatically adds this attribute to all application manifests.

If you are developing an application that requires administrator permissions for the entire lifetime of the
application, you should consider deploying the application by using Windows Installer (MSI) technology instead.
For more information, see Windows Installer basics.

If your ClickOnce application runs online instead of through an installation, it must fit within the quota set aside for
online applications. Also, a network application that runs in partial trust, such as with a restricted set of security
permissions, cannot be larger than half of the quota size.

For more information, and instructions about how to change the online application quota, see ClickOnce cache
overview.

You may experience problems if you assign strong names to your assembly and increment the assembly version
number to reflect an application update. Any assembly compiled with a reference to a strong-named assembly
must itself be recompiled, or the assembly will try to reference the older version. The assembly will try this because
the assembly is using the old version value in its bind request.

For example, say that you have a strong-named assembly in its own project with version 1.0.0.0. After compiling
the assembly, you add it as a reference to the project that contains your main application. If you update the
assembly, increment the version to 1.0.0.1, and try to deploy it without also recompiling the application, the
application will not be able to load the assembly at run time.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/security-versioning-and-manifest-issues-in-clickonce-deployments.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/extensibility/internals/windows-installer-basics

Specify individual .NET Framework assemblies in the manifest

Manifest parsing issues

Precautions when manually changing manifests or applications

Precautions with deployment provider usagePrecautions with deployment provider usage

<deploymentProvider codebase="http://myserver/myapp.application" />

This error can occur only if you are editing your ClickOnce manifests manually; you should not experience this
error if you generate your deployment using Visual Studio.

Your application will fail to load if you have manually edited a ClickOnce deployment to reference an older version
of a .NET Framework assembly. For example, if you added a reference to the System.Net assembly for a version of
the .NET Framework prior to the version specified in the manifest, then an error would occur. In general, you
should not attempt to specify references to individual .NET Framework assemblies, as the version of the .NET
Framework against which your application runs is specified as a dependency in the application manifest.

The manifest files that are used by ClickOnce are XML files, and they must be both well-formed and valid: they
must obey the XML syntax rules and only use elements and attributes defined in the relevant XML schema.

Something that can cause problems in a manifest file is selecting a name for your application that contains a
special character, such as a single or double quotation mark. The application's name is part of its ClickOnce identity.
ClickOnce currently does not parse identities that contain special characters. If your application fails to activate,
make sure that you are using only alphabetical and numeric characters for the name, and attempt to deploy it
again.

If you have manually edited your deployment or application manifests, you may have unintentionally corrupted
them. Corrupted manifest will prevent a correct ClickOnce installation. You can debug such errors at run time by
clicking Details on the ClickOnce Error dialog box, and reading the error message in the log. The log will list one
of the following messages:

A description of the syntax error, and the line number and character position where the error occurred.

The name of an element or attribute used in violation of the manifest's schema. If you have added XML
manually to your manifests, you will have to compare your additions to the manifest schemas. For more
information, see ClickOnce deployment manifest and ClickOnce application manifest.

An ID conflict. Dependency references in deployment and application manifests must be unique in both
their name and publicKeyToken attributes. If both attributes match between any two elements within a
manifest, manifest parsing will not succeed.

When you update an application manifest, you must re-sign both the application manifest and the deployment
manifest. The deployment manifest contains a reference to the application manifest that includes that file's hash
and its digital signature.

The ClickOnce deployment manifest has a deploymentProvider property which points to the full path of the
location from where the application should be installed and serviced:

This path is set when ClickOnce creates the application and is compulsory for installed applications. The path
points to the standard location where the ClickOnce installer will install the application from and search for
updates. If you use the xcopy command to copy a ClickOnce application to a different location, but do not change
the deploymentProvider property, ClickOnce will still refer back to the original location when it tries to download
the application.

NOTENOTE

See also

If you want to move or copy an application, you must also update the deploymentProvider path, so that the client
actually installs from the new location. Updating this path is mostly a concern if you have installed applications. For
online applications that are always launched through the original URL, setting the deploymentProvider is optional.
If deploymentProvider is set, it will be honored; otherwise, the URL used to start the application will be used as the
base URL to download application files.

Every time that you update the manifest you must also sign it again.

Troubleshoot ClickOnce deployments Secure ClickOnce applications Choose a ClickOnce deployment strategy

Troubleshoot specific errors in ClickOnce
deployments
4/18/2019 • 9 minutes to read • Edit Online

General errors
When you try to locate an application file, nothing occurs, or XML renders in Internet Explorer, or you receive a Run or Save As dialogWhen you try to locate an application file, nothing occurs, or XML renders in Internet Explorer, or you receive a Run or Save As dialog
boxbox

Error message says, "Unable to retrieve application. Files missing in deployment" or "Application download has been interrupted,Error message says, "Unable to retrieve application. Files missing in deployment" or "Application download has been interrupted,
check for network errors and try again later"check for network errors and try again later"

Download error when you try to install a ClickOnce application that has a .config fileDownload error when you try to install a ClickOnce application that has a .config file

This article lists the following common errors that can occur when you deploy a ClickOnce application, and
provides steps to resolve each problem.

This error is likely caused by content types (also known as MIME types) not being registered correctly on the
server or client.

First, make sure that the server is configured to associate the .application extension with content type
"application/x-ms-application."

If the server is configured correctly, check that the .NET Framework 2.0 is installed on your computer. If the .NET
Framework 2.0 is installed, and you are still seeing this problem, try uninstalling and reinstalling the .NET
Framework 2.0 to re-register the content type on the client.

This message indicates that one or more files being referenced by the ClickOnce manifests cannot be downloaded.
The easiest way to debug this error is to try to download the URL that ClickOnce says it cannot download. Here
are some possible causes:

If the log file says "(403) Forbidden" or "(404) Not found," verify that the Web server is configured so that it
does not block download of this file. For more information, see Server and Client Configuration Issues in
ClickOnce Deployments.

If the .config file is being blocked by the server, see the section "Download error when you try to install a
ClickOnce application that has a .config file" later in this article.

Determine whether this error occurred because the deploymentProvider URL in the deployment manifest is
pointing to a different location than the URL used for activation.

Ensure that all files are present on the server; the ClickOnce log should tell you which file was not found.

See whether there are network connectivity issues; you can receive this message if your client computer
went offline during the download.

By default, a Visual Basic Windows-based application includes an App.config file. There will be a problem when a
user tries to install from a Web server that uses Windows Server 2003, because that operating system blocks the
installation of .config files for security reasons. To enable the .config file to be installed, click Use ".deploy" file
extension in the Publish Options dialog box.

You also must set the content types (also known as MIME types) appropriately for .application, .manifest, and
.deploy files. For more information, see your Web server documentation.

For more information, see "Windows Server 2003: Locked-Down Content Types" in Server and client
configuration issues in ClickOnce deployments.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/troubleshooting-specific-errors-in-clickonce-deployments.md

Error message: "Application is improperly formatted;" Log file contains "XML signature is invalid"Error message: "Application is improperly formatted;" Log file contains "XML signature is invalid"

You updated your application on the server, but the client does not download the updateYou updated your application on the server, but the client does not download the update

During update you receive an error that has the following log entry: "The reference in the deployment does not match the identityDuring update you receive an error that has the following log entry: "The reference in the deployment does not match the identity
defined in the application manifest"defined in the application manifest"

First time activation from local disk or CD-ROM succeeds, but subsequent activation from Start Menu does not succeedFirst time activation from local disk or CD-ROM succeeds, but subsequent activation from Start Menu does not succeed

Error : "Cannot start the application"Error : "Cannot start the application"

PrivatePath settings in application config file are not honoredPrivatePath settings in application config file are not honored

During uninstall a message appears saying, "Failed to uninstall application"During uninstall a message appears saying, "Failed to uninstall application"

During installation, a message appears that says that the platform dependencies are not installedDuring installation, a message appears that says that the platform dependencies are not installed

Publishing with Visual Studio
Publishing in Visual Studio failsPublishing in Visual Studio fails

Ensure that you updated the manifest file and signed it again. Republish your application by using Visual Studio or
use Mage to sign the application again.

This problem might be solved by completing one of the following tasks:

Examine the deploymentProvider URL in the deployment manifest. Ensure that you are updating the bits in
the same location that deploymentProvider points to.

Verify the update interval in the deployment manifest. If this interval is set to a periodic interval, such as
one time every six hours, ClickOnce will not scan for an update until this interval has passed. You can
change the manifest to scan for an update every time that the application starts. Changing the update
interval is a convenient option during development time to verify updates are being installed, but it slows
down application activation.

Try starting the application again on the Start menu. ClickOnce may have detected the update in the
background, but will prompt you to install the bits on the next activation.

This error may occur because you have manually edited the deployment and application manifests, and have
caused the description of the identity of an assembly in one manifest to become out of sync with the other. The
identity of an assembly consists of its name, version, culture, and public key token. Examine the identity
descriptions in your manifests, and correct any differences.

ClickOnce uses the Deployment Provider URL to receive updates for the application. Verify that the location that
the URL is pointing to is correct.

This error message usually indicates that there is a problem installing this application into the ClickOnce store.
Either the application has an error or the store is corrupted. The log file might tell you where the error occurred.

You should do the following:

Verify that the identity of the deployment manifest, identity of application manifest, and identity of the main
application EXE are all unique.

Verify that your file paths are not longer than 100 characters. If your application contains file paths that are
too long, you may exceed the limitations on the maximum path you can store. Try shortening the paths and
reinstall.

To use PrivatePath (Fusion probing paths), the application must request full trust permission. Try changing the
application manifest to request full trust, and then try again.

This message usually indicates that the application has already been removed or the store is corrupted. After you
click OK, the Add/Remove Program entry will be removed.

You are missing a prerequisite in the GAC (global assembly cache) that the application needs in order to run.

Ensure that you have the right to publish to the server that you are targeting. For example, if you are logged in to
a terminal server computer as an ordinary user, not as an administrator, you probably will not have the rights

Error message: Unable to create the Web site '<site>'. The components for communicating with FrontPage Server Extensions are notError message: Unable to create the Web site '<site>'. The components for communicating with FrontPage Server Extensions are not
installed.installed.

Error message: Could not find file 'Microsoft.Windows.Common-Controls, Version=6.0.0.0, Culture=*,Error message: Could not find file 'Microsoft.Windows.Common-Controls, Version=6.0.0.0, Culture=*,
PublicKeyToken=6595b64144ccf1df, ProcessorArchitecture=*, Type=win32'PublicKeyToken=6595b64144ccf1df, ProcessorArchitecture=*, Type=win32'

Using Mage
You tried to sign with a certificate in your certificate store and a received blank message boxYou tried to sign with a certificate in your certificate store and a received blank message box

Clicking the "Don't Sign" button causes an exceptionClicking the "Don't Sign" button causes an exception

Additional errors

ERROR MESSAGE DESCRIPTION

Application cannot be started. Contact the application
publisher.

Cannot start the application. Contact the application vendor
for assistance.

These are generic error messages that occur when the
application cannot be started, and no other specific reason
can be found. Frequently this means that the application is
somehow corrupted, or that the ClickOnce store is corrupted.

Cannot continue. The application is improperly formatted.
Contact the application publisher for assistance.

Application validation did not succeed. Unable to continue.

Unable to retrieve application files. Files corrupt in
deployment.

One of the manifest files in the deployment is syntactically not
valid, or contains a hash that cannot be reconciled with the
corresponding file. This error may also indicate that the
manifest embedded inside an assembly is corrupted. Re-
create your deployment and recompile your application, or
find and fix the errors manually in your manifests.

Cannot retrieve application. Authentication error.

Application installation did not succeed. Cannot locate
applications files on the server. Contact the application
publisher or your administrator for assistance.

One or more files in the deployment cannot be downloaded
because you do not have permission to access them. This can
be caused by a 403 Forbidden error being returned by a Web
server, which may occur if one of the files in your deployment
ends with an extension that makes the Web server treat it as
a protected file. Also, a directory that contains one or more of
the application's files might require a username and password
in order to access.

required to publish to the local Web server.

If you are publishing with a URL, ensure that the destination computer has FrontPage Server Extensions enabled.

Ensure that you have the Microsoft Visual Studio Web Authoring Component installed on the machine that you
are publishing from. For Express users, this component is not installed by default. For more information, see
http://go.microsoft.com/fwlink/?LinkId=102310.

This error message appears when you attempt to publish a WPF application with visual styles enabled. To resolve
this issue, see How to: Publish a WPF Application with Visual Styles Enabled.

In the Signing dialog box, you must:

Select Sign with a stored certificate, and

Select a certificate from the list; the first certificate is not the default selection.

This issue is a known bug. All ClickOnce manifests are required to be signed. Just select one of the signing
options, and then click OK.

The following table shows some common error messages that a client-computer user may receive when the user
installs a ClickOnce application. Each error message is listed next to a description of the most probable cause for
the error.

http://go.microsoft.com/fwlink/?LinkId=102310

Cannot download the application. The application is missing
required files. Contact the application vendor or your system
administrator for assistance.

One or more of the files listed in the application manifest
cannot be found on the server. Check that you have uploaded
all the deployment's dependent files, and try again.

Application download did not succeed. Check your network
connection, or contact your system administrator or network
service provider.

ClickOnce cannot establish a network connection to the
server. Examine the server's availability and the state of your
network.

URLDownloadToCacheFile failed with HRESULT '<number>'.
An error occurred trying to download '<file>'.

If a user has set Internet Explorer Advanced Security option
"Warn if changing between secure and not secure mode" on
the deployment target computer, and if the setup URL of the
ClickOnce application being installed is redirected from a non-
secure to a secure site (or vice-versa), the installation will fail
because the Internet Explorer warning interrupts it.

To resolve this error, you can do one of the following tasks:

- Clear the security option.
- Make sure the setup URL is not redirected in such a way
that changes security modes.
- Remove the redirection completely and point to the actual
setup URL.

An error has occurred writing to the hard disk. There might
be insufficient space available on the disk. Contact the
application vendor or your system administrator for
assistance.

This may indicate insufficient disk space for storing the
application, but it may also indicate a more general I/O error
when you are trying to save the application files to the drive.

Cannot start the application. There is not enough available
space on the disk.

The hard disk is full. Clear off space and try to run the
application again.

Too many deployed activations are attempting to load at
once.

ClickOnce limits the number of different applications that can
start at the same time. This is largely to help protect against
malicious attempts to instigate denial-of-service attacks
against the local ClickOnce service; users who try to start the
same application repeatedly, in rapid succession, will only end
up with a single instance of the application.

Shortcuts cannot be activated over the network. Shortcuts to a ClickOnce application can only be started on
the local hard disk. They cannot be started by opening a URL
that points to a shortcut file on a remote server.

The application is too large to run online in partial trust.
Contact the application vendor or your system administrator
for assistance.

An application that runs in partial trust cannot be larger than
half of the size of the online application quota, which by
default is 250 MB.

ERROR MESSAGE DESCRIPTION

See also
ClickOnce security and deployment
Troubleshoot ClickOnce deployments

Debug ClickOnce applications that use
System.Deployment.Application
5/28/2019 • 2 minutes to read • Edit Online

In Visual Studio, ClickOnce deployment allows you to configure how an application is updated. However, if you
need to use and customize advanced ClickOnce deployment features, you will need to access the deployment
object model provided by System.Deployment.Application. You can use the System.Deployment.Application APIs
for advanced tasks such as:

Creating an "Update Now" option in your application

Conditional, on-demand downloads of various application components

Updates integrated directly into the application

Guaranteeing that the client application is always up-to-date

Because the System.Deployment.Application APIs work only when an application is deployed with
ClickOnce technology, the only way to debug them is to deploy the application using ClickOnce, attach to it,
then debug it. It can be difficult to attach the debugger early enough, because this code often runs when the
application starts up and executes before you can attach the debugger. A solution is to place breaks (or
stops, for Visual Basic projects) before your update check code or on-demand code.

The recommended debugging technique is as follows:

1. Before you start, make sure the symbol (.pdb) and source files are archived.

2. Deploy version 1 of the application.

3. Create a new blank solution. From the File menu, click New, then Project. In the New Project dialog box,
open the Other Project Types node, then select the Visual Studio Solutions folder. In the Templates
pane, select Blank Solution.

4. Add the archived source location to the properties for this new solution. In Solution Explorer, right-click
the solution node, then click Properties. In the Property Pages dialog box, select Debug Source Files,
then add the directory of the archived source code. Otherwise, the debugger will find the out-of-date source
files, since the source file paths are recorded in the .pdb file. If the debugger uses out-of-date source files,
you see a message telling you that the source does not match.

5. Make sure the debugger can find the .pdb files. If you have deployed them with your application, the
debugger finds them automatically. It always looks next to the assembly in question first. Otherwise, you
will need to add the archive path to the Symbol file (.pdb) locations (to access this option, from the Tools
menu, click Options, then open the Debugging node, and click Symbols).

6. Debug what happens between the CheckForUpdate and Download / Update method calls.

For example, the update code might be as follows:

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/debugging-clickonce-applications-that-use-system-deployment-application.md
https://docs.microsoft.com/dotnet/api/system.deployment.application
https://docs.microsoft.com/dotnet/api/system.deployment.application
https://docs.microsoft.com/dotnet/api/system.deployment.application

See also

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 If My.Application.Deployment.IsNetworkDeployed Then

 If (My.Application.Deployment.CheckForUpdate()) Then

 My.Application.Deployment.Update()
 Application.Restart()

 End If

 End If
 End Sub

7. Deploy version 2.

8. Attempt to attach the debugger to the version 1 application as it downloads an update for version 2.
Alternatively you can use the System.Diagnostics.Debugger.Break method or simply Stop in Visual Basic.
Of course, you should not leave these method calls in production code.

For example, assume you are developing a Windows Forms application, and you have an event handler for
this method with the update logic in it. To debug this, simply attach before the button is pressed, then set a
breakpoint (make sure that you open the appropriate archived file and set the breakpoint there).

Use the IsNetworkDeployed property to invoke the System.Deployment.Application APIs only when the
application is deployed; the APIs should not be invoked during debugging in Visual Studio.

System.Deployment.Application

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.isnetworkdeployed
https://docs.microsoft.com/dotnet/api/system.deployment.application
https://docs.microsoft.com/dotnet/api/system.deployment.application

Application deployment prerequisites
4/23/2019 • 4 minutes to read • Edit Online

Bootstrapping and ClickOnce deployment

NOTENOTE

To have your application to install and run successfully, first install all components upon which your application is
dependent onto the target computer. For example, most applications created using Visual Studio have a
dependency on the .NET Framework. In this case, the correct version of the common language runtime must be
present on the destination computer before the application is installed.

You can select these prerequisites in the Prerequisites Dialog Box and install the .NET Framework and any
other redistributable as a part of your installation. This practice is known as bootstrapping. Visual Studio
generates a Windows executable program named Setup.exe, also known as a bootstrapper. The bootstrapper is
responsible for installing these prerequisites before your application runs. For more information about selecting
these prerequisites, see Prerequisites dialog box.

Each prerequisite is a bootstrapper package. A bootstrapper package is a group of directories and files containing
the manifest files that describe how the prerequisites are installed. If your application prerequisites are not listed
in the Prerequisite Dialog Box, you can create custom bootstrapper packages and add them to Visual Studio.
Then you can select the prerequisites in the Prerequisites Dialog Box. For more information, see Create
bootstrapper packages.

By default, bootstrapping is enabled for ClickOnce deployment. The bootstrapper generated for ClickOnce
deployment is signed. You can disable bootstrapping for a component, but only if you are sure that the correct
version of the component is already installed on all target computers.

Before installing an application on a client computer, ClickOnce examines the client to ensure that it has the
requirements specified in the application manifest. These include the following requirements:

The minimum required version of the common language runtime, which is specified as an assembly
dependency in the application manifest.

The minimum required version of the Windows operating system required by the application, as specified
in the application manifest using the <osVersionInfo> element. (See <dependency> element.)

The minimum version of all assemblies that must be preinstalled in the global assembly cache (GAC), as
specified by assembly dependency declarations in the assembly manifest.

ClickOnce can detect missing prerequisites, and you can install prerequisites by using a bootstrapper. For
more information, see How to: Install prerequisites with a ClickOnce application.

To change the values in the manifests generated by tools such as Visual Studio and MageUI.exe, you need to edit the
application manifest in a text editor, and then re-sign both the application and deployment manifests. For more information,
see How to: Re-sign application and deployment manifests.

If you use Visual Studio and ClickOnce to deploy your application, the bootstrapper packages that are selected by
default depend on the version of the .NET Framework in the solution. However, if you change the target .NET
Framework version, you must update the options in the Prerequisites Dialog Box manually.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/application-deployment-prerequisites.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/prerequisites-dialog-box

TARGET .NET FRAMEWORK SELECTED BOOTSTRAPPER PACKAGES

.NET Framework 4 Client Profile .NET Framework 4 Client Profile

Windows Installer 3.1

.NET Framework 4 .NET Framework 4

Windows Installer 3.1

Bootstrapping and MSBuild

Bootstrapper (Setup.exe) command-line arguments

COMMAND-LINE ARGUMENT DESCRIPTION

-?, -h, -help Displays a Help dialog box.

-url, -componentsurl Shows the stored URL and components url for this set up.

-url= location Sets the URL where Setup.exe will look for the ClickOnce
application.

-componentsurl= location Sets the URL where Setup.exe will look for the dependencies,
such as the .NET Framework.

-homesite= true | false When true , downloads the dependencies from the
preferred location on the vendor's site. This setting overrides
the -componentsurl setting. When false , downloads the
dependencies from the URL specified by -componentsurl.

Operating system support

With ClickOnce deployment, the Publish.htm page generated by the ClickOnce Publish Wizard points either to a
link that installs only the application, or to a link that installs both the application and the bootstrapped
components.

If you generate the bootstrapper by using the ClickOnce Publish Wizard or the Publish Page in Visual Studio, the
Setup.exe is automatically signed. However, if you want to use your customer's certificate to sign the bootstrapper,
you can sign the file later.

If you do not use Visual Studio, but rather compile your applications on the command line, you can create the
ClickOnce bootstrapping application by using a Microsoft Build Engine (MSBuild) task. For more information, see
GenerateBootstrapper task.

As an alternative to bootstrapping, you can pre-deploy components using an electronic software distribution
system, such as Microsoft Systems Management Server (SMS).

The Setup.exe generated by Visual Studio and the MSBuild tasks supports the following set of command-line
arguments. Any other arguments are forwarded to the application installer.

If you change any bootstrapper options, you must change the unsigned bootstrapper and then later sign the
bootstrapper file.

The Visual Studio bootstrapper is not supported on Windows Server 2008 Server Core or Windows Server 2008

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/msbuild/generatebootstrapper-task

See also

R2 Server Core, as they provide a low-maintenance server environment with limited functionality. For example,
the Server Core installation option only supports the .NET Framework 3.5 Server Core profile, which cannot run
the Visual Studio features that depend on the full .NET Framework.

Choose a ClickOnce deployment strategy
ClickOnce security and deployment

Deploy prerequisites for 64-bit applications
4/16/2019 • 2 minutes to read • Edit Online

Prerequisites

REDISTRIBUTABLE X64 SUPPORT IA64 SUPPORT

Visual Studio Tools for Office runtime Yes No

Visual C++ 2010 Runtime Libraries
(IA64)

No Yes

Visual C++ 2010 Runtime Libraries
(x64)

Yes No

Microsoft .NET Framework 4 (x86 and
x64)

Yes

Microsoft .NET Framework 4 Client
Profile (x86 and x64)

Yes

See also

ClickOnce deployment supports the installation of applications on 64-bit platforms. The target platforms are x86
for 32-bit platforms, x64 for machines supporting the AMD64 and EM64T instruction sets, and Itanium for the
64-bit Itanium processor.

The following table lists the redistributables that you can use as prerequisites for your 64-bit application's
installation.

If you select a prerequisite that does not have 64-bit components, you may see a warning stating that the selected
packages are not available for the 64-bit platform.

Deploy applications, services, and components
How to: Install prerequisites with a ClickOnce application
64-bit applications

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deploying-prerequisites-for-64-bit-applications.md
https://docs.microsoft.com/dotnet/framework/64-bit-apps

Create bootstrapper packages
2/21/2019 • 4 minutes to read • Edit Online

Create custom bootstrapper packages

```xml
CustomBootstrapperPackage
  product.xml
  CustomBootstrapper.msi
  de
    eula.rtf
    package.xml
  en
    eula.rtf
    package.xml
  ja
    eula.rtf
    package.xml
```

The Setup program is a generic installer that can be configured to detect and install redistributable components
such as Windows Installer (.msi) files and executable programs. The installer is also known as a bootstrapper. It is
programmed through a set of XML manifests that specify the metadata to manage the installation of the
component. Each redistributable component, or prerequisite, that appears in the Prerequisites dialog box for
ClickOnce is a bootstrapper package. A bootstrapper package is a group of directories and files that contain
manifest files that describe how the prerequisite should be installed.

The bootstrapper first detects whether any of the prerequisites are already installed. If prerequisites are not
installed, first the bootstrapper shows the license agreements. Second, after the end user accepts the license
agreements, the installation begins for the prerequisites. Otherwise, if all the prerequisites are detected, the
bootstrapper just starts the application installer.

You can generate the bootstrapper manifests by using the XML Editor in Visual Studio. To see an example of
creating a bootstrapper package, see Walkthrough: Create a custom bootstrapper with a privacy prompt.

To create a bootstrapper package, you have to create a product manifest and, for each localized version of a
component, a package manifest as well.

The product manifest, product.xml, contains any language-neutral metadata for the package. This contains
metadata common to all the localized versions of the redistributable component. To create this file, see
How to: Create a Product Manifest.

The package manifest, package.xml, contains language-specific metadata; it typically contains localized
error messages. A component must have at least one package manifest for each localized version of that
component. To create this file, see How to: Create a Package Manifest.

After these files are created, put the product manifest file into a folder named for the custom bootstrapper. The
package manifest file goes into a folder named for the locale. For example, if the package manifest file is for
English redistribution, put the file into a folder called en. Repeat this process for each locale, such as ja for
Japanese and de for German. The final custom bootstrapper package could have the following folder structure.

Next, copy the redistributable files into the bootstrapper folder location. For more information, see How to: Create
a localized bootstrapper package.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/creating-bootstrapper-packages.md

\Program Files\Microsoft Visual Studio 14.0\SDK\Bootstrapper\Packages

\Program Files (x86)\Microsoft Visual Studio 14.0\SDK\Bootstrapper\Packages

HKLM\Software\Microsoft\GenericBootstrapper\11.0

HKLM\Software\Wow6432Node\Microsoft\GenericBootstrapper\11.0

PROPERTY DESCRIPTION

ApplicationName The name of the application.

ProcessorArchitecture The processor and bits-per-word of the platform targeted by
an executable. Values include the following:

- Intel
- IA64
- AMD64

Version9x The version number for Microsoft Windows 95, Windows 98,
or Windows ME operating systems. The syntax of the version
is Major.Minor.ServicePack.

VersionNT The version number for the Windows NT, Windows 2000,
Windows XP, Windows Vista, Windows Server 2008, or
Windows 7 operating systems. The syntax of the version is
Major.Minor.ServicePack.

VersionMSI The version of the Windows Installer assembly (msi.dll) to run
during the installation.

AdminUser This property is set if the user has administrator privileges.
Values are true or false.

or

You can also determine the bootstrapper folder location from the Path value in the following registry key:

On 64-bit systems, use the following registry key:

Each redistributable component appears in its own subfolder under the packages directory. The product manifest
and redistributable files must be put into this subfolder. Localized versions of the component and package
manifests must be put in subfolders named according to Culture Name.

After these files are copied into the bootstrapper folder, the bootstrapper package automatically appears in the
Visual Studio Prerequisites dialog box. If your custom bootstrapper package does not appear, close and then
reopen the Prerequisites dialog box. For more information, see Prerequisites dialog box.

The following table shows the properties that are automatically populated by the bootstrapper.

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/prerequisites-dialog-box
https://docs.microsoft.com/windows/desktop/Msi/version9x
https://docs.microsoft.com/windows/desktop/Msi/versionnt
https://docs.microsoft.com/windows/desktop/Msi/versionmsi
https://docs.microsoft.com/windows/desktop/Msi/adminuser

InstallMode The installation mode indicates where the component needs
to be installed from. Values include the following:

- HomeSite - prerequisites are installed from the vendor's
Web site.
- SpecificSite - prerequisites are installed from the location
that you select.
- SameSite - prerequisites are installed from the same location
as the application.

PROPERTY DESCRIPTION

Separate redistributables from application installations

<?xml version="1.0" encoding="UTF-8"?>
<FileList Redist="Acme.DataWidgets" >
<File AssemblyName="Acme.DataGrid" Version="1.0.0.0" PublicKeyToken="b03f5f7f11d50a3a" Culture="neutral"
ProcessorArchitecture="MSIL" InGAC="true" />
</FileList>

See also

You can prevent your redistributable files from being deployed in Setup projects. To do this, create a
redistributable list in the RedistList folder in your .NET Framework directory:

%ProgramFiles%\Microsoft.NET\RedistList

The redistributable list is an XML file that you should name using the following format: <Company Name>.
<Component Name>.RedistList.xml. So, for example, if the component is called DataWidgets made by Acme, use
Acme.DataWidgets.RedistList.xml. An example of the redistributable list's contents might resemble this:

How to: Install prerequisites with a ClickOnce application
Prerequisites dialog box
Product and package schema reference
Use the Visual Studio 2005 bootstrapper to kick-start your installation

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/prerequisites-dialog-box
http://go.microsoft.com/fwlink/?LinkId=107537

How to: Create a product manifest
4/18/2019 • 2 minutes to read • Edit Online

Create the product manifest
To create the product manifestTo create the product manifest

To deploy prerequisites for your application, you can create a bootstrapper package. A bootstrapper package
contains a single product manifest file but a package manifest for each locale. The package manifest contains
localization-specific aspects of your package. This includes strings, end-user license agreements, and the language
packs.

For more information about package manifests, see How to: Create a package manifest.

<Product
xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
ProductCode="Custom.Bootstrapper.Package">

<RelatedProducts>
 <DependsOnProduct Code="Microsoft.Windows.Installer.3.1" />
 </RelatedProducts>

<PackageFiles>
 <PackageFile Name="CorePackage.msi"/>
</PackageFiles>

<Commands>
 <Command PackageFile="CorePackage.msi" Arguments="">

1. Create a directory for the bootstrapper package. This example uses C:\package.

2. In Visual Studio, create a new XML file called product.xml, and save it to the C:\package folder.

3. Add the following XML to describe the XML namespace and product code for the package. Replace the
product code with a unique identifier for the package.

4. Add XML to specify that the package has a dependency. This example uses a dependency on Microsoft
Windows Installer 3.1.

5. Add XML to list all the files that are in the bootstrapper package. This example uses the package file name
CorePackage.msi.

6. Copy or move the CorePackage.msi file to the C:\package folder.

7. Add XML to install the package by using bootstrapper commands. The bootstrapper automatically adds the
/qn flag to the .msi file, which will install silently. If the file is an .exe, the bootstrapper runs the .exe file by
using the shell. The following XML shows no arguments to CorePackage.msi, but you can put command
line argument into the Arguments attribute.

8. Add the following XML to check if this bootstrapper package is installed. Replace the product code with the
GUID for the redistributable component.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-create-a-product-manifest.md

Example

<InstallChecks>
 <MsiProductCheck
 Property="IsMsiInstalled"
 Product="{XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"/>
</InstallChecks>

<InstallConditions>
 <BypassIf
 Property="IsMsiInstalled"
 Compare="ValueGreaterThan" Value="0"/>
 <FailIf Property="AdminUser"
 Compare="ValueNotEqualTo" Value="True"
 String="NotAnAdmin"/>
</InstallConditions>

<ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" String="GeneralFailure"/>
</ExitCodes>

 </Command>
</Commands>

9. Add XML to change the bootstrapper behavior depending on if the bootstrapper component is already
installed. If the component is installed, the bootstrapper package does not run. The following XML checks if
the current user is an administrator because this component requires administrative privileges.

10. Add XML to set exit codes if the installation is successful and if a reboot is necessary. The following XML
demonstrates the Fail and FailReboot exit codes, which indicate that the bootstrapper will not continue
installing packages.

11. Add the following XML to end the section for bootstrapper commands.

12. Move the C:\package folder to the Visual Studio bootstrapper directory. For Visual Studio 2010, this is the
\Program Files\Microsoft SDKs\Windows\v7.0A\Bootstrapper\Packages directory.

The product manifest contains installation instructions for custom prerequisites.

<?xml version="1.0" encoding="utf-8" ?>
<Product
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 ProductCode="Custom.Bootstrapper.Package">

 <RelatedProducts>
 <DependsOnProduct Code="Microsoft.Windows.Installer.3.1" />
 </RelatedProducts>

 <PackageFiles>
 <PackageFile Name="CorePackage.msi"/>
 </PackageFiles>

 <InstallChecks>
 <MsiProductCheck Product="IsMsiInstalled"
 Property="{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"/>
 </InstallChecks>

 <Commands>
 <Command PackageFile="CorePackage.msi" Arguments="">

 <InstallConditions>
 <BypassIf Property="IsMsiInstalled"
 Compare="ValueGreaterThan" Value="0"/>
 <FailIf Property="AdminUser"
 Compare="ValueNotEqualTo" Value="True"
 String="NotAnAdmin"/>
 </InstallConditions>

 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" String="GeneralFailure"/>
 </ExitCodes>
 </Command>
 </Commands>
</Product>

See also
Product and package schema reference

How to: Create a package manifest
4/18/2019 • 2 minutes to read • Edit Online

Create the package manifest
To create the package manifestTo create the package manifest

Example

To deploy prerequisites for your application, you can use a bootstrapper package. A bootstrapper package
contains a single product manifest file but a package manifest for each locale. Shared functionality across different
localized versions should go into the product manifest.

For more information about product manifests, see How to: Create a product manifest.

<Package
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 Name="DisplayName"
 Culture="Culture"
 LicenseAgreement="eula.txt">

<PackageFiles>
 <PackageFile Name="eula.txt"/>
</PackageFiles>

 <Strings>
 <String Name="DisplayName">Custom Bootstrapper Package</String>
 <String Name="CultureName">en</String>
 <String Name="NotAnAdmin">You must be an administrator to install
this package.</String>
 <String Name="GeneralFailure">A general error has occurred while
installing this package.</String>
</Strings>

1. Create a directory for the bootstrapper package. This example uses C:\package.

2. Create a subdirectory with the name of the locale, such as en for English.

3. In Visual Studio, create an XML file that is named package.xml, and save it to the C:\package\en folder.

4. Add XML to list the name of the bootstrapper package, the culture for this localized package manifest, and
the optional license agreement. The following XML uses the variables DisplayName and Culture , which are
defined in a later element.

5. Add XML to list all the files that are in the locale-specific directory. The following XML uses a file that is
named eula.txt that is applicable for the en locale.

6. Add XML to define localizable strings for the bootstrapper package. The following XML adds error strings
for the en locale.

7. Copy the C:\package folder to the Visual Studio bootstrapper directory. For Visual Studio 2010, this is the
\Program Files\Microsoft SDKs\Windows\v7.0A\Bootstrapper\Packages directory.

The package manifest contains locale-specific information, such as error messages, software license terms, and

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-create-a-package-manifest.md

<?xml version="1.0" encoding="utf-8" ?>
<Package
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 Name="DisplayName"
 Culture="Culture"
 LicenseAgreement="eula.txt">

 <PackageFiles>
 <PackageFile Name="eula.txt"/>
 </PackageFiles>

 <Strings>
 <String Name="DisplayName">Custom Bootstrapper Package</String>
 <String Name="Culture">en</String>
 <String Name="NotAnAdmin">You must be an administrator to install this package.</String>
 <String Name="GeneralFailure">A general error has occurred while
installing this package.</String>
 </Strings>
</Package>

See also

language packs.

Product and package schema reference

How to: Create a localized bootstrapper package
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To create a localized bootstrapper packageTo create a localized bootstrapper package

After you create a bootstrapper package, you can create localized versions of the bootstrapper package by creating
two more files for each locale: a software license terms file (such as a eula.rtf) and a package manifest
(package.xml).

By default, Visual Studio 2010 includes localized bootstrapper packages only for .NET Framework 4, .NET
Framework 4 Client Profile, F# Runtime 2.0, and F# Runtime 4.0. You can create localized packages for other
bootstrappers by completing three steps.

1. Create a folder that is named after the locale name in \Program Files\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\<BootstrapperPackageName>.

2. Create a file that contains the software license terms for the bootstrapper package and put it in the new
folder.

3. Create a package manifest named package.xml, update the strings and culture, and put the file in the new
folder. If you have already created a bootstrapper of Visual Studio in the target language, you can copy the
Visual Studio package.xml file and modify it in this step.

If you are using a Setup project to deploy applications, you can localize your application by changing the Localization
property.

Your computer might show different names or locations for some of the Visual Studio user interface elements in this article.
You may be using a different edition of Visual Studio or different environment settings. For more information, see Personalize
the IDE.

LOCALE FOLDER NAME

Chinese (Simplified) zh-Hans

Chinese (Traditional) zh-Hant

Czech cs

1. Create a folder that is named after the locale name.

On 32-bit computers, create the folder in the \Program Files\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\<BootstrapperPackageName>\ folder.

On 64-bit computers, create the folder in the \Program Files (86)\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\<BootstrapperPackageName>\ folder.

The following table shows the folder names that you can use to match a locale.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/how-to-create-a-localized-bootstrapper-package.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/personalizing-the-visual-studio-ide

To create a bootstrapper package for .NET Framework 3.5 Service Pack 1 localized in FrenchTo create a bootstrapper package for .NET Framework 3.5 Service Pack 1 localized in French

German de

English en

Spanish es

French fr

Italian it

Korean ko

Japanese ja

Polish pl

Portuguese (Brazil) pt-BR

Russian ru

Turkish tr

LOCALE FOLDER NAME

2. Create a file that contains the software license terms for the bootstrapper package and put it in the new
folder.

3. Create a package manifest named package.xml and put it in the new folder. For more information, see How
to: Create a package manifest.

4. Update the <Strings> section of the package manifest so that the strings are in the correct language for the
locale.

5. Change the <String Name="Culture"> value to match the folder name.

6. Save the package.xml file.

1. Create a folder that is named fr. The folder name must match the locale name.

On 32-bit computers, create the folder in the \Program Files\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\DotNetFX35SP1\ folder.

On 64-bit computers, create the folder in the \Program Files (86)\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\DotNetFX35SP1\ folder.

2. Put a localized version of the software license terms into the fr folder.

3. Copy the \Program Files (x86)\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages\DotNetFX35SP1\en\package.xml file to the fr folder, and
open the file in the XML Designer.

4. Update the <Strings> section of the package manifest so that the error strings are in French.

5. Change the <String Name="Culture"> value to fr.

6. Save the package.xml file.

See also
Create bootstrapper packages
Application deployment prerequisites
How to: Create a package manifest

Walkthrough: Create a custom bootstrapper with a
privacy prompt
4/23/2019 • 8 minutes to read • Edit Online

NOTENOTE

Prerequisites

Create an Update Consent dialog box

To create a consent dialog boxTo create a consent dialog box

You can configure ClickOnce applications to automatically update when assemblies with newer file versions and
assembly versions become available. To make sure that your customers consent to this behavior, you can display a
privacy prompt to them. Then, they can choose whether to grant permission to the application to update
automatically. If the application is not allowed to update automatically, it does not install.

Your computer might show different names or locations for some of the Visual Studio user interface elements in this article.
You may be using a different edition of Visual Studio or different environment settings. For more information, see Personalize
the IDE.

You need the following components to complete this walkthrough:

Visual Studio 2010.

To display a privacy prompt, create an application that asks the reader to consent to automatic updates for the
application.

1. On the File menu, point to New, and then click Project.

2. In the New Project dialog box, click Windows, and then click WindowsFormsApplication.

3. For the Name, type ConsentDialog, and then click OK.

4. In the designer, click the form.

5. In the Properties window, change the Text property to Update Consent Dialog.

6. In the Toolbox, expand All Windows Forms, and drag a Label control to the form.

7. In the designer, click the label control.

8. In the Properties window, change the Text property under Appearance to the following:

The application that you are about to install checks for the latest updates on the Web. By clicking on "I
Agree", you authorize the application to check for and install updates automatically from the Internet.

9. In the Toolbox, drag a Checkbox control to the middle of the form.

10. In the Properties window, change the Text property under Layout to I Agree.

11. In the Toolbox, drag a Button control to the lower left of the form.

12. In the Properties window, change the Text property under Layout to Proceed.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/walkthrough-creating-a-custom-bootstrapper-to-show-a-privacy-prompt.md
https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/personalizing-the-visual-studio-ide

private void checkBox1_CheckedChanged(object sender, EventArgs e)
{
 ProceedButton.Enabled = !ProceedButton.Enabled;
}

Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox1.CheckedChanged
 ProceedButton.Enabled = Not ProceedButton.Enabled
End Sub

public Form1()
{
 InitializeComponent();
 ProceedButton.Enabled = false;
}

Public Sub New()
 InitializeComponent()
 ProceedButton.Enabled = False
End Sub

public bool accepted = false;

Public accepted As Boolean = False

private void ProceedButton_Click(object sender, EventArgs e)
{
 if (ProceedButton.Enabled)
 {
 accepted = true;
 this.Close();
 }
}

13. In the Properties window, change the (Name) property under Design to ProceedButton.

14. In the Toolbox, drag a Button control to the bottom right of the form.

15. In the Properties window, change the Text property under Layout to Cancel.

16. In the Properties window, change the (Name) property under Design to CancelButton.

17. In the designer, double-click the I Agree checkbox to generate the CheckedChanged event handler.

18. In the Form1 code file, add the following code for the CheckedChanged event handler.

19. Update the class constructor to disable the Proceed button by default.

20. In the Form1 code file, add the following code for a Boolean variable to track if the end user has consented
to online updates.

21. In the designer, double-click the Proceed button to generate the Click event handler.

22. In the Form1 code file, add the following code to the Click event handler for the Proceed button.

Private Sub ProceedButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ProceedButton.Click
 If ProceedButton.Enabled Then
 accepted = True
 Me.Close()
 End If
End Sub

private void CancelButton_Click(object sender, EventArgs e)
{
 this.Close();
}

Private Sub CancelButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CancelButton.Click
 Me.Close()
End Sub

23. In the designer, double-click the Cancel button to generate the Click event handler.

24. In the Form1 code file, add the following code for the Click event handler for the Cancel button.

25. Update the application to return an error if the end user does not consent to online updates.

For Visual Basic developers only:

Module Module1

 Function Main() As Integer
 Application.EnableVisualStyles()
 Application.SetCompatibleTextRenderingDefault(False)
 Dim f As New Form1()
 Application.Run(f)
 If (Not f.accepted) Then
 Return -1
 Else
 Return 0
 End If
 End Function

End Module

a. In Solution Explorer, click ConsentDialog.

b. On the Project menu, click Add Module, and then click Add.

c. In the Module1.vb code file, add the following code.

d. On the Project menu, click ConsentDialog Properties, and then click the Application tab.

e. Uncheck Enable application framework.

f. In the Startup object drop-down menu, select Module1.

Create the custom bootstrapper package

Step 1: To create the bootstrapper directoryStep 1: To create the bootstrapper directory

Step 2: To create the product.xml manifest fileStep 2: To create the product.xml manifest file

NOTENOTE

static int Main()
{
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Form1 f = new Form1();
 Application.Run(f);
 if (!f.accepted)
 return -1;
 else
 return 0;
}

Disabling the application framework disables features such as Windows XP visual styles, application events,
splash screen, single instance application, and more. For more information, see Application Page, Project
Designer (Visual Basic).

For Visual C# developers only:

Open the Program.cs code file, and add the following code.

26. On the Build menu, click BuildSolution.

To show the privacy prompt to end users, you can create a custom bootstrapper package for the Update Consent
Dialog application and include it as a prerequisite in all of your ClickOnce applications.

This procedure demonstrates how to create a custom bootstrapper package by creating the following documents:

A product.xml manifest file to describe the contents of the bootstrapper.

A package.xml manifest file to list the localization-specific aspects of your package, such as strings and the
software license terms.

A document for the software license terms.

NOTENOTE

NOTENOTE

1. Create a directory named UpdateConsentDialog in the %PROGRAMFILES%\Microsoft
SDKs\Windows\v7.0A\Bootstrapper\Packages.

You may need administrative privileges to create this folder.

2. In the UpdateConsentDialog directory, create a subdirectory named en.

Create a new directory for each locale. For example, you can add subdirectories for the fr and de locales. These
directories would contain the French and German strings and language packs, if necessary.

1. Create a text file called product.xml.

2. In the product.xml file, add the following XML code. Make sure that you do not overwrite the existing XML

https://docs.microsoft.com/en-us/visualstudio/vs-2017-2019-dest/ide/reference/application-page-project-designer-visual-basic

Step 3: To create the package.xml manifest file and the software license termsStep 3: To create the package.xml manifest file and the software license terms

<Product
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 ProductCode="Microsoft.Sample.EULA">
 <!-- Defines the list of files to be copied on build. -->
 <PackageFiles CopyAllPackageFiles="false">
 <PackageFile Name="ConsentDialog.exe"/>
 </PackageFiles>

 <!-- Defines how to run the Setup package.-->
 <Commands >
 <Command PackageFile = "ConsentDialog.exe" Arguments=''>
 <ExitCodes>
 <ExitCode Value="0" Result="Success" />
 <ExitCode Value="-1" Result="Fail" String="AU_Unaccepted" />
 <DefaultExitCode Result="Fail"
 FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 </Commands>

</Product>

code.

3. Save the file to the UpdateConsentDialog bootstrapper directory.

<Package
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 Name="DisplayName"
 Culture="Culture"
 LicenseAgreement="eula.rtf">
 <PackageFiles>
 <PackageFile Name="eula.rtf"/>
 </PackageFiles>

 <!-- Defines a localizable string table for error messages. -->
 <Strings>
 <String Name="DisplayName">Update Consent Dialog</String>
 <String Name="Culture">en</String>
 <String Name="AU_Unaccepted">The automatic update agreement is not accepted.</String>
 <String Name="GeneralFailure">A failure occurred attempting to launch the setup.</String>
 </Strings>
</Package>

NOTENOTE

1. Create a text file called package.xml.

2. In the package.xml file, add the following XML code to define the locale and include the software license
terms. Make sure that you do not overwrite the existing XML code.

3. Save the file to the en subdirectory in the UpdateConsentDialog bootstrapper directory.

4. Create a document called eula.rtf for the software license terms.

The software license terms should include information about licensing, warranties, liabilities, and local laws. These files
should be locale-specific, so make sure that the file is saved in a format that supports MBCS or UNICODE characters.
Consult your legal department about the content of the software license terms.

5. Save the document to the en subdirectory in the UpdateConsentDialog bootstrapper directory.

Set the Update Consent Application as a prerequisite

To set the Update Consent Application as a prerequisiteTo set the Update Consent Application as a prerequisite

Create and test the Setup program

To create and test the Setup program by not clicking I agreeTo create and test the Setup program by not clicking I agree

To create and test the Setup program by clicking I agreeTo create and test the Setup program by clicking I agree

6. If necessary, create a new package.xml manifest file and a new eula.rtf document for the software license
terms for each locale. For example, if you created subdirectories for the fr and de locales, create separate
package.xml manifest files and software license terms and save them to the fr and de subdirectories.

In Visual Studio, you can set the Update Consent application as a prerequisite.

NOTENOTE

1. In Solution Explorer, click the name of your application that you want to deploy.

2. On the Project menu, click ProjectName Properties.

3. Click the Publish page, and then click Prerequisites.

4. Select Update Consent Dialog.

You may have to close and reopen Visual Studio to see the Update Consent Dialog in the Prerequisites Dialog Box.

5. Click OK.

After you set the Update Consent application as a prerequisite, you can generate the installer and bootstrapper for
your application.

1. In Solution Explorer, click the name of your application that you want to deploy.

2. On the Project menu, click ProjectName Properties.

3. Click the Publish page, and then click Publish Now.

4. If the publish output does not open automatically, navigate to the publish output.

5. Run the Setup.exe program.

The Setup program shows the Update Consent Dialog software license agreement.

6. Read the software license agreement, and then click Accept.

The Update Consent Dialog application appears and shows the following text: The application that you are
about to install checks for the latest updates on the Web. By clicking on I Agree, you authorize the
application to check for updates automatically on the Internet.

7. Close the application or click Cancel.

The application shows an error: An error occurred while installing system components for
ApplicationName. Setup cannot continue until all system components have been successfully installed.

8. Click Details to show the following error message: Component Update Consent Dialog has failed to install
with the following error message: "The automatic update agreement is not accepted." The following
components failed to install: - Update Consent Dialog

9. Click Close.

1. In Solution Explorer, click the name of your application that you want to deploy.

See also

2. On the Project menu, click ProjectName Properties.

3. Click the Publish page, and then click Publish Now.

4. If the publish output does not open automatically, navigate to the publish output.

5. Run the Setup.exe program.

The Setup program shows the Update Consent Dialog software license agreement.

6. Read the software license agreement, and then click Accept.

The Update Consent Dialog application appears and shows the following text: The application that you are
about to install checks for the latest updates on the Web. By clicking on I Agree, you authorize the
application to check for updates automatically on the Internet.

7. Click I Agree, and then click Proceed.

The application starts to install.

8. If the Application Install dialog box appears, click Install.

Application deployment prerequisites
Create bootstrapper packages
How to: Create a product manifest
How to: Create a package manifest
Product and package schema reference

Product and package schema reference
2/21/2019 • 3 minutes to read • Edit Online

ELEMENT DESCRIPTION ATTRIBUTES

<Product> Element Required top-level element for product
files.

None

<Package> Element Required top-level element for package
files.

Culture

Name

EULA

<RelatedProducts> Element Optional element for product files. The
other products that this product either
installs or depends upon.

None

<InstallChecks> Element Required element. Lists the
dependency checks to perform on the
local computer during installation.

None

<Commands> Element Required element. Executes one or
more installation checks as described
by InstallChecks , and denotes
which package to install should the
check fail.

None

<PackageFiles> Element Required element. Lists the packages
that might be installed by this
installation process.

None

<Strings> Element Required element. Stores localized
versions of the product name and error
strings.

None

Remarks

A product file is an XML manifest that describes all of the external dependencies required by a ClickOnce
application. Examples of external dependencies include the .NET Framework and the Microsoft Data Access
Components (MDAC). A package file is similar to a product file but is used to install the culture-dependent
components of a dependency, such as localized assemblies, license agreements, and documentation.

The product and packages file consists of either a top-level Product or Package element, each of which contains
the following elements.

The package schema is consumed by Setup.exe, a stub program generated by the MS Build bootstrapping task
that contains little hard-coded logic of its own. The schema drives every aspect of the installation process.

InstallChecks the tests that setup.exe should perform for the existence of a given package. PackageFiles lists all
of the packages that the setup process might have to install, should a given test fail. Each Command entry under
Commands executes one of the tests described by InstallChecks , and specifies which PackageFile to run

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/product-and-package-schema-reference.md

Example

<?xml version="1.0" encoding="utf-8" ?>

<Product
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 ProductCode="Microsoft.Net.Framework.2.0"
>

 <RelatedProducts>
 <IncludesProduct Code="Microsoft.Windows.Installer.2.0" />
 </RelatedProducts>

 <!-- Defines list of files to be copied on build -->
 <PackageFiles>
 <PackageFile Name="instmsia.exe" HomeSite="InstMsiAExe"
PublicKey="3082010A0282010100AA99BD39A81827F42B3D0B4C3F7C772EA7CBB5D18C0DC23A74D793B5E0A04B3F595ECE454F9A7929
F149CC1A47EE55C2083E1220F855F2EE5FD3E0CA96BC30DEFE58C82732D08554E8F09110BBF32BBE19E5039B0B861DF3B0398CB8FD0B1
D3C7326AC572BCA29A215908215E277A34052038B9DC270BA1FE934F6F335924E5583F8DA30B620DE5706B55A4206DE59CBF2DFA6BD15
4771192523D2CB6F9B1979DF6A5BF176057929FCC356CA8F440885558ACBC80F464B55CB8C96774A87E8A94106C7FF0DE968576372C36
957B443CF323A30DC1BE9D543262A79FE95DB226724C92FD034E3E6FB514986B83CD0255FD6EC9E036187A96840C7F8E203E6CF050203
010001"/>
 <PackageFile Name="WindowsInstaller-KB884016-v2-x86.exe" HomeSite="Msi30Exe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441
FB647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD34597
1E686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2
CA9CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB917587158568
66523D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD0203
010001"/>
 <PackageFile Name="dotnetfx.exe" HomeSite="DotNetFXExe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441
FB647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD34597
1E686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2
CA9CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB917587158568
66523D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD0203
010001"/>
 <PackageFile Name="dotnetchk.exe"/>
 </PackageFiles>

 <InstallChecks>
 <ExternalCheck Property="DotNetInstalled" PackageFile="dotnetchk.exe" />
 <RegistryCheck Property="IEVersion" Key="HKLM\Software\Microsoft\Internet Explorer" Value="Version"
/>
 </InstallChecks>

 <!-- Defines how to invoke the setup for the .NET Framework redist -->
 <!-- TODO: Needs EstrimatedTempSpace, LogFile, and an update of EstimatedDiskSpace -->
 <Commands Reboot="Defer">
 <Command PackageFile="instmsia.exe"
 Arguments= ' /q /c:"msiinst /delayrebootq"'
 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="VersionNT" Compare="ValueExists"/>
 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="2.0"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="SuccessReboot"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>

should the test fail. You can use the Strings element to localize product names and error messages, so that you
can use one single installation binary to install your application for any number of languages.

The following code example demonstrates a complete product file for installing the .NET Framework.

 </Command>
 <Command PackageFile="WindowsInstaller-KB884016-v2-x86.exe"
 Arguments= '/quiet /norestart'
 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="Version9x" Compare="ValueExists"/>
 <BypassIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"/>
 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="3.0"/>
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 <Command PackageFile="dotnetfx.exe"
 Arguments=' /q:a /c:"install /q /l"'
 EstimatedInstalledBytes="21000000"
 EstimatedInstallSeconds="300">

 <!-- These checks determine whether the package is to be installed -->
 <InstallConditions>
 <!-- Either of these properties indicates the .NET Framework is already installed -->
 <BypassIf Property="DotNetInstalled" Compare="ValueNotEqualTo" Value="0"/>

 <!-- Block install if user does not have admin privileges -->
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>

 <!-- Block install on Windows 95 -->
 <FailIf Property="Version9X" Compare="VersionLessThan" Value="4.10"
String="InvalidPlatformWin9x"/>

 <!-- Block install on Windows 2000 SP 2 or less -->
 <FailIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"
String="InvalidPlatformWinNT"/>

 <!-- Block install if Internet Explorer 5.01 or greater is not present -->
 <FailIf Property="IEVersion" Compare="ValueNotExists" String="InvalidPlatformIE" />
 <FailIf Property="IEVersion" Compare="VersionLessThan" Value="5.01"
String="InvalidPlatformIE" />

 <!-- Block install if the platform is not x86 -->
 <FailIf Property="ProcessorArchitecture" Compare="ValueNotEqualTo" Value="Intel"
String="InvalidPlatformArchitecture" />
 </InstallConditions>

 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <ExitCode Value="4097" Result="Fail" String="AdminRequired"/>
 <ExitCode Value="4098" Result="Fail" String="WindowsInstallerComponentFailure"/>
 <ExitCode Value="4099" Result="Fail" String="WindowsInstallerImproperInstall"/>
 <ExitCode Value="4101" Result="Fail" String="AnotherInstanceRunning"/>
 <ExitCode Value="4102" Result="Fail" String="OpenDatabaseFailure"/>
 <ExitCode Value="4113" Result="Fail" String="BetaNDPFailure"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>

 </Command>
 </Commands>
</Product>

See also
ClickOnce deployment manifest

ClickOnce application manifest

<Product> element (bootstrapper)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<Product
ProductCode
>
 <RelatedProducts>
 <IncludesProduct
 Code
 >
 </RelatedProducts>

 <InstallChecks>
 <AssemblyCheck
 Property
 Name
 PublicKeyToken
 Version
 Language
 ProcessorArchitecture
 />
 <RegistryCheck
 Property
 Key
 Value
 />
 <ExternalCheck
 PackageFile
 Property
 Arguments
 Log
 />
 <FileCheck
 Property
 FileName
 SearchPath
 SpecialFolder
 SearchDepth
 />
 <MsiProductCheck
 Property
 Product
 Feature
 />
 <RegistryFileCheck
 Property
 Key
 Value
 File
 SearchDepth
 />
 </InstallChecks>

 <Commands
 Reboot
 >
 <Command
 PackageFile

The Product element is the top-level XML element inside of a product file.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/product-element-bootstrapper.md

 PackageFile
 Arguments
 EstimatedInstallSeconds
 EstimatedDiskBytes
 EstimatedTempBytes
 Log
 >
 <InstallConditions>
 <BypassIf
 Property
 Compare
 Value
 Schedule
 />
 <FailIf
 Property
 Compare
 Value
 String
 Schedule
 />
 </InstallConditions>
 <ExitCodes>
 <ExitCode
 Value
 Result
 String
 />
 </ExitCodes>
 </Command>
 </Commands>

 <PackageFiles
 CopyAllComponents
 >
 <PackageFile
 Name
 Path
 HomeSite
 PublicKey
 />
 </PackageFiles>

 <Schedules>
 <Schedule
 Name
 >
 <BuildList />
 <BeforePackage />
 <AfterPackage />
 </Schedule>
 </Schedules>
</Package>

Elements and attributes

ATTRIBUTE DESCRIPTION

ProductCode A unique identifier for the product.

Example

The Product element is required in a product file. It has the following attribute.

<?xml version="1.0" encoding="utf-8" ?>

<Product
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 ProductCode="Microsoft.Net.Framework.2.0"
>

 <RelatedProducts>
 <IncludesProduct Code="Microsoft.Windows.Installer.2.0" />
 </RelatedProducts>

 <!-- Defines list of files to be copied on build -->
 <PackageFiles>
 <PackageFile Name="instmsia.exe" HomeSite="InstMsiAExe"
PublicKey="3082010A0282010100AA99BD39A81827F42B3D0B4C3F7C772EA7CBB5D18C0DC23A74D793B5E0A04B3F595ECE454F9A7929F
149CC1A47EE55C2083E1220F855F2EE5FD3E0CA96BC30DEFE58C82732D08554E8F09110BBF32BBE19E5039B0B861DF3B0398CB8FD0B1D3
C7326AC572BCA29A215908215E277A34052038B9DC270BA1FE934F6F335924E5583F8DA30B620DE5706B55A4206DE59CBF2DFA6BD15477
1192523D2CB6F9B1979DF6A5BF176057929FCC356CA8F440885558ACBC80F464B55CB8C96774A87E8A94106C7FF0DE968576372C36957B
443CF323A30DC1BE9D543262A79FE95DB226724C92FD034E3E6FB514986B83CD0255FD6EC9E036187A96840C7F8E203E6CF05020301000
1"/>
 <PackageFile Name="WindowsInstaller-KB884016-v2-x86.exe" HomeSite="Msi30Exe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441F
B647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD345971E
686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2CA9
CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB9175871585686652
3D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD020301000
1"/>
 <PackageFile Name="dotnetfx.exe" HomeSite="DotNetFXExe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441F
B647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD345971E
686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2CA9
CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB9175871585686652
3D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD020301000
1"/>
 <PackageFile Name="dotnetchk.exe"/>
 </PackageFiles>

 <InstallChecks>
 <ExternalCheck Property="DotNetInstalled" PackageFile="dotnetchk.exe" />
 <RegistryCheck Property="IEVersion" Key="HKLM\Software\Microsoft\Internet Explorer" Value="Version" />
 </InstallChecks>

 <!-- Defines how to invoke the setup for the .NET Framework redist -->
 <!-- TODO: Needs EstrimatedTempSpace, LogFile, and an update of EstimatedDiskSpace -->
 <Commands Reboot="Defer">
 <Command PackageFile="instmsia.exe"
 Arguments= ' /q /c:"msiinst /delayrebootq"'
 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="VersionNT" Compare="ValueExists"/>
 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="2.0"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="SuccessReboot"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 <Command PackageFile="WindowsInstaller-KB884016-v2-x86.exe"
 Arguments= '/quiet /norestart'
 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="Version9x" Compare="ValueExists"/>
 <BypassIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"/>
 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="3.0"/>

The following code example shows a complete product file for installing the .NET Framework.

 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="3.0"/>
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 <Command PackageFile="dotnetfx.exe"
 Arguments=' /q:a /c:"install /q /l"'
 EstimatedInstalledBytes="21000000"
 EstimatedInstallSeconds="300">

 <!-- These checks determine whether the package is to be installed -->
 <InstallConditions>
 <!-- Either of these properties indicates the .NET Framework is already installed -->
 <BypassIf Property="DotNetInstalled" Compare="ValueNotEqualTo" Value="0"/>

 <!-- Block install if user does not have admin privileges -->
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>

 <!-- Block install on Windows 95 -->
 <FailIf Property="Version9X" Compare="VersionLessThan" Value="4.10"
String="InvalidPlatformWin9x"/>

 <!-- Block install on Windows 2000 SP 2 or less -->
 <FailIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"
String="InvalidPlatformWinNT"/>

 <!-- Block install if Internet Explorer 5.01 or greater is not present -->
 <FailIf Property="IEVersion" Compare="ValueNotExists" String="InvalidPlatformIE" />
 <FailIf Property="IEVersion" Compare="VersionLessThan" Value="5.01" String="InvalidPlatformIE"
/>

 <!-- Block install if the platform is not x86 -->
 <FailIf Property="ProcessorArchitecture" Compare="ValueNotEqualTo" Value="Intel"
String="InvalidPlatformArchitecture" />
 </InstallConditions>

 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <ExitCode Value="4097" Result="Fail" String="AdminRequired"/>
 <ExitCode Value="4098" Result="Fail" String="WindowsInstallerComponentFailure"/>
 <ExitCode Value="4099" Result="Fail" String="WindowsInstallerImproperInstall"/>
 <ExitCode Value="4101" Result="Fail" String="AnotherInstanceRunning"/>
 <ExitCode Value="4102" Result="Fail" String="OpenDatabaseFailure"/>
 <ExitCode Value="4113" Result="Fail" String="BetaNDPFailure"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>

 </Command>
 </Commands>
</Product>

See also
Product and package schema reference

<Package> element (bootstrapper)
4/16/2019 • 2 minutes to read • Edit Online

Syntax
<Package
 Culture
 Name
 LicenseAgreement
>
 <InstallChecks>
 <AssemblyCheck
 Property
 Name
 PublicKeyToken
 Version
 Language
 ProcessorArchitecture
 />
 <RegistryCheck
 Property
 Key
 Value
 />
 <ExternalCheck
 PackageFile
 Property
 Arguments
 Log
 />
 <FileCheck
 Property
 FileName
 SearchPath
 SpecialFolder
 SearchDepth
 />
 <MsiProductCheck
 Property
 Product
 Feature
 />
 <RegistryFileCheck
 Property
 Key
 Value
 File
 SearchDepth
 />
 </InstallChecks>

 <Commands
 Reboot
 >
 <Command
 PackageFile
 Arguments
 EstimatedInstallSeconds
 EstimatedDiskBytes
 EstimatedTempBytes

The Package element is the top-level XML element inside of a package file.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/package-element-bootstrapper.md

 EstimatedTempBytes
 Log
 >
 <InstallConditions>
 <BypassIf
 Property
 Compare
 Value
 Schedule
 />
 <FailIf
 Property
 Compare
 Value
 String
 Schedule
 />
 </InstallConditions>
 <ExitCodes>
 <ExitCode
 Value
 Result
 String
 />
 </ExitCodes>
 </Command>
 </Commands>

 <PackageFiles
 CopyAllComponents
 >
 <PackageFile
 Name
 Path
 HomeSite
 PublicKey
 />
 </PackageFiles>

 <Strings>
 <String
 Name
 >
 </String>
 </Strings>

 <Schedules>
 <Schedule
 Name
 >
 <BuildList />
 <BeforePackage />
 <AfterPackage />
 </Schedule>
 </Schedules>
</Package>

Elements and attributes

ATTRIBUTE DESCRIPTION

The Package element is required. It has the following attributes.

Culture Required. Defines the culture for this package, which
determines the language to be used. This attribute is a key
into the Strings element, which lists culture-specific strings
for product names and error messages during the installation.

Name Required. The name of the package displayed to the developer
within a tool such as Visual Studio. This attribute is a key into
the Strings element, which should contain a String

element with the Name and Culture properties set to
match the Name and Culture properties of Package .

LicenseAgreement Optional. Specifies the name of the file in the distribution
package which contains the End-User License Agreement
(EULA). This file can be either plain text (.txt) or Rich Text
Format. (.rtf)

ATTRIBUTE DESCRIPTION

Example
The following code example shows a complete package file for redistributing the .NET Framework 2.0.

<?xml version="1.0" encoding="utf-8" ?>

<Package
 xmlns="http://schemas.microsoft.com/developer/2004/01/bootstrapper"
 Name="DisplayName"
 Culture="Culture"
 LicenseAgreement="eula.rtf"
>

 <PackageFiles>
 <PackageFile Name="eula.rtf"/>
 </PackageFiles>

 <!-- Defines a localizable string table for error messages-->
 <Strings>
 <String Name="DisplayName">.NET Framework 2.0</String>
 <String Name="Culture">en</String>
 <String Name="AdminRequired">Administrator permissions are required to install the .NET Framework 2.0.
Contact your administrator.</String>
 <String Name="InvalidPlatformWin9x">Installation of the .NET Framework 2.0 is not supported on Windows
95. Contact your application vendor.</String>
 <String Name="InvalidPlatformWinNT">Installation of the .NET Framework 2.0 is not supported on Windows
NT 4.0. Contact your application vendor.</String>
 <String Name="InvalidPlatformIE">Installation of the .NET Framework 2.0 requires Internet Explorer
5.01 or greater. Contact your application vendor.</String>
 <String Name="InvalidPlatformArchitecture">This version of the .NET Framework 2.0 is not supported on
a 64-bit operating system. Contact your application vendor.</String>
 <String Name="WindowsInstallerImproperInstall">Due to an error with Windows Installer, the
installation of the .NET Framework 2.0 cannot proceed.</String>
 <String Name="AnotherInstanceRunning">Another instance of setup is already running. The running
instance must complete before this setup can proceed.</String>
 <String Name="BetaNDPFailure">A beta version of the .NET Framework was detected on the computer.
Uninstall any previous beta versions of .NET Framework before continuing.</String>
 <String Name="GeneralFailure">A failure occurred attempting to install the .NET Framework 2.0.
</String>
 <String Name="DotNetFXExe">http://go.microsoft.com/fwlink/?LinkId=37283</String>
 <String Name="InstMsiAExe">http://go.microsoft.com/fwlink/?LinkId=37285</String>
 <String Name="Msi30Exe">http://go.microsoft.com/fwlink/?LinkId=37287</String>
 </Strings>

</Package>

See also
Product and package schema reference

<RelatedProducts> element (bootstrapper)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<RelatedProducts>
 <DependsOnProduct
 Code
 />
 <EitherProducts>
 <DependsOnProduct
 Code
 />
 </EitherProducts>
 <IncludesProduct
 Code
 />
</RelatedProducts>

Elements and attributes

DependsOnProduct

ATTRIBUTE DESCRIPTION

Code The code name of the included product, as specified by the
ProductCode attribute of the Product element. For more

information, see <Product> Element.

EitherProducts

IncludesProduct

The RelatedProducts element defines other products that either depend upon or are included in the current
product.

The RelatedProducts element is a child of the Product element. It has no attributes.

The DependsOnProduct element signifies that the current product depends upon the named product, and that the
named product should be installed before the current one. It is a child of the RelatedProducts element. A
RelatedProducts element might have one or more DependsOnProduct elements.

DependsOnProduct has the following attribute.

The EitherProducts element defines zero or more DependsOnProduct elements, and has no attributes. At least one
DependsOnProduct in this set must be installed before the current product. A RelatedProducts element can have

zero or more EitherProducts elements.

The IncludesProduct element signifies that a product is included with the current install, and does not require a
separate installation. It is a child of the RelatedProducts element. A RelatedProducts element might have one or
more IncludesProduct elements.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/relatedproducts-element-bootstrapper.md

ATTRIBUTE DESCRIPTION

Code The code name of the included product, as specified by the
ProductCode attribute of the Product element. For more

information, see <Product> Element.

Example

<RelatedProducts>
 <IncludesProduct Code="Microsoft.Windows.Installer.2.0" />
</RelatedProducts>

See also

IncludesProduct has the following attribute.

The following code example specifies that the Microsoft Installer is installed with the .NET Framework, and
therefore will not need a separate installation.

<Product> element

<InstallChecks> element (bootstrapper)
4/16/2019 • 7 minutes to read • Edit Online

Syntax
<InstallChecks>
 <AssemblyCheck
 Property
 Name
 PublicKeyToken
 Version
 Language
 ProcessorArchitecture
 />
 <RegistryCheck
 Property
 Key
 Value
 />
 <ExternalCheck
 PackageFile
 Property
 Arguments
 />
 <FileCheck
 Property
 FileName
 SearchPath
 SpecialFolder
 SearchDepth
 />
 <MsiProductCheck
 Property
 Product
 Feature
 />
 <RegistryFileCheck
 Property
 Key
 Value
 FileName
 SearchDepth
 />
</InstallChecks>

AssemblyCheck

The InstallChecks element supports starting a variety of tests against the local computer to make sure that all of
the appropriate prerequisites for an application have been installed.

This element is an optional child element of InstallChecks . For each instance of AssemblyCheck , the bootstrapper
will make sure that the assembly identified by the element exists in the global assembly cache (GAC). It contains
no elements, and has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/installchecks-element-bootstrapper.md

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

Name Required. The fully qualified name of the assembly to check.

PublicKeyToken Required. The abbreviated form of the public key associated
with this strongly named assembly. All assemblies stored in
the GAC must have a name, a version, and a public key.

Version Required. The version of the assembly.

The version number has the format <major version>.<minor
version>.<build version>.<revision version>.

Language Optional. The language of a localized assembly. Default is
neutral .

ProcessorArchitecture Optional. The computer processor targeted by this
installation. Default is msil .

ExternalCheck

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

PackageFile Required. The external program to execute. The program must
be part of the setup distribution package.

Arguments Optional. Supplies command-line arguments to the executable
named by PackageFile .

FileCheck

This element is an optional child element of InstallChecks . For each instance of ExternalCheck , the bootstrapper
will execute the named external program in a separate process, and store its exit code in the property indicated by
Property . ExternalCheck is useful for implementing complex dependency checks, or when the only way to check

for the existence of a component is to instantiate it.

ExternalCheck contains no elements, and has the following attributes.

This element is an optional child element of InstallChecks . For each instance of FileCheck , the bootstrapper will
determine whether the named file exists, and return the version number of the file. If the file does not have a
version number, the bootstrapper sets the property named by Property to 0. If the file does not exist, Property is
not set to any value.

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

FileName Required. The name of the file to find.

SearchPath Required. The disk or folder in which to look for the file. This
must be a relative path if SpecialFolder is assigned;
otherwise, it must be an absolute path.

SpecialFolder Optional. A folder that has special significance either to
Windows or to ClickOnce. The default is to interpret
SearchPath as an absolute path. Valid values include the

following:

AppDataFolder . The application data folder for this
ClickOnce application; specific to the current user.

CommonAppDataFolder . The application data folder used by
all users.

CommonFilesFolder . The Common Files folder for the
current user.

LocalDataAppFolder . The data folder for non-roaming
applications.

ProgramFilesFolder . The standard Program Files folder for
32-bit applications.

StartUpFolder . The folder that contains all applications
launched at system startup.

SystemFolder . The folder that contains 32-bit system DLLs.

WindowsFolder . The folder that contains the Windows
system installation.

WindowsVolume . The drive or partition that contains the
Windows system installation.

SearchDepth Optional. The depth at which to search sub-folders for the
named file. The search is depth-first. The default is 0, which
restricts the search to the top-level folder specified by
SpecialFolder and SearchPath.

MsiProductCheck

FileCheck contains no elements, and has the following attributes.

This element is an optional child element of InstallChecks . For each instance of MsiProductCheck , the
bootstrapper checks to see whether the specified Microsoft Windows Installer installation has run until it is
completed. The property value is set depending on the state of that installed product. A positive value indicates the
product is installed, 0 or -1 indicates it is not installed. (Please see the Windows Installer SDK function

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

Product Required. The GUID for the installed product.

Feature Optional. The GUID for a specific feature of the installed
application.

RegistryCheck

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

Key Required. The name of the registry key.

Value Optional. The name of the registry value to retrieve. The
default is to return the text of the default value. Value must
be either a String or a DWORD.

RegistryFileCheck

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to store the result. This
property can be referenced from a test underneath the
InstallConditions element, which is a child of the
Command element. For more information, see <Commands>

Element.

MsiQueryFeatureState for more information.) . If Windows Installer is not installed on the computer, Property is
not set.

MsiProductCheck contains no elements, and has the following attributes.

This element is an optional child element of InstallChecks . For each instance of RegistryCheck , the bootstrapper
checks to see whether the specified registry key exists, or whether it has the indicated value.

RegistryCheck contains no elements, and has the following attributes.

This element is an optional child element of InstallChecks . For each instance of RegistryFileCheck , the
bootstrapper retrieves the version of the specified file, first attempting to retrieve the path to the file from the
specified registry key. This is particularly useful if you want to look up a file in a directory specified as a value in
the registry.

RegistryFileCheck contains no elements, and has the following attributes.

Key Required. The name of the registry key. Its value is interpreted
as the path to a file, unless the File attribute is set. If this
key does not exist, Property is not set.

Value Optional. The name of the registry value to retrieve. The
default is to return the text of the default value. Value must
be a String.

FileName Optional. The name of a file. If specified, the value obtained
from the registry key is assumed to be a directory path, and
this name is appended to it. If not specified, the value
returned from the registry is assumed to be the full path to a
file.

SearchDepth Optional. The depth at which to search sub-folders for the
named file. The search is depth-first. The default is 0, which
restricts the search to the top-level folder specified by the
registry key's value.

ATTRIBUTE DESCRIPTION

Remarks

Example

<InstallChecks>
 <ExternalCheck Property="DotNetInstalled" PackageFile="dotnetchk.exe" />
 <RegistryCheck Property="IEVersion" Key="HKLM\Software\Microsoft\Internet Explorer" Value="Version" />
</InstallChecks>

InstallConditions

FailIf If any FailIf condition evaluates to true, the package will
fail. The rest of the conditions will not be evaluated.

BypassIf If any BypassIf condition evaluates to true, the package will
be bypassed. The rest of the conditions will not be evaluated.

Predefined properties

While the elements underneath InstallChecks define the tests to run, they do not execute them. To execute the
tests, you must create Command elements underneath the Commands element.

The following code example demonstrates the InstallChecks element as it is used in the product file for the .NET
Framework.

When InstallChecks are evaluated, they produce properties. The properties are then used by InstallConditions

to determine whether a package should install, bypass, or fail. The following table lists the InstallConditions :

The following table lists the BypassIf and FailIf elements:

PROPERTY NOTES POSSIBLE VALUES

Version9X Version number of a Windows 9X
operating system.

4.10 = Windows 98

VersionNT Version number of a Windows NT-
based operating system.

Major.Minor.ServicePack

5.0 = Windows 2000

5.1.0 = Windows XP

5.1.2 = Windows XP Professional SP2

5.2.0 = Windows Server 2003

VersionNT64 Version number of a 64-bit Windows
NT-based operating system.

Same as mentioned earlier.

VersionMsi Version number of the Windows
Installer service.

2.0 = Windows Installer 2.0

AdminUser Specifies whether a user has
administrator privileges on a Windows
NT-based operating system.

0 = no administrator privileges

1 = administrator privileges

<!-- Block install on Windows 95 -->
 <FailIf Property="Version9X" Compare="VersionLessThan" Value="4.10" String="InvalidPlatform"/>

See also

For example, to block installation on a computer running Windows 95, use code such as the following:

<Commands> element
Product and package schema reference

<Commands> element (bootstrapper)
2/21/2019 • 5 minutes to read • Edit Online

Syntax
<Commands
 Reboot
>
 <Command
 PackageFile
 Arguments
 EstimatedInstallSeconds
 EstimatedDiskBytes
 EstimatedTempBytes
 Log
 >
 <InstallConditions>
 <BypassIf
 Property
 Compare
 Value
 Schedule
 />
 <FailIf
 Property
 Compare
 Value
 String
 Schedule
 />
 </InstallConditions>
 <ExitCodes>
 <ExitCode
 Value
 Result
 String
 />
 </ExitCodes>
 </Command>
</Commands>

Elements and attributes

ATTRIBUTE DESCRIPTION

The Commands element implements tests described by the elements underneath the InstallChecks element, and
declares which package the ClickOnce bootstrapper should install if the test fails.

The Commands element is required. The element has the following attribute.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/commands-element-bootstrapper.md

Reboot Optional. Determines whether the system should restart if
any of the packages return a restart exit code. The following
list shows the valid values:

Defer . The restart is deferred until some future time.

Immediate . Causes an immediate restart if one of the
packages returned a restart exit code.

None . Causes any restart requests to be ignored.

The default is Immediate .

ATTRIBUTE DESCRIPTION

Command

ATTRIBUTE DESCRIPTION

PackageFile Required. The name of the package to install should one or
more of the conditions specified by InstallConditions

return false. The package must be defined in the same file by
using a PackageFile element.

Arguments Optional. A set of command line arguments to pass into the
package file.

EstimatedInstallSeconds Optional. The estimated time, in seconds, it will take to install
the package. This value determines the size of the progress
bar the bootstrapper displays to the user. The default is 0, in
which case no time estimate is specified.

EstimatedDiskBytes Optional. The estimated amount of disk space, in bytes, that
the package will occupy after the installation is finished. This
value is used in hard disk space requirements that the
bootstrapper displays to the user. The default is 0, in which
case the bootstrapper does not display any hard disk space
requirements.

EstimatedTempBytes Optional. The estimated amount of temporary disk space, in
bytes, that the package will require.

Log Optional. The path to the log file that the package generates,
relative to the root directory of the package.

InstallConditions

BypassIf

The Command element is a child element of the Commands element. A Commands element can have one or more
Command elements. The element has the following attributes.

The InstallConditions element is a child of the Command element. Each Command element can have at most one
InstallConditions element. If no InstallConditions element exists, the package specified by Condition will

always run.

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to test. The property
must previously have been defined by a child of the
InstallChecks element. For more information, see

<InstallChecks> Element.

Compare Required. The type of comparison to perform. The following
list shows the valid values:

ValueEqualTo , ValueNotEqualTo , ValueGreaterThan ,
ValueGreaterThanOrEqualTo , ValueLessThan ,
ValueLessThanOrEqualTo , VersionEqualTo ,
VersionNotEqualTo , VersionGreaterThan ,
VersionGreaterThanOrEqualTo , VersionLessThan ,
VersionLessThanOrEqualTo , ValueExists ,
ValueNotExists

Value Required. The value to compare with the property.

Schedule Optional. The name of a Schedule tag that defines when
this rule should be evaluated.

FailIf

ATTRIBUTE DESCRIPTION

Property Required. The name of the property to test. The property
must previously have been defined by a child of the
InstallChecks element. For more information, see

<InstallChecks> Element.

Compare Required. The type of comparison to perform. The following
list shows the valid values:

ValueEqualTo , ValueNotEqualTo , ValueGreaterThan ,
ValueGreaterThanOrEqualTo , ValueLessThan ,
ValueLessThanOrEqualTo , VersionEqualTo ,
VersionNotEqualTo , VersionGreaterThan ,
VersionGreaterThanOrEqualTo , VersionLessThan ,
VersionLessThanOrEqualTo , ValueExists ,
ValueNotExists

Value Required. The value to compare with the property.

The BypassIf element is a child of the InstallConditions element, and describes a positive condition under
which the command should not be executed. Each InstallConditions element can have zero or more BypassIf

elements.

BypassIf has the following attributes.

The FailIf element is a child of the InstallConditions element, and describes a positive condition under which
the installation should stop. Each InstallConditions element can have zero or more FailIf elements.

FailIf has the following attributes.

String Optional. The text to display to the user upon failure.

Schedule Optional. The name of a Schedule tag that defines when
this rule should be evaluated.

ATTRIBUTE DESCRIPTION

ExitCodes

ExitCode

ATTRIBUTE DESCRIPTION

Value Required. The exit code value to which this ExitCode

element applies.

Result Required. How the installation should react to this exit code.
The following list shows the valid values:

Success . Flags the package as successfully installed.

SuccessReboot . Flags the package as successfully installed,
and instructs the system to restart.

Fail . Flags the package as failed.

FailReboot . Flags the package as failed, and instructs the
system to restart.

String Optional. The value to display to the user in response to this
exit code.

FormatMessageFromSystem Optional. Determines whether to use the system-provided
error message corresponding to the exit code, or use the
value provided in String . Valid values are true , which
means to use the system-provided error, and false , which
means to use the string provided by String . The default is
false . If this property is false , but String is not set,

the system-provided error will be used.

Example

<Commands Reboot="Immediate">
 <Command PackageFile="instmsia.exe"
 Arguments= ' /q /c:"msiinst /delayrebootq"'
 EstimatedInstallSeconds="20" >

The ExitCodes element is a child of the Command element. The ExitCodes element contains one or more
ExitCode elements, which determine what the installation should do in response to an exit code from a package.

There can be one optional ExitCode element underneath a Command element. ExitCodes has no attributes.

The ExitCode element is a child of the ExitCodes element. The ExitCode element determines what the
installation should do in response to an exit code from a package. ExitCode contains no child elements, and has
the following attributes.

The following code example defines commands for installing the .NET Framework 2.0.

 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="VersionNT" Compare="ValueExists"/>
 BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="2.0"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="SuccessReboot"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 <Command PackageFile="WindowsInstaller-KB884016-v2-x86.exe"
 Arguments= '/quiet /norestart'
 EstimatedInstallSeconds="20" >
 <InstallConditions>
 <BypassIf Property="Version9x" Compare="ValueExists"/>
 <BypassIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"/>
 <BypassIf Property="VersionMsi" Compare="VersionGreaterThanOrEqualTo" Value="3.0"/>
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>
 </InstallConditions>
 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="1641" Result="SuccessReboot"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>
 </Command>
 <Command PackageFile="dotnetfx.exe"
 Arguments=' /q:a /c:"install /q /l"'
 EstimatedInstalledBytes="21000000"
 EstimatedInstallSeconds="300">

 <!-- These checks determine whether the package is to be installed -->
 <InstallConditions>
 <!-- Either of these properties indicates the .NET Framework is already installed -->
 <BypassIf Property="DotNetInstalled" Compare="ValueNotEqualTo" Value="0"/>

 <!-- Block install if user does not have adminpermissions -->
 <FailIf Property="AdminUser" Compare="ValueEqualTo" Value="false" String="AdminRequired"/>

 <!-- Block install on Windows 95 -->
 <FailIf Property="Version9X" Compare="VersionLessThan" Value="4.10"
String="InvalidPlatformWin9x"/>

 <!-- Block install on Windows 2000 SP 2 or less -->
 <FailIf Property="VersionNT" Compare="VersionLessThan" Value="5.0.3"
String="InvalidPlatformWinNT"/>

 <!-- Block install if Internet Explorer 5.01 or later is not present -->
 <FailIf Property="IEVersion" Compare="ValueNotExists" String="InvalidPlatformIE" />
 <FailIf Property="IEVersion" Compare="VersionLessThan" Value="5.01" String="InvalidPlatformIE"
/>

 <!-- Block install if the operating system does not support x86 -->
 <FailIf Property="ProcessorArchitecture" Compare="ValueNotEqualTo" Value="Intel"
String="InvalidPlatformArchitecture" />
 </InstallConditions>

 <ExitCodes>
 <ExitCode Value="0" Result="Success"/>
 <ExitCode Value="3010" Result="SuccessReboot"/>
 <ExitCode Value="4097" Result="Fail" String="AdminRequired"/>
 <ExitCode Value="4098" Result="Fail" String="WindowsInstallerComponentFailure"/>
 <ExitCode Value="4099" Result="Fail" String="WindowsInstallerImproperInstall"/>
 <ExitCode Value="4101" Result="Fail" String="AnotherInstanceRunning"/>
 <ExitCode Value="4102" Result="Fail" String="OpenDatabaseFailure"/>
 <ExitCode Value="4113" Result="Fail" String="BetaNDPFailure"/>
 <DefaultExitCode Result="Fail" FormatMessageFromSystem="true" String="GeneralFailure" />
 </ExitCodes>

 </ExitCodes>

 </Command>
</Commands>

See also
Product and package schema reference
<InstallChecks> element

<PackageFiles> element (bootstrapper)
4/16/2019 • 2 minutes to read • Edit Online

Syntax
<PackageFiles
 CopyAllPackageFiles
>
 <PackageFile
 Name
 HomeSite
 CopyOnBuild
 PublicKey
 Hash
 />
</PackageFiles>

Elements and attributes

ATTRIBUTE DESCRIPTION

CopyAllPackageFiles Optional. If set to false , the installer will only download files
referenced from the Command element. If set to true , all
files will be downloaded.

If set to IfNotHomesite , the installer will behave the same as
if False if ComponentsLocation is set to HomeSite , and
otherwise will behave the same as if True . This setting can
be useful to allow packages that are themselves bootstrappers
to execute their own behavior in a HomeSite scenario.

The default is true .

PackageFile

ATTRIBUTE DESCRIPTION

The PackageFiles element contains PackageFile elements, which define the installation packages executed as a
result of the Command element.

The PackageFiles element has the following attribute.

The PackageFile element is a child of the PackageFiles element. A PackageFiles element must have at least one
PackageFile element.

PackageFile has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/packagefiles-element-bootstrapper.md

Name Required. The name of the package file. This is the name that
the Command element will reference when it defines the
conditions under which a package installs. This value is also
used as a key into the Strings table to retrieve the localized
name that tools such as Visual Studio will use to describe the
package.

HomeSite Optional. The location of the package on the remote server, if
it is not included with the installer.

CopyOnBuild Optional. Specifies whether the bootstrapper should copy the
package file onto the disk at build time. The default is true.

PublicKey The encrypted public key of the package's certificate signer.
Required if HomeSite is used; otherwise, optional.

Hash Optional. An SHA1 hash of the package file. This is used to
verify the integrity of the file at install time. If the identical
hash cannot be computed from the package file, the package
will not be installed.

ATTRIBUTE DESCRIPTION

Example

<PackageFiles>
 <PackageFile Name="instmsia.exe" HomeSite="InstMsiAExe"
PublicKey="3082010A0282010100AA99BD39A81827F42B3D0B4C3F7C772EA7CBB5D18C0DC23A74D793B5E0A04B3F595ECE454F9A7929F
149CC1A47EE55C2083E1220F855F2EE5FD3E0CA96BC30DEFE58C82732D08554E8F09110BBF32BBE19E5039B0B861DF3B0398CB8FD0B1D3
C7326AC572BCA29A215908215E277A34052038B9DC270BA1FE934F6F335924E5583F8DA30B620DE5706B55A4206DE59CBF2DFA6BD15477
1192523D2CB6F9B1979DF6A5BF176057929FCC356CA8F440885558ACBC80F464B55CB8C96774A87E8A94106C7FF0DE968576372C36957B
443CF323A30DC1BE9D543262A79FE95DB226724C92FD034E3E6FB514986B83CD0255FD6EC9E036187A96840C7F8E203E6CF05020301000
1"/>
 <PackageFile Name="WindowsInstaller-KB884016-v2-x86.exe" HomeSite="Msi30Exe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441F
B647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD345971E
686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2CA9
CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB9175871585686652
3D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD020301000
1"/>
 <PackageFile Name="dotnetfx.exe" HomeSite="DotNetFXExe"
PublicKey="3082010A0282010100B22D8709B55CDF5599EB5262E7D3F4E34571A932BF94F20EE90DADFE9DC7046A584E9CA4D1D84441F
B647E0F65EEC817DA4DDBD9D650B40C565B6C16884BBF03EE504883EC4F88939A51E394197FFAB397A5CE606D9FDD4C9338BDCD345971E
686CEE98399A096B8EAE0445B1342B93A484E5472F70896E400C482017643AF61C2DBFAE5C5F00213DDF835B40F0D5236467443B1A2CA9
CDD7E99F1351177FB1526018ECFE0B804782A15FD72C66076910CE74FB218181B6989B4F12F211B66EACA91C7460DB9175871585686652
3D10232AE64A06FDA5295FDFBDD8D34F5C10C35A347D7E91B6AFA0F45B4E8321D7019BDD1F9E5641FEB8737EA6FD40D838FFD020301000
1"/>
 <PackageFile Name="dotnetchk.exe"/>
</PackageFiles>

See also

The following code example defines packages for the .NET Framework redistributable package and its
dependencies, such as the Windows Installer.

<Product> element
<Package> element
Product and package schema reference

<Strings> element (bootstrapper)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<Strings>
 <String
 Name
 >
 </String>
</Strings>

Elements and attributes

String

ATTRIBUTE DESCRIPTION

Name Required. The name of the string.

Example

Defines localized strings for product names, package names, and installation error messages.

The Strings element is a child of the Package element. It has no attributes.

The String element is a child of the Strings element. A Strings element may have one or more String

elements.

String has the following attribute.

The following code example specifies all of the English strings for the .NET Framework installer.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/strings-element-bootstrapper.md

<Strings>
 <String Name="DisplayName">.NET Framework 2.0</String>
 <String Name="Culture">en</String>
 <String Name="AdminRequired">Administrator permissions are required to install the .NET Framework 2.0.
Contact your administrator.</String>
 <String Name="InvalidPlatformWin9x">Installation of the .NET Framework 2.0 is not supported on Windows 95.
Contact your application vendor.</String>
 <String Name="InvalidPlatformWinNT">Installation of the .NET Framework 2.0 is not supported on Windows NT
4.0. Contact your application vendor.</String>
 <String Name="InvalidPlatformIE">Installation of the .NET Framework 2.0 requires Internet Explorer 5.01 or
greater. Contact your application vendor.</String>
 <String Name="InvalidPlatformArchitecture">This version of the .NET Framework 2.0 is not supported on a
64-bit operating system. Contact your application vendor.</String>
 <String Name="WindowsInstallerImproperInstall">Due to an error with Windows Installer, the installation of
the .NET Framework 2.0 cannot proceed.</String>
 <String Name="AnotherInstanceRunning">Another instance of setup is already running. The running instance
must complete before this setup can proceed.</String>
 <String Name="BetaNDPFailure">A beta version of the .NET Framework was detected on the computer. Uninstall
any previous beta versions of .NET Framework before continuing.</String>
 <String Name="GeneralFailure">A failure occurred attempting to install the .NET Framework 2.0.</String>
 <String Name="DotNetFXExe">http://go.microsoft.com/fwlink/?LinkId=37283</String>
 <String Name="InstMsiAExe">http://go.microsoft.com/fwlink/?LinkId=37285</String>
 <String Name="Msi30Exe">http://go.microsoft.com/fwlink/?LinkId=37287</String>
</Strings>

See also
<Package> element

<Schedules> element (bootstrapper)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<Schedules>
 <Schedule
 Name
 >
 <BuildList />
 <BeforePackage />
 <AfterPackage />
 </Schedule>
</Schedules>

Elements and attributes

Schedule

ATTRIBUTE DESCRIPTION

Name Required. The name of the schedule item. This corresponds to
the ScheduleName property of the Command element. When
a Command references the named schedule, it will only be
executed at the time indicated by that Schedule element.
Schedules may also be associated with the FailIf and
BypassIf elements, which restrict these conditional tests to

executing on the specified schedule. For more information, see
<Commands> Element.

BuildList

BeforePackage

The Schedules element contains Schedule elements, which define specific times at which commands defined by
the Command element should be run.

The Schedules element is a child of the Product element. Each Product element might have at most one
Schedules element. The Schedules element has no attributes.

The Schedule element is a child of the Schedules element. A Schedules element must have at least one Schedule

element.

Schedule has the following attribute.

A given Schedule element may have exactly one of the following children.

The BuildList element instructs the installer to execute a command immediately after the bootstrapping
application is started.

The BeforePackage element instructs the installer to execute a command before the specified package is installed.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/schedules-element-bootstrapper.md

AfterPackage

See also

The AfterPackage element instructs the installer to execute a command after the specified package is installed.

<Product> element
Product and package schema reference

ClickOnce reference
2/21/2019 • 2 minutes to read • Edit Online

In this section

Reference

Related sections

The following pages describe the structure of the XML files used to represent ClickOnce applications.

ClickOnce Application Manifest

Lists and describes the elements and attributes that make up an application manifest.

ClickOnce Deployment Manifest

Lists and describes the elements and attributes that make up a deployment manifest.

Product and Package Schema Reference

Lists product and package file elements.

ClickOnce Unmanaged API Reference

Lists unmanaged public APIs from dfshim.dll.

ClickOnce security and deployment

Provides detailed conceptual information about ClickOnce deployment.

System.Deployment.Application

Provides links to reference documentation of the public classes that support ClickOnce within managed code.

Publish ClickOnce applications

Provides walkthroughs and how-to's that perform ClickOnce tasks.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-reference.md
https://docs.microsoft.com/dotnet/api/system.deployment.application

ClickOnce application manifest
4/16/2019 • 2 minutes to read • Edit Online

ELEMENT DESCRIPTION ATTRIBUTES

<assembly> Element Required. Top-level element. manifestVersion

<assemblyIdentity> Element Required. Identifies the primary
assembly of the ClickOnce application.

name

version

publicKeyToken

processorArchitecture

language

<trustInfo> Element Identifies the application security
requirements.

None

<entryPoint> Element Required. Identifies the application
code entry point.

name

<dependency> Element Required. Identifies each dependency
required for the application to run.
Optionally identifies assemblies that
need to be preinstalled.

None

<file> Element Optional. Identifies each nonassembly
file that is used by the application. Can
include Component Object Model
(COM) isolation data associated with
the file.

name

size

group

optional

writeableType

<fileAssociation> Element Optional. Identifies a file extension to
be associated with the application.

extension

description

progid

defaultIcon

Remarks

A ClickOnce application manifest is an XML file that describes an application that is deployed using ClickOnce.

ClickOnce application manifests have the following elements and attributes.

The ClickOnce application manifest file identifies an application deployed using ClickOnce. For more

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-application-manifest.md

File location

File name syntax

Example

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
manifestVersion="1.0" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2"
xmlns="urn:schemas-microsoft-com:asm.v2" xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1">
 <asmv1:assemblyIdentity name="My Application Deployment.exe" version="1.0.0.0"
publicKeyToken="43cb1e8e7a352766" language="neutral" processorArchitecture="x86" type="win32" />
 <application />
 <entryPoint>
 <assemblyIdentity name="MyApplication" version="1.0.0.0" language="neutral" processorArchitecture="x86"
/>
 <commandLine file="MyApplication.exe" parameters="" />
 </entryPoint>
 <trustInfo>
 <security>
 <applicationRequestMinimum>
 <PermissionSet Unrestricted="true" ID="Custom" SameSite="site" />
 <defaultAssemblyRequest permissionSetReference="Custom" />
 </applicationRequestMinimum>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <!--
 UAC Manifest Options
 If you want to change the Windows User Account Control level replace the
 requestedExecutionLevel node with one of the following.

 <requestedExecutionLevel level="asInvoker" uiAccess="false" />
 <requestedExecutionLevel level="requireAdministrator" uiAccess="false" />
 <requestedExecutionLevel level="highestAvailable" uiAccess="false" />

 If you want to utilize File and Registry Virtualization for backward
 compatibility then delete the requestedExecutionLevel node.
 -->
 <requestedExecutionLevel level="asInvoker" uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>

information about ClickOnce, see ClickOnce Security and Deployment.

A ClickOnce application manifest is specific to a single version of a deployment. For this reason, they should be
stored separately from deployment manifests. The common convention is to place them in a subdirectory
named after the associated version.

The application manifest always must be signed prior to deployment. If you change an application manifest
manually, you must use mage.exe to re-sign the application manifest, update the deployment manifest, and
then re-sign the deployment manifest. For more information, see Walkthrough: Manually deploy a ClickOnce
application.

The name of a ClickOnce application manifest file should be the full name and extension of the application as
identified in the assemblyIdentity element, followed by the extension .manifest. For example, an application
manifest that refers to the Example.exe application would use the following file name syntax.

example.exe.manifest

The following code example shows an application manifest for a ClickOnce application.

 </trustInfo>
 <dependency>
 <dependentOS>
 <osVersionInfo>
 <os majorVersion="4" minorVersion="10" buildNumber="0" servicePackMajor="0" />
 </osVersionInfo>
 </dependentOS>
 </dependency>
 <dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true">
 <assemblyIdentity name="Microsoft.Windows.CommonLanguageRuntime" version="4.0.20506.0" />
 </dependentAssembly>
 </dependency>
 <dependency>
 <dependentAssembly dependencyType="install" allowDelayedBinding="true" codebase="MyApplication.exe"
size="4096">
 <assemblyIdentity name="MyApplication" version="1.0.0.0" language="neutral"
processorArchitecture="x86" />
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>DpTW7RzS9IeT/RBSLj54vfTEzNg=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
 </dependency>
<publisherIdentity name="CN=DOMAINCONTROLLER\UserMe"
issuerKeyHash="18312a18a21b215ecf4cdb20f5a0e0b0dd263c08" /><Signature Id="StrongNameSignature"
xmlns="http://www.w3.org/2000/09/xmldsig#">
...
</Signature></r:issuer></r:license></msrel:RelData></KeyInfo></Signature></asmv1:assembly>

See also
Publish ClickOnce applications

<assembly> Element (ClickOnce Application)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <assembly
 manifestVersion
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

manifestVersion Required. The manifestVersion attribute must be set to
1.0 .

Example

<asmv1:assembly
 xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
 manifestVersion="1.0"
 xmlns:asmv3="urn:schemas-microsoft-com:asm.v3"
 xmlns:dsig=http://www.w3.org/2000/09/xmldsig#
 xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2"
 xmlns="urn:schemas-microsoft-com:asm.v2"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1">

See also

The top-level element for the application manifest.

The assembly element is the root element and is required. Its first contained element must be an
assemblyIdentity element. The manifest elements must be in one of the following namespaces:

urn:schemas-microsoft-com:asm.v1

urn:schemas-microsoft-com:asm.v2

http://www.w3.org/2000/09/xmldsig#

Child elements of the assembly must also be in these namespaces, by inheritance or by tagging.

The assembly element has the following attribute.

The following code example illustrates an assembly element in an application manifest for a ClickOnce
application. This code example is part of a larger example provided in ClickOnce application manifest.

ClickOnce application manifest

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/assembly-element-clickonce-application.md

<assembly> element

<assemblyIdentity> element (ClickOnce application)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <assemblyIdentity
 name
 version
 publicKeyToken
 processorArchitecture
 language
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

Name Required. Identifies the name of the application.

If Name contains special characters, such as single or double
quotes, the application may fail to activate.

Version Required. Specifies the version number of the application in
the following format: major.minor.build.revision

publicKeyToken Optional. Specifies a 16-character hexadecimal string that
represents the last 8 bytes of the SHA-1 hash value of the
public key under which the application or assembly is signed.
The public key that is used to sign the catalog must be 2048
bits or greater.

Although signing an assembly is recommended but optional,
this attribute is required. If an assembly is unsigned, you
should copy a value from a self-signed assembly or use a
"dummy" value of all zeros.

processorArchitecture Required. Specifies the processor. The valid values are msil
for all processors, x86 for 32-bit Windows, IA64 for 64-bit
Windows, and Itanium for Intel 64-bit Itanium processors.

language Required. Identifies the two part language codes (for example,
en-US) of the assembly. This element is in the asmv2

namespace. If unspecified, the default is neutral .

Examples
DescriptionDescription

Identifies the application deployed in a ClickOnce deployment.

The assemblyIdentity element is required. It contains no child elements and has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/assemblyidentity-element-clickonce-application.md

CodeCode

<asmv1:assemblyIdentity
 name="My Application Deployment.exe"
 version="1.0.0.0"
 publicKeyToken="43cb1e8e7a352766"
 language="neutral"
 processorArchitecture="x86"
 type="win32" />

See also

The following code example illustrates an assemblyIdentity element in a ClickOnce application manifest. This
code example is part of a larger example provided in ClickOnce Application Manifest.

ClickOnce application manifest
<assemblyIdentity> element

<trustInfo> element (ClickOnce application)
4/18/2019 • 4 minutes to read • Edit Online

Syntax

 <trustInfo>
 <security>
 <applicationRequestMinimum>
 <PermissionSet
 ID
 Unrestricted>
 <IPermission
 class
 version
 Unrestricted
 />
 </PermissionSet>
 <defaultAssemblyRequest
 permissionSetReference
 />
 <assemblyRequest
 name
 permissionSetReference
 />
 </applicationRequestMinimum>
 <requestedPrivileges>
 <requestedExecutionLevel
 level
 uiAccess
 />
 </requestedPrivileges>
 </security>
</trustInfo>

Elements and attributes

security

applicationRequestMinimum

PermissionSet

Describes the minimum security permissions required for the application to run on the client computer.

The trustInfo element is required and is in the asm.v2 namespace. It has no attributes and contains the
following elements.

Required. This element is a child of the trustInfo element. It contains the applicationRequestMinimum element and
has no attributes.

Required. This element is a child of the security element and contains the PermissionSet , assemblyRequest , and
defaultAssemblyRequest elements. This element has no attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/trustinfo-element-clickonce-application.md

IPermission

defaultAssemblyRequest

Required. This element is a child of the applicationRequestMinimum element and contains the IPermission element.
This element has the following attributes.

ID

Required. Identifies the permission set. This attribute can be any value. The ID is referenced in the
defaultAssemblyRequest and assemblyRequest attributes.

version

Required. Identifies the version of the permission. Normally this value is 1 .

Optional. This element is a child of the PermissionSet element. The IPermission element fully identifies a
permission class in the .NET Framework. The IPermission element has the following attributes, but can have
additional attributes that correspond to properties on the permission class. To find out the syntax for a specific
permission, see the examples listed in the Security.config file.

<IPermission
 class="System.Security.Permissions.EnvironmentPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="USERNAME" />
<IPermission
 class="System.Security.Permissions.FileDialogPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true" />

class

Required. Identifies the permission class by strong name. For example, the following code identifies the
FileDialogPermission type.

System.Security.Permissions.FileDialogPermission, mscorlib, Version=1.2.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

version

Required. Identifies the version of the permission. Usually this value is 1 .

Unrestricted

Required. Identifies whether the application needs an unrestricted grant of this permission. If true , the
permission grant is unconditional. If false , or if this attribute is undefined, it is restricted according to the
permission-specific attributes defined on the IPermission tag. Take the following permissions:

In this example, the declaration for EnvironmentPermission restricts the application to reading only the
environment variable USERNAME, whereas the declaration for FileDialogPermission gives the application
unrestricted use of all FileDialog classes.

Optional. Identifies the set of permissions granted to all assemblies. This element is a child of the
applicationRequestMinimum element and has the following attribute.

permissionSetReference

Required. Identifies the ID of the permission set that is the default permission. The permission set is

https://docs.microsoft.com/dotnet/api/system.security.permissions.environmentpermission
https://docs.microsoft.com/dotnet/api/system.security.permissions.filedialogpermission
https://docs.microsoft.com/dotnet/api/system.windows.forms.filedialog

assemblyRequest

requestedPrivileges

requestedExecutionLevel

Remarks

Examples

declared in the PermissionSet element.

Optional. Identifies permissions for a specific assembly. This element is a child of the applicationRequestMinimum
element and has the following attributes.

Name

Required. Identifies the assembly name.

permissionSetReference

Required. Identifies the ID of the permission set that this assembly requires. The permission set is declared
in the PermissionSet element.

Optional. This element is a child of the security element and contains the requestedExecutionLevel element. This
element has no attributes.

Optional. Identifies the security level at which the application requests to be executed. This element has no children
and has the following attributes.

Level

Required. Indicates the security level the application is requesting. Possible values are:

asInvoker , requesting no additional permissions. This level requires no additional trust prompts.

highestAvailable , requesting the highest permissions available to the parent process.

requireAdministrator , requesting full administrator permissions.

ClickOnce applications will only install with a value of asInvoker . Installing with any other value will fail.

uiAccess

Optional. Indicates whether the application requires access to protected user interface elements. Values are
either true or false , and the default is false. Only signed applications should have a value of true.

If a ClickOnce application asks for more permissions than the client computer will grant by default, the common
language runtime's Trust Manager will ask the user if she wants to grant the application this elevated level of trust.
If she says no, the application will not run; otherwise, it will run with the requested permissions.

All permissions requested using defaultAssemblyRequest and assemblyRequest will be granted without user
prompting if the deployment manifest has a valid Trust License.

For more information about Permission Elevation, see Securing ClickOnce Applications. For more information
about policy deployment, see Trusted Application Deployment Overview.

The following three code examples illustrate trustInfo elements for the default named security zones—Internet,

<trustInfo>
 <security>
 <applicationRequestMinimum>
 <PermissionSet ID="Internet">
 <IPermission
 class="System.Security.Permissions.FileDialogPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Access="Open" />
 <IPermission
 class="System.Security.Permissions.IsolatedStorageFilePermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Allowed="DomainIsolationByUser"
 UserQuota="10240" />
 <IPermission
 class="System.Security.Permissions.SecurityPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="Execution" />
 <IPermission
 class="System.Security.Permissions.UIPermission, mscorlib, Version=1.2.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Window="SafeTopLevelWindows"
 Clipboard="OwnClipboard" />
 <IPermission
 class="System.Drawing.Printing.PrintingPermission, System.Drawing, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 version="1"
 Level="SafePrinting" />
 </PermissionSet>
 <defaultAssemblyRequest permissionSetReference="Internet" />
 </applicationRequestMinimum>
 </security>
 </trustInfo>

LocalIntranet, and FullTrust—for use in a ClickOnce deployment's application manifest.

The first example illustrates the trustInfo element for the default permissions available in the Internet security
zone.

The second example illustrates the trustInfo element for the default permissions available in the LocalIntranet
security zone.

<trustInfo>
 <security>
 <applicationRequestMinimum>
 <PermissionSet ID="LocalIntranet">
 <IPermission
 class="System.Security.Permissions.EnvironmentPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="USERNAME" />
 <IPermission
 class="System.Security.Permissions.FileDialogPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true" />
 <IPermission
 class="System.Security.Permissions.IsolatedStorageFilePermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Allowed="AssemblyIsolationByUser"
 UserQuota="9223372036854775807"
 Expiry="9223372036854775807"
 Permanent="True" />
 <IPermission
 class="System.Security.Permissions.ReflectionPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="ReflectionEmit" />
 <IPermission
 class="System.Security.Permissions.SecurityPermission, mscorlib, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="Assertion, Execution" />
 <IPermission
 class="System.Security.Permissions.UIPermission, mscorlib, Version=1.2.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true" />
 <IPermission
 class="System.Net.DnsPermission, System, Version=1.2.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true" />
 <IPermission
 class="System.Drawing.Printing.PrintingPermission, System.Drawing, Version=1.2.3300.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 version="1"
 Level="DefaultPrinting" />
 <IPermission
 class="System.Diagnostics.EventLogPermission, System, Version=1.2.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1" />
 </PermissionSet>
 <defaultAssemblyRequest permissionSetReference="LocalIntranet" />
 </applicationRequestMinimum>
 </security>
</trustInfo>

The third example illustrates the trustInfo element for the default permissions available in the FullTrust security
zone.

<trustInfo>
 <security>
 <applicationRequestMinimum>
 <PermissionSet ID="FullTrust" Unrestricted="true" />
 <defaultAssemblyRequest permissionSetReference="FullTrust" />
 </applicationRequestMinimum>
 </security>
</trustInfo>

See also
Trusted Application Deployment overview
ClickOnce application manifest

<entryPoint> element (ClickOnce application)
4/16/2019 • 2 minutes to read • Edit Online

Syntax
<entryPoint
 name
>
 <assemblyIdentity
 name
 version
 processorArchitecture
 language
 />
 <commandLine
 file
 parameters
 />
 <customHostRequired />
 <customUX />
</entryPoint>

Elements and attributes

ATTRIBUTE DESCRIPTION

name Optional. This value is not used by .NET Framework.

assemblyIdentity

commandLine

ATTRIBUTE DESCRIPTION

Identifies the assembly that should be executed when this ClickOnce application is run on a client computer.

The entryPoint element is required and is in the urn:schemas-microsoft-com:asm.v2 namespace. There may only
be one entryPoint element defined in an application manifest.

The entryPoint element has the following attribute.

entryPoint has the following elements.

Required. The role of assemblyIdentity and its attributes is defined in <assemblyIdentity> Element.

The processorArchitecture attribute of this element and the processorArchitecture attribute defined in the
assemblyIdentity elsewhere in the application manifest must match.

Required. Must be a child of the entryPoint element. It has no child elements and has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/entrypoint-element-clickonce-application.md

file Required. A local reference to the startup assembly for the
ClickOnce application. This value cannot contain forward slash
(/) or backslash (\) path separators.

parameters Required. Describes the action to take with the entry point.
The only valid value is run ; if a blank string is supplied, run

is assumed.

ATTRIBUTE DESCRIPTION

customHostRequired

customUX

<customUX xmlns="urn:schemas-microsoft-com:clickonce.v1" />

Remarks

Example

Optional. If included, specifies that this deployment contains a component that will be deployed inside of a custom
host, and is not a stand-alone application.

If this element is present, the assemblyIdentity and commandLine elements must not also be present. If they are,
ClickOnce will raise a validation error during installation.

This element has no attributes and no children.

Optional. Specifies that the application is installed and maintained by a custom installer, and does not create a
Start menu entry, shortcut, or Add or Remove Programs entry.

An application that includes the customUX element must provide a custom installer that uses the
InPlaceHostingManager class to perform install operations. An application with this element cannot be installed
by double-clicking its manifest or setup.exe prerequisite bootstrapper. The custom installer can create Start menu
entries, shortcuts, and Add or Remove Programs entries. If the custom installer does not create an Add or Remove
Programs entry, it must store the subscription identifier provided by the SubscriptionIdentity property and enable
the user to uninstall the application later by calling the UninstallCustomUXApplication method. For more
information, see Walkthrough: Creating a Custom Installer for a ClickOnce Application.

This element identifies the assembly and entry point for the ClickOnce application.

You cannot use commandLine to pass parameters into your application at run time. You can access query string
parameters for a ClickOnce deployment from the application's AppDomain. For more information, see How to:
Retrieve Query String Information in an Online ClickOnce Application.

The following code example illustrates an entryPoint element in an application manifest for a ClickOnce
application. This code example is part of a larger example provided for the ClickOnce Application Manifest topic.

https://docs.microsoft.com/dotnet/api/system.deployment.application.inplacehostingmanager
https://docs.microsoft.com/dotnet/api/system.deployment.application.getmanifestcompletedeventargs.subscriptionidentity
https://docs.microsoft.com/dotnet/api/system.deployment.application.inplacehostingmanager.uninstallcustomuxapplication
https://docs.microsoft.com/dotnet/api/system.appdomain

<!-- Identify the main code entrypoint. -->
<!-- This code runs the main method in an executable assembly. -->
 <entryPoint>
 <assemblyIdentity
 name="MyApplication"
 version="1.0.0.0"
 language="neutral"
 processorArchitecture="x86" />
 <commandLine file="MyApplication.exe" parameters="" />
 </entryPoint>

See also
ClickOnce application manifest

<dependency> element (ClickOnce application)
4/16/2019 • 4 minutes to read • Edit Online

Syntax

 <dependency>
 <dependentOS
 supportURL
 description
 >
 <osVersionInfo>
 <os
 majorVersion
 minorVersion
 buildNumber
 servicePackMajor
 servicePackMinor
 productType
 suiteType
 />
 </osVersionInfo>
 </dependentOS>
 <dependentAssembly
 dependencyType
 allowDelayedBinding
 group
 codeBase
 size
 >
 <assemblyIdentity
 name
 version
 processorArchitecture
 language
 >
 <hash>
 <dsig:Transforms>
 <dsig:Transform
 Algorithm
 />
 </dsig:Transforms>
 <dsig:DigestMethod />
 <dsig:DigestValue>
 </dsig:DigestValue>
 </hash>

 </assemblyIdentity>
 </dependentAssembly>
</dependency>

Elements and attributes

Identifies a platform or assembly dependency that is required for the application.

The dependency element is required. There may be multiple instances of dependency in the same application
manifest.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/dependency-element-clickonce-application.md

dependentOSdependentOS

ATTRIBUTE DESCRIPTION

supportUrl Optional. Specifies a support URL for the dependent platform.
This URL is shown to the user if the required platform is
found.

description Optional. Describes, in human-readable form, the operating
system described by the dependentOS element.

osVersionInfoosVersionInfo

osos

ATTRIBUTE DESCRIPTION

majorVersion Required. Specifies the major version number of the OS.

minorVersion Required. Specifies the minor version number of the OS.

buildNumber Required. Specifies the build number of the OS.

servicePackMajor Required. Specifies the service pack major number of the OS.

servicePackMinor Optional. Specifies the service pack minor number of the OS.

productType Optional. Identifies the product type value. Valid values are
server , workstation , and domainController . For

example, for Windows 2000 Professional, this attribute value
is workstation .

suiteType Optional. Identifies a product suite available on the system, or
the system's configuration type. Valid values are backoffice

, blade , datacenter , enterprise , home ,
professional , smallbusiness ,
smallbusinessRestricted , and terminal . For example, for

Windows 2000 Professional, this attribute value is
professional .

dependentAssemblydependentAssembly

The dependency element has no attributes, and contains the following child elements.

Optional. Contains the osVersionInfo element. The dependentOS and dependentAssembly elements are mutually
exclusive: one or the other must exist for a dependency element, but not both.

dependentOS supports the following attributes.

Required. This element is a child of the dependentOS element and contains the os element. This element has no
attributes.

Required. This element is a child of the osVersionInfo element. This element has the following attributes.

Optional. Contains the assemblyIdentity element. The dependentOS and dependentAssembly elements are
mutually exclusive: one or the other must exist for a dependency element, but not both.

dependentAssembly has the following attributes.

ATTRIBUTE DESCRIPTION

dependencyType Required. Specifies the dependency type. Valid values are
preprequisite and install . An install assembly is

installed as part of the ClickOnce application. A
prerequisite assembly must be present in the global

assembly cache (GAC) before the ClickOnce application can
install.

allowDelayedBinding Required. Specifies whether the assembly can be loaded
programmatically at runtime.

group Optional. If the dependencyType attribute is set to install

, designates a named group of assemblies that only install on
demand. For more information, see Walkthrough:
Downloading Assemblies on Demand with the ClickOnce
Deployment API Using the Designer.

If set to framework and the dependencyType attribute is
set to prerequisite , designates the assembly as part of the
.NET Framework. The global assemby cache (GAC) is not
checked for this assembly when installing on .NET Framework
4 and later versions.

codeBase Required when the dependencyType attribute is set to
install . The path to the dependent assembly. May be

either an absolute path, or a path relative to the manifest's
code base. This path must be a valid URI in order for the
assembly manifest to be valid.

size Required when the dependencyType attribute is set to
install . The size of the dependent assembly, in bytes.

assemblyIdentityassemblyIdentity

ATTRIBUTE DESCRIPTION

name Required. Identifies the name of the application.

version Required. Specifies the version number of the application in
the following format: major.minor.build.revision

publicKeyToken Optional. Specifies a 16-character hexadecimal string that
represents the last 8 bytes of the SHA-1 hash value of the
public key under which the application or assembly is signed.
The public key used to sign the catalog must be 2048 bits or
more.

processorArchitecture Optional. Specifies the processor. The valid values are x86 for
32-bit Windows and I64 for 64-bit Windows.

language Optional. Identifies the two part language codes, such as EN-
US, of the assembly.

hashhash

Required. This element is a child of the dependentAssembly element and has the following attributes.

dsig:Transformsdsig:Transforms

dsig:Transformdsig:Transform

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
urn:schemas-microsoft-com:HashTransforms.Identity .

dsig:DigestMethoddsig:DigestMethod

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
http://www.w3.org/2000/09/xmldsig#sha1 .

dsig:DigestValuedsig:DigestValue

Remarks

Example

The hash element is an optional child of the assemblyIdentity element. The hash element has no attributes.

ClickOnce uses an algorithmic hash of all the files in an application as a security check, to ensure that none of the
files were changed after deployment. If the hash element is not included, this check will not be performed.
Therefore, omitting the hash element is not recommended.

The dsig:Transforms element is a required child of the hash element. The dsig:Transforms element has no
attributes.

The dsig:Transform element is a required child of the dsig:Transforms element. The dsig:Transform element has
the following attributes.

The dsig:DigestMethod element is a required child of the hash element. The dsig:DigestMethod element has the
following attributes.

The dsig:DigestValue element is a required child of the hash element. The dsig:DigestValue element has no
attributes. Its text value is the computed hash for the specified file.

All assemblies used by your application must have a corresponding dependency element. Dependent assemblies
do not include assemblies that must be preinstalled in the global assembly cache as platform assemblies.

The following code example illustrates dependency elements in a ClickOnce application manifest. This code
example is part of a larger example provided for the ClickOnce Application Manifest topic.

<dependency>
 <dependentOS>
 <osVersionInfo>
 <os
 majorVersion="4"
 minorVersion="10"
 buildNumber="0"
 servicePackMajor="0" />
 </osVersionInfo>
 </dependentOS>
</dependency>
<dependency>
 <dependentAssembly
 dependencyType="preRequisite"
 allowDelayedBinding="true">
 <assemblyIdentity
 name="Microsoft.Windows.CommonLanguageRuntime"
 version="4.0.20506.0" />
 </dependentAssembly>
</dependency>

<dependency>
 <dependentAssembly
 dependencyType="install"
 allowDelayedBinding="true"
 codebase="MyApplication.exe"
 size="4096">
 <assemblyIdentity
 name="MyApplication"
 version="1.0.0.0"
 language="neutral"
 processorArchitecture="x86" />
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>DpTW7RzS9IeT/RBSLj54vfTEzNg=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
</dependency>

See also
ClickOnce application manifest
<dependency> element

<file> element (ClickOnce application)
4/16/2019 • 7 minutes to read • Edit Online

Syntax
<file
 name
 size
 group
 optional
 writeableType
>
 <typelib
 tlbid
 version
 helpdir
 resourceid
 flags
 />
 <comClass
 clsid
 description
 threadingModel
 tlbid
 progid
 miscStatus
 miscStatusIcon
 miscStatusContent
 miscStatusDocPrint
 miscStatusThumbnail
 />
 <comInterfaceExternalProxyStub
 iid
 baseInterface
 numMethods
 name
 tlbid
 proxyStubClass32
 />
 <comInterfaceProxyStub
 iid
 baseInterface
 numMethods
 name
 tlbid
 proxyStubClass32
 />
 <windowClass
 versioned
 />
</file>

Elements and attributes

Identifies all nonassembly files downloaded and used by the application.

The file element is optional. The element has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/file-element-clickonce-application.md

ATTRIBUTE DESCRIPTION

name Required. Identifies the name of the file.

size Required. Specifies the size, in bytes, of the file.

group Optional, if the optional attribute is not specified or set to
false ; required if optional is true . The name of the

group to which this file belongs. The name can be any
Unicode string value chosen by the developer, and is used for
downloading files on demand with the ApplicationDeployment
class.

optional Optional. Specifies whether this file must download when the
application is first run, or whether the file should reside only
on the server until the application requests it on demand. If
false or undefined, the file is downloaded when the

application is first run or installed. If true , a group must be
specified for the application manifest to be valid. optional

cannot be true if writeableType is specified with the value
applicationData .

writeableType Optional. Specifies that this file is a data file. Currently the only
valid value is applicationData .

typelib

ATTRIBUTE DESCRIPTION

tlbid Required. The GUID assigned to the type library.

version Required. The version number of the type library.

helpdir Required. The directory that contains the Help files for the
component. May be zero-length.

resourceid Optional. The hexadecimal string representation of the locale
identifier (LCID). It is one to four hexadecimal digits without a
0x prefix and without leading zeros. The LCID may have a
neutral sublanguage identifier.

flags Optional. The string representation of the type library flags for
this type library. Specifically, it should be one of "RESTRICTED",
"CONTROL", "HIDDEN" and "HASDISKIMAGE".

comClass

The typelib element is an optional child of the file element. The element describes the type library that belongs
to the COM component. The element has the following attributes.

The comClass element is an optional child of the file element, but is required if the ClickOnce application
contains a COM component it intends to deploy using registration-free COM. The element has the following
attributes.

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment

ATTRIBUTE DESCRIPTION

clsid Required. The class ID of the COM component expressed as a
GUID.

description Optional. The class name.

threadingModel Optional. The threading model used by in-process COM
classes. If this property is null, no threading model is used.
The component is created on the main thread of the client
and calls from other threads are marshaled to this thread. The
following list shows the valid values:

Apartment , Free , Both , and Neutral .

tlbid Optional. GUID for the type library for this COM component.

progid Optional. Version-dependent programmatic identifier
associated with the COM component. The format of a
ProgID is <vendor>.<component>.<version> .

miscStatus Optional. Duplicates in the assembly manifest the information
provided by the MiscStatus registry key. If values for the
miscStatusIcon , miscStatusContent ,
miscStatusDocprint , or miscStatusThumbnail attributes

are not found, the corresponding default value listed in
miscStatus is used for the missing attributes. The value can

be a comma-delimited list of the attribute values from the
following table. You can use this attribute if the COM class is
an OCX class that requires MiscStatus registry key values.

miscStatusIcon Optional. Duplicates in the assembly manifest the information
provided by DVASPECT_ICON. It can provide an icon of an
object. The value can be a comma-delimited list of the
attribute values from the following table. You can use this
attribute if the COM class is an OCX class that requires
Miscstatus registry key values.

miscStatusContent Optional. Duplicates in the assembly manifest the information
provided by DVASPECT_CONTENT. It can provide a
compound document displayable for a screen or printer. The
value can be a comma-delimited list of the attribute values
from the following table. You can use this attribute if the COM
class is an OCX class that requires MiscStatus registry key
values.

miscStatusDocPrint Optional. Duplicates in the assembly manifest the information
provided by DVASPECT_DOCPRINT. It can provide an object
representation displayable on the screen as if printed to a
printer. The value can be a comma-delimited list of the
attribute values from the following table. You can use this
attribute if the COM class is an OCX class that requires
MiscStatus registry key values.

miscStatusThumbnail Optional. Duplicates in an assembly manifest the information
provided by DVASPECT_THUMBNAIL. It can provide a
thumbnail of an object displayable in a browsing tool. The
value can be a comma-delimited list of the attribute values
from the following table. You can use this attribute if the COM
class is an OCX class that requires MiscStatus registry key
values.

ATTRIBUTE DESCRIPTION

comInterfaceExternalProxyStub

ATTRIBUTE DESCRIPTION

iid Required. The interface ID (IID) which is served by this proxy.
The IID must have braces surrounding it.

baseInterface Optional. The IID of the interface from which the interface
referenced by iid is derived.

numMethods Optional. The number of methods implemented by the
interface.

name Optional. The name of the interface as it will appear in code.

tlbid Optional. The type library that contains the description of the
interface specified by the iid attribute.

proxyStubClass32 Optional. Maps an IID to a CLSID in 32-bit proxy DLLs.

comInterfaceProxyStub

ATTRIBUTE DESCRIPTION

iid Required. The interface ID (IID) which is served by this proxy.
The IID must have braces surrounding it.

baseInterface Optional. The IID of the interface from which the interface
referenced by iid is derived.

numMethods Optional. The number of methods implemented by the
interface.

Name Optional. The name of the interface as it will appear in code.

The comInterfaceExternalProxyStub element is an optional child of the file element, but may be required if the
ClickOnce application contains a COM component it intends to deploy using registration-free COM. The element
contains the following attributes.

The comInterfaceProxyStub element is an optional child of the file element, but may be required if the ClickOnce
application contains a COM component it intends to deploy using registration-free COM. The element contains
the following attributes.

Tlbid Optional. The type library that contains the description of the
interface specified by the iid attribute.

proxyStubClass32 Optional. Maps an IID to a CLSID in 32-bit proxy DLLs.

threadingModel Optional. Optional. The threading model used by in-process
COM classes. If this property is null, no threading model is
used. The component is created on the main thread of the
client and calls from other threads are marshaled to this
thread. The following list shows the valid values:

Apartment , Free , Both , and Neutral .

ATTRIBUTE DESCRIPTION

windowClass

ATTRIBUTE DESCRIPTION

versioned Optional. Controls whether the internal window class name
used in registration contains the version of the assembly that
contains the window class. The value of this attribute can be
yes or no . The default is yes . The value no should only

be used if the same window class is defined by a side-by-side
component and an equivalent non-side-by-side component
and you want to treat them as the same window class. Note
that the usual rules about window class registration apply—
only the first component that registers the window class will
be able to register it, because it does not have a version
applied to it.

hash

dsig:Transforms

dsig:Transform

The windowClass element is an optional child of the file element, but may be required if the ClickOnce
application contains a COM component it intends to deploy using registration-free COM. The element refers to a
window class defined by the COM component that must have a version applied to it. The element contains the
following attributes.

The hash element is an optional child of the file element. The hash element has no attributes.

ClickOnce uses an algorithmic hash of all the files in an application as a security check, to ensure that none of the
files were changed after deployment. If the hash element is not included, this check will not be performed.
Therefore, omitting the hash element is not recommended.

If a manifest contains a file that is not hashed, that manifest cannot be digitally signed, because users cannot verify
the contents of an unhashed file.

The dsig:Transforms element is a required child of the hash element. The dsig:Transforms element has no
attributes.

The dsig:Transform element is a required child of the dsig:Transforms element. The dsig:Transform element has
the following attributes.

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
urn:schemas-microsoft-com:HashTransforms.Identity .

dsig:DigestMethod

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
http://www.w3.org/2000/09/xmldsig#sha1 .

dsig:DigestValue

Remarks

Example

<file name="Icon.ico" size="9216">
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>lVoj+Rh6RQ/HPNLOdayQah5McrI=</dsig:DigestValue>
 </hash>
</file>

See also

The dsig:DigestMethod element is a required child of the hash element. The dsig:DigestMethod element has the
following attributes.

The dsig:DigestValue element is a required child of the hash element. The dsig:DigestValue element has no
attributes. Its text value is the computed hash for the specified file.

This element identifies all the nonassembly files that make up the application and, in particular, the hash values for
file verification. This element can also include Component Object Model (COM) isolation data associated with the
file. If a file changes, the application manifest file also must be updated to reflect the change.

The following code example illustrates file elements in an application manifest for an application deployed using
ClickOnce.

ClickOnce application manifest

<fileAssociation> element (ClickOnce application)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<fileAssociation
 xmlns="urn:schemas-microsoft-com:clickonce.v1"
 extension
 description
 progid
 defaultIcon
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

extension Required. The file extension to be associated with the
application.

description Required. A description of the file type for use by the shell.

progid Required. A name uniquely identifying the file type.

defaultIcon Required. Specifies the icon to use for files with this extension.
The icon file must be specified by using the <file> Element
within the <assembly> Element that contains this element.

Remarks

Example

Identifies a file extension to be associated with the application.

The fileAssociation element is optional. The element has the following attributes.

This element must include an XML namespace reference to "urn:schemas-microsoft-com:clickonce.v1". If the
<fileAssociation> element is used, it must come after the <application> element in its parent <assembly>

Element.

ClickOnce will not overwrite existing file associations. However, a ClickOnce application can override the file
extension for the current user only. After that ClickOnce application is uninstalled, ClickOnce deletes the file
association for the user, and the per-machine association is active again.

The following code example illustrates fileAssociation elements in an application manifest for a text editor
application deployed using ClickOnce. This code example also includes the <file> Element required by the
defaultIcon attribute.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/fileassociation-element-clickonce-application.md

<file name="text.ico" size="4286">
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>0joAqhmfeBb93ZneZv/oTMP2brY=</dsig:DigestValue>
 </hash>
</file>
<file name="writing.ico" size="9662">
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>2cL2U7cm13nG40v9MQdxYKazIwI=</dsig:DigestValue>
 </hash>
</file>
<fileAssociation xmlns="urn:schemas-microsoft-com:clickonce.v1" extension=".text" description="Text Document
(ClickOnce)" progid="Text.Document" defaultIcon="text.ico" />
<fileAssociation xmlns="urn:schemas-microsoft-com:clickonce.v1" extension=".writing" description="Writings
(ClickOnce)" progid="Writing.Document" defaultIcon="writing.ico" />

See also
ClickOnce application manifest

ClickOnce deployment manifest
4/16/2019 • 2 minutes to read • Edit Online

ELEMENT DESCRIPTION ATTRIBUTES

<assembly> Element Required. Top-level element. manifestVersion

<assemblyIdentity> Element Required. Identifies the application
manifest for the ClickOnce application.

name

version

publicKeyToken

processorArchitecture

culture

<description> Element Required. Identifies application
information used to create a shell
presence and the Add or Remove
Programs item in Control Panel.

publisher

product

supportUrl

<deployment> Element Optional. Identifies the attributes used
for the deployment of updates and
exposure to the system.

install

minimumRequiredVersion

mapFileExtensions

disallowUrlActivation

trustUrlParameters

<compatibleFrameworks> Element Required. Identifies the versions of the
.NET Framework where this application
can install and run.

SupportUrl

<dependency> Element Required. Identifies the version of the
application to install for the
deployment and the location of the
application manifest.

preRequisite

visible

dependencyType

codebase

size

A deployment manifest is an XML file that describes a ClickOnce deployment, including the identification of the
current ClickOnce application version to deploy.

Deployment manifests have the following elements and attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-deployment-manifest.md

<publisherIdentity> Element Required for signed manifests.
Contains information about the
publisher that signed this deployment
manifest.

Name

issuerKeyHash

<Signature> Element Optional. Contains the necessary
information to digitally sign this
deployment manifest.

None

<customErrorReporting> Element Optional. Specifies a URI to show when
an error occurs.

Uri

ELEMENT DESCRIPTION ATTRIBUTES

Remarks

File location

File name syntax

Examples

The deployment manifest file identifies a ClickOnce application deployment, including the current version and
other deployment settings. It references the application manifest, which describes the current version of the
application and all of the files contained within the deployment.

For more information, see ClickOnce Security and Deployment.

The deployment manifest file references the correct application manifest for the current version of the
application. When you make a new version of an application deployment available, you must update the
deployment manifest to refer to the new application manifest.

The deployment manifest file must be strongly named and can also contain certificates for publisher validation.

The name of a deployment manifest file must end with the .application extension.

The following code example illustrates a deployment manifest.

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
 manifestVersion="1.0"
 xmlns:asmv3="urn:schemas-microsoft-com:asm.v3"
 xmlns:dsig=http://www.w3.org/2000/09/xmldsig#
 xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1"
 xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2"
 xmlns="urn:schemas-microsoft-com:asm.v2"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xrml="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity
 name="My Application Deployment.app"
 version="1.0.0.0"
 publicKeyToken="43cb1e8e7a352766"
 language="neutral"
 processorArchitecture="x86"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <description
 asmv2:publisher="My Company Name"
 asmv2:product="My Application"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <deployment install="true">
 <subscription>
 <update>
 <expiration maximumAge="0" unit="days" />
 </update>
 </subscription>
 <deploymentProvider codebase="\\myServer\sampleDeployment\MyApplicationDeployment.application" />
 </deployment>
 <compatibleFrameworks xmlns="urn:schemas-microsoft-com:clickonce.v2">
 <framework targetVersion="4.0" profile="Full" supportedRuntime="4.0.20506" />
 <framework targetVersion="4.0" profile="Client" supportedRuntime="4.0.20506" />
 </compatibleFrameworks>
 <dependency>
 <dependentAssembly
 dependencyType="install"
 codebase="1.0.0.0\My Application Deployment.exe.manifest"
 size="6756">
 <assemblyIdentity
 name="My Application Deployment.exe"
 version="1.0.0.0"
 publicKeyToken="43cb1e8e7a352766"
 language="neutral"
 processorArchitecture="x86"
 type="win32" />
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>E506x9FwNauks7UjQywmzgtd3FE=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
 </dependency>
<publisherIdentity name="CN=DOMAIN\MyUsername" issuerKeyHash="18312a18a21b215ecf4cdb20f5a0e0b0dd263c08" />
<Signature Id="StrongNameSignature" xmlns="http://www.w3.org/2000/09/xmldsig#">
...
</Signature></asmv1:assembly>

See also
Publish ClickOnce applications

<assembly> element (ClickOnce deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <assembly
 manifestVersion
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

manifestVersion Required. This attribute must be set to 1.0 .

Example

<asmv1:assembly
 xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
 manifestVersion="1.0"
 xmlns:asmv3="urn:schemas-microsoft-com:asm.v3"
 xmlns:dsig=http://www.w3.org/2000/09/xmldsig#
 xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1"
 xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2"
 xmlns="urn:schemas-microsoft-com:asm.v2"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xrml="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

See also

The top-level element for the deployment manifest.

The assembly element is the root element and is required. Its first contained element must be an
assemblyIdentity element. The manifest elements must be in the following namespaces:
urn:schemas-microsoft-com:asm.v1 , urn:schemas-microsoft-com:asm.v2 , and http://www.w3.org/2000/09/xmldsig# .

Child elements of the assembly must also be in these namespaces, by inheritance or by tagging.

The assembly element has the following attribute.

The following code example illustrates an assembly element in a deployment manifest for an application deployed
using ClickOnce. This code example is part of a larger example provided for the ClickOnce Deployment Manifest
topic.

ClickOnce deployment manifest
<assembly> element

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/assembly-element-clickonce-deployment.md

<assemblyIdentity> element (ClickOnce deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <assemblyIdentity
 name
 version
 publicKeyToken
 processorArchitecture
 type
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

name Required. Identifies the human-readable name of the
deployment for informational purposes.

If name contains special characters, such as single or double
quotes, the application may fail to activate.

version Required. Specifies the version number of the assembly, in the
following format: major.minor.build.revision .

This value must be incremented in an updated manifest to
trigger an application update.

publicKeyToken Required. Specifies a 16-character hexadecimal string that
represents the last 8 bytes of the SHA-1 hash value of the
public key under which the deployment manifest is signed.
The public key that is used to sign must be 2048 bits or
greater.

Although signing an assembly is recommended but optional,
this attribute is required. If an assembly is unsigned, you
should copy a value from a self-signed assembly or use a
"dummy" value of all zeros.

processorArchitecture Required. Specifies the processor. The valid values are msil
for all processors, x86 for 32-bit Windows, IA64 for 64-bit
Windows, and Itanium for Intel 64-bit Itanium processors.

type Required. For compatibility with Windows side-by-side
installation technology. The only allowed value is win32 .

Identifies the primary assembly of the ClickOnce application.

The assemblyIdentity element is required. It contains no child elements and has the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/assemblyidentity-element-clickonce-deployment.md

Remarks

Example

<!-- Identify the deployment. -->
<assemblyIdentity
 name="My Application Deployment.app"
 version="1.0.0.0"
 publicKeyToken="43cb1e8e7a352766"
 language="neutral"
 processorArchitecture="x86"
 xmlns="urn:schemas-microsoft-com:asm.v1" />

See also

The following code example illustrates an assemblyIdentity element in a ClickOnce deployment manifest. This
code example is part of a larger example provided for the ClickOnce deployment manifest topic.

ClickOnce deployment manifest
<assemblyIdentity> element

<description> element (ClickOnce deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <description
 publisher
 product
 suiteName
 supportUrl
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

publisher Required. Identifies the company name used for icon
placement in the Windows Start menu and the Add or
Remove Programs item in Control Panel, when the
deployment is configured for install.

product Required. Identifies the full product name. Used as the title for
the icon installed in the Windows Start menu.

suiteName Optional. Identifies a subfolder within the publisher folder
in the Windows Start menu.

supportUrl Optional. Specifies a support URL that is shown in the Add or
Remove Programs item in Control Panel. A shortcut to this
URL is also created for application support in the Windows
Start menu, when the deployment is configured for
installation.

Remarks

Example

Identifies application information used to create a shell presence and an Add or Remove Programs item in
Control Panel.

The description element is required and is in the urn:schemas-microsoft-com:asm.v1 namespace. It contains no
child elements and has the following attributes.

The description element is required in all deployment configurations.

The following code example illustrates a description element in a ClickOnce deployment manifest. This code
example is part of a larger example provided for the ClickOnce Deployment Manifest topic.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/description-element-clickonce-deployment.md

<description
 asmv2:publisher="My Company Name"
 asmv2:product="My Application"
 xmlns="urn:schemas-microsoft-com:asm.v1" />

See also
ClickOnce deployment manifest

<deployment> element (ClickOnce deployment)
4/16/2019 • 4 minutes to read • Edit Online

Syntax

 <deployment
 install
 minimumRequiredVersion
 mapFileExtensions
 disallowUrlActivation
 trustUrlParameters
>
 <subscription>
 <update>
 <beforeApplicationStartup/>
 <expiration
 maximumAge
 unit
 />
 </update>
 </subscription>
 <deploymentProvider
 codebase
 />
</deployment>

Elements and attributes

ATTRIBUTE DESCRIPTION

install Required. Specifies whether this application defines a presence
on the Windows Start menu and in the Control Panel Add or
Remove Programs application. Valid values are true and
false . If false , ClickOnce will always run the latest version

of this application from the network, and will not recognize
the subscription element.

minimumRequiredVersion Optional. Specifies the minimum version of this application
that can run on the client. If the version number of the
application is less than the version number supplied in the
deployment manifest, the application will not run. Version
numbers must be specified in the format N.N.N.N , where N

is an unsigned integer. If the install attribute is false ,
minimumRequiredVersion must not be set.

Identifies the attributes used for the deployment of updates and exposure to the system.

The deployment element is required and is in the urn:schemas-microsoft-com:asm.v1 namespace. The element has
the following attributes.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/deployment-element-clickonce-deployment.md

mapFileExtensions Optional. Defaults to false . If true , all files in the
deployment must have a .deploy extension. ClickOnce will
strip this extension off these files as soon as it downloads
them from the Web server. If you publish your application by
using Visual Studio, it automatically adds this extension to all
files. This parameter allows all the files within a ClickOnce
deployment to be downloaded from a Web server that blocks
transmission of files ending in "unsafe" extensions such as .exe.

disallowUrlActivation Optional. Defaults to false . If true , prevents an installed
application from being started by clicking the URL or entering
the URL into Internet Explorer. If the install attribute is not
present, this attribute is ignored.

trustURLParameters Optional. Defaults to false . If true , allows the URL to
contain query string parameters that are passed into the
application, much like command-line arguments are passed to
a command-line application. For more information, see How
to: Retrieve Query String Information in an Online ClickOnce
Application.

If the disallowUrlActivation attribute is true ,
trustUrlParameters must either be excluded from the

manifest, or explicitly set to false .

ATTRIBUTE DESCRIPTION

subscription

update

beforeApplicationStartup

expiration

The deployment element also contains the following child elements.

Optional. Contains the update element. The subscription element has no attributes. If the subscription element
does not exist, the ClickOnce application will never scan for updates. If the install attribute of the deployment

element is false , the subscription element is ignored, because a ClickOnce application that is launched from the
network always uses the latest version.

Required. This element is a child of the subscription element and contains either the beforeApplicationStartup or
the expiration element. beforeApplicationStartup and expiration cannot both be specified in the same
deployment manifest.

The update element has no attributes.

Optional. This element is a child of the update element and has no attributes. When the beforeApplicationStartup

element exists, the application will be blocked when ClickOnce checks for updates, if the client is online. If this
element does not exist, ClickOnce will first scan for updates based on the values specified for the expiration

element. beforeApplicationStartup and expiration cannot both be specified in the same deployment manifest.

Optional. This element is a child of the update element, and has no children. beforeApplicationStartup and
expiration cannot both be specified in the same deployment manifest. When the update check occurs and an

updated version is detected, the new version caches while the existing version runs. The new version then installs

ATTRIBUTE DESCRIPTION

maximumAge Required. Identifies how old the current update should
become before the application performs an update check. The
unit of time is determined by the unit attribute.

unit Required. Identifies the unit of time for maximumAge . Valid
units are hours , days , and weeks .

deploymentProvider

ATTRIBUTE DESCRIPTION

codebase Required. Identifies the location, as a Uniform Resource
Identifier (URI), of the deployment manifest that is used to
update the ClickOnce application. This element also allows for
forwarding update locations for CD-based installations. Must
be a valid URI.

Remarks

Examples

<deployment install="true" minimumRequiredVersion="2.0.0.0" mapFileExtension="true" trustUrlParameters="true">
 <subscription>
 <update>
 <expiration maximumAge="6" unit="hours" />
 </update>
 </subscription>
 <deploymentProvider codebase="http://www.adatum.com/MyApplication.application" />
 </deployment>

on the next launch of the ClickOnce application.

The expiration element supports the following attributes.

For the .NET Framework 2.0, this element is required if the deployment manifest contains a subscription section.
For the .NET Framework 3.5 and later, this element is optional, and will default to the server and file path in which
the deployment manifest was discovered.

This element is a child of the deployment element and has the following attribute.

You can configure your ClickOnce application to scan for updates on startup, scan for updates after startup, or
never check for updates. To scan for updates on startup, ensure that the beforeApplicationStartup element exists
under the update element. To scan for updates after startup, ensure that the expiration element exists under the
update element, and that update intervals are provided.

To disable checking for updates, remove the subscription element. When you specify in the deployment manifest
to never scan for updates, you can still manually check for updates by using the CheckForUpdate method.

For more information on how deploymentProvider relates to updates, see Choosing a ClickOnce Update Strategy.

The following code example illustrates a deployment element in a ClickOnce deployment manifest. The example
uses a deploymentProvider element to indicate the preferred update location.

https://docs.microsoft.com/dotnet/api/system.deployment.application.applicationdeployment.checkforupdate

See also
ClickOnce deployment manifest

<compatibleFrameworks> element (ClickOnce
deployment)
4/23/2019 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
<compatibleFrameworks
 SupportUrl>
 <framework
 targetVersion
 profile
 supportedRuntime
 />
</ compatibleFrameworks>

Elements and attributes

ATTRIBUTE DESCRIPTION

S upportUrl Optional. Specifies a URL where the preferred compatible .NET
Framework version can be downloaded.

framework

ATTRIBUTE DESCRIPTION

targetVersion Required. Specifies the version number of the target .NET
Framework.

profile Required. Specifies the profile of the target .NET Framework.

Identifies the versions of the .NET Framework where this application can install and run.

MageUI.exe does not support the compatibleFrameworks element when saving an application manifest that has already
been signed with a certificate using MageUI.exe. Instead, you must use Mage.exe.

The compatibleFrameworks element is required for deployment manifests that target the ClickOnce runtime
provided by .NET Framework 4 or later. The compatibleFrameworks element contains one or more framework

elements that specify the .NET Framework versions on which this application can run. The ClickOnce runtime will
run the application on the first available framework in this list.

The following table lists the attribute that the compatibleFrameworks element supports.

Required. The following table lists the attributes that the framework element supports.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/compatibleframeworks-element-clickonce-deployment.md
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client
https://docs.microsoft.com/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client
https://docs.microsoft.com/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool

supportedRuntime Required. Specifies the version number of the runtime
associated with the target .NET Framework.

ATTRIBUTE DESCRIPTION

Remarks

Example

<compatibleFrameworks xmlns="urn:schemas-microsoft-com:clickonce.v2">
 <framework
 targetVersion="4.0"
 profile="Client"
 supportedRuntime="4.0.30319" />
</compatibleFrameworks>

See also

The following code example shows a compatibleFrameworks element in a ClickOnce deployment manifest. This
deployment can run on the .NET Framework 4 Client Profile. It can also run on the .NET Framework 4 because it
is a superset of the .NET Framework 4 Client Profile.

ClickOnce deployment manifest

<dependency> element (ClickOnce deployment)
4/16/2019 • 4 minutes to read • Edit Online

Syntax

 <dependency>
 <dependentAssembly
 preRequisite
 visible
 dependencyType
 codeBase
 size
 >
 <assemblyIdentity
 name
 version
 publicKeyToken
 processorArchitecture
 language
 type
 />
 <hash>
 <dsig:Transforms>
 <dsig:Transform
 Algorithm
 />
 </dsig:Transforms>
 <dsig:DigestMethod />
 <dsig:DigestValue>
 </dsig:DigestValue>
 </hash>

 </dependentAssembly>
</dependency>

Elements and attributes

dependentAssembly

Identifies the version of the application to install, and the location of the application manifest.

The dependency element is required. It has no attributes. A deployment manifest can have multiple dependency

elements.

The dependency element usually expresses dependencies for the main application on assemblies contained within
a ClickOnce application. If your Main.exe application consumes an assembly called DotNetAssembly.dll, then that
assembly must be listed in a dependency section. Dependency, however, can also express other types of
dependencies, such as dependencies on a specific version of the common language runtime, on an assembly in the
global assembly cache (GAC), or on a COM object. Because it is a no-touch deployment technology, ClickOnce
cannot initiate download and installation of these types of dependencies, but it does prevent the application from
running if one or more of the specified dependencies do not exist.

Required. This element contains the assemblyIdentity element. The following table shows the attributes the
dependentAssembly supports.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/dependency-element-clickonce-deployment.md

ATTRIBUTE DESCRIPTION

preRequisite Optional. Specifies that this assembly should already exist in
the GAC. Valid values are true and false . If true , and
the specified assembly does not exist in the GAC, the
application fails to run.

visible Optional. Identifies the top-level application identity, including
its dependencies. Used internally by ClickOnce to manage
application storage and activation.

dependencyType Required. The relationship between this dependency and the
application. Valid values are:

- install . Component represents a separate installation
from the current application.
- preRequisite . Component is required by the current
application.

codebase Optional. The full path to the application manifest.

size Optional. The size of the application manifest, in bytes.

assemblyIdentity

ATTRIBUTE DESCRIPTION

Name Required. Identifies the name of the application.

Version Required. Specifies the version number of the application, in
the following format: major.minor.build.revision

publicKeyToken Required. Specifies a 16-character hexadecimal string that
represents the last 8 bytes of the SHA-1 hash of the public
key under which the application or assembly is signed. The
public key used to sign must be 2048 bits or greater.

processorArchitecture Required. Specifies the microprocessor. The valid values are
x86 for 32-bit Windows and IA64 for 64-bit Windows.

Language Optional. Identifies the two part language codes of the
assembly. For example, EN-US, which stands for English (U.S.).
The default is neutral . This element is in the asmv2

namespace.

type Optional. For backwards compatibility with Windows side-by-
side install technology. The only allowed value is win32 .

hash

Required. This element is a child of the dependentAssembly element. The content of assemblyIdentity must be the
same as described in the ClickOnce application manifest. The following table shows the attributes of the
assemblyIdentity element.

The hash element is an optional child of the file element. The hash element has no attributes.

dsig:Transforms

dsig:Transform

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
urn:schemas-microsoft-com:HashTransforms.Identity .

dsig:DigestMethod

ATTRIBUTE DESCRIPTION

Algorithm The algorithm used to calculate the digest for this file.
Currently the only value used by ClickOnce is
http://www.w3.org/2000/09/xmldsig#sha1 .

dsig:DigestValue

Remarks

Example

ClickOnce uses an algorithmic hash of all the files in an application as a security check to ensure that none of the
files were changed after deployment. If the hash element is not included, this check will not be performed.
Therefore, omitting the hash element is not recommended.

The dsig:Transforms element is a required child of the hash element. The dsig:Transforms element has no
attributes.

The dsig:Transform element is a required child of the dsig:Transforms element. The following table shows the
attributes of the dsig:Transform element.

The dsig:DigestMethod element is a required child of the hash element. The following table shows the attributes
of the dsig:DigestMethod element.

The dsig:DigestValue element is a required child of the hash element. The dsig:DigestValue element has no
attributes. Its text value is the computed hash for the specified file.

Deployment manifests typically have a single assemblyIdentity element that identifies the name and version of
the application manifest.

The following code example shows a dependency element in a ClickOnce deployment manifest.

<!-- Identify the assembly dependencies -->
<dependency>
 <dependentAssembly dependencyType="install" allowDelayedBinding="true" codebase="MyApplication.exe"
size="16384">
 <assemblyIdentity name="MyApplication" version="0.0.0.0" cultural="neutral" processorArchitecture="msil"
/>
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <dsig:DigestValue>YzXYZJAvj9pgAG3y8jXUjC7AtHg=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
</dependency>

Example

<dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true">
 <assemblyIdentity name="GACAssembly" version="1.0.0.0" language="neutral" processorArchitecture="msil" />
 </dependentAssembly>
</dependency>

Example

<dependency>
 <dependentAssembly dependencyType="preRequisite" allowDelayedBinding="true">
 <assemblyIdentity name="Microsoft.Windows.CommonLanguageRuntime" version="2.0.50215.0" />
 </dependentAssembly>
</dependency>

Example

<dependency>
 <dependentOS supportUrl="http://www.microsoft.com" description="Microsoft Windows Operating System">
 <osVersionInfo>
 <os majorVersion="4" minorVersion="10" />
 </osVersionInfo>
 </dependentOS>
</dependency>

See also

The following code example specifies a dependency on an assembly already installed in the GAC.

The following code example specifies a dependency on a specific version of the common language runtime.

The following code example specifies an operating system dependency.

ClickOnce deployment manifest
<dependency> element

<publisherIdentity> element (ClickOnce deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<publisherIdentity
 name
 issuerKeyHash
/>

Elements and attributes

ATTRIBUTE DESCRIPTION

name Required. Describes the identity of the party that published
this application.

issuerKeyHash Required. Contains the SHA-1 hash of the public key of the
certificate issuer.

ParametersParameters

Property value/return value

Exceptions

Remarks

Requirements

Subhead

Contains information about the publisher that signed this deployment manifest.

The publisherIdentity element is required for signed manifests. The following table shows the attributes that the
publisherIdentity element supports.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/publisheridentity-element-clickonce-deployment.md

<Signature> element (ClickOnce deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax

 <Signature>
 XML signature information
</Signature>

Remarks

Example

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm=
 "http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference URI="">
 <Transforms>
 <Transform Algorithm=
 "http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>d2z5AE...</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
4PHj6SaopoLp...
 </SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509Certificate>
MIIHnTCCBoWgAwIBAgIKJY9+nwAHAAB...
 </X509Certificate>
 </X509Data>
 </KeyInfo>
</Signature>

Contains the necessary information to digitally sign this deployment manifest.

Signing a deployment manifest using an envelope signature is optional, but recommended. For more information
about signing XML files, see the World Wide Web Consortium Recommendation, "XML-Signature Syntax and
Processing," described at http://www.w3.org/TR/xmldsig-core/.

If you want to sign your manifest, hashes must be provided for all files. A manifest with files that are not hashed
cannot be signed, because users cannot verify the contents of unhashed files.

The following code example illustrates a Signature element in a deployment manifest used in a ClickOnce
deployment.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/signature-element-clickonce-deployment.md
http://www.w3.org/TR/xmldsig-core/

See also
ClickOnce deployment manifest

<customErrorReporting> element (ClickOnce
deployment)
2/21/2019 • 2 minutes to read • Edit Online

Syntax
<customErrorReporting
 uri
/>

Remarks

Example

<customErrorReporting uri=http://www.contoso.com/applications/error.asp />

Example Generated Error:
http://www.contoso.com/applications/error.asp?
outer=System.Deployment.Application.InvalidDeploymentException&&inner=System.Deployment.Application.InvalidDep
loymentException&&msg=The%20application%20manifest%20is%20signed,%20but%20the%20deployment%20manifest%20is%20u
nsigned.%20Both%20manifests%20must%20be%20either%20signed%20or%20unsigned.

See also

Specifies a URI to show when an error occurs.

This element is optional. Without it, ClickOnce displays an error dialog box showing the exception stack. If the
customErrorReporting element is present, ClickOnce will instead display the URI indicated by the uri parameter.

The target URI will include the outer exception class, the inner exception class, and the inner exception message as
parameters.

Use this element to add error reporting functionality to your application. Since the generated URI includes
information about the type of error, your Web site can parse that information and display, for example, an
appropriate troubleshooting screen.

The following snippet shows the customErrorReporting element, together with the generated URI it might produce.

ClickOnce deployment manifest

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/customerrorreporting-element-clickonce-deployment.md

ClickOnce unmanaged API reference
2/21/2019 • 2 minutes to read • Edit Online

CleanOnlineAppCache

Return valueReturn value

RemarksRemarks

GetDeploymentDataFromManifest

ParametersParameters

PARAMETER DESCRIPTION TYPE

pcwzActivationUrl A pointer to the ActivationURL . LPCWSTR

pcwzPathToDeploymentManifest A pointer to the
PathToDeploymentManifest .

LPCWSTR

pwzApplicationIdentity A pointer to a buffer to receive a NULL-
terminated string that specifies the full
application identity returned.

LPWSTR

pdwIdentityBufferLength A pointer to a DWORD that is the
length of the
pwzApplicationIdentity buffer, in

WCHARs. This includes the space for
the NULL termination character.

LPDWORD

pwzProcessorArchitecture A pointer to a buffer to receive a NULL-
terminated string that specifies the
processor architecture of the application
deployment, from the manifest.

LPWSTR

pdwArchitectureBufferLength A pointer to a DWORD that is the
length of the
pwzProcessorArchitecture buffer, in

WCHARs.

LPDWORD

pwzApplicationManifestCodebase A pointer to a buffer to receive a NULL-
terminated string that specifies the
codebase of the application manifest,
from the manifest.

LPWSTR

ClickOnce unmanaged public APIs from dfshim.dll.

Cleans or uninstalls all online applications from the ClickOnce application cache.

If successful, returns S_OK; otherwise, returns an HRESULT that represents the failure. If a managed exception
occurs, returns 0x80020009 (DISP_E_EXCEPTION).

Calling CleanOnlineAppCache will start the ClickOnce service if it is not already running.

Retrieves deployment information from the manifest and activation URL.

https://github.com/MicrosoftDocs/visualstudio-docs/blob/master/docs/deployment/clickonce-unmanaged-api-reference.md

pdwCodebaseBufferLength A pointer to a DWORD that is the
length of the
pwzApplicationManifestCodebase

buffer, in WCHARs.

LPDWORD

pwzDeploymentProvider A pointer to a buffer to receive a NULL-
terminated string that specifies the
deployment provider from the manifest,
if present. Otherwise, an empty string is
returned.

LPWSTR

pdwProviderBufferLength A pointer to a DWORD that is the
length of the
pwzProviderBufferLength .

LPDWORD

PARAMETER DESCRIPTION TYPE

Return valueReturn value

RemarksRemarks

LaunchApplication

ParametersParameters

PARAMETER DESCRIPTION TYPE

deploymentUrl A pointer to a NULL-terminated string
that contains the URL of the
deployment manifest.

LPCWSTR

data Reserved for future use. Must be NULL. LPVOID

flags Reserved for future use. Must be 0. DWORD

Return valueReturn value

See also

If successful, returns S_OK; otherwise, returns an HRESULT that represents the failure. Returns
HRESULTFROMWIN32(ERROR_INSUFFICIENT_BUFFER) if a buffer is too small.

Pointers must not be null. pcwzActivationUrl and pcwzPathToDeploymentManifest must not be empty.

It is the caller's responsibility to clean up the activation URL. For example, adding escape characters where they are
needed or removing the query string.

It is the caller's responsibility to limit the input length. For example, the maximum URL length is 2KB.

Launches or installs an application by using a deployment URL.

If successful, returns S_OK; otherwise, returns an HRESULT that represents the failure. If a managed exception
occurs, returns 0x80020009 (DISP_E_EXCEPTION).

CleanOnlineAppCache

https://docs.microsoft.com/dotnet/api/system.deployment.application.deploymentservicecom.cleanonlineappcache

	Cover Page
	Deployment documentation
	Overview
	Overview of deployment

	Quickstarts
	First look at deployment
	Deploy to Azure App Service
	Deploy to App Service for Linux
	Deploy to a web site
	Deploy to a local folder

	Tutorials
	.NET
	Deploy a .NET Core Application with the Publish tool
	Package a desktop app for Microsoft Store (Desktop Bridge)
	Deploy a desktop app using ClickOnce
	Build ClickOnce Applications from the Command Line

	ASP.NET
	Publish an ASP.NET Core app to Azure
	Import publish settings and deploy to IIS
	Import publish settings and deploy to Azure
	Continuous deployment of ASP.NET Core to Azure with Git
	Publish to Kubernetes with Visual Studio Kubernetes tools

	C++
	Deploy a C/C++ app
	Package a desktop app for Microsoft Store (Desktop Bridge)
	Deploy a C++/CLR app using ClickOnce...

	UWP
	Package a UWP app by using Visual Studio

	Node.js
	Publish to Linux App Service

	Python
	Publish to Azure App Service

	How-to guides
	ClickOnce Security and Deployment
	ClickOnce Security and Deployment
	Choose a ClickOnce Deployment Strategy
	ClickOnce Cache Overview
	ClickOnce and Application Settings
	ClickOnce Deployment on Windows Vista
	Localize ClickOnce Applications
	Localize ClickOnce Applications
	Publish a Project That Has a Specific Locale

	Secure ClickOnce Applications
	Secure ClickOnce Applications
	ClickOnce and Authenticode
	Trusted Application Deployment Overview
	Code Access Security for ClickOnce Applications
	Enable ClickOnce Security Settings
	Set a Security Zone for a ClickOnce Application
	Set Custom Permissions for a ClickOnce Application
	Debug a ClickOnce Application with Restricted Permissions
	Add a Trusted Publisher to a Client Computer
	Re-sign Application and Deployment Manifests
	Configure the ClickOnce Trust Prompt Behavior
	Sign Setup Files with SignTool.exe (ClickOnce)

	Publish ClickOnce Applications
	Publish ClickOnce Applications
	Publish a ClickOnce Application using the Publish Wizard
	Create ClickOnce Applications for Others to Deploy
	Deploy Apps For Test and Production Servers without Resigning
	Access Local and Remote Data in ClickOnce Applications
	Deploy COM Components with ClickOnce
	Build ClickOnce Applications from the Command Line
	Specify Where Visual Studio Copies the Files
	Specify the Location Where End Users Will Install From
	Specify the ClickOnce Offline or Online Install Mode
	Set the ClickOnce Publish Version
	Automatically Increment the ClickOnce Publish Version
	Specify Which Files Are Published by ClickOnce
	Specify Which Files Are Published by ClickOnce
	Include a Data File in a ClickOnce Application

	Install Prerequisites with a ClickOnce Application
	Include Prerequisites with a ClickOnce Application
	Manage Updates for a ClickOnce Application
	Change the Publish Language for a ClickOnce Application
	Specify a Start Menu Name for a ClickOnce Application
	Specify a Link for Technical Support
	Specify a Link for Technical Support
	Specify a Support URL for Individual Prerequisites

	Specify a Publish Page for a ClickOnce Application
	Specify a Publish Page for a ClickOnce Application
	Customize the Default Web Page for a ClickOnce Application

	Enable AutoStart for CD Installations
	Create File Associations For a ClickOnce Application
	Retrieve Query String Information in an Online ClickOnce Application
	Disable URL Activation of ClickOnce Applications by Using the Designer
	Disable URL Activation of ClickOnce Applications by Using the Designer
	Disable URL Activation of ClickOnce Applications

	Deploy Apps That Can Run on Multiple Versions of the .NET Framework
	Publish a WPF Application with Visual Styles Enabled
	Walkthrough: Download Assemblies on Demand Using the Designer
	Walkthrough: Download Assemblies on Demand Using the Designer
	Walkthrough: Download Assemblies on Demand

	Walkthrough: Download Satellite Assemblies on Demand Using the Designer
	Walkthrough: Manually Deploy a ClickOnce Application
	Walkthrough: Manually Deploy a ClickOnce Application
	Walkthrough: Manually Deploy an App that Does Not Require Re-Signing

	Walkthrough: Download Satellite Assemblies on Demand
	Walkthrough: Create a Custom Installer

	Choose a ClickOnce Update Strategy
	Choose a ClickOnce Update Strategy
	How ClickOnce Performs Application Updates
	Check for Application Updates Programmatically
	Specify an Alternate Location for Deployment Updates

	ClickOnce Deployment Samples and Walkthroughs
	Troubleshoot ClickOnce Deployments
	Troubleshoot ClickOnce Deployments
	Set a Custom Log File Location for ClickOnce Deployment Errors
	Specify Verbose Log Files for ClickOnce Deployments
	Server and Client Configuration Issues in ClickOnce Deployments
	Security, Versioning, and Manifest Issues in ClickOnce Deployments
	Troubleshoot Specific Errors in ClickOnce Deployments
	Debug ClickOnce Applications That Use System.Deployment.Application

	Application Deployment Prerequisites
	Application Deployment Prerequisites
	Deploy Prerequisites for 64-bit Applications
	Create bootstrapper packages
	Create a product manifest
	Create a package manifest
	Create a localized bootstrapper package
	Walkthrough: Create a custom bootstrapper with a privacy prompt
	Product and Package Schema Reference
	Product and Package Schema Reference
	<Product> Element (Bootstrapper)
	<Package> Element (Bootstrapper)
	<RelatedProducts> Element (Bootstrapper)
	<InstallChecks> Element (Bootstrapper)
	<Commands> Element (Bootstrapper)
	<PackageFiles> Element (Bootstrapper)
	<Strings> Element (Bootstrapper)
	<Schedules> Element (Bootstrapper)

	Reference
	ClickOnce Reference
	ClickOnce Reference
	ClickOnce Application Manifest
	ClickOnce Application Manifest
	<assembly> Element (ClickOnce Application)
	<assemblyIdentity> Element (ClickOnce Application)
	<trustInfo> Element (ClickOnce Application)
	<entryPoint> Element (ClickOnce Application)
	<dependency> Element (ClickOnce Application)
	<file> Element (ClickOnce Application)
	<fileAssociation> Element (ClickOnce Application)

	ClickOnce Deployment Manifest
	ClickOnce Deployment Manifest
	<assembly> Element (ClickOnce Deployment)
	<assemblyIdentity> Element (ClickOnce Deployment)
	<description> Element (ClickOnce Deployment)
	<deployment> Element (ClickOnce Deployment)
	<compatibleFrameworks> Element (ClickOnce Deployment)
	<dependency> Element (ClickOnce Deployment)
	<publisherIdentity> Element (ClickOnce Deployment)
	<Signature> Element (ClickOnce Deployment)
	<customErrorReporting> Element (ClickOnce Deployment)

	ClickOnce Unmanaged API Reference

