AM 006

Module for Performing Leakage Assessment of Carbon Benefits on Small-scale Agroforestry

Version 1.0 – October 2024

Contents

- 1 Summary
- 2 Sources
- 3 Definitions
- 4 Applicability Conditions
- 5 Procedures
- 6 Parameters
- 7 References

8

1 Summary

This module for 'Performing Leakage Assessment of Carbon benefits on Small-scale Agroforestry v1.0' describes the procedures for estimating the project leakage for carbon benefits. This module is used to determine the project leakage as a percentage of the measured value of the carbon benefits at a project level and specify appropriate leakage adjustments. The suitability of the adjustment factor is re-access at least every 5 years.

2 Sources

This module supports the following methodology:

- AM-001 Methodology for Quantifying Carbon Benefits from Small-scale Agroforestry v2.0
- AR-TOOL04 Tool for testing significance of GHG emissions in A/R CDM project activities v1.0
- AR-TOOL15 Estimation of the increase in GHG emissions attributable to displacement of pre-project agricultural activities in A/R CDM project activity v2.0
- **IPCC 2006** Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use
- PU004 Estimation of GHG emissions from leakage in Plan Vivo projects v1.0

3 Definitions

Definitions used in this module follow the latest version of the Acorn Glossary available on the Acorn website.

4 Applicability Conditions

For this module, the applicability conditions of the Acorn Methodology **AM-001 v2.0** should be met. The method described in this module is applicable at a *project level*.

5 Procedures

Acorn program addresses activity-shifting *leakage*, due to the localized nature of Acorn projects as well as the minimal impact on broader market dynamics. Activity-shifting *leakage* can occur if land use or land management activities are displaced from a *project area* as a result of an Acorn project intervention.

To address activity-shifting *leakage*, a systematic approach is followed that is built upon comparable approaches from **IPCC 2006**, **CDM AR-TOOL 15** and Plan Vivo's **PU004**. During the *Design Period*, data on potential productivity loss from a sample of project *Participants* is collected.

If insignificance (<5%) can be demonstrated using **AR-TOOL 04** leakage for activity shifting activities may be considered neglectable.

For determining leakage adjustment, a buffer zone extending 5 km around the *project area* is established. The application of a 5km buffer is motivated by a number of studies suggesting low mobility of *Smallholder Farmers*, usually below 2km (Belay, 2020; Alam, 2010; Rapsomanikis, 2015). Within this buffer, land use types are identified. The land use types are identified using data from ESA land cover or alternative land cover inventory data sources, backed by scientific recognition.

During the analysis, the land use type and average *biomass* delta content within the buffer zone are considered, drawing upon guidance from the Intergovernmental Panel on Climate Change (IPCC) and IPCC *ecoregion* definitions. Additionally, a conservative approach is adopted by accounting for 75% of the estimated *biomass* loss. This decision acknowledges the inherent *uncertainty* and variability associated with *leakage* assessments.

Integrating these parameters into an equation allows for quantifying maximum potential *biomass leakage* from the *Acorn project*.

The *leakage* adjustment factor per project is calculated following Equations 1, 2, and 3. Equation 1 must be applied to calculate the potential activity shift area.

 $S_a = P_l \cdot P_a$

Equation 1

Where:

 S_a

- = Potential activity shift area in ha
- *P_l* = Estimated average % reduction in productivity of crops, livestock, timber, or other products from the *project area*, as a result of the *Acorn project intervention*.
- P_a = *Project area* in ha

The activity shift area, Area of disturbance (A_d) , only includes areas in which disturbance is expected to cause land use conversion to a land use type with higher average carbon stocks (e.g. forest land, shrubland). Areas where no land conversion is expected or land conversion of land use types with a lower average carbon stock are excluded. Hence, the Area of disturbance (A_d) cannot be larger than the area of land use type with higher average carbon stocks within project areas as calculated using Equation 2.

$$A_d = \min\left(S_a \cdot L_u\right)$$

Equation 2

Where:

 S_a = Potential activity shift area in ha, derived using Equation 1. L_u = area of land use type with higher average carbon stocks within the project area (ha)

The *leakage* adjustment value is the amount of *biomass* stored, on average, on the potential activity shift area and calculated with Equation 3.

$$AdjL = A_d \cdot B_w \cdot CF \cdot 0.75$$

Equation 3

Where:

= Adjustment for *leakage* (tC)

AdjL A_d

 B_w

= Area affected by a potential shifting activity in ha, derived using Equation 2

= Average *biomass* stock of land use type (tonne/ha)

Parameters

Data/Parameter	B _w
Units	Tonne/ha
Description	Average biomass stock of forest area in t biomass per ha
Equations	Equation 3
Source	IPCC 2019 Table 4.7
Value	Number
Justification of choice of	Internationally recognized dataset for Aboveground Biomass in
data or description of	natural forests; The value is selected based on the geographical
measurement methods	location of the project (continent, global ecological zone, as
and procedures applied	defined in Global Ecological Zones for FAO, and status of the
	forest)
Purpose of Data	Input to determine the <i>leakage</i> adjustment factor
Comments	N/A

Data/Parameter	CF
Units	No unit
Description	Carbon fraction of <i>biomass</i>
Equations	Equation 3
Source	IPCC, 2006
Value	Number
Justification of choice of	Carbon fraction of <i>biomass</i> = 0.47
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Widely used conversion
Comments	N/A

Data/Parameter	L _u
Units	ha
Description	Area of Land use type with higher average carbon stocks within
	the project area.
Equations	Equation 2
Source	ESA
Value	Number
Justification of choice of	Internationally recognized dataset for land cover; Acorn program
data or description of	utilizes the newest available land cover data to determine the

measurement methods	land use type on project area. The area of the land use type
and procedures applied	with higher carbon stocks are is calculated The land cover is
	calculated in 5km buffer around the project area, counted from
	the border of the Acorn project. 5km buffer is motivated by a
	number of studies suggesting low mobility of Smallholder
	Farmers, usually below 2km (Belay, 2020; Alam, 2010;
	Rapsomanikis, 2015).
Purpose of Data	Input to determine the area of disturbance which contributes to
	calculating leakage adjustment factor
Comments	N/A

	,
Data/Parameter	P_a
Units	Hectares (Ha)
Description	Project area in ha
Equations	Equation 1
Source	Acorn platform
Value	Number
Justification of choice of	Comparable approach as to IPCC 2006, CDM AR-Tool 15 and Plan
data or description of	Vivo's PU005.
measurement methods	
and procedures applied	
Purpose of Data	Value needed to calculate area of potential disturbance
Comments	N/A

.

Data/Parameter	P _l
Units	Percentage (%)
Description	Estimated average productivity loss in %
Equations	Equation 1
Source	Collected during Farmer Survey as part of Acorn Design
	Document and estimates provided by the Local Partner
Value	Number
Justification of choice of	Productivity loss data is collected in the Farmer Survey as part of
data or description of	Acorn Design Document during the Design Period. The Farmer
measurement methods	Survey has to be completed by at least 100 Participants at the
and procedures applied	start of Acorn project intervention and every 5 years until the end
	of the Crediting Period.
Purpose of Data	Estimates given to calculate area of potential activity shift area
Comments	N/A

7 References

Alam, Md. Mahmudul & Chamhuri, Siwar & Murad, Md & Molla, Rafiqul & Toriman, Mohd. (2010). Socioeconomic Profile of Farmer in Malaysia: Study on Integrated Agricultural Development Area in North-West Selangor. 7. 249-265.

Belay, Getinet & Daba, Ashenafi & Qureshi, Asad. (2020). Effects of Salinity on Producers' Livelihoods and Socio-economic Conditions: The Case of Afar Region, Northeastern Ethiopia. Journal of Sustainable Agricultural Sciences. 46. 35-46. 10.21608/jsas.2020.23444.1200.

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2015) 'AR-tool 04: Tool for testing significance of GHG emissions in A/R CDM project activities. <u>CDM: Tool for testing significance of GHG emissions in A/R CDM project activities (unfccc.int)</u> (Accessed: October 24, 2023).

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2015) 'AR-tool 15: Estimation of the increase in GHG emissions attributable to displacement of pre-project agriculture activities in A/R CDM projects activity, <u>CDM: Estimation of the increase in GHG emissions attributable to displacement of pre-project agricultural activities in A/R CDM project activity (unfccc.int)</u> (Accessed: October 24, 2023).

FAO (2012) <u>Global ecological Zones for FAO forest reporting</u>: <u>2010 update</u> <u>Global Ecological</u> <u>Zones (GEZ) mapping | Global Forest Resources Assessments | Food and Agriculture</u> <u>Organization of the United Nations (fao.org)</u>

IPCC (2006): *2006 IPCC Guidelines for National Greenhouse Gas Inventories*. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IPCC (2019): 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC, Switzerland.

Plan Vivo Foundation | Estimation of GHG emissions from leakage in Plan Vivo projects V1.0. <u>PU004 | Plan Vivo Foundation</u> (Accessed: October 09, 2024).

Rapsomanikis, G. (2015). The Economic Lives of Smallholder Farmers: an analysis based on household data from nine countries. FAO. Retrieved May 27, 2024, from <u>https://openknowledge.fao.org/server/api/core/bitstreams/32709b4d-ed41-4b1e-9d37-91786824cb9e/content</u>