Acorn CO, CO₂ **CO**₂ **CO**,

Carbon Removal Unit (CRU) calculation

A visual guide to understanding the Acorn Framework & Methodology 2.0

Carbon Removal Unit (CRU) calculation

Our Acorn program measures carbon stored in biomass, such as trees and shrubs, which is converted to Carbon Removal Units (CRUs). Each CRU represents a metric ton (or 1000 kg) of carbon dioxide equivalent (t CO₂e) removed from the atmosphere. To calculate this as accurately as possible, we use the equation below.

 $CRU = ((((AGB_{\Delta,y} + BGB_{\Delta,y}) \cdot CF - AdjL) \cdot (1 - AdjB) \cdot (1 - AdjU) \cdot C) - (LE_{\Delta,y})) \cdot (1 - BP)$

The formula is the same for all plots, but this guide will explain 6 different factors that impact your CRU calculation.

Biomass delta (AGB_{Δ,y} + BGB_{$\Delta,y})$ $Root:shoot ratio (BGB_{<math>\Delta,y} = AGB_{<math>\Delta,y} \cdot R)$ Adjustment factor for leakage (AdjL) Adjustment factor for pre-existing biomass (AdjB) Adjustment factor for uncertainty (AdjU) Buffer pool (BP)</sub></sub></sub>

Biomass delta

'Biomass' is the organic matter you see above ground (e.g. a tree and its trunk, leaves, branches) and the matter you don't see below ground (e.g. roots). The **'biomass delta'** is the difference between the biomass at two different points in time (e.g. Year 1 and Year 2).

3

Root:shoot ratio

'Root' refers to the belowground biomass (BGB). 'Shoot' refers to the aboveground biomass (AGB), e.g. the tree trunk, branches, and leaves. The 'root:shoot ratio' is the relationship between the 'root' and 'shoot,' allowing us to estimate the unseen belowground biomass. This helps us calculate the biomass delta more accurately.

A lower root:shoot ratio (R<1) means more biomass goes to shoots, common in fertile regions where aboveground growth is prioritized.

4

*

Adjustment factor for leakage

'Leakage' refers to the unintended loss of stored carbon or an increase in CO₂e emissions as a side effect of an Acorn project activity. The adjustment factor for leakage accounts for any potential leakage within 5 km of your project area.

Acorr

Adjustment factor for pre-existing biomass

Our program must account for pre-existing biomass, as carbon is already stored in trees, plants, and roots before the Acorn project began. This ensures better accuracy and credibility in carbon accounting.

6

Adjustment factor for uncertainty

Our models are reliable in calculating biomass growth, but they are not 100% bulletproof. This adjustment factor ensures that any variability or inaccuracies in biomass estimates are accounted for, providing a conservative and reliable calculation of CRUs.

8

The buffer pool is a necessary risk management tool for small-scale agroforestry carbon projects. For example, if a natural disaster occurs, the buffer pool compensates for the stored carbon that was released back into the atmosphere. 20% of your total CRUs is set aside as a reserve in case of unavoidable events.

