AM 007

Module for Estimating Uncertainty of Carbon Benefits from Small-scale Agroforestry

Version 1.0 – October 2024

Contents

- 1 Summary
- 2 Sources
- 3 Definitions
- 4 Applicability Conditions
- 5 Procedures
- 6 Parameters

1 Summary

The method described in this module implies that the adjustment factor is applied on an *Acorn project level*. The *U* values per plot are derived from Equation 1. Equation 6 is used to calculate the final project-based adjustment factor.

2 Sources

This module supports the following methodology:

- AM-001 Methodology for Quantifying Carbon Benefits from Small-scale Agroforestry v2.0
- AM-003 Module for Ground Truth Sampling v1.0
- PU005 Estimation of Uncertainty of Carbon Benefits estimates in Plan Vivo Projects v1.1 2024

3 Definitions

Definitions used in this module follow the latest version of the Acorn Glossary available on the Acorn website.

4 Applicability Conditions

For this module, the applicability conditions of the Acorn Methodology **AM-001 v2.0** should be met. The method described in this module is applicable at an *Acorn project level*.

5 Procedures

If *Aboveground Biomass* in a plot is estimated using a modeling approach, the uncertainty in the temporal change of the *Aboveground Biomass* in a plot can be calculated using Equation 1¹ to 5. The uncertainty per project includes both project variance and model error of the AGB derived from the Ground Truth Data, using Equation 6.

¹ Derived from equation 3.2 in **IPCC GPG** 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1: General Guidance and Reporting. Chapter 3: Uncertainties.

$$U = \frac{\sqrt{\left(u \cdot AGB_{y-1}\right)^2 + \left(u \cdot AGB_y\right)^2}}{\left|\left(AGB_y - AGB_{y-1}\right)\right|}$$

Equation 1

Where:

U	= Uncertainty per plot for Aboveground Biomass change estimated in
	Measuring Period
$AGB_{y,y-1}$	= Aboveground Biomass per plot in year y (tonne)
u	= Uncertainty for Aboveground Biomass estimated per project (see Equation 2)

The variable u is calculated using Equation 2:

Equation 2

Where:

u	= Uncertainty for Aboveground Biomass estimated per project
СІ	= Half-width of a 90% confidence interval derived from model residuals (tonne/ha)
$\overline{AGB}_{validation(m)}$	= Mean measured <i>Aboveground Biomass</i> of ground truth <i>plots in the validation set</i> (tonne/ha)

The confidence interval is calculated on the measured and predicted values of the validation dataset (see Module) using Equation 3:

 $CI = z \cdot \text{SEM}$

Equation 3

Where:

- *CI* = Half-width of a 90% confidence interval
- *SEM* = Standard error of mean
- z = 1.645 which is the critical point for a normal distribution on a 90% based on confidence interval

The standard error is calculated on the residual of the measured and predicted values of the validation plots using Equation 4^2 :

$$SEM = \frac{std\,\partial(e)}{\sqrt{n}}$$

Equation 4

Where:

SEM	= Standard error of mean
std∂(e)	= Standard deviation of residual
n	= Number of validation plots

The residual value, which is the difference between predicted and measured AGB of the validation dataset is calculated using Equation 5. The validation set are the "n" validation plots for each project. AGB is measured in the field following the GT data collection described in **AM-003.** (AGB_{measured}). The calibrated model is applied on the validation dataset and predicted values are produced (AGB_{predicted}.):

$$e = AGB_{validation(m)} - AGB_{validation(p)}$$

Equation 5

Where:

e = Residual value (tonne/ha)

² As used in: Stein, A., van der Meer, F.D. and Gorte, B. eds., 1999. *Spatial statistics for remote sensing* (Vol. 1). Springer Science & Business Media.

$AGB_{validation(p)}$	= Predicted <i>Aboveground Biomass</i> derived by the model on the validation set (tonne/ha)
$AGB_{validation(m)}$	= Measured Aboveground Biomass derived from ground truth
	data of the validation set (tonne/ha)

Finally, the U value (Equation 1) is matched against Table 1 containing the adjustment factor. Following AM-003 the plots are classified to the level of the smallest value of coefficient of variation. Plots are distributed into the classes and U value is calculated per class following the method below. The residual value (u) derived from Equation 2 is used as input for all classes.

Subsequently, equation 6 is applied to derive an adjustment factor value per plot. If Equation 6 results in a negative value, AdjUplot will be 'zero' and if the value is greater than 1 it will be 'one'.

$$AdjU_{plot} = 0.25 (U - 0.5)$$

Equation 6

The adjustment factor is deducted from the carbon benefit per plot. The final adjustment per *project* is calculated by Equation 7, where the difference of the sum of all carbon benefit values before adjustment and the sum of all carbon benefit values after adjustment as ratio.

$$AdjU = 1 - \frac{\sum AdjU_{plot} \cdot (AGB_y - AGB_{y-1})}{\sum (AGB_y - AGB_{y-1})}$$

Equation 7

Where:

AdjU	= Adjustment factor for uncertainty on project level
AdjU _{plot}	= Adjustment factor for uncertainty on plot level
$AGB_{y,y-1}$	= Aboveground Biomass per plot in year y (tonne)

Data/Parameter	AdjU _{plot}
Units	no unit
Description	Adjustment factor for uncertainty on plot level
Equations	Equation 7
Source	n/a
Value	Number
Justification of choice of	-
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Input for project level adjustment factor
Comments	-

6 Parameters

Data/Parameter	$AGB_{y,y-1}$
Units	Tonne
Description	Predicted Aboveground Biomass of a plot in year y; Predicted
	Aboveground Biomass of a plot in year y-1
Equations	Equation 1
Source	n/a
Value	Number
Justification of choice of	The change in biomass needs to be adjusted for the uncertainty
data or description of	of the predicted biomass in year y and year-1. Both these
measurement methods	predictions have an uncertainty based on the model and project.
and procedures applied	
Purpose of Data	Calculating Uncertainty of the change in biomass per plot
Comments	-

Data/Parameter	$\overline{AGB}_{validation(m)}$
Units	Tonne/ha
Description	Mean measured Aboveground Biomass of all plots in validation
	set
Equations	Equation 2
Source	n/a
Value	Number
Justification of choice of	The confidence interval is based on the residuals between
data or description of	measured and predicted values of the validation set. The mean
	measured value is used to convert this in a relative value

measurement methods	
and procedures applied	
Purpose of Data	Calculating uncertainty per project
Comments	-

Data/Parameter	$AGB_{validation(m),(p)}$
Units	Tonne/ha
Description	Measured Aboveground Biomass of a validation plot; Predicted
	Aboveground Biomass of a validation plot;
Equations	Equation 5
Source	n/a
Value	Number
Justification of choice of	-
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Calculating residual between measured and predicted values
Comments	-

Data/Parameter	n
Units	n/a
Description	Number of plots in validation set
Equations	Equation 4
Source	General statistics
Value	Number
Justification of choice of	Calculating half width of the confidence interval
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	
Comments	-

Data/Parameter	std(e)
Units	n/a
Description	Standard deviation of residual
Equations	Equation 4
Source	General statistics
Value	Number

Justification of choice of	Common statistics
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Standard error
Comments	-

Data/Parameter	Z
Units	n/a
Description	1.645 based on the 90 % confidence interval
Equations	Equation 3
Source	Student's t-distribution
Value	Number
Justification of choice of	1.645 is the critical point for a normal distribution on a 90% based
data or description of	on confidence interval
measurement methods	
and procedures applied	
Purpose of Data	Calculating half width of the confidence interval
Comments	-