AM 001

Methodology for Quantifying Carbon Benefits from Small-scale Agroforestry

Version 2.0 – October 2024

Contents

1	Summary	3
2	Sources	4
3	Definitions	5
4	Applicability conditions	5
	4.1 Project interventions	5
	4.2 Certificate type	6
5	Carbon pools and emission sources	6
6	Baseline scenario and additionality	8
7	Pre-project tree adjustment	8
8	Leakage adjustment	9
9	Uncertainty adjustment	9
10	Partial felling & Harvesting practices	9
11	Carbon calculations	9
	11.1 Ecoregion(s)	9
	11.2 Root:shoot ratio	10
	11.3 Carbon Removal Units	10
12	Parameters	12
13	References	16
14	Appendices	18
	14.1 Organic soil	18
	14.2 Soil disturbance	18

1 Summary

This methodology is a continuation of the *Quantifying Carbon Benefits from Small-scale Agroforestry Methodology version 1.0.* Both versions (version 1.0 and this version 2.0) of this methodology describe the procedures for measuring change in *carbon stock(s)* and calculating the amount of carbon removals from the atmosphere by adopting *agroforestry* practices. Version 2.0 is designed to sharpen further developments amongst others:

- advancing applicability conditions;
- including complementary modules that describe in detail the model calibration strategy;
- integrating procedures for compensating *harvesting* and *silvopastoral projects* in the carbon calculations;
- adding the contribution of Soil Organic Carbon (SOC);
- elaborating further on the methods for estimating *Aboveground Biomass* and pre-project trees analysis using data-driven approaches.

This methodology can be applied to measure realized *carbon benefits* (*ex-post*) and is not designed to calculate expected *carbon benefits* (ex-ante). The approach quantifies carbon sequestered in different *carbon pool(s)* between two points in time.

This methodology is applicable to all *Acorn projects* that implement *agroforestry* practices on smallholder farms that are not on *wetlands*. To estimate the change in *Aboveground* and *Belowground Biomass* attributable to an *Acorn project interventions* between two points in time, the methodology incorporates direct measurement of trees in *sample plots*, as well as satellite imagery that is interpreted using models derived from *sample plot* data from the *ecoregion* within which the *Acorn project* is located.

This methodology stems from the "Acorn program" founded by Rabobank. A related "Acorn Framework" has been developed in close collaboration with the Plan Vivo Foundation to describe project requirements. Under the Acorn program, carbon benefits are calculated following this approved methodology and Carbon Removal Units (CRUs) representing those carbon benefits are issued. This methodology is designed following the Plan Vivo PV Climate Methodology requirements V1.1.

2 Sources

Where applicable, this methodology applies the following program-related modules/tools:

- **AM-002** Tool for Performing Deforestation Assessment on Small-scale Agroforestry v1.0
- AM-003 Module for Ground Truth Sampling v1.0
- **AM-004** Module for Model Development, Calibration, Validation and Application v1.0
- AM-005 Module for Pre-project Woody Biomass Modeling for Small-scale Agroforestry v1.0
- **AM-006** Module for Performing Leakage Assessment of Carbon Benefits on Small-scale Agroforestry v1.0
- **AM-007** Module for Performing Uncertainty Estimation of Carbon Benefits on Small-scale Agroforestry v1.0
- **AM-008** Module for Performing Partial Felling and Harvesting Estimation of Carbon Benefits on Small-scale Agroforestry v1.0
- **AM-009** Module for Contributions of Small-scale Agroforestry to Soil Organic Carbon Sequestration v1.0
- **AM-010** Module for Emissions from Livestock and Manure Decomposition for Small-scale Agroforestry v1.0

This methodology applies procedures from the following existing methodology and tools, references can be found in Section 13;

- **AR-TOOL02** Combined tool to identify the baseline scenario and demonstrate additionality in A/R CDM project activities v1.0
- **AR-TOOL14** Estimation of carbon stocks and change in carbon stocks of trees and shrubs in A/R CDM project activities v4.2
- **CDM-TOOL21** Demonstration of additionality of small-scale project activities v13.1
- **PM001** Agriculture and Forestry Carbon Benefit Assessment Methodology v1.0

This methodology references the following IPCC Guidance:

• IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use.

3 Definitions

Definitions used in this methodology follow the latest version of the Acorn Glossary available on the <u>Acorn website</u>.

4 Applicability conditions

4.1 Project interventions

This methodology is applicable to all *Acorn project interventions* that result in the removal of greenhouse gas emissions from the atmosphere by *agroforestry* practices. It is applicable in any geographic location that fulfills the following applicability conditions:

- 1. Acorn project interventions must meet the agroforestry definition (see the latest Acorn Glossary), and any trees planted are to be *native* or *naturalized species*.
- 2. *Project areas* must not have been deforested within 5 years prior to the start of the *Acorn Project Period* (see **AM-002**).
- 3. Acorn project interventions must not take place on wetlands.
- 4. Additional trees would not be planted without the Acorn project interventions.
- 5. Acorn project interventions must not (significantly >5%) increase the use of synthetic (nitrogen-containing) fertilizers relative to the *baseline scenario*.
- 6. Acorn project interventions must not engage in slash-and-burn activity or use heavy machinery for site preparation or management.
- 7. *Soil disturbance* attributable to the *Acorn project interventions* must not occur on more than 10% of the *plot* that falls within either of the following categories of land:
 - Land containing organic soils (see Section 14.1)¹;
 - Land which, in the baseline scenario, is subjected to the land-use and practices and inputs described in section 14.2.

Applicability conditions 1, 2, 3 and 4 ensure that *Acorn project interventions* applying this methodology fall within the eligible category of *Acorn projects*, indicating that emissions through litter, deadwood and soil can be conservatively assumed to be zero in the *baseline scenario* and meeting environmental safeguards as per the Acorn Framework.

¹ If land contains high organic soils, projects are expected to contract agreements on limited *soil disturbance* and clearly stated how *soil disturbance* is taken into account at the *Agroforestry Design*.

Conditions 5, 6 and 7 safeguard that carbon emissions, from synthetic fertilizer, *heavy machinery* and *soil disturbance*, are likely to be insignificant (less than 5% of the expected *carbon benefits*) and can be conservatively excluded from the carbon removal calculations.

4.2 Certificate type

If this methodology is applied, *ex-post carbon benefits* can be claimed. In the case of *Acorn program* these credits are referred to as *CRUs*. All *Acorn projects* follow the same approach and quality standard as per the Acorn Framework and this methodology. On a sample basis projects are validated and *CRUs* are verified according to the approved "*Acorn Validation and Verification Cycle - Sampling Approach and Program Certification*" (accessible on the <u>Acorn website</u>). The *Certifier* has the authority to randomly select *plots (of an Acorn project)* for *validation* and *verification* while safeguarding the biomass variance at plot selection. This strategy can be used as a reference for selection. The *Certifier* provides oversight and quality control by fixed assessment stages per project. Within the *Acorn program*, *CRUs* may be issued after *Certifier* approval.

5 Carbon pools and emission sources

The following *carbon pools* and emission sources are considered when assessing the *carbon baseline* and project removals. Due to the nature of eligible projects to which this methodology applies, being small-scale *agroforestry* projects, some *carbon pools* and emission sources are excluded as the potential carbon release from such *carbon pools* and emission sources caused by the *Acorn project interventions* are considered insignificant to the total expected *carbon benefits* of an *Acorn project*.

Carbon pool	Included/excluded	Justification
Aboveground woody	Included	A carbon pool expected to be significantly
biomass		impacted by Acorn project interventions
Belowground woody	Included	A carbon pool expected to be significantly
biomass		impacted by Acorn project interventions
Aboveground non-woody	Excluded	Not significantly impacted by Acorn
biomass		project interventions, conservatively
		excluded
Belowground non-woody	Excluded	Not significantly impacted by Acorn
biomass		project interventions, conservatively
		excluded

Table 1. Carbon pools

Litter	Excluded	May be impacted as a result of <i>Acorn</i> project interventions, conservatively
		excluded
Deadwood	Excluded	May be impacted as a result of Acorn
		project interventions, conservatively
		excluded. The baseline scenario is limited
		to agricultural land, so there is limited
		potential for removal in this pool
SOC	Optional	This carbon pool is likely to increase as a
		result of Acorn project interventions. May
		be included when applying Module AM-
		009
Harvested wood products	Excluded	May be impacted as a result of Acorn
		project interventions, conservatively
		excluded

Table 2. Emissions sources

	excluded
Included/excluded	Justification
Excluded	Emissions from this source are expected to
	be unaffected or reduced by Acorn project
	interventions, conservatively omitted
Excluded	Emissions from the nitrogen fixing species
	in an small-scale agroforestry system is
	considered limited, conservatively omitted
Excluded	Slash and burn agriculture with the
	intention to prepare sites is not promoted
	under this methodology, conservatively
	omitted
Excluded	Not significantly impacted by Acorn
	project interventions. The use of heavy
	machinery is considered unlikely in small-
	scale agroforestry and not promoted for
	site preparation or management within
	Acorn projects, conservatively omitted
Optional/Included	Not significantly impacted by Acorn
for silvopastoral	project interventions for non-silvopastoral
activities	projects, where presence of ruminant
	animals is considered limited at small-
	scale agroforestry. For silvopastoral
	Excluded Excluded Excluded Excluded Excluded Optional/Included for silvopastoral

		<i>projects</i> , this emissions source should be included when applying Module AM-010
Manure decomposition (CH ₄ , N ₂ O)	Optional/Included for silvopastoral	Not significantly impacted by Acorn project interventions for non-silvopastoral
	activities	<i>projects</i> , where presence of ruminant animals is considered limited at small- scale <i>agroforestry</i> . For <i>silvopastoral</i> <i>projects</i> , this emissions source should be included when applying module AM-010
Soil methanogenesis (CH ₄)	Excluded	Emissions from this source are expected to be unaffected or reduced by <i>Acorn project</i> <i>interventions</i> , conservatively omitted (Wang N, et al, 2023)

6 Baseline scenario and additionality

Local Partners, with support of Acorn, must determine the most likely land use and land management practices in a *project region*, over a period of at least 10 years, in the absence of the *Acorn project interventions* using **AR-TOOL02** and reported in the *carbon baseline* section of the *Acorn Design Document*. The *baseline scenario* must be (re-) assessed against the requirements in the Acorn Framework.

Additionality of the Acorn project interventions must be determined using a barrier analysis as defined by **CDM-TOOL21** Demonstration of additionality of small-scale project activities v13.1 or **AR-TOOL02** Combined tool to identify the baseline scenario and demonstrate additionality in A/R CDM project activities v1.0.

The data gathered on *additionality* is (re-)assessed against the requirements in the Acorn Framework and reported on in the *additionality* section of the *Acorn Design Document*.

Local Partners, with support of Acorn, must re-assess both the baseline scenario and additionality of an Acorn project at least every 10 years throughout the Crediting Period.

7 Pre-project tree adjustment

CRUs may only be generated on *biomass* increase that results from the *Acorn project interventions*, therefore *biomass* considered existing before the start of the *Acorn project interventions* should be adjusted for.

The amount of *biomass* present within the *project area* prior to the *Acorn Project Period*, its projected *biomass* contribution, as well as the associated *uncertainty* (*AdjU*_{EETBy}), are

determined following the methodology explained in module **AM-005**. If the estimated increase from existing *biomass* (*EETB_y*) plus the *uncertainty* is 10% or less no adjustment needs to be applied. For any value greater than 10%, the adjustment factor (*AdjB*) value described in Table 1 in module **AM-005**.

8 Leakage adjustment

The *leakage* value per *Acorn project* is calculated using data from Global Forest Watch or alternative global forest inventory data sources. This is combined with data on expected productivity loss collected from *Smallholder Farmers*. *Leakage* is estimated within a buffer zone extending 5 kilometers. The *leakage* calculation follows the methodology explained in module **AM-006**.

9 Uncertainty adjustment

The *uncertainty* value per *Acorn project* is calculated following the methodology explained in module **AM-007**. If *Aboveground Biomass* in a *plot* is estimated using satellite imagery, the *uncertainty* in the temporal change of the *Aboveground Biomass* in a *plot* can be calculated following module **AM-007**.

10 Partial felling & Harvesting practices

Acorn projects are allowed to have partial felling and/or harvesting activities within the Acorn project interventions. The calculation of Aboveground Biomass due to harvesting follows the methodology explained in module **AM-008**.

11 Carbon calculations

11.1 Ecoregion(s)

Project area(s) within *Acorn program* are stratified and defined by *ecoregions* (Olson, D. M, et al, 2001). Per *ecoregion, sample plots* are collected and applied to locally validate and calibrate the *biomass* model(s). For each project, a calibration strategy based on stratified systematic approach is followed to ensure a representative selection of *sample plots*, which cover the full biomass variation (**AM-003**). By default, each *ecoregion* should at least collect a minimum of 30 *sample plots* at the start of the *Acorn project interventions*. In the years thereafter, for each *ecoregion*, a minimum of 30 additional *sample plots* need to be collected at least every 5 years and applied to enhance model performance. Up to 300 *plots* within a *project area* can belong

to a non-calibrated *ecoregion* if the *plots* that are located within a neighboring calibrated *ecoregion*, have the same *Agroforestry Design*, and are within the same calibration range.

11.2 Root:shoot ratio

Root:shoot ratio is defined as the ratio of *Belowground Biomass* to *Aboveground Biomass*. If no transparent, scientific and verifiable information on local context is available to justify a specific root:shoot ratio, an appropriate *project level* root:shoot ratio should be determined following Table 4.4² from the IPCC (2019) report to calculate *Belowground Biomass* value(s). Ecological zones are assigned to the *ecoregions* to assign a corresponding root:shoot ratio following FAO (2012). If an *Acorn project* includes multiple *ecoregions*, a weighted average value will be assigned to the *Acorn project* for *biomass* below 125 t/ha. The category exceeding 125 t/ha falls outside of Acorn's scope, as such biomass values are deemed too high for agroforestry practices. If an ecological zone cannot be mapped to an *ecoregion*, or if Table 4.4 from IPCC (2019) cannot be used for any reason, a default value of 0. (Kim, Kirschbaum & Beedy, 2016) should be applied. Please refer to the IPCC (2019) Table 4.4 and Equation 1 for the equation in which the root:shoot ratio is applied. The root:shoot ratio is applied to calculated the *Belowground Biomass* as shown in Equation 1.

$$BGB_{\Delta,v} = AGB_{\Delta,v} \cdot R$$

Equation 1

Where:

$BGB_{\Delta,y}$	= Change in <i>Belowground Biomass</i> in year y (tonne/ha)
$AGB_{\Delta,y}$	= Change in Aboveground Biomass in year y (tonne/ha)
R	= Root:shoot ratio

11.3 Carbon Removal Units

All carbon models are developed from a combination of *sample plot* measurements and satellite imagery and are specific to an *ecoregion*. Equation 2 describes how to calculate the number of *CRUs* that can be generated from the delta in various carbon pools and emission sources. First, the adjustment factors (for *leakage*, *pre-existing biomass* and *uncertainty*) are

²IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4 Agriculture, Forestry and Other Land Use. <u>https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4 Volume4/19R V4 Ch04 Forest%20Land.pdf</u>

deducted from the *carbon stocks*, after that the conversion from carbon to carbon dioxide equivalent is made and finally, the change in livestock emissions and the *bufferpool* are subtracted. Quantification for estimated emissions from silvopastoral *Acorn project interventions* can be found in module **AM-010** and is optionally included in Equation 2 below.

$$CRU = ((((AGB_{\Delta,y} + BGB_{\Delta,y}) \cdot CF + SOC_{\Delta,y} - AdjL) \cdot (1 - AdjB) \cdot (1 - AdjU) \cdot C) - (LE_{\Delta,y})) \cdot (1 - BP)$$

Equation 2

Where:

CRU	= Carbon Removal Unit (t CO ₂ e)
AdjL	= Adjustment factor for <i>leakage</i> (tonne Carbon; see AM-006)
AdjB	= Adjustment factor for <i>pre-existing biomass</i> (% see AM-005)
AdjU	= Adjustment factor for <i>uncertainty</i> (% see AM-007)
CF	= Carbon fraction of <i>biomass</i> = 0.47
С	= Conversion from carbon to carbon dioxide = $\frac{44}{12}$
$LE_{\Delta,y}$	= Change in livestock greenhouse gas emissions for a <i>plot</i> between
	year y and upper bound greenhouse gas emissions in the baseline year (t CO_2e/ha ; see AM-010)
BP	= Buffer pool percentage

CRUs can be calculated up to 1.5 year, depending on the measuring date, prior to *plot* onboarding. Negative *biomass* value within the first measured period can be assigned to *plot* preparation and other agricultural practices that allow the *Smallholder Farmer* to be onboarded to the *Acorn project*. After *CRU* generation, negative *biomass* values need to be compensated by additional *biomass* growth before new *CRU* generation or by the *buffer pool* after a *reversal event*.

12 Parameters

Data/Parameter	AdjB
Units	%
Description	Adjustment factor for pre-existing biomass
Equations	N/A
Source	AM-005 Table 1
Value	N/A
Justification of choice of	The adjustment is required in order to ensure fair compensation.
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Determine to adjust for biomass growth of trees planted before
	the project interventions
Comments	N/A

Data/Parameter	AdjL
Units	Tonne Carbon
Description	Adjustment for leakage
Equations	Equation 2
Source	AM-006
Value	N/A
Justification of choice of	The adjustment is required in order to ensure fair compensation.
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Input value for determining the related adjustment factor (AdjL)
Comments	N/A

.

Data/Parameter	AdjU
Units	%
Description	Adjustment factor for uncertainty on project level
Equations	Equation 6
Source	AM-007
Value	N/A
Justification of choice of	The adjustment is required in order to ensure fair compensation.
data or description of	
measurement methods	
and procedures applied	

Purpose of Data	To determine the project-based adjustment factor applied
	equally to all plots.
Comments	N/A

Data/Parameter	$AGB_{\Delta,y}$
Units	Tonne/ha
Description	Change in Aboveground Biomass in year y
Equations	Equation 1 and Equation 2
Source	Satellite imagery; Aboveground Biomass is estimated using a
	machine learning model (Shen et al., 2022) and is explained in
	AM-004 and AM-006
Value	N/A
Justification of choice of	Satellite imagery is used as input for Acorn biomass model to
data or description of	estimate biomass at two moments in time AGB_y and AGB_{y-1} .
measurement methods	$AGB_{\Delta,y} = AGB_y - AGB_{y-1}.$
and procedures applied	
Purpose of Data	Estimation of Aboveground Biomass contributions to total project
	removals
Comments	N/A

Data/Parameter	ВР
Units	Percentage (%)
Description	Buffer pool is 20%
Equations	Equation 3
Source	Acorn Framework
Value	Number
Justification of choice of	Buffer pool calculations in line with market practice
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	CRUs set aside for reversal events
Comments	N/A

Data/Parameter	C	
Units	No unit	
Description	Conversion from carbon to carbon dioxide	
Equations	Equation 3	

Source	IPCC, 2006
Value	Number
Justification of choice of	Conversion from carbon to carbon dioxide = $\frac{44}{12}$
data or description of	12
measurement methods	
and procedures applied	
Purpose of Data	Widely used conversion
Comments	N/A

Comments	IN/A
Data/Parameter	CF
Units	No unit
Description	Carbon fraction of <i>biomass</i>
Equations	Equation 3
Source	IPCC, 2006
Value	Number
Justification of choice of	Carbon fraction of <i>biomass</i> = 0.47
data or description of	
measurement methods	
and procedures applied	
Purpose of Data	Widely used conversion
Comments	N/A

Data/Parameter	$LE_{\Delta,y}$		
Units	t CO2e/ ha		
Description	Change in livestock greenhouse gas emissions for a <i>plot</i> between		
	year y and upper bound greenhouse gas emissions in the		
	baseline year		
Equations	Equation 1		
Source	AM-010 Equation, surveys or inventory of project areas and IPCC,		
	2019		
Value	N/A		
Justification of choice of	A method in line with international standards.		
data or description of			
measurement methods			
and procedures applied			
Purpose of Data	Estimation of livestock greenhouse gas emissions from enteric		
	fermentation and manure decomposition		

Comments	N/A
----------	-----

Data/Parameter	R			
Units	No unit			
Description	Root:shoot ratio for the calculation of Belowground Biomass			
Equations	Equation 1			
Source	IPCC, 2019 Chapter 4 Forest land Table 4.4			
Value	Between 0 and 1			
Justification of choice of	A method in line with international standards.			
data or description of				
measurement methods				
and procedures applied				
Purpose of Data	Calculation for Belowground Biomass value			
Comments	N/A			

Data/Parameter	SOC _{Δ,y}
Units	Tonne/ha
Description	Change in soil organic matter in year y (t CO2e) derived from
	Aboveground and Belowground values
Equations	Equation 2
Source	Module AM-009
Value	N/A
Justification of choice of	This is calculated from the estimated change in biomass, see
data or description of	Module AM-009.
measurement methods	
and procedures applied	
Purpose of Data	Estimation of SOC contributions to total project removals
Comments	N/A

13 References

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2007) 'Combined tool to identify the baseline scenario and demonstrate additionality in A/R CDM project activities,' UNFCCC Methodologies, 01.0. <u>https://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-02-v1.pdf</u> (Accessed: October 24, 2023).

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2023) 'AR-Tool 02: Combine tool to identify the baseline scenario and demonstrate additionality, v. 070 <u>Combined tool to identify the baseline scenario and demonstrate additionality. Version 05.0.0 (unfccc.int)</u> (Accessed: September 20, 2024)

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2015) 'AR-tool 14: Estimation of carbon stocks and change in carbon stocks of trees and shrubs in A/R CDM project activities,' UNFCCC Methodologies, 04.2. <u>https://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-14-v4.2.pdf</u> (Accessed: October 24, 2023).

Clean Development Mechanism, United Nations Framework Conventions on Climate Change (2020) 'Tool 21: Methodology tool: Demonstration of additionality of small-scale project activities,' UNFCCC Methodologies, 13.1. <u>https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-21-v13.1.pdf</u> (Accessed: October 24, 2023).

FAO (2012) <u>Global ecological Zones for FAO forest reporting: 2010 update</u> <u>Global Ecological</u> Zones (GEZ) mapping | <u>Global Forest Resources Assessments</u> | <u>Food and Agriculture</u> <u>Organization of the United Nations (fao.org)</u>

IPCC (2006): *2006 IPCC Guidelines for National Greenhouse Gas Inventories*. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IPCC (2019): 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC, Switzerland.

Kim, D.-G., Kirschbaum, M.U.F. and Beedy, T. (2016) 'Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies,' *Agriculture, Ecosystems & Environment*, 226, pp. 65–78. <u>https://doi.org/10.1016/j.agee.2016.04.011</u>.

Olson, D.M. et al. (2001) 'Terrestrial Ecoregions of the World: A new map of life on Earth,' *BioScience*, 51(11), p. 933. <u>https://doi.org/10.1641/0006-3568(2001)051</u>.

Plan Vivo Foundation | Agriculture and Forestry Carbon Benefit Assessment Methodology PM001 V1.0. PM001 | Plan Vivo Foundation (Accessed: September 11, 2024).

Plan Vivo Foundation | Methodology Requirements v1.1. <u>PV Climate - Documentation | Plan</u> <u>Vivo Foundation</u> (Accessed: September 11, 2024).

Ravindranath, N.H. and Ostwald, M. (2008) Carbon Inventory Methods Handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects, *Springer eBooks*. <u>https://doi.org/10.1007/978-1-4020-6547-7</u>.

Smith, P., et al. (2020) 'Methane emission from agircultral soils: The role of management practices'. Agriculture, ecosystems & Environment, 296, p. 106896.

Smith, P., et al. (2020) 'Methane emissions from agricultural soils: The role of management practices', Agriculture, Ecosystems & Environment, 296, p. 106896. doi: 10.1016/j.agee.2020.106896.

Wang, N. et al. (2023) 'Microbial mechanisms for methane source-to-sink transition after wetland conversion to cropland,' *Geoderma*, 429, p. 116229. <u>https://doi.org/10.1016/j.geoderma.2022.116229</u>.

14 Appendices

14.1 Organic soil

As per IPCC (2006), soils are characterized as organic if characteristics 1 and 2, or characteristics 1 and 3 below are met.

- 1. Thickness of 10 cm or more. A horizon less than 20 cm thick must have 12 percent or more organic carbon when mixed to a depth of 20 cm;
- 2. The soil is never saturated with water for more than a few days, and contains more than 20 percent (by weight) organic carbon (about 35 percent organic matter);
- 3. The soil is subject to water saturation episodes and has either:
 - I.) At least 12 percent (by weight) organic carbon (about 20 percent organic matter) if it has no clay; or
 - II.) At least 18 percent (by weight) organic carbon (about 30 percent organic matter) if it has 60 percent or more clay; or
 - III.) An intermediate, proportional amount of organic carbon for intermediate amounts of clay.

14.2 Soil disturbance

Table 3. List of cropland and grassland in which soil disturbance is restricted based upon AR-ACM0003 v.2.0

Region	Land use	Management	Inputs
		Full tillage	High with
		run unage	manure
		Reduced tillage	High with
	Long-term cultivated cropland	Reduced unage	manure
	Long-term cultivated cropiand		High without
		No-till	manure
		NO-UII	High with
Boreal			manure
Doreal		Full tillage	High with
		Full ullage	manure
		Reduced tillage	High with
	Short-term or set aside cropland	Reduced tillage	manure
	Short-term or set aside cropiand		High without
		No-till	manure
			High with
			manure
		Full tillage	High with
		ruii uiiage	manure
	Long-term cultivated cropland	Reduced tillage	High with
		Reduced unage	manure
		No-till	High with
Temperate, cold, dry		NO-uii	manure
		Full tillage	High with
		ruii uilaye	manure
		Reduced tillage	High with
	Short-term or set aside cropland		manure
			Medium
		No-till	High without
			manure

Region	Land use	Management	Inputs	
-		Reduced tillage	High with	
	Long-term cultivated cropland	Reduced tillage	manure	
	Long-term cultivated cropiand	No-till	High with	
		NO-un	manure	
		Full tillage	High with	
Temperate, cold, moist		r un unago	manure	
remperate, cold, moist		Reduced tillage	High with	
	Short-term or set aside cropland	rtoddood allago	manure	
			High without	
		No-till	manure	
			High with	
			manure	
		Full tillage	High with	
			manure	
	Long-term cultivated cropland	Reduced tillage	High with	
			manure	
		No-till	High with	
.			manure	
Temperate, warm, dry		Full tillage	High with	
			manure	
		Reduced tillage	High with	
	Short-term or set aside cropland		manure	
			Medium	
		No-till	High without	
			manure	
		Reduced tillage	High with	
	Long-term cultivated cropland		manure	
			High with	
			manure	
		Full tillage	High with	
Temperate, warm,			manure	
moist		Reduced tillage	High with	
	Short-term or set aside cropland	.	manure	
			High without	
		No-till	manure High with	
			High with manure	
			High with	
		Full tillage	manure	
			Medium	
			High without	
		Reduced tillage	manure	
Tropical, dry		Reduced unage		
	Short-term or set aside cropland		High with manure	
		No-till	All	
		Full tillage	High with	
Tropical, moist	Short-term or set aside cropland	r un unage	manure	
nopioui, moloc	charterin or out abide cropiand	Reduced tillage	High without	
		Reduced unage	manure	

Region	Land use	Management	Inputs	
			High with	
			manure	
			High without	
		No-till	manure	
		NO-uii	High with]
			manure	
	Long-term cultivated cropland	No-till	High with	
	Eong-term cultivated cropiand	NO-UII	manure	
		Full tillage	High with	
		ruii ullaye	manure	
			High without	
		Reduced tillage	manure	
Tropical, montane		ricouced dilage	High with	
	Short-term or set aside cropland		manure	
			Medium	
		No-till	High without	
			manure	
			High with	
			manure	
		Full tillage	High with	
			manure	
Tropical, wet		Reduced tillage	High without	
			manure	
	Short-term or set aside cropland	Reduced unage	High with	
	Short-term of set aside cropiand		manure	
		No-till	High without	
			manure	
			High with	
		1	manure	

Management	Inputs
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	All
Moderately degraded	High
Improved	All
Non-degraded	High
Moderately degraded	High
	Improved Non-degraded Moderately degraded Improved Non-degraded Improved Non-degraded