GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS - COMPONENT 2
(HIGHER TIER) C300UB0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

Component 2: Higher Tier	Mark	Comment
$\begin{aligned} & 1 . .^{*}(\mathrm{a})(\mathrm{i}) \\ & \frac{5}{12} \end{aligned}$	B1	ISW
$\begin{aligned} & \text { 1.(a)(ii) } \\ & \frac{18072}{12} \times 7 \\ & \text { (£) } 10542 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their $2+3+7$ ' from (a)(i) provided > 10
$\begin{aligned} & 1 .(\mathrm{b}) \\ & \frac{80}{32}(\times 100) \text { or } 2.5(\times 100) \\ & 250(\%) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer If no marks, award SC1 for an answer of 150(\%) (using a profit of £48)
	(5)	
$\begin{aligned} & 2 .^{*}(\mathrm{a}) \\ & (650 \times 8+750 \times 7+850 \times 4+950 \times 11) \\ & \\ & 810 \text { (grams) } \end{aligned}$	M1 m1 A1	(= 24300)
2.(b) Valid comment e.g. 'Her answer will be an underestimate.' 'She is using the lowest values so the mean will be too small'.	E1	Allow answers that state that the calculated mean will be smaller or indicate that the lowest values do not represent the groups, e.g. 'Her method will give a smaller mean.' 'Because these values do not represent the entire range.' 'Because she ignored the distribution in each interval.' 'Because she is using the minimum masses making at an unfair estimate.' Do not allow e.g. 'She has used the smallest value in each group.' 'Because these values are the lowest bounds.' 'Because it is not as accurate as the midpoints.' 'It is better to use the midpoints'
	(4)	

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 6.*(a) } \\
\& 5 x-2 x=6-4 \text { or } 3 x=2 \text { oe } \\
\& (x=) \frac{2}{3}, \text { ISW }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \mathrm{~B} 1
\end{aligned}
\] \& \begin{tabular}{l}
Allow 0.67 or 0.666 but not 0.66 FT from \(a x=2, a \neq 1\) or \(3 x=b\) accept \(\frac{2}{a}\) or \(\frac{b}{3}\) but if on FT either simplifies to an integer the answer must be given as an integer. \\
Correct answer implies first B1 unless incorrect working seen. \\
Maximum of 1 mark if not fully correct
\end{tabular} \\
\hline \begin{tabular}{l}
6.(b) \\
\(4 x>17+3\) oe
\[
x>5
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& Mark final answer; no marks for use of " \(=\) ", unless finally replaced to give \(x>5\) then award M1 A1. \\
\hline \begin{tabular}{l}
6.(c) \\
Method to eliminate an unknown e.g. equal coefficients and subtraction \\
or rearranges one equation and substitutes into the other \\
Finds one unknown \\
Finds the other unknown
\end{tabular} \& M1

A1

A1 \& | No marks for T\&I; no marks for an unsupported answer. |
| :--- |
| Allow one error in one term, not in the equated coefficients if appropriate $\mathrm{CAO} ; x=2, y=-3$ |
| FT 'their x ' or 'their y ' used in one of their equations |

\hline \& (7) \&

\hline
\end{tabular}

9. (Radius of cylinder $=$) $3(\mathrm{~cm}) \mathrm{si}$	B1	Multiplications can take place in any order May be implied by e.g. $d=6$
(Number of cylinders in crate =) 80	B1	May be implied in later working
$\pi \times 3^{2} \times 32$	M1	(288ر or 904.7(7..) to $904.9 \mathrm{~cm}^{3}$)
$\times 0.961$	M1	(869.4 to 869.6(0...) g) FT 'their derived volume' providing it is a multiple of π. May use $0.000961\left(\mathrm{~kg} / \mathrm{cm}^{3}\right)$; allow multiplication by figs 961 if a unit conversion error
$\times 80$	M1	FT 'their 80 ' \times 'their derived volume or mass'
= 69552 to 69569 (g)	A1	CAO
No indicated (with sight of 69(.) kg or 70000 g)	A1	FT 'their 69552 to 69569 (g)' providing at least M2 previously awarded and no incorrect conversion to kg seen
Alternative method		
(Radius of cylinder =) 3 (cm) si	B1	May be implied by e.g. $d=6$
(Number of cylinders in crate =) 80	B1	May be implied in later working
$\pi \times 3^{2} \times 32$	M1	(288л or 904.7(7..) to $904.9 \mathrm{~cm}^{3}$)
$\times 0.961$	M1	(869.4 to 869.6(0...) g)
		FT 'their derived volume' providing it is a multiple of π.
		May use $0.000961\left(\mathrm{~kg} / \mathrm{cm}^{3}\right)$; allow multiplication by figs 961 if a unit conversion error
$=869.5$ to 869.7(g)	A1	FT 'their $6 \div 2$ ' and possibly figs 961
		Allow e.g. 870 if correct working seen
$70000 \div 80$ (= $875(\mathrm{~g})$)	M1	
No indicated (with sight of 869(.) g and 875 g)	A1	FT 'their 869.5 to 869.7 (g)' or 'their 870' providing at least M2 previously awarded
	(7)	
10.		
$(1-0.198) \times(1-0.065)$ oe, si	M1	0.802×0.935 Allow one error in subtractions.
0.74987 oe, si	A1	CAO; allow 75% following full and correct working
$(1-0.74987) \times 100$ oe, si	M1	FT 'their derived 0.74987 ' providing <1 and $\neq 0.802$ or 0.935 ; allow for sight of $1-0.74987$ or 0.25013
25.013 (\%)	A1	FT (1 - 'their 0.74987 ') $\times 100$ Allow 25% following full and correct working
	(4)	

11. (a) Correct box plot with: Median at 19.4 Lower quartile at 16.8 Upper quartile at 21.0 Left whisker to 15.2 Right whisker to 23.2	B3	$B 1$ for $U Q=21(.0)$ si; may not be in a box plot B1 for LQ, Median, UQ positioned correctly in a box plot, B1 for correct whiskers				
11.(b)(i) Correct indicated and valid explanation e.g. 'The median for group B is lower.' or 'The median (for group A is 19.4 and) for group B is 18.8.'	E1					
11.(b)(ii) Not correct indicated and valid explanation e.g. 'The lower quartile for B is more than 17 but the lower quartile for A is less than 17.'	E1	Allow Not co less th	ect an 17	‘Group A had		quartile
	(5)					
$12 .$		Corre evalua 'too big Mark	valua ns no or 'too ving	on enough to i seen then may small'; $x^{3}+x^{2}=12 \text { equ }$	ply be im ale	0 or <0; If plied by e,g, tly
One correct evaluation with $1 \leq x \leq 2$	B1					
Two correct evaluations with $1.55 \leq x \leq 1.75$ and one >0, one <0 si	B1					
Two correct evaluations with $1.65 \leq x \leq 1.75$ and one >0, one <0 si	M1					
1.7	A1			$2 x^{3}+x^{2}-12$	or	$2 x^{3}+x^{2}$
		1		-9		3
		1.1		-8.128		3.872
		1.2		-7.104		4.896
		1.3		-5.916		6.084
		1.4		-4.552		7.448
		1.5		-3		9
			1.55	-2.149...		9.850...
		1.6		-1.248		10.752
			1.65	-0.293...		11.706...
		1.7		0.716		12.716
			1.75	1.781...		13.781...
		1.8		2.904		14.904
		1.9		5.328		17.328
		2		8		20
		If no with $(2 x)^{3}$	ks, a al an $x^{2}-12$	ard SC2 for a ver of 1.1 from $=0$ or $(2 x)^{3}+x$		te method
	(4)					

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline 13 .(\mathrm{a}) \\
2651.25(\mathrm{~mm})
\end{array}
\] \& B1 \& \\
\hline \begin{tabular}{l}
13.(b) \\
Max length + max length attempted
\[
\begin{aligned}
\& 2.855+1.905 \text { OR } 2.85+1.90+0.01 \\
\& 4.76(\mathrm{~m})
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
S1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow for \(\mathrm{a}+\mathrm{b}\) where \(2.85<\mathrm{a} \leq 2.855\) and \(1.90<b \leq 1.905\). May be in cm . \\
May be in cm; implies S1 caO
\end{tabular} \\
\hline \& (4) \& \\
\hline \begin{tabular}{l}
14.(a) \\
Correct tree diagram e.g.
\end{tabular} \& B3 \& \begin{tabular}{l}
B1 for each pair of branches correct \\
Allow equivalent fractions in all cases.
\end{tabular} \\
\hline \begin{tabular}{l}
14.(b) \(\left(\frac{6}{20} \times \frac{13}{21}\right)+\left(\frac{5}{20} \times \frac{9}{21}\right)\) oe \\
\(\frac{123}{420}\) or \(\frac{41}{140}\) oe, ISW
\end{tabular} \& M2

A1 \& | Check tree diagram |
| :--- |
| FT 'their probabilities' for M2 or M1, providing at least B1 awarded in (a) |
| M1 for sight of one correct product |
| FT 'their tree diagram' |

\hline \& (6) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 16.(a) } \\
\& a+\frac{1}{2} c
\end{aligned}
\] \& B1 \& \\
\hline \[
\begin{aligned}
\& \text { 16.(b) } \\
\& \frac{1}{2} \mathbf{a}+\frac{1}{4} \mathbf{c} \text { or } \frac{1}{2}\left(\mathbf{a}+\frac{1}{2} \mathbf{c}\right)
\end{aligned}
\] \& B1 \& FT 'their \(\mathbf{a}+\frac{1}{2} \mathbf{c}^{\prime}\) from (a) \\
\hline \[
\begin{aligned}
\& \text { 16.(c) } \\
\& \frac{1}{2} \mathbf{a}-\frac{3}{4} \mathbf{c}
\end{aligned}
\] \& B2 \& FT 'their OE' B1 for \(-\mathbf{c}+\frac{1}{2} \mathbf{a}+\frac{1}{4} \mathbf{c}\) oe \\
\hline \& (4) \& \\
\hline \begin{tabular}{l}
17. \\
\(\sqrt{56^{2}+33^{2}+72^{2}}\) or \\
\(\sqrt{56^{2}+33^{2}}(=65)\) and \(\sqrt{65^{2}+72^{2}}\) or \\
\(\sqrt{72^{2}+56^{2}}(=\sqrt{8320}=8 \sqrt{130})\) and \\
\(\sqrt{8320+33^{2}}\) or \\
\(\sqrt{72^{2}+33^{2}}(=\sqrt{6273}=3 \sqrt{697}\) and \\
\(\sqrt{6273+56^{2}}\) \\
97 (cm)
\end{tabular} \& M2

A1 \& | M1 for $D F^{2}=56^{2}+33^{2}+72^{2}$ OR for one correct application of Pythagoras in 2D e.g. $\sqrt{56^{2}+33^{2}}$ or $\sqrt{72^{2}+56^{2}}$ or $\sqrt{72^{2}+33^{2}}$; implied by finding e.g. $D B=65$ |
| :--- |
| Allow 96.98 to 97 from earlier rounding |

\hline \& (3) \&

\hline | 18.(a)(i) |
| :--- |
| Reflection in y-axis | \& B1 \& Ignore coordinates for this mark; graph must be in 1st quadrant, starting at origin and ending at a point on the x-axis

\hline Correct coordinates seen or scale marked \& B1 \& $A(3,0)$ and $B(1,1)$

\hline 18.(a)(ii) \& \&

\hline Translation through $\binom{0}{k}$ where $k>0$ \& B1 \& Ignore coordinates for this mark; graph must be in 2nd quadrant, but mark intent for the end points to have the same y-coordinate

\hline Correct coordinates seen or scale marked \& B1 \&

\hline $$
\begin{aligned}
& 18 .(\mathrm{b}) \\
& C(17,0)
\end{aligned}
$$ \& B1 \& Allow for sight of $x=17$ provided $y=0$ is not contradicted; may be seen on diagram Do not allow for 17 alone or $\mathrm{c}=17$

\hline \& (5) \&

\hline
\end{tabular}

19.		
An explicit calculation for $\sin B C A$ e.g. $\sin B C A=7 \times \frac{\sin 61}{9}$	M2	M1 for any correct implicit form e.g. $\frac{\sin B C A}{7}=\frac{\sin 61}{9}$
$B C A=42.86 \ldots$ si	A1	Accept 43
$(B \widehat{C} D=180-42.86 \ldots=)$ Answer in range 137.1° to 137.2° inclusive	B1	FT 'their 42.8 to 43 ' providing at least M1 previously awarded. Accept 137 following complete working; degree symbol may be omitted
	(4)	
20.(a)		
$\frac{55}{360} \times \pi \times 12^{2} \text { oe }$	B1	
$\frac{1}{2} \times 12^{2} \times \sin 55 \text { oe }$	B1	
$\frac{55}{360} \times \pi \times 12^{2}-\frac{1}{2} \times 12^{2} \times \sin 55 \text { or better }$	M1	($=22 \pi-72 \sin 55$);
		FT their difference of areas providing at least B1 previously awarded
10.1(36....)	A1	caO Accept answers in the range 10.1 to 10.15; accept 10 following correct working
20.(b)		
$\begin{aligned} & \sqrt{12^{2}+12^{2}-2(12)(12) \cos 55} \text { oe OR } \\ & \frac{12 \sin (55)}{\sin (62.5)} \text { OR } 2(12 \sin (27.5)) \end{aligned}$	M2	M1 for sight of $12^{2}+12^{2}-2(12)(12) \cos 55$ oe OR $\frac{[\ldots]}{\sin (55)}=\frac{12}{\sin (62.5)}$ oe OR $\sin (27.5)=\frac{\frac{1}{2}[\ldots]}{12}$ oe
11(.0819...)	A1	
$\frac{11}{3} \pi \text { oe }$	B2	B1 for $\frac{55}{360} \times 2 \times \pi \times 12$ oe
22.6(01...)	B1	FT providing at least M1 B1 previously awarded
	(10)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
21.(a) \\
\(y=\frac{x+1}{4}\) leading to \(4 y-1=x\) \\
or \(x=\frac{y+1}{4}\) leading to \(4 x=y+1\)
\[
h^{-1}(x)=4 x-1
\] \\
\(2 x^{2}=4 x-1\) leading to \(2 x^{2}-4 x+1=0\)
\end{tabular} \& M1

A1

A1 \& | Changes the subject fully or swops the variables and requires one step only to change the subject; must be derived not found from the given equation; allow other variables e.g. $h=$... |
| :--- |
| Allow $y=4 x-1$ |

\hline | 21.(b) |
| :--- |
| $\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(1)}}{2(2)}$ or better $\begin{aligned} & \frac{4 \pm \sqrt{8}}{4} \text { oe, si } \\ & 1.71,0.29 \end{aligned}$ | \& M1

A1

B1 \& | Allow if this work seen in (a) |
| :--- |
| Substitution into the formula must be seen for |
| M1, otherwise award MO A0. |
| Allow one slip in substitution but not in the formula |
| If completing the square used award for sight of $2(x-1)^{2} \pm \ldots$ |
| Implied by $1.70710 \ldots, 0.29289 \ldots$ |

\hline \& (6) \&

\hline | 22.(a) |
| :--- |
| Reasonable tangent drawn at $t=3.5$ |
| Calculates $\frac{\text { vertical diff }}{\text { horizontal diff }}$ |
| Correct gradient | \& S1

M1

A1 \& | FT 'their tangent' provided S1 awarded |
| :--- |
| FT 'their $\frac{\text { vertical diff }}{\text { horizontal diff }}$; must be negative |

\hline | 22.(b) |
| :--- |
| Correct calculation for the area using 3 trapezia and 2 triangles oe e.g. $\begin{aligned} & \frac{1}{2} \times(1) \times 15+\frac{1}{2} \times(1) \times(15+35)+\frac{1}{2} \times(1) \times(35+32) \\ & +\frac{1}{2} \times(1) \times(32+25)+\frac{1}{2} \times(1) \times 25 \\ & 107 \text { (metres) } \end{aligned}$ | \& M3 \& | Allow 14 to 15 and 24 to 25 for v at $t=1$ and $t=4$ M2 for a correct calculation with one error (possibly repeated) in a v value or |
| :--- |
| M1 for a sum of 5 areas using strips of equal width with at most 2 errors |
| FT |
| Accept answer in range 105 to 109 inclusive with working; ignore any units if stated |

\hline \& (7) \&

\hline
\end{tabular}

