

GCSE MARKING SCHEME

AUTUMN 2021

GCSE
MATHEMATICS – COMPONENT 1
(HIGHER TIER)
C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2021 MARK SCHEME

GCSE (9-1) Mathematics		
Component 1: Higher Tier	Mark	
1.* An appropriately worded question with an appropriate set of response options e.g. 'Which method do you use most often to learn about recent national political events?	B2	Question must include at least 'recent' or 'national' as well as 'politics' or 'political events' and at least 4 response options, covering a full range of answers, including e.g. 'other' or 'none'
Social Media Newspaper Radio Other None'		B1 for an appropriately worded question or for an appropriate set of response options
	(2)	

2.* (a)		
Correct, ruled, single line of best fit drawn, passing through the point (50, 11)	B2	Must have some points above and some points below the line and follow the trend of the data; if more than one line is drawn, mark the worst; must extend at least from age 42 to 58, may be longer but not shorter;
		For B2 or B1: if a point is plotted at (50, 11) mark clear intent to pass through (50, 11), if no point plotted must pass exactly through this point;
		B1 for a ruled, single line of best fit with some points above and some points below the line and following the trend of the data and extending at least from age 42 to 58 but not passing through (50, 11) or a ruled, single line of best fit with positive gradient passing through (50, 11) but not fitting criterion for points above and below and/or trend and/or length
		1765
2.(b)(i) Between 11 and 13 inclusive	B1	If not in this range allow FT of 'their line of best fit' providing it is an attempt at a single line, ruled or unruled; allow answers in this range even if no line drawn; allow decimal answers; allow FT values to be rounded or truncated to the nearest integer
2.(b)(ii) No indicated and a valid reason e.g. 'There is no data for 30 years old' or 'Younger people often have better eyesight than older people.'	E1	Any reason that indicates Jared is outside the data set e.g. Accept: 'His age is not on the scatter graph.' Allow: 'The lowest age on the graph is 38' or '30 wasn't listed'.
		Do not accept 'Different ages, vision can vary between people.' (too vague) Allow extra irrelevant comments providing they
	(4)	are not contradictory.
	(4)	

3.*(a)						
8√7					B1	Accept 8 ² √7 or 8 × √7
19.(b) 26		B1				
19.(c)					F •	
9					B2	final answer; not from wrong working
					(4)	B1 for final answer of 3 ²
4.*(a)(i))				(4)	
Similar					B1	Allow poor spelling; do not allow proportional
4.(a)(ii)						
$\frac{5}{2}$ or 2	$\frac{1}{2}$ or 2.5	5			B1	
∠ 4.(b)	. <u>2</u>					
$\frac{2}{5} \times 7.5$	or 2 × 1.	5 or 7.5 ÷	2.5 oe		M1	FT 'their $\frac{5}{2}$ ' providing it is a single value;
5						method must be seen if FT;
3 (cm)					A1	CAO; Allow embedded in ratio 7.5 : 3
					(4)	
5.*						Mark to the candidate's advantage
	Sprint	Middle	Long	Total	B4	Award B4 if 21 is in the cell for Junior middle
S	14	28	40	82		distance runners and there are no incorrect entries in the table
J	17	21	5	43		OR
Tot			45	125		B2 for the given information correctly placed (shaded cells) or B1 for any 3 of these correct
OR						and
	Sprint	Middle	Long	Total		B2 for the necessary unshaded cells correct
S	14	28	40	82		or B1 for any 2 of these correct; ignore entries in the empty cells
J	17	21	5			
Tot	31	49	45	125		Allow 125 omitted but do not ignore an error if the value written in this cell is wrong
21					5.4	ET 'their derived 21'. denominator must be 125.
125					B1	FT 'their derived 21'; denominator must be 125;
						and in a fraction <1; ignore attempts to convert to other forms e.g. decimal or ratio;
					(5)	

6.* 40 ÷ (1 + 3 + 4) or (egg, cheese, meat =) 5, 15, 20	M1	Allow for $8 \times 5 = 40$ but not for $40 \div 5 = 8$ 5, 15, 20 may be in a ratio or may be implied by e.g. tallying
$0.2 \times 5 + 0.1 \times 3 \times 5 + 0.25 \times 4 \times 5$ si (= 1 + 1.5 + 5) oe	M2	FT 40 ÷ 'their (1 + 3 + 4)'; may be in stages; sight of 1, 1.5 and 5 followed by an answer of 7 or 8 implies M2 M1 for 2 terms out of 3 correct in the sum si or for (egg, cheese, meat =) 1, 1.5, 5
7.5 or $7\frac{1}{2}$	A1	CAO; Allow $\frac{15}{2}$; ignore rounding to e.g. 7 or 8 once correct answer seen; an answer of 32.5 is a misinterpretation not a misread of the figures
Alternative method		
$0.2 \times 40 \times 1 + 0.1 \times 40 \times 3 + 0.25 \times 40 \times 4$ (= 8 + 12 + 40 = 60) oe	M2	May be in stages; M1 for sight of 8, 12 and 40
÷ (1 + 3 + 4)	M1	FT 'their 8 + 12 + 40' ;
7.5 or $7\frac{1}{2}$	A1	CAO; Allow $\frac{15}{2}$; ignore rounding to e.g. 7 or 8 once correct answer seen; final answer of e.g. $\frac{60}{8}$ is A0
	(4)	

7.*(a) 0.35 identified as the appropriate relative frequency for 400 customers	B1	and no other relative frequency
$0.35 \times 400 \times 3$ or 140×3 si	M2	FT 'their 0.35', provided it is 0.31, 0.43 or 0.38 or 0.34 or 0.36 for M2 or M1; no FT if e.g. a sum of relative frequencies has been used
		M1 for 0.35×400 si; not just for e.g. '0.35 of 400'
(£)420(.00)	A1	CAO
7.(b) Yes and valid explanation involving (1000 being) the largest number of customers e.g. 'It is the relative frequency from the largest sample.'	E1	Do not allow 'Out of 1000 customers 0.38 were sent a free box.' or 'Yes as the average relative frequency to customer ratio is higher'
	(5)	
8.*(a)(i)		5
Answer in range 0.8 to 0.9	B1	Allow answer in range 0.8 to 0.9 and $\frac{5}{6}$ but
		do not allow $\frac{5}{6}$ only (question requires use of
		graph); must be the only answer
8.(a)(ii)	 	not for coordinates as final answer
y = 3x + 2 only indicated	B1	
8.(b)	B1	
y = 4x only indicated	(3)	
9.(a) 1.35 ≤ s < 1.45	B2	Allow e.g. $1.35 \le \text{speed} < 1.45$ or $1.35 \le x < 1.45$ B1 for sight of 1.35 and 1.45 or for appropriate sight of one of these in an inequality of the form $\le s <$ NB $1.35 \le 1.4 < 1.45$ is B1 only
9.(b)		
$\frac{15}{25} \times 60$ or equivalent	M2	May be in stages; Accept a correct and complete build-up method for M2 e.g. 25 mins for 15 miles ÷5 ÷5 5 mins for 3 miles ×12 ×12
		M1 for a correct distance \div speed calculation e.g. $\frac{15}{25}$ seen or for one correct stage in a build-up method e.g. 25 mins for 15 miles \div 5 \div 5
		5 mins for 3 miles
36 (mph)	A1	
	(5)	

40 (-)		
10.(a) Correct perpendicular bisector construction with appropriate arcs	B2	(± 2°,± 2mm) B1 for perpendicular bisector within tolerance without arcs or with invalid arcs or for a correct set of arcs
Correct angle bisector construction with appropriate arcs	B2	(± 2°) B1 for angle bisector within tolerance without arcs or with invalid arcs or for a correct set of arcs
Correct point indicated	B1	FT provided at least B1, B1 awarded; may be implied by intersecting loci
10.(b) F marked correctly at the midpoint of AB	B1 (6)	STRICT FT 'their labelled E'(± 2°)
11.(a)	D4	
0.5 or ½ 11.(b)	B1	
$1-7 \le 5x-2x$ or $2x-5x \le 7-1$	B1	or better; collects terms
$x \ge -2$ or $-2 \le x$ as final answer	B1	FT from $k \le 3x$ oe or $ax \le 6$, $a \ne 1$ oe; answer of e.g. $-x \le 2$ is B0 Maximum of 1 mark if not fully correct
11.(c)(i) $-3 \le n \le 3 \text{ or } n \in [-3, 3]$	B2	Accept $-3 \le n$ and $n \le 3$ or $-3 \le n$, $n \le 3$ or the interval $\begin{bmatrix} -3, 3 \end{bmatrix}$ for 2 marks.
11.(c)(ii)		B1 for each correct end or for $-3 \le n \text{ or } n \le 3$ or for 'their $-3' \le n \le$ 'their 3', FT 'their $\sqrt{9}$ ' or for $-3 < n < 3$
-3, -2, -1, 0, 1, 2, 3	B1	FT 'their (c)(i) provided a finite list or allow e.g. 3, 2, 1, 0, -1 , following an answer of $n \le 3$ in (i); must go into negative values in this case
	(6)	
12.(a)		
$\frac{x}{360} \times 2(\times \pi \times r) = \frac{1}{6} (\times \pi \times r) \text{ or } \frac{\frac{1}{6} \times \pi \times r}{2 \times \pi \times r} \text{ oe}$	M1	
$x = \frac{1}{6} \times 360 \div 2$ or $\frac{1}{12} \times 360$ oe	M1	
x = 30	A1	If no marks award SC1 for a final answer of 60
		obtained from use of $\frac{x}{360}(\times \pi \times r) = \frac{1}{6}(\times \pi \times r)$
12.(b) $24 \times 13\pi$ or $\pi \times 6 \times 4 \times 13$ oe	B2	Must involve π for B2 or B1; allow B2 for e.g. $13(24\pi)$ or for $312\pi \div 13\pi = 24$
12.(c)		B1 for (surface area cone =) $\pi \times 6 \times 52$ or 312π
$4\pi(7\times10^4)^2$ si	B1	Missing brackets may be recovered in further correct work
$4\pi(49 \times 10^8)$ or $4\pi(4900000000)$ oe	M2	M1 for $4\pi(49 \times 10^n)$, $n \neq 8$ or for $4\pi(m \times 10^8)$, $m \neq 49$
$(1.96 \times 10^{10})\pi$	A1	Allow $1.96\pi \times 10^{10}$ If no marks, award SC1 for $k\pi(49 \times 10^8)$, $k \neq 4$
	(9)	

13.		FT if of equivalent difficulty until 2nd error
3(x+y) = wy + 7 or 3x + 3y = wy + 7 oe	B1	Clears the fraction
3y - wy = 7 - 3x or $3x - 7 = wy - 3y$ oe	B1	FT; collects terms
y(3-w) = 7-3x or $3x-7 = y(w-3)$ oe	B1	FT; factorises; allow omission of closing bracket
$y = \frac{7 - 3x}{3 - w}$ or $y = \frac{3x - 7}{w - 3}$ oe	B1	FT; divides
	(4)	
14.(a) Answer in range 2 to 2.2 inclusive	B1	
14.(b) 0.64	В3	B2 for $\frac{16}{25}$ or equivalent fraction
		or B1 for $\left(\frac{4}{5}\right)^2$ or $\left(\frac{25}{16}\right)^{-1}$ oe
14.(c)		
343	B2	B1 for sight of 7^3 or $7 \times 7 \times 7$ or $(\sqrt{49})^3$ or $\sqrt{49^3}$
14.(d)		(1.22)
1000x = 83.83 and $10x = 0.83$ or $100x = 8.383$ and $x = 0.083$	M1	or equivalent
and attempt to subtract		
83	A1	ISW
990	<u> </u>	
15.(a)	(8)	
23 41 50	B1	
15.(b) 5 points plotted correctly:	B2	FT 'their cf' provided cumulative; tolerance ±
(20, 0) (30, 8) (40, 23) (50, 41) (60, 50)		1mm B1 for 3 or 4 correct plots
(60, 60)		Di ioi o oi 4 conect piots
All points joined with a smooth curve or with line segments	B1	dep on at least B1 for plots; last point must not be joined to the axis; tolerance \pm 1mm
15.(c)(i) Gold bonus:	B2	FT their cf graph for 'their s' when cf is 45 and 35
Answer in range 53 000 to 55 000 inclusive	D2	B1 FT for each
Silver bonus:		If no marks, award SC1 for both Gold bonus in
Answer in range 45 000 to 47 000 inclusive		range 53 to 55 and Silver bonus in range 45 to 47
15.(c)(ii)	-	
Valid explanation e.g.	E1	Allow e.g. 'It is estimated because the data is
'The data may not be evenly spread through each group.' or 'All the sales in the group 50		grouped.' or 'Because you do not know what each salesperson got.'
to 60 may be 60 000.' or 'The raw data is not used.'		Saicsperson got.
15.(d)		
September and valid evidence/comment e.g. 'The median sales are lower.'	E1	Evidence must be based on the mathematics and with no contradictions
<u> </u>	(8)	

	1	
16. $\widehat{ADC} = 156(^{\circ})$	B1	Allow on diagram or e.g. angle <i>D</i> = 156 but must be clear
\widehat{AEC} = (156 ÷ 2 =) 78(°) (Angle at the centre)	B1	FT 'their derived 156'; allow on diagram or e.g. angle <i>E</i> = 78 but must be clear
,	F4	
At least 'Tangent perpendicular to radius' and 'Angle at centre is twice that at the circumference' oe stated	E1	Accept equivalent wording; must be linked to relevant calculations or angles
	(3)	
17.		
-2	B2	B1 for $\frac{164}{-5-5}$ with at most one arithmetic error
		oe, si; may be implied by a right-angled triangle drawn with dimensions 'their 20' and (–)10 or
		20 and 'their (–)10' marked and 'their $\frac{y \text{ diff}}{x \text{ diff}}$ ',
		which must be negative, calculated;
		If no marks, award SC1 for a derived answer of 2.
(0, 6)	B2	May be on diagram B1 for each correct coordinate or for sight of $(-5+5, 16-4)$
		$\left(\frac{-5+5}{2},\frac{16-4}{2}\right)$
$y = \frac{1}{2}x + 6$ leading to $2y = x + 12$	B2	FT 'their 6' and 'their -2 ' for B1 B1 for $y = \frac{1}{2}x + c$ or for $y = kx + 6$ $k \neq 0$
		If B2 B2 B0, award SC1 for showing $2y = x + 12$
		is the same as $y = \frac{1}{2}x + 6$ and that $-2 \times \frac{1}{2} = -1$
	(6)	and that (0, 6) is on the line $y = \frac{1}{2}x + 6$
18.(a)	` ′	
$V \propto \frac{1}{P}$ or $P \propto \frac{1}{V}$ or $V = \frac{k}{P}$	B1	si; allow e.g. $V \propto \frac{k}{P}$
$4 = \frac{k}{1020}$ oe or $k = 4 \times 1020$ (= 4080)	M1	
$(V=)\frac{4\times1020}{1360}$	M1	FT 'their 4 ×1020'
$(V =) 3 (m^3)$	A1	CAO
Alternative method:		<u> </u>
$P_1V_1 = P_2V_2$ oe; soi		
• • • • • •	B1	
$4 \times 1020 = V \times 1360$ seen, or implied in later working	M1	
Forms $(V =) \frac{4 \times 1020}{1360}$	M1	FT 'their 4 × 1020'
$(V=) 3(m^3)$	A1	CAO

18.(b)		
$(P =) \frac{4080}{1 \cdot 2}$ or $(P =) \frac{4 \times 1020}{1 \cdot 2}$	M1	FT 'their 4 × 1020' ÷ 1.2
3400 (N/m²)	A1 (6)	CAO
19.(a) Acceleration	B1	Accept rate of change of velocity
19.(b) $\frac{1}{2} \times 60 \times k + 210 \times k + \frac{1}{2} \times 120 \times k = 2400 \text{ or}$ $\frac{1}{2} \times (210 + 390) \times k = 2400 \text{ or}$	M2	If unit conversion attempted, allow 1 consistent error for M2 Ignore errors in unit conversion for M1
$\frac{1}{2} \times (1) \times k + 3.5 \times k + \frac{1}{2} \times 2 \times k = 2400 \text{ or}$ $\frac{1}{2} \times (3.5 + 6.5) \times k = 2400$		M1 for an attempt to sum at least 2 out of 3 areas with at most one error or for an attempt to find the area of a trapezium with at most one error in the structure of the formula, si
8 (m/s)	A1	CAO
		Final answer of 480 (metres per minute) implies M2
	(4)	
20.(a)(i) sin30	M1	$\operatorname{or} fg(x) = \sin(x - 90)$
½ or 0.5	A1	
20.(b) Reflection in the <i>x</i> -axis	B1	Mark intent
(-2, 1) and (-6, -0.5) indicated	B1	CAO
$ [k^{-1}(x)] = \sqrt[3]{x+23} $	B2	Award B1 for $x = \sqrt[3]{y+23}$ oe, unless x and y interchanged later or SC1 for $(y \text{ or } k^{-1}(x) =) \sqrt[3]{x-23}$ oe
$x + 23 = 5^3 \text{ or better}$	M1	FT 'their inverse function' if possible; must be of equivalent difficulty; M0 for e.g. $\frac{1}{x^3 - 23} = 5$
x = 102	A1	CAO
Alternative method:		
$k^{-1}(x) = 5 \text{ means } x = k(5)\text{si}$	B2	
$k(5) = 5^3 - 23$	M1	
x = 102	A1	CAO
	(8)	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
attempting to multiply out one pair of brackets $27x^3 + 54x^2 + 36x + 8 \text{ or simplified equivalent}$ $27x^3 + 54x^2 + 36x + 8 \text{ or simplified equivalent}$ $81 \text{ for } (9x^2 + 6x + 6x + 4)(3x + 2) \text{ or better or for a final answer with at most one incorrect coefficient}$ $82 \text{ Nark final answer}$ $21.(b)$ $(2x+1)(2x-1)$ $82 \text{ Allow for } 4\left(x^2 - \frac{1}{4}\right) = 4\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right)$ $81 \text{ for sight of } (2x)^2 - 1^2 \text{ ; allow for sight of } (2x)^2 - 1$ $82 \text{ B1 for } 6x^2 - 13x + 5 = (2x - 1)(3x - 5) \text{ soi}$ $\frac{2x+1}{3x-5}$ $81 \text{ CAO; mark final answer}$ (8) $22.(a)$ $11.\sqrt{5}$ $22.(a)$ $11.\sqrt{5}$ $22.(b)(i)$ $\sqrt{2}: 5+\sqrt{2}$ $82 \text{ B1 for sight of } 7\sqrt{5} \text{ or } 4\sqrt{5}$ $22.(b)(i)$ $\sqrt{2}: 5+\sqrt{2}$ $83 \text{ B1 for sight of } 7\sqrt{5} \text{ or } 4\sqrt{5}$ $22.(b)(i)$ $\sqrt{2}: 5+\sqrt{2}$ $23 \text{ or } 5\times\sqrt{2} - 2(\sqrt{2})^2 \text{ si}$ $(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}} \times \frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ $(17\times)\frac{5\times\sqrt{2}-4}{25-8} \text{ oe, si}$ $42 \text{ A1 for either the numerator or denominator correct}$ $5\sqrt{2} - 4 \text{ A1 Accept } b = 5, c = -4$	21.(a)		
B1 for $(9x^2+6x+4)(3x+2)$ or better or for a final answer with at most one incorrect coefficient NB: Correct unsimplified equivalent for B1 may be $27x^3+18x^2+12x+18x^2+12x+12x+8$ 21.(b) (2x+1)(2x-1) B2 Allow for $4\left(x^2-\frac{1}{4}\right)=4\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)$ B1 for sight of $(2x)^2-1^2$; allow for sight of $(2x)^2-1$ B1 for $6x^2-13x+5=(2x-1)(3x-5)$ soi B2 B1 for $6x^2-13x+5=(2x-1)(3x-5)$ B3 B1 for $6x^2-13x+5=(2x-1)(3x-5)$ B4 CAO; mark final answer (8) 22.(a) 11. $\sqrt{5}$ B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ B2 CAO; mark final answer (8) 22.(b)(ii) $\sqrt{2}:5+\sqrt{2}$ B1 $(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ M1 $(17\times)\frac{5\times\sqrt{2}-4}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si M1 $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si A2 A1 for either the numerator or denominator correct 5. $\sqrt{2}=4$ A1 Accept $b=5$, $c=-4$	attempting to multiply out one pair of	S1	$27x^3 + 8$ is S0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B2	Mark final answer
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cquivalent		a final answer with at most one incorrect
B1 for sight of $(2x)^2 - 1^2$; allow for sight of $(2x)^2 - 1$ $6x^2 - 13x + 5 = (2x - 1)(3x - 5)$ soi $\frac{2x + 1}{3x - 5}$ B1 for $6x^2 - 13x + 5 = (2x 1)(3x 5)$ B2 B1 for $6x^2 - 13x + 5 = (2x 1)(3x 5)$ CAO; mark final answer (8) B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ 22.(a) B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ B1 CAO; mark final answer (8) B1 For sight of $7\sqrt{5}$ or $4\sqrt{5}$ B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ B1 CAO; mark final answer (8) CAO; mark final answer (8) B1 For sight of $7\sqrt{5}$ or $4\sqrt{5}$ B1 CAO; mark final answer A1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ A1 for either the numerator or denominator correct A1 Accept $b = 5$, $c = -4$	21.(b)		
	(2x+1)(2x-1)	B2	Allow for $4\left(x^2 - \frac{1}{4}\right) = 4\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right)$
			B1 for sight of $(2x)^2 - 1^2$; allow for sight of
$ \frac{2x+1}{3x-5} $ B1 CAO; mark final answer $ \frac{22.(a)}{11\sqrt{5}} $ B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ $ \frac{22.(b)(i)}{\sqrt{2}:5+\sqrt{2}} $ B1 $ \frac{5+\sqrt{2}}{5+2\sqrt{2}} \times \frac{5-2\sqrt{2}}{5-2\sqrt{2}} $ B1 $ \frac{5+\sqrt{2}-2(\sqrt{2})^2}{5-2\sqrt{2}} \times \frac{5-2\sqrt{2}}{5-2\sqrt{2}} $ M1 $ \frac{5+\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2} \text{ si} $ M1 $ \frac{5+\sqrt{2}-4}{25-8} \text{ oe, si} $ A2 A1 for either the numerator or denominator correct A1 Accept $b=5$, $c=-4$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B2	B1 for $6x^2 - 13x + 5 = (2x 1)(3x 5)$
22.(a) $11\sqrt{5}$ B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ 22.(b)(i) $\sqrt{2}: 5+\sqrt{2}$ B1 $(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ M1 $(17\times)\frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si $5\sqrt{2}-4$ A1 for either the numerator or denominator correct A1 Accept $b=5, c=-4$	l 	B1	CAO: mark final answer
22.(a) B2 B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$ 22.(b)(i) $\sqrt{2}$: $5+\sqrt{2}$ B1 22.(b)(ii) M1 $(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ M1 $(17\times)\frac{5\times\sqrt{2}-4}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si m1 $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si A2 A1 for either the numerator or denominator correct $5\sqrt{2}-4$ A1 Accept $b=5$, $c=-4$	3x-5		
22.(b)(i) $ \sqrt{2} : 5 + \sqrt{2} $ B1 22.(b)(ii) $ (17 \times) \frac{\sqrt{2}}{5 + 2\sqrt{2}} \times \frac{5 - 2\sqrt{2}}{5 - 2\sqrt{2}} $ M1 $ (17 \times) \frac{5 \times \sqrt{2} - 2(\sqrt{2})^2}{25 - 10\sqrt{2} + 10\sqrt{2} - (2\sqrt{2})^2} \text{si} $ M1 $ (17 \times) \frac{5 \times \sqrt{2} - 4}{25 - 8} \text{ oe, si} $ A2 A1 for either the numerator or denominator correct $ 5\sqrt{2} - 4 $ A1 Accept $b = 5, c = -4$	22.(a)	(0)	
$ \frac{\sqrt{2}: 5+\sqrt{2}}{22.(b)(ii)} $ $ \frac{\sqrt{2}}{5+2\sqrt{2}} \times \frac{5-2\sqrt{2}}{5-2\sqrt{2}} $ $ \frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2} si $ $ \frac{17\times)}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2} si $ $ \frac{17\times)}{25-8} oe, si $ $ \frac{42}{25-8} A1 for either the numerator or denominator correct $ $ \frac{5\sqrt{2}-4}{41} Accept b = 5, c = -4 $	$11\sqrt{5}$	B2	B1 for sight of $7\sqrt{5}$ or $4\sqrt{5}$
22.(b)(ii) $(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ M1 $(17\times)\frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si $5\sqrt{2}-4$ A1 for either the numerator or denominator correct A1 Accept $b=5$, $c=-4$	22.(b)(i)		
$(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$ $(17\times)\frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si $5\sqrt{2}-4$ A1 for either the numerator or denominator correct A1 Accept $b=5$, $c=-4$	$\sqrt{2} : 5 + \sqrt{2}$	B1	
$(17\times)\frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si m1 $(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si A1 for either the numerator or denominator correct $5\sqrt{2}-4$ A1 Accept $b=5, c=-4$	22.(b)(ii)		
$(17 \times) \frac{5 \times \sqrt{2} - 4}{25 - 8}$ oe, si A1 for either the numerator or denominator correct A1 Accept $b = 5$, $c = -4$	$(17\times)\frac{\sqrt{2}}{5+2\sqrt{2}}\times\frac{5-2\sqrt{2}}{5-2\sqrt{2}}$	M1	
$5\sqrt{2}-4$ A1 Accept $b = 5$, $c = -4$	$(17\times)\frac{5\times\sqrt{2}-2(\sqrt{2})^2}{25-10\sqrt{2}+10\sqrt{2}-(2\sqrt{2})^2}$ si	m1	
$3\sqrt{2}-4$	$(17\times)\frac{5\times\sqrt{2}-4}{25-8}$ oe, si	A2	
	$\int 5\sqrt{2} - 4$	A1	Accept $b = 5$, $c = -4$
		(8)	