eduaas

GCSE MARKING SCHEME

AUTUMN 2021

GCSE MATHEMATICS - COMPONENT 1 (HIGHER TIER)
C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2021 MARK SCHEME

GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	
1.**		
An appropriately worded question with an	B2	Question must include at least 'recent' or
appropriate set of response options e.g.		'national' as well as 'politics' or 'political events' and
Which method do you use most often to learn about recent national political events?		at least 4 response options, covering a full range of answers, including e.g. 'other' or 'none'
Social Media Newspaper Radio Other None'		B1 for an appropriately worded question or for an appropriate set of response options
	(2)	

2.* (a) Correct, ruled, single line of best fit drawn, passing through the point $(50,11)$	B2	Must have some points above and some points below the line and follow the trend of the data; if more than one line is drawn, mark the worst; must extend at least from age 42 to 58, may be longer but not shorter; For B2 or B1: if a point is plotted at $(50,11)$ mark clear intent to pass through $(50,11)$, if no point plotted must pass exactly through this point; B1 for a ruled, single line of best fit with some points above and some points below the line and following the trend of the data and extending at least from age 42 to 58 but not passing through $(50,11)$ or a ruled, single line of best fit with positive gradient passing through $(50,11)$ but not fitting criterion for points above and below and/or trend and/or length
2.(b)(i) Between 11 and 13 inclusive	B1	If not in this range allow FT of 'their line of best fit' providing it is an attempt at a single line, ruled or unruled; allow answers in this range even if no line drawn; allow decimal answers; allow FT values to be rounded or truncated to the nearest integer
2.(b)(ii) No indicated and a valid reason e.g. 'There is no data for 30 years old' or 'Younger people often have better eyesight than older people.'	E1	Any reason that indicates Jared is outside the data set e.g. Accept: 'His age is not on the scatter graph.' Allow: 'The lowest age on the graph is 38 ' or '30 wasn't listed'. Do not accept 'Different ages, vision can vary between people.' (too vague) Allow extra irrelevant comments providing they are not contradictory.
	(4)	

6.*		
$\begin{aligned} & 40 \div(1+3+4) \text { or } \\ & (\text { egg, cheese, meat }=) 5,15,20 \end{aligned}$	M1	Allow for $8 \times 5=40$ but not for $40 \div 5=8$ $5,15,20$ may be in a ratio or may be implied by e.g. tallying
$\begin{aligned} & 0.2 \times 5+0.1 \times 3 \times 5+0.25 \times 4 \times 5 \mathrm{si} \\ & (=1+1.5+5) \text { oe } \end{aligned}$	M2	FT $40 \div$ 'their $(1+3+4)$ '; may be in stages; sight of 1, 1.5 and 5 followed by an answer of 7 or 8 implies M2 M1 for 2 terms out of 3 correct in the sum si or for $($ egg, cheese, meat $=) 1,1.5,5$
7.5 or $7 \frac{1}{2}$	A1	CAO; Allow $\frac{15}{2}$; ignore rounding to e.g. 7 or 8 once correct answer seen; an answer of 32.5 is a misinterpretation not a misread of the figures
Alternative method		
$\begin{aligned} & 0.2 \times 40 \times 1+0.1 \times 40 \times 3+0.25 \times 40 \times 4 \\ & (=8+12+40=60) o e \end{aligned}$	M2	May be in stages; M1 for sight of 8, 12 and 40
$\div(1+3+4)$	M1	$F T^{\prime}$ 'their $8+12+40^{\prime}$;
$7.5 \text { or } 7 \frac{1}{2}$	A1	CAO; Allow $\frac{15}{2}$; ignore rounding to e.g. 7 or 8 once correct answer seen; final answer of e.g. $\frac{60}{8}$ is $A 0$
	(4)	

10.(a)		
Correct perpendicular bisector construction with appropriate arcs	B2	$\left(\pm 2^{\circ}, \pm 2 \mathrm{~mm}\right)$ B1 for perpendicular bisector within tolerance without arcs or with invalid arcs or for a correct set of arcs
Correct angle bisector construction with appropriate arcs	B2	$\left(\pm 2^{\circ}\right)$ B1 for angle bisector within tolerance without arcs or with invalid arcs or for a correct set of arcs
Correct point indicated	B1	FT provided at least B1, B1 awarded; may be implied by intersecting loci
10.(b) F marked correctly at the midpoint of $A B$	B1	STRICT FT 'their labelled E ${ }^{\left(\pm 2^{\circ}\right)}$
	(6)	
$\begin{aligned} & 11 .(\mathrm{a}) \\ & 0.5 \text { or } 1 / 2 \end{aligned}$	B1	
11.(b) $1-7 \leq 5 x-2 x \text { or } 2 x-5 x \leq 7-1$	B1	or better; collects terms
$x \geq-2$ or $-2 \leq x$ as final answer	B1	FT from $k \leq 3 x$ oe or $a x \leq 6, a \neq 1$ oe; answer of e.g. $-x \leq 2$ is B0 Maximum of 1 mark if not fully correct
$\begin{aligned} & 11 \text {.(c)(i) } \\ & -3 \leq n \leq 3 \text { or } n \in[-3,3] \end{aligned}$	B2	Accept $-3 \leq n$ and $n \leq 3$ or $-3 \leq n, n \leq 3$ or the interval $[-3,3]$ for 2 marks. B1 for each correct end or for $-3 \leq n$ or $n \leq 3$ or for 'their -3 ' $\leq n \leq$ 'their 3 ', FT 'their $\sqrt{9}$ ' or for $-3<n<3$
$\begin{aligned} & 11 .(\mathrm{c}) \text { (ii) } \\ & -3,-2,-1,0,1,2,3 \end{aligned}$	B1	FT 'their (c)(i) provided a finite list or allow e.g. 3, 2, 1, 0, -1,.... following an answer of $n \leq 3$ in (i); must go into negative values in this case
	(6)	
12.(a)		
$\begin{aligned} & \frac{x}{360} \times 2(\times \pi \times r)=\frac{1}{6}(\times \pi \times r) \text { or } \frac{\frac{1}{6} \times \pi \times r}{2 \times \pi \times r} \text { oe } \\ & x=\frac{1}{6} \times 360 \div 2 \text { or } \frac{1}{12} \times 360 \text { oe } \\ & x=30 \end{aligned}$	M1 M1 A1	If no marks award SC1 for a final answer of 60 obtained from use of $\frac{x}{360}(\times \pi \times r)=\frac{1}{6}(\times \pi \times r)$
$\begin{aligned} & 12 .(b) \\ & 24 \times 13 \pi \text { or } \pi \times 6 \times 4 \times 13 \text { oe } \end{aligned}$	B2	Must involve π for B2 or B1; allow B2 for e.g. $13(24 \pi)$ or for $312 \pi \div 13 \pi=24$ B1 for (surface area cone $=$) $\pi \times 6 \times 52$ or 312π
$\begin{aligned} & 12 .(\mathrm{c}) \\ & 4 \pi\left(7 \times 10^{4}\right)^{2} \mathrm{si} \end{aligned}$	B1	Missing brackets may be recovered in further correct work
$\begin{aligned} & 4 \pi\left(49 \times 10^{8}\right) \text { or } 4 \pi(4900000000) \text { oe } \\ & \left(1.96 \times 10^{10}\right) \pi \end{aligned}$	M2	M1 for $4 \pi\left(49 \times 10^{n}\right), n \neq 8$ or for $4 \pi\left(m \times 10^{8}\right), \quad m \neq 49$ Allow $1.96 \pi \times 10^{10}$ If no marks, award SC1 for $k \pi\left(49 \times 10^{8}\right), k \neq 4$
	(9)	

		FT if of equivalent difficulty until 2nd error
$3(x+y)=w y+7$ or $3 x+3 y=w y+7$ oe	B1	Clears the fraction
$3 y-w y=7-3 x$ or $3 x-7=w y-3 y$ oe	B1	FT; collects terms
$y(3-w)=7-3 x$ or $3 x-7=y(w-3)$ oe	B1	FT; factorises; allow omission of closing bracket
$y=\frac{7-3 x}{3-w} \quad$ or $y=\frac{3 x-7}{w-3}$ oe	B1	FT; divides
	(4)	
14.(a) Answer in range 2 to 2.2 inclusive	B1	
$\begin{aligned} & 14 .(\mathrm{b}) \\ & 0.64 \end{aligned}$		
	B3	B2 for $\frac{16}{25}$ or equivalent fraction
		or B1 for $\left(\frac{4}{5}\right)^{2}$ or $\left(\frac{25}{16}\right)^{-1}$ oe
14.(c)		
343	B2	B1 for sight of 7^{3} or $7 \times 7 \times 7$ or $(\sqrt{49})^{3}$ or $\sqrt{49^{3}}$
14.(d)		
$\begin{aligned} & 1000 x=83 . \dot{\delta ்} \dot{3} \text { and } 10 x=0 . \dot{3} \dot{3} \text { or } \\ & 100 x=8.3 \dot{8} \dot{3} \text { and } x=0.0 \dot{8} \dot{3} \end{aligned}$	M1	or equivalent
and attempt to subtract		
$\frac{83}{990}$	A1	ISW
	(8)	
15.(a)	B1	
$\begin{aligned} & \text { 15.(b) } 5 \text { points plotted correctly: } \\ & (20,0)(30,8)(40,23)(50,41) \\ & (60,50) \end{aligned}$	B2	FT 'their cf ' provided cumulative; tolerance \pm 1 mm B1 for 3 or 4 correct plots
All points joined with a smooth curve or with line segments	B1	dep on at least B1 for plots; last point must not be joined to the axis; tolerance $\pm 1 \mathrm{~mm}$
15.(c)(i) Gold bonus: Answer in range 53000 to 55000 inclusive Silver bonus: Answer in range 45000 to 47000 inclusive		
	B2	FT their cf graph for 'their s ' when cf is 45 and 35 B1 FT for each
		If no marks, award SC1 for both Gold bonus in
		range 53 to 55 and Silver bonus in range 45 to 47
15.(c)(ii) Valid explanation e.g. 'The data may not be evenly spread through each group.' or 'All the sales in the group 50 to 60 may be 60000 .' or 'The raw data is not used.'		
	E1	Allow e.g. 'It is estimated because the data is
		grouped.' or 'Because you do not know what each salesperson got.'
15.(d)		
September and valid evidence/comment e.g. 'The median sales are lower.	E1	Evidence must be based on the mathematics and with no contradictions
	(8)	

21.(a)		
$(3 x+2)^{3}=(3 x+2)(3 x+2)(3 x+2)$ and attempting to multiply out one pair of brackets	S1	$27 x^{3}+8 \text { is } s 0$
$27 x^{3}+54 x^{2}+36 x+8$ or simplified equivalent	B2	Mark final answer B1 for $\left(9 x^{2}+6 x+6 x+4\right)(3 x+2)$ or better or for a final answer with at most one incorrect coefficient NB: Correct unsimplified equivalent for B1 may be $27 x^{3}+18 x^{2}+18 x^{2}+12 x+18 x^{2}+12 x+12 x+8$
21. ${ }^{\text {(b) }}$		
$(2 x+1)(2 x-1)$	B2	Allow for $4\left(x^{2}-\frac{1}{4}\right)=4\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)$ B1 for sight of $(2 x)^{2}-1^{2}$; allow for sight of $(2 x)^{2}-1$
$6 x^{2}-13 x+5=(2 x-1)(3 x-5)$ soi	B2	B1 for $6 x^{2}-13 x+5=(2 x \ldots 1)(3 x \ldots 5)$
$\frac{2 x+1}{3 x-5}$	B1	CAO; mark final answer
	(8)	
22.(a)		
$11 \sqrt{5}$	B2	B1 for sight of $7 \sqrt{5}$ or $4 \sqrt{5}$
22.(b)(i)		
$\sqrt{2}: 5+\sqrt{2}$	B1	
22.(b)(ii)		
$(17 \times) \frac{\sqrt{2}}{5+2 \sqrt{2}} \times \frac{5-2 \sqrt{2}}{5-2 \sqrt{2}}$	M1	
$(17 \times) \frac{5 \times \sqrt{2}-2(\sqrt{2})^{2}}{25-10 \sqrt{2}+10 \sqrt{2}-(2 \sqrt{2})^{2}} \text { si }$	m1	
($17 \times$) $\frac{5 \times \sqrt{2}-4}{25-8}$ oe, si	A2	A1 for either the numerator or denominator correct
5 $\sqrt{2}-4$	A1	Accept $b=5, c=-4$
	(8)	

