Surname
First name(s)

Centre Number
0

THURSDAY, 3 NOVEMBER 2022 - MORNING

MATHEMATICS - Component 2

Calculator-Allowed Mathematics

HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.
A calculator will be required for this examination.
A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.
Take π as 3.142 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	4	
3.	2	
4.	4	
5.	7	
6.	7	
7.	6	
8.	8	
9.	7	
10.	4	
11.	5	
12.	4	
13.	4	
14.	6	
15.	8	
16.	4	
17.	3	
18.	5	
19.	4	
20.	10	
21.	6	
22.	7	
Total	120	

Formula list

Area and volume formulae
Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \qquad \begin{array}{c}
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{array}
\end{aligned}
$$

Kinematics formulae
Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when $t=0$ and t is time taken:

$$
\begin{gathered}
v=u+a t \\
s=u t+\frac{1}{2} a t^{2} \\
v^{2}=u^{2}+2 a s
\end{gathered}
$$

1. Nathan and Lucy make and sell wooden items for gardens.
(a) Nathan makes and sells benches, tables and tool sheds.

Last year, the profit he made from selling these items was in the following ratio.

benches	$:$	tables	$:$	tool sheds
2	$:$	3	$:$	7

(i) What fraction of his profit did Nathan make from selling benches and tables?
\qquad
\qquad
\qquad
(ii) His total profit was $£ 18072$.

How much profit did Nathan make from the sale of tool sheds?

\qquad
\qquad
(b) Lucy makes and sells planters.

Each planter costs Lucy $£ 32$ to make. Each one that she sells makes a profit of $£ 80$.

What is Lucy's profit from the sale of one planter as a percentage of the cost to make the planter?

\qquad
\qquad
\qquad
\qquad
\qquad
2. The table gives a summary of the masses, m grams, of 30 buzzards.

Mass, m (grams)	$600 \leqslant m<700$	$700 \leqslant m<800$	$800 \leqslant m<900$	$900 \leqslant m<1000$
Frequency	8	7	4	11

(a) Moeen uses the midpoint of each group to calculate an estimate of the mean mass of these buzzards. He does this correctly.

Calculate Moeen's answer.
(b) Deeta decides to estimate the mean mass of these buzzards.

She uses the values 600, 700, 800 and 900 rather than the midpoints.
Explain why her method is unlikely to give a good estimate of the mean mass.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3. Debbie collects data about a group of 20 people.

Her data is:

- the total number of years for which they have owned a pet
- the number of visits they have each made to their doctor in the last year.

The scatter graph shows her results and her attempt to draw a line of best fit for the data.

Number of visits to the doctor

(a) Make a criticism of Debbie's line of best fit.
\qquad
(b) Debbie says,

Is Debbie correct?

Explain how you decide.
4. Janet invests $£ 5000$ in a savings account for 9 years. She makes no further payments into or out of her account in this time.

For the first 5 years, her investment earns 2% compound interest per year. After this, the interest rate decreases to $1 \cdot 3 \%$ compound interest per year.

How much is Janet's investment worth at the end of the 9 years?
(
\qquad
5. (a) Circle the correct conversion of $7 \mathrm{~m}^{3}$ to cm^{3}.

$$
\begin{array}{lllll}
0.00007 & 0.07 & 700 & 70000 & 7000000
\end{array}
$$

(b) The diagram shows a shape made from a trapezium and a circle.

Diagram not drawn to scale

The parallel sides of the trapezium are tangents to the circle.
The diameter of the circle is 30 cm .
The ratio of the white area to the shaded area is as follows.

```
white area : shaded area
    1 : k
```

Find the value of k.
Show all your working and give your answer correct to 1 significant figure.
6. (a) Solve $5 x+4=2 x+6$.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Solve $4 x-3>17$.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Solve the following simultaneous equations. Use an algebraic (not graphical) method.

$$
\begin{gathered}
5 x-2 y=16 \\
x-y=5
\end{gathered}
$$

You must show all your working.
7.

The diagram shows a rhombus, $A B C D$.
$A C$ and $B D$ intersect at E.
The length of $A C$ is 12 cm .
$B \widehat{C} E$ is 35°.
Find the perimeter of $A B C D$.
8. The table shows some of the values of $h=-3(t+1)(t-4)$ for $0 \leqslant t \leqslant 5$.

t	0	1	2	3	4	5
$h=-3(t+1)(t-4)$		18	18		0	

(a) Complete the table above.
(b) On the graph paper below, draw the graph of $h=-3(t+1)(t-4)$ for $0 \leqslant t \leqslant 5$.

Derek throws a ball upwards from a point above horizontal ground.
The height, h metres, of the ball above the ground t seconds after Derek throws it is $h=-3(t+1)(t-4)$.
(i) What is the height of the ball above the ground at the start of Derek's throw?
\qquad
9. The diagram shows the interior length, width and height of a wooden crate.

Diagram not drawn to scale

Jake fills the crate with solid beeswax cylinders. They each have a length of 32 cm .
The cylinders fit tightly in the crate with 8 cylinders in each row.
The first two rows are shown in the diagram.
Jake continues to fill the crate in this way.
The density of the beeswax is $0.961 \mathrm{~g} / \mathrm{cm}^{3}$.

Jake calculates the total mass of the cylinders to be more than 70 kg . Is he correct?

Show how you decide.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11. Two groups of people, A and B, take part in a fun run.

Everyone in the groups completes the run.
The table gives a summary of the times, t minutes, taken by group A.

Minimum	Maximum	Median	Lower Quartile	Inter-quartile range
$15 \cdot 2$	23.2	19.4	16.8	4.2

(a) On the grid below, draw a box plot to represent this data.

(b) The box plot below gives a summary of the times, t minutes, taken by group B.

Marcie makes two statements using information from the box plots.
Are Marcie's statements correct?
Explain how you decide.
(i) "On average, runners in group B ran faster than runners in group A."

12. The equation $2 x^{3}+x^{2}-12=0$ has a solution between 1 and 2 .

Use trial and improvement to find this solution correct to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
13. (a) An architect measures the height of a wall. She uses a laser measuring device.

The measurement is 2652 mm , correct to the nearest 1.5 mm .

What is the lower bound of the height of the wall?
\qquad
\qquad
(b) A builder measures the lengths of two pieces of wood.

He uses a tape measure.
The lengths are 2.85 metres and 1.90 metres, both correct to the nearest centimetre.

Calculate the greatest total length of the two pieces of wood. Give your answer in metres.
14. Dora has two boxes, A and B.

The boxes contain beads which are identical in shape.
Box A contains 9 green, 6 red and 5 yellow beads.
Box B contains 12 red and 8 yellow beads.
Dora takes a bead at random from box A. If the bead is:

- green, she puts it back in box A
- red or yellow, she puts it in box B.

She then takes a bead at random from box B.
(a) Complete the tree diagram.

(b) Find the probability that Dora takes two beads of the same colour.
\qquad
\qquad
\qquad
\qquad
\qquad
15. In this question all lengths are in metres.

This shape is made from two rectangles.
The area of this shape is $10 \mathrm{~m}^{2}$.
(a) Show that $3 x^{2}+2 x-1=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the value of the perimeter of this shape. You must show all your working.
16.

Diagram not drawn to scale
$O A B C$ is a parallelogram.
$O A=a$ and $O C=c$.
D is the midpoint of $A B$ and E is the midpoint of $O D$.
(a) Find $O D$ in terms of \mathbf{a} and \mathbf{c}.
\qquad
\qquad
\qquad
(b) Find OE in terms of \mathbf{a} and \mathbf{c}.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Find CE in terms of \mathbf{a} and \mathbf{c}.

Give your answer in its simplest form.
17.

The diagram shows a cuboid, $A B C D E F G H$.
Calculate the length of the diagonal, $D F$.
\qquad
18. (a) The diagram shows a sketch of the graph of $y=f(x)$.

The point A has coordinates $(-3,0)$, the point B has coordinates $(-1,1)$.

(i) Sketch the graph of $y=f(-x)$ on the axes below.

You must indicate the coordinates of the new positions of the points A and B.

(ii) Sketch the graph of $y=f(x)+2$ on the axes below.

You must indicate the coordinates of the new positions of the points A and B.

(b) The diagram shows a sketch of the circle with equation $x^{2}+y^{2}=289$.

Write down the coordinates of point C.
19.

In triangle $A B C, A B=7 \mathrm{~cm}, A C=9 \mathrm{~cm}$ and $A \widehat{B} C=61^{\circ}$.
$A C D$ is a straight line.
Find $B \widehat{C D}$.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

20.

Diagram not drawn to scale

The diagram shows a sector of a circle, centre O, radius 12 cm .
$A \widehat{O} B$ is 55°.
(a) Find the area of the shaded region.

(b) Find the perimeter of the shaded region.
 (b) Find

Examiner
\qquad
21.

$$
\begin{aligned}
& g(x)=2 x^{2} \\
& h(x)=\frac{x+1}{4}
\end{aligned}
$$

(a) Show algebraically that the x-coordinates of the points of intersection of

- the curve with equation $y=g(x)$, and
- the line with equation $y=h^{-1}(x)$, are solutions of the equation

$$
2 x^{2}-4 x+1=0 .
$$

(b) Use an algebraic method to find the x-coordinates of the points of intersection of

- the curve $y=g(x)$, and
- the line $y=h^{-1}(x)$.

Give your answers correct to 2 decimal places.
You must show all your working.
22. The diagram shows the velocity, v metres per second, of a particle t seconds after it passes a fixed point.

	$\begin{aligned} & \hline \text { Question } \\ & \text { number } \end{aligned}$	Additional page, if required. Write the question number(s) in the left-hand margin.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

