GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS - COMPONENT 1
(HIGHER TIER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

Component 1: Higher Tier	Mark	Comment
$\begin{aligned} & 1 .{ }^{*}(\mathrm{a}) \\ & 55 \end{aligned}$	B1	
$\begin{aligned} & \text { 1.(b) } \\ & 5 n-1 \text { or }-1+5 n \end{aligned}$	B2	Mark final answer B1 for: - $5 n+k$, where $k \neq-1$ - a correct answer seen and then spoiled. - an unsimplified expression which would lead to $5 n-1$ Allow the use of other variables for n for B1 or B2
	(3)	
2.*(a) Second and third statements indicated and no others	B2	Award B1 for one of the following: - One correct statement and up to one incorrect statement indicated - Two correct statements and exactly one incorrect statement indicated
$\begin{aligned} & \text { 2.(b) } \\ & \text { (Area of cross-section }=\text {) } \quad 1 / 2 \times 3 x \times x \\ & \text { (Volume }=\text {) } 1 / 2 \times 3 x \times x \times 4 \\ & 1 / 2 \times 3 x \times x \times 4=216 \text { oe } \\ & x^{2}=216 \times 2 \div 4 \div 3(=36) \\ & 6(\mathrm{~cm}) \end{aligned}$	M1 M1 A1 M1 A1	May be done in parts Accept $1 / 2$ base x height oe FT 'their $1 / 2 \times 3 x \times x$ ' $\times 4$, provided at least two terms in x. CAO FT 'their k ' $\times x^{2}=216$ Mark final answer. FT Final 2 marks can be awarded if trials used on an equation of the form 'their $k^{\prime} \times x^{2}=216$ to find a correct or correct FT answer. If x^{2} is a square number, x must be given as a whole number. Otherwise, it may be written as an unsimplified surd.
$\begin{array}{ll} \hline \text { Alternative method } & \\ \text { (Area of cross-section }=\text {) } & 216 \div 4(=54) \\ \text { (Area of cross-section }=\text {) } & 1 / 2 \times 3 x \times x \\ 1 / 2 \times 3 x \times x=54 \quad \text { oe, } & \\ x^{2}=54 \times 2 \div 3(=36) & \\ 6(\mathrm{~cm}) & \end{array}$	$\begin{aligned} & B 1 \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept $11 / 2$ base x height oe CAO FT 'their k ' $\times x^{2}=$ 'their 54 ' Mark final answer. FT Final 2 marks can be awarded if trials used on an equation of the form 'their $k^{\prime} \times x^{2}=$ 'their 54 ' to find a correct or correct FT answer If x^{2} is a square number, x must be given as a whole number. Otherwise, it may be written as an unsimplified surd.
		If no marks award SC3 for a complete correct method using trials leading to an answer of 6 OR SC2 for a correct trial with height >3, e.g. $1 / 2 \times 15 \times 5 \times 4$ (and comparison with 216) si OR a correct trial with height > 3. e.g. $1 / 2 \times 15 \times 5$ and comparison with 54 si
	(7)	

$\begin{aligned} & 3 .{ }^{*}(\mathrm{a}) \\ & 1 \leq \text { time difference } \leq 3 \end{aligned}$	B2	Not from wrong working B1 for one end correct in the inequality or for sight of both values
3.(b)		Accept a statement such as 'The van is always less than 6 m long/the maximum length acceptable' stated once only; may be written anywhere. If lengths are given, they must be within the appropriate limits.
Valid example for may be correct e.g. Van 590 cm AND trailer 198 cm	E1	For the van accept any statement such as 'The van is always less than 6 m long/the maximum length acceptable' or any values satisfying: $585 \mathrm{~cm} \leq$ length of the van < 595 cm AND $195 \mathrm{~cm} \leq$ length of the trailer $\leq 200 \mathrm{~cm}$ Allow e.g. 'The trailer could be less than 200 (cm).' Example might use the values given in the question (590 cm and 200 cm) and not consider the values are rounded to the nearest 10 cm .
Valid example for may not be correct e.g. (Van 590 cm and) trailer 201 cm	E1	(For the van accept any statement such as 'The van is always less than 6 m long' or any values satisfying: $585 \mathrm{~cm} \leq$ length of the van < 595 cm AND) 200 cm < length of the trailer < 205 cm Allow e.g. 'The trailer could be more than 200 (cm)/the maximum length acceptable' or 'the length of the trailer could be 205 (cm)'.
	(4)	
$\begin{aligned} & \text { 4.*(a) } \\ & 600000 \div 20 \text { or }\left(6 \times 10^{5}\right) \div(2 \times 10) \\ & 3 \times 10^{4} \end{aligned}$	M1 A1	Award M1 A0 for any one of the following: - 30000 - 0.3×10^{5}
4.(b) $60 \times 3 \times 10^{8}$ oe 180×10^{8} or 18000000000 oe $1.8(0) \times 10^{10}$ (litres per hour)	M1 A1 A1	$\text { e.g. } 300000000 \times 60$ CAO FT 'their $60 \times 3 \times 10^{8}$, provided M1 awarded. If no marks, award SC1 for 5×10^{6}
	(5)	
$\begin{aligned} & \text { 5.*(a) } \\ & 9.6 \div 12(=0.8) \\ & 0.8 \div 8 \times 3 \\ & 0.3(\mathrm{~kg}) \text { or } 300 \mathrm{~g} \end{aligned}$	M1 M1 A1	FT 'their 0.8 ' including place value error from conversion of kg to g CAO
Alternative method $\begin{aligned} & 88: 3: 5 \\ & \frac{3}{88+3+5} \times 9.6 \\ & 0.3(\mathrm{~kg}) \text { or } 300 \mathrm{~g} \end{aligned}$	B1 M1 A1	$C A O$
$\begin{aligned} & \text { 5. }(\mathrm{b}) \\ & (\text { Total force }=) 1600 \times 0.1 \\ & 160(\mathrm{~N}) \end{aligned}$	M1 A1	

5.(c) Valid impact e.g. 'The force would be less'	E1	Ignore any extraneous comments e.g. 'The pressure would increase, and the force will be lower'.
	(6)	
$\frac{1008}{60} \times 100$ or $\frac{1008}{0.6(0)}$ or $\frac{1008}{6} \times 10$ or $\frac{10080}{6}$ oe (£)1680(.00)	M2	M1 for one of the following: - $\frac{1008}{6}(=168)$ (Calculating 10% of original value) - $\frac{1008}{60}(=16.8)$ (Calculating 1% of original value) - $0.6 \times x=1008$ oe
	(3)	
$\begin{aligned} & \text { 7.*(a) } \\ & 15 x^{2}+21 x-20 x-28 \\ & 15 x^{2}+x-28 \end{aligned}$	B2 B1	B1 for any three terms correct. $m x^{2}+x+n$ implies middle two terms correct if not from wrong working Mark final answer. Implies previous B2. FT their expression, provided it is a quadratic with 4 terms to consider and there are like terms to collect.
$\begin{aligned} & \text { 7.(b)(i) } \\ & 2 x y(x+6 y) \end{aligned}$	B3	Mark final answer. B2 for any one of the following: - A correct answer seen then spoiled - $2 x\left(x y+6 y^{2}\right)$ - $2 y\left(x^{2}+6 x y\right)$ - $x y(2 x+12 y)$ - $\quad 2 x y(x+m y)$ where $m \neq 0$ or $m \neq 6$ - $2 x y(n x+6 y)$ where $n \neq 1$ or $n \neq 0$ B1 for any one of the following: - $2\left(x^{2} y+6 x y^{2}\right)$ - $x\left(2 x y+12 y^{2}\right)$ - $y\left(2 x^{2}+12 x y\right)$ - $2 x\left(x y+m y^{2}\right)$ where $m \neq 0$ or $m \neq 6$ - $2 y\left(x^{2}+m x y\right)$ where $m \neq 0$ or $m \neq 6$ - $\quad x y(2 x+m y)$ where $m \neq 0$ or $m \neq 6$ - $2 x\left(n x y+6 y^{2}\right)$ where $n \neq 1$ or $n \neq 0$ - $2 y\left(n x^{2}+6 x y\right)$ where $n \neq 1$ or $n \neq 0$ - $\quad x y(n x+12 y)$ where $n \neq 1$ or $n \neq 0$ - $2 x y(x+\ldots)$ - $2 x y(\ldots+6 y)$
$\begin{aligned} & \text { 7.(b)(ii) } \\ & (x-8)(x+8) \end{aligned}$	B1	
	(7)	

8.(a) Rotation 90° clockwise or 270° anti-clockwise about (-1, 0)	B3	Must be a single transformation for B3 If B3 not awarded, allow B1 for each correct 'condition', up to B2, from a single transformation or a multi-step transformation e.g. Award B1B1 for 'Centre of rotation $(-1,0)$ ' Award B1B1 for 'Rotation clockwise 90°, and then a translation 1 to the left and 1 down'.
8.(b) Correct triangle with vertices at $(-4,10),(-7,4),(8,4)$	B2	B1 for any one of the following: - A triangle with 2 correct vertices - 3 vertices correctly plotted, but not joined - for a correct enlargement from an incorrect centre - an enlargement using an different scale factor $(\neq 1)$ from the centre $(5,1)$
	(5)	
9.(a)		
ε	B3	The 0 entry can be empty or \varnothing B2 for any 6 or 7 correct or B1 for any 4 or 5 correct
$\begin{aligned} & \text { 9.(b) } \\ & \frac{27}{50} \text { ISW or } 0.54 \end{aligned}$	B1	For the numerator: FT 20 + 'their 4 ' $+0+3$ provided 'their 4 ' >0 OR $50-(12+8+$ 'their 2 ' +1$)$ provided 'their 2 ' >0
$\begin{aligned} & \text { 9.(c) } \\ & \frac{16}{44} \text { ISW } \end{aligned}$	B2	For B2 or B1: FT numerator of 'their 12 ' + 'their 4' and denominator of 'their $20+$ their $12+$ their $8+$ their 4 ' or 50 - ('their 0 ' + 'their 1' + 'their 2' + 'their 3') provided no values are negative and fraction <1 B1 for denominator of 44 or numerator of 16 provided in a fraction < 1 OR B1 for a correct answer with wrong notation e.g. 16 out of 44 or $16: 44$
	(6)	

$\begin{aligned} & \text { 10.(a)(i) } \\ & \frac{x^{4}}{2} \text { or } \frac{1}{2} x^{4} \text { or } 0.5 x^{4} \end{aligned}$	B1	Mark final answer
$\begin{aligned} & 10 .(\mathrm{a})(\mathrm{ii}) \\ & \frac{5}{x^{2}} \text { or } 5 x^{-2} \end{aligned}$	B2	Mark final answer B1 for sight of $\left(\frac{x^{2}}{5}\right)^{-1}$ or $\left(\frac{\sqrt{5}}{x}\right)^{2}$ oe
10.(b) Use of a counter example e.g. $\begin{aligned} & \sqrt{64+36}=\sqrt{100}=10 \\ & \sqrt{64}+\sqrt{36}=8+6=14 \end{aligned}$	B1	Accept e.g. $\begin{aligned} & \sqrt{1+4}=\sqrt{5} \\ & \sqrt{1}+\sqrt{4}=1+2=3 \\ & \text { and } \sqrt{5}<3 \text { or } \sqrt{5} \neq 3 \end{aligned}$ If a, b and $a+b$ are not all square numbers then further explanation is required.
$\begin{aligned} & 10 .(\mathrm{c})(\mathrm{i}) \\ & \frac{1}{4} \text { or } 0.25 \end{aligned}$	B1	
$\begin{aligned} & \text { lo.(c)(ii) } \\ & 2^{3} \text { or } \sqrt[5]{32768} \text { or }(\sqrt[5]{32})^{3} \text { or } \sqrt[5]{32^{3}} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	(7)	
11. Clears the root and simplifies e.g. $64 x^{3}=7 y+x y \text { si }$	B2	FT expressions of equivalent difficulty until 2nd error; marks can be awarded in a different order B1 for $(4 x)^{3}=7 y+x y$ si; Implied by e.g. $k x^{3}=7 y+x y$ where $k \neq 0$ or 64 OR $64 x=7 y+x y$
Factorises e.g. $64 x^{3}=y(7+x) \text { or }(4 x)^{3}=y(7+x)$ Divides e.g. $y=\frac{64 x^{3}}{7+x}$	B1 B1	FT FT; final answer must be simplified
	(4)	
12. $\begin{aligned} & \frac{2}{3} \pi r^{3}=18000 \pi \text { oe } \\ & r^{3}=\frac{18000 \pi \times 3}{2 \pi} \text { oe } \\ & (r=) \sqrt[3]{\frac{18000 \pi \times 3}{2 \pi}} \text { oe } \\ & (r=) 30(\mathrm{~cm}) \end{aligned}$	M1 M1 M1 A1	Allow for $r^{3}=\frac{18000 \pi}{\frac{2}{3} \pi}$ oe $(r=) \sqrt[3]{27000}$ If no marks, award SC2 for $(r=) \sqrt[3]{\frac{18000 \pi \times 3}{4 \pi}}(=\sqrt[3]{13500})$ oe or SC1 for $r^{3}=\frac{18000 \pi \times 3}{4 \pi}$ oe
	(4)	

$\begin{aligned} & \text { 15.(a)(i) } \\ & 0.8 x+0.9 y \leq 36 \text { (so } 8 x+9 y \leq 360) \end{aligned}$	B1	
$\begin{aligned} & 15 .(\mathrm{a}) \text { (ii) } \\ & 0.2 x+0.1 y \leq 6 \text { oe, ISW } \end{aligned}$	B1	Note: If, after gaining B1 (ISW), the inequality is incorrectly simplified, penalise -1 , in (b), if the incorrectly simplified inequality is plotted
$3 \times 18+2.5 \times 24$ (£)114	B2	FT for B2 or B1 if possible B1 for one correct line FT 'their 24 ' where 'their 24 ' is obtained correctly from either one of the lines drawn or from solving one of their equations FT $54+2.5 \times$ ('their 24 ') correctly evaluated
	(6)	
16. $P \widehat{Q} R=90^{\circ}$ (angle in a semi-circle oe) $P \widehat{Q} S=76^{\circ}$ (angle in the same segment oe) $S \widehat{Q} R=(90-76=) 14^{\circ}$ Both reasons stated	B1 B1 B1 E1	Angles may be shown on diagram, otherwise any given angles must be identified e.g. $P \widehat{R} S=76^{\circ}$ Implies 3 marks
Alternative method 1 By drawing, or imagining, an extra line segment, PS: $P \widehat{S} R=90^{\circ}$ (angle in a semi-circle oe) $R \widehat{P} S=(90-76=) 14^{\circ}$ $S \widehat{Q} R=14^{\circ}$ (angle in the same segment oe) Both reasons stated	B1 B1 B1 E1	Angles may be shown on diagram, otherwise any given angles must be labelled e.g. $P \widehat{R} S=76^{\circ}$ Implies 3 marks

Alternative method 2 By introducing a specific value for one of the unknown angles, not used in the solution e.g. for an angle at the intersection of PR and QS, or for the angle QŜR. $P \widehat{Q} R=90^{\circ}$ (angle in a semi-circle oe) Full method using angle facts to gain $S \widehat{Q} R=14^{\circ}$ (must include, at some stage, angles in the same segment oe) Both reasons stated	B1 B2 E1	Angles may be shown on diagram, otherwise any given angles must be labelled e.g. $P \widehat{R} S=76^{\circ}$ Implies 3 marks
	(4)	
17.(a) Sight of $\frac{10}{8}$ or $\frac{8}{10}$ oe si $128 \times\left(\frac{10}{8}\right)^{2}$ or $128 \div\left(\frac{8}{10}\right)^{2}$ oe $200\left(\mathrm{~cm}^{2}\right)$	B1 M1 A1	Can be implied from $128 \times 10 \div 8$ oe
$\begin{aligned} & 17 .(b) \\ & 64: 125 \end{aligned}$	B2	If not B2, award B1 for any one of the following: - $4^{3}: 5^{3}$ - $8^{3}: 10^{3}$ oe - sight of 125 AND 64 - $\left(\frac{10}{8}\right)^{3}$ oe FT 128×8 : 'their 200 ' $\times 10$ from (a) oe
	(5)	
$\begin{aligned} & \text { 18.(a) } \\ & 0.16 \dot{6} \end{aligned}$	B1	Allow for 0.16363... provided no rounding or termination
18.(b) $1000 x-x=3712 . \dot{7} 12-3 . \overline{7} 12$ oe, si $\frac{3709}{999}$ ISW or $3 \frac{712}{999}$ ISW	M1 A1	
18.(c) $\frac{1}{18}+\frac{1}{5}$ oe $\left(\frac{5}{90}+\frac{18}{90}=\right) \frac{23}{90}$ oe, ISW	B1 B1	Award no marks if the method for 18(b) is used to answer 18(c)
	(5)	
19.(a) $V \propto 3^{t}$ or $V=k \times 3^{t}$ si $k=\frac{9}{3^{4}}$ oe, si $V=\frac{3^{t}}{9}$ oe	B1 B1 B1	Allow for $V \propto k \times 3^{t}$ For isolating ' k ' Mark final answer Accept $V=3^{t-2}$ Must be in terms of V and t Allow B1B1B0 only for $V=0.11(1 ..) 3^{t}$ if truncated
$\begin{aligned} & 19 .(\mathrm{b})(\mathrm{i}) \\ & (V=) \frac{1}{9} \end{aligned}$	B1	FT 'their constant of proportionality', provided $\neq 1$
19.(b)(ii) $27 \times 9=3^{t}$ or $3^{3}=3^{t-2}$ oe $(t=) 5$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	FT 'their constant of proportionality', provided $\neq 1$ FT if possible
	(6)	

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& 20 .(\mathrm{a}) \\
\& 125
\end{aligned}
\] \& B2 \& B1 for sight of \(5^{3} \mathrm{oe}\) \\
\hline \[
\begin{aligned}
\& 20 .(\mathrm{b}) \\
\& 60 \\
\& \frac{60}{125} \text { oe ISW }
\end{aligned}
\] \& B2
B1 \& \begin{tabular}{l}
B1 for sight of \(5 \times 4 \times 3\) but not \(5 \times 4 \times 3 \times 2(\times 1)\) \\
FT 'their derived 125' provided it is not 100, and 'their \(5 \times 4 \times 3\) ' provided fraction < 1
\end{tabular} \\
\hline \& (5) \& \\
\hline \begin{tabular}{l}
21. \\
Sight of \(\sqrt{27}=3 \sqrt{3}\)
\[
\begin{aligned}
\& \frac{44}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}} \text { oe } \\
\& 44 \times \frac{5-\sqrt{3}}{22} \text { oe } \\
\& 7-3 \sqrt{3}+10-2 \sqrt{3} \text { oe } \\
\& 17-5 \sqrt{3}
\end{aligned}
\]
\end{tabular} \& B1
M1
B1
M1
A1 \& \begin{tabular}{l}
For a correct denominator of 22 \\
FT for final M1 A0 provided B1 M1 previously awarded
CAO
\end{tabular} \\
\hline Alternative method
\[
\begin{aligned}
\begin{aligned}
\begin{array}{l}
\text { Sight of } \sqrt{27}=3 \sqrt{3} \\
\frac{(7-\sqrt{27})(5+\sqrt{3})+44}{5+\sqrt{3}}
\end{array} \& \left.=\frac{35+7 \sqrt{3}-5 \sqrt{27}-\sqrt{27 \times 3}}{5+\sqrt{3}}\right) \text { oe } \\
\& \left(=\frac{70-8 \sqrt{3}}{5+\sqrt{3}}\right) \mathrm{oe} \mathrm{si} \\
\& =\frac{(70-8 \sqrt{3})(5-\sqrt{3})}{(5+\sqrt{3})(5-\sqrt{3})} \text { oe si } \\
\& =\frac{(350-70 \sqrt{3}-40 \sqrt{3}+24)}{22} \mathrm{oe} \mathrm{si} \\
\& =17-5 \sqrt{3}
\end{aligned}
\end{aligned}
\] \& B1
M1

M1
B1

A1 \& | May be seen at any stage |
| :--- |
| FT 'their $\frac{70-8 \sqrt{3}}{5+\sqrt{3}}$, provided B1 M1 previously awarded |
| For a correct denominator of 22 |
| CAO |

\hline \& (5) \&

\hline $$
\begin{aligned}
& 22 . \\
& \left(\frac{6}{10} \times \frac{3}{9}\right)+\left(\frac{3}{10} \times \frac{6}{9}\right) \\
& \frac{36}{90} \text { oe ISW }
\end{aligned}
$$ \& M2

A1 \& | M1 for either product |
| :--- |
| Must be from correct work, if shown |

\hline \& (3) \&

\hline 23. (a) maximum point indicated \& B1 \&

\hline $$
\begin{aligned}
& \text { 23. (b) } \\
& (x-5)^{2}-16=0 \mathrm{si} \\
& 5 \pm \sqrt{16} \text { or }(x-1)(x-9) \\
& x=1, x=9
\end{aligned}
$$ \& B1

M2

A1 \& | May be seen in stages |
| :--- |
| M1 for $x-5= \pm \sqrt{16}$ or $5+\sqrt{16}$ or $x^{2}-10 x+9(=0)$ |
| Not from wrong working; |
| allow $(1,0)$ and $(9,0)$ |
| final answer of $x=9$ only implies M1 |

\hline \& (5) \&

\hline
\end{tabular}

