CG000474 Rev A

USER GUIDE

Automated Gene Expression Library Construction

FOR USE WITH

Automated Library Construction Kit PN-1000428 Dual Index Kit TT Set A, 96 rxns PN-1000215

Notices

Document Number

CG000474 • Rev A

Legal Notices

© 2021 10x Genomics, Inc. (10x Genomics). All rights reserved. Duplication and/or reproduction of all or any portion of this document without the express written consent of 10x Genomics, is strictly forbidden. Nothing contained herein shall constitute any warranty, express or implied, as to the performance of any products described herein. Any and all warranties applicable to any products are set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics provides no warranty and hereby disclaims any and all warranties as to the use of any third-party products or protocols described herein. The use of products described herein is subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product. A non-exhaustive list of 10x Genomics' marks, many of which are registered in the United States and other countries can be viewed at: www.10xgenomics.com/trademarks. 10x Genomics may refer to the products or services offered by other companies by their brand name or company name solely for clarity, and does not claim any rights in those third party marks or names. 10x Genomics products may be covered by one or more of the patents as indicated at: www.10xgenomics.com/patents. The use of products described herein is subject to 10x Genomics Terms and Conditions of Sale, available at www.10xgenomics.com/legal-notices, or such other terms that have been agreed to in writing between 10x Genomics and user. All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Instrument & Licensed Software Updates Warranties

Updates to existing Instruments and Licensed Software may be required to enable customers to use new or existing products. In the event of an Instrument failure resulting from an update, such failed Instrument will be replaced or repaired in accordance with the 10x Limited Warranty, Assurance Plan or service agreement, only if such Instrument is covered by any of the foregoing at the time of such failure. Instruments not covered under a current 10x Limited Warranty, Assurance Plan or service agreement will not be replaced or repaired.

Support

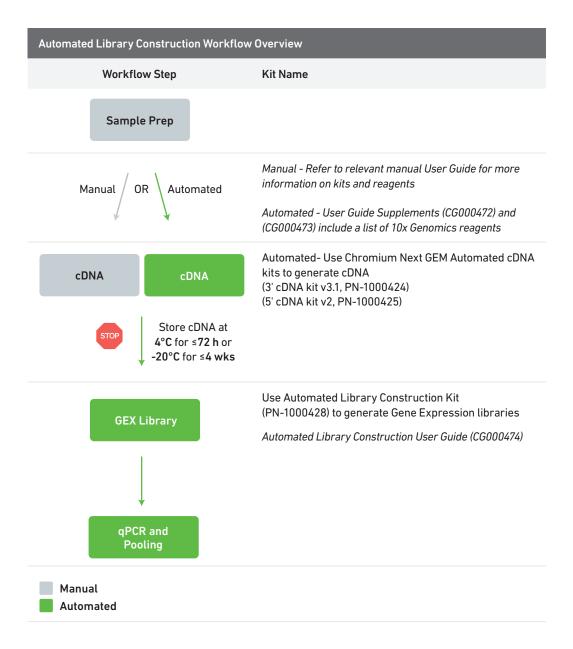
Email: support@10xgenomics.com 10x Genomics 6230 Stoneridge Mall Road Pleasanton, CA 94588 USA

Document Revision Summary	Document Number Title	CG000474 Automated Gene Expression Library Construction User Guide
	Revision	Rev A
	Revision Date	December 2021

Table of Contents

Introduction	5
Automated Library Construction Workflow	6
Automated Library Construction Kit	7
Additional Kits, Reagents & Equipment	9
Recommended Thermal Cyclers	10
Recommended Real Time qPCR System	10
Protocol Steps & Timing	11
Stepwise Objective	12
Chromium Connect	13
Instrument Orientation	14
Deck Orientation	15
Items & Reagents	18
Carrier Loading Guidelines	21
Gene Expression Library Construction Guidelines	23
cDNA QC & Quantification	24
Sample Index PCR	24
Post Library Construction QC	24
Post Library Construction Quantification & Pooling	25
Deck Orientation – Library Quantification	26
Post Library Construction Quantification	29
Deck Orientation – Library Pooling	30
Library Pooling	31
Sequencing	32

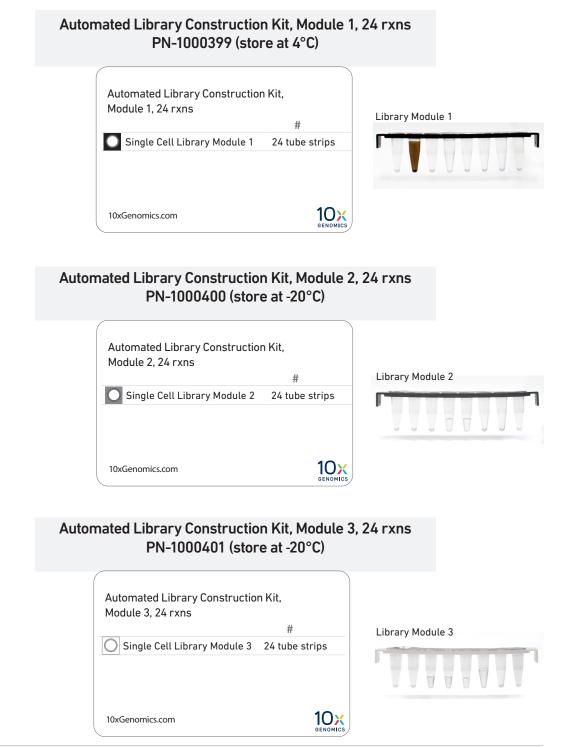
Introduction


Workflow Overview Automated Library Construction Kit Additional Kits, Reagents & Equipment Recommended Thermal Cyclers Protocol Steps & Timing Stepwise Objectives

Automated Library Construction Workflow

This User Guide provides an overview of the Automated Library Construction workflow along with a list of 10x Genomics reagents needed to generate Gene Expression Libraries from cDNA prepared by manual or automated workflows. As part of this automated flexible workflow, Gene Expression Libraries can be generated from freshly prepared or stored cDNA using the Automated Library Construction Kit (PN-1000428).

For information on sample preparation, carrier loading and protocol guidelines, refer to the relevant Chromium Next GEM Single Cell Automated User Guide.


For instrument operation, refer to the Chromium Connect Instrument User Guide (CG000180).

Automated Library Construction Kit

Automated Library Construction Kit, 24 rxns PN-1000428

Reagent volumes and colors are different in each of the module types, not all module tubes contain reagents.

Dual Index Kit TT Set A, 96 rxns PN-1000215 (store at -20°C)

Dual Index Kit TT Set A	
	# PN
Dual Index Plate TT Set A	1 3000431

Additional Kits, Reagents & Equipment

The items in the table below have been validated by 10x Genomics and are required for the Automated Library Construction protocol. DO NOT substitute any of the listed materials.

Supplier	Description	Part Number (US)
Plastics		
Hamilton	CO-RE Tips 50 µl Filtered Tips CO-RE Tips 300 µl Filtered Tips 60 ml Reagent Reservoir Self-Standing Hamilton PCR ComfortLid	235948 235903 194051 814300
Eppendorf	96-well Full-Skirted Plate* 96-well Semi-Skirted Plate (Blue color listed; other colors are acceptable)	951020460 951020362
	*Alternatively, use Amplifyt 96-Well PCR Plates, Full-Skirted, Clear from Thomas Fisher Scientific (NC1959287 for 25/case, NC1959288 for 100/case)	Scientific (485096/1149K05) or
Thermo Fisher Scientific	MicroAmp 8-Tube Strip, 0.2 ml MicroAmp 8-Cap Strip, clear	N8010580 4323032
Kits & Reagents		
Thermo Fisher Scientific	Nuclease-free Water	AM9937
Millipore Sigma	Ethanol, Pure (200 Proof, anhydrous)	E7023-500ML
Qiagen	Qiagen Buffer EB	19086
Additional materials ONLY for	optional assays – qPCR and pooling	
Bio-Rad	10% Tween 20 96-well PCR Plates	1662404 HSP9665
Qiagen	Qiagen Buffer EB	19086
Thermo Fisher Scientific	2 ml-Screw-cap Tube 0.5 ml-Screw-cap Tubes	3488NK 3472NK
KAPA Biosystems	KAPA Library Quantification Kit for Illumina Platforms	KK4824

Additional Kits, Reagents & Equipment

Supplier	Description	Part Number (US)		
Quantification & Quality Contro	bl			
Agilent	2100 Bioanalyzer Laptop Bundle High Sensitivity DNA Kit 4200 TapeStation High Sensitivity D1000 ScreenTape/Reagents High Sensitivity D5000 ScreenTape/Reagents	Choose Bioanalyzer, TapeStation, or Qubit based on availability	G2943CA 5067-4626 G2991AA 5067-5592/ 5067-5593 5067-5584/ 5067-5585	
Thermo Fisher Scientific	Qubit 4.0 Fluorometer Qubit dsDNA HS Assay Kit	& preference.	Q33226 Q32854	
Advanced Analytical	Fragment Analyzer Automated CE System - 12 c Fragment Analyzer Automated CE System - 48/9 High Sensitivity NGS Fragment Analysis Kit	FSv2-CE2F FSv2-CE10F DNF-474		

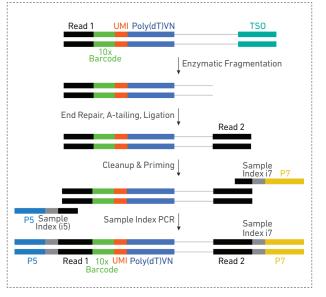
Recommended	Thermal cyclers	Thermal cyclers for off-deck use.							
Thermal Cyclers	Supplier	Description	Part Number						
	Bio-Rad	C1000 Touch Thermal Cycler with 96-Deep Well Reaction Module	1851197						
	Eppendorf	MasterCycler Pro	North America 950030010 International 6321 000.019						
	Thermo Fisher Scientific	Veriti 96-Well Thermal Cycler	4375786						
Recommended Real Time gPCR	Supplier	Description	Part Number						

System

Supplier	Description	Part Number
Bio-Rad	CFX96 Real-time System	1855096

The qPCR system should be compatible with the KAPA Library Quantification Kit dye. Refer to manufacturer's recommendation.

Protocol Steps & Timing


The table below provides an overview of the complete automated workflow steps and timing

Steps	Timing
Manual	
Cell Preparation (Dependent on Cell Type)	~1-1.5 h
Gather & Load Reagents and Consumables	~60 min
Automated Gene Expression cDNA	
Master Mix Preparation	
Chromium Automated Controller Loading	
GEM Generation	
OPTIONAL Confirm GEM Generation (Manual, 5 min)	
Post GEM RT-Cleanup – Dynabead	~4.5 h Walk-away
cDNA Amplification	time
cDNA Cleanup – SPRIselect	
Stop after SPRI clean up, store cDNA at 4°C for ≤72 hrs or -20°C for ≤4 wks cDNA QC & Quantification (Manual, 50 min; best practice)	
Automated Gene Expression Library	
Fragmentation, End Repair & A-tailing	
Post Fragmentation, End Repair & A-tailing Double Sided Size Selection	-
SPRIselect	~4 h
Adaptor Ligation	Walk-away time
Post Ligation Cleanup- SPRIselect Sample Index PCR	
Post Sample Index PCR Double Sided Size Selection- SPRIselect	
Manual	
Post Library Construction QC	50 min
OPTIONAL Library Quantification qPCR & Library Pooling	

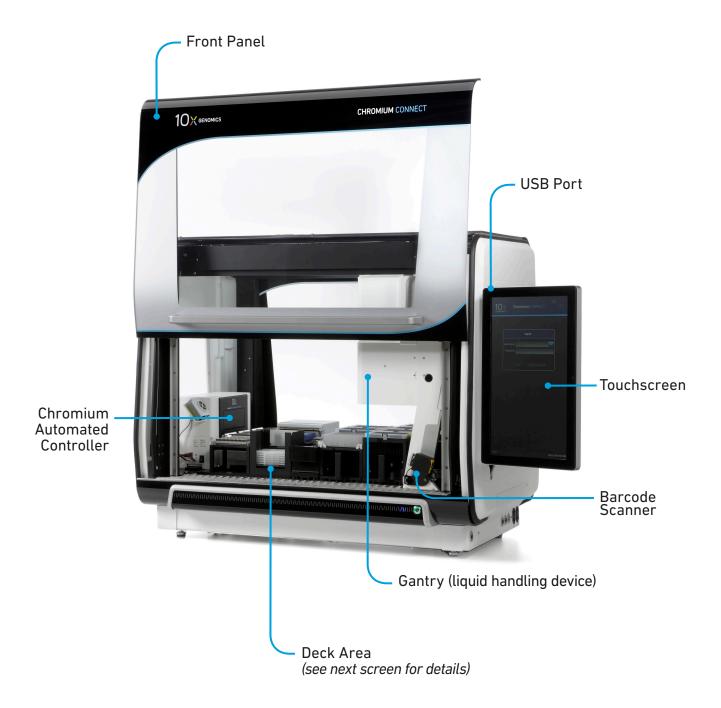

Stepwise Objective – Automated Gene Expression Library Construction

DUAL INDEX Automated Gene Expression Library construction includes enzymatic fragmentation and size selection for optimizing the input cDNA amplicon size. P5, P7, i7 and i5 sample indexes, and TruSeq Read 2 (read 2 primer sequence) are added via End Repair, A-tailing, Adaptor Ligation, and PCR. The final libraries contain the P5 and P7 primers used in Illumina bridge amplification.

Amplified Single Cell 3' cDNA processing (dual index)

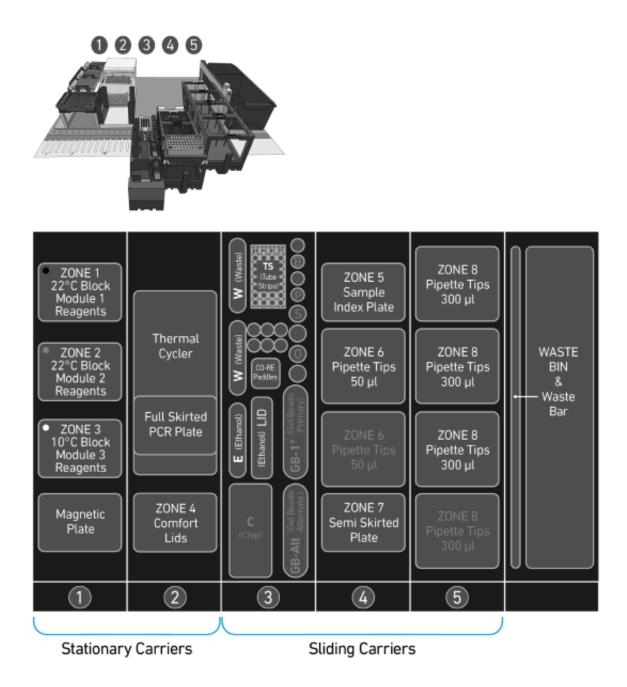
Amplified Single Cell 5' cDNA processing (dual index)

Sequencing


Gene Expression library comprises standard Illumina paired-end constructs which begin and end with P5 and P7. The 16 bp 10x Barcode and 12 bp UMI are encoded in Read 1, while Read 2 is used to sequence the cDNA fragment. Sample index sequences are incorporated as the i7 and i5 reads for Dual Index Libraries. TruSeq Read 1 and TruSeq Read 2 are standard Illumina sequencing primer sites used in paired-end sequencing.

Illumina sequencer compatibility, sample indices, library loading and pooling for sequencing are summarized in the Sequencing chapter.

Chromium Connect


Instrument Orientation Deck Orientation CSV Setup

Instrument Orientation

Refer to the Chromium Connect Instrument User Guide (CG000180) and Quick Reference Cards (CG000256) for more information.

Deck Orientation

Refer to the Chromium Connect Instrument User Guide (CG000180) and Quick Reference Cards (CG000256) for more information.

CSV Setup

Sample information can also be uploaded using a CSV file at the run set-up screen. Use the folder icon to search a network file system or USB drive. Navigate to the appropriate CSV file and click "SELECT".

The Chromium Connect Input Sample Template (CG000309) is available on the 10x Genomics support website.

	ст 📃	10× GENOMICS	CHROMIUM CONNECT	
Lib Const > Setup > Load > F	Run > Complete	SC3' GEX	Setup > Load > Run	Complete
Experiment Name Enter Experiment Name			Select File	
Instruction Level Standard qPCR Setup? No Pooling? No	♥ ♥ ♥	■ Z:	Name	
		File Name:	CSV file SELECT	s (*.csv) V CANCEL
CANCEL NEXT	🗖 🔓 11/09/2021 3:53 РМ	CANCEL 1.28.1.0	NEXT 10xadmin	08/23/2021 10:51 AM

Run Set-up Screen

Sample CSV File

A sample CSV file is shown below. The columns highlighted in blue are mandatory to start a run. Any missing fields/corrections can be added during sample information setup. Final selections will be recorded in the final run report CSV file.

SAMPLEPARAMETERS	SAMPLENAME	SIINDEX	VOLUME	CellCount	Expressionl Cyc	les	USERDEFINED1	USERDEFINED2	USERDEFINED3	USERDEFINED4
ID1	aaa	A1	5	2001-6000	High					
ID2	bbb	B1	5	2001-6000	High					
ID3	ccc	C1	5	2001-6000	High					
ID4	ddd	D1	5	2001-6000	High					
ID5	eee	E1	5	2001-6000	High					
ID6	fff	F1	5	2001-6000	High					
ID7	ggg	G1	5	2001-6000	High					
ID8	hhh	H1	5	2001-6000	High					
RUNPARAMETERS	SELECTION									
runName	Sample Run									
Instruction Level	Standard									
qPCR Setup?	No									
Pooling?	No									
SI Cycles	14									
Notes										

Uploading Sample Information Using a CSV File

The following tables provide specific guidelines on sample entry in the CSV file.

Sample Parameters	Information	
Sample Name	Alphanumeric and up to 32 characters	
Sample Index	Location on dual index plate to be used for each sample during SI PCR	
Cell Expression	User defined field for tracking <u>Example:</u> High cell expression: Cell lines Low cell expression: PBMCs	
Volume	5-22 μL	
Cell Count	User defined field for tracking(enter applicable option EXACTLY as shown below)500-2000D0 N0T use commas.2001-6000Space between symbol & number required.6001-10000	
Sample Index Cycles	User defined field. Refer to approriate Assay User Guide for guidance on optimal cycles.	

Up to four user-defined fields (LIMS data) can be passed through the instrument for additional sample tracking.

Run Parameters	Information
Run Name	Alphanumeric and up to 32 characters
Instruction Level	Standard, Advanced, Expert Refer to the Chromium Connect Instrument User Guide (CG000180) for details
qPCR Setup	Opt-in for optional assay step: Yes/No
Pooling	Opt-in for optional assay step: Yes/No

Items & Reagents

Gather Items & Reagents

Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers.

Gather the quantities specified for each of the items and reagents.

Item	Qty
Nuclease-free Water	10 ml
Ethanol, Pure (200 Proof, anhydrous)	40 ml
Hamilton	
Comfort Lids	4
50 µl CO-RE Pipette Tips, with filter (Black, Conductive)	1–2 rack
300 µl CO-RE Pipette Tips, with filter (Black, Conductive)	3 racks
Reagent Reservoir, 60 ml	3
Eppendorf	
96-well Semi Skirted Plate	1
96-well Full Skirted Plate	1
Thermo Fisher Scientific	
MicroAmp 8-Tube Strip, 0.2 ml	1
10x Genomics	
Automated Library Construction Kit	
Library Module 1(stored at 4°C) <i>Black tube strip</i>	1 tube strip/sample
Library Module 2 (stored at -20°C) <i>Gray tube strip</i>	1 tube strip/sample
Library Module 3 (stored at -20°C) White tube strip	1 tube strip/sample
Dual Index Plate TT Set A (stored at -20°C)	1 plate

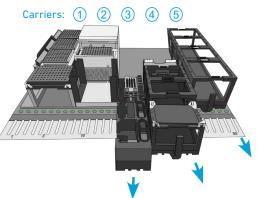
See Additional Kits, Reagents & Equipment list for performing optional QC.

Thaw & Prep Reagents

Follow prompts on the touchscreen to thaw and prepare reagents. Some important guidelines are highlighted below.

ACTION	GUIDELINES Follow touchscreen prompts for specifics and timing
Thaw Reagents	 Thaw reagents as indicated on the touchscreen. Verify no precipitate is present.
	 Ensure that the correct thawing locations and temperatures are used.
	 During reagent thaw load the consumables following touchscreen prompts.
Prepare Ethanol	 Prepare 50 ml 80% Ethanol in Nuclease-free water and dispense in Ethanol Reservoir when prompted.
Library Modules	• Thaw Library Modules as prompted on the touchscreen.
	 After reagent thaw, invert rack holding Module tube strips and vortex Library Modules 1 and 2 for 30 sec; verify no precipitate.
	 Centrifuge Library Modules 1 and 2 at 300 rcf for 1 min at 22°C.
	 Retrieve Library Module 3 from 4°C storage. Invert-mix; DO NOT vortex. Centrifuge Module 3 (separately from Module 1, to avoid reagent precipitation).
	Confirm there are no bubbles at the bottoms of any module tubes

Confirm that there are no bubbles at the bottoms of any module tubes, Dual Index Plate wells, or Primer tubes.

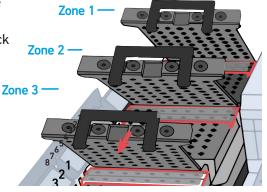

Carrier Loading Guidelines

Carrier Loading Guidelines

Follow the instructions on the touchscreen to load the carriers.

Carriers

- Handle the carriers as prompted.
- Ensure that Carriers 3, 4, and 5 are completely slid out and placed on an offdeck workspace before loading.
- Align the carriers to the corresponding Deck Rails when sliding them in or out of the deck.
- Ensure correct orientation of tube labels with barcodes to enable Barcode Scanning.

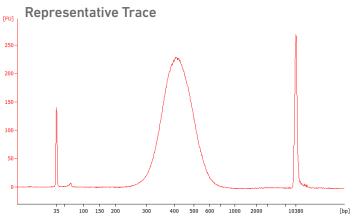


Modules

- Load one tube strip/sample of each of the indicated modules in the corresponding positions on the Carrier, starting from back to front row.
- DO NOT skip any rows when loading.
- Use pinhole alignment to place module tube strips in the correct orientation (as shown on the touchscreen).

Label Tube Strip Orientation

- The tube strip to receive the final libraries should be placed in Position 4 of the Tube Strip Holder.
- Label tube strip orientation for collecting final libraries.



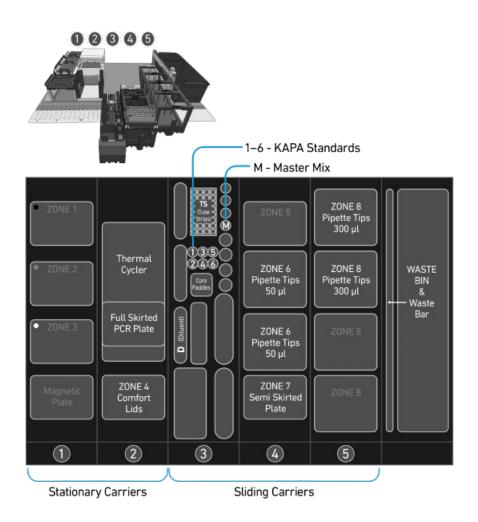
Consult the Chromium Connect User Guide (CG000180) for more information.

Gene Expression Library Construction Guidelines

cDNA QC and Quantification Recommendations Sample Index PCR Post Library Construction QC

cDNA QC & Quantification	Before proceeding with automated library construction, QC and quantify the input cDNA as per guidelines provide in the relevant user guide and then proceed to automated Sample Index PCR.
Sample Index PCR	 The SI-PCR cycle number should be selected based on cDNA input. A range of cycle number options is available, to be determined based on specific experimental considerations.
	 Follow the guidelines in the relevant automation workflow user guides (listed below) for quantification of the cDNA to be used in library construction. For Single Cell 3' Gene Expression library construction, use fixed volume of 15 µl cDNA. For Single Cell 5' Gene Expression library construction, use up to 60 ng cDNA in 5-22 µl. Note that the intended cDNA input amounts differ slightly from those used in manual protocols in order to account for pipetting differences in automation.
	For Single Cell 3' Gene Expression libraries, refer to Chromium Next GEM Automated Single Cell 3' Reagent Kits v3.1 (CG000286)
	For Single Cell 5' Gene Expression libraries, refer to Chromium Next GEM Automated Single Cell 5' Reagent Kits v2 (CG000384)
	Cycle number selected will apply to all the samples in the run.
Post Library Construction QC	Run s ample on an Agilent Bioanalyzer High Sensitivity chip.

Determine the average fragment size from the Bioanalyzer trace. This will be used as the insert size for library quantification.


Post Library Construction Quantification & Pooling

Deck Orientation – Library Quantification Post Library Construction Quantification Deck Orientation – Library Pooling Library Pooling

Deck Orientation –

Library quantification using qPCR is recommended for accurate pooling and loading Library Quantification on sequencers. If the option is selected during gene expression run-setup, automated qPCR plate set-up can be run directly on Chromium Connect after library generation and final library QC. Alternatively, the option can be selected from the instrument home screen, at the user's convenience. Up to 8 samples can be quantified on a 96 well reaction plate, including duplicates for each sample. The minimum sample volume required is 25 µl. Only 6 µl of the sample will be used for gPCR plate setup.

The Chromium Connect deck layout for Library Quantification setup is shown below.

Gather Items & Reagents

Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers for Library Quantification.

Gather the quantities specified for each of the items and reagents.

ltem	Qty
Hamilton	
Comfort Lid	1
50 µl CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 racks
300 µl CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 racks
60-ml Reagent Reservoir	1
Eppendorf	
96-well Semi Skirted Plate	1
Thermo Fisher Scientific	
2-ml Tube with Screw Cap	6
Bio-Rad	
96-well Hard-Shell Full Skirted Plate	1
Reagent	Qty
Qiagen Buffer EB	50 ml
Nuclease-free Water	1 ml
10% Tween-20	250 µl
Libraries (in up to four 8-tube strips)	up to 8 libraries
KAPA Library Quantification Kit, thawed	
SYBR FAST Master Mix Primer Mix Standards	5 ml 1 ml 6

Post Library Construction Quantification

- Prepare reagents as prompted on the touchscreen.
- Vortex and centrifuge KAPA standards and libraries before use.
- Retrieve previously prepared Master Mix + Primer Mix
 OR

Add 1 ml Primer Mix to 5 ml SYBR FAST Master Mix.

• Prepare specified Quantification Master Mix in the 2-ml tube using the guidance below.

# Sample	Master Mix + Primer Mix (µl)	Water (µl)	Total Vol (µl)
8	1305	435	1740
7	1200	400	1600
6	1095	365	1460
5	990	330	1320
4	885	295	1180
3	780	260	1040
2	675	225	900
1	570	190	760
1	570	190	760

Volumes listed take into account volume for 6 standards

Post Library Construction Quantification

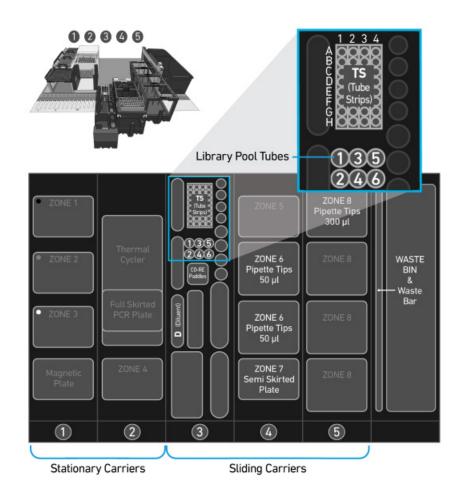
- Follow the touchscreen prompts for loading, scanning, and executing the run.
- During the run, the following steps will be executed by the instrument:
 -KAPA Master Mix transfer to the 96-well Hard Shell Full Skirted Plate (layout below)
 -Diluent transfer to dilution plate
- -Serial dilutions of libraries

-Addition of library dilutions, KAPA Standards, and negative controls to the plate

Total reaction volume (20 µl)= 16 µl Master Mix + 4 µl Library Dilution/ KAPA Standard/ Negative Control (NTC)	1 2 3 4 5 6 7 8 9 10 11 12 A B B B B B B B B B B B B B B B B B B B
<u>Dilutions:</u> 1:12,500 1:62,500 1:312,500 1:1,562,500	E C C C C C C C C C C C C C C C C C C C

- After the run is completed, follow the unloading instructions on the touchscreen.
- Cap and store libraries at 4°C ≤72 h or -20°C ≤4 weeks.
- Remove Full Skirted Plate. Seal plate and centrifuge at 300 rcf for 1 min at 22°C.
- Follow the manufacturer's recommendations for qPCR-based quantification. For library quantification for sequencer clustering, determine the concentration based on average size (bp) derived from the Bioanalyzer/TapeStation trace.

Step	Temperature	Run Time
1	95°C	00:05:00
2	95°C	00:00:30
3	60°C	00:00:45
4	Go to Step 2, 29X (Total 30 cycles)


• Resource:

Use the Chromium Connect Library Quantification Worksheet (CG000157) provided on the 10x Genomics Support website for calculating library concentrations.

Deck Orientation – Library Pooling

The libraries may be pooled on the Chromium Connect instrument and used for sequencing, taking into account the preferred cell numbers and per-cell read depth requirements for each library. Samples utilizing the same sample index should not be pooled together, or run on the same flow cell lane, as this would prevent correct sample demultiplexing.

The Chromium Connect deck layout for Library Pooling is shown below.

Gather Items & Reagents

Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers for Library Pooling.

Gather the quantities specified for each of the items and reagents.

Item	Qty
Hamilton	
50 µl CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 racks
300 μl CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 racks
Reagent Reservoir, 60 ml	1
Eppendorf	
96-well Semi Skirted Plate	1
Thermo Fisher Scientific	
0.5-ml Tube with Screw Cap	6
Reagent	Qty
Qiagen Buffer EB	50 ml
Libraries (in up to four 8-tube strips)	up to 32 libraries

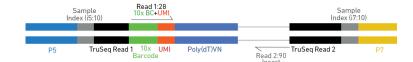
Library Pooling

- Follow the touchscreen prompts for loading, scanning, and executing the run.
- Briefly vortex and centrifuge libraries in the 8-tube strips.
- Ensure a minimum 25 µl library volume is available in the tubes.
- After run is complete, follow touchscreen prompts to unload and store the libraries.
- Unload remaining items and clean as prompted on the touchscreen.

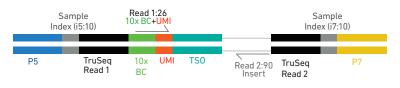
• Resource:

Use the Chromium Connect Library Pooling Worksheet (CG000466) provided on the 10x Genomics Support website to calculate volumes to be pooled. The calculated volumes can be input into the instrument either manually, or via the CSV file generated from this workbook.

Sequencing


Sequencing Libraries

DUAI


INDE>

Gene Expression libraries comprise standard Illumina paired-end constructs which begin with P5 and end with P7. 16 bp 10x Barcodes are encoded at the start of TruSeq Read 1, while 10 bp i5 and i7 sample index sequences are incorporated as sample index reads. TruSeq Read 1 and Read 2 are standard Illumina sequencing primer sites used in paired-end sequencing. TruSeq Read 1 is used to sequence 16 bp 10x Barcodes and 12 bp UMI. Sequencing these libraries produce a standard Illumina BCL data output folder.

Chromium Single Cell 3' Gene Expression Library (Dual Index)

Chromium Single Cell 5' Gene Expression Library (Dual Index)

Illumina Sequencer Compatibility

The compatibility of the listed sequencers has been verified by 10x Genomics. Some variation in assay performance is expected based on sequencer choice. For more information about performance variation, visit the 10x Genomics Support website.

- MiSeq
- NextSeq 500/550
- NextSeq 1000/2000
- HiSeq 3000
- NovaSeq

Sample Indices

Each sample index in the Dual Index Kit TT (PN-1000215) is a mix of 1 unique i7 and one unique i5 sample index. If multiple samples are pooled in a sequence lane, the sample index name (i.e. the Dual Index TT Set A plate well ID, SI-TT-) is needed in the sample sheet used for generating FASTQs with "cellranger mkfastq". Samples utilizing the same sample index should not be pooled together, or run on the same flow cell lane, as this would not enable correct sample demultiplexing.

Gene Expression Library Sequencing Depth & Run Parameters	Sequencing Depth	Minimum 20,000 read pairs per cell
	Sequencing Type	Paired-end, dual indexing
	Sequencing Read	Recommended Number of Cycles

For Dual Index		
Read 1	28 cycles	
i7 index	10 cycles	
i5 index	10 cycles	
Read 2	90 cycles	

Library Loading

Once quantified and normalized, the Gene Expression libraries should be denatured and diluted as recommended for Illumina sequencing platforms. Refer to Illumina documentation for denaturing and diluting libraries. Refer to the 10x Genomics Support website for more information.

For Chromium Singel Cell 3' Gene Expression libraries

Instrument	Loading Concentration (pM)	PhiX (%)
MiSeq	11	1
NextSeq 500/550	1.8	1
NextSeq 1000/2000	650	1
NovaSeq	150*/300	1

For Chromium Singel Cell 5' Gene Expression libraries

Instrument	Loading Concentration (pM)	PhiX (%)
MiSeq	10	1
NextSeq 500	1.5	1
NovaSeq	150*/300	1
NextSeq 2000	650	1

* Use 150 pM loading concentration for Illumina XP workflow.

Library Pooling

The Gene Expression libraries may be pooled for sequencing, taking into account the differences in cell number and per-cell read depth requirements between each library. Samples utilizing the same sample index should not be pooled together, or run on the same flow cell lane, as this would prevent correct sample demultiplexing.

Refer to Post Library Construction Quantification & Pooling chapter for library pooling on the Chromium Connect instrument.