Overview

The 10x Genomics 3’ CellPlex Kit provides a species agnostic sample multiplexing solution through the use of a set of 12 Feature Barcode oligonucleotides each conjugated to a lipid. These Cell Multiplexing Oligos can be used to label individual cells or nuclei samples, and the labeled cells can be pooled together prior to loading onto a 10x Genomics chip. The Feature Barcode molecules can be directly captured by oligonucleotides present on the Gel Beads inside a GEM during GEM-RT, subsequently amplified, and used to generate Cell Multiplexing libraries.

This protocol provides guidance for:

- Labeling cells/nuclei with CellPlex reagents (see page 2-3, Cell Multiplexing Oligo Labeling) for use with Single Cell 3’ v3.1 (Dual Index) protocols with Feature Barcode technology for Cell Multiplexing (CG000388) and Single Cell 3’ v3.1 (Dual Index) protocols with Feature Barcode technology for CRISPR Screening & Cell Multiplexing (CG000389).
- Labeling cells with antibody-oligonucleotide conjugates and CellPlex reagents (see page 4-5, Cell Surface Protein & Cell Multiplexing Oligo Labeling) for use with Single Cell 3’ v3.1 (Dual Index) protocols with Feature Barcode technology for Cell Surface Protein & Cell Multiplexing (CG000390).

This protocol was demonstrated using primary cells (including peripheral blood mononuclear cells (PBMCs), dissociated tumor cells, and dissociated brain tissue), cell lines (including Jurkat, Raji, A20, and EL4) as well as cell lines that have been transduced with CRISPR machinery (including A549, A375, SKOV3, and U2OS). Modifications to this protocol may be required when working with other cell types (e.g., centrifugation speed and time). For additional information on the preparation of specific sample types, consult 10x Genomics Demonstrated Protocols available on the 10x Genomics support website.

Preparation – Buffers

<table>
<thead>
<tr>
<th>Buffers</th>
<th>Prepare fresh</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash & Resuspension Buffer for Cells (maintain at 4°C)</td>
<td>PBS + 1% BSA for PBMCs, cell lines, and dissociated tumor cells NbActiv-1 + 1% BSA for dissociated brain tissues</td>
<td></td>
</tr>
<tr>
<td>Wash & Resuspension Buffer for Nuclei (maintain at 4°C)</td>
<td>PBS + 1% BSA + RNase Inhibitor (0.2U/µl)</td>
<td></td>
</tr>
</tbody>
</table>

*Wash & resuspension buffers depend upon the sample type. Use appropriate buffer.

Specific Reagents & Consumables

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Genomics</td>
<td>3’ CellPlex Kit Set A</td>
<td>1000261</td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td>UltraPure Bovine Serum Albumin (BSA, 50 mg/ml)</td>
<td>AM2616</td>
</tr>
<tr>
<td></td>
<td>Trypan Blue Stain (0.4%)</td>
<td>T10282</td>
</tr>
<tr>
<td>Corning</td>
<td>Phosphate-Buffered Saline, 1X without Calcium and Magnesium</td>
<td>21-040-CV</td>
</tr>
<tr>
<td>Millipore Sigma</td>
<td>Bovine Serum Albumin In DPBS (10%)</td>
<td>A1595</td>
</tr>
<tr>
<td></td>
<td>(alternative to Thermo Fisher product)</td>
<td>333599001</td>
</tr>
<tr>
<td>BrainBits</td>
<td>NbActiv-1 Neuronal culturing medium</td>
<td>NbActive1 100</td>
</tr>
<tr>
<td>BioLegend</td>
<td>Human TruStain FcX (Fc Receptor Blocking Solution)</td>
<td>422301</td>
</tr>
</tbody>
</table>

Equipment

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo Fisher Scientific</td>
<td>Countess II FL Automated Cell Counter</td>
<td>AMAQAF1000</td>
</tr>
<tr>
<td></td>
<td>Countess II FL Automated Cell Counting Chamber Slides</td>
<td>C10228</td>
</tr>
</tbody>
</table>

This list may not include some standard laboratory equipment.

Additional Guidance

Cells carry potentially hazardous pathogens. Follow material supplier recommendations and local laboratory procedures and regulations for the safe handling, storage and disposal of biological materials.
Protocol Overview: Cell Multiplexing Oligo Labeling

Label Cells/Nuclei

1. Cells/Nuclei for labeling
 - Add PBS + 0.04% BSA* (1 ml)
 - Resuspend in Cell Multiplexing Oligo (100 μl)
 - Incubate for 5 min (room temperature)

2. Add Wash & Resuspension Buffer* (1.9 ml)
 - Repeat 1x
 - Add Wash & Resuspension Buffer* (2 ml)
 - 400 rcf, 5 min, 4°C*

3. Remove supernatant
 - Count & pool labeled cells

4. Count pooled cells

5. Proceed to 10x Genomics Single Cell 3' v3.1 (Dual Index) protocols with Feature Barcode technology (see References)

*Centrifugation conditions and buffer composition depend upon the sample type. See Labeling Protocol for details.
Tips & Best Practices

- **Pellet Resuspension**: Gently mix cells/nuclei 10-15x, or until the pellet is completely resuspended without introducing bubbles.

- **Supernatant Removal**: Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet. Leaving behind excess supernatant may result in increased background reads during sequencing. Transfer pipettes may be used to remove supernatant after centrifugation to minimize disturbance to the cell/nuclei pellet.

1. **Cell Multiplexing Oligo Labeling Protocol**

3' CellPlex Kit Set A (PN-1000261) was used for cell/nuclei multiplexing. Cell Multiplexing Oligos are supplied at -20°C.

Prepare Cell Multiplexing Oligo: Before use, thaw Cell Multiplexing Oligo at room temperature. Vortex 5 sec at maximum speed and centrifuge briefly for 5 sec.

Cells: This protocol was demonstrated using 0.1-2 x 10^6 cells. Use 0.5-2 x 10^6 cells, if the number of cells is not limited. Wash cells according to the appropriate 10x Genomics Demonstrated Protocol for the cell type being prepared.

Nuclei: This protocol was demonstrated using 0.1-2 x 10^4 nuclei. Use 0.5-2 x 10^4 nuclei, if the number of nuclei is not limited. Wash nuclei according to the appropriate 10x Genomics Demonstrated Protocol.

a. Transfer cells/nuclei to a 2-ml microcentrifuge tube and add appropriate buffer for a total 1 ml volume. For cells, add room temperature PBS + 0.04% BSA. For nuclei, add chilled PBS + 1% BSA + RNase Inhibitor (0.2 U/µl). Gently pipette mix.

b. Centrifuge cells/nuclei. Centrifuge cells at room temperature and nuclei at 4°C. Use of swinging-bucket rotor is recommended for higher cell recovery. Centrifugation speed and time depends upon the sample type. Use following table for guidance.

c. Remove the supernatant without disturbing the pellet. Transfer pipettes may be used to remove supernatant after centrifugation to minimize disturbance to the pellet.

d. Add 100 µl Cell Multiplexing Oligo (room temperature) to the cells/nuclei. Gently pipette mix 10-15x to resuspend. Store unused Cell Multiplexing Oligo at -20°C and avoid more than 12 freeze-thaw cycles.

e. Incubate for 5 min at room temperature. When working with multiple samples, start the 5 min incubation after the last sample has been resuspended in Cell Multiplexing Oligo.

f. Wash by adding 1.9 ml appropriate chilled Wash & Resuspension Buffer (for a total 2 ml volume) to the sample. Gently pipette mix.

Table 1: Sample Type Specific Centrifugation Conditions:

<table>
<thead>
<tr>
<th>Sample Types</th>
<th>Speed (rcf)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Lines</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>PBMCs/Dissociated Brain Tissue</td>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>Dissociated Tumor Cells</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>Nuclei</td>
<td>500</td>
<td>10</td>
</tr>
</tbody>
</table>

g. Centrifuge cells/nuclei at 4°C. Centrifugation speed and time depends upon the sample type. See Table 1 for guidance.

h. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet.

Leaving behind excess supernatant may cause non-specific binding, which may result in increased background reads during sequencing.

i. Resuspend the pellet in 2 ml chilled Wash & Resuspension Buffer. Gently pipette mix.

j. Centrifuge at 4°C. Centrifugation speed and time depends upon the sample type. See Table 1 for guidance.

k. Remove the supernatant without disturbing the pellet

l. Repeat i-k for a total of two washes.

m. Based on starting concentration and assuming ~50% cell loss, add an appropriate volume chilled Wash & Resuspension buffer to obtain a final concentration of:
 - 700-1,200 cells/µl for targeted cell recovery of 500-10,000 cells or
 - 1,300-1,600 cells/µl for targeted cell recovery of 10,000-30,000 cells.
 Gently pipette mix 10-15x.

n. Determine cell/nuclei concentration and viability using a Countess II Automated Cell Counter or a hemocytometer.

o. Pool labeled cells/nuclei using the calculation provided in the Appendix.

p. Determine cell concentration and viability of the pooled sample using a Countess II Automated Cell Counter or a hemocytometer.

q. Proceed immediately to relevant Chromium Single Cell RNA Sequencing protocols with Feature Barcode technology for Cell Multiplexing (see References).

Fluorescence Activated Cell Sorting (FACS) can be used to sort out live cells by staining with a live/dead cell staining or nuclei by forward or side scatter to remove debris. Cell Multiplexing Oligo labeling is compatible with FACS at either the pre or post pooling of labeled cells.

Table 2: Sample Type Specific Wash & Resuspension Buffers:

<table>
<thead>
<tr>
<th>Sample Types</th>
<th>Wash & Resuspension Buffer (maintain at 4°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMCs/Cell Lines/Dissociated Tumor Cells</td>
<td>PBS + 1% BSA</td>
</tr>
<tr>
<td>Dissociated Brain Tissue</td>
<td>NbActiv-1 + 1% BSA</td>
</tr>
<tr>
<td>Nuclei</td>
<td>PBS + 1% BSA + RNase Inhibitor (0.2 U/µl)</td>
</tr>
</tbody>
</table>
Protocol Overview: Cell Surface Protein & Cell Multiplexing Oligo Labeling

Label Cells

- Add PBS + 0.04% BSA (1 ml)
- Add PBS + 1% BSA (1.9 ml)
- Add PBS + 1% BSA (2 ml)
- Add PBS + 0.04% BSA (1.9 ml)
- Add PBS + 1% BSA

Repeat 1x

- 400 rcf, 5 min, 4°C*
- Remove supernatant
- Resuspend in Cell Multiplexing Oligo (100 μl); Transfer to a 2-ml tube
- Incubate for 5 min (room temperature)
- Remove supernatant
- Count & pool labeled cells
- Count pooled cells
- Proceed to 10x Genomics Single Cell 3’ v3.1 (Dual Index) protocols with Feature Barcode technology (see References)

*Centrifugation conditions depend upon the sample type. See Labeling Protocol for details.
2. Cell Surface Protein and Cell Multiplexing Oligo Labeling Protocol

This protocol was optimized using TotalSeq-B™ antibody-oligonucleotide conjugates from BioLegend and 3’ CellPlex Kit from 10x Genomics.

All steps can be performed in 2-ml microcentrifuge tubes.

Prepare Antibody Mix Supernatant: Add appropriate/manufacturer’s recommended amount of antibody-oligonucleotide conjugates to a 1.5-ml microcentrifuge tube. Centrifuge the mix at 14,000 rcf for 10 min at 4°C. Transfer the supernatant (containing Antibody Mix) to a new tube and maintain at 4°C.

Prepare Cell Multiplexing Oligo: Before use, thaw Cell Multiplexing Oligo at room temperature. Vortex 5 sec at maximum speed and centrifuge briefly for 5 sec.

Cells: This protocol was demonstrated using 0.2-2 x 10^6 PBMCs. Use 0.5-2 x 10^6 cells, if the number of cells is not limited. Wash cells according to the appropriate 10x Genomics Demonstrated Protocol for the cell type being prepared.

a. Transfer cells to a 2-ml microcentrifuge tube and add chilled PBS + 0.04% BSA for a total 1 ml volume.

b. Centrifuge cells at 4°C. Use of swinging-bucket rotor is recommended for higher cell recovery. Centrifugation speed and time depends upon the sample type. Use following table for guidance.

Table 3: Sample Type Specific Centrifugation Conditions:

<table>
<thead>
<tr>
<th>Sample Types</th>
<th>Speed (rcf)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Lines</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>PBMCs</td>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>Dissociated Tumor Cells</td>
<td>150</td>
<td>10</td>
</tr>
</tbody>
</table>

c. Remove the supernatant without disturbing the pellet

d. Resuspend cell pellet in 50 µl chilled PBS + 1% BSA.

e. Add 5 µl Human TruStain FcX. Gently pipette mix.

f. Incubate for 10 min at 4°C.

g. Add the prepared Antibody Mix supernatant.

h. Add chilled PBS + 1% BSA to the cells to bring the total volume to 100 µl. Gently pipette mix 10x (pipette set to 90 µl).

i. Incubate for 30 min at 4°C. Recommended incubation temperature for most sample types is 4°C. However, incubation temperature is sample type dependent and should be chosen accordingly.

j. Wash by adding 1.9 ml chilled PBS + 0.04% BSA (for a total volume of 2.0 ml).

k. Centrifuge at 4°C. Larger or fragile cell types may require slower centrifugation speeds. See Table 3 for guidance.

l. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet.

Leaving behind excess supernatant may cause non-specific binding, which may result in increased background reads during sequencing.

m. Add 100 µl Cell Multiplexing Oligo (room temperature) to the cells. Gently pipette mix 10-15x to resuspend and transfer to a new 2-ml microcentrifuge tube. After use, Cell Multiplexing Oligo can be stored at -20°C.

n. Incubate for 5 min at room temperature. When working with multiple samples, start the 5 min incubation after the last sample has been resuspended in Cell Multiplexing Oligo.

o. Wash by adding 1.9 ml chilled PBS + 1% BSA (for a total 2 ml volume) to the sample.

p. Centrifuge at 4°C. Centrifugation speed and time depends upon the sample type. See Table 3 for guidance.

q. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet.

r. Wash by adding 2.0 ml chilled PBS + 1% BSA to the sample.

s. Centrifuge at 4°C. Centrifugation speed and time depends upon the sample type. See Table 3 for guidance.

t. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet.

u. Repeat r-t for a total of two washes.

v. Based on starting concentration and assuming ~50% cell loss, add an appropriate volume chilled PBS + 1% BSA to obtain a final concentration of:

- 700-1,200 cells/µl for targeted cell recovery of 500-10,000 cells or
- 1,300-1,600 cells/µl for targeted cell recovery of 10,000-30,000 cells.

Gently pipette mix 10-15x.

w. Determine cell concentration and viability of the sample using a Countess II Automated Cell Counter or a hemocytometer.

x. Pool labeled cells using the calculation provided in the Appendix.

y. Determine cell concentration and viability of the pooled sample using a Countess II Automated Cell Counter or a hemocytometer.

z. Proceed immediately to Chromium Single Cell RNA Sequencing protocols with Feature Barcode technology for Cell Surface Protein & Cell Multiplexing.

Fluorescence Activated Cell Sorting (FACS) can be used to sort out live cells by staining with a live/dead stain to remove debris. Cell Multiplexing Oligo labeling is compatible with FACS at either the pre or post pooling of labeled cells.
Appendix

Pooling Labeled Samples

Labeled samples can be pooled in desired ratios. Ensure pooling of sufficient cells/volumes to fulfill the experimental needs. Refer to the cell suspension volume calculator table in the relevant User Guide to determine target cell recovery and corresponding minimum cell load. For example, to recover 10,000 cells, a minimum of 16,500 cells should be loaded.

The protocol has been demonstrated with labeled populations making up between 5%-95% of the total. The following calculation can be used to calculate the volume of each labeled sample to be pooled.

Example calculation for a cell multiplexing experiment involving four Cell Multiplexing Oligo labeled samples:

<table>
<thead>
<tr>
<th>Chromium Next GEM Chip G Wells</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted Cell Recovery</td>
<td>1,000</td>
<td>1,000</td>
<td>10,000</td>
<td>10,000</td>
<td>20,000</td>
<td>20,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Number of Cells to be Loaded</td>
<td>1,650</td>
<td>1,650</td>
<td>16,500</td>
<td>16,500</td>
<td>33,000</td>
<td>33,000</td>
<td>49,500</td>
<td>49,500</td>
</tr>
</tbody>
</table>

Total number of cells to be loaded in a full chip (all 8 wells) with 50% pipetting overage = 301,950

Pool the cell volumes from the calculations provided for sample 1, sample 2, sample 3, and sample 4.

Determine cell concentration and viability of the pooled sample using a Countess II Automated Cell Counter or a hemocytometer. Proceed immediately to relevant Chromium Single Cell RNA Sequencing protocols with Feature Barcode technology for Cell Multiplexing (see References).
Illustrative Overview of Cell Multiplexing Oligo Capture

Illustrative overview of Cell Multiplexing Oligo capture by protocol specific Gel Bead primers is illustrated below.

Illustrative Overview of Cell Multiplexing Oligo Capture

Single Cell 3’ v3.1 (Dual Index) - Cell Multiplexing (CG000388 & CG000389)

```
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>TruSeq Read 1</td>
</tr>
<tr>
<td>2.</td>
<td>10x Barcode</td>
</tr>
<tr>
<td>3.</td>
<td>UMI</td>
</tr>
<tr>
<td>4.</td>
<td>PolydTIVN</td>
</tr>
<tr>
<td>5.</td>
<td>Nextera Read 1 (Read 1N)</td>
</tr>
<tr>
<td>6.</td>
<td>10x Barcode</td>
</tr>
<tr>
<td>7.</td>
<td>UMI</td>
</tr>
<tr>
<td>8.</td>
<td>Capture Seq 2</td>
</tr>
<tr>
<td>9.</td>
<td>Gel Bead</td>
</tr>
<tr>
<td>10.</td>
<td>Lipid</td>
</tr>
</tbody>
</table>
```

Single Cell 3’ v3.1 (Dual Index) - Cell Surface Protein & Cell Multiplexing (CG000390)

```
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>TruSeq Read 1</td>
</tr>
<tr>
<td>2.</td>
<td>10x Barcode</td>
</tr>
<tr>
<td>3.</td>
<td>UMI</td>
</tr>
<tr>
<td>4.</td>
<td>PolydTIVN</td>
</tr>
<tr>
<td>5.</td>
<td>Nextera Read 1 (Read 1N)</td>
</tr>
<tr>
<td>6.</td>
<td>10x Barcode</td>
</tr>
<tr>
<td>7.</td>
<td>UMI</td>
</tr>
<tr>
<td>8.</td>
<td>Capture Seq 2</td>
</tr>
<tr>
<td>9.</td>
<td>Gel Bead</td>
</tr>
<tr>
<td>10.</td>
<td>Lipid</td>
</tr>
</tbody>
</table>
```

Demonstrated Protocol – Cell Multiplexing Oligo Labeling for Single Cell RNA Sequencing Protocols • Rev A
To eliminate non-specific binding with comparable efficiency, wash steps should be performed in 2-ml microcentrifuge tubes using indicated buffer volumes. Non-specific binding contributes to increased background reads during sequencing.

Wash Steps Overview

Cells labeled with Cell Multiplexing Oligo Only

1. **Wash 1**
 - 2.0 ml
 - Wash & Resuspension Buffer
 - Pellet (≤10 μl supernatant)

2. **Wash 2**
 - 2.0 ml PBS + 1% BSA
 - Pellet (≤10 μl supernatant)

3. **Wash 3**
 - Labeled cells

Cells labeled with Cell Surface Protein & Cell Multiplexing Oligo

1. **Wash 1**
 - 2.0 ml PBS + 1% BSA
 - Pellet (≤10 μl supernatant)

2. **Wash 2**
 - 2.0 ml PBS + 1% BSA
 - Pellet (≤10 μl supernatant)

3. **Wash 3**
 - Labeled cells

References

The Cell Multiplexing Oligo Labeling protocol outlines labeling cells/nuclei with Cell Multiplexing Oligo for use with:

- Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for Cell Multiplexing User Guide (CG000388)
- Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for CRISPR Screening and Cell Multiplexing User Guide (CG000389)

The Cell Surface Protein and Cell Multiplexing Oligo Labeling protocol outlines labeling cells with antibody-oligonucleotide conjugates and Cell Multiplexing Oligo for use with:

- Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for Cell Surface Protein and Cell Multiplexing User Guide (CG000390)