Nuclei Isolation from Cell Suspensions & Tissues for Single Cell RNA Sequencing

Overview
This protocol outlines how to isolate, wash, and count single nuclei from both single cell suspensions and neural tissue (embryonic) for use with 10x Genomics Single Cell RNA protocol. The protocols described here are expected to be compatible with many cell or tissue types. Additional optimization may be required when working with new sample types.

Additional Guidance

Cells carry potentially hazardous pathogens. Follow material supplier recommendations and local laboratory procedures and regulations for the safe handling, storage and disposal of biological materials.

Preparation - Buffers

Protocol 1: Lysis Buffer for Single Cell Suspension
Prepare fresh, maintain at 4°C

<table>
<thead>
<tr>
<th>Stock</th>
<th>Final</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl (pH 7.4)</td>
<td>1 M</td>
<td>10 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>5 M</td>
<td>10 mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1 M</td>
<td>3 mM</td>
</tr>
<tr>
<td>Nonidet P40 (Pre-dilute 100% stock to 25%)</td>
<td>25%</td>
<td>0.025%</td>
</tr>
</tbody>
</table>

1X PBS

Protocol 2: Lysis Buffer for Embryonic Mouse Brain Tissue
Prepare fresh, maintain at 4°C

<table>
<thead>
<tr>
<th>Stock</th>
<th>Final</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl (pH 7.4)</td>
<td>1 M</td>
<td>10 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>5 M</td>
<td>10 mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1 M</td>
<td>3 mM</td>
</tr>
<tr>
<td>Nonidet P40 (Pre-dilute 100% stock to 10%)</td>
<td>10%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

This list may not include some standard laboratory equipment.
Tips & Best Practices

Factors Influencing Nuclei Recovery
To recover the expected number of nuclei, maximize input cell viability, minimize cell and nuclei handling time, accurately count nuclei, and pipette the correct volume into the Single Cell Master Mix when executing 10x Genomics Single Cell protocols. Consult Technical Note Guidelines for Accurate Target Cell Counts Using 10x Genomics Single Cell Solutions (Document CG000091) for more details.

Input Cell Suspension Quality
- Input cell suspension should contain >90% viable cells.
- The presence of a high fraction of non-viable or dying cells may decrease the recovery.
- The presence of ambient RNA and cellular debris may also impact application performance.

Lysis Condition
- Centrifugation speed/time, the number of wash steps, and methods of debris removal (e.g. filtration, myelin removal, or flow cytometry) may require optimization for a specific sample type.
- Assess lysis efficacy via microscopy after incubation.
- Optimize lysis time when working with new cell/tissue types.
- Avoid over lysis as it could lead to nuclei aggregation and clumping.
- Cell lysis should be carried out on the ice and using chilled reagents.

Washing & Resuspension
- Use sufficient volumes to maintain concentrations <5000 nuclei/µl in Nuclei Wash and Resuspension Buffer when washing and resuspending nuclei. Maintaining nuclei at higher concentrations may cause aggregation and clumping.
- The recommended Nuclei Wash and Resuspension Buffer contains BSA to minimize nuclei losses and aggregation and RNase Inhibitor to inhibit RNases during nuclei isolation and purification.
- The presence of BSA and RNase Inhibitor in the Nuclei Wash and Resuspension Buffer results in a translucent/opaque rather than clear aqueous phase after breaking the GEMs with Recovery Agent. This is normal and will not impact downstream operations.

Pipette Tips
- Use wide-bore pipette tips to avoid cellular shearing and premature lysis. However, generating single nuclei suspensions from pellets or clumps is best achieved using a regular-bore pipette tip to break up aggregates.
- Pipette gently and slowly during resuspension steps to minimize physical damage to nuclei from shearing forces.

Aggregate & Debris Removal
- Filter lysed tissues and nuclei suspensions with an appropriate cell strainer to remove cellular debris and nuclei aggregates.
- The MACS SmartStrainer is recommended as it generally causes minimal changes to the nuclei concentration. However, a volume loss of 100 µl or more can occur.
- For low nuclei suspension volumes, the Flowmi Tip Strainer is recommended to minimize volume losses.
- Nuclei concentrations may decrease by up to 40%, depending on suspension volume and strainer type. Measure the nuclei concentration before and after straining.
- When lysing neuronal tissue, large quantities of myelin debris are produced. Depending on the age of the tissue, reduction of myelin debris may improve the cleanliness of final nuclei preparation.
- Myelin removal can be done by using Myelin Removal Beads II (Human, Mouse, Rat) in combination with chilled reagents.

Nuclei Visualization & Counting
- Visualize nuclei suspensions to determine nuclei concentration and viability, suspension quality, and nuclei sizes prior to use in 10x Genomics Single Cell protocols.
- Use the Countess II FL Automated Cell Counter for determining nuclei concentrations for most applications. Sample types with very small nuclei or high levels of aggregation may require alternative counting methods.
- Perform two different counting and viability assays when characterizing a sample type for the first time.
- Counting & Viability Assays:
 - Trypan Blue Staining: Stain nuclei with trypan blue and count the nuclei concentration and viability using the Countess II FL Automated Cell Counter.
 - Fluorescent Dye Staining: Stain nuclei with fluorescent dyes and measure cell viability using a tissue culture microscope and automated cell counting software.
- Manual counting using a hemocytometer may be used as an additional method.
Nuclei Concentration for Optimal Performance

- The total number of suspended nuclei used as input to 10x Genomics Single Cell protocols is determined by the nuclei recovery target. Consult the applicable 10x Genomics Single Cell protocol to determine these relationships.

- The optimal input nuclei concentration is 700 – 1,200 nuclei/µl.

- If possible, bring the input nuclei suspension to a concentration that is optimal for the dynamic range of counting technique used (manual or automated), allows for 3-4 reproducible counts (where the standard deviation is <25%), and requires pipetting 2.5-15 µl nuclei suspension into the Single Cell Master Mix. Pipetting nuclei suspension volumes <2.5 µl increases variance due to pipetting inaccuracy, while volumes >15 µl increases the risk of introducing unwanted debris or inhibitors.

- Use final single nuclei suspension to estimate the number of input nuclei because nuclei are inevitably lost during washing and resuspension steps.

Flow Cytometry

- If a sample concentration and volume allows, flow cytometry may further improve the purity of nuclei suspensions used as input for the 10x Genomics Single Cell protocols.

- Visually inspect the sorted nuclei under a microscope and re-count the nuclei suspension using a cell counter or hemocytometer prior to pipetting into the Single Cell Master Mix. Nuclei counts that are based on the flow cytometer are inaccurate.

Nuclei Control Sample

- To measure success and assess the reproducibility of these protocols, it is recommended to run a quality control sample in parallel with each experimental sample.

- Recommended quality control samples include cultured cell lines (e.g. human HEK293T cells) that are of high quality (>90% viable) and yield a sufficient number of nuclei (i.e. >1 x 10^6 nuclei).
Protocol Overview: Nuclei Isolation from Single Cell Suspension

Nuclei Isolation

- **Cells**
 - 300 rcf, 5 min*
 - 4°C
 - Remove supernatant

- **Resuspend in Lysis Buffer (200 μl)**

- **Incubate on ice for 1 min**

- **Add Nuclei Wash & Resuspension Buffer (800 μl) & pipette mix**

- **500 rcf, 10 min 4°C**

- **Remove supernatant**

- **Resuspend in Nuclei Wash & Resuspension Buffer (700-1,200 nuclei/μl)**

- **500 rcf, 10 min 4°C**

- **Resuspend in Nuclei Wash & Resuspension Buffer (1 ml)**

- **Repeat 1x**

Centrifuge neuronal cells at 400 rcf for 5 min.

Optimization of lysis time may be required. Lysis time should be empirically determined when working with new cell/tissue types.
Protocol 1: Nuclei Isolation from Single Cell Suspensions

Cell Preparation & Sourcing:

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Species</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurkat, Clone E6-1</td>
<td>Human</td>
<td>ATCC</td>
</tr>
<tr>
<td>293T/17 [HEK 293T/17]</td>
<td>Human</td>
<td>ATCC</td>
</tr>
<tr>
<td>NIH/3T3</td>
<td>Mouse</td>
<td>ATCC</td>
</tr>
<tr>
<td>Peripheral Blood Cells</td>
<td>Human</td>
<td>All Cells</td>
</tr>
<tr>
<td>E18 Mouse Combined Cortex, Hippocampus and ventricular Zone*</td>
<td>Human</td>
<td>Brain Bits</td>
</tr>
<tr>
<td>Dissociated Tumor Cells- Ovarian and breast cancer cells</td>
<td>Human</td>
<td>Discovery Life Sciences</td>
</tr>
</tbody>
</table>

*N Fresh embryonic brain tissue was shipped on cold packs and used immediately upon receipt

Input single cell suspensions for this protocol were prepared, washed and counted as described in following Demonstrated Protocols:

- Single Cell Suspensions from Cultured Cell Lines for Single Cell RNA Sequencing (Document CG00054)
- Dissociation of Mouse Embryonic Neural Tissue for Single Cell RNA Sequencing (Document CG00055)
- Fresh Frozen Human-Mouse Cell Line Mixtures for Single Cell RNA Sequencing (Document CG00014)
- Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single Cell RNA Sequencing (Document CG00039)
- Thawing Dissociated Tumor Cells for Single Cell RNA Sequencing (Document CG00233)

Nuclei Isolation

The optimal input concentration for this protocol is 2.5×10^6 cells. This protocol was demonstrated on $2-2.5 \times 10^6$ cells.

- Centrifuge cells at 300 rcf for 5 min at 4°C. Centrifuge neuronal cells at 400 rcf for 5 min at 4°C.
- Remove the supernatant without disturbing the cell pellet.
- Using a wide-bore pipette tip, add 200 µl Lysis Buffer and gently pipette mix 5x or until cells are completely suspended without introducing bubbles.
- Lyse the cells on ice for 1 min.
 1 min is optimal lysis time for most cell types tested. Optimization of lysis time may be required. Lysis time should be empirically determined when working with new cell/tissue types.
- Using a regular-bore pipette tip, add 800 µl Nuclei Wash & Resuspension Buffer. Gently pipette mix 5x.
- Centrifuge the nuclei at 500 rcf for 10 min at 4°C.
- Remove the supernatant without disrupting the pellet.
- Using a regular-bore pipette tip, add 1 ml Nuclei Wash & Resuspension Buffer and gently pipette mix 5x.
- Centrifuge the nuclei at 500 rcf for 10 min at 4°C.
- Remove the supernatant without disrupting the pellet.
- Repeat h-j.
- Using a regular-bore pipette tip, add 1 ml or an appropriate volume Nuclei Wash & Resuspension Buffer to achieve a target concentration of 700-1,200 nuclei/µl. Gently pipette mix 10x or until nuclei are completely suspended.
- If cell debris and large clumps are observed, use a cell strainer for debris removal. For low volume, debris removal by passing through a 40 µm Flowmi Tip Strainer is recommended to minimize loss of sample volume.
- Determine the nuclei concentration using a Countess II FL Automated Cell Counter or hemocytometer.
- Proceed immediately with the 10x Genomics Single Cell protocol and minimize the time between nuclei preparation and chip loading.
Protocol Overview: Nuclei Isolation from Embryonic Mouse Brain Tissue

Tissue Lysis & Nuclei Washing

- Transfer and save media
- Add 400 µl Lysis Buffer
- Incubate on ice (10 min)
- Add saved media and triturate tissue
- Resuspend in 1 ml Nuclei Wash & Resuspension Buffer
- Remove supernatant

Revisit lysis with increased lysis time (See Protocol for details)

Add 400 µl Lysis Buffer

500 rcf 10 min, 4°C

Remove supernatant

Yes

Viable Cells?

No

Strain cells

Add 180 µl Nuclei Wash & Resuspension Buffer

500 rcf 10 min, 4°C

Remove supernatant

Repeat 1x

Proceed to Myelin Removal

Myelin Removal

Add 180 µl Nuclei Wash & Resuspension Buffer

Add 1 ml Nuclei Wash & Resuspension Buffer

500 rcf 10 min, 4°C

Remove supernatant

Add 1 ml Nuclei Wash & Resuspension Buffer

500 rcf 10 min, 4°C

Remove supernatant

Apply to prepared LS column

Rinse LS column 2x with Nuclei Wash & Resuspension Buffer

Etution: Collect eluent

Proceed to 10x Genomics Single Cell protocols

Add 20 µl Myelin Removal Beads

Incubate 15 min (4°C)

During incubation prepare LS column by adding LS Column Calibration Buffer

Resuspend in Nuclei Wash & Resuspension Buffer

(700-1,200 nuclei/µl)

Count

500 rcf 10 min, 4°C

Remove supernatant
Demonstrated Protocol – Nuclei Isolation from Cell Suspensions & Tissues • Rev E

Protocol 2: Nuclei Isolation from Embryonic Mouse Brain Tissue

Cell Preparation & Sourcing: This protocol was demonstrated using fresh neuronal tissue (Combine Cortex, Hippocampus and Ventricular Zone) from E18 Mouse. Fresh embryonic brain tissue was shipped on cold packs and used immediately upon receipt.

2.1 Tissue Lysis & Washing of Nuclei

a. Using a 1000 µl wide-bore pipette tip, gently transfer the tissue along with the Hibernate E/B27/GlutaMAX (HEB) medium to a new 15-ml centrifuge tube.

b. Transfer the HEB medium from the tissue to a new 15-ml tube, leaving only enough medium to cover the tissue. Keep the HEB medium on ice for step d.

c. Add 400 µl chilled Lysis Buffer to the tissue and lyse the tissue on ice for 10 min. Gently swirl to mix, repeat 2x during incubation.

d. Add the HEB medium saved from step b back to the lysed tissue.

e. Triturate the tissue: Aspirate the tissue with the medium into a fire polished silanized Pasteur pipette and immediately dispense the contents back into the tube. Repeat 5-7x.

f. Centrifuge the nuclei at 500 rcf for 10 min at 4°C.

g. Remove the supernatant without disrupting the nuclei pellet.

h. Using a regular-bore pipette tip, add 1 ml Nuclei Wash and Resuspension Buffer and gently pipette mix 10x.

i. Assess lysis efficiency and viability by staining the cells with trypan blue and by using the Countess II FL Automated Cell Counter/microscopy.

If a high fraction of viable cells is still present:

- Centrifuge at 500 rcf for 10 min at 4°C.
- Add 400 µl chilled Lysis Buffer and incrementally increase the lysis time, monitoring efficacy via microscopy.
- After optimal lysis, repeat steps f - h.

j. Use a 40 µm Flowmi Cell Strainer to remove cell debris and large clumps.

k. Centrifuge at 500 rcf for 10 min at 4°C.

l. Remove the supernatant without disrupting the pellet.

m. Using a regular-bore pipette tip, add 1 ml Nuclei Wash and Resuspension Buffer and gently pipette mix 10x.

n. Centrifuge at 500 rcf for 10 min at 4°C.

o. Remove the supernatant without disrupting the pellet.

p. Repeat steps m - o.

q. Using a regular-bore pipette tip, add 180 µl Nuclei Wash and Resuspension Buffer and gently pipette mix 10x.

r. Proceed directly to Myelin Removal.

2.2 Myelin Removal

This protocol was demonstrated using sample sizes compatible with Myelin Removal Beads II and a single LS Column. The volumes of buffer, Myelin Removal Beads II, and number of LS columns depend on the age and mass of the tissue and should be adjusted according to the manufacturer’s instructions.

a. Add 20 µl Myelin Removal Beads II to the resuspended nuclei from step 2.1q. Mix thoroughly with a wide-bore pipette tip. DO NOT vortex.

b. Incubate for 15 min at 4°C.

c. During incubation, prepare an LS column with 3 ml LS Column Calibration Buffer.

d. After incubation is complete, dilute the nuclei suspension (containing Myelin Removal Beads II) with 5 ml Nuclei Wash and Resuspension Buffer (using a 10 ml serological pipette) and gently pipette mix 5x.

e. Centrifuge the nuclei at 500 rcf for 10 min at 4°C.

f. Remove the supernatant without disrupting the nuclei pellet.

g. Resuspend the pelleted nuclei in 1 ml Nuclei Wash and Resuspension Buffer.

h. Apply the nuclei suspension to the LS column.

i. Wash the column twice with 1 ml Nuclei Wash and Resuspension Buffer.

j. Collect the effluent into one 5-ml tube.

k. Centrifuge the nuclei at 500 rcf for 5 min at 4°C.

l. Remove the supernatant without disrupting the nuclei pellet.

m. Using a regular-bore pipette tip, add 500 µl Nuclei Wash and Resuspension Buffer or an appropriate volume to the nuclei pellet to achieve the target nuclei concentration of 700-1,200 nuclei/µl. Gently pipette mix 10x or until nuclei are completely suspended.

n. Use a cell strainer to remove cell debris and large clumps. For low volume, a 40 µm FlowmiTip Strainer is recommended to minimize sample loss.

o. Determine the nuclei concentration using a Countess II FL Automated Cell Counter or hemocytometer.

p. Proceed immediately with the 10x Genomics Single Cell Protocol and minimize the time between nuclei preparation and chip loading.
Results

Representative Staining Images

Pre Lysis

![Pre Lysis Image]

Post Lysis

![Post Lysis Image]

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fraction of non-viable cells in input material prior to starting nuclei isolation</td>
<td>Optimize cell thawing to enhance sample quality</td>
</tr>
<tr>
<td>High fraction of viable cells post cell lysis</td>
<td>Incrementally increase the lysis time and monitor lysis efficacy microscopically</td>
</tr>
<tr>
<td>Low nuclei recovery</td>
<td>Use a swing bucket rotor for centrifugation steps</td>
</tr>
<tr>
<td>Nuclei aggregation & clumping</td>
<td>Maintain concentrations <5,000 nuclei/µl when washing and resuspending nuclei</td>
</tr>
</tbody>
</table>

Revision Summary

<table>
<thead>
<tr>
<th>Document Number</th>
<th>CG000124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Nuclei isolation from Single Cell Suspensions & Tissues for Single Cell RNA Sequencing</td>
</tr>
<tr>
<td>Revision</td>
<td>Rev D to Rev E</td>
</tr>
<tr>
<td>Revision Date</td>
<td>March 2021</td>
</tr>
<tr>
<td>Specific Changes</td>
<td>Updated to a new presentation format, which includes Protocol Overview. Updated the volumes of Lysis Buffer and Nuclei Wash & Resuspension Buffer. Updated the incubation time.</td>
</tr>
<tr>
<td>General Changes</td>
<td>Updated for general minor consistency of language and terms throughout.</td>
</tr>
</tbody>
</table>

© 2021 10x Genomics, Inc. (10x Genomics). All rights reserved. Duplication and/or reproduction of all or any portion of this document without the express written consent of 10x Genomics, is strictly forbidden. Nothing contained herein shall constitute any warranty, express or implied, as to the performance of any products described herein. Any and all warranties applicable to any products are set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics provides no warranty and hereby disclaims any and all warranties as to the use of any third-party products or protocols described herein. The use of products described herein is subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics may refer to the products or services offered by other companies by their brand name or company name solely for clarity, and does not claim any rights in those third-party marks or names. 10x Genomics products may be covered by one or more of the patents as indicated at: www.10xgenomics.com/patents. The use of 10x Genomics products in practicing the methods set forth herein has not been validated by 10x Genomics, and such non-validated use is NOT COVERED BY 10X GENOMICS STANDARD WARRANTY, AND 10X GENOMICS HEREBY DISCLAIMS ANY AND ALL WARRANTIES FOR SUCH USE. Nothing in this document should be construed as altering, waiving or amending in any manner 10x Genomics terms and conditions of sale for the Chromium Controller or the Chromium Single Cell Controller, consumables or software, including without limitation such terms and conditions relating to certain use restrictions, limited license, warranty and limitation of liability, and nothing in this document shall be deemed to be Documentation, as that term is set forth in such terms and conditions of sale. Nothing in this document shall be construed as any representation by 10x Genomics that it currently or will at any time in the future offer or in any way support any application set forth herein.