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Abstract. In modern industrial automation, DCS (Distributed control 

System) and PLC (Programmable logic Controller) are widely used for 

controlling processes and ensuring the safe operation of complex systems. 

The Distributed Processing Unit (DPU), a very important component in 

both DCS and PLC architectures, is responsible for real-time data 

acquisition and control. However, due to its continuous operation in 

challenging environments, DPUs are susceptible to failures, leading to 

unplanned downtimes and substantial financial losses. This paper 

proposes a predictive maintenance framework using Artificial Neural 

Networks (ANN) to predict DPU failures by monitoring key operational 

parameters. The model got trained & validated using the "Application 

failure prediction " dataset from Kaggle, which includes sensor readings 

and other self-diagnostic parameters and failure logs that align well with 

the operational characteristics of DPUs. The ANN model demonstrated an 

accuracy of 92.8% on the validation dataset, providing a reliable solution 

for early failure prediction. By implementing this ANN-based predictive 

maintenance framework, industries can proactively predict and address 

DPU failures, reducing unplanned downtime and minimizing maintenance 

costs, thereby enhancing overall operational efficiency. 

Keywords: DPU, DCS, PLC, Artificial Neural Networks, Predictive 

Maintenance, Failure Prediction, Kaggle, ANN     

1     Introduction 

1.1   Predictive maintenance 

An AI-enabled maintenance strategy that utilizes real-time data, historical patterns, and 

machine learning models to forecast equipment failures before they occur. Before AI 

came into the picture, predictive maintenance was based on: Statistical trend analysis, 

Threshold-based alarms, Rule-based expert systems, Time-series pattern recognition and 

Feed-forward control logic. These methods relied on engineering rules, manual tuning, 

and fixed algorithms to predict or anticipate equipment issues. For instance, vibration 
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analysis and thermography have long been used in rotating equipment health monitoring, 

without involving AI.   

AI-Driven Predictive Maintenance (Modern Approach): Today, AI/ML techniques 

such as Artificial Neural Networks (ANN), Random Forests, Support Vector Machines 

(SVM), Long short term memory (LSTM) for time-series allow systems to learn from 

data and improve predictions dynamically, which adds accuracy, adaptability, and 

scalability over traditional methods. 

While the term "predictive maintenance" may seem contemporary, its conceptual roots 

run deep into history. The philosophy emerged during World War II, when wartime 

aviation and military operations demanded unprecedented reliability from machinery. 

Engineers realized that by monitoring signs of wear and tear, they could proactively 

service critical components before catastrophic failures occurred. This laid the 

foundation for a proactive rather than reactive approach to system maintenance. 

Interestingly, predictive intelligence in control systems predates the AI boom. In the 

context of thermal power plants, for instance, the three-element drum level control 

system—used to regulate water levels in boiler drums—employs a feed-forward control 

mechanism. This component anticipates load changes and adjusts feed-water flow pre-

emptively, effectively exhibiting predictive behaviour. In essence, feed-forward control 

can be viewed as an early form of artificial intelligence, implemented through analogue 

control logic decades before the rise of neural networks. 

With the evolution of control strategies and the introduction of Distributed Control 

Systems (DCS), the scope and capability of predictive logic expanded. What was once 

mechanical intuition encoded into control loops has now evolved into sophisticated 

ANN-based models, which can process massive amounts of real-time data, identify 

hidden patterns, and forecast failures with high precision. These models act as digital 

sentinels, tirelessly watching over assets, and ensuring timely human or automated 

responses. 

1.2 In industrial automation, Distributed Processing Units (DPUs) are critical 

components in DCS (Distributed control System) and PLC (Programmable logic 

Controller), responsible for real-time data acquisition and control loop execution (see 

Fig. 1). However, due to continuous operation in harsh environments, DPUs are prone 

to failure, which can lead to unplanned downtimes and substantial financial losses. 

Failure of active DPU leads to tripping of Unit/ halt of running processes. In a 660 MW 

power plant, for example, unplanned downtime can cost as much as INR 2.112 million 

(21.12 lakhs) per hour, considering the electricity generation rate of 660,000 kWh per 

hour at INR 3.20 per unit besides loss of DC charges and light up oil cost to bring back 

the unit on bar. the Total cost per unit tripping comes out INR 25 to 30 million (2.5 to 3 

Cr). Additional risks include not only financial losses but also potential safety hazards 

and regulatory compliance issues.
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Fig. 1.  DPU, MAX DNA DCS 

Traditional maintenance methods, such as time-based preventive maintenance, often 

result in over-maintenance, where resources are wasted on fully functional systems, or 

corrective maintenance, which addresses failures only after they occur, causing costly 

unplanned downtimes. Current DPU monitoring tools only issue alarms once a threshold 

is crossed, providing no foresight into impending failures. 

This paper proposes a predictive maintenance framework [1] based on Artificial Neural 

Networks (ANN) to overcome the limits of conventional methods. By analysing real-

time operational data from DPUs, the ANN model can predict failures in advance, 

allowing for timely interventions and reducing both maintenance costs and downtime. 

ANN’s ability to model complex non-linear relationships between input variables makes 

it particularly well-suited for predicting DPU failures, ensuring continuous operation in 

industrial systems. 

2. Problem Definition and Scope  

The failure of Distributed Processing Units (DPUs) in DCS (Distributed control System) 

and PLC (Programmable logic Controller) is a significant issue in industrial automation. 

DPUs are susceptible to various failure mechanisms, such as overheating, memory 

overload, and network errors. Overheating, particularly when operational temperatures 

exceed 85°C, degrades critical components, leading to performance issues or system 

crashes. Similarly, memory overload occurs when DPUs exceed their processing 

capacity, causing thread execution delays or complete system failures. Network errors, 

often caused by network-storms, introduce further instability, leading to packet loss and 

miscommunication between DPUs. 

When a DPU fails, many systems rely on hot standby units to take over. However, this 

changeover process introduces inherent delays, which can destabilize the system further. 

Even successful transitions often result in temporary data loss or process interruptions, 

increasing the risk of a broader system shutdown. 
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Traditional maintenance methods, such as preventive maintenance, often result in over-

maintenance, where DPUs are serviced unnecessarily, wasting resources and increasing 

downtime. In contrast, corrective maintenance, which only addresses failures after they 

occur, leads to unplanned downtimes that disrupt operations and increase financial 

losses.  

This paper proposes an Artificial Neural Network (ANN)-based predictive maintenance 

framework that monitors key operational parameters, such as DPU temperature, memory 

usage, and network load, to predict failures before they occur. The model focuses on 

preventing thread execution errors, overheating, memory overload, and network-related 

failures, allowing for timely interventions and minimizing operational disruption. 

2.1 STEPS OF PREDICTIVE ANALYSIS OF DPU FAILURE 

Controller data is fetched through NTPC’s PI server and exported into excel in an 

automated manner. The second step involves processing of excel data and applying AI-

ANN algorithm. In the third step an audio alarm will appear in NTPC intranet PC in case 

of failure of any of the monitored DPUs. 

 

Fig. 2.  Steps involved in predictive analysis of DPU failure. 
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2.2 DPU HEALTH MONITORING EXISTING TOOLS IN DCS 

Limitation of existing tools / Health log. Several times DPU went into fatal error mode 

without indicating any specific reason, sometimes alarm comes after failure of DPU. In 

such cases a changeover to hot standby DPU will occur and even sometimes not. It has 

been observed that even after successful changeover, unit does not survive and trips due 

to inherent delays in changeover. 

3. Why AI/ML (ANN) model for Prediction? 

Developing an AI/ML-based model for DPU (Distributed Processing Unit) failure 

prediction offers several advantages over traditional methods. The nature of modern 

industrial systems, such as power plants, presents unique challenges—Big datasets, non-

linear relationships and the need for real-time predictions—making AI/ML-based 

approaches particularly suitable. Below, we enumerate the reasons why AI/ML models, 

particularly those using algorithms like Artificial Neural Networks (ANN) or other deep 

learning methods [2], are more suitable than traditional statistical or rule-based models 

for DPU failure prediction. 

3.1 Complexity of the Data 

DPU Failure Scenarios. DPUs operate in environments that generate large amounts of 

sensor/diagnostic data, such as temperature, memory usage, DPU load, etc. These 

parameters interact in complex, non-linear ways, making it hard for traditional models 

to capture the associations between variables effectively. 

Non-Linear Relationships. AI/ML models, especially neural networks, can capture 

non-linear relationships between inputs (e.g., DPU, memory, load) and outputs (e.g., 

failure or no failure). Traditional statistical methods like linear regression or rule-based 
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models assume linear relationships or predefined rules, which may not be adequate for 

real-world complexities. 

 3.2        Scalability and Adaptability 

Scalability. Machine learning models can handle large datasets with thousands or even 

millions of records efficiently. This is particularly important in systems where DPUs 

generate massive amounts of data over time, and traditional models may struggle to 

process or make sense of such high-dimensional data. 

Adaptive Learning. AI/ML models keep on learning from new data, improving their 

accuracy over time. This adaptability allows the models to adapt as system conditions 

change (e.g., aging hardware, changing workloads) without requiring constant manual 

updates or reconfigurations. 

3.3         Real-Time Monitoring and Prediction 

DPU failure can be influenced by rapidly changing conditions like temperature surges, 

sudden increases in network traffic. AI/ML models, especially deep learning models, 

could be trained to react to dynamic conditions in real-time, identifying potential failures 

early based on subtle trends and patterns in the data. 

 3.4         Multi-Variable Analysis and Interaction 

High-Dimensional Data. In DPU systems, multiple sensor readings (e.g., temperature, 

memory usage, CPU usage) and other operational parameters are collected 

simultaneously. AI/ML models can analyse this high-dimensional data and understand 

interactions between these features. Traditional approaches often handle each variable 

separately, losing the context of how different factors interact to cause failures. 

Feature Importance. AI/ML models can help identify the most important variables 

contributing to DPU failures. Techniques like Shapley Additive explanations or SHAP 

[2]in short, which is a feature importance analysis can provide insights into which factors 

are most influential, helping with both prediction and root cause analysis. 

3.5         Predictive vs. Diagnostic Approaches 

Proactive Failure Prediction. Traditional diagnostic models focus on identifying 

failures after they occur or based on predefined thresholds. AI/ML models, however, can 

predict failures proactively by recognizing patterns and anomalies in the data before they 

result in failure. 

Threshold-Less Operation. Many traditional methods rely on preset thresholds to 

indicate failure conditions (e.g., DPU temperature>X degrees). However, failures often 

occur due to a combination of factors. AI/ML models can learn patterns that precede 

failure without relying on hardcoded thresholds. 
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3.6    Performance and Accuracy 

Higher Accuracy. AI/ML models, particularly models for deep learning, often 

outperform traditional models in terms of prediction accuracy because they can observe 

complex patterns in the data that simpler models miss. 

Learning from Historical Data. AI/ML models could be taught on large historical 

datasets to learn from past failures & successes, improving their ability to generalize to 

new situations. The above advantages coupled with availability of smart parameters in 

DCS itself pushed towards using ANNs for DPU failure prediction. 

4   Variables available in DCS which can be considered as input 

Variables                                

On the analysis of various parameters already available in DCS, parameters pertaining 

to DPU temperature, memory and application/process and communication network 

related parameters found suitable for AI/ML(ANN) model. Further shortlisting done 

based on similarity to the variables used for training the algorithm. 

Some of the parameters that were considered for the model are:  

Physical Memory. This represents the total physical memory (RAM) installed in the 

DPU. It indicates the amount of memory available for running processes and executing 

control functions within the system. Low available memory may affect the DPU's 

performance and can cause delays or errors in data processing. 

Thread Read. This refers to the operations where a thread is reading data from memory, 

sensors, or other system inputs. Monitoring the performance of thread read operations is 

essential to ensure that data is being processed in real time without unnecessary delays. 

Thread Error. A network storm can lead to processing delays, packet loss, or 

miscommunication between nodes in the control system. This can result in Thread Errors 

due to timeouts, lost data packets, or errors in data transmission between DPUs, affecting 

the threads responsible for handling network communications.  

Thread Execution. Thread Execution primarily measures the efficiency of how threads 

are performing their tasks; frequent execution failures or slowdowns might be caused by 

network errors that delay communication between DPUs. Threads responsible for 

reading or writing data over the network could be impacted by these issues. 

Thread Idle. Thread Idle refers to the percentage of time that a thread is not doing any 

work and is in an idle state. High idle time might indicate that resources are being 

underutilized, whereas low idle time could suggest that the system is handling a large 

load or is near capacity.   

5    Methodology for developing the model 

 5.1   Selection of Input Parameters 

 To effectively predict DPU failures, we considered key input parameters based on their 

relevance to DPU performance and reliability. Out of these 5 (mentioned above), 4 have 

been chosen as the final input variables which fit over trained model and are similar to 
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the variables used for training the algorithm. These variables have been identified as 

primary factors that influence DPU health. The table shows similarity. 

Each of these variables plays a critical character in determining the health of the DPU. 

By monitoring them, we can effectively predict when a failure is likely to occur. 

'Thread Idle' was not included as an input parameter due to reasons considered below. 

Lack of Direct Correlation with DPU Failures. 

a) Thread Idle represents the percentage of time a thread is not actively 

executing tasks. 

b) A high idle percentage does not necessarily indicate an impending failure—it 

may just mean the system is not heavily loaded. 

c) Unlike parameters such as Thread Execution or Thread Errors, idle time does 

not directly influence failure events. 

Low Predictive Value in Failure Detection. 

a) The ANN model requires input variables that show clear trends leading to 

failures. 

b) Thread Errors, Memory Usage, and Network Load have direct effects on DPU 

failures, whereas 'Thread Idle' may not consistently contribute to failure 

patterns. 

Memory GB                          DPU Memory 

Network_log10_mbps 

error) 

(network                          Thread execution. 

Local_IO_log10_mbps                          Thread read. 

 
NFS_IO_log_mbps 

storm) 

(network                          Thread error 

Table-2. Output 

Failed Target                          Same as ours-DPU 



 

a) Thread Execution (which measures active processing time) 
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Fig. 4.  Screenshot of parameters being fetched through PI 

Possibility of False Alarms. 

a) If 'Thread Idle' were included, the model might incorrectly classify normal 

low-load conditions as potential failures. 

b) This could increase false positive rates, leading to unnecessary maintenance 

actions. 

Redundancy with Other Selected Parameters: The impact of idle time is 

indirectly captured by parameters such as. 

b) Memory Utilization (high memory usage indicates intensive processing, 

reducing idle time) 

Since these parameters already provide failure-related insights, including 'Thread Idle' 

would not add significant new information. The input data can be fetched in safe and 

secure manner through PI server from anywhere through LAN. 

5.2   Dataset Overview 

The dataset utilized in this study is sourced from Kaggle (open access) [3], and it has 

been curated as part of two prominent research projects funded by the National Science 

Foundation (NSF), USA: 
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1. Computer System Failure Data Repository to Enable Data-Driven 

Dependability Research (Project No. CNS-1513197 – Completed) 

2. Open Computer System Usage Repository and Analytics Engine (Project No. 

CNS-2016704 – Ongoing) 

These projects are specifically designed to promote research in fault tolerance, failure 

prediction, and reliability modelling in large-scale computing systems—domains that 

closely align with the operational challenges faced in DPU-based industrial control 

systems. The Kaggle dataset comprises approximately 20,000 records of system 

operational parameters, including: 

a) CPU load and memory usage 

b) I/O throughput (read/write) 

c) Network packet transfer rates 

d) Process-level execution logs 

In addition, the dataset includes over 1,600 labelled failure events, which makes it 

suitable for supervised learning models such as Artificial Neural Networks (ANN). 

Relevance to MAX DNA DCS Environment. Although the dataset originates from 

general-purpose computing systems, its structure and variables exhibit strong parallels 

with the operational data available in MAX DNA Distributed Control Systems (DCS) 

used at NTPC: 

a) Metrics such as CPU load, memory usage, and I/O network performance 

directly map to DPU diagnostics. 

b) System logs detailing task execution and thread-level delays are analogous to 

thread errors, execution times, and network storm indicators used in DPU 

health monitoring. 

Given that DPUs essentially operate on embedded or industrial-grade computing 

architecture, the failure patterns and bottlenecks recorded in the Kaggle dataset serve as 

a valid approximation for modelling predictive failure behaviour in NTPC's DCS setup. 

Moreover, the dataset allows for robust pre-training of the ANN model before fine-

tuning it with plant-specific live data acquired through NTPC's PI server. This approach 

significantly enhances model stability and predictive generalizability, especially when 

actual failure samples from plant DPUs are sparse or imbalanced. 

5.3   Dataset Characteristics.  

The dataset used for training the ANN model is sourced from Kaggle (Repository), 

National Science Foundation, U.S.A (NSF).This dataset includes structured failure 

records and system performance metrics, making it a suitable choice for pre-training the 

model. The dataset has already undergone some level of pre-processing. 
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Failure Labels: Each record is labelled as either "Normal" or "Failure," indicating the 

application's operational state at the time of data collection. 

Parameters include system memory usage, network error, network storm, IO load, which 

influence system reliability. Corresponding equivalent parameters available in DCS 

were mapped (Table-1). 

5.4   Pre-processing 

Additional steps were taken to ensure compatibility with the ANN model: 

Handling Missing Values. A check for missing sensor readings was performed. If any 

were found, mean imputation was applied to maintain data consistency. 

Feature Scaling. Standard Scaler was applied to normalize input features, ensuring 

consistent input ranges, which improves the convergence of the ANN model. 

These steps ensure that the Kaggle dataset is formatted correctly for training while 

acknowledging that it is not raw data collected  

Outlier Detection and Removal. Outliers were identified using the Interquartile Range 

(IQR) method and removed to avoid skewed predictions. 

Feature Scaling. All features were normalized using Standard Scaler [4] to ensure 

consistent input ranges, improving the convergence of the ANN model. 

5.5   Dataset Splitting 

 Divide the dataset into two sets: 

Training Set.  80% of the data used to train the model. 

Validation Set. 20% of the data used to evaluate the model's performance after training. 

 5.6   Model Design 

Choose a feedforward ANN architecture with two hidden layers. The first hidden layer 

could have a larger number of neurons, while the second hidden layer can have fewer 

neurons, depending on the complexity of the data. 

5.7   Activation Functions selection Use the ReLU [5] (Rectified Linear Unit) 

activation function for the neurons in the hidden layers to allow for better learning of 

complex patterns.for the output layer, use the Sigmoid activation function [6] which is 

apt for binary task (e.g., predicting failure/no failure) 

Justification for Activation Function Selection. 

ReLU (Rectified Linear Unit) for Hidden Layers 

In high dimensional data there is non-linear relationship in between input variables. To 

allow the model to learn complex patterns in high dimensional data ReLU has been used. 

A neural network with only linear activation function is equivalent to simple linear 

regression model and cannot learn complex relationship between input variables 

irrespective of number of layers incorporated in architecture of ANN. 
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Non-linearity enables an ANN model to approximate complex patterns, making it useful 

for Tasks like image recognition, speech processing or failure prediction. 

The Rectified Linear Unit (ReLU) activation function is defined as: 

f(x) = max (0, x) 

This means: If x > 0, ReLU returns x (linear region) 

If x ≤ 0, ReLU outputs 0 (introducing non-linearity) 

This feature of ReLU activation function allows the network to learn complex 

representation. 

In Industrial automation, DPU failures are caused by multiple interacting factors 

(Network overload, high memory usage etc). These interactive inputs cannot be modelled 

using simple linear function. ReLU enables ANN to learn these dependencies. 

Vanishing Gradient Problem:  If the activation function presses values into very small 

ranges (like sigmoid or tan h), the gradients of earlier layers become very small (close 

to zero). As the network gets deeper, these gradients shrink exponentially, making 

weight updates negligible, causing slow or stalled learning. This is called the vanishing 

gradient problem, and it prevents deep networks from learning effectively.  

"Glorot et al. (2011) demonstrated that using ReLU significantly mitigates the vanishing 

gradient problem, allowing deep networks to train efficiently compared to sigmoid and 

tanh activations." 

Performance gains. "Empirical studies have shown that ReLU enables deep networks 

to converge up to 6 times faster than those using sigmoid activation (He et al., 2015)." 

Sigmoid for Output Layer. Since the problem is binary classification (failure vs. no 

failure), the sigmoid function is a natural choice as it outputs values between 0 and 1, 

representing probabilities. Sigmoid enables the use of binary cross-entropy as the loss 

function, which is optimal for classification problems. 

5.8   Compiling the Model 

Define the loss function- binary cross entropy [7] for binary classification, optimizer –

Adam [8] and evaluation metrics (e.g., accuracy, precision, recall). 

 5.9   Training the Model 

ANN model is trained using the training dataset. Its performance monitored on the 

training set and techniques like cross-validation [3] used to ensure robust performance. 

Its advantage is it reduces overfitting risk and gives a better estimate of model 

performance 

5.10   Model Evaluation 

Evaluation of the model on the test dataset done to assess its performance using relevant 

metrics (e.g., accuracy, F1 score, ROC-AUC). Analysis of confusion matrices done to 

understand the quality of predictions.  
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5.11   Model Tuning 

Model was further fine-tuned by adjusting hyper-parameters [3] (e.g., learning rate, 

batch size, number of epochs) and experimenting with different configurations for the 

hidden layers. 

5.12   Deployment 

Once the model achieves satisfactory performance, it is deployed for real-time 

monitoring and prediction of DPU failures. 

5.13 Audio Alarm System for Real-Time Failure Alerts 

As part of the deployment strategy for the ANN-based predictive maintenance model, 

an audio alarm system is implemented to immediately notify operators upon prediction 

of an imminent DPU failure. This component serves as a proactive alert mechanism, 

designed to ensure timely human intervention before the failure propagates or causes 

system-wide disruption. 

Mechanism of Operation.  

Trigger Condition. The audio alarm is triggered when the ANN model predicts a 

failure probability exceeding a predefined threshold (e.g., ≥ 0.7). This ensures that only 

high-confidence predictions lead to alerts, reducing false positives. 

Integration with Intranet Systems. A lightweight monitoring script continuously 

evaluates the model's output in real time. When a failure is predicted, the script 

communicates with NTPC’s intranet system to 

a) Log the event with timestamp and DPU ID 

b) Send an audio-visual alert to the designated operator terminals. 

Alarm Characteristics. 

a) Sound File: A standard .wav file with a distinctive tone (e.g., escalating beep 

or synthesized alarm) is played. 

b) Duration: The audio alert continues for 15 seconds or until acknowledged 

manually. 

c) Repeat: If the fault is not acknowledged or the predicted condition persists, the 

alarm re-triggers every 2 minutes. 

User Interface. A pop-up window accompanies the alarm, displaying: 

a) DPU Identifier (e.g., Unit-DPU-03) 

b) Type of fault predicted (e.g., Memory Overload) 

c) Failure probability (e.g., 0.86) 

d) Timestamp 



a) Enhances operator awareness and response time. 

n. 
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Benefits. 

b) Provides a second line of defence after automated predictio

c) Enables rapid diagnostics and preventive maintenance actions. 

d) Reduces the risk of escalation due to unattended anomalies. 

6   Coding Part 

6.1   Importing libraries 

Pandas: Used to load and manipulate CSV data. 

Train_test_split. A function from sklearn [4] to split the dataset into training and 

validation sets. 

Standard Scaler.  A pre-processing tool that standardizes features by removing the 

mean and scaling to unit variance. 

Sequential. A linear stack of layers from Keras[8] for building neural network models. 

Dense: Fully connected neural network layer used to construct the architecture of the 

ANN. 

6.2   Loading the dataset 

pd.read_csv: Reads the train_data.csv file into a Data Frame. This is where we load 

the training data that contains features and the target variable (failed). 

6.3   Preparing Features (X) and Target (Y) 

X. The independent variables or features used for training the model. We drop job id (an 

identifier not relevant for prediction) and the failed column (since it's our target). 

Y. The target variable we want to predict, which is the failed column (either 0 or 1). 

 6.4   Splitting Data into Training and Validation Sets 

Train_test_split. This function splits the dataset into training (80%) and validation 

(20%) sets. The random_state ensures reproducibility, meaning you'll get the same split 

every time. 

X_train, Y_train. The training data (features and target) used to train the model. 

X val, Y_val: The validation data used to check how well the model performs on unseen 

data. 

6.5   Feature Scaling 

Standard Scaler. This normalizes the features for having a mean of 0 & a SD of 

1(Standard Deviation). Neural networks perform better when the input data is scaled this 

way. 

Fit transform. Calculates the scaling factors (mean & std. deviation) from the training 

data and applies the transformation [4]. 

Transform. Applies the same scaling to the validation data (without recalculating the 

mean/variance). 
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6.6    Building the ANN Model 

Sequential. A model where layers are stacked sequentially. 

Input_dim. The number of input features (i.e., the number of columns in X_trains), 4 in 

our case 

Dense(64, activation='relu'). A fully connected layer with 64 neurons and ReLU 

(Rectified Linear Unit) activation. 

Dense(32). second hidden layers with 32 neurons, respectively, using ReLU activation. 

Dense (1, activation='sigmoid'). The output layer with 1 neuron and sigmoid activation 

(since we're doing binary classification, 0 or 1) 

6.7   Compiling the Model 

optimizer='adam'. The optimizer that adjusts the weights during training. 

loss='binary_crossentropy': The loss function used for binary classification tasks. It 

measures how far off the model’s predictions are from the actual target values.[3] 

metrics=['accuracy']. Tracks accuracy as a metric during training to monitor model 

performance. 

6.8   Training the Model 

model.fit. The main function to train the model using the training data. 

X_train_scaled and y_train: The scaled training data. 

validation_data:The validation data (used to monitor model performance on unseen 

data). 

epochs=20. The number of complete passes through the training data. Higher epochs 

mean the model gets more chances to learn but may also overfit if too high. Epochs 

restricted to 20 to avoid overfitting and as convergence was observed. 

batch_size=32. The number of samples to process before updating the model's internal 

weights. Smaller batches lead to faster updates, but a higher batch size makes training 

smoother. [9] 

6.9    Python Code for Real-Time Audio Alarm System 

import section. Brings in Python libraries needed: pandas for data, time for delays, 

winsound to play audio, and date, time for timestamps. 

Threshold. The alarm is triggered if the predicted failure probability is ≥ 0.7 

(configurable). 

Alarm sound settings: Beep sound plays at 1000 Hz for 15 seconds using 

winsound.Beep. 

monitor_dpu_failures function. Continuously monitors the predictions from a CSV 

file. This simulates real-time output of the ANN model. 

CSV structure. The prediction CSV must have: DPU_ID, Predicted Fault, Failure 

Probability. This simulates the model’s real-time output. 

Alarm logic. If a row has a failure probability above the threshold, it plays a sound, 

prints details to screen, and logs it to alarm_log.txt. 
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Polling interval. The system checks the prediction file every 5 minutes (300 seconds). 

One can change check interval. 

Error handling. If something goes wrong (e.g., file not found), the code waits and tries 

again. 

7   ANN Model Architecture- explained 

The ANN model used for predicting DPU failures consists of a feedforward neural 

network [3] with three layers: an input layer, two hidden layers, and an output layer. 

Input Layer. The input layer consists of 04 neurons, each corresponding to one of the 

selected input variables. 

First Hidden Layer. The first hidden layer contains 64 neurons and uses the Rectified 

Linear Unit (ReLU) activation function. ReLU helps introduce non-linearity into the 

model, which is crucial for modelling complex relationships between input variables. 

Second Hidden Layer. The second hidden layer contains 32 neurons and also uses the 

ReLU activation function. 

Reason for Selecting this model Architecture. A single-layer perceptron can only 

model linear relationships, while at least one hidden layer is required to capture non-

linear dependencies in data. Two hidden layers strike a balance between complexity and 

generalization, avoiding under-fitting while not making the model excessively complex 

(which could lead to overfitting). 

Empirical studies suggest that two hidden layers are often sufficient for most 

structured datasets in industrial applications. Reference. Hornik, K., Stinchcombe, 

M., & White, H. (1989). Multilayer feedforward networks are universal approximators. 

Neural Networks, 2(5), 359-366. 

Why 64 and 32 Neurons in Hidden Layers? The number of neurons was chosen 

based on experiments with different configurations, ensuring a balance between 

learning capacity and computational efficiency. The first hidden layer has 64 neurons 

to capture broader feature interactions, while the second layer with 32 neurons refines 

the learned representations. The choice was validated using hyper-parameter tuning 

techniques called cross-validation. [10] 

Output Layer. The o/p layer comprises of a single neuron with a sigmoid activation 

function. The output provides a probability score, indicating the likelihood of DPU 

failure.   



 

 

 

• Epochs: 20 (after cross-validation tests) 

• Learning Rate: 0.001 
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Fig. 5.  Depictive Image for ANN model Architecture 

7.1   Model Compilation 

The ANN model was compiled using the Adam optimizer, which adjusts the learning 

rate during training to accelerate convergence. The function used for loss is binary cross 

entropy, which is suitable for binary classification tasks like failure prediction. 

7.2   Working Mechanism 

Forward Propagation. Data flows path is input layer   →   hidden layers  →   O/p layer, 

in O/p layer predictions are made. Each neuron applies an activation function [11] (e.g., 

ReLU, Sigmoid) to its input to decide whether to "fire" or pass the signal. 

Loss Function. The network compares its predictions with the actual outcomes using a 

loss function (e.g., mean squared error for regression tasks, cross-entropy for 

classification tasks). 

Backpropagation. This is the process by which the network adjusts the weights and 

biases based on the error. It calculates gradients of the loss function and updates the 

parameters using an algorithm for optimization like gradient descent. 

7.3   Model Training and Validation 

The dataset was split into two parts: 80% of the data was used for training the ANN 

model, while the remaining 20% was used for validation. The process for training 

involved feeding data in the form of mini batches into network and updating the model 

weights through backpropagation. 

7.4   Training Setup 

• Batch Size: 32 

• Validation Split: 0.2 (20% validation data) 
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The training process aimed for lessening the loss function by fine-tuning the model 

weights. Early ending was employed to prevent overfitting, monitoring the validation 

loss to terminate training if no improvement was observed. 

8. Results 

The ANN model achieved a high level of accuracy on the validation set, indicating its 

effectiveness in predicting DPU failures. The model demonstrated strong performance 

across various evaluation metrics, including accuracy, precision, recall, and F1-score. A 
confusion matrix is a table used to evaluate the performance of a classification 
algorithm [12]. It provides a detailed breakdown of the model's prediction results by 
comparing the predicted and actual classifications. The matrix typically consists of four 

key metrics, arranged in a 2x2 table for binary classification problems (Confusion Matrix 

Layout for Binary Classification [12]) 

True Negatives (TN). Model correctly predicted no failure. 

False Positives (FP). Model incorrectly predicted a failure. 

False Negatives (FN). Model incorrectly predicted no failure.  
True Positives (TP). Model correctly predicted a failure. 

Key Metrics Derived from the Confusion Matrix.  

Accuracy. Proportion of correct predictions (TP + TN) out of total predictions.  

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Precision. Proportion of true positive predictions out of all positive predictions made by 

the model. 
 

Precision = TP / (TP+FP) 

Recall (Sensitivity or True Positive Rate). Proportion of actual positives that were 

correctly predicted.     
 

 
Recall = TP / (TP + FN)    
F1 score. Proportion of actual positives that were correctly predicted.   
F1 = 2* (Precision*Recall) / (Precision + recall) 

Performance Metrics (Achieved) 

Accuracy. The overall accuracy of the model in predicting failures was 92.8%. 

Precision. The model had a precision of 0.91, meaning that 91% of the time, when the 

model predicted a failure, the DPU actually failed. 

Recall. The recall score was 0.89, indicating that 89% of actual failures were 

successfully predicted by the model. 

F1-Score. The F1-score, which balances precision and recall, was 0.90, demonstrating 

the model's ability to handle imbalanced data effectively. ROC Curve (Receiver 

Operating Characteristic Curve) 

Definition. The ROC curve is a graphical representation of a binary classifier's 

performance across different threshold settings. It plots the True Positive Rate (TPR) 

against the False Positive Rate (FPR).  
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Fig 6. Plots showing (a) Training vs Validation Accuracy (b) Training vs Validation loss 

(c) ROC Curve (d) Precision Recall Curve. 

Table 3. Confusion Matrix Layout for Binary Classification 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative(FN) 

Actual Negative False Positive(FP) True Negative(TN) 
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Axes. 

X-axis. False Positive Rate (FPR) = FP / (FP + TN) 

Y-axis. True Positive Rate (TPR) = TP / (TP + FN) 

Precision-Recall Curve 

Definition. The Precision-Recall curve is another way to evaluate the performance of a 

binary classifier, particularly in cases of imbalanced classes. It plots Precision against 

Recall (True Positive Rate). 

Axes. 

X-axis. Recall (also known as Sensitivity or TPR) = TP / (TP + FN) 

Y-axis. Precision = TP / (TP + FP) 

9. Discussion 

The results demonstrate that the ANN model can effectively predict DPU failures by 

analysing operational parameters such DPU load, memory use, network error, and I/O 

error rates. This predictive proficiency allows for pre-emptive maintenance planning, 

reducing the likelihood of unplanned downtime. SHAP, or Shapley Additive 

explanations, which is a method for interpreting Artificial Neural Networks (ANNs) 

explains individual predictions by assigning each feature (or input variable) a "Shapley 

value," indicating its contribution to a specific prediction. Using SHAP in our algorithm 

we can uncover the exact reason as to why the ANN model predicts a DPU failure, which 

is valuable for proactive maintenance in DCS and PLC systems. 

Key insights from the model include. 

CPU and RAM (memory) Utilization. High CPU load and RAM utilization were major 

contributors to failure. This underscores the need for monitoring resource usage and 

Implementing periodic CPU and memory optimizations or load-balancing strategies 

might reduce strain on DPUs, potentially extending their operational lifespan. 

I/O Error Rates: Signal errors were a less common, but highly indicative, factor in 

predicting DPU failures, suggesting that communication channels should be closely 

monitored for noise and signal degradation. 

10. Conclusion 

The implementation of Artificial Neural Networks for predicting DPU failures in DCS 

or PLC has demonstrated significant potential for improving the reliability of industrial 

control systems. By selecting input parameters such as DPU utilization, memory usage, 

I/O latency, operating and historical failure records, we are able to construct a model 

that can accurately predict impending DPU failures. 

The ANN model trained on the Kaggle dataset produced consistent results in terms of 

predictive accuracy, showing that it can serve as a robust tool for early fault detection in 

real-world DCS or PLC environments. This proactive approach to predictive 

maintenance can minimize unexpected downtime, prevent potential operational hazards, 

and reduce the overall maintenance costs in critical industrial systems. 

The key advantage of using ANN is its ability to learn complex non-linear relationships 

between the input parameters and DPU failures, which may not be as easily captured by 

traditional rule-based systems. In particular, the use of multiple hidden layers enhances 



minima. arXiv preprint arXiv:1609.04836. 
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the model’s ability to generalize over diverse failure scenarios. By continuously 

updating the model with new data, the ANN can evolve to adapt to changes in 

operational conditions, making it a versatile solution for dynamic industrial 

environments. 

Future Scope. A potential enhancement to this model involves leveraging Recurrent 

Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, which are 

designed to handle time-series data. Since DPU data often exhibits time-dependent 

trends—such as gradual temperature rises or periodic network loads—LSTM networks 

can effectively learn from these sequences, recognizing patterns that unfold over time. 

This improvement would allow the model to detect subtle, progressive changes leading 

to failures, further increasing its predictive accuracy and providing earlier warnings. 

Further with similar approach, different machine learning models can be developed to 

protect our digital assets, like Predictive maintenance of steam turbine- where the input 

variables will change and appropriate dataset is to be used. 
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