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Abstract

Deep neural networks usually require mas-
sive labeled data, which restricts their appli-
cations in scenarios where data annotation is
expensive. Natural language (NL) explana-
tions have been demonstrated very useful ad-
ditional supervision, which can provide suffi-
cient domain knowledge for generating more
labeled data over new instances, while the an-
notation time only doubles. However, directly
applying them for augmenting model learning
encounters two challenges: (1) NL explana-
tions are unstructured and inherently compo-
sitional. (2) NL explanations often have large
numbers of linguistic variants, resulting in low
recall and limited generalization ability. In this
paper, we propose a novel Neural EXecution
Tree (NEXT) framework to augment training
data for text classification using NL explana-
tions. After transforming NL explanations into
executable logical forms by semantic parsing,
NEXT generalizes different types of actions
specified by the logical forms for labeling
data instances, which substantially increases
the coverage of each NL explanation. Exper-
iments on two NLP tasks (relation extraction
and sentiment analysis) demonstrate its superi-
ority over baseline methods. Its extension to
multi-hop question answering achieves perfor-
mance gain with light annotation effort.

1 Introduction

Deep neural networks have achieved state-of-the-
art performance on a wide range of natural lan-
guage processing tasks. However, they usually
require massive labeled data, which restricts their
applications in scenarios where data annotation is
expensive. The traditional way of providing super-
vision is human-generated labels. See Figure 1 as
an example. The sentiment polarity of the sentence

∗ Equal contribution, the order is decided by coin
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Explanation: because the word “price” is directly 
preceded by fair.

What is the sentiment polarity w.r.t. “price”?
Label: Positive

Sentence: quality ingredients preparation all 
around, and a very fair price for NYC.

Sentence: it has delicious food with a fair price.

matching from corpus

Figure 1: Matching new instances from raw corpus us-
ing natural language explanations.

“Quality ingredients preparation all around, and a
very fair price for NYC” can be labeled as “Pos-
itive”. However, the label itself does not provide
information about how the decision is made. A
more informative method is to allow annotators to
explain their decisions in natural language so that
the annotation can generalize to other examples.
Such an explanation can be “Positive, because the
word price is directly preceded by fair”, which can
generalize to other instances like “It has delicious
food with a fair price”. Natural language (NL) ex-
planations have shown effectiveness in providing
additional supervision, especially in low-resource
settings (Srivastava et al., 2017; Hancock et al.,
2018). Also, they can be easily collected from
human annotators without significantly increasing
annotation efforts.

However, exploiting NL explanations as super-
vision is challenging due to the complex nature of
human languages. First of all, textual data is not
well-structured, and thus we have to parse NL ex-
planations into logical forms for machine to better
utilize them. Also, linguistic variants are ubiqui-
tous, which makes it difficult to generalize an NL
explanation for matching sentences that are seman-
tically equivalent but having different word usage.
When we perform exact matching with the previous
explanation, it cannot match strings like “reason-
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able price” or “good deal”.

Attempts have been made to train classifiers with
NL explanations. Srivastava et al. (2017) use NL
explanations as additional features of data. They
map explanations to logical forms with a seman-
tic parser and use them to generate binary features
for all instances. Hancock et al. (2018) employ
a rule-based semantic parser to get logical forms
(i.e. “labeling function”) from NL explanations
that generate limited labeled datasets used for train-
ing models. While both methods claim huge per-
formance improvements, they neglect linguistic
variants, thus resulting in a very low recall. Also,
their methods of evaluating explanations on new
instances are oversimplified, making their methods
over-confident. In the above example, a sentence
like “Decent sushi at a fair enough price” will be
rejected because of the “directly preceded” require-
ment.

To address these issues, we propose Neural
Execution Tree (NEXT) framework for deep
neural networks to learn from NL explanations, as
illustrated in Figure 2. Given a raw corpus and a
set of NL explanations, we first parse the NL ex-
planations into machine-actionable logical forms
by a combinatory categorial grammar (CCG) based
semantic parser. Different from previous work,
we “soften” the annotation process by generalizing
the predicates using neural module network and
changing the labeling process from exact match-
ing to fuzzy matching. We introduce four types of
matching modules in total, namely String Matching
Module, Soft Counting Module, Logical Calcula-
tion Module, and Deterministic Function Module.
We calculate the matching scores and find for each
instance the most similar logical form. Thus, all
instances in the raw corpus can be assigned a label
and used to train neural models.

The major contributions of our work are sum-
marized as follows: (1) We propose a novel NEXT
framework to utilize NL explanations. NEXT is
able to model the compositionality of NL expla-
nations and improve the generalization ability of
NL explanations so that neural models can leverage
unlabeled data for augmenting model training. (2)
We conduct extensive experiments on two repre-
sentative tasks (relation extraction and sentiment
analysis). Experimental results demonstrate the su-
periority of NEXT over various baselines. Also, we
adapted NEXT for multi-hop question answering
task, in which it achieves performance improve-

ment with only 21 explanations and 5 rules.

2 Learning to Augment Data for Text
Classification with NL Explanations

This section first talks about basic concepts and no-
tations for our problem definition. Then we give a
brief overview of our approach, followed by details
of each stage.

Problem Definiction. We consider the task of
training classifiers with natural language explana-
tions for text classification (e.g., relation extraction
and sentiment analysis) in a low-resource setting.
Specifically, given a raw corpus S = {xi}Ni=1 ⊆ X
and a predefined label set Y , our goal is to learn a
classifier fc : X → Y . We ask human annotators
to view a subset S ′ of the corpus S and provide for
each instance x ∈ S ′ a label y and an explanation
e, which explains why x should receive y. Note
that |S ′| � |S|, which requires our framework to
learn with very limited human supervision.

Approach Overview. We develop a multi-stage
learning framework to leverage NL explanations
in a weakly-supervised setting. An overview of
our framework is depicted in Fig. 2. Our NEXT
framework consists of three stages, namely expla-
nation parsing, dataset partition and joint model
learning. Human explanations are first converted
to machine-actionable logical forms by a semantic
parser. The extracted logical forms are then used to
annotate the raw corpus by performing exact match-
ing. The corpus is then partitioned into a labeled
dataset and an unlabeled dataset. For unlabeled
data, we use neural module networks to relax the
constraints by generalizing the keywords of logical
forms. Therefore, they can be used to evaluate unla-
beled instances and assign them with pseudo labels
accompanied by confidence scores. Finally, a task-
specific classifier is jointly optimized with neural
module networks over labeled data and pseudo-
labeled data.

Explanation Parsing. To leverage the unstruc-
tured human explanations E = {ej}|S

′|
j=1, we turn

them into logical forms (i.e., labeling functions)
(Ratner et al., 2016), which can be denoted as
F = {fj : X → {0, 1}}|S

′|
j=1, where 1 indicates

the the logical form matches the input sequence
and 0 otherwise. To access the labels, we introduce
a function h : F → Y that maps each logical form
fj to the label yj of its explanation ej . Examples
are given in Fig. 2. We use Combinatory Categorial
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Figure 2: Overview of the NEXT Framework. Natural language explanations are firstly parsed into logical forms.
Then we partition the raw corpus S into labeled dataset Sa and unlabeled dataset Su = S − {xa

i }
Na
i=1. We use

matching modules to provide supervision on Su. Finally, supervision from both Sa and Su is fed into a classifier.

Grammar (CCG) based semantic parsing (Zettle-
moyer and Collins, 2012; Artzi et al., 2015), an
approach that couples syntax with semantics, to
convert each NL explanation ej to a logical form
fj .

Following Srivastava et al. (2017), we first com-
pile a domain lexicon that maps each word to its
syntax and logical predicate. Frequently-used pred-
icates are listed in the Appendix. For each explana-
tion, the parser can generate many possible logical
forms based on CCG grammar. To identify the cor-
rect one from these logical forms, we use a feature
vector φ(f) ∈ Rd with each element counting the
number of applications of a particular CCG combi-
nator (similar to Zettlemoyer and Collins (2007)).
Specifically, given an explanation ei, the semantic
parser parameterized by θ ∈ Rd outputs a proba-
bility distribution over all possible logical forms
Zei . The probability of a feasible logical form can
be calculated as:

Pθ(f |ei) =
expθTφ(f)∑

f ′:f ′∈Zei
expθTφ(f ′)

. (1)

To learn θ, we maximize the probability of yi
given ei by marginalizing over all logical forms
that match xi (similar to Liang et al. (2013)). For-
mally, the objective function is defined as:

Lparser =

|S′|∑
i=1

log
( ∑
f :f(xi)=1∧h(f)=yi

Pθ(f |ei)
)
. (2)

Dataset Partition. After we parse explanations
{ei}|S

′|
i=1 into F = {fi}|S

′|
i=1 where each fi corre-

sponds to ei, we use F to find exact matches in
S and pair them with corresponding labels. We
denote the number of exactly matched instances
as Na. As a result, S is partitioned into a la-
beled dataset Sa = {(xai , yai )}

Na
i=1 and an unla-

beled dataset Su = S−{xai }
Na
i=1 = {xuj }

Nu
j=1 where

Nu = |S| −Na.

Joint Model Learning. The exactly matched Sa
can be directly used to train a classifier while in-
formative instances in Su are left untouched. We
propose several neural module networks, which
relax constraints in each logic form fj and substan-
tially improve the rule coverage in Su. Classifiers
will benefit from these soft-matched and pseudo-
labeled instances. Trainable parameters in neural
module networks are jointly optimized with the
classifier. Details of each module and joint training
method will be introduced in the next section.

3 Neural Module Networks in NEXT

Given a logical form f and a sentence x, Neural
Execution Tree (NEXT) outputs a matching score
us ∈ [0, 1], which indicates how likely the sen-
tence x satisfies the logical form f and thus should
be given the corresponding label h(f). Specifi-
cally, NEXT contains four modules, namely String
Matching Module, Soft Counting Module, Deter-
ministic Function Module, and Logical Calculation
Module, each of them is used to deal with a cat-
egory of predicates. Any complex logical form
can be disassembled into clauses containing these
four categories of predicates. Figure 3 shows how
NEXT builds the execution tree from an NL expla-
nation and how it evaluates an unlabeled sentence.

3.1 Modules in NEXT

String Matching Module. Given a keyword query
q derived from an explanation and an input se-
quence x = [w1, w2, ..., wn], the string match-
ing module fs(x,q) returns a sequence of scores
[s1, s2, ..., sn] indicating the similarity between
each token wi and the query q. Previous work
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The words “who died” precede OBJECT by no more than three words and occur between SUBJECT and OBJECT
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Figure 3: Neural execution tree (NEXT) executes the logical form on the sentence in a softened way. Each predicate
is processed by a corresponding module.

implements this operation by exact keyword match-
ing, while we augment the module with neural
networks to enable capturing semantically similar
words. Inspired by (Li et al., 2018), for token wi,
we first generate Nc contexts by sliding windows
of various lengths. For example, if the maximum
window size is 2, the contexts ci0, ci1, ci2 of to-
ken wi are [wi], [wi−1;wi] and [wi;wi+1] respec-
tively. Then we encode each context cij into a vec-
tor zcij by feeding pre-trained word embeddings
into a bi-directional LSTM encoder (Hochreiter
and Schmidhuber, 1997) followed by an attention
layer (Bahdanau et al., 2014). Keyword query q
is also encoded into vector zq by the same net-
work. Finally, scores of sentence x and query q are
calculated by aggregating similarity scores from
different sliding windows:

Mij(x,q) = cos(zcijD, zqD),

fs(x,q) =M(x,q)v,
(3)

whereD is a trainable diagonal matrix, v ∈ RNc
is a trainable weight of each sliding window.

Parameters in the string matching module need
to be learned with data in the form of (sentence,
keyword, label). To build a training set for learn-
ing string matching, we randomly select spans of
consecutive words as keyword queries in the train-
ing data. Each query is paired with the sentence it
comes from. The synthesized dataset is denoted as
{xi,qi,ki}

Nsyn
i=1 , where kij will take the value of 1

if q contains xij and 0 otherwise. We use binary
cross-entropy loss as follows:

Lfind = − 1

Nsyn

Nsyn∑
i=1

1

|ki|
· (ki log fs(xi,qi)

+ (1− ki) log(1− fs(xi,qi))).

(4)

While pretraining with Lfind enables the model
for strict matching, this unsupervised distributional
method is poor at learning words’ semantic mean-
ings. For example, the word “good” will have

relatively low similarity to “great” because there
are no such training data. To solve this problem,
we borrow the idea of word retrofitting (Faruqui
et al., 2014) and adopt a contrastive loss (Neculoiu
et al., 2016) to incorporate semantic knowledge in
training. We use the keyword queries in labeling
functions as supervision. Intuitively, the semantic
meaning of two queries should be similar if they
appear in the same class of labeling functions and
dissimilar otherwise. More specifically, for a query
q, we denote queries in the same class of labeling
functions as Q+ and queries in different classes of
labeling functions as Q−. The similarity loss is
defined as:

Lsim = max
q1∈Q+

{(τ − cos(zqD, zq1D))2+}

+ max
q2∈Q−

{cos(zqD, zq2D)2+}.
(5)

The overall objective function for string matching
module is: Lstring = Lfind+γ ·Lsim. We pretrain
the string matching module for better initialization.

Soft Counting Module. The soft counting mod-
ule aims to relax the counting (distance) constraints
defined by NL explanations. For a counting con-
straint precede object by no more than three words,
the soft counting module outputs a matching score
indicating to which extent an anchor word (TERM,
SUBJECT, and OBJECT) satisfies the constraint.
The score is set to 1 if the position of the anchor
word strictly satisfies the constraint, and will de-
crease if the constraint is broken. For simplicity,
we allow an additional range in which the score
is set to µ ∈ (0, 1), which is a hyper-parameter
controlling the constraints.

Deterministic Function Module. The determin-
istic function module deals with the deterministic
predicates like “Between”, “Left” and “Right”. It
outputs a mask sequence where the span satisfying
the constraint is marked as 1 else 0.



Algorithm 1: Model Learning with NEXT
Input: Labeled data Sa = {(xai , yai )}Na

i=1, unlabeled
data Su = {xuj }Nu

j=1, and logical forms F .
Output: A classifier fc : X → Y .
Pretrain String Matching Module in NEXT.
while not converge do

Sample a labeled batch Ba from Sa, and an
unlabeled batch Bu from Su.

foreach xuj ∈ Bu do
Calculate a pseudo label yuj for xuj with

confidence uj using NEXT and F .
Calculate La using Eq. 7, Lu using Eq. 8 and L

using Eq. 9.
Update all parameters w.r.t. Ltotal.

Logical Calculation Module. The logical calcu-
lation module acts as a score aggregator. It can
aggregate scores given by: (1) a string matching
module and a soft counting module / determinis-
tic function module (triggered by predicates such
as “Occur”) and (2) two clauses that have been
evaluated with a score respectively (triggered by
predicates such as “And”).

In the first case, the logical calculation module
calculates the element-wise products of the score
sequence provided by the string matching module
and the mask sequence provided by the soft count-
ing module / deterministic function module. It then
uses max pooling to calculate the matching score
of the current clause. In the second case, the logical
calculation module will aggregate the scores of at
least one clause based on the logic operation. The
aggregation rules are defined as follows.

p1 ∧ p2 = max(p1 + p2 − 1, 0),

p1 ∨ p2 = min(p1 + p2, 1),

¬p = 1− p,
(6)

where p is the score of the input clause.

3.2 Augmenting Model Learning with NEXT
As described in Algo. 1, in each iteration, we sam-
ple two batches Ba and Bu from Sa and Su. We
conduct supervised learning on Ba. The labeled
loss function is calculated as:

La = − 1

Na

∑
(xa

i ,y
a
i )∈Ba

log p(yai |xai ). (7)

To leverage Bu, which is also informative, for each
instance xuj ∈ Bu, we use our matching modules to
compute its matching score with every logical form.
The most probable logical form matched with xuj is
denoted as yuj

1, along with the matching score uj .
1None label (e.g. No Relation for relation extraction and

neutral for sentiment analysis) usually lacks explanations and

To ensure the scale of the unlabeled loss is compa-
rable to labeled loss, we normalize the matching
scores among pseudo-labeled instances in Bu as:
ωj =

exp(θtuj)∑|Bu|
k=1 exp(θtuk)

, where θt (temperature) con-

trols the shape of normalized score distribution.
Based on that, the unlabeled loss is calculated as:

Lu = −
∑

(xu
j ∈Bu)

ωj log p(y
u
j |xuj ). (8)

We jointly train a task-specific classifier and our
string matching module by optimizing:

Ltotal = La + α · Lu + β · Lstring, (9)

where α and β are hyper-parameters.

4 Experiments

Tasks and Datasets. We conduct experiments
on two tasks: relation extraction and aspect-term-
level sentiment analysis. Relation extraction (RE)
aims to identify the relation type between two enti-
ties in a sentence. For example, given a sentence
Steve Jobs founded Apple Inc, we want to extract a
triple (Steve Jobs, Apple Inc., Founder). For RE we
choose two datasets, TACRED (Zhang et al., 2017)
and SemEval (Hendrickx et al., 2009) in our exper-
iments. Aspect-term-level sentiment analysis (SA)
aims to decide the sentiment polarity with regard to
a given aspect term. For example, given a sentence
Quality ingredients preparation all around, and
a very fair price for NYC, the sentiment polarity
w.r.t. the aspect term price is positive. For SA we
use two customer review datasets, Restaurant and
Laptop, which are part of SemEval 2014 Task 4.

Explanation Collection. We use Amazon Me-
chanical Turk to collect labels and explanations for
a randomly sampled set of instances in each dataset.
Turkers are prompted with a list of selected predi-
cates (see Appendix) and several examples of NL
explanation. Examples of collected explanations
are listed in Appendix. Statistics of curated expla-
nations and intrinsic evaluation results of semantic
parsing are summarized in Table 1. To ensure a
low-resource setting (i.e., |S ′| � |S|), in each ex-
periment we only use a random subset of collected
explanations.

logical forms. If the entropy of matching score distribution
over labels is higher than a threshold, a None label will be
given.



Dataset exps categs avg ops logic/% assertion/% position/% counting/% acc/%

TACRED 170 13 8.2 25.8 21.3 21.4 12.4 95.3
SemEval 203 9 4.2 32.7 15.9 26.3 5.5 84.2
Laptop 40 8 3.9 0.0 23.8 23.8 17.5 87.2
Restaurant 45 9 9.6 2.8 25.4 26.1 16.2 88.2

Table 1: Statistics for Human-curated Explanations and Evaluation of Semantic Parsing. We report the number of NL
explanations (exps), categories of predicates (categs) and operator compositions per explanation (avg ops) respectively. We
also report the proportions of different types of predicates, where logic denotes logical operators (And, Or), assertion denotes
assertion predicates (Occur, Contains), position denotes position predicates (Right, Between) and counting denotes counting
predicates (MoreThan, AtMost). We summarize the accuracy (acc) of semantic parsing based on human evaluation.

Compared Methods. As is mentioned in Sec. 2,
logical forms partition raw corpus S into labeled
dataset Sa and unlabeled dataset Su. Sa can be di-
rectly utilized by supervised learning methods. (1)
CBOW-GloVe uses bag-of-words (Mikolov et al.,
2013) on GloVe embeddings (Pennington et al.,
2014) to represent an instance, or surface patterns
in NL explanation. It then annotates the sentence
with the label of its most similar surface pattern (by
cosine similarity). (2) PCNN (Zeng et al., 2015)
uses piece-wise max-pooling to aggregate CNN-
generated features. (3) LSTM+ATT (Bahdanau
et al., 2014) adds an attention layer onto LSTM to
encode an sequence. (4) PA-LSTM (Zhang et al.,
2017) combines LSTM with an entity-position
aware attention to conduct relation extraction. (5)
ATAE-LSTM (Wang et al., 2016) combines aspect
term information into both embedding layer and
an attention layer to help models concentrate on
different parts of a sentence.

For semi-supervised baselines, unlabeled data
Su are also introduced to training. For methods re-
quiring rules as input, we use surface pattern-based
rules transferred from explanations. Compared
semi-supervised methods include: (1) Pseudo-
Labeling (Lee, 2013) first trains a classifier on
labeled dataset, then generate pseudo labels for un-
labeled data using the classifier by selecting the
label with maximum predicted probability. (2)
Self-Training (Rosenberg et al., 2005) proposes
to expand the labeled data by selecting a batch of
unlabeled data that has the highest confidence and
generate pseudo-labels for them. The method stops
until the unlabeled data are used up. (3) Mean-
Teacher (Tarvainen and Valpola, 2017) averages
model weights instead of label predictions and as-
sumes similar data points should have similar out-
puts. (4) DualRE (Lin et al., 2019) jointly trains a
relation prediction module and a retrieval module.

Learning from explanations is categorized as a
third setting. Both methods generate explanation-

guided pseudo labels for a downstream classifier.
(1) Data Programming (Hancock et al., 2018; Rat-
ner et al., 2016) aggregates results of strict labeling
functions for each instance and uses these pseudo-
labels to train a classifier. (2) NEXT (proposed
work) softly applies logic forms to get annotations
for unlabeled instances and train a downstream
classifier with these pseudo-labeled instances. The
downstream classifier is BiLSTM+ATT for relation
extraction and ATAE-LSTM for sentiment analysis.

4.1 Results Overview

Table 2 (a) lists F1 scores of all relation extraction
models. Full results including precision and recall
can be found in Appendix A.4. We observe that
our proposed NEXT consistently outperform all
baseline models in low-resource setting. Also, we
found that (1) directly applying logical forms to
unlabeled data results in poor performance. We
notice that this method achieves high precision but
low recall, as expected. (2) Compared to its down-
stream classifier baseline (BiLSTM+ATT with Sa),
NEXT achieves 4.2% F1 improvement in absolute
value on TACRED, and 5.5% on SemEval. This
validates that the expansion of rule coverage by
NEXT is effective and is providing useful infor-
mation to classifier training. (3) Performance gap
further widens when we take annotation efforts
into account. The annotation time for E and Sl are
equivalent; but the performance of BiLSTM+ATT
significantly degrades with fewer instances in Sl.
(4) Results of semi-supervised methods are unsat-
isfactory. This may be explained with difference
between underlying data distribution of Sa and Su.

Table 2 (b) lists the performances of all senti-
ment analysis models. The observations are simi-
lar to those of relation extraction, which strength-
ens our conclusions and validates the capability of
NEXT.

We also conduct experiments on different num-
ber of explanations with results listed in Appendix.



Method / Dataset TACRED SemEval

LF (E) 23.33 33.86
CBOW-GloVe (R+ S) 34.6±0.4 48.8±1.1

PCNN (Sa) 34.8±0.9 41.8±1.2
PA-LSTM (Sa) 41.3±0.8 57.3±1.5
BiLSTM+ATT (Sa) 41.4±1.0 58.0±1.6
BiLSTM+ATT (Sl) 30.4±1.4 54.1±1.0

Self Training (Sa + Su) 41.7±1.5 55.2±0.8
Pseudo Labeling (Sa + Su) 41.5±1.2 53.5±1.2
Mean Teacher (Sa + Su) 40.8±0.9 56.0±1.1
Mean Teacher (Sl + Slu) 25.9±2.2 52.2±0.7
DualRE (Sa + Su) 32.6±0.7 61.7±0.9

Data Programming (E + S) 30.8±2.4 43.9±2.4
NEXT (E + S) 45.6±0.4 63.5±1.0

(a) Relation Extraction

Method / Dataset Restaurant Laptop

LF (E) 7.7 13.1
CBOW-GloVe (R+ S) 68.5±2.9 61.5±1.3

PCNN (Sa) 72.6±1.2 60.9±1.1
ATAE-LSTM (Sa) 71.1±0.4 56.2±3.6
ATAE-LSTM (Sl) 71.4±0.5 52.0±1.4

Self Training (Sa + Su) 71.2±0.5 57.6±2.1
Pseudo Labeling (Sa + Su) 70.9±0.4 58.0±1.9
Mean Teacher (Sa + Su) 72.0±1.5 62.1±2.3
Mean Teacher (Sl + Slu) 74.1±0.4 61.7±3.7

Data Programming (E + S) 71.2±0.0 61.5±0.1
NEXT (E + S) 75.8±0.8 62.8±1.9

(b) Sentiment Analysis

Table 2: Experiment results on Relation Extraction and Sentiment Analysis. Average and standard deviation of F1 scores
(%) over multiple runs are reported (5 runs for RE and 10 runs for SA). Bracket behind each method illustrates corresponding data
used in the method. S denotes training data without labels, E denotes explanations,R denotes surface pattern rules transformed
from explanations; Sa denotes labeled data annotated with explanations, Su denotes the remaining unlabeled data. Sl denotes
labeled data annotated using same time as creating explanations E , Slu denotes remaining unlabeled data corresponding to Sl.

For TACRED, we conduct experiments on 130 and
100 explanations with the results in Table 8. For
SemEval, we conduct experiments on 150 and 100
explanations with the results in Table 9. Similarly,
for Restaurant and Laptop datasets, we conduct
experiments on 60,75 and 55,70 explanations re-
spectively, with the results in Table 11 and 10. The
overall results are summarized in Table 12 and Ta-
ble 13.

4.2 Performance Analysis

Effectiveness of softening logical rules. As is
shown in Table 3, we conduct ablation studies on
TACRED and Restaurant. We remove two modules
that support soft logic (by only allowing them to
give 0/1 outputs) to see how much does rule soft-
ening help in our framework. Both soft counting
module and string matching module contribute to
the performance of NEXT. It can be easily con-
cluded that string matching module plays a vital
role. Removing it leads to significant performance
drops, which demonstrates the effectiveness of gen-
eralizing when applying logical forms. Besides,
we examine the impact brought by Lsim and Lfind.
Removing them severely hurts the performance, in-
dicating the importance of semantic learning when
performing fuzzy matching.

Superiority of explanations in data efficiency.
In the real world, a more realistic problem is that,
with limited human-power, should we just annotate
more labels or spend time explaining existing an-

TACRED SemEval Restaurant Laptop

Full NEXT 45.6 63.5 75.8 62.8

No counting 44.6 63.2 75.6 62.4
No matching 41.8 54.6 71.2 57.0
No Lsim 42.5 56.2 70.7 59.4
No Lfind 43.2 60.2 70.0 58.1

Table 3: Ablation study on modules of NEXT and losses for
string matching module. F1 score on the test set is reported.
We remove soft counting module (No counting) and string
matching module (No matching) by only allowing them to
give 0/1 results.

notations. To answer this question, we conduct ex-
periments on Performance v.s. Time on TACRED
dataset. We compare the results of a supervised
classfier with only labels as input and our NEXT
with both labels and explanations annotated using
the same annotation time as the former setting. The
results are listed in Table 7, from which we can
see that NEXT achieves higher performance while
labeling speed reduces by half.

Performance with different number of explana-
tions. From Fig. 4 , one can clearly observe
that all approaches benefit from more labeled data.
Our NEXT outperforms all other baselines by a
large margin, which indicates the effectiveness of
leveraging knowledge embedded in NL explana-
tions. We can also see that, the performance of
NEXT with 170 explanations on TACRED equals
to about 2500 labeled data using traditional super-
vised method. Results of Restaurant also have the
same trend, which strengthens our conclusion.
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Figure 4: Performance with different number of explanations. We choose supervised semi-supervised baselines for
comparison. We did experiments on TACRED and Restaurant. Gray dashed lines mean the performance with the corresponding
labeled data.

0.2 0.4 0.6 0.8 1.0
unlabeled data / all data

30

40

50

60

70

80

F1
 S

co
re

Dataset
TACRED
Restaurant

Figure 5: NEXT’s performance w.r.t. number of unlabeled
instances.

Performance with different amount of unla-
beled data. To investigate how our NEXT’s perfor-
mance is affected by the amount of unlabeled data,
we randomly sample 10%, 30%, 50% and 70% of
the original unlabeled dataset to do the experiments.
As illustrated in Fig. 5, our NEXT benefits from
larger amount of unlabeled data. We attribute it
to high accuracy of logical forms converted from
explanations.
Case study on string matching module. String
matching module plays a vital role in NEXT. The
matching quality greatly influences the accuracy
of pseudo labeling. In Fig. 6, we can see that key-
word chief executive of is perfectly aligned with
executive director of in the sentence, which demon-
strates the effectiveness of string matching module
in capturing semantic similarity.

4.3 Additional Experiment on Multi-hop
Reasoning

To further test the capability of NEXT in down-
stream tasks, we apply it to WIKIHOP (Welbl et al.,
2018) ‘country’ task by fusing NEXT-matched
facts into baseline model NLPROLOG (Weber et al.,
2019). For a brief introduction, WIKIHOP is a
multi-hop question answering (QA) dataset that re-

quires a model to select the correct entity2 in state-
ment (entity1, predicate, entity2) given a candidate
pool and several support sentences. NLPROLOG

considers entity-masked support sentence as rela-
tion, calculates relation-predicate similarity and
entity-entity similarity with mapped SENT2VEC

embeddings (Pagliardini et al., 2018), and use these
similarity scores for weak unification to solve can-
didate statements with a Prolog solver.

Fig. 8 shows how the framework in Fig. 2
is adjusted to suit NLPROLOG. We manually
choose 3 predicates (i.e., located in, capital of,
next to) and annotate 21 support sentences with
natural language explanation. We get 103 strictly-
matched facts (Sa) and 1407 NEXT-matched facts
(Su) among the 128k unlabeled QA support sen-
tences. Additionally, we manually write 5 rules
about these 3 predicates for the Prolog solver,
e.g. located in(X,Z) ← located in(X,Y) ∧ lo-
cated in(Y,Z).

Results are listed in Table 4. From the result
we observe that simply adding the 103 strictly-
matched facts is not making notable improvement.
However, with the help of NEXT, a larger num-
ber of structured facts are recognized from support
sentences, so that external knowledge from only
21 explanations and 5 rules improve the accuracy
by 1 point. This observation validates NEXT’s ca-
pability in low resource setting and highlight its
potential when applied to downstream tasks.

5 Related Work

Leveraging natural language for training classi-
fiers. Supervision in the form of natural language
has been explored by many works. Srivastava et al.
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Figure 6: Heatmap for keyword chief executive of and sentence OBJ-PERSON, executive director of the SUBJ-ORGANIZATION
at Saint Anselm College in Manchester. Results show that our string matching module can successfully grasp relevant words.
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Figure 8: Adjusting NEXT Framework
(Fig. 2) for NLPROLOG.

|Sa| |Su| Accuracy

NLProlog (published code) 0 0 74.57
+ Sa 103 0 74.40
+ Su (confidence >0.3) 103 340 74.74
+ Su (confidence >0.2) 103 577 75.26
+ Su (confidence >0.1) 103 832 75.60

Table 4: Performance of NLPROLOG using extracted facts. Average accu-
racy over 3 runs is reported. NLPROLOG empowered by 21 natural language
explanations and 5 hand-written rules achieves 1% gain in accuracy.
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Figure 7: Performance of NEXT v.s. traditional supervised
method. Blue line denotes NEXT and dashed line means
annotating numbers, normal line means performance. Red
line denotes traditional supervised method, and dashed line
means performance, normal line means annotating numbers.

(2017) first demonstrate the effectiveness of NL
explanations. They proposed a joint concept learn-
ing and semantic parsing method for classification
problems. However, the method is very limited
in that it is not able to use unlabeled data. To ad-
dress this issue, Hancock et al. (2018) propose to
parse the NL explanations into labeling functions
and then use data programming to handle the con-
flict and enhancement between different labeling
functions. Camburu et al. (2018) extend Stanford
Natural Language Inference dataset with NL expla-
nations and demonstrate its usefulness for various
goals for training classifiers. Liang et al. (2019)
explore proposed Modular Supervision Network to
incorporate supervision from various intermediate
dialog system modules at both framework level and
model level. Andreas et al. (2016) explore decom-
posing NL questions into linguistic substructures
for learning collections of neural modules which
can be assembled into deep networks. Hu et al.
(2019) explore using NL instructions as compo-

sitional representation of actions for hierarchical
decision making. The substructure of an instruc-
tion is summarized as a latent plan, which is then
executed by another model.

Weakly-supervised learning. Our work is rele-
vant to weakly-supervised learning. Traditional
systems use handcrafted rules (Hearst, 1992) or au-
tomatically learned rules (Agichtein and Gravano,
2000; Batista et al., 2015) to take a rule-based ap-
proach. Hu et al. (2019) incorporate human knowl-
edge into neural networks by using a teacher net-
work to teach the classifier knowledge from rules
and train the classifier with labeled data. Li et al.
(2018) parse regular expression to get action trees
as a classifier that are composed of neural modules,
so that essentially training stage is just a process
of learning human knowledge. Meanwhile, if we
regard those data that are exactly matched by rules
as labeled data and the remaining as unlabeled data,
we can apply many semi-supervised models such
as self learning (Rosenberg et al., 2005), mean-
teacher (Tarvainen and Valpola, 2017), and semi-
supervised VAE (Xu et al., 2017). However, These
models turn out to be ineffective in rule-labeled
data or explanation-labeled data due to potentially
large difference in label distribution. The data
sparsity is also partially solved by distant super-
vision (Mintz et al., 2009; Surdeanu et al., 2012).
They rely on knowledge bases (KBs) to annotate
data. However, the methods introduce a lot of noise,
which severely hinders the performance. Liu et al.
(2017) instead propose to conduct relation extrac-
tion using annotations from heterogeneous infor-
mation source. Again, predicting true labels from
noisy sources is challenging.



6 Conclusion

In this paper, we presented NEXT, a framework
that augments sequence classification by exploit-
ing NL explanations as supervision under a low
resource setting. We tackled the challenges of mod-
eling the compositionality of NL explanations and
dealing with the linguistic variants. Four types of
modules were introduced to generalize the different
types of actions in logical forms, which substan-
tially increases the coverage of NL explanations.
A joint training algorithm was proposed to utilize
information from both labeled dataset and unla-
beled dataset. We conducted extensive experiments
on several datasets and proved the effectiveness of
our model. Future work includes extending NEXT
to sequence labeling tasks and building a cross-
domain semantic parser for NL explanations.
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A Appendix

A.1 Predicates
Following Srivastava et al. (2017), we first compile
a domain lexicon that maps each word to its syntax
and logical predicate. Table 5 lists some frequently
used predicates in our parser, descriptions about
their function and modules they belong to.

A.2 Examples for collected explanations.
TACRED

Although not a Playboy Playmate , she has ap-
peared in nude pictorials with her Girls Next Door
costars and fellow Hefner girlfriends Holly Madi-
son and OBJ-PERSON , then known as SUBJ-
PERSON.
(Label) per:alternate names
(Explanation) the term ‘‘then

known as’’ occurs between
SUBJ-PERSON and OBJ-PERSON
and there are no more than six
words between SUBJ-PERSON and
OBJ-PERSON.

Officials in Mumbai said that the two suspects ,
David Coleman Headley , an American with links
of Pakistan , and SUBJ-PERSON , who was born in
Pakistan but is a OBJ-NATIONALITY citizen , both
visited Mumbai and several other Indian cities in
before the attacks , and may have visited some of
the sites that were attacked.
(Label) per:origin
(Explanation) the words

‘‘is a’’ appear right before
OBJ-NATIONALITY and the word
‘‘citizen’’ is right after
OBJ-NATIONALITY.

SemEval 2010 Task 8
The SUBJ-O is caused by the OBJ-O of UV ra-

diation by the oxygen and ozone .
(Label) Cause-Effect(e2,e1)
(Explanation) The phrase ‘‘is

caused by the’’ occurs between
SUBJ and OBJ and OBJ follows
SUBJ.

SUBJ-O are parts of the OBJ-O OBJ-O disre-
garded by the compiler.
(Label) Component-Whole(e1,e2)
(Explanation) The phrase ‘‘are

parts of the’’ occurs between

SUBJ and OBJ and OBJ follows SUBJ

SemEval 2014 Task 4 - restaurant
I am relatively new to the area and tried Pick a

bgel on 2nd and was disappointed with the service
and I thought the food was overated and on the
pricey side. (Term: food)
(Label) negative
(Explanation) the words

’overated’ is within 2 words
after term

The decor is vibrant and eye-pleasing with sev-
eral semi-private boths on the right side of the
dining hall, which are great for a date. (Term:
decor)
(Label) positive
(Explanation) the term is

followed by ’vibrant’ and
’eye-pleasing’

SemEval 2014 Task 4 - laptop
It’s priced very reasonable and works very well

right out of the box. (Term: works)
(Label) positive
(Explanation) the word

‘‘resonable’’ occurs before term
by no more than 2 words

The DVD drive randomly pops open when it is
in my backpack as well, which is annoying. (Term:
DVD drive)
(Label) negative
(Explanation) The word

’annoying’ occurs after term

A.3 Implementation Details

We use 300-dimensional word embeddings pre-
trained by GloVe (Pennington et al., 2014). The
dropout rate for embeddings is 0.96 and the dropout
rate for our sentence encoder is 0.5. The hidden
state size of the encoder is 300 and the hidden
state size of the attention layer is 200. We choose
Adagrad as the optimizer and the learning rate for
training classifiers is set to 0.5.

For TACRED, in the pretraining stage, we set
the learning rate to 0.1. The total epochs for pre-
training is 10. The weight for Lsim is set to 0.5.
The batch size for pretraining is set to 100. For
training the classifier, the batch size for labeled



Predicate Description Module

Because, Separator Basic conjunction words

None
ArgX, ArgY, Arg Subject, object or aspect term in each task
Int, Token, String Primitive data types
True, False Boolean operators

And, Or, Not, Is, Occur Logical operators that aggregate matching scores Logical Calculation Module
Left, Right, Between, Within Return True if one string is left/right/between/within

some range of the other string
Deterministic FunctionNumberOf Return the number of words in a given range

AtMost, AtLeast, Direct, Counting (distance) constraints Soft Counting Module
MoreThan, LessThan, Equals

Word, Contains, Link Return a matching score sequence for a sentence and a query String Matching Module

Table 5: Frequently used predicates

data and unlabeled data is 50 and 100 respectively,
the weight α for Lu is set to 0.7, the weight β for
Lstring is set to 0.2, the weight γ for Lsim is set to
2.5.

For SemEval 2010 Task 8, in the pretraining
stage, we set the learning rate to 0.1. The total
epochs for pretraining is 10. The weight for Lsim
is set to 0.5. The batch size for pretraining is set
to 10. For training the classifier, the batch size
for labeled data and unlabeled data is 50 and 100
respectively, the weight α for Lu is set to 0.5, the
weight β for Lstring is set to 0.1, the weight γ for
Lsim is set to 2.

For two datasets in SemEval 2014 Task 4, in the
pretraining stage, we set the learning rate to 0.5.
The total epochs for pretraining is 20. The weight
for Lsim is set to 5. The batch size for pretraining
is set to 20. For training the classifier, the batch
size for labeled data and unlabeled data is 10 and
50 respectively, the weight α for Lu is set to 0.5,
the weight β for Lstring is set to 0.1, the weight
γ for Lsim is set to 2. For ATAE-LSTM, we set
hidden state of attention layer to be 300 dimension.

A.4 Full Results
The full results for relation extraction and senti-
ment analysis are listed in Table 6 and Table 7
respectively.



TACRED SemEval

Metric Precision Recall F1 Precision Recall F1

LF (E) 83.21 13.56 23.33 83.19 21.26 33.86
CBOW-GloVe (R+ S) 28.2±0.7 44.9±0.9 34.6±0.4 46.8±1.3 51.2±2.2 48.8±1.1

PCNN (Sa) 43.8±1.6 28.9±1.1 34.8±0.9 51.5±1.9 35.2±1.4 41.8±1.2
PA-LSTM (Sa) 44.4±2.9 38.7±2.2 41.3±0.8 59.9±2.4 54.9±2.2 57.3±1.5

BiLSTM+ATT (Sa) 43.8±2.0 39.4±2.6 41.4±1.0 60.0±2.1 56.2±1.3 58.0±1.6
BiLSTM+ATT (Sl) 42.8±2.6 23.8±2.4 30.4±1.4 54.7±1.0 53.6±1.2 54.1±1.0

Data Programming (E + S) 45.9±2.8 23.3±2.6 30.8±2.4 51.3±3.5 38.8±4.2 43.9±2.4

Self Training (Sa + Su) 45.9±2.3 38.4±2.7 41.7±1.5 57.3±2.1 53.3±0.9 55.2±0.8
Pseudo Labeling (Sa + Su) 44.5±1.5 38.9±1.6 41.5±1.2 53.7±2.6 53.4±2.2 53.5±1.2

Mean Teacher (Sa + Su) 39.2±1.7 42.6±1.8 40.8±0.9 60.8±1.9 51.9±1.2 56.0±1.1
Mean Teacher (Sl + Slu) 28.3±5.7 25.4±5.8 25.9±2.2 53.1±3.8 51.6±2.4 52.2±0.7

DualRE (Sa + Su) 38.8±4.7 28.6±2.9 32.6±0.7 64.5±0.7 59.2±2.0 61.7±0.9

NEXT (E + S) 49.2±0.9 42.4±1.3 45.6±0.4 66.3±1.4 61.0±2.2 63.5±1.0

Table 6: Full results as supplement to Table 2(a)

Restaurant Laptop

Metric Precision Recall F1 Precision Recall F1

LF (E) 86.5 4.0 7.7 90.0 7.1 13.1
CBOW-GloVe (R+ S) 62.8±2.8 75.3±3.1 68.5±2.9 53.4±1.1 72.6±1.5 61.5±1.3

PCNN (Sa) 67.1±2.1 79.0±1.8 72.6±1.2 53.1±1.0 71.4±1.1 60.9±1.1
ATAE-LSTM (Sa) 65.1±0.4 78.4±0.6 71.1±0.4 49.0±3.1 66.0±4.4 56.2±3.6
ATAE-LSTM (Sl) 65.3±0.5 78.9±0.5 71.4±0.5 48.9±1.5 55.6±2.4 52.0±1.4

Data Programming (E + S) 65.0±0.0 78.8±0.0 71.2±0.0 53.4±0.1 72.5±0.1 61.5±0.1

Self Training (Sa + Su) 65.3±0.7 78.4±0.9 71.2±0.5 50.1±1.8 67.7±2.4 57.6±2.1
Pseudo Labeling (Sa + Su) 64.9±0.5 78.0±0.6 70.9±0.4 50.4±1.6 68.4±2.3 58.0±1.9

Mean Teacher (Sa + Su) 68.8±2.2 75.7±3.9 72.0±1.5 54.4±1.7 72.3±4.0 62.1±2.3
Mean Teacher (Sl + Slu) 68.3±0.8 81.0±0.4 74.1±0.4 55.0±4.1 70.3±3.3 61.7±3.7

NEXT (E + S) 69.6±0.9 83.3±1.8 75.8±0.8 54.6±1.6 73.9±2.3 62.8±1.9

Table 7: Full results as supplement to Table 2(b)

TACRED 130 TACRED 100

Metric Precision Recall F1 Precision Recall F1

LF (E) 83.5 12.8 22.2 85.2 11.8 20.7
CBOW-GloVe (R+ S) 26.0±2.3 39.9±5.0 31.2±0.5 24.4±1.3 41.7±3.7 30.7±0.1

PCNN (Sa) 41.8±2.7 28.8±1.8 34.1±1.1 28.2±3.4 22.2±1.3 24.8±1.9
PA-LSTM (Sa) 44.9±1.7 33.5±2.9 38.3±1.3 39.9±2.1 38.2±1.1 39.0±1.3

BiLSTM+ATT (Sa) 40.1±2.6 36.2±3.4 37.9±1.1 36.1±0.4 37.6±3.0 36.8±1.4
BiLSTM+ATT (Sl) 35.0±9.0 25.4±1.6 28.9±2.7 43.3±2.2 23.1±3.3 30.0±3.1

Self Training (Sa + Su) 43.6±3.3 35.1±2.1 38.7±0.0 41.9±5.9 32.0±7.4 35.5±2.5
Pseudo Labeling (Sa + Su) 44.2±1.9 34.2±1.9 38.5±0.6 39.7±2.0 34.9±3.3 37.1±1.5

Mean Teacher (Sa + Su) 38.8±0.9 35.6±1.3 37.1±0.5 37.4±4.0 37.4±0.2 37.3±2.0
Mean Teacher (Sl + Slu) 21.1±3.3 28.7±1.8 24.2±1.8 17.5±4.7 18.4±.59 17.9±5.0

DualRE (Sa + Su) 34.9±3.6 30.5±2.3 32.3±1.0 40.6±4.3 19.1±1.5 25.9±0.6

Data Programming (E + S) 34.3±16.1 18.7±1.4 23.5±4.9 43.5±2.3 15.0±2.3 22.2±2.4
NEXT (E + S) 45.3±2.4 39.2±0.3 42.0±1.1 43.9±3.7 36.2±1.9 39.6±0.5

Table 8: TACRED results on 130 explanations and 100 explanations



SemEval 150 SemEval 100

Metric Precision Recall F1 Precision Recall F1

LF (E) 85.1 17.2 28.6 90.7 9.0 16.4
CBOW-GloVe (R+ S) 44.8±1.9 48.6±1.5 46.6±1.1 36.0±1.4 40.2±2.0 37.9±0.1

PCNN (Sa) 49.1±3.9 36.1±2.4 41.5±1.4 43.3±1.4 27.9±1.0 33.9±0.3
PA-LSTM (Sa) 58.0±1.2 52.5±0.4 55.1±0.5 55.2±1.7 37.7±0.8 44.8±0.8

BiLSTM+ATT (Sa) 59.2±0.4 53.7±1.8 56.3±0.8 54.9±5.0 40.5±0.9 46.5±1.3
BiLSTM+ATT (Sl) 47.6±2.6 42.0±2.3 44.6±2.5 43.7±2.6 37.6±5.0 40.3±3.7

Self Training (Sa + Su) 53.4±4.3 47.5±2.9 50.1±1.1 53.2±2.3 34.2±2.2 41.6±1.4
Pseudo Labeling (Sa + Su) 55.3±4.5 51.0±2.3 53.0±1.5 47.4±4.6 39.9±3.9 43.1±0.6

Mean Teacher (Sa + Su) 61.8±4.0 49.1±2.6 54.6±0.2 58.5±1.9 41.8±2.6 48.7±1.4
Mean Teacher (Sl + Slu) 40.6±2.0 31.2±4.5 35.2±3.6 32.7±3.0 25.6±3.1 28.6±2.2

DualRE (Sa + Su) 61.7±3.0 56.1±3.0 58.8±3.0 61.6±1.7 39.7±1.9 48.3±1.5

Data Programming (E + S) 50.9±10.8 27.0±0.8 35.0±3.2 28.0±4.1 17.4±5.5 21.0±3.4
NEXT (E + S) 68.5±1.6 60.0±1.7 63.7±0.8 60.2±1.8 53.5±0.7 56.7±1.1

Table 9: SemEval results on 150 explanations and 100 explanations

Laptop 55 Laptop 70

Metric Precision Recall F1 Precision Recall F1

LF (E) 90.8 9.2 16.8 89.4 9.2 16.8
CBOW-GloVe (R+ S) 53.7±0.2 72.9±0.2 61.8±0.2 53.6±0.3 72.4±0.2 61.6±0.2

PCNN (Sa) 53.5±3.3 71.0±3.6 61.0±3.2 55.6±1.9 74.1±1.9 63.5±1.5
ATAE-LSTM (Sa) 53.5±0.4 71.9±2.2 61.3±1.0 53.7±1.2 72.9±1.8 61.9±1.5
ATAE-LSTM (Sl) 48.3±1.0 59.5±5.0 53.2±2.2 54.1±1.4 61.1±3.0 57.4±2.1

Self Training (Sa + Su) 51.3±2.6 68.6±2.7 58.7±2.6 51.2±1.4 68.6±2.2 58.7±1.6
Pseudo Labeling (Sa + Su) 51.8±1.7 70.3±2.3 59.7±1.9 52.4±0.8 70.9±1.5 60.3±1.0

Mean Teacher (Sa + Su) 55.1±0.9 74.1±1.6 63.2±1.1 55.9±3.3 73.0±2.6 63.2±1.7
Mean Teacher (Sl + Slu) 55.5±2.5 69.3±2.8 61.6±2.2 58.0±0.7 73.2±1.5 64.7±1.0

Data Programming (E + S) 53.4±0.0 72.6±0.0 61.5±0.0 53.5±0.1 72.5±0.1 61.6±0.1
NEXT (E + S) 56.3±1.3 75.9±2.5 64.6±1.7 56.9±0.2 77.1±0.6 65.5±0.3

Table 10: Laptop results on 55 explanations and 70 explanations

Restaurant 60 Restaurant 75

Metric Precision Recall F1 Precision Recall F1

LF (E) 86.0 3.8 7.4 85.4 6.8 12.6
CBOW-GloVe (R+ S) 63.7±2.3 75.6±1.3 69.1±1.9 64.1±1.3 76.6±0.1 69.8±0.7

PCNN (Sa) 67.0±0.9 81.0±1.0 73.3±0.9 68.4±0.1 82.8±0.3 74.9±0.2
ATAE-LSTM (Sa) 65.2±0.6 78.5±0.2 71.2±0.3 64.7±0.4 78.3±0.4 70.8±0.4
ATAE-LSTM (Sl) 67.0±1.5 79.5±1.2 72.7±1.0 66.6±2.0 78.5±1.4 72.1±0.6

Self Training (Sa + Su) 65.2±0.2 78.7±0.5 71.3±0.2 65.7±1.1 77.2±1.1 71.0±0.1
Pseudo Labeling (Sa + Su) 64.9±0.6 77.8±1.0 70.8±0.3 64.9±0.9 77.8±1.2 70.7±1.0

Mean Teacher (Sa + Su) 68.8±2.3 76.0±2.2 72.2±1.3 73.3±3.5 79.2±3.8 76.0±1.2
Mean Teacher (Sl + Slu) 69.0±0.8 82.0±1.1 74.9±0.7 69.2±0.7 82.6±0.6 75.3±0.6

Data Programming (E + S) 65.0±0.0 78.8±0.1 71.2±0.0 65.0±0.0 78.8±0.0 71.2±0.0
NEXT (E + S) 71.0±1.4 82.8±1.1 76.4±0.4 71.9±1.5 82.8±1.9 76.9±0.7

Table 11: Restaurant results on 60 explanations and 75 explanations



Restaurant Laptop

NumberOfExps 45 60 75 40 55 70

LF (E) 7.7 7.4 12.6 13.1 16.8 16.8
CBOW-GloVe (R+ S) 68.5±2.9 69.1±1.9 69.8±0.7 61.5±1.3 61.8±0.2 61.6±0.2

PCNN (Sa) 72.6±1.2 73.3±0.9 74.9±0.2 60.9±1.1 61.0±3.2 63.5±1.5
ATAE-LSTM (Sa) 71.1±0.4 71.2±0.3 70.8±0.4 56.2±3.6 61.3±1.0 61.9±1.5
ATAE-LSTM (Sl) 71.4±0.5 72.7±1.0 72.1±0.6 52.0±1.4 53.2±2.2 57.4±2.1

Self Training (Sa + Su) 71.2±0.5 71.3±0.2 71.0±0.1 57.6±2.1 58.7±2.6 58.7±1.6
Pseudo Labeling (Sa + Su) 70.9±0.4 70.8±0.3 70.7±1.0 58.0±1.9 59.7±1.9 60.3±1.0

Mean Teacher (Sa + Su) 72.0±1.5 72.2±1.3 76.0±1.2 62.1±2.3 63.2±1.1 63.2±1.7
Mean Teacher (Sl + Slu) 74.1±0.4 74.9±0.7 75.3±0.6 61.7±3.7 61.6±2.2 64.7±1.0

Data Programming (E + S) 71.2±0.0 71.2±0.0 71.2±0.0 61.5±0.1 61.5±0.0 61.6±0.1
NEXT (E + S) 75.8±0.8 76.4±0.4 76.9±0.7 62.8±1.9 64.6±1.7 65.5±0.3

Table 12: Full results of SA

TACRED SemEval

NumberOfExps 100 130 170 100 150 203

LF (E) 20.7 22.2 23.3 16.4 28.6 33.9
CBOW-GloVe (R+ S) 30.1±0.1 31.2±0.5 34.6±0.4 37.9±0.1 46.6±1.1 48.8±1.1

PCNN (Sa) 24.8±1.9 34.3±1.1 34.8±0.9 33.9±0.3 41.5±1.4 41.8±1.2
PA-LSTM (Sa) 39.0±1.3 38.3±1.3 41.3±0.8 44.8±0.8 55.1±0.5 57.3±1.5

BiLSTM+ATT (Sa) 36.8±1.4 37.9±1.1 41.4±1.0 46.5±1.3 56.3±0.8 58.0±1.6
BiLSTM+ATT (Sl) 30.0±3.1 28.9±2.7 30.4±1.4 40.3±3.7 44.6±2.5 54.1±1.0

Self Training (Sa + Su) 35.5±2.5 38.7±0.0 41.7±1.5 41.6±1.4 50.1±1.1 55.2±0.8
Pseudo Labeling (Sa + Su) 37.1±1.5 38.5±0.6 41.5±1.2 43.1±0.6 53.0±1.5 53.5±1.2

Mean Teacher (Sa + Su) 37.3±2.0 37.1±0.5 40.8±0.9 48.7±1.4 54.6±0.2 56.0±1.1
Mean Teacher (Sl + Slu) 17.9±5.0 24.2±1.8 25.9±2.2 28.6±2.2 35.2±3.6 52.2±0.7

DualRE (Sa + Su) 25.9±0.6 32.3±1.0 32.6±0.7 48.3±1.5 58.8±3.0 61.7±0.9

Data Programming (E + S) 22.2±2.4 23.5±4.9 30.8±2.4 21.0±3.4 35.0±3.2 43.9±2.4
NEXT (E + S) 39.6±0.5 42.0±1.1 45.6±0.4 56.7±1.1 63.7±0.8 63.5±1.0

Table 13: Full results of RE


