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Abstract

The ability of learning from noisy labels is very useful
in many visual recognition tasks, as a vast amount of data
with noisy labels are relatively easy to obtain. Traditionally,
label noise has been treated as statistical outliers, and tech-
niques such as importance re-weighting and bootstrapping
have been proposed to alleviate the problem. According to
our observation, the real-world noisy labels exhibit multi-
mode characteristics as the true labels, rather than behaving
like independent random outliers. In this work, we propose
a unified distillation framework to use “side” information,
including a small clean dataset and label relations in knowl-
edge graph, to “hedge the risk” of learning from noisy labels.
Unlike the traditional approaches evaluated based on sim-
ulated label noises, we propose a suite of new benchmark
datasets, in Sports, Species and Artifacts domains, to eval-
uate the task of learning from noisy labels in the practical
setting. The empirical study demonstrates the effectiveness
of our proposed method in all the domains.

1. Introduction
With the recent advancements in deep convolutional

neural networks (CNN) [11], learning from a clean large-
scale dataset, e.g., ImageNet [17], has been very successful
in various visual recognition tasks. However, collecting
such datasets is time consuming and expensive. Recent
efforts, therefore, have been focused on building and learn-
ing from an Internet-scale dataset with noisy labels such as
YFCC100M [20] and YouTube8M 1. These datasets have the
potential of leveraging a seemingly infinite amount of images
and videos on the Internet. But labels in those datasets are
noisy in terms of visual correlation and hence challenging
for the learning process.

Previous approaches tried to circumvent the problem of
learning from noisy samples by treating them as statistical
outliers and discarding them using some variants of outlier
detection methods [16, 12, 18]. However, in practice, it
is typical that noisy samples are not statistical outliers but
rather some form of significant mass. Existing approaches
have shown to produce inferior results on these cases. For ex-

1https://research.google.com/youtube8m/
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Figure 1: Overview of the proposed system to learn from
noisy labels by leveraging a knowledge graph. The left
panel shows the large scale noisy dataset, out of which we
collect a small set of images with clean labels to guide the
learning process. On the right panel, we demonstrate the
knowledge graph on the species domain constructed from
DBpedia-Wikipedia.

ample, images collected by searching polysemy words, such
as apple, will show a multi-modal distribution of visual con-
cepts, in which case statistical outlier detection techniques
will fail to figure out which concept to be associated with.
Another example, images labeled with basketball on Flickr
may contain a significant amount of group shots, selfies,
and photos taken before or after the game – these are less
visually relevant to the event itself but regardless forming a
significant mass; statistically, they are not outliers.

Recently, Hinton et al. [9] introduced the concept of “dis-
tillation” to transfer the knowledge learned from one model
(expert or teacher model) to another (a lightweight student
model), by treating the prediction results produced from the
first model (usually more expensive to train) as the “soft
target” labels for training the second light model (usually
trained in a more constrained setting). Inspired by this, we
propose a new technique that uses a similar distillation pro-
cess to learn from noisy datasets. In our scenario, we assume
that we have a small clean dataset and a large noisy dataset.
The small clean dataset can either be an existing public
dataset or labeled from part of the noisy data. Our goal is
to use the large amount of noisy data to augment the small
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clean dataset to learn a better visual representation and clas-
sifier. Concretely, we distill the knowledge learned the small
clean dataset to facilitate learning a better model from the
entire noisy dataset. This is different from Hinton et al. [9],
where distillation is used to transfer knowledge from a better
model (e.g., an ensemble model) to guide learning a light
but typically inferior model. Furthermore, we propose to
integrate a knowledge graph to guide the distillation process,
where rich relational information among labels are explicitly
encoded in the learning process. This helps the algorithm to
disambiguate noisy labels by, e.g., knowing that apple can
either be a fruit category or a company name.

To evaluate our technique, we collect a suite of new
datasets on three topics: sports, species, and artifacts. Our
dataset contains a total of 480K images from 780 class cat-
egories and exhibit the real-world labeling noise we men-
tioned above. We build a textual knowledge graph on top
of these three topics based on Wikipedia, where labels are
related by their definitions. We show that, our proposed dis-
tillation process, as well as leveraging the knowledge graph
to guide the distillation process, can achieve the best results
on our datasets compared with competing methods.

In summary, we make the following contributions:
• We propose a novel algorithm based on a distillation

process to learn from noisy data, with a theoretical
analysis under some conditions.

• We leverage a knowledge graph to guide the distillation
process to further “hedge the risk” of learning from
noisy labels.

• We collect several new benchmark datasets with real-
world labeling noises. We extensively compare with
different baselines and show that our proposed algo-
rithm achieves the best results 2.

2. Related Work
In this section, we review related works on learning with

noisy labels and network distillation.
Learning with noisy labels has been an important research

topic since the beginning of machine learning. Recently,
Reed et al. proposed a bootstrap technique to modify the
labels on-the-fly, in order to alleviate the potential damage
caused by the noisy labels [16]. Liu et al. proposed an im-
portance re-weighting method to deal with random classifi-
cation noise [12], where the level of label noise is estimated
from a pretrained classifier. This approaches extends the
idea of unbiased loss function [14] in the traditional impor-
tance re-weighting framework. Sukhbaatar et al. proposed a
noise layer on top of softmax to “absorb” label noise [18].
Szegedy, et al. proposed a simple yet effective way to avoid
over-trusting the noisy labels [19], by uniformly redistribut-
ing the energy of the noisy labels. Interestingly, Krause et al.

2The code and dataset will become publicly available after the paper is
accepted.

discovered that, in the case of fine grained classification, the
label noise does not hurt the performance, because the noisy
examples are not shown in the evaluation [10].

Learning with noisy labels is an important technique
with many applications [8] [4]. Especially a number of
researchers studied the problem of learning from text based
image search results. For example, Divvala et al. introduced
a fully automatic system to learn visual concepts and their
variations using image search results from the Internet [6].
Chen et al. proposed a two-step approach to learn ConvNet
by image search on the Internet [3].

To handle the noisy labels, a number of researchers con-
sider the classification with side information strategy to han-
dle data noise and accelerate optimization. For example, Wu
et al. proposed a framework with mixed graph to handle
missing labels in the task of multi-label classification [22].
Bergamo et al. also proposed to exploit small manually la-
beled dataset to learn with text based image search in the
framework of domain adaptation [1]. Frome et al. proposed
to use the word2vec distance of the labels to scale the Con-
vNet learning process to a larger vocabulary size. These
methods are thought-provoking, however, differ from our
approach in the way of leveraging clean and noisy labels.

Sukhbaatar and Fergus [18] proposed a novel layer to
handle the noisy labels in the context of neural network. Af-
ter the network is trained with the baseline method, an extra
linear layer is added on top of the network to “absorb” label
switch noise. This new layer estimates the label switching
probability with a linear function, which works well with
simulated noise that conforms to the label switch assumption.
However, it is not clear how well this approach works in real
world scenarios. We will compare this method with ours in
the experiments.

Our approach is motivated by the recent works of net-
work distillation [9, 13]. Hinton et al. developed the idea of
distillation [9] to learn a student model with simpler network
structure to replace the teacher model with a cumbersome
ensemble of models. Similarly, Bulò et al. used distilla-
tion to extract an optimal predictor from a model trained
with dropout, which outperforms the standard scaling based
dropout [2]. Lopez-Paz et al. unified distillation and privi-
leged information into one framework [13]. A key insight
from these works is that the soft distillation scores are better
than hard labels when guiding the learning of student net-
works. However, as discussed before, our approach uses a
different setting as traditional distillation approaches. Table 1
summarizes these key differences. In addition, traditional
distillation approaches assume the teacher network has better
performance with better empirical risk bounds [13]. In this
paper, we show that the student network can do better than
the teacher. Given a teacher network is trained from clean
dataset, this paper proposes to leverage a bigger dataset with
noisy labels with the outputs of teacher network, which leads



to a student model that consistently outperforms the teacher.

3. Our method
In this section, we formulate the problem of learning from

noisy labels based on distillation, and explain how we can
further improve the learning process by using a knowledge
graph as a guide to the distillation process.

3.1. Problem Formulation

Consider an L way multi-class classification dataset,

D : {(xi, yi)|i = 1 . . . N} ∼ P (xi, yi) (1)

where xi ∈ Rw×h is the i-th image, yi ∈ {0, 1}L is the
i-th observed noisy label vector, and N is the number of
samples. The noisy label yi is corrupted from the true label
y∗i ∈ {0, 1}L by an unknown process yi ∼ P (yi|xi, y

∗
i ). In

this work, we assume that we have a small portion of the
dataset cleaned up, i.e., D = Dc∪Dn, where Dc is the small
clean dataset and Dn is the remaining noisy data, and we
have N = |Dc|+ |Dn| with |Dc| < |Dn|.

Our goal is to train an optimal classifier using the entire
dataset D. The classifier is optimal in the sense that the risk
on unseen test data is minimized [21],

f∗ = argminfRDt
(f) = argminfEDt

{l[y∗, f(x)]}, (2)

where f∗ is the optimal classifier, Dt is the unseen test
dataset, y∗ is the ground truth label of x, and l[·, ·] is a loss
function, e.g., the commonly used cross entropy loss,

lce(y
∗, f(x)) = −∑L

m=1 CE(y∗[m], δ(f(x)[m]))
CE(a, b) = a ln b+ (1− a) ln(1− b),

(3)

where δ(a) = 1/(1 + e−a) is the sigmoid activation, and m
in the bracket denotes the m-th element of the vector.

In the following sections, we introduce our distillation
based algorithm to maximally leverage the partially labeled
dataset D, provide an analysis for the distillation algorithm,
and extend the algorithm to use external knowledge graph
information to further improve performance.

3.2. Knowledge Distillation

Our distillation framework is designed to be general, so
that we do not rely on any particular assumption on label
noise, because in practice the label noise is very diverse,
non-stationary, and falls in multi-mode. Concretely, we first
train an auxiliary model from the small clean dataset, and
then transfer the knowledge learned from the auxiliary model
to guide learning our primary model on the entire dataset.
Our rationale is that the model trained from the small clean
dataset produces an independent source of variance that can
be used to cancel out the variance introduced by the label
noise. We will have more analysis later in the section.

Given an auxiliary model fDc trained from the small
clean dataset Dc, we train our primary model with the entire
dataset D, using the following loss function [13, 9],

LD(yi, f(xi)) = λl(yi, f(xi)) + (1− λ)l(si, f(xi)), (4)

where si = δ[fDc
(xi)/T ] and T is the temperature [9]. In

our experiments, we tried different temperatures, but the
performance is not sensitive so we simply set T = 1 (See
the sensitivity analysis in Table 5).

In Eqn. (4), the first term is the primary loss, and the
second term is called the imitation loss [13]. The model is
learned from the noisy labels with the primary loss, and at
the same time to imitate the auxiliary model output si. λ
is a parameter to balance the noisy labels and the auxiliary
model output. In the case of the cross entropy loss defined in
Eqn. (3), the loss function is linear with respect to the label
yi, and Eqn. (4) can be rewritten as,

LD(yi, f(xi)) = l(λyi + (1− λ)si, f(xi)). (5)

We define ŷλi = λyi + (1− λ)si as the pseudo label, which
combines the noisy label yi with the prediction of the aux-
iliary model output si. Both terms are deviated from the
unknown true label y∗i , but because the deviations are inde-
pendent, this combined soft label can be closer to the true
label under some conditions. By driving the pseudo labels
closer to the ground truth label statistically, we can train a
better model. We provide some analysis in the following.

Rationale behind our distillation: First, we define a
risk Ry associated with the unreliable label ỹ:

Rỹ = EDt [‖ỹ − y∗‖2], (6)

where y∗ is the unknown ground truth label, and expectation
is defined on the test set. The random variable ỹ denotes
the unreliable label corrupted from the true label y∗, e.g., s
and y. Although Rỹ does not relate directly with the final
accuracy of the classifier, and the ℓ2 distance is different
from the cross entropy loss function (3) 3, it is an indicator
of the level of noise seen by the training process, which
implicitly affects the final performance.

Next, we show that the risk of using the proposed pseudo
label in Eqn. (5) can be smaller than using either the full
noisy labels or only the partial clean labels. Specifically, we
have the following proposition:

Proposition 1. The optimal risk associated with ŷλ is
smaller than both risks with y and s, i.e.

min
λ

Rŷλ < min{Ry, Rs}, (7)

3Ideally, we would like to define the risk according to the training loss,
but ℓ2 distance is used for the tractability of analysis.



where y is the unreliable label on D, and s is the soft label
output from fDc . By setting λ = Rs

Rs+Ry
, Rŷλ reaches its

minimum,

min
λ

Rŷλ =
RyRs

Rs +Ry
. (8)

See proof in Appendix A. Eqn. (7) and (8) indicate that,
by properly setting the balance weight λ, we can obtain
a pseudo label ŷλ that is closer to the ground truth label
in the sense of ℓ2 distance. Therefore, we can potentially
train a better classification model based on our distillation
framework proposed in Eqn. (4).

Based on similar analysis as Eqn. (7), we can exam-
ine the effectiveness of other approaches including label
smoothing [19] and bootstrap [16]. The label smoothing
algorithm [19] revises the target label as,

ŷλu = λy + (1− λ)u, (9)

where u is a vector of constants with each element set to 1/L.
Effectively, the label smoothing algorithm revises the noisy
labels by damping the original y and adding a uniform prior
over all labels. Because u is a constant, the independence
assumption also holds, and the risk of the revised label can
be reduced to,

min
λ

Rŷλ
u
=

RyRu

Ry +Ru
, (10)

where Ru = EDt
[‖u − y∗‖2] is the risk of using a uni-

form distribution. It can be shown that the optimal risk in
Eqn. (8) is smaller than that of Eqn. (10), i.e., minλ Rŷλ <
minλu Rŷλ

u
, if Rs < Ru. This is typically true because the

auxiliary model is better than a uniform guess. Therefore,
our distillation framework is more effective than the label
smoothing algorithm, verified by our experiments as well.

The bootstrapping algorithm [16] revises the label as

ŷλs′ = λy + (1− λ)s′, (11)

where y is the noisy label and s′ is the prediction from the
current model in previous iteration. Because there is no
additional side information used to train their model, s′ and
y are highly correlated, meaning that the revised label by
bootstrap will have very similar risk as using the noisy label
itself, and therefore, it is not as effective in handling labeling
noise, which is also verified by our experiments.

3.3. Distillation Guided by Knowledge Graph

As the auxiliary model fDc
is trained on a small clean

dataset, it is highly likely to overfit to the small set of sam-
ples. To avoid over-certainty of the auxiliary model on its
predictions [19], we propagate the label confidence among
related labels to reduce the model variance for distillation.

At the same time, different labels convey another sources of
independent variances that might be beneficial for canceling
out the labeling noise.

We leverage a knowledge graph G that encodes the struc-
ture of the label space. The knowledge graph has the form of
a constrained matrix G ∈ RL×L

+ , where G(i, j) denotes the
relationship between label i and j, and G(i, j) = 0 indicates
that the two labels are independent. We normalize the matrix
such that each row sums up to one. We show how we use
Wikipedia to construct such matrix as a knowledge graph in
Section 4.1.

With this knowledge graph, we define the new soft label:

ŝi , Gsi, (12)

based on the outputs of our auxiliary model. We then use the
following loss function to train our primary model:

LD(yi, f(xi)) = λl(yi, f(xi))+(1−λ)l(ŝi, f(xi)), (13)

where the soft label in Eqn. (4) is replaced with the new soft
label ŝi guided by our knowledge graph.

4. Datasets and Evaluation
In this section, we explain how we construct the noisy

datasets in real-world scenarios and extensively compare our
proposed approach with baselines on these datasets.

4.1. Datasets

Most existing work use simulated approaches to evaluate
their method on learning from label noise [12, 18], where
they inject label noise based on some controlled and known
corruption process to the clean dataset. In contrast, our
datasets reflect the practical setup: 1) Our datasets contain
real-world label noise harvested from photo sharing sites.
2) Our datasets cover three domains of visual concepts, with
varying levels of noise that come from different sources (e.g.,
text ambiguity such as polysemy words, real-world user be-
havior on photo tagging, etc.). 3) Background images are
included in the evaluation set. Background images refer to
images that do not belong to any of the classes in consid-
eration. As shown in Krause et al. [10], if the evaluation
set contains only the clean labeled images, the label noise
does not affect the performance much for fine-grained clas-
sification. However, this is unlikely to be true in practice for
image annotation – to evaluate our method in the real-world
setting, we include background images into the evaluation.

We collect our training sets using Yahoo Flickr Creative
Commons 100 Million (YFCC100M) [20], which is the
largest public multimedia collection with a total of 100 mil-
lion images and videos. YFCC100M provides a rich resource
over a large amount of visual concepts, and reflects well the
user preferences on the Flickr platform. However, compared
with well adopted datasets, such as ImageNet, YFCC100M



Reference Teacher Network Student Network
Hinton et al. [9] Ensemble of strong ConvNets Single fast ConvNet

Lopez-Paz et al. [13] ConvNet with privileged features ConvNet with generic features
Ours ConvNet trained with clean dataset ConvNet trained with noisy labels

Table 1: Compare different distillation schemes.

YCCC100M	
(photo,	-tle,	tags)	

Noisy	Label	

Dataset		D Par-ally	Clean	Dataset	

DD	= D
c
 + D

n

Text	Based	En-ty	Linking	

Manual	Labeling	or	

Cross	referencing	

Figure 2: The data collection pipeline

is missing clean annotations. Due to YFCC100M’s large
scale and real-world noisy labels, we believe it is a good
resource to test our method. Figure 2 illustrates the overall
workflow of collecting datasets from YFCC100M. Next, we
explain how we build the noisy dataset to get D and Dc.

From the YFCC100M dataset, we employ text based en-
tity linking to connect images with the corresponding tags.
We choose DBpedia Spotlight [5], an off-the-shelf tool that
links a photo’s title and tags with a Wikipedia entity. Given
an ambiguous text term (e.g. apple), DBpedia Spotlight dis-
ambiguates different entities (e.g. Apple Inc. or apple the
fruit) based on textual context. DBpedia Spotlight takes
many text-related factors into consideration, such as syn-
onyms and text morphological transformations. Based on the
entity linking results, we label the photos into Wikipedia enti-
ties. This automatic labeling process produces the dataset D
with label noise, where the label corruption process is un-
known and complicated. Table 2 shows the statistics of the
entity linking results for each domain.

We select three domains from the YFCC100M dataset,
namely Species, Sports and Artifacts, which have enough
training images and contain mostly visual entities. We avoid
including certain domains where domain-specific model can
excel, e.g., geo-tag based techniques can handle the Places
domain. We also choose our domains by considering the
overlap with ImageNet for cross-referencing.

The text-based entity linking introduces label noises for
the dataset. To collect a partially clean dataset Dc on each do-
main, we try both crowdsourcing and automatic data linking
approaches. For the Species and the Sports domains, we ask
for the help of crowd-sourcing labeling from CrowdFlower 4

to clean part of the noisy labels. For Species and Artifacts,
we cross-link their entities with ImageNet [17] synsets using
the BabelNet dataset [15], which is a multilingual database
linking various linguistic datasets, including WordNet and
Wikipedia. We then use part of the images from ImageNet as
the corresponding partial clean data. To differentiate differ-

4http://www.crowdflower.com/

Domain #Entity #Photo
Place 41,512 46,621,528

People 27,658 16,825,688
Species 5,958 4,086,366
Work 6,973 2,813,881

Artifacts 337 2,683,104
Sports 966 1,023,651
Event 1,519 1,088,173
Food 946 731,749

Award 57 32,724

Table 2: Statistics of the entity linking results on
YFCC100M. Highlighted are those used in our evaluation.

ent sources of clean data for the Species domain, we denote
Species-Y and Species-I as two separate datasets where the
partial clean data is from YFCC100M and ImageNet, re-
spectively. Table 3 summarizes descriptive statistics of our
datasets. We split each dataset into train/dev/test splits using
the ratio of 6:3:1. We use the dev to select hyperparameters.

Figure 3 shows some examples images and their labels
from our datasets. These examples show that the real-world
label noises are caused by various reasons: 1) Weak associ-
ation. Figure 3c is mistakenly labeled as the sport Abseiling,
but the photo is not visually about Abseiling but shows a
group of people, who are probably watching the sport event.
2) Text ambiguity. Figure 3p is mistakenly labeled as the
species Tulip, but the image shows it was the texture pattern.

4.2. Implementation Details

Since we focus on the methodology of learning from
noisy labels rather than squeezing the performance numbers,
we use a simple variant of AlextNet [11] with batch normal-
ization as the network for our evaluation. Adam optimizer
is used to train the network. We train the network with 250
epochs, and with every 5 epochs, we reduce the learning
rate by 0.9, and the initial learning rate is set to 0.001. Dur-
ing training, the performance is monitored based on the dev
set to avoid overfitting. The datasets we collect are essen-
tially multi-tag data. Instead of using top-K accuracy for
evaluation, we use mean Average Precision (mAP) for the
evaluation measurement.

As shown in the analysis of Section 3.2, the distillation
parameters λ and knowledge graph G need to be properly
chosen and designed, in order for the soft labels to achieve



Name Clean Set Dc Noisy Set Dn |Dc| : |Dn| #Categories #Train #Dev #Test
Sports YFCC100M YFCC100M 1:1 238 86K 18K 52K

Species-Y YFCC100M YFCC100M 1:1 219 50K 10K 28K
Species-I ImageNet YFCC100M 1:4 219 93K 14K 40K
Artifacts ImageNet YFCC100M 1:4 323 112K 16K 48K

Table 3: Datasets statistics. The suffix (-Y and -I) refers to the source of the clean dataset Dc.

(a) abseiling (b) abseiling (c) abseiling (d) abseiling (e) canoeing (f) canoeing (g) canoeing (h) canoeing

(i) lobster (j) lobster (k) lobster (l) lobster (m) tulip (n) tulip (o) tulip (p) tulip

Figure 3: Example images and their noisy labels from our dataset. The three rows are from Sports and Species, respectively.
The images with blue box are correctly labeled, and images with red box are mislabeled. The noisy labels are obtained by text
based entity linking on the title and tag of the YFCC100M images. The noisily labeled images demonstrate various types of
label noise seen in our dataset.

lower risk than the noisy labels. According to Eqn. (8),
the optimal λ can be computed according to the relative
performance of the auxiliary model and the level of noise
in the noisy dataset. Based on this principle, we use the
following heuristics to find λ.

λ =
mAPDc

mAPD + mAPDc

, (14)

where mAP score is computed from the dev set, and the
subscript denotes the training dataset. The mAP is calculated
as following:

mAP =
1

L

L∑

i=1

APi, (15)

where APi is the average precision score for class i.
We employ predefined label relations to specify G, and

one of the predefined label relations can be found easily at
large scale on Wikipedia. We define the knowledge graph
as G : (V,E), where V denotes the entities, and the triplet
(u ∈ V, v ∈ V, r ∈ R) ∈ E denotes the entity relation-
ship. R denotes the type of relations in the knowledge graph.
For example, on the Species domain, the top label relations
are “class”, “division”, “family”, “kingdom”, “order” and
“phylum”, which are aligned with the tree of the life struc-
ture. On the Sports domain, the top label relations are “cate-
gory”, “equipment” and “genre”. On the Artifacts domain,
the top label relations are “type”, “origin”, “manufacturer”,

“genre”,“category”, and “instrument”. The number of rela-
tionship instances are 273, 2833 and 557 on Sports, Species
and Artifacts, respectively. The directed edge (u, v, r) means
the entity u is the relation r of v. For example, (“Mammal”,
“Rabbit”, “class”) means “Mammal” is the “class” of “Rab-
bit”.

Given the directed knowledge graph G, the label relation
matrix G in the Eqn. (12) is defined as,

G(m,n) ∝





1,m = n
β

|N (n)| , ifm ∈ N (n)

0, if (m,n) /∈ E,

(16)

where N (n) denotes the siblings of the entities n in the
directed knowledge graph G and β is a constant we set as
0.4 across different datasets.

4.3. Qualitative Results

The key of the proposed distillation framework is to drive
the pseudo label ŷi = λyi+(1−λ)si and the guided pseudo
label by knowledge graph ŷgi = λyi + (1− λ)ŝi statistically
closer to the unknown true label y∗i . Figure 4 show examples
of the class Bison from the Species domain, assuming it is
the mth class. yi[m], the observed labels, is all 1 for these
images, i.e. only the observed positive images are shown
in the example. y∗i [m], the hidden ground truth labels, is
illustrated by the color of the boxes, the red box means the
y∗i [m] = 0, and the blue box means the y∗i [m] = 1. The first



Sports Species-Y Species-I Artifacts
Baseline-Clean 44.0 18.1 22.0 19.2
Baseline-Noisy [10] 50.7 23.7 38.5 22.0
Baseline-Ensemble 52.2 25.1 39.1 26.9
Bootstrap [16] 50.6 23.6 38.8 23.4
Label Smooth [19] 51.9 25.1 41.4 22.9
Finetune 50.8 22.2 37.5 19.7
Noise Layer [18] 50.8 23.7 38.5 22.0
Importance Re-weighting [12] 50.8 23.7 41.6 24.8
Distillation (Eqn. (4)) 53.5 26.1 41.6 26.0
Semantic Guided Distillation (Eqn. (13)) 53.7 25.2 42.3 26.0
Upper Bound 54.1 27.4 - -

Table 4: Experiment results. The numbers are the mAP scores (%) defined in Eqn. (15).

Figure 4: Ranking noisy dataset D with pseudo labels. All images are observed as the class Bison of the Species domain. The
two rows, with the same set of images, are ranked by the distillation and guided distillation pseudo labels, respectively. The
red and blue borders denotes noise/clean observations, respectively. Analysis in Section 4.3.

row is ranked by elements in ŷi of Eqn. (5), the distillation
pseudo labels. The second row is ranked by elements in ŷgi
of Eqn. (12), the guided distillation pseudo labels.

Figure 4 shows that the ŷi improves over yi by ranking
the true positives higher, and false positives lower, and the
guided pseudo labels ŷgi further improve over yi by picking
up confidences from related classes, and ranked more true
positives higher.

4.4. Comparison

Table 4 shows the experimental results. We can see that
our distillation method and graph guided distillation consis-
tently outperforms all baselines and existing methods. Next
we will discuss the comparisons in details.

Comparing with Baselines. Following Krause et
al. [10], we define Baseline-Clean and Baseline-Noisy to de-
note the baseline models trained with the partial clean dataset
Dc and the entire noisy dataset D, respectively. These mod-
els share the same network structure as our distillation model,
except that the input of labels during training is different.
The model trained with Baseline-Clean is used as the auxil-
iary model (e.g., teacher model) in our distillation method.
Our new model consistently outperforms these two models.
Especially, if we view our new model as the student model

and the Baseline-Clean as the teacher model, the student
model is better than the teacher. This is because the stu-
dent learns from more training examples, and it leverage the
teacher model to reduce the effect of noisy label. We also
compare with the Baseline Ensemble, which combines the
two baseline models Baseline-Clean and Baseline-Noise by
geometric mean. The results show that our distillation model
is better than Baseline Ensemble in three of the four datasets,
and works comparably on the last one. However, our method
has a big advantage over the Baseline Ensemble in that we
only need one forward pass on our CNN model while Base-
line Ensemble need to run two CNN models, which is twice
time consuming as well as doubles storage compared to ours.

Comparing with Bootstrapping and Label Smooth-
ing. The Bootstrapping method [16] and Label Smooth-
ing [19] are popular approaches to reduce the noise effects.
Section 3.2 has discussed in theory the advantage of our
distillation based approach against these two approaches.
The experiment results verify that our method consistently
outperforms these two approaches in all the four datasets.

Comparing with Finetuning, Importance Re-
weighting, and Noisy Layer. As discussed in the related
work section, there are a number of practices in the recent
deep learning literature improving the performance with



T 0.5 1 5 10
mAP(%) 41.5 41.6 39.8 35.3

Table 5: mAP performance using different T on the Species-I
dataset

noisy labels. The simplest one is Finetune, which initialize
network weights from the Baseline-Clean model, and
subsequently finetune using the entire noisy dataset Dn.
To further reduce the noise label effects, Importance
Re-weighting [12] introduces estimated weights on the noisy
labels, while Noisy Layer [18] employs an extra linear
layer on top of the network to “absorb” label switch noise.
Among these three approaches, Importance Re-weighting
outperforms the other two, but is still inferior to our method
with a significant gap.

Comparing Distillation and Guided Distillation with
Upper Bound. Inevitably, the label noise will hurt per-
formance, compared with using full clean dataset. On the
Species-Y and Sports datasets, where the clean datasets are
collected by crowd sourcing, we continue to label the rest
of the noisy dataset D, and use the fully labeled dataset to
train a ConvNet. The performance of this ConvNet can be
seen as an “Upper Bound” of the learning with noisy labels,
because the goal of learning with noisy labels is to approach
the performance of the model trained with the fully cleaned
dataset. For the Sports and Species-Y datasets, the proposed
guided distillation is very close to the upper bound, which
means the proposed distillation method can save the budget
of labeling the rest of the dataset.

Comparing Different Temperature T We perform sen-
sitivity analysis of the hyper-parameter, i.e., the temperature
T , in Eqn. (4) on the Species-I dataset. The results are listed
in Table 5, which shows that the performances with different
small temperatures T is stable.

5. Conclusion

This paper developed a new framework to learn from
noisy labels, by leveraging the knowledge learned from a
small clean dataset and semantic knowledge graph to correct
the noisy labels. To standardize the evaluation protocol for
systems that learn from noisy labels, we collected a suite
of new datasets in Species, Sports and Artifacts domains,
which reflect the real-world labeling noise. The proposed
methods not only produce superior performance on the task
of learning from noisy data, but also provide unique and
novel perspectives on the distillation framework.

Moving forward, we intend to explore in distillation with
new source of guidance in addition to knowledge graphs. We
are also interested in applying our method to other scenarios
with noisy labels, such as Web-scale photo search.

A. Proof for Proposition 1
Proof. The risk of using labels corrupted by noise as y ∼
PD(y|(x, y∗)) is quantified by the following residual term,

Ry = EDt
[‖y − y∗‖2], (17)

Consider our auxiliary model fDc
trained from a clean

dataset Dc, the expected prediction error can be decomposed
into the variance term and the bias term [7],

EDt
[l(s, y∗)] = l(s̄, y∗) + EDt

[l(s, s̄)], (18)

where l(·, ·) is the loss function, and s̄(x) is called the “main”
prediction, defined according to the loss function. For the
squared loss s̄(x)sq = averageDt

(fDc(x)), and for the 0-1
loss s̄(x)0-1 = medianDt

(fDc
(x)) [7]. For simplicity of

proving Eqn. (7), we use the squared loss. Since we are
training a high capacity CNN model, we can make a reason-
able assumption that the bias term l(s̄, y∗) is close to zero.
Therefore we have,

l(s̄, y∗) ≈ 0 ⇒ s̄ ≈ y∗

EDt(‖s− y∗‖2) ≈ EDt(‖s− s̄‖2) , Rs.
(19)

The label corruption process is unknown, but we can assume
that it is independent of the model variance. This leads to

EDt [(y − y∗)T (s− y∗)] = [EDt [y − y∗]]TEDt [s− y∗]
∵ Eqn. (19) s̄ ≈ y∗ ⇒ = [EDt

[y − y∗]]TEDt
[s− s̄]

∵ EDt
(s) = s̄ ⇒ = [EDt

(y − y∗)]T0 = 0,
(20)

where 0 denotes a zero vector.
Now, we are ready to show Eqn. (7),

Rŷλ = EDt
[‖ŷλ − y∗‖2]

= EDt [‖λy + (1− λ)s− y∗‖2]
= EDt [‖λ(y − y∗) + (1− λ)(s− y∗)‖2]

∵ Eqn. (20) = λ2Ry + (1− λ)2Rs,
(21)

By setting λ = Rs

Rs+Ry
, Rŷλ reaches its minimum,

min
λ

Rŷλ =
RyRs

Rs +Ry
, (22)

which concludes the proof of Proposition 1.

References
[1] A. Bergamo and L. Torresani. Exploiting weakly-

labeled web images to improve object classification: a
domain adaptation approach. In NIPS, pages 181–189,
2010. 2
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