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Abstract. In this paper, we propose a generic neural-based hair render-
ing pipeline that can synthesize photo-realistic images from virtual 3D
hair models. Unlike existing supervised translation methods that require
model-level similarity to preserve consistent structure representation for
both real images and fake renderings, our method adopts an unsupervised
solution to work on arbitrary hair models. The key component of our
method is a shared latent space to encode appearance-invariant structure
information of both domains, which generates realistic renderings condi-
tioned by extra appearance inputs. This is achieved by domain-specific
pre-disentangled structure representation, partially shared domain en-
coder layers, and a structure discriminator. We also propose a simple yet
effective temporal conditioning method to enforce consistency for video
sequence generation. We demonstrate the superiority of our method by
testing it on large amount of portraits, and comparing with alternative
baselines and state-of-the-art unsupervised image translation methods.
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1 Introduction

Hair is a critical component of human subjects. Rendering virtual 3D hair mod-
els into realistic images has been long studied in computer graphics, due to
the extremely complicated geometry and material of human hair. Traditional
graphical rendering pipeline simulates every aspect of natural hair appearance,
including surface shading, light scattering, semi-transparent occlusions and soft
shadowing by leveraging physics-based shading models of hair fibers, global il-
lumination rendering algorithms to capture mutual interactions between fibers
and the environment, and artistically designed material parameters. Given the
extreme complexity of the geometry and associated lighting effects of hair, such
a direct approximation of physical hair appearance requires a highly detailed 3D
model, carefully tuned material parameters, and huge amount of rendering com-
putation, which are often too costly and unaffordable for interactive application
scenarios that require efficient feedback and user-friendly interactions, such as
games and real-time photo editing software.

With the recent advances in generative adversarial networks, it becomes nat-
ural to formulate hair rendering as a special case of the conditional image gener-
ation problem, with the hair structure controlled by the 3D model, while realistic
appearance is synthesized by a neural network. In the context of image-to-image
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translation, one of the major challenges is how to bridge both the source and
target domains for proper translation. Most existing hair generation methods
fall into the supervised category, which demands enough training image pairs
to provide direct supervision. For example, sketch-based hair generation meth-
ods [25,19,38] construct training pairs by synthesizing user sketches from real
images. While a number of such methods were introduced, rendering 3D hair
models with the help of neural networks did not receive similar treatment. The
existing work on the topic [54] requires real and fake domains considerably over-
lap, such that the common structure is present in both domains. This is achieved
at the cost of a very complicated strand-level high quality model, and allows for
extracting edge and orientation maps from rendered hair strands, which serve
as the common representations of hair structures between real photos and fake
models. However, preparing such a high-quality strand-level hair model is it-
self an expensive and non-trivial problem even for a professional artist, which
significantly restricts the application scope of this method.

In this paper, we propose a generic neural-network-based hair rendering
pipeline that provides efficient and realistic rendering of a generic low-quality
3D hair model borrowing the material features extracted from an arbitrary ref-
erence hair image. Instead of using a complicated strand-level models to match
real-world hairs like [54], we allow users to use any type of hair model requiring
only the isotropic structure of hair strands be properly represented. Particularly,
we adopt sparse polygon strip meshes which are much more widely used in in-
teractive applications [53]. Given the dramatic difference between such a coarse
geometry and real hair, we are not able to design common structure representa-
tions at the model level. Therefore, supervised image translation methods will
be infeasible due to the lack of paired data.

To bridge the domain of real hair images and low-quality virtual hair mod-
els in an unsupervised manner, we propose to construct a shared latent space
between both real and fake domains, which encodes a common structural repre-
sentation even if inputs from different domains are totally different, and render
the realistic hair image from this latent space with the appearance conditioned
by an extra input. This is achieved by: 1) different domain structure encod-
ings are used as the network inputs, to pre-disentangle geometric structure and
chromatic appearance for both real hair images and 3D models; 2) a UNIT [30]-
like architecture is adopted to enable common latent space by partially sharing
encoder weights between two auto-encoder branches that are trained with in-
domain supervision; 3) a structure discriminator is introduced to further match
the distribution of the encoded structure features; 4) supervised reconstruction
is enforced on both branches to guarantee all necessary structure information is
kept in the shared feature space. In addition, to enable temporally-smooth ani-
mation rendering, we introduce a simple yet effective temporal condition method
with single image training data only, utilizing the exact hair model motion fields.
We demonstrate the effectiveness of the pipeline and each key component by ex-
tensively testing on a large amount of diverse human portraits and various hair
models. We also compare our method with general unsupervised image transla-
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tion methods, and show that due to the limited sampling ability on the synthetic
hair domain, all existing methods fail to produce convincing results.

2 Related Work

Conditional neural hair rendering belongs to a wide range of problems tackling
portrait manipulation and editing. A number of methods in the literature address
this cross-domain generation problem such as paired and unpaired image-to-
image translation and style transfer.

Image-to-image translation aims at converting images from one domain
to another while keeping the structure of the source image unchanged. The
literature contains a number of various methods performing this task in a variety
of settings. Paired image-to-image translation methods [18,52] operate when
pairs of images in the source and the target domains are available. Such methods,
for example, translate from semantic labels to scenes [52,37,2], from edges to
objects [43], and perform image super-resolution [24,20]. However, paired data
are not always available in many practical applications. Unsupervised image-to-
image translation tackles a setting in which paired data is not available, while
sampling from two domains is possible [31,47,58,6,44,30,17]. Clearly, unpaired
image-to-image translation is an ill-posed problem for there are numerous ways
an image can be transformed to a different domain. Hence, recently proposed
methods introduce constraints to limit the number of possible transformations.
Some studies enforce certain domain properties [1,44], while other concurrently
introduced works apply cycle-consistency to transform images between different
domains, such as horse to zebra, day-to-night [57,58,22]. Our work differs from
existing studies that we focus on a specific challenging problem, which is the
realistic hair generation, where we want to translate manually designed hair
models from the domain of rendered images to the domain of real hair. For
the purpose of controllable hair generation, we leverage rendered hair structure
and arbitrary hair appearance to synthesize diverse realistic hair styles. Further
difference of our work compared to the image-to-image translation papers is
unbalanced data. The domain of images containing real hair is far more diverse
than that of rendered hair, making it challenging for classical image-to-image
translation works to address the problem.

Neural style transfer and manipulation is related to image-to-image
translation in a way that image style is changed while content is maintained
[3,10,16,27,29,28,51,13]. Style in this case is represented by unique style of an
artist [10,51] or is copied from an example image provided by the user. Our
work follows the research idea from example-guide style transfer that hair style
is obtained from reference real image. However, instead of changing style of a
whole image, our aim is to keep the appearance of human face and background
unchanged, while having full control over the hair region. Therefore, instead of
following exiting works that inject style features into image generation networks
directly [16,37], we propose a new architecture that combines only hair appear-
ance features and latent features that encodes image content and adapted hair
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structure for image generation. This way we can achieve the goal that only the
style of the hair region is manipulated according to provided exemplar image.

Domain Adaptation addresses the domain-shift problem that is widely
exists between source and target domains [42]. Various feature based methods
have been proposed to tackle the problem [23,11,12,7,50]. Recent works on ad-
versarial learning for the embedded feature alignment between source and target
domains achieves better results than previous studies [8,9,32,48,15,49]. Efforts
using domain adaptation for both classification and pixel-level prediction tasks
have gained significantly progress [1,4,48]. In this work, we follow the challeng-
ing setting of unsupervised domain adaptation that there is no corresponding
annotation between source and target domains. We aim at learning an embed-
ding space that only contains hair structure information for both rendered and
real domain. Considering the domain gap, instead of using original images as
input, we use rendered and real structure map as inputs to the encoders, which
contain both domain specific layers and shared layers, to obtain latent features.
The adaptation is achieved by adversarial training and image reconstruction.

Hair Rendering and Generation share a similar goal with our paper,
which is synthesizing photo-realistic hair images. Traditional graphical hair ren-
dering methods focus on improving rendering quality and performance by ei-
ther more accurately modeling the special hair material and lighting behaviours
[33,34,5,56], or approximating certain aspects of rendering pipeline to reduce
the computation complexity [59,35,41,39,55]. However, the extremely huge com-
putation cost for realistic hair rendering usually prohibits them to be directly
applied in real-time applications. Utilizing the latest advances in GANs, recent
works [25,19,38] achieved impressive progress on conditioned hair image gen-
eration as supervised image-to-image translation. A GAN-based hair rendering
method [54] proposes to perform conditioned 3D hair rendering by starting with
a common structure representation and progressively enforce various conditions.
However, it requires the hair model to be able to generate consistent repre-
sentation (strand orientation map) with real images, which is challenging for
low-quality mesh-based models, and cannot achieve temporally smooth results.

Despite recent progress on conditional hair generation and image-to-image
translation, the problem of realistic spatio-temporal rendering of low-quality 3D
hair models remains largely unaddressed. In this paper we provide the necessary
treatment of the problem achieving photo-realistic renderings as well as reach
temporal stability of the rendered hair.

3 Approach

Problem Formulation. Let h be the target 3D hair model, with camera pa-
rameters c and hair material parameters m, we formulate the traditional graphic
rendering pipeline as Rt(h,m, c). Likewise, our neural network-based rendering
pipeline is defined as Rn(h, r, c), with a low-quality hair model h and material
features extracted from an arbitrary reference hair image r.
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Real Branch

warp

Fig. 1. The overall pipeline of our neural hair rendering framework. We use
two branches to encode hair structure features, where one for the real domain and
another for the fake domain. A domain discriminator is applied to the latent space
to find domain invariant features. We also use two decoders to reconstruct images for
two domains. The decoder in the real domain is different from the one in the fake
domain, for it is conditioned on a reference image. Additionally, to generate consistent
videos, we apply a temporal condition on the real branch. During inference, we use the
encoder in the fake branch to get hair structure features from a 3D hair model and use
the generator in the real branch to synthesized an appearance conditioned image.

3.1 Overview of Network Architecture

The overall system pipeline is shown in Fig.1, which consists of two parallel
branches for both domains of real photo (i.e., real) and synthetic renderings
(i.e., fake), respectively.

On the encoding side, the structure adaptation subnetwork, which includes a
real encoder Er and a fake encoder Ef , achieves cross-domain structure embed-
ding e. Similar to UNIT[30], we share the weights of the last few ResNet layers
in Er and Ef to extract consistent structural representation from two domains.
In addition, a structure discriminator Ds is introduced to match the high-level
feature distributions between two domains to enforce the shared latent space
further to be domain invariant.

On the decoding side, the appearance rendering subnetwork, which consists
of Gr and Gf for the real and fake domain respectively, is attached after the
shared latent space e to reconstruct the images in the corresponding domain.
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Each decoder owns its exclusive domain discriminator Dr and Df to ensure
the reconstruction matches the domain distribution, besides the reconstruction
losses. The hair appearance is conditioned in a asymmetric way that Gr accepts
extra condition of material features extracted from a reference image r by using
material encoder Em, while the unconditional decoder Gf is asked to memorize
the appearance, which is made on purpose for training data generation (Sec.4.1).

At the training stage, all these networks are jointly trained using two sets of
image pairs (s,x) for both real and fake domains, where s represents a domain-
specific structure representation of the corresponding hair image x in this do-
main. Both real and fake branches try to reconstruct the image G(E(x)) from
its paired structure image s independently through their own encoder-decoder
networks, while the shared structural features are enforced to match each other
consistently by the structure discriminator Ds. We set the appearance reference
r = x in the real branch to fully reconstruct x in a paired manner.

At the inference stage, only the fake branch encoder Ef and the real branch
decoder Gr are activated. Gr generates the final realistic rendering using struc-
tural features encoded by Ef on the hair model. The final rendering equation
Rn can be formulated as:

Rn(h, r, c) = Gr(Ef (Sf (h, c)), Em(r)), (1)

where the function Sf (h, c) renders the structure encoded image sf of the model
h in camera setting c.

3.2 Structure Adaptation

The goal of the structure adaptation subnetwork, formed by the encoding parts
of both branches, is to encode cross-domain structural features to support final
rendering. Since the inputs to both encoders are manually disentangled struc-
ture representation (Sec.4.1), the encoded features E(s) only contain structural
information of the target hair. Moreover, as the appearance information is either
conditioned by extra decoder input in a way that non spatial-varying structural
information is leaked (the real branch) or simple enough to be memorized by the
decoder (the fake branch) (Sec.3.3), the encoded features should also include all
the structural information necessary to reconstruct x.

Er and Ef share a similar network structure: five downsampling convolution
layers followed by six ResBlks. The last two ResBlks are weight-sharing to enforce
the shared latent space. Ds follows PatchGAN[18] to distinguish between the
latent feature maps from both domains:

LDs
= Esr

[log(Ds(Er(sr)))] + Esf
[log(1−Ds(Ef (sf )))]. (2)

3.3 Appearance Rendering

The hair appearance rendering subnetwork decodes the shared cross-domain hair
features into the real domain images. The decoders Gr and Gf have different
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network structures and do not share weights since the neural hair rendering is a
unidirectional translation that aims to map the rendered 3D model in the fake
domain to real images in the real domain. Therefore, Gf is required to make
sure the latent features e encode all necessary information from the input 3D
model, instead of learning to render various appearance. On the other hand, Gr

is designed in a way to accept arbitrary inputs for realistic image generation.
Specifically, the unconditional decoder Gf starts with two ResBlks, and then

five consecutive upsampling transposed convolutional layers followed by one final
convolutional layer. Gr adopts a similar structure as Gf , with each transposed
convolutional layer replaced with a SPADE[37] ResBlk to use appearance feature
maps ar,sr

at different scales to condition the generation. Assuming the binary
hair mask of the reference and the target images are mr and ms, the appear-
ance encoder Em extracts the appearance feature vector on r ×mr with five
downsampling convolutional layers and an average pooling. This feature vector
Em(r) is then used to construct the feature map ar,sr by duplicating it spatially
in the target hair mask ms as follows:

ar,sr
(p) =

{
Em(r), if msr (p) = 1,

0, if msr
(p) = 0.

(3)

To make sure the reconstructed real image Gr(Er(sr),ar,sr
) and the recon-

structed fake image Gf (Ef (sf )) belong to their respective distributions, we ap-
ply two domain specific discriminator Dr and Df for the real and fake domain
respectively. The adversarial losses write as:

LDr
= Exr

[log(Dr(xr))] + Esr,r[log(1−Dr(Gr(Er(sr),ar,sr
)))], (4)

LDf
= Exf

[log(Df (xf ))] + Esf
[log(1−Df (Gf (Ef (sf ))))]. (5)

We also adopt perceptual losses to measure high-level feature distance utilizing
the paired data:

Lp =

L∑
l=0

‖Ψl(Gr(Er(sr),ar,sr
))− Ψl(xr)‖1

+‖Ψl(Gf (Ef (sf )))− Ψl(xf )‖1,

(6)

where Ψl(i) computes the activation feature map of input image i at the lth
selected layer of VGG-19[45] pre-trained on ImageNet[40].

Finally, we have the overall training objective as:

min
E,G

max
D

(λsLDs + λg(LDr + LDf
) + λpLp). (7)

3.4 Temporal Conditioning

The aforementioned rendering network is able to generate plausible single-frame
results. However, despite the hair structure is controlled by smoothly-varying
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inputs of sf with the appearance conditioned by a fixed feature map ar,sr
, the

spatially-varying appearance details are still generated in a somewhat arbitrary
manner which tends to flicker in time (Fig.5). Fortunately, with the availability
of the 3D model, we can calculate the exact hair motion flow wt for each pair of
frames t−1 and t, which can be used to warp image i from t−1 to t as W(i,wt).
We utilize this dense correspondences to enforce temporal smoothness.

Let I = {i0, i1, . . . , iT } be the generated result sequence, we achieve this
temporal conditioning by simply using the warped result of the previous frame
W(it−1,wt) as an additional condition, stacked with the appearance feature map
ar,sr

, to the real branch decoder Gr when generating the current frame it.
We make the network temporally consistent by changing the real branch de-

coder only. Specifically, we temporally finetune it. During temporal training, we
fix all other networks and use the same objective as Eq.7, but randomly (50% of
chance) concatenating xr into the condition inputs to the SPADE ResBlks of Gt

r.
The generation pipeline of the real branch now becomes Gt

r(Er(sr),ar,sr
,xr),

so that the network learns to preserve the temporal consistency if the previous
frame is inputted as the temporal condition, or generate randomly from scratch
if the temporal condition is set to zero.

Finally, we have the rendering equation for sequential generation:

it = Rn(h, r, ct) =

{
Gr(Ef (stf ),ar,st

f
), if t = 0,

Gt
r(Ef (stf ),ar,st

f
,W(it−1,wt)). if t > 0,

stf = Sf (h, ct).

(8)

4 Experiments

In this section, we show the experimental results of our proposed neural hair
rendering and demonstrate its superiority over existing state-of-the-art works.

4.1 Data Preparation

To train the proposed framework, we generate a dataset that includes image
pairs (s,x) for both real and fake domains. In each domain, s→ x indicates the
mapping from structure to image, where s encodes only the structure informa-
tion, and x is the corresponded image that conforms to the structure condition.

Real Domain. We adopt the widely used FFHQ[21] portrait dataset to
generate the training pairs for the real branch, given it contains diverse hairstyles
on shapes and appearances. To prepare real data pairs, we use original portrait
photos from FFHQ as xr, and generate sr to encode only structure information
from hair. However, obtaining sr is a non-trivial process since hair image also
contains material information, besides structural knowledge. To fully disentangle
structure and material, and construct a universal structural representation s of
all real hair, we apply a dense pixel-level orientation map in the hair region,
which is formulated as sr = Sr(xr), calculated with oriented filter kernels [36].
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3D Hair Input Fake Hair Structure Real Hair Structure

Fake Domain Real Domain

Fig. 2. Training data preparation. We prepare two groups of training data. For the
fake domain (a), we use hair model and input image to generate both fake rendering
and model structure map. For the real domain (b), we generate image structure map
for each image.

Thus, we can obtain sr that only consists of local hair strand flow structures.
Example generated pairs are presented in Fig.2b.

For the purpose of training and validation, we randomly select 65, 000 images
from FFHQ as training, and use the remaining 5, 000 images for testing. For each
image xr, we perform hair segmentation using off-the-shelf model, and calculate
sr for the hair region.

Fake Domain. There are multiple ways to model and render virtual hair
models. From coarse to fine, typical virtual hair models range from a single
rigid shape, coarse polygon strips representing detached hair wisps, to large
amount of thin hair fibers that mimic real-world hair behaviors. Due to various
granularity of the geometry, the structural representation is hardly shared with
each other or real hair images. In our experiments, all the hair models we used
are polygon strips based considering this type of hair model is widely adopted
in real-time scenarios for it is efficient to render and flexible to be animated. To
generate sf for a given hair model h and specified camera parameters c, we use
smoothly varying color gradient as texture to render h into a color image that
embeds the structure information of the hair geometry, such that sf = Sf (h, c).
As for xf , we use traditional graphic rendering pipeline to render h with a
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uniform appearance color and simple diffuse shading, so that the final synthetic
renderings have consistent appearance that can be easily disentangled without
any extra condition, and keep all necessary structural information to verify the
effectiveness of the encoding step. Example pairs are shown in Fig.2a.

For the 3D hair used for fake data pairs, we create five models (leftmost
column in Fig.2), including the middle hairstyle hm, the short punky hairstyle
hs, the short hairstyle with two buns hb, the long hairstyle hl, and the long
hairstyle with twin tails ht. The first four models are used for training, and the
twin-tail hair model ht is used to evaluate the generalization capability of the
network, for the network has never seen it. All these models consist of 10 to
50 polygon strips, which is sparse enough for real-time applications. We use the
same training set from real domain to form training pairs. Each image is overlaid
by one of the four 3D hair models according to the head position and pose.
Then the image with fake hair model is used to generate xf through rendering
the hair model with simple diffuse shading, and sf by exporting color textures
that encodes surface tangent of the mesh. We strictly use the same shading
parameters, including lighting and color, to enforce a uniform appearance of
hair that can be easily disentangled by the networks.

4.2 Implementation Details

We apply a two-stage learning strategy. During the first stage, all networks are
trained jointly following Eq.7 for the single-image renderer Rn. After that, we
temporally fine-tune the decoder Gr of the real branch, to achieve temporally-
smooth renderer Rt

n, by introducing the additional temporal condition as de-
tailed in Sec.3.4. To make the networks of both stages consistent, we keep the
same condition input dimensions, including appearance and temporal, but set
the temporal condition to zero during the first stage. During the second stage we
set it to zero with 50% of chance. The network architecture discussed in Sec.3
is implemented using PyTorch. We adopt Adam solver with a learning rate set
to 0.0001 for the first stage, and 0.00001 for the fine-tuning stage. The training
resolution of all images is 512 × 512, with the mini-batch size set to 4. For the
loss functions, weights λp, λs, and λg are set to 10, 1, and 1, respectively. All
experiments are conducted on a workstation with 4 Nvidia Tesla P100 GPUs.

4.3 Qualitative Results

We present visual hair rendering results from two settings in Fig.3. The left
three columns in Fig.3 show that the reference image r is the same as xr. By
applying a hair model, we can modify human hair shape but keep the original
hair appearance and orientation. The right four columns show that the reference
image is different from xr, therefore, both structure and appearance of hair
from xr can be changed at the same time to render the hair with new style.
These flexible applications demonstrate that our method can be easily applied
to modify hair and generate novel high-quality hair images.
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Input&Ref Structure Result Input Ref Structure Result

Fig. 3. Selected results for the hair models used in this study (2 examples per model).
We visualize examples where the input and the reference image are the same (left), and
the input and the reference are different images (right). In the former case the method
copies appearance from another image.
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4.4 Comparison Results

To the best of our knowledge, there is no previous work that tackles the problem
of neural hair rendering; thus, a direct comparison is not feasible. However, in
light of our methods aim to bridge two different domains without ground-truth
image pairs, which is related to unsupervised image translation, we compare our
network with state-of-the-art unpaired image translation studies. It is important
to stress that although our hair rendering translation falls into the range of
image translation problems, there exist fundamental differences compared to the
generic unpaired image translation formulations for the following two reasons.

First and foremost, compared with translation between two domains, such
as painting styles, or seasons/times of the day, which have roughly the same
amount of images for two domains and enough representative training images can
be sampled to provide nearly-uniform domain coverage, our real/fake domains
have dramatically different sizes–it is easy to collect a huge amount of real human
portrait photos with diverse hairstyles to form the real domain. Unfortunately,
for the fake domain, it is impossible to reach the same variety since it would
require manually designing every possible hair shape and appearance to describe
the distribution of the whole domain of rendered fake hair. Therefore, we focus
on a realistic assumption that only a limited set of such models are available for
training and testing, such that we use four 3D models for training and one for
testing, which is far from being able to produce variety in the fake domain.

Second, as a deterministic process, hair rendering should be conditioned
strictly on both geometric shape and chromatic appearance, which can be hardly
achieved with unconditioned image translation frameworks.

With those differences bearing in mind, we show the comparison between
our method and three unpaired image translation studies, including CycleGAN
[58], DRIT [26], and UNIT [30]. For the training of these methods, we use the
same sets of images, xr and xf , for both real and fake domains, and the default
hyperparameters reported by the original papers. Additionally, we compare with
the images generated by traditional graphic rendering pipeline. We denote the
method as Graphic Renderer. Finally, we report two ablation studies to val-
uate the soundness of the network and the importance of each step: 1) we first
remove the structural discriminator (termed as w/o SD); 2) we then addition-
ally remove the shared latent space (termed as w/o SL and SD).

Quantitative comparison. For quantitative evaluation, we adopt FID (Frchet
Inception Distance) [14] to measure the distribution distance between two do-
mains. Moreover, inspired by the evaluation protocol from existing work [2,52],
we apply a pre-trained hair segmentation model [46] on the generated images
to get hair mask, and compare it with the ground truth hair mask. Intuitively,
the segmentation model should predict the hair mask that similar to the ground-
truth for the realistic synthesized images. To measure the segmentation accuracy,
we use both Intersection-over-Union (IoU) and pixel accuracy (Accuracy).

The quantitative results are reported in Tab.1. Our method significantly
outperforms the state-of-the-art unpaired image translation works and graphic
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Table 1. Quantitative comparison results. We compare our method against com-
monly adopted image-to-image translation frameworks, reporting Frchet Inception Dis-
tance (FID, lower the better), Intersection over Union (IoU, higher the better) and
pixel accuracy (Accuracy, higher the better). Additionally we report ablation studies
by first removing the structural discriminator (w/o SD) followed by removing both the
structural discriminator and the shared latent space (w/o SL and SD).

Method FID ↓ IoU(%) ↑ Accuracy(%) ↑
Graphic Renderer 98.62 55.77 86.17

CycleGAN [58] 107.11 46.46 84.06

UNIT [30] 116.79 30.89 84.27

DRIT [26] 174.39 30.69 65.80

w/o SL and SD 94.25 80.10 93.89

w/o SD 77.09 86.60 96.35

Ours 57.08 86.74 96.45

(g)Input Graphically 
renderedOur full w/o SD w/o SL

and SD 
CycleGAN UNIT DRIT

Fig. 4. Visual comparisons. We show selected visual comparisons against commonly
adopted image-to-image translation methods as well as visualize ablation results. Our
method synthesizes more realistic hair images compared to other approaches.

rendering approach by a large margin for all the three evaluation metrics. The
low FID score proves our method can generate high-fidelity hair images that
contain similar hair appearance distribution as images from the real domain.
The high IoU and Accuracy demonstrate the ability of the network to minimize
structure gap between real and fake domain so that the synthesized images can
follow the manually designed structure. Furthermore, the ablation analysis in
Tab.1 shows both shared encoder layers and the structural discriminator are
essential parts of the network, for the shared encoder layers help the network to
find a common latent space that embeds hair structural knowledge, while the
structural discriminator forces the hair structure features to be domain invariant.

Qualitative comparison. The qualitative comparison of different methods is
shown in Fig.4. It can be easily seen that our generated images have much higher
quality than the synthesized images created by other state-of-the-art unpaired
image translation methods, for they have clearer hair mask, follow hair appear-
ance from reference images, maintain the structure from hair models, and look
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Fig. 5. Video results and comparisons. Top row: the first image is the appearance
reference image and others are continuous input frames; middle row: generated hair im-
ages with temporal conditioning; bottom row: generated hair images without temporal
conditioning. We show two zoom-in hair regions for each result. By applying temporal
conditioning, our model synthesizes hair images with consistent appearance, while not
using temporal conditioning leads to hair appearance flickering as indicated by blue
and green boxes. Click the image to play the video results and comparisons.

like natural hair. Compared with the ablation methods (Fig.4c and d), our full
method (Fig.4b) can follow the appearance from reference images (Fig.4a) by
generating hair with similar orientation.

We also show the importance of temporal conditioning (Sec.3.4) in Fig.5. The
temporal conditioning helps us generate consistent and smooth video results, for
hair appearance and orientation are similar between continuous frames. With-
out temporal conditioning, the hair texture could be different between frames,
as indicated by blue and green boxes, which may result in flickering for the
synthesized video. Please refer to the supplementary video for more examples.

5 Conclusions

We propose a neural-based rendering pipeline for general virtual 3D hair mod-
els. The key idea of our method is that instead of enforcing model-level repre-
sentation consistency to enable supervised paired training, we relax the strict
requirements on the model and adopt a unsupervised image translation frame-
work. To bridge the gap between real and fake domains, we construct a shared
latent space to encode a common structure feature space for both domains, even
if their inputs are dramatically different. In this way, we can encode a virtual
hair model into such a structure feature, and switch it into the real generator to
produce realistic rendering. The conditional real generator not only allow flex-
ible condition of hair appearance, but can also be used to introduce an extra
temporal conditioning to generate smooth sequential results.

https://mlchai.com/files/neural_hair_rendering_video.mp4
https://mlchai.com/files/neural_hair_rendering_video.mp4


Neural Hair Rendering 15

References

1. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised
pixel-level domain adaptation with generative adversarial networks. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. pp. 3722–
3731 (2017)

2. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement
networks. In: Proceedings of the IEEE international conference on computer vision.
pp. 1511–1520 (2017)

3. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. arXiv
preprint arXiv:1612.04337 (2016)

4. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No
more discrimination: Cross city adaptation of road scene segmenters. In: Proceed-
ings of the IEEE International Conference on Computer Vision. pp. 1992–2001
(2017)

5. d’Eon, E., François, G., Hill, M., Letteri, J., Aubry, J.: An energy-conserving hair
reflectance model. Comput. Graph. Forum 30(4), 1181–1187 (2011)

6. Dundar, A., Liu, M.Y., Wang, T.C., Zedlewski, J., Kautz, J.: Domain stylization:
A strong, simple baseline for synthetic to real image domain adaptation. arXiv
preprint arXiv:1807.09384 (2018)

7. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual do-
main adaptation using subspace alignment. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2960–2967 (2013)

8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495 (2014)

9. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
Journal of Machine Learning Research 17(1), 2096–2030 (2016)

10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2414–2423 (2016)

11. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2066–2073. IEEE (2012)

12. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An
unsupervised approach. In: 2011 international conference on computer vision. pp.
999–1006. IEEE (2011)

13. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. In: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. pp. 327–340 (2001)

14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in Neural Information Processing Systems. pp. 6626–6637 (2017)

15. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A.A., Dar-
rell, T.: Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint
arXiv:1711.03213 (2017)

16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1501–1510 (2017)



16 M. Chai et al.

17. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 172–189 (2018)

18. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. pp. 5967–5976 (2017)

19. Jo, Y., Park, J.: SC-FEGAN: Face editing generative adversarial network with
user’s sketch and color. In: IEEE International Conference on Computer Vision,
ICCV 2019. pp. 1745–1753 (2019)

20. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: European conference on computer vision. pp. 694–711.
Springer (2016)

21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. pp. 4401–4410 (2019)

22. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain
relations with generative adversarial networks. In: Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70. pp. 1857–1865. JMLR. org
(2017)

23. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms. In: CVPR 2011. pp. 1785–1792.
IEEE (2011)

24. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4681–4690 (2017)

25. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: Towards diverse and interactive facial
image manipulation (2019)

26. Lee, H., Tseng, H., Huang, J., Singh, M., Yang, M.: Diverse image-to-image trans-
lation via disentangled representations. In: European Conference on Computer
Vision, ECCV. vol. 11205, pp. 36–52 (2018)

27. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian gener-
ative adversarial networks. In: European conference on computer vision. pp. 702–
716. Springer (2016)

28. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. arXiv
preprint arXiv:1701.01036 (2017)

29. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Diversified texture syn-
thesis with feed-forward networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3920–3928 (2017)

30. Liu, M., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks.
In: Annual Conference on Neural Information Processing Systems, NeurIPS. pp.
700–708 (2017)

31. Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.:
Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 10551–10560 (2019)

32. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in
neural information processing systems. pp. 469–477 (2016)

33. Marschner, S.R., Jensen, H.W., Cammarano, M., Worley, S., Hanrahan, P.: Light
scattering from human hair fibers. ACM Trans. Graph. 22(3), 780–791 (2003)

34. Moon, J.T., Marschner, S.R.: Simulating multiple scattering in hair using a photon
mapping approach. ACM Trans. Graph. 25(3), 1067–1074 (2006)



Neural Hair Rendering 17

35. Moon, J.T., Walter, B., Marschner, S.: Efficient multiple scattering in hair using
spherical harmonics. ACM Trans. Graph. 27(3), 31 (2008)

36. Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker,
M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real
hairstyles. ACM Trans. Graph. 27(3), 30 (2008)

37. Park, T., Liu, M., Wang, T., Zhu, J.: Semantic image synthesis with spatially-
adaptive normalization. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. pp. 2337–2346 (2019)

38. Qiu, H., Wang, C., Zhu, H., Zhu, X., Gu, J., Han, X.: Two-phase hair image
synthesis by self-enhancing generative model. Comput. Graph. Forum 38(7), 403–
412 (2019)

39. Ren, Z., Zhou, K., Li, T., Hua, W., Guo, B.: Interactive hair rendering under
environment lighting. ACM Trans. Graph. 29(4), 55:1–55:8 (2010)

40. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale
visual recognition challenge. International Journal of Computer Vision 115(3),
211–252 (2015)

41. Sadeghi, I., Pritchett, H., Jensen, H.W., Tamstorf, R.: An artist friendly hair shad-
ing system. ACM Trans. Graph. 29(4), 56:1–56:10 (2010)

42. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: European conference on computer vision. pp. 213–226. Springer
(2010)

43. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: Controlling deep im-
age synthesis with sketch and color. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5400–5409 (2017)

44. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learn-
ing from simulated and unsupervised images through adversarial training. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
2107–2116 (2017)

45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations, ICLR
(2015)

46. Svanera, M., Muhammad, U.R., Leonardi, R., Benini, S.: Figaro, hair detection
and segmentation in the wild. In: 2016 IEEE International Conference on Image
Processing (ICIP). pp. 933–937. IEEE (2016)

47. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation.
arXiv preprint arXiv:1611.02200 (2016)

48. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.:
Learning to adapt structured output space for semantic segmentation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 7472–7481 (2018)

49. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. pp. 7167–7176 (2017)

50. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

51. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-
forward synthesis of textures and stylized images. In: ICML. vol. 1, p. 4 (2016)

52. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:



18 M. Chai et al.

Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 8798–8807 (2018)

53. Ward, K., Bertails, F., Kim, T., Marschner, S.R., Cani, M., Lin, M.C.: A survey
on hair modeling: Styling, simulation, and rendering. IEEE Trans. Vis. Comput.
Graph. 13(2), 213–234 (2007)

54. Wei, L., Hu, L., Kim, V.G., Yumer, E., Li, H.: Real-time hair rendering using
sequential adversarial networks. In: European Conference on Computer Vision,
ECCV. vol. 11208, pp. 105–122 (2018)

55. Xu, K., Ma, L., Ren, B., Wang, R., Hu, S.: Interactive hair rendering and appear-
ance editing under environment lighting. ACM Trans. Graph. 30(6), 173 (2011)

56. Yan, L., Tseng, C., Jensen, H.W., Ramamoorthi, R.: Physically-accurate fur
reflectance: modeling, measurement and rendering. ACM Trans. Graph. 34(6),
185:1–185:13 (2015)

57. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: Unsupervised dual learning for
image-to-image translation. In: Proceedings of the IEEE international conference
on computer vision. pp. 2849–2857 (2017)

58. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In: IEEE International Conference on
Computer Vision, ICCV. pp. 2242–2251 (2017)

59. Zinke, A., Yuksel, C., Weber, A., Keyser, J.: Dual scattering approximation for
fast multiple scattering in hair. ACM Trans. Graph. 27(3), 32 (2008)


	Neural Hair Rendering

