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Figure 1: Qualitative samples. Given an image, our method can generate multiple realistic expressions of the same subject.

Abstract

We present a method for fine-grained face manipula-
tion. Given a face image with an arbitrary expression, our
method can synthesize another arbitrary expression by the
same person. This is achieved by first fitting a 3D face
model and then disentangling the face into a texture and a
shape. We then learn different networks in these two spaces.
In the texture space, we use a conditional generative net-
work to change the appearance, and carefully design input
formats and loss functions to achieve the best results. In the
shape space, we use a fully connected network to predict the
accurate shapes and use the available depth data for super-
vision. Both networks are conditioned on expression coef-
ficients rather than discrete labels, allowing us to generate
an unlimited amount of expressions. We show the superior-
ity of this disentangling approach through both quantitative
and qualitative studies. In a user study, our method is pre-
ferred in 85% of cases when compared to the most recent
work. When compared to the ground truth, annotators can-
not reliably distinguish between our synthesized images and
real images, preferring our method in 53% of the cases.

1. Introduction

Face manipulation, a problem involving changing the fa-
cial expressions in images enables many creative applica-
tions. Until very recently, this problem was mainly ad-
dressed from a graphical perspective in which a 3D Mor-
phable Model (3DMM) was first fitted to the image and then
re-rendered with a different facial expression. Such tech-
niques jointly model both the shape and the appearance and
are typically trained using spatially aligned 3D scans of peo-
ple [1]. A desired facial expression can then be generated
by combining graphical primitives called blendshapes [16].
The blendshapes often correspond to the Facial Action Cod-
ing System (FACS) [7] which defines a set of anatomically
related muscle activations. Unfortunately, due to the Gaus-
sian assumption, 3DMMs often produce blurry shapes and
appearances, preventing realistic face rendering.

Deep generative techniques offer a different way of solv-
ing the face manipulation problem. In contrast to 3DMMs,
they learn an internal representation that jointly models the
shape and the appearance of the faces. Manipulation is then
performed by conditioning the decoder on expression labels
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[6, 14] or latent vectors [17]. This solution is sub-optimal in
several respects. First, neural networks have been recently
shown to have difficulties in generating simple geometric
transformations [18], whereas face manipulation involves
many such transformations, such as mouths opening, eyes
closing and other transformations. Second, their models re-
quire many examples of such transformations along with
their intensities at the training time, which becomes even
more problematic for less common expressions such as sad-
smile or negative-surprise. Third, each model supports only
a small set of manipulation operations, not allowing fine-
grained 3D manipulation.

In this paper we present a novel method that combines
3DMMs and deep generative techniques in a single frame-
work for fine-grained face manipulation. Randomly se-
lected qualitative samples produced by our method are
given in Fig. 1. Given a face image, we first fit a 3D face
model on the image to obtain the texture and the shape. The
shape is further represented as identity and expression coef-
ficients using a bilinear model [5]. This way we disentangle
the shape and the texture spaces and use separate branches
in our pipeline to apply transformations in these spaces.

The texture branch consists of a convolutional neural net-
work and assumes the texture and the desired expression as
inputs, producing a new texture which corresponds to the
desired expression. Due to the difficulties of the convo-
lutional networks in generating geometric transformations,
we propose conditioning the texture branch on the UV maps
that describes target geometry information instead of di-
rectly concatenating the labels as in [6] or coefficients as
in [21]. To better preserve texture-expression consistency
and the identities in the generated images, we design corre-
sponding loss functions for improved results.

The shape branch is implemented using a fully con-
nected neural network taking the identity and the expression
coefficients as inputs and outputting shape deformation nec-
essary to accurately match the desired expression. Notably,
a common problem in fitting a morphable model to the face
is its inability to fully capture the face shape given only a
2D RGB input image sparsely labeled with 2D landmarks.
This is often called face shape hallucination [25]. At train-
ing time, to improve 3D reconstruction, we additionally su-
pervise the shape branch using the available depth data in
the FaceWarehouse dataset [5].

The proposed approach has a number of benefits. First,
we disentangle the texture and shape shapes to make it eas-
ier to learn for each branch. In the texture space, faces tend
to be more similar despite significant variance in the image
space caused by different poses and expressions. There-
fore, the texture branch only focuses on the appearance de-
tails such as wrinkles, shadows and shading. Similarly, the
shape branch focuses on the geometric details only. Second,
since we represent expressions as a combination of Face

Action Unit coefficients [7], rather than discrete labels, our
approach can generate infinite number of target expressions.
Third, we further distinguish identity and expression coef-
ficients, to better preserve subject-specific features by only
changing the expression components in the shape space.

We compare the proposed method to the most recent face
manipulation methods [6, 21] and show that our approach
is superior in all the experiments. In the user studies that
we conducted, the presented method is preferred more than
85% of the time when compared with the existing works.
When compared to the ground truth testing images, our
method is preferred in 53% of cases, supporting that it is
difficult for a human to distinguish real images from those
generated by our method.

2. Related Work
We review relevant geometry based methods and deep

generative methods for face manipulation.
Geometry-based methods. A pioneering work of Blanz

and Vetter [1] presented the first public 3D Morphable
Model (3DMM). They densely captured surface geometry
and color data of 200 identities and created a linear model
to represent the face variations of different subjects using
principal component analysis (PCA). Vlasic et al. [27] pro-
posed a multilinear model of facial expressions for tracking
and re-targeting. Cao et al. [5] proposed FaceWarehouse, an
extensive facial expression database, which contains 47 dif-
ferent facial expressions for each of the 150 subjects. This
dataset later became one of the most adopted datasets for
3D face fitting and animation [4, 33].

In [5], they first fitted a 3D face shape to match the in-
put image, and then changed the expression coefficients to
perform animation by warping the image to a new expres-
sion. Thies et al. [23] presented Face2Face for real-time
video-to-video facial expression re-targeting. They first fit a
3DMM together with lighting parameters and re-render it in
the target video. Although these geometry-based methods
produce convincing results of large-scale motions, they are
unable to model parts not existing in the source image, such
as teeth when the mouth is closed, and resort to rendering
such parts using conventional graphics approaches. There-
fore, these methods often fail to achieve realistic results, as
humans are especially sensitive to non-realistic artifacts in
faces.

Deep generative methods. Face manipulation can be
viewed as the unpaired image-to-image translation prob-
lem [18, 32] . Until very recently, one had to train a sep-
arate model, attribute-by-attribute to perform face manipu-
lation [17]. Lample et al. [14] proposed to additionally con-
trol the intensity of the attribute. Their work can change two
attributes at the same time, but only at the cost of reduced
image quality. Choi et al. [6] used conditional image-to-
image translation to allow multiple attributes to be trained



Figure 2: Overview of our pipeline. We first fit a 3DMM to the input and decouple it into the texture and shape coefficients.
The texture branch assumes the source texture and the spatial representation of the target expression to produce the output
shape. The shape branch uses the 3DDM coefficients to output a shape deformation. Finally, the global branch blends the
two outputs in the image space.

together in an unsupervised fashion. These attributes can in-
clude gender, age, hair color, expression and so on. Despite
the impressive results, their approach is still limited to a
finite number of attributes, preventing fine-grained manipu-
lation. Several video generation methods for face animation
were proposed. Given a face image, such methods perform
video prediction [26] or motion transfer [22, 28] to manip-
ulate faces. Recently, Pumarola et al. [21] presented a work
performing anatomically-aware face animation. Similarly
to us, they animate faces according to Facial Action Units.

The method presented in this paper is different than
geometry-based and deep generative methods in that it com-
bines the benefits of both lines of work in a single end-to-
end trainable framework. As opposed to purely 3DMM-
based methods and similarly to deep generative works, our
framework features high quality face texture synthesis. In
contrast to deep generative works, and similarly to 3DMMs-
based methods, our approach can generate arbitrary number
of facial expressions. A key difference with Pumarola et al.
[21] is that we learn to explicitly disentangle shape and ap-
pearance into different branches. This enables learning a
rich face prior from our shape branch, and allows the tex-
ture branch to focus on synthesizing realistic images.

3. Method
Our pipeline is shown in Fig. 2. The approach requires

a face image and the desired expression encoded by coef-
ficients. We first fit the 3D face shape and camera projec-
tion matrix from the image, with which we extract textures
(Sec. 3.1). Then, we input the texture and the target expres-
sion to the texture branch and generate the target texture
containing the details of the desired expression (Sec. 3.2).
As the 3DDM-based shape representations are often inaccu-

Figure 3: Examples of fitting a 3DMM to an RGB-D image.

rate, we use a fully connected network in the shape branch
to predict a more accurate shape for improved synthesis
quality (Sec. 3.3). The predicted texture and shape are then
combined and rendered to obtain a target image. We then
use the global branch network on the target image to further
improve the quality (Sec. 3.4).

3.1. 3D Face Fitting

Face fitting is the process of estimating the 3D face shape
and the camera projection matrix given an input face image.
Following [5], we represent the 3D face shape using a bilin-
ear model as:

S = Cr ×2 a×3 e, (1)

where S ∈ R3N is the face shape, N is the number of ver-
tices, Cr ∈ R3N×Na×Ne is the weight tensor, a ∈ RNa

are the identity coefficients, e ∈ RNe are the expression
coefficients, ×i is the tensor contraction operation along
the ith mode of the bilinear model. In our experiments,
Ne = 46, Na = 50 and N = 1220.

Given a face image (Fig. 3a), we first detect the 96 2D
landmarks using [12] (Fig. 3b). Then, we jointly estimate



Figure 4: Texture branch inputs and outputs. The input image is mapped to the texture space. The texture branch uses
important geometry information represented spatially using UV-maps. The output of the texture branch is a texture containing
the desired target expression.

the camera projection transformation M : R3 → R2, as
well as identity and expression coefficients, by minimizing
the L2 distance between the projected landmarks and de-
tected landmarks. Note that we fix the identity coefficients
for multiple images of the same person during optimization.

The inaccuracy in the fitting process causes the extracted
textures to be misaligned and thus introduces additional
variance for neural network to learn. To tackle this, we
make use of the depth data when it is available. For the
input image with a depth map (Fig. 3c), we minimize the
L2 distance between the shape vertices and its closest 3D
depth points and then refine the shape using [8] (Fig. 3d).
When the depth is not available, we deform the shape to
further reduce the landmark errors as in [5].

We define a 2D UV coordinate for each 3D shape ver-
tex, consistent across the dataset. The textures are extracted
with the UV coordinates, camera projection and fitted 3D
shape using the standard rasterization pipeline. (Fig. 3e).

3.2. Texture Branch

Our texture branch learns a function G(Tsrc, esrc, etgt)
which transfers a texture Tsrc extracted from the source
image with the expression esrc, to texture Ttgt, contain-
ing the target expression etgt. Inspired by recent advances
in image-to-image translation [9, 32], we adopt conditional
generative adversarial networks (cGAN) to learn the func-
tion G.

Input format. Typically the generator G is modeled as
a convolutional neural network. In our case, the generator
needs to take both the texture image T and the expression
coefficients e as input. A straightforward approach to com-
bine these different formats is to concatenate each element
of e as a separate feature map to the input image T as in
[6, 21]. We argue that converting the geometry information
of e into a spatial representation, such as a UV-map, helps
better utilize local convolutional operations learned by the
texture branch.

In our implementation, this information includes object
space normals, deformation, curvature, position difference,

normal difference and semantic labels. We show examples
in Fig. 4. Normal determines the local surface orientation
which is considered important in shading. Deformation is
determined by the ratio of the one-ring area near each vertex
in the target and neutral expressions, where a small defor-
mation value means compression and can be associated with
wrinkles. Curvature differentiates bumped regions from flat
regions. Position and normal differences imply similarities
between source and target expressions near each vertex, in-
dicating the likelihood of the output pixel resembling the
input pixel at the same location. Furthermore, to address
the translational equivariance issue of convolutions [18], se-
mantic labels are used to indicate different facial compo-
nents which should be synthesized differently. These labels
include eyes, eyebrows, nose, lips and inner mouth and oth-
ers. As all the shapes have the fixed layout in the UV space,
we manually define the labels on the 3D mesh and rasterize
them to get the semantic map. We then use this semantic
map for all the samples. We evaluate the effectiveness of
our input format in Sec. 5.1.

Loss functions. Let Treal
i,p ,T

fake
i,p be the real and fake

textures of identity ai under the expression ep. We design
three discriminator terms to improve the synthesis quality:

• Dreal is the standard discriminator to distinguish be-
tween real textures Treal

i,p and synthesized fake textures
Tfake

i,p .

• Dpair is used to ensure pair consistency between the
texture and the expression coefficients as [2]. Our
discriminator Dpair learns to differentiate matched
pairs of real texture and expressions (Treal

i,p , ep)
from matched pairs of fake texture and expressions
(Tfake

i,p , ep) and mismatched pairs of real texture and
expressions (Treal

i,p , er), where er is a random expres-
sion.

• Diden is designed to preserve identities. It is used
to differentiate real textures with the same identity
(Treal

i,p ,T
real
i,q ), from real and fake textures with the



Figure 5: The first 5 eigenvectors of an average face model.
In each eigenvector, the vertices with similar colors have
similar deformation.

same identity (Treal
i,p ,T

fake
i,q ), and real textures with dif-

ferent identities (Treal
i,p ,T

real
j,q ), where p, q index ran-

dom expressions and i, j index different identities.

We use LSGAN [20] to calculate the respective loss
terms Lreal,Lpair,Liden. The combined GAN objective
writes as:

LGAN = Lreal + Lpair + Liden. (2)

The objective for our discriminators is

max
Dreal,Dpair,Diden

LGAN. (3)

The generator G minimizes LGAN and is supervised by
L1 loss and perceptual loss [10] Lperc. Though the original
perceptual loss is proposed in image space, we find it effec-
tive in texture space as well (Sec. 5.1). Thus our generator
objective is

min
G
LGAN + λL1

L1 + λpercLperc. (4)

In our experiments, we empirically set λL1 = 10, λperc =
10. For more details of our loss terms, please see our sup-
plementary materials.

3.3. Shape Branch

The 3D face shape S is a non-linear function of the ex-
pression coefficients due to the complex interaction of mus-
cles, flesh and bones. Previous works [4, 5] model this com-
plex interaction linearly. Although this method is simple
and widely adopted, we argue that these limited expression
models can only represent the large-scale motion, and strug-
gle to capture the fine-grained details.

To further increase the accuracy of the shape branch, we
deform the face shape either through depth or landmarks as
mentioned in Sec 3.1. To fully capture these geometric de-
tails, we formulate the shape function as a linear part using
Eqn. 1 and and a non-linear part D(a, esrc, etgt), which is
an additional deformation field. Similarly to [24], we train
a neural network to learn only the non-linear deformation
D to reduce variance.

The output of D(a, esrc, etgt) represents the per vertext
displacement vectors. These vectors can be very high di-
mensional. To reduce dimensionality, we model the dis-
placements with a spectral representation as in [3]. More

Figure 6: Demonstration of the global branch.

specifically, we compute eigenvectors of the k smallest non-
zero eigenvalues of the graph Laplacian matrix of a generic
3D face shape [15] and use them as the basis of vertex dis-
placements. We use a fully connected network with 2 hid-
den layers to predict the basis coefficients. Fig. 5 shows the
first 5 eigenvectors. In our experiments we set k = 100.

3.4. Global Branch

We use the predicted texture T̂ and shape Ŝ to render the
predicted face on the image. The goal of the global branch is
to blend this face into the background seamlessly. We show
the process in Fig. 6. We first make the artificial margin
between the rendered face and the background and train a
network to hallucinate in between. The margin is computed
using a dilation approach with kernel size 12. To fill in the
margin, one could use image inpainting techniques [29, 30].
We have a simpler problem since the input image is usu-
ally similar to the background image. Therefore, we use the
global network that takes the input image, the rendered face
and the region outside of the margin as input. The network
then learns to blend the generated face and the background
together. Occasionally this still produces artifacts near the
boundary. Therefore at test time, we apply image blending
with the input image as a post-processing step. We describe
this step in more details in the supplemental materials.

4. Implementation Details
Datasets. Our datasets include FaceWarehouse [5] and

Chicago Face Dataset (CFD) [19]. For the training set, we
use 493 identities from FaceWarehouse, each with at least
20 different expressions and 152 identities from CFD, each
with at least 5 expressions. Among this data, 140 identities
in Facewarehouse have depth. For the test set, we use 87
identities from Facewarehouse and 5 identities from CFD.
Our datasets span different genders and skin colors. We use
256 × 256 for our image and texture resolution. To further
increase the resolution multistage generative models can be
employed [11, 31].

Network architecture. The texture and global branch
generators adopt pix2pix [9] architecture with attention
maps [21]. We change the transposed convolutions to up-
sampling layers followed by 3x3 convolutions. Similarly
our discriminators adopt the pix2pix discriminator architec-
tures. See the supplement for more details.



Figure 7: Qualitative samples of different inputs of the tex-
ture branch evaluated on rare facial expressions. Note that
the proposed approach generalizes better compared to the
standard method of directly appending expression coeffi-
cients.

Training. We use Adam [13] optimizer with a learning
rate of 0.0001, β1 = 0.5, β2 = 0.9. We first train the texture
branch and the shape branch. Then we fix their weights
and train the global branch. We use a single NVIDIA Tesla
V100 GPU and we train for 5 days to get the best results.

5. Experiments

In this section, we first conduct an ablation study to eval-
uate the design choices in our system. Next, we compare
our approach with other approaches both qualitatively and
quantitatively. Finally, we show additional qualitative re-
sults.

5.1. Ablation Study

Texture branch input format. We compare our pro-
posed input format with directly concatenating expression
coefficients to the input of the neural network as in [6, 21].
We show that our approach generalizes better by transfer-
ring an image from CFD to a rare expression that CFD
rarely covers in Fig. 7. The model (top row) which appends
expression coefficients directly as input fails to generate the
correct appearance for regions like the inner mouth, cheeks
near mouth corners and lips. This occurs since the generator
has rarely seen the combination of this face skin color with
these specific coefficients in the training dataset. The pro-
posed approach, which conditions on the texture branch on
the spatial representation of geometry information, gener-
alizes better. We believe our approach better uses the local
convoluational structure of the neural network.

Texture branch loss functions. We apply ablation study
on our loss terms. We show results in Fig. 8. We first re-
move Lpair and Liden. The Lpair term is designed to en-
force texture-expression pair consistency. We can observe
that expression specific features such as wrinkles are less
observable after the removal. Liden is designed to preserve
identities, which helps direct appearance details from the
source texture to the synthesized texture. We can see that

Figure 8: Qualitative evaluation of different loss terms. The
model trained with the full objects generates images with
higher fidelity.

Table 1: RMSE of vertices with/without shape branch.
Lower number is better.

RMSE (mm)
Without shape branch 2.2158
With shape branch 1.7619

the synthesized images, especially near the teeth region, are
more blurry after the removal. We then remove the percep-
tual loss while keeping the rest unchanged. Similar to L1

loss [9], the perceptual loss helps avoid artifacts near the
mouth region. It also allows the network to capture more
subtle details such as wrinkles on the forehead compared to
L1 loss alone.

Shape branch. We demonstrate that our shape branch
generates more realistic shapes than the linear blendshapes
both quantitatively and qualitatively. We first compute the
root mean square error (RMSE) between the generated face
mesh and our ground truth fitted face mesh in Table 1. After
being deformed by our shape branch, the predicted mesh
is closer to the ground truth. We also show an example
demonstrating the change of the mesh in Fig. 9. Without
the shape branch, the fitted linear blendshapes tend to open
the jaw more widely, which looks less natural, while our
shape branch learns to close the jaw, such that the shape
gets closer to the ground truth.

Note that despite the obvious benefits of the texture
shape decoupling, our carefully designed input format, loss
functions and shape branch are necessary for best results.

5.2. Comparisons

We compare our face manipulation results to the direct
texture mapping approach [5], StarGAN [6] and GANima-
tion [21]. The method in [5] is a linear model combined
with a computer graphics rendering approach, which also
separates the texture and the shape but does not alter the



Figure 9: Qualitative evaluation of the shape branch. The
top row shows the input image, the generated images with-
out and with the shape branch and the ground truth target
image. The bottom row shows the fitted mesh with the color
coded depth error in mm. Lower depth error makes the gen-
erated images more realistic.

texture. The latter two train on image space only concate-
nating the attributes or action units directly to the input. To
evaluate the effectiveness of different methods at handling
wide ranges of extreme expressions, we choose FaceWare-
house [5] as our training set because it contains many chal-
lenging expressions other datasets do not normally cover.
We use the 87 identities in our test set as mentioned in
Sec. 4 and we do not include CFD for easier comparisons.
We trained StarGAN using 20 different expressions as at-
tributes. We implemented GANimation with all the atten-
tion mechanisms and loss terms, except that we replaced the
regressor with a classifer in their discriminator, which tends
to give better results on our dataset. For all the compari-
son experiments, we transfer neutral expressions to differ-
ent expressions. We use the real captured data from [5] as
the ground truth.

Qualitative study. We show several examples in Fig. 10.
Direct texture mapping is not able to generate wrinkles
in the smiling expression, teeth in mouth opening expres-
sion or correct shading details in mouth blowing expression.
For StarGAN and GANimation, we observe that they tend
to produce more artifacts in expressions that have larger
scale facial movements like mouth opening and mouth slop-
ing. We hypothesize that this is because the competing ap-
proaches need to learn a complex model with all the rigid
pose, shape and appearance variance together, while our
fitting process and shape branch take the first two away,
leaving a simpler function for the texture branch to learn.
We also find that GANimation sometimes leaves the details
from the input image in the output. Interested readers can

Table 2: Quantitative comparisons and user studies results
of different methods. We report the Average Content Dis-
tance (ACD, lower is better) and the user preference score
(higher is beter). Best results in bold.

Methods ACD User Preference
Ours / Others

Texture mapping [5] 0.6194 69.8 / 30.2
StarGAN [6] 0.5981 86.8 / 13.2

GANimation [21] 0.5595 86.2 / 13.8
Ours 0.5107 N/A

Ground truth 0.4608 53.4 / 46.6

magnify the lips region on the 4th column and eyebrows re-
gion in the 5th column to see the artifacts. We hypothesize
that this is a problem caused by the attention mechanism in
the image space. Our approach has a fixed texture layout
and thus does not have this problem.

Note that our synthesized images have different camera
poses than the ground truth. This is because FaceWarehouse
is captured with different head poses and our images are
cropped differently based on the face sizes. Also note that
the synthesized images look different from the ground truth.
This is because there are numerous ways that a person can
perform an expression and our method only generates a pos-
sible realization of that expression.

Quantitative study. We adopt Average Content Dis-
tance (ACD) from [26] to evaluate how well identities are
preserved using different methods. We extract feature vec-
tors from each synthesized image and compute the L2 dis-
tance to the feature vector of the input image. We show
the results in Table 2. Our method gives the best results
besides ground truth. Note that we do not optimize with re-
spect to any pretrained face recognition networks at training
time. We attribute our lower ACD to our disentanglement
representation of texture and shape, which makes it easier
to preserve identities.

User study. We perform a user study on Amazon Me-
chanical Turk (AMT), where each worker is presented with
the reference image, an image synthesized by our method
and an image synthesized by a competing method. We ask
the turkers to evaluate the synthesized images based on their
quality, realism of the expression, and similarity to the ref-
erence image. Since faces in ground truth images have dif-
ferent poses, for comparison with ground truth we only ask
the subjects to evaluate based on the quality of the image
and expression, eliminating other irrelevant factors as much
as possible. For each comparison, we have 1, 740 pairs of
images and each pair is evaluated by 3 workers. We only
accepted turkers with a lifetime HIT approval rate ≥ 95%.
We show the results in Table 2. Users prefer our methods
over all other methods. We get a slightly higher preference
score than ground truth. This proves that it is difficult for



Figure 10: Comparison of face synthesis methods. Given the same input image each method generated 11 different facial
expressions. Our approach produced less artifacts and renders more realistically looking images than the competing methods.

Figure 11: Manipulating images with different source ex-
pressions. Although the input images are different, each
manipulated image looks plausible.

humans to distinguish between the images generated by our
method and the ground truth.

5.3. More Results

Different input expressions. Our method can handle in-
put expressions that are not neutral. We show synthesized
images using the same person with different expressions as
input in Fig. 11. Although our input images are different,
our synthesized images with the same target expressions
still look similar. We also note that the method can generate
a different version of each expression for each subject.

Images in the wild. We show examples of our method
applied to images in-the-wild in Fig. 1 and refer the reader
to the supplementary materials for more in-the-wild results.
Due to the decoupled face representation and separate tex-
ture and shape branches, our method is robust to different
identities, expressions, head poses or lighting.

6. Conclusion

We presented a 3D guided fine grained face manipula-
tion approach to transfer from one arbitrary expression to
another arbitrary expression. The method decomposes an
image into shape and texture spaces, followed by process-
ing of these spaces with separate branches. We showed the
benefits of such a scheme. Conditioning the pipeline on
the spatial representation of important geometry informa-
tion is advantageous over the straightforward approach of
directly appending expression coefficients. To further boost
the quality, we introduced several of the loss functions ac-
counting for the pairwise consistency and identity. Our ab-
lation studies supported the proposed framework. Further-
more, our method showed a significantly better ACD score
as well as a preference by human annotators when com-
pared to the competing approaches. Finally, when com-
pared to the real images, the annotators were not able to
distinguish our generated images from the real images, fully
supporting the benefits of the presented method.
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Appendices

A. More Results From CFD
We present more results from CFD test set in Figure 12.

B. More Results From FaceWarehouse
We present more results from Facewarehouse test set in

Figure 14.

C. More Results from Images in the Wild
Though our training set only contains images captured

in a lab setting with frontal faces and uniform lighting, we
show that our trained model can work on more challenging
in-the-wild images in Figure 15.

D. More Results on Continuous Editing
As we use expression coefficients as conditions, we can

trivially manipulate faces continuously. We show more re-
sults on continuous editing in the submitted video.

E. More Details in Lreal,Lpair and Liden

As mentioned in the paper, our min-max game objec-
tive is composed of three terms: the realism term Lreal, the
pair-wise term Lpair and the identity term Liden. These
three loss terms are calculated from three discriminators
Dreal, Dpair and Diden respectively using LSGAN[20]. Let
Treal

i,p ,T
fake
i,p be the real and fake textures of identity ai un-

der the expression ep. Let L̄2(x) =‖ x − 1 ‖2, L2(x) =‖
x ‖2, our loss terms are calculated as follows:

• Lreal is used to differentiate real images and fake gen-
erated images:

Lreal = L̄2(Dreal(T
real
i,p )) + L2(Dreal(T

fake
i,p )). (5)

• Lpair is used to differentiate matched pairs of real
texture and expressions (Treal

i,p , ep) from matched
pairs of fake texture and expressions (Tfake

i,p , ep) and
mismatched pairs of real texture and expressions
(Treal

i,p , er), where er is a random expression:

Lpair = 2L̄2(Dpair(T
real
i,p , ep)) (6)

+ L2(Dpair(T
fake
i,p , ep) + L2(Treal

i,p , er)).

where we multiply the first term by 2 to prevent the
discriminator from simply producing a small value.

• Liden is used to differentiate real textures with the
same identity (Treal

i,p ,T
real
i,q ), from real and fake tex-

tures with the same identity (Treal
i,p ,T

fake
i,q ), and real

textures with different identities (Treal
i,p ,T

real
j,q ), where

p, q index random expressions and i, j index different
identities.

Liden = 2L̄2(Diden(Treal
i,p ,T

real
i,q )) (7)

+ L2(Diden(Treal
i,p ,T

fake
i,q )) + L2(Treal

i,p ,T
real
j,q ).

F. Network Architectures
For our texture branch generator, we use pix2pix [9] and

attention map [21]. For our texture branch input, we con-
catenate input texture(3), normal(3), area deformation(1),
curvature(1), normal difference(3), position different(3) and
noise (1) together, thus the total number of channels for our
input is 15. For our output, we use a separate attention map
for each R,G,B channel, therefore the number of channels
for our output is 6. To avoid being saturated in the gradi-
ents, we do not use any sigmoid or tanh activations. For the
hidden layers in the middle, we use the UNet structure with
skip link. For the encoder, we use convolutional layers with
filter size 4, stride 2 and padding 1 for downsampling. For
the decoder, we use bilinear upsampling followed by a con-
volutional layer with filter size 3, stride 1 and padding 1 for
upsampling. Following the notation from [9], we use Ck
denote Convolution-BatchNorm-ReLU layer with k filters.
encoder:
C32− C64− C64
decoder:
C64− C32− C6
All ReLUs in the encoder are leaky, with slope 0.2. All
ReLUs in the decoder are not leaky.

G. More Details in the Global Branch
The goal of the global branch is to blend the rendered

image seamlessly into the background. We first generate an
margin by calling the OpenCV dilate function with a ker-
nel size of 12. The our global branch takes the rendered
face, input image and regions outside of the margin as input
to hallucinate inside. Sometimes there is still an observable
boundary in which case we apply image blending. We blend
the image based on the vertex distance d from the source ex-
pression mesh to the target expression mesh. The blending
alpha is determined heuristically as exp(d2/4).

H. More Comparison with Texture Mapping
We show more examples of the difference between our

approach and direct texture mapping approach. To manipu-
late expression in the image, one can change only the under-
lying shape without substantially changing the texture like
[5]. However this can result in many artifacts, especially
when the source and target expressions significantly differ.
For example, in Fig. 13, if one directly uses the texture ex-
tracted from the source image and renders it with a smiling



Figure 12: More results from CFD. The first column are the input images.

face shape, the missing crease and teeth and image distor-
tion make the result less realistic. Our texture branch learns
to reconstruct these missing parts and change the local ap-
pearance near the eyes, which makes the resulting image
look natural.

Figure 13: Demonstration of texture branch. This example
shows transferring to a smiling expression. Top: the direct
texture mapping approach [5]. Bottom: rendering using our
predicted texture with the same smiling shape.



Figure 14: More results from FaceWarehouse. The first column are the input images.



Figure 15: More results from in-the-wild images. Note that our training set only contains images captured with frontal faces
and good lighting, our trained model can work on some challenging in-the-wild images as well.


