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Abstract

Visual-semantic embedding models have been recently proposed and shown to be
effective for image classification and zero-shot learning. The key idea is that by directly
learning a mapping from images into a semantic label space, the algorithm can gen-
eralize to a large number of unseen labels. However, existing approaches are limited
to single-label embedding, handling images with multiple labels still remains an open
problem, mainly due to the complex underlying correspondence between an image and
its labels. In this work, we present a novel Multiple Instance Visual-Semantic Embedding
(MIVSE) model for multi-label images. Instead of embedding a whole image into the
semantic space, our model characterizes the subregion-to-label correspondence, which
discovers and maps semantically meaningful image subregions to the corresponding la-
bels. Experiments on two challenging tasks, multi-label image annotation and zero-shot
learning, show that the proposed MIVSE model outperforms state-of-the-art methods on
both tasks and possesses the ability of generalizing to unseen labels.

1 Introduction
Image classification is a fundamental problem in computer vision. Most existing work fo-
cuses on single-label image classification [3, 17, 34], where each image is assumed to have
only one class label. Classic approaches try to categorize images into a fixed set of classes
by training a multi-class classifier. However, due to the complex relationships among classes
(e.g., hierarchical, disjoint, etc.), it is hard to define a perfect classifier encoding all those
semantic relations [4]. Also, since the set of classes is predefined, such systems need to be
re-trained whenever a new visual entity emerges.

To address these shortcomings, visual-semantic embedding models [7, 15, 24, 29] were
recently proposed, which leverage semantic information contained in unannotated text data
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Figure 1: (a) An example of image with multiple labels; (b) We observe that different labels
may correspond to various image subregions, but not necessarily the whole image, such as
the labels clouds, sun, bird, which are associated with the subregions in the bounding boxes.

to learn semantic relationships among labels, and explicitly map images into a rich semantic
space (in such space, certain semantic relationships are encoded, e.g., related labels like
sun and sunrise locate at close positions. And images from these two classes may share
some common visual appearance.). By resorting to classification in the semantic space with
respect to a set of label embedding vectors, visual-semantic models have shown comparable
performance to state-of-the-art visual object classifiers and demonstrated zero-shot learning

capability, i.e., the ability to predict unseen image categories without training with them.
Although visual-semantic embedding models have shown impressive results for images

with single labels, no attempts have been made on optimizing it for multi-label annotation. It
is important to develop such a model due to the following reasons. Firstly, real-world images
are often associated with multiple description labels. Multi-label annotation is a practical
and challenging task, since the image labels can be diverse, which may describe the image
foreground, image background, or the whole image. Secondly, it is nontrivial to extend a
single-label visual-semantic embedding model to a multi-label one. The implicit assumption
that each label corresponds to the whole image does not hold for multi-label cases. For a
typical multi-label image, some labels may correspond to different image subregions, instead
of the whole image, as shown in Figure 1.

Hence, in this paper, we present a novel Multiple Instance Visual-Semantic Embedding
(MIVSE) to model images and their corresponding multiple textual labels. Our method
characterizes an image-subregion-to-label correspondence by learning an embedding func-
tion that maps semantically meaningful image subregions to their corresponding labels in
the semantic space. In order to discover those semantically meaningful subregions, we con-
struct a bag of subregion instances using state-of-the-art region-proposal method [16]. And
we propose an objective function that models such correspondence with a weighting scheme
encoded to optimize the label prediction. The proposed model has shown superior perfor-
mance in multi-label image annotation, which outperforms state-of-the-art method [10] on
NUS-WIDE dataset, besides, it possesses the generalizing ability to predict unseen labels,
which outperforms existing methods [7, 24] on MIT Places205 dataset.

2 Related Work

Multi-label image annotation. Modeling images and their corresponding textual labels
have attracted increasing interest recently. Early work in this area focused on learning statis-
tical models based on hand-crafted features [11, 21, 35, 38]. As the learned image represen-
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tation using deep convolutional neural network (CNN) has shown superior performance in
various vision tasks [8, 17, 19, 28, 30, 32, 34, 36], recently Gong et al. [10] applied the CNN
architecture to multi-label image annotation problem and achieved nice performance. With
the help of additional metadata, methods [12, 14] further boost the annotation performance.
However, since the metadata used in [12, 14] were collected separately, for fair comparison,
we do not utilize metadata in this paper. Without metadata, [10] is state-of-the-art method,
which is classes-predefined and thus lacks the ability of generalizing to unseen labels.

It is also important to note the difference between multi-label image annotation and at-
tribute prediction [1]. Attributes [6, 26] are commonly used to encode the visual properties
of objects. However, labels are different from attributes, since attributes are on object-level
while labels are on image-level. For example, in Figure 1, circular can be an attribute of the
object sun, but it is not a suitable label of this image.

Zero-shot learning. Zero-shot learning is commonly used to evaluate the generalizing
ability of a system, whose goal is to classify images from untrained classes. Early work
[22, 25, 31, 33] attempted to solve this problem relying on curated source of semantic in-
formation of the labels, such as a knowledge base of labels, the WordNet hierarchy, etc.
Recently, visual-semantic embedding models [7, 24, 29] were proposed to leverage seman-
tic representation learned directly from unannotated text data online. There are various
attribute-based zero-shot learning methods in the literature [18, 20]. However, because of
the difference between attributes and labels as explained before, in this paper, we only han-
dle multi-label zero-shot learning problem in the context of label prediction.

3 Overview of Visual-Semantic Embedding

Given a multi-label image dataset D ⌘ {(x
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i
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i=1, each image is represented by a d-

dimensional feature vector, x
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, ...,yT
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can be varied across different images. There
are total n distinct labels in dataset D, i.e., y
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i

2 Y ⌘ {1,2, ...,n},8i, t. Previous methods
[10, 11] formulate multi-label image annotation as a label assignment problem, which pre-
define a fixed set of class labels Y , and learn to predict the labels given image input, i.e.,
X ! Y . However, such classes-predefined approaches lack the ability of generalizing to un-
seen labels, and need to be retrained when a new label emerges. Given a system trained with
labels from Y , it is infeasible to apply it to images with unseen labels from Y 0, if Y \Y 0 = /0.

Fortunately, visual-semantic embedding (VSE) models [7, 24] have been proposed to
address this issue for single-label image classification. Instead of learning a mapping from
images to the labels (X ! Y), it aims to construct a continuous semantic space S ⌘ Re

which captures the semantic relationship among all labels in Y [Y 0, and explicitly learn
the embedding function from images to such space, f : X ! S . The semantic space S is
constructed such that two labels y and y

0 are semantically similar if and only if their semantic
embeddings s(y) and s(y0) are close, where s(y) is the semantic embedding vector of label y

in S . Thus the training and unseen test labels become related via the semantic space S . Once
f (·) is learned, it can be applied to a test image x0 to obtain f (x0), and this image embedding
vector of x0 is then compared with the unseen label embedding vectors, {s(y0);y

0 2Y 0}. This
allows VSE models to generalize to unseen labels.
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Figure 2: Illustration of our Multiple Instance Visual-Semantic Embedding model, which
is composed of two key components: (a) construct image subregion set; (b) establish the
subregion-to-label correspondence by embeding semantically meaningful subregions close
to their corresponding labels in the semantic space (the red symbols illustrate the embedding
of text labels, and symbols of other colors indicate that of different image subregions.). Note
that the bounding boxes are for visualization only; they are not provided in training.

3.1 Constructing the semantic label space
Constructing S is the first step. Distributed representations of texts [23, 27] have shown
the capacity to provide semantically meaningful embedding features for semantically related
text terms. In this paper, we utilize the GloVe model [27] to construct a 300-dim semantic
label space S which embodies the semantic relationship of labels.

3.2 Naive multi-label VSE baseline
Unfortunately, existing VSE models only handle single label images. We can extend a VSE
model to multi-label scenerio by developing the following loss function. Such straightfor-
ward extension serves as our multi-label baseline:
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where m is the margin that we cross-validate, f (x) is the embedding vector of image x in S ,
s(y) is the embedding vector of label y in S . y+
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denotes the ground truth label set of x
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, i.e.,
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= y
i
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4 Multiple Instance Visual-Semantic Embedding
However, the naive extension of VSE models from single-label to multi-label cases is non-
trivial. The baseline model in Equation 1 has a critical problem: each image x

i

may corre-
spond to multiple labels in y

i

. One or more of those labels could be located far away from
others in the semantic space S , such as bird and sun in Figure 2. Trying to push the em-
bedding of a whole image, f (x

i

), to be close to multiple distant points in S will confuse the
embedding function. In the worst case, the image could be mapped to a near average position
of those label embedding vectors, which might correspond to a totally different concept.

The key observation for overcoming this problem is that different image labels often
correspond to different subregions in the image. For example, in Figure 2, the image on the
left has four labels. Among them only sunrise corresponds to the whole image and other
labels correspond to image subregions in the bounding boxes. This motivates us to derive
a new idea for multi-label embedding, in which one generate multiple subregion proposals
from an image (including the whole image) and use the resulting subregion set to match
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the labels in the semantic space. This requires a subregion-to-label correspondence to be
constructed on-the-fly during the learning process. Now we introduce our solution in stages.

4.1 Modeling subregion-to-label correspondence
Inspired by Multiple Instance Learning [5], we first construct a bag of image subregion
instances. In order to interpret each ground truth label, there should be at least one subregion
that maps close to it. The subregion with the closest distance to a certain label is more likely
to represent that label. Thus, we define a preliminary loss function of MIVSE as follows:
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Section 4.3.2), xc
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Given numerous subregion candidates in C

i

, we want to map meaningful subregions close
to the labels it interprets, thus the rank of predicted labels is essential. One limitation of
the preliminary loss function in Equation 2 is that it does not explicitly optimize the label
prediction. Thus, we propose a weighting scheme to optimize such ranking.

4.2 Optimizing the label prediction
The rank r of a label y is defined as:
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where (·) is the indicator function. As we see, given a label y, we rank it according to its
minimal distance to all image subregions, i.e., by min

c2C
i

|| f (xc

i

)� s(y)||22. By optimizing
the ranking of labels, we are supposed to encourage ground truth (positive) labels to have
smaller matching-distance than the negative labels. Thus, we give larger penalties to false
predictions of ranking positive labels. The final loss function of MIVSE is defined as follows:
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Note that we use exact ranks, which is a major difference with the approximated-weighting
methods. If a ground truth label is ranked within top-|y+

i

|, we give small and constant penalty
weights to its loss. Otherwise, we assign larger weight. The intuition is to push the positive
labels to top ranks, thus mapping meaningful subregions closer to the true labels.

4.3 Learning MIVSE model
4.3.1 MIVSE network architecture.

Figure 3 illustrates the overall network architecture of our MIVSE model. As discussed
in previous section, we utilize the GloVe model [27] to extract 300-dim label embedding
features s(y). And we adopt GoogleNet [34] to extract the 1024-dim image feature x. To
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Figure 3: Network architecture of MIVSE, composed of 4 components: (a) subregion
image features extraction; (b) image features embedding; (c) text features embedding; (d)
embedding learning guided by the MIVSE loss layer.

learn the embedding from image to semantic space, f : X ! S, a fully connected layer
is used following the image feature output. And two L2 normalize layers are added on
both image and text embedding vectors, to make the embeddings of different modalities
comparable. Finally, we add the MIVSE loss layer on the top to guide the training.

In our model, we need to extract many subregion features {xc}
c2C for each image. For

efficiency, we follow the Fast RCNN [8] scheme: Given an image x and the regions of
interests (RoI) C, we pass the image through the fully convolutional network once, and all
subregions c 2 C are pooled into a fixed-size feature map to obtain {xc}.

4.3.2 Subregion set construction.

Note that we do not have bounding box annotations in training, thus a key problem of MIVSE
is how to construct the image subregion set C. Inspired by the recent region-proposal-based
methods [8, 9] in object detection, we construct this set using Geodesic Object Proposals
[16] followed by post-processing. Semantically meaningful subregions of an image do not
necessarily contain objects. We adopt Geodesic Object Proposals since we empirically find
that it covers both foreground and background regions well. After constructing the subregion
set above, there are around 100 subregions per image on average. But among them only very
few correspond to the ground truth labels. Thus, in order to save computational time, we
post-process the generated region proposals to discard regions of too small sizes or extreme
aspect ratios (in experiments we constraint the subregions’ side length to be at least 0.3 of
the image and the extreme aspect ratio to be 1:4 or 4:1). Finally, we keep the top 35 refined-
subregions sorted by region-proposal score, to construct C. The whole image is included.

4.4 Inference with MIVSE model

Given a trained MIVSE model and a new test image x0, firstly, the subregion set C0 is con-
structed as above. And we pass x0 and C0 through our MIVSE network in Figure 3 (a) (b) to
obtain the subregion embedding vectors, { f (x0c)}

c2C . Then, for all testing labels y

0 2Y 0, the
distances between x0 and y

0 are computed by min
c2C0 || f (x0c)� s(y0)||22. Thus, for image x0

there is a ranking list of label prediction according to such distances. In addition, given a pre-
dicted label y

⇤, we can locate the corresponding semantically meaningful image subregion
c

⇤ via, c

⇤ = argmin
c2C || f (x0c)� s(y⇤)||22.
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Approach Rec

L

Prec

L

Rec

A

Prec

A

N+

1. k = 3

CNN + Ranking [10] 26.83 31.93 58.00 46.59 95.06
CNN + WARP [10] 35.60 31.65 60.49 48.59 96.29
upgraded [10] 37.81 35.23 62.02 50.91 98.77
upgraded kNN-voting [21] 28.53 32.76 58.92 46.41 95.06
multi-label VSE baseline 31.59 34.75 60.26 49.17 98.77
Our MIVSE model 40.15 37.74 65.03 52.23 100.00

2. k = 5

CNN + Ranking [10] 42.48 22.74 72.78 35.08 97.53
CNN + WARP [10] 52.03 22.31 75.00 36.16 100.00
Upgraded [10] 55.27 25.93 78.01 38.04 100.00
multi-label VSE baseline 50.25 26.08 75.62 36.94 98.77
Our MIVSE model 59.81 28.26 80.94 39.00 100.00

Table 1: Performance of the proposed MIVSE model in image annotation on NUS-WIDE,
shown in %, with k = 3 and k = 5 annotated labels per image, respectively.

5 Experiments
In this section, we report experiments in two tasks, multi-label image annotation and zero-
shot learning. We use Caffe [13] to implement our model, which is optimized by SGD with
momentum of weight 0.9. The ranking loss margin m is set to be 0.3 in our experiments.

5.1 Multi-label image annotation on NUS-WIDE
5.1.1 Dataset.

In the task of multi-label image annotation, Gong et al. [10] reported state-of-the-art per-
formance among the methods that do not utilize metadata. We follow [10] to test on one of
the largest public multi-label image dataset, NUS-WIDE [2]. This dataset contains 209,347
images from Flickr with 81 ground-truth labels. We follow the train-test split of [10] to use
a subset of 150,000 images for training and the rest for testing. It is worth noting that except
the data provided in the dataset, we do not use any extra data for training. Thus we do not
compare with those methods that utilize rich metadata for image annotation, e.g., [12, 14].

5.1.2 Evaluation metric.

We adopt the 5 metrics used in [10] for fair comparison. Specifically, for each image, we
annotate it with the k highest-ranked labels and compare the assigned labels with its ground-
truth. Firstly, we compute the recall and precision for each label, and report the per-label
recall and per-label precision: Rec

L

= 1
T

ÂT

i=1
N

c

i

N

g

i

, Prec

L

= 1
T

ÂT
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, where T is the total
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c
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is the number of correctly annotated images for label i, N

g
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is the
number of ground-truth labeling for label i, and N

p

i

is the number of predictions for label

i. We also report the overall recall and overall precision: Rec
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= ÂT
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ÂT
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= ÂT
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.
The percentage of recalled labels in all labels is evaluated, denoted as N+. Evaluating these
5 metrics makes the evaluation less biased and more thorough.

5.1.3 Comparing with state-of-the-art methods.

We compare MIVSE with various methods on NUS-WIDE using k = 3 and k = 5, respec-
tively. Table 1 shows the results. Note that the results shown here are reported from the
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Figure 4: Image annotation results using MIVSE. The predicted labels are listed according
to the ranking (we show top-3 predictions if the number of ground truth labels is smaller than
or equal to 3, otherwise show top-5 predictions.). The semantically meaningful subregions
of predicted labels are shown in bounding boxes of the same color indicated with the labels.
The ground truth labels (GT) are listed according to alphabetic order. Better viewed in color.

original papers. The original results reported in [10] were based on AlexNet [17] while
our model uses GoogleNet [34]. For fair comparison, we reimplement their model using
GoogleNet, named as “upgraded [10]", and “upgraded kNN-voting [21]". Those upgraded
methods do not utilize metadata for training. Overall, our model outperforms state-of-the-art
results reported in [10] by 4.51% averaged over all metrics for k = 3, and 4.50% for k = 5.
Our model outperforms the upgraded best performer by 2.08% for k = 3 and 2.15% for k = 5.

5.1.4 Qualitative results.

Our method can discover semantically meaningful image subregion for each label by model-
ing the subregion-to-label correspondence. Figure 4 shows several sample results on image
annotation, as well as the visualization of corresponding subregions for the predicted labels,
as indicated by the bounding boxes. As shown in the figure, the predicted labels are associ-
ated with subregions of reasonable semantics. For example, Sky and Window in the first row,
Person and Animals in the second row, Road and Grass in the third row, etc., are reasonably
discovered using our model. There are a few annotation errors or inaccurate bounding boxes.
For instance, the right image in the second row is mistakenly annotated with Plants. But if
we look at the bounding box of Plants, the subregion interprets the label concept well. It is
important to note that our task is not detection and no bounding box annotation is used in the
training. Thus, some objects are not tightly localized by the bounding boxes.

In the following section, we validate the generalizing ability of the proposed MIVSE
model on zero-shot learning.

{Gong, Jia, Leung, Toshev, and Ioffe} 2014

{Krizhevsky, Sutskever, and Hinton} 2012

{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

{Gong, Jia, Leung, Toshev, and Ioffe} 2014

{Makadia, Pavlovic, and Kumar} 2008

{Gong, Jia, Leung, Toshev, and Ioffe} 2014
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Figure 5: Zero-shot learning results on Places205 dataset using MIVSE model and the
multi-label baseline. The correctly predicted labels are shown in blue (note that there is
only one ground truth label for each image in Places205). In each image, the semantically
meaningful image subregion of MIVSE is shown in green bounding box.

5.2 Zero-shot learning on MIT Places205

5.2.1 Dataset.

As discussed in related work, because of the difference between attributes and labels, we
focus on zero-shot learning in the context of label prediction. Unfortunately, most zero-
shot learning datasets in the literature are attribute-based, and others are for single-label
zero-shot learning. Thus, we have to setup a zero-shot learning dataset for multi-label case.
We reconstruct such a dataset based on the NUS-WIDE dataset [2] and the MIT Places205
dataset [37]. The multi-label dataset NUS-WIDE is used for model training, and we test
the learned model on the validation set of the single label MIT Places205 dataset. In MIT
Places205, there are total 205 classes, and for each class there are 100 validation images. We
exclude images from the following 8 classes: bridge, castle, harbor, mountain, ocean, sky,
tower, and valley, since they are included in NUS-WIDE, which results in 197 test classes.
It is important to note that in our setup, some test labels may be partially overlapped with
training labels like airport and airport terminal, however, they are considered to be unseen
because of the different concepts. Similarly, such setup was widely used by [7, 24].

5.2.2 Evaluation metric and comparing methods.

To quantify the performance, we use mAP@k as the evaluation metric, which measures
the mean average precision of annotating the ground truth label within the top-k predic-
tion. There is seldom zero-shot learning approach for multi-label images. Classes-predefined
multi-label image annotation methods do not possess the ability of generalizing to unseen
labels. Previous visual-semantic embedding models are developed for single-label images
only. We compare our model with the multi-label baseline shown in Equation 1, DeViSE [7],
and ConSE [24]. DeViSE and ConSE are state-of-the-art for single-label zero-shot learning.
In order to adjust them to fit the multi-label case, we duplicate each multi-label image as
multiple single-label images, and train them following the original single-label setting.

{Chua, Tang, Hong, Li, Luo, and Zheng} 2009

{Zhou, Lapedriza, Xiao, Torralba, and Oliva.} 2014

{Frome, Corrado, Shlens, Bengio, Dean, Ranzato, and Mikolov} 2013

{Norouzi, Mikolov, Bengio, Singer, Shlens, Frome, Corrado, and Dean} 2014

{Frome, Corrado, Shlens, Bengio, Dean, Ranzato, and Mikolov} 2013

{Norouzi, Mikolov, Bengio, Singer, Shlens, Frome, Corrado, and Dean} 2014
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Approach mAP@1 mAP@2 mAP@5 mAP@10

DeViSE 1.31 2.25 3.62 5.40
ConSE 1.82 2.77 4.59 6.48
multi-label baseline 6.53 10.18 18.92 28.17
Our model 7.14 11.29 20.50 30.27

Table 2: Zero-shot learning results on the MIT Places205 dataset, shown in %.

5.2.3 Quantitative results.

As shown in Table 2, DeViSE and ConSE perform inferior results because they are inherently
designed for single-label zero-shot learning. Separately training it with duplicated images
will confuse the embedding learning. MIVSE outperforms the multi-label VSE baseline by
1.35%, which further validates the benefit of modeling subregion-to-label correspondence.

5.2.4 Qualitative results.

Figure 5 shows several sample results of zero-shot learning. The two columns on the right
of each image show the top-5 label predictions of our MIVSE model as well as the naive
multi-label baseline. As shown in Figure 5, our MIVSE model correctly predicts all ground
truth labels in top-5, shown in blue. In addition, using our model, the semantically meaning-
ful subregion associated with each predicted labels is located, as shown in green bounding
boxes. The localized image subregions interpret the label concepts reasonably well. For
instance, in the upper right image, test label attic is semantically close to the training label
window. Thus, based on the concept of window already learned in training and a well-located
window-like subregion, our MIVSE model can utilize the relationship in the semantic space
to transfer a learned concept of window to assist the prediction of an unseen label attic. This
suggests that the subregion-to-label correspondence of our method, which helps identify se-
mantically meaningful subregions in image, can benefit the prediction of unseen labels.

6 Conclusion

In this paper, we proposed a novel multiple instance visual-semantic embedding model for
multi-label image representation. Instead of embedding a whole image into the semantic
space, our model learns an embedding function that characterizes the subregion-to-label cor-
respondence, which discovers and maps semantically meaningful image subregions to the
corresponding labels. Experimental results on two challenging tasks, i.e., multi-label image
annotation and zero-shot learning, have demonstrated that the proposed method achieves
superior performance over state-of-the-art methods on both tasks and possesses the general-
izing ability to make correct predictions for unseen labels.
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