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Require: Training Data D = {(xi j ,yi j )}. Hyper-parameter γ
1: д0i j ← 1
2: while t = 1 : Nmax do
3: yti j ← yi j/д

t−1
i j

4: wt
j ← arдminw j

1
ln2 ln(1 + e

−yti j f (xi j ;w j ))

5: дti j ←
γ+Ci j

γ+
∑
e∈Ii j f (xe ;w

t
j )

6: returnw j

Algorithm 1: Learning Parameterw j

where Ci j is the number of interactions (e.g., clicks), and Ei j is the
expected number of interactions. The interaction count Ci j follows
a Poisson distribution Poisson(Ei j ). We can use

∑
e ∈Ii j f (xe ;w j ) to

estimate the expected number of clicks, where Ii j is the set of all
impressions of user and type pair < i, j >. Under the assumptions,
we can prove that f (xi j ;w j ) takes the form of logistic regression,
and w j is a vector of weights on none-interaction features, i.e.,
f (xi j ;w j ) =

1
1+exp(−xTi jw j )

. Also note that in equation (2) γ is a

hyper-parameter that sets the initial psudo-counts of the personal
correction factor дi j .

In the case of estimating αi j for a new or infrequent user, both
Ci j and Ei j are close to 0. Therefore, the affinity scores for such
users largely depend on the model f , i.e. αi j ≈ f (xi j ;w j ). In the
case of frequent user, the type affinity scores would be compensated
as Ci j > Ei j => дi j > 1 (penalized as Ci j < Ei j => дi j < 1) when
the user interact more (less) frequently with the type than expected.

3 LEARNING PARAMETERS
Algorithm 1 outlines the iterative inference process for learningw j .
At first, the correction factors дi j are initialized to 1. Step 3 and 4
learn the bestw j (coefficient) estimate under the fixed дi j . In this
learning process logistic loss is used, as f takes the form of logistic
regression. We are adapting weighting described in [3] when solve
forw j . Given the new coefficient estimates, our algorithm updates
the correction factors (as the expected number of clicks depends
on the underlying feature-based model used) by equation (2). The
process iterates until desired number of interactions or reached
convergence. In this paper, the stopping criteria is defined as | |(wt

j −

wt−1
j )| |2 < 1e−10. In our experiment, the process takes less than 10

iterations to converge.
The labels used in the training data could be the ground truth

affinity scores estimated for frequent users. Alternatively, we could
use a click (interaction) prediction model as the feature-based affin-
ity model f . In this case, the label is a binary variable denoting
whether a user i interacts (e.g., clicks) with the presented content
or not, (e.g., predicting whether a user will click on one story). The
non-interaction features (xi j ) are extracted only from the user and
the content themselves. In doing so, we do not need to explicitly
define frequent and infrequent users.

4 EXPERIMENT
We have conducted experiment on Snapchat story data. Snapchat
is a large social network that also features a Discover page, where
stories from numerous publishers and channels are shown to users.

Poisson-Gamma (ours) HTR (3-day) HTR (1-week)
RMSE 0.429 0.705 0.487

Table 1: Comparison on click count prediction task.

With affinity (ours) No affinity
NDCG@10 0.364 0.325
Accuracy 0.87 0.86

Table 2: Comparison on click prediction task.

The Discover page displays the cover images and the titles, once
clicked the body of the content would be shown. We evaluate the
effectiveness of the affinity scores obtained by our model in two
tasks.

For click counts prediction, we aim at predicting how many
times a user clicking on stories from a certain publisher using the
affinity scores. We use αi j |Ii j | as the prediction model (treating
αi j as probabilities), where |Ii j | is the number of impressions). We
compare our estimated affinity scores estimated with historical tap
ratio. The historical tap ratio (HTR) is defined as the number of
clicks divided by the number of impressions within a period of
time per publisher. We use 0.25% of the all users from 7/30/2017 to
08/05/2017 for training, and predict the click counts for the same
users on 08/06/2017. We use Root-mean-square error (RMSE) as the
evaluation metric. For click prediction task, we aim at predicting
whether a user will click on a story by using affinity score as an
extra feature. We split the same data into 70% training and 30%
testing and use xgboost as the prediction model. We use NDCG@10
and accuracy as the metrics.

Table 1 shows the result of the click count prediction task for dif-
ferent methods. We can clearly see that estimation by the proposed
Gamma-Poisson model achieves the best result (RMSE of 0.429)
compared with historical tap ratio (RMSE of 0.705 and 0.487 where
using 3 days’ data and one week’s data respectively). In addition,
using the affinity score can further improve the click prediction
task as shown in Table 2.

5 CONCLUSION
In this paper, we propose a Gamma-Poisson model for accurately
estimating the user type affinity scores. We conduct experiments
on real data from Snapchat to demonstrate the effectiveness of our
model. We plan to further evaluate the estimated scores on various
other personalization tasks.
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