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Fairness and Outlier Detection (OD) are closely related, as it is exactly the goal of OD to spot rare, minority sam-
ples in a given population.When being aminority (as defined by protected variables, e.g. race/ethnicity/sex/age)
does not reflect positive-class membership (e.g. criminal/fraud), however, OD produces unjust outcomes. Sur-
prisingly, fairness-aware OD has been almost untouched in prior work, as fair machine learning literature
mainly focus on supervised settings. Our work aims to bridge this gap. Specifically, we develop desiderata
capturing well-motivated fairness criteria for OD, and systematically formalize the fair OD problem. Further,
guided by our desiderata, we propose FairOD, a fairness-aware outlier detector, which has the following,
desirable properties: FairOD (1) does not employ disparate treatment at test time, (2) aims to flag equal
proportions of samples from all groups (i.e. obtain group fairness, via statistical parity), and (3) strives to flag
truly high-risk fraction of samples within each group. Extensive experiments on a diverse set of synthetic and
real world datasets show that FairOD produces outcomes that are fair with respect to protected variables,
while performing comparable to (and in some cases, even better than) fairness-agnostic detectors in terms of
detection performance.

1 INTRODUCTION
Fairness in machine learning (ML) has received a surge of attention in the recent years. The
fairness community has largely focused on designing different notions of fairness [5, 16, 67] mainly
tailored towards supervised ML problems [24, 27, 69]. However, perhaps surprisingly, fairness in
the context of outlier detection (OD) is vastly understudied. OD is critical for numerous applications
in security [18, 22, 25, 71, 74], finance [20, 32, 40, 55, 66, 68], healthcare [11, 28, 46, 56, 64] etc.
and is widely used for detection of rare positive-class instances such as network intrusion, crime
hot-spots, fraudulent transactions, drug abuse, and so on.

Outlier detection for “policing”: In high-stakes, critical systems, OD often serves to flag
instances that reflect a tendency towards riskiness which are then “policed” (or audited) by human
experts. The flagged instances typically describe a sparse, low-density or otherwise unusual region
in the data, indicating exogeneity of these instances. For example, law enforcement agencies
might employ automated surveillance systems in public spaces, such as railway stations, to spot
suspicious individuals (based on their e.g. outfit/behavior/demographic characteristics as captured
by surveillance cameras) who could pose risk to thousands of commuters. In this scenario, the
outliers flagged by such automated systems are those who may be policed (stop and frisk) by
law enforcement agents. Notably, policing need not be limited to law enforcement, and rather
represents a general auditing process. For example, in the financial domain, analysts can “police”
individual claims that are flagged as suspected fraudulent by a detector. The same can be said of
trust and safety-focused employees who aim to discover and suspend bad actors and spammy users
on social networks.

This research is sponsored by NSF CAREER 1452425. We thank Dimitris Berberidis for helping with the early development
of the ideas and the preliminary code base. Conclusions expressed in this material are those of the authors and do not
necessarily reflect the views, expressed or implied, of the funding parties.
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Fig. 1. (a) A simulated 2-dimensional data with equal sized groups i.e. |X𝑃𝑉=𝑎 | = |X𝑃𝑉=𝑏 |. (b) Score distri-
butions of groups as induced by 𝑃𝑉 = 𝑎 and 𝑃𝑉 = 𝑏 are plotted by varying the |X𝑃𝑉=𝑎 |/|X𝑃𝑉=𝑏 | ratio on
the simulated data. Notice that minority group (𝑃𝑉 = 𝑏) starts receiving larger scores as sample size ratio
increases. (c) Flag rate ratio of the groups for the varying sample size ratio |X𝑃𝑉=𝑎 |/|X𝑃𝑉=𝑏 |. As we increase
sample size disparity, minority group is “policed” (i.e. flagged) comparatively more.

Group sample size disparity yields unfair OD: Importantly, outlier detectors may be biased
against societal minority groups (as defined by race/ethnicity/sex/age/etc.) since the sample size of
a minority group, by definition, is smaller than that of the majority group, prompting minority
group instances to stand out as rare, statistical minorities as well. Outlier detectors are designed
exactly to spot such rare, minority samples1 – with the hope that outlierness reflects true riskiness:
for example, users with unusually large engagement volumes and short inter-action durations on
social networks, insurance claims for amounts much larger than expected, etc.

However, when being a minority (e.g. Hispanic) does not reflect positive-class membership (e.g.
fraud), OD produces unjust outcomes, by overly flagging the instances from the minority
groups as outliers.While for OD, the outcome is simply a matter of the statistical properties of
the underlying data, from the perspective of societal values, and particularly fairness, it becomes
an ethical matter.

Unfair OD leads to disparate impact: What would happen if we did not strive for fairness-
aware OD in the existence of societal minorities in the data? What effect would the aforementioned
group disparity in OD outcomes (i.e. disparate group flag rates) have downstream?
OD models treating the minority values in what-is-called protected variables (𝑃𝑉 ) (such as

race/sex/etc.) as mere statistically rare observations contributes to the likelihood of minority group
members being flagged as outliers (see Fig. 1). This issue is further exacerbated by potentially many
other variables, called proxies, that partially-redundantly encode (i.e. correlate with) the 𝑃𝑉 (s),
by increasing the number of subspaces in which the minority samples stand out. This results in
over-representation of minority groups in OD outcomes, leading to the over-policing of minority
group members. While this may enable obtaining a more complete picture of the minority group
(e.g. by auditors, law-enforcement agents), it also implies under-policing the majority group given
a limited policing capacity, wherein only a small fraction of all the data samples with the largest
outlierness (based on the model) can be investigated given human, time and cost constraints.
Over-policing via OD can also feed back into a system when the policed outliers are used as

labeled data in downstream supervised learning tasks. Alarmingly, this initially skewed sample (due
to unfair OD), may be compounded through a feedback loop that amplifies the sample skewness over

1In this work, the words sample, instance, and observation are used interchangeably throughout text.
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time. For example, in predictive policing, once the initial police allocations to city neighborhoods
are made using the predictions from a classifier, the subsequent classifier is updated from the crime
observations from those allocated neighborhoods. Thereby, it creates a feedback loop wherein more
crime is likely identified in more heavily policed neighborhoods, leading to police being allocated
more often to the same neighborhoods irrespective of potentially increasing (but unobserved) true
crime rates in other, under-policed neighborhoods.

As such, use of OD in societal applications has a direct bearing on individuals’ social well-being;
therefore, it is pivotal to ensure that the decisions based on OD outcomes are not discriminatory
against any societal groups. This demands design of fairness-aware outlier detection models, which
our work aims to address.

Prior research and challenges: The vast majority of work on algorithmic fairness has focused
on supervised ML tasks [8, 16, 27, 69]. Numerous notions (definitions and corresponding mathemat-
ical formalisms) of fairness [5, 16, 67] have been explored in the context of supervised classification
and regression problems. Each fairness notion has its own challenges in achieving equitable deci-
sions in those supervised settings [16]. In contrast, there is little to no work on addressing fairness
in unsupervised OD. Incorporating fairness into OD is challenging, in the face of (1) many possibly-
incompatible notions of fairness and, (2) the absence of ground-truth outlier labels for learning.
The only work tackling2 unfairness in the OD literature is an LOF [12] based detector [51] by P
and Sam Abraham that proposes an ad-hoc procedure to introduce fairness specifically to the LOF
algorithm. A key issue with this approach, however, is that it invites disparate treatment at decision
time (among a few other shortcomings, see Sec. 5). Disparate treatment necessitates the use of
protected variables at decision time, leading to taste-based discrimination [17]. Moreover, in many
critical application domains where OD is employed, as discussed earlier, use of protected variables
for decision-making explicitly is unlawful.
On the other hand, one could potentially re-purpose existing fair representation learning tech-

niques [9, 21, 72] as well as data pre-processing strategies [23, 33] for fairness-aware OD. These
approaches respectively learn new embeddings of the input samples such that the membership
of samples to protected groups is obfuscated/masked, or readjust the data distributions in effort
to equalize representation for the protected groups. Subsequently, the transformed data can be
fed into any off-the-shelf outlier detector to achieve fair outcomes. A key issue with these types
of approaches (among other shortcomings, see Sec. 5) is that data pre-processing as an isolated
step prior to detection is oblivious to the detection task itself, which in turn, as we show in our
experiments (Sec. 4) yields suboptimal detection performance, characteristic of largely (needlessly)
sacrificing detection performance for fairness.

Our contributions: In this work, our goal is to design a fairness-aware OD model that aims
to achieve equitable policing across groups (as induced by protected variables). Through fair OD,
under-represented minority groups in the data would receive justifiable treatments in outlier
determination, and avoid unjust policing simply because they constitute statistically rare/minority
samples. To that end, we first motivate characterizing properties of fair OD based on which we
define the fairness-aware OD problem, propose well-motivated fairness criteria for unsupervised
OD, and introduce an end-to-end fairness-aware OD model, called FairOD, which incorporates
the proposed fairness criteria directly into OD during model training. We summarize our main
contributions as follows:

2There exists an earlier piece of work by Davidson and Ravi [19] with the aim to quantify or measure the fairness of OD
model outcomes post hoc (i.e. proceeding detection), which thus has a different scope.
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Fig. 2. Fairness (as quantified by statistical parity) vs. GroupFidelity (as quantified by group-level rank
preservation) of baseline methods and our proposed FairOD, (left) averaged across datasets, and (right)
on individual datasets (depicted by separate points per method). Note that FairOD outperforms existing
solutions and achieves Fairness while preserving group-level ranking (Group fidelity) from the base detector.
See Sec. 4 for more details.

(1) Desiderata and Problem Definition for Fair Outlier Detection: We identify five prop-
erties that characterize detection quality and fairness in OD. These properties dictate the
design of detectors that are fairness-aware. We present justification for each of the identified
properties and outline what properties can be realized in an unsupervised detector, based
on which we formally define the (unsupervised) fairness-aware OD problem (Sec. 2).

(2) Fairness Criteria and New, Fairness-Aware OD Model: We introduce well-motivated
fairness criteria and give mathematical objectives which can be optimized to obey desiderata
for the defined fairness-aware OD problem. The criteria are universal, in that they can be
embedded into the objective function of any end-to-end outlier detector. We propose FairOD,
a fairness-aware detector, which incorporates the prescribed criteria directly into its training.
Notably, FairOD (1) does not employ disparate treatment at test time, (2) aims to flag equal
proportion of samples from all groups (i.e. obtain group fairness, via statistical parity), while
(3) striving to flag truly high-risk fraction of samples within each group. (Sec. 3.1)

(3) Effectiveness on Real-world Data: We apply FairOD on a number of both real-world
and synthetic datasets, including use cases such as credit risk assessment and hate speech
detection. Experiments demonstrate the effectiveness of FairOD in achieving the fairness
goals (Fig. 2) as well as providing accurate detection (Fig. 6, Sec. 4), significantly outperform-
ing state-of-the-art unsupervised fairness techniques utilized for representation learning and
data pre-processing prior to the OD task.

Reproducibility: The source code for FairOD and all datasets used in our evaluation are
released at https://tinyurl.com/fairOD.
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Table 1. Frequently used symbols and definitions.

Symbol Definition
𝑋 𝑑-dimensional feature representation of an observation
𝑌 true label of an observation, w/ values 0 (inlier), 1 (outlier)
𝑃𝑉 binary protected (or sensitive) variable, w/ groups 𝑎 (majority), 𝑏 (minority)
𝑂 detector-assigned label to an observation, w/ value 1 (predicted/flagged outlier)
𝑏𝑟𝑣 base rate of/fraction of ground-truth outliers in group 𝑣 , i.e. 𝑏𝑟𝑣 = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣)
𝑓 𝑟𝑣 flag rate of/fraction of flagged observations in group 𝑣 , i.e 𝑓 𝑟𝑣 = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑣)

2 DESIDERATA FOR FAIR OUTLIER DETECTION
Notation. We are given 𝑁 samples (also, observations or instances) X = {𝑋𝑖 }𝑁𝑖=1 ⊆ R𝑑 as the input
for OD where 𝑋𝑖 ∈ R𝑑 denotes the feature representation for observation 𝑖 . Each observation is
additionally associated with a binary3 protected (also, sensitive) variable, PV = {𝑃𝑉𝑖 }𝑁𝑖=1, where
𝑃𝑉𝑖 ∈ {𝑎, 𝑏} identifies two groups – the majority (𝑃𝑉𝑖 = 𝑎) group and the minority (𝑃𝑉𝑖 = 𝑏) group.
We use Y = {𝑌𝑖 }𝑁𝑖=1, where 𝑌𝑖 ∈ {0, 1}, to denote the unobserved ground-truth binary labels for the
observations where, for exposition, 𝑌𝑖 = 1 denotes an outlier (positive outcome) and 𝑌𝑖 = 0 denotes
an inlier (negative outcome). We use𝑂 : X ↦→ {0, 1} to denote the predicted outcomes of an outlier
detector, and 𝑠 : X ↦→ R to capture the corresponding numerical outlier scores as the estimate of
the outlierness. Thus, 𝑂 (𝑋𝑖 ), 𝑠 (𝑋𝑖 ) respectively indicate predicted outlier label and outlier score
for sample 𝑋𝑖 . We use O = {𝑂 (𝑋𝑖 )}𝑁𝑖=1 and S = {𝑠 (𝑖)}𝑁𝑖=1 to denote the set of all predicted labels
and scores from a given model without loss of generality. Note that we can derive 𝑂 (𝑋𝑖 ) from
a simple thresholding of 𝑠 (𝑋𝑖 ). We routinely drop 𝑖-subscripts to refer to properties of a single
sample without loss of generality. We denote the group base rate (or prevalence) of outlierness as
𝑏𝑟𝑎 = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) for the majority group. Finally, we let 𝑓 𝑟𝑎 = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) depict the
flag rate of the detector for the majority group. Similar definitions extend to the minority group 𝑏.
Table 1 gives a list of the notations frequently used throughout the paper.

Having presented the problem setup and notation, we state our fair OD problem (informally) as
follows.

Informal Problem 1 (Fair Outlier Detection). Given samples X and protected variable values
PV , estimate outlier scores S and assign outlier labels O, such that

(i) assigned labels and scores are “fair” with respect to the 𝑃𝑉 , and
(ii) higher scores correspond to higher riskiness encoded by the underlying (unobserved) Y.

How can we design a fairness-aware OD model that is not biased against minority groups? What
constitutes a “fair” outcome in OD, that is, what would characterize fairness-aware OD? What
specific notions of fairness are most applicable to OD?

To approach the problem and address these motivating questions, we first propose a list of desired
properties that an ideal fairness-aware detector should satisfy, followed by the formal problem
definition and our proposed solution, FairOD.

2.1 Proposed Desiderata
D1. Detection effectiveness: We require an OD model to be accurate at detection, that is when

the scores assigned to the instances by OD well-correlate with the ground-truth outlier labels.

3For simplicity of presentation, we consider a single, binary protected variable (PV). We discuss extensions to multi-valued
PV and multi-attribute PVs in Sec. 3.
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Specifically, OD benefits the policing effort only when the detection rate (a.k.a. positive
predictive value, or precision) is strictly larger than the base rate (a.k.a. prevalence), that is,

𝑃 (𝑌 = 1 | 𝑂 = 1) > 𝑃 (𝑌 = 1) . (1)
This condition ensures that any policing effort concerted through the employment of an OD
model is able to achieve a strictly larger precision (LHS) as compared to random sampling,
where policing via the latter would simply yield a precision that is equal to the prevalence of
outliers in the population (RHS) in expectation. Note that our first condition in (1) is related to
detection performance, and specifically, the usefulness of OD itself for policing applications.
We present fairness-related conditions for OD next.

D2. Treatment parity: OD should exhibit non-disparate treatment that explicitly avoids the
use of 𝑃𝑉 for producing a decision. In particular, the OD decisions should obey

𝑃 (𝑂 = 1 | 𝑋, 𝑃𝑉 = 𝑣) = 𝑃 (𝑂 = 1 | 𝑋 ), ∀𝑣 . (2)
In words, the probability that the OD outputs an outlier label 𝑂 for a given feature vector 𝑋
remains unchanged even upon observing the value of the 𝑃𝑉 .
Non-disparate treatment ensures that OD decisions are effectively “blindfolded” to the 𝑃𝑉 .
However, this notion of fairness alone is not sufficient to ensure equitable policing across
groups; namely, removing the 𝑃𝑉 from scope may still allow discriminatory OD results for
the minority group (e.g., African American) due to the presence of several other features
(e.g., zipcode) that (partially-)redundantly encode the 𝑃𝑉 . Consequently, by default, OD will
use the 𝑃𝑉 indirectly, through access to those correlated proxy features.

D3. Statistical parity (SP): One would expect the OD outcomes to be independent of group
membership, i.e. 𝑂 ⊥⊥ 𝑃𝑉 . To this end, this notion of fairness (a.k.a. demographic parity,
group fairness, or independence), in the context of OD, aims to enforce that the outlier flag
rates are independent of 𝑃𝑉 and equal across the groups as induced by 𝑃𝑉 .
Formally, an OD model satisfies statistical parity under a distribution over (𝑋, 𝑃𝑉 ) where
𝑃𝑉 ∈ {𝑎, 𝑏} if

𝑓 𝑟𝑎 = 𝑓 𝑟𝑏 or equivalently, 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) . (3)
SP implies that the fraction of minority (majority) members in the flagged set is the same as
the fraction of minority (majority) in the overall population. Equivalently, one can show
𝑓 𝑟𝑎 = 𝑓 𝑟𝑏 (SP) ⇐⇒ 𝑃 (𝑃𝑉 = 𝑎 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑎) and 𝑃 (𝑃𝑉 = 𝑏 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑏) .

(4)
The motivation for SP derives from luck egalitarianism [38] – a family of egalitarian theories
of distributive justice that aim to counteract the distributive effects of “brute luck”. It aims to
counterbalance the manifestations of “brute luck,” by redistributing equality to those who
suffer through no fault of their own choosing, mediated via race, gender, etc. Importantly, SP
ensures proportional flag rates across 𝑃𝑉 groups, eliminating group-level bias. Therefore,
it merits incorporation in OD since the results of OD are used for policing or auditing by
human experts in downstream applications.
SP, however, is not sufficient to ensure both equitable and accurate outcomes as it permits
so-called “laziness” [5]. Being an unsupervised quantity that is agnostic to the ground-truth
labels Y, SP could be satisfied while producing decisions that are arbitrarily inaccurate for
any or all of the groups. In fact, perhaps one extreme would be random sampling; where we
select a certain fraction of the given population uniformly at random and flag all the sampled
instances as outliers. As evident via Eq. (4), this entirely random procedure would achieve
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SP (!). The outcomes could be worse – that is, not only inaccurate (unusefully, as accurate
as random) but also unfair for only some group(s) – when OD flags mostly the true outliers
from one group while flagging randomly selected instances from the other group(s), leading
to discrimination despite SP. Therefore, additional criteria is required to explicitly penalize
“laziness”; aiming to not only flag equal fractions of instances but those from the true-outlier
portion of each group.

D4. Group fidelity (a.k.a. Equality of Opportunity): It is desirable that true outliers are
equally likely to be assigned higher scores, in turn flagged, regardless of their membership to
any groups as induced by 𝑃𝑉 . We call this notion of fairness as group fidelity, which steers
OD outcomes toward being faithful to the ground-truth outlier labels equally across groups,
obeying the condition

𝑃 (𝑂 = 1|𝑌 = 1, 𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑌 = 1, 𝑃𝑉 = 𝑏) . (5)
Mathematically, this condition is equivalent to the so-called Equality of Opportunity4 in the
supervised fair ML literature, and is a special case of Separation [27, 67]. In either case, it
requires that all 𝑃𝑉 -induced groups experience the same true positive rate. Consequently, it
penalizes “laziness” by ensuring that the true-outlier instances are ranked above (i.e., receive
higher outlier scores than) the inliers within each group.
A strong caveat here is that (5) is a supervised quantity that requires access to the ground-truth
labelsY, which are explicitly unavailable for the unsupervised OD task. What is more, various
impossibility results have shown that certain fairness criteria, including SP and Separation,
are mutually exclusive or incompatible [5], implying that simultaneously satisfying both of
these conditions (exactly) is not possible.

D5. Base rate preservation: The flagged outliers from OD results are often audited and then
used as human-labeled data for supervised detection (as discussed in previous section) which
can introduce bias through a feedback loop. Therefore, it is desirable that group-level base
rates within the flagged population is reflective of the group-level base rates in the overall
population, so as to not introduce group bias of outlier incidence downstream. In particular,
we expect OD outcomes to ideally obey

𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑎) = 𝑏𝑟𝑎 , and (6)
𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑏) = 𝑏𝑟𝑏 . (7)

Note that group-level base rate within the flagged population (LHS) is mathematically equiv-
alent to group-level precision in OD outcomes, and as such, is also a supervised quantity
which suffers the same caveats as in D4, regarding unavailability of Y.

2.2 Enforceable Desiderata
The above listed desiderata outline the properties that an ideal OD model would exhibit. In practice,
however, all the desired properties are not actually enforceable. Next, we reassess the properties
with respect to whether they can be enforced in a fairness-aware unsupervised OD framework
given problem constraints.
D1. Detection effectiveness:We can indirectly control for detection effectiveness via careful

feature engineering. We assume that, with domain experts assisting in feature design, the
features would be reflective of the outcome labels, and enable a suitable detector achieving
𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1) – that is, a detection rate better than one would achieve by

4Opportunity, because positive-class assignment by a supervised model in many fair ML problems is oftne associated with a
positive outcome, such as being hired or approved a loan.
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flagging instances as outliers through random sampling. Given carefully-designed features
and expressive models, it would be reasonable to expect a better-than-random detector.

D2. Treatment parity: We can build an OD model using a disparate learning process [43] that
uses 𝑃𝑉 only during the model training phase, but does not require access to 𝑃𝑉 for producing
a decision. In this case, treatment parity is inherently satisfied since OD decisions do not rely
on 𝑃𝑉 .

D3. Statistical parity (SP): To achieve SP, the 𝑃𝑉 should be statistically independent of the
OD decision, as indicated by Eq. (3). This implies that the output label distributions across
the groups are equal. We could achieve SP during OD model learning by comparing the
distributions of the predicted outlier labels 𝑂 amongst groups, and update the model to
ensure that these output distributions match across groups. In other words, we can consider
SP as an enforceable constraint during model training.

D4. Groupfidelity:The unsupervisedOD task does not have access toY, therefore, group fidelity
cannot be enforced directly. Instead, we propose to enforce group-level rank preservation
that maintains fidelity to within-group ranking from the basemodel, where base is a fairness-
agnostic OD model. Our intuition is that rank preservation acts as a proxy for group fidelity,
or more broadly Separation, via our assumption that within-group ranking in the basemodel
is accurate and top-ranked instances within each group encode the highest risk samples
within each group.
Specifically, let 𝜋base represent the ranked list of instances based on base OD scores, and
let 𝜋base

𝑃𝑉=𝑎
and 𝜋base

𝑃𝑉=𝑏
denote the group-level ranked lists for majority and minority groups,

respectively. Then, the rank preservation is satisfied when 𝜋base
𝑃𝑉=𝑣

= 𝜋
𝑃𝑉=𝑣

;∀𝑣 ∈ {𝑎, 𝑏} where
𝜋
𝑃𝑉=𝑣

is the group ranked list based on outlier scores from our proposed OD model. Group
rank preservation addresses the “laziness” issue which can manifest while ensuring SP; we
aim to not lose the within-group detection prowess of the original detector while maintaining
fairness. Moreover, since we are using only a proxy for Separation, the mutual exclusiveness
of SP and Separation may no longer hold, though we have not established this mathematically
and defer a formal analysis to future work.

D5. Base rate preservation: As noted in the previous subsection, population base rate preser-
vation also involves the ground-truth labels Y, which are not available to an unsupervised
OD task. Importantly, provided an OD model satisfies D1 (detection effectiveness) and D3
(SP), we show that it cannot simultaneously also satisfy D5, i.e. per-group equal base rate in
OD results (flagged observations) and in the overall population.

Claim 1. Detection effectiveness: 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1) and SP: 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) =
𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) jointly imply that 𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑣) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣), ∃𝑣 .

Proof. We prove the claim in Appendix A.1. □

Claim 1 shows an incompatibility and states that, provided D1 and D3 are satisfied, the base
rate in the flagged population cannot be equal to (but rather, is an overestimate of) that in the
overall population for at least one of the groups. As such, base rates in OD outcomes cannot
be reflective of their true values. Instead, one can hope for the preservation of the ratio of the
base rates (i.e. it is not impossible). As such, a relaxed notion of D5 is to preserve proportional
base rates across groups in the OD results, i.e.

𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑎)
𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑏) =

𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)
𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏) . (8)
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Note that ratio preservation still cannot be explicitly enforced as (8) is also label-dependent.
Finally we show in Claim 2 that, provided D1, D3 and Eq. (8) are all satisfied, then it entails
that the base rate in OD outcomes is an overestimation of the true group-level base rates for
every group.

Claim 2. Detection effectiveness: 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1), SP: 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 =

1|𝑃𝑉 = 𝑏), and Eq. (8): 𝑃 (𝑌=1 |𝑂=1,𝑃𝑉=𝑎)
𝑃 (𝑌=1 |𝑂=1,𝑃𝑉=𝑏) =

𝑃 (𝑌=1 |𝑃𝑉=𝑎)
𝑃 (𝑌=1 |𝑃𝑉=𝑏) jointly imply that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣,𝑂 =

1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣),∀𝑣 .

Proof. We prove the claim in Appendix A.2. □

Claim 1 and Claim 2 indicate that if we have both (a) better-than-random precision (D1) and
(b) SP (D3), interpreting the base rates in OD outcomes for downstream learning tasks would
not be meaningful, as they would not be reflective of true population base rates. Due to both
these incompatibility results, and also feasibility issues given the lack of Y, we leave base
rate preservation – despite it being a desirable property – out of consideration.

2.3 Problem Definition
Based on the above definitions and enforceable desiderata, our fairness-aware OD problem is
formally defined as follows:

Problem 1 (Fairness-Aware Outlier Detection). Given samples X and protected variable
values PV , estimate outlier scores S and assign outlier labels O, such that

(i) 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1) , [Detection effectiveness]
(ii) 𝑃 (𝑂 | 𝑋, 𝑃𝑉 = 𝑣) = 𝑃 (𝑂 | 𝑋 ), ∀𝑣 ∈ {𝑎, 𝑏} , [Treatment parity]
(iii) 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) , and [Statistical parity]
(iv) 𝜋base

𝑃𝑉=𝑣
= 𝜋

𝑃𝑉=𝑣
,∀𝑣 ∈ {𝑎, 𝑏}, where base is a fairness-agnostic detector. [Group fidelity proxy]

Given a dataset along with 𝑃𝑉 values, the goal is to design an ODmodel that builds on an existing
base OD model and satisfies the criteria (𝑖)–(𝑖𝑣), following the proposed desiderata D1 – D4.

2.4 Caveats of a Simple Approach
A simple yet naïve approach to address Problem 1 and obtain a fairness-aware OD based on a base
model can be designed as follows:
(1) Obtain ranked lists 𝜋base

𝑃𝑉=𝑎
and 𝜋base

𝑃𝑉=𝑏
from the base model, and

(2) Flag top instances as outliers from each ranked list at equal fraction such that
𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏), 𝑃𝑉 ∈ {𝑎, 𝑏} .

As such, outlier instances are selected from each group while ensuring equal flag rates across
groups. Note that this approach would fully satisfy (𝑖𝑖𝑖) and (𝑖𝑣) in Problem 1 by design, as well as
(𝑖) given suitable features. However, although easy to implement, it suffers from disparate treatment
since it would require access to the value of 𝑃𝑉 for new incoming instances in order to identify
their group-specific ranked list, hence violating (𝑖𝑖).
Next, we present our proposed approach, called FairOD, which satisfies all of the enforceable

desiderata (𝑖)–(𝑖𝑣) in Problem 1, thereby providing the benefits of the direct approach without
exhibiting disparate treatment, which is unacceptable in a variety of application domains.

3 FAIRNESS-AWARE OUTLIER DETECTION
In this section, we describe our proposed FairOD – an unsupervised, fairness-aware, end-to-end OD
model that embeds our proposed learnable (i.e. optimizable) fairness constraints into an existing
base OD model. The key features of our model are that FairOD aims for equal flag rates across
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groups (statistical parity), and encourages correct top group ranking (group fidelity), while not
requiring 𝑃𝑉 for decision-making on new samples (non-disparate treatment). As such, it aims to
target the proposed desiderata D1 – D4 as described in Sec. 2.

3.1 Base Framework
Our proposed OD model instantiates a deep-autoencoder (AE) framework for the base outlier
detection task. However, we remark that the fairness regularization criteria introduced by FairOD
can be plugged into any end-to-end optimizable anomaly detector, such as one-class support
vector machines [61], deep anomaly detector [13], variational AE for OD [3], and deep one-class
classifiers [60]. Our choice of AE as the base OD model stems from the fact that AE-inspired
methods have been shown to be state-of-the-art outlier detectors [15, 47, 75] and that our fairness-
aware loss criteria can be optimized in conjunction with the objectives of such models. The main
goal of FairOD is to incorporate our proposed notions of fairness into an end-to-end OD model,
irrespective of the choice of the base model family.
AE consists of two main components: an encoder 𝐺𝐸 : 𝑋 ∈ R𝑑 ↦→ 𝑍 ∈ R𝑚 and a decoder

𝐺𝐷 : 𝑍 ∈ R𝑚 ↦→ 𝑋 ∈ R𝑑 . 𝐺𝐸 (𝑋 ) encodes the input 𝑋 to a hidden vector (also called code) 𝑍 that
preserves the important aspects of the input. Then, 𝐺𝐷 (𝑍 ) aims to generate 𝑋 ′; a reconstruction
of the input from the hidden vector 𝑍 . Overall, the AE can be written as 𝐺 = 𝐺𝐷 ◦𝐺𝐸 , such that
𝐺 (𝑋 ) = 𝐺𝐷 (𝐺𝐸 (𝑋 )). For a given AE based framework, the outlier score for 𝑋 is computed using
the reconstruction error as

𝑠 (𝑋 ) = ∥𝑋 −𝐺 (𝑋 )∥22 . (9)
Outliers tend to exhibit large reconstruction errors because they do not conform to to the

patterns in the data as coded by an auto-encoder, hence the use of reconstruction errors as outlier
scores [2, 52, 62]. This scoring function is general in that it applies to many reconstruction-based OD
models, which have different parameterizations of the reconstruction function 𝐺 . We show in the
following how FairOD regularizes the reconstruction loss from base through fairness constraints
that are conjointly optimized during the training process. Specifically, the base ODmodel optimizes
the following

Lbase =
𝑁∑︁
𝑖=1

∥𝑋𝑖 −𝐺 (𝑋𝑖 )∥22 (10)

and we denote its outlier scoring function as 𝑠base (·).

3.2 Fairness-aware Loss Function
We begin with designing a loss function for our OD model that optimizes for achieving SP and
group fidelity by introducing regularization to the base objective criterion. Specifically, FairOD
minimizes the following loss function:

L = 𝛼 Lbase︸︷︷︸
Reconstruction

+ (1 − 𝛼) L𝑆𝑃︸︷︷︸
Statistical Parity

+ 𝛾 L𝐺𝐹︸︷︷︸
Group Fidelity

(11)

where 𝛼 ∈ [0, 1] and 𝛾 ≥ 0 are hyperparameters which govern the balance between different
components in the loss function.
The first term in Eq. (11) is the objective for learning the reconstruction (based on base model

family) as given in Eq. (10), which quantifies the goodness of the encoding 𝑍 via the squared error
between the original input and its reconstruction generated from 𝑍 . The second component in
Eq. (11) corresponds to regularization introduced to enforce the fairness notion of independence,
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or statistical parity (SP) as given in Eq. (4). Specifically, the term seeks to minimize the absolute
correlation between the outlier scores S (used for producing predicted labels O) and protected
variable values PV . L𝑆𝑃 is given as

L𝑆𝑃 =

����� ( ∑𝑁
𝑖=1 𝑠 (𝑋𝑖 ) − 𝜇𝑠

) ( ∑𝑁
𝑖=1 𝑃𝑉𝑖 − 𝜇𝑃𝑉

)
𝜎𝑠 𝜎𝑃𝑉

����� , (12)

where,

𝜇𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

𝑠 (𝑋𝑖 ), 𝜇𝑃𝑉 =
1

𝑁

𝑁∑︁
𝑖=1

𝑃𝑉𝑖 , 𝜎𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑠 (𝑋𝑖 ) − 𝜇𝑠 )2, and 𝜎𝑃𝑉 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃𝑉𝑖 − 𝜇𝑃𝑉 )2.

We adapt this absolute correlation loss from [8], which proposed its use in a supervised setting
with the goal of enforcing statistical parity. As [8] mentions, while minimizing this loss does not
guarantee independence, it performs empirically quite well and offers stable training. We observe
the same in practice; it leads to quite low correlation between OD outcomes and the protected
variable (see details in Sec. 4).

Finally, the third component of Eq. (11) emphasizes that FairOD should maintain fidelity to
within-group rankings from the base model. We set up a listwise learning-to-rank objective in
order to enforce group fidelity. Our goal is to train FairOD such that it reflects the within-group
rankings based on 𝑠base (·) from base. To that end, we employ a listwise ranking loss criterion
that is based on the well-known Discounted Cumulative Gain (DCG) [31] measure, often used to
assess ranking quality in information retrieval tasks such as search. For a given ranked list, DCG is
defined as

DCG =
∑︁
𝑟

2𝑟𝑒𝑙𝑟 − 1

log2 (1 + 𝑟 )

where 𝑟𝑒𝑙𝑟 depicts the relevance of the item ranked at the 𝑟 𝑡ℎ position. In our setting, we use the
outlier score 𝑠base (𝑋 ) of an instance 𝑋 to reflect its relevance since we aim to mimic the group-level
ranking by base. As such, DCG per group can be re-written as

DCG𝑃𝑉=𝑣 =
∑︁

𝑋𝑖 ∈X𝑃𝑉 =𝑣

2𝑠
base (𝑋𝑖 ) − 1

log2
(
1 + ∑

𝑋𝑘 ∈X𝑃𝑉 =𝑣
1[𝑠 (𝑋𝑖 ) ≤ 𝑠 (𝑋𝑘 )]

)
where X𝑃𝑉=𝑎 and X𝑃𝑉=𝑏 would respectively denote the set of observations from majority and
minority groups, and 𝑠 (𝑋 ) is the estimated outlier score from our FairOD model under training.

A challenge with DCG is that it is not differentiable, as it involves ranking (sorting). Specifically,
the sum term in the denominator uses the (non-smooth) indicator function 1(·) to obtain the
position of instance 𝑖 as ranked by the estimated outlier scores. We circumvent this challenge by
replacing the indicator function by the (smooth) sigmoid approximation, following [57]. Then, the
group fidelity loss component L𝐺𝐹 is given as

L𝐺𝐹 =
∑︁

𝑣∈{𝑎,𝑏 }

(
1 −

∑︁
𝑋𝑖 ∈X𝑃𝑉 =𝑣

2𝑠
base (𝑋𝑖 ) − 1

log2
(
1 + ∑

𝑋𝑘 ∈X𝑃𝑉 =𝑣
sigm(𝑠 (𝑋𝑘 ) − 𝑠 (𝑋𝑖 ))

)
· 𝐼𝐷𝐶𝐺𝑃𝑉=𝑣

)
(13)

where sigm(𝑥) = exp(−𝑐𝑥)
1+exp(−𝑐𝑥) is the sigmoid function where 𝑐 > 0 is the scaling constant, and,

𝐼𝐷𝐶𝐺𝑃𝑉=𝑣 =

|X𝑃𝑉 =𝑣 |∑︁
𝑗=1

2𝑠
base (𝑋 𝑗 ) − 1

log2 (1 + 𝑗)
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is the ideal (hence 𝐼 ), i.e. largest possible DCG value attainable for the respective group. Note that
IDCG can be computed per group apriori to model training based on the base outlier scores alone,
and serves as a normalizing constant in Eq. (13).
Note that having trained our model, scoring instances does not require access to the value of

their 𝑃𝑉 , as 𝑃𝑉 is only used in Eq. (12) and (13) for training purposes. At test time, the anomaly
score of a given instance 𝑋 is computed simply via Eq. (9). Thus, FairOD also fulfills the desiderata
on treatment parity.

Optimization and Hyperparameter Tuning. We optimize the parameters of FairOD by minimizing
the loss function given in Eq. (11) by using the built-in Adam optimizer [37] implemented in
PyTorch, thus we do not elaborate further on model optimization.

FairOD comes with two tunable hyperparameters, 𝛼 and 𝛾 . We define a grid for these and pick
the configuration that achieves the best balance between statistical parity and our proxy quantity
for group fidelity (based on group-level ranking preservation). Note that both of these quantities are
unsupervised (i.e., do not require access to ground-truth labels), therefore, FairOD model selection
can be done in a completely unsupervised fashion. We provide further details about hyperparameter
selection in Sec. 4.

3.3 Generalizing to Multi-valued and Multiple Protected Attributes
Multi-valued 𝑃𝑉 . FairOD generalizes beyond binary 𝑃𝑉 , and easily applies to settings with multi-
valued, specifically categorical 𝑃𝑉 such as race. Recall that L𝑆𝑃 and L𝐺𝐹 are the loss components
that depend on 𝑃𝑉 . For a categorical 𝑃𝑉 , L𝐺𝐹 in Eq. (13) would simply remain the same, where
the outer sum goes over all unique values of the 𝑃𝑉 . For L𝑆𝑃 , one could one-hot-encode (OHE)
the 𝑃𝑉 into multiple variables and minimize the correlation of outlier scores with each variable
additively. That is, an outer sum would be added to Eq. (12) that goes over the new OHE variables
encoding the categorical 𝑃𝑉 .

Multiple 𝑃𝑉𝑠 . FairOD can handle multiple different 𝑃𝑉𝑠 simultaneously, such as race and gender,
since the loss components Eq. (12) and Eq. (13) can be used additively for each 𝑃𝑉 . However, the
caveat to additive loss is that it would only enforce fairness with respect to each individual 𝑃𝑉 ,
and yet may not exhibit fairness for the joint distribution of protected variables [35]. Even when
additive extension may not be ideal, we avoid modeling multiple protected variables as a single 𝑃𝑉
that induces groups based on values from the cross-product of available values across all 𝑃𝑉𝑠 . This
is because partitioning of the data based on cross-product may yield many small groups, which
could cause instability in learning and poor generalization.

4 EXPERIMENTS
Our proposed FairOD is evaluated through extensive experiments on a set of synthetic datasets as
well as diverse real world datasets. In this section, we present dataset details and the experimental
setup, followed by key evaluation questions and results.

4.1 Dataset Description
Table 2 gives an overview of the datasets used in evaluation. We elaborate on details as follows.

4.1.1 Synthetic data. We illustrate the effectiveness of FairOD on two synthetic datasets, namely
Synth1 and Synth2 (as illustrated in Fig. 3). These datasets present scenarios that mimic real-world
settings, where we may have features which are uncorrelated with respect to outcome labels but
partially correlated with 𝑃𝑉 , or features which are correlated both to outcome labels and 𝑃𝑉 .
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Table 2. Summary of datasets.

Dataset 𝑁 𝑑 𝑃𝑉 𝑃𝑉 = 𝑏 |X𝑃𝑉=𝑎 |/|X𝑃𝑉=𝑏 | % outliers Labels
Adult 25262 11 gender female 4 5 {income ≤ 50𝐾 , income > 50𝐾 }
Credit 24593 1549 age age ≤ 25 4 5 {paid, delinquent}
Tweets 3982 10000 racial dialect African-American 4 5 {normal, abusive}
Ads 1682 1558 simulated 1 4 5 {non-ad, ad}
Synth1 2400 2 simulated 1 4 5 {0, 1}
Synth2 2400 2 simulated 1 4 5 {0, 1}
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Fig. 3. Synthetic datasets. See Sec. 4.1 for the details of the data generating process.

• Synth1: In Synth1, we simulate a 2-dimensional dataset comprised of samples𝑋 = [𝑥1, 𝑥2] where
𝑥1 is correlated with the protected variable 𝑃𝑉 , but does not offer any predictive value with
respect to ground-truth outlier labels Y, while 𝑥2 is correlated with these labels Y (see Fig. 3a).
We draw 2400 samples, of which 𝑃𝑉 = 𝑎 (majority) for 2000 points, and 𝑃𝑉 = 𝑏 (minority) for
400 points. 120 (5%) of these points are outliers. 𝑥1 differs in terms of shifted means, but equal
variances, for both majority and minority groups. 𝑥2 is distributed similarly for both majority and
minority groups, drawn from a normal distribution for outliers, and an exponential for inliers.
The detailed generative process for the data is below (left), and Fig. 3a shows a visual.

• Synth2: In Synth2, we again simulate a 2-dimensional dataset comprised of samples 𝑋 = [𝑥1, 𝑥2]
where 𝑥1, 𝑥2 are partially correlated with both the protected variable 𝑃𝑉 as well as ground-truth
outlier labels Y (see Fig. 3b). We draw 2400 samples, of which 𝑃𝑉 = 𝑎 (majority) for 2000 points,
and 𝑃𝑉 = 𝑏 (minority) for 400 points. 120 (5%) of these points are outliers. For inliers, both 𝑥1, 𝑥2
are normally distributed, and differ across majority and minority groups only in terms of shifted
means, but equal variances. Outliers are drawn from a product distribution of an exponential and
linearly transformed Bernoulli distribution (product taken for symmetry). The detailed generative
process for the data is below (right), and Fig. 3b shows a visual.

13



Synth1 Synth2

Simulate samples 𝑋 = [𝑥1, 𝑥2] by... Simulate samples 𝑋 = [𝑥1, 𝑥2] by...
𝑃𝑉 ∼ Bernoulli(4/5)
𝑌 ∼ Bernoulli(1/20)

𝑥1 ∼
{
Normal(180, 10) if 𝑃𝑉 = 1 [a, majority]
Normal(150, 10) if 𝑃𝑉 = 0 [b, minority]

𝑥2 ∼
{
Normal(10, 3) if 𝑌 = 1 [outlier]
Exponential(1) if 𝑌 = 0 [inlier]

𝑃𝑉 ∼ Bernoulli(4/5)
𝑌 ∼ Bernoulli(1/20)

𝑥1 ∼


Normal(−1, 1.44) if 𝑌 = 0, 𝑃𝑉 = 1 [a, majority; inlier]
Normal(1, 1.44) if 𝑌 = 0, 𝑃𝑉 = 0 [b, minority; inlier]
2 × Exponential(1) (1 − 2 × Bernoulli(1/2)) if 𝑌 = 1 [outlier]

𝑥2 ∼


Normal(−1, 1) if 𝑌 = 0, 𝑃𝑉 = 1 [a, majority; inlier]
Normal(1, 1) if 𝑌 = 0, 𝑃𝑉 = 0 [b, minority; inlier]
2 × Exponential(1) (1 − 2 × Bernoulli(1/2)) if 𝑌 = 1 [outlier]

4.1.2 Real-world data. We conduct experiments on 4 real-world datasets and select them from
diverse domains that have different types of (binary) protected variables, specifically gender, age,
and race. Detailed descriptions are as follows.

• Adult [42] (Adult). The dataset is extracted from the 1994 Census database where each data
point represents a person. The dataset records income level of an individual along with features
encoding personal information on education, profession, investment and family. In our experiments,
gender ∈ {male, female} is used as the protected variable where female represents minority group
and high earning individuals who exceed an annual income of 50,000 i.e. annual income > 50, 000
are assigned as outliers (𝑌 = 1). We further downsample female to achieve a male to female sample
size ratio of 4:1 and ensure that percentage of outliers remains the same (at 5%) across groups
induced by the protected variable.

• Credit-defaults [42] (Credit). This is a risk management dataset from the financial domain
that is based on Taiwan’s credit card clients’ default cases. The data records information of credit
card customers including their payment status, demographic factors, credit data, historical bill and
payments. Customer age is used as the protected variable where age > 25 indicates the majority
group and age ≤ 25 indicates the minority group. We assign individuals with delinquent payment
status as outliers (𝑌 = 1). The age > 25 to age ≤ 25 imbalance ratio is 4:1 and contains 5% outliers
across groups induced by the protected variable.

• Abusive Tweets [10] (Tweets). The dataset is a collection of Tweets along with annotations
indicating whether a tweet is abusive or not. The data are not annotated with any protected variable
by default; therefore, to assign protected variable to each Tweet, we employ the following process:
We predict the racial dialect — African-American or Mainstream — of the tweets in the corpus using
the language model proposed by [10]. The dialect is assigned to a Tweet only when the prediction
probability is greater than 0.7, and then the predicted racial dialect is used as protected variable
where African-American dialect represents the minority group. In this setting, abusive tweets are
labeled as outliers (𝑌 = 1) for the task of flagging abusive content on Twitter. The group sample
size ratio of racial dialect = African-American to racial dialect = Mainstream is set to 4:1. We further
sample data points to ensure equal percentage (5%) of outliers across dialect groups.

• Internet ads [42] (Ads). This is a collection of possible advertisements on web-pages. The
features characterize each ad by encoding phrases occurring in the ad URL, anchor text, alt text, and
encoding geometry of the ad image. We assign observations with class label ad as outliers (𝑌 = 1)
and downsample the data to get an outlier rate of 5%. There exists no demographic information
available, therefore we simulate a binary protected variable by randomly assigning each observation
to one of two values (i.e. groups) ∈ {0, 1} such that the group sample size ratio is 4:1.

We avoid specific references to each dataset in the main results discussion for clarity of presenta-
tion, and focus on observed trends between methodological choices across datasets.
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4.2 Baselines
We compare FairOD to two classes of baselines: (𝑖) a fairness-agnostic base detector that employs
a procedure to optimize for detection performance, and (𝑖𝑖) preprocessing methods that aim to
correct for bias in the underlying distribution and generate a dataset obfuscating the 𝑃𝑉 .
Base detector model:
(1) base: A deep anomaly detector that employs an autoencoder neural network. The recon-

struction error of the autoencoder is used as the anomaly score. base omits the protected
variable from model training.

Preprocessing based methods:
(1) rw [33]: A preprocessing approach that assigns weights to observations in each group

differently to counterbalance the under-representation of minority samples.
(2) dir [23] A preprocessing approach that edits feature values such that protected variables

can not be predicted based on other features in order to increase group fairness. It uses
𝑟𝑒𝑝𝑎𝑖𝑟_𝑙𝑒𝑣𝑒𝑙 as a hyperparameter, where 0 indicates no repair, and the larger the value gets,
the more obfuscation is enforced.

(3) lfr: This baseline is based on [72] that aims to find a latent representation of the data
while obfuscating information about protected variables. In our implementation, we omit the
classification loss component during representation learning. It uses two hyperparameters –
𝐴𝑧 to control for SP, and 𝐴𝑥 to control for the quality of representation.

(4) arl: This is based on [9] that finds latent representation for the underlying data by employing
an adversarial training process to remove information about the protected variables. In our
implementation, we use reconstruction error in place of the classification loss. arl uses 𝜆 to
control for the trade-off between accuracy (in our implementation, reconstruction quality)
and obfuscating protected variable.
The OD task proceeds the preprocessing, where we employ the base detector on the data
representation learned by each of the preprocessing based baselines.

We do not compare against the LOF-based fair detector introduced by [51] as it explicitly relies
on disparate treatment and is hence inapplicable in settings we consider.

Hyperparameters
We choose the hyperparameters of FairOD from 𝛼 ∈ {0.01, 0.5, 0.9} × 𝛾 ∈ {0.01, 0.1, 1.0} by
evaluating the Pareto curve for fairness and group fidelity criteria. The base and FairOD meth-
ods both use an auto-encoder with two hidden layers. We fix the number of hidden nodes in
each layer to 2 if 𝑑 ≤ 100, and 8 otherwise. The representation learning methods lfr and arl
use the model configurations as proposed by their authors. The hyperparameter grid for the
preprocessing baselines are set as follows: 𝑟𝑒𝑝𝑎𝑖𝑟_𝑙𝑒𝑣𝑒𝑙 ∈ {0.0001, 0.001, 0.01, 0.1, 1.0} for dir,
𝐴𝑧 ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} and 𝐴𝑥 = 1 −𝐴𝑧 for lfr, and 𝜆 ∈ {0.0001, 0.001, 0.01, 0.1, 0.9}
for arl. We pick the best model for the preprocessing baselines using Fairness (see Eq.(14)) as
they only optimize for statistical parity. The best base model is selected based on reconstruction
error through cross validation upon multiple runs with random seeds.

4.3 Evaluation
We design our experiments to answer the following questions:

• [Q1] Fairness:Howwell does FairOD achieve fairness w.r.t. the fairnessmetrics as compared
to the baselines? How well does FairOD retain the within-group ranking from base?
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• [Q2] Fairness-accuracy trade-off: How accurately are the outliers detected by FairOD
compared to fairness-agnostic base detector?

• [Q3] Ablation study: How do different design elements of FairOD influence group fidelity
and fairness of the detector?

4.3.1 Evaluation Measures.

Fairness. Fairness is measured in terms of statistical parity. We use flag-rate ratio 𝑟 = 𝑃 (𝑂=1 |𝑃𝑉=𝑎)
𝑃 (𝑂=1 |𝑃𝑉=𝑏)

which measures the statistical fairness of a detector based on the predicted outcome where 𝑃 (𝑂 =

1|𝑃𝑉 = 𝑎) is the flag-rate of themajority group and 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) is the flag-rate of theminority
group. We define

Fairness = min(𝑟, 1
𝑟
) ∈ [0, 1] . (14)

For a maximally fair detector, Fairness = 1 as 𝑟 = 1.

GroupFidelity. We use the Harmonic Mean (HM) of per-group NDCG to measure how well the
group ranking of base detector is preserved in the fairness-aware detectors. HM between two
scalars 𝑝 and 𝑞 is defined as 1/( 1

𝑝
+ 1

𝑞
). We use HM to report GroupFidelity since it is (more)

sensitive to lower values (than e.g. arithmetic mean); as such, it takes large values when both of its
arguments have large values.

GroupFidelity = HM(𝑁𝐷𝐶𝐺𝑃𝑉=𝑎, 𝑁𝐷𝐶𝐺𝑃𝑉=𝑏) (15)
where

𝑁𝐷𝐶𝐺𝑃𝑉=𝑎 =

|X𝑃𝑉 =𝑎 |∑︁
𝑖=1

2𝑠
base (𝑋𝑖 ) − 1

log2 (1 +
∑ |X𝑃𝑉 =𝑎 |

𝑘=1
1(𝑠 (𝑋𝑖 ) ≤ 𝑠 (𝑋𝑘 ))) · 𝐼𝐷𝐶𝐺

,

where |X𝑃𝑉=𝑎 | is the number of instances in group with 𝑃𝑉 = 𝑎, 1(𝑐𝑜𝑛𝑑) is the indicator function
that evaluates to 1 if 𝑐𝑜𝑛𝑑 is true and 0 otherwise, 𝑠 (𝑋𝑖 ) is the predicted score of the fairness-
aware detector, 𝑠base (𝑋𝑖 ) is the outlier score from base detector and 𝐼𝐷𝐶𝐺 =

∑ |X𝑃𝑉 =𝑎 |
𝑗=1

2𝑠
base (𝑋𝑗 )−1
log2 ( 𝑗+1) .

GroupFidelity ≈ 1 indicates that group ranking from the base detector is well preserved.

Top-𝑘 Rank Agreement. We also measure how well the final ranking of the method aligns with
the purely performance-driven base detector, as base optimizes only for reconstruction error.
We compute top-𝑘 rank agreement as the Jaccard set similarity between the top-𝑘 observations
as ranked by two methods. Let 𝜋base

[1:𝑘 ] denote the top-𝑘 of the ranked list based on outlier scores
𝑠base (𝑋𝑖 )’s, and 𝜋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟[1:𝑘 ] be the top-𝑘 of the ranked list for competing methods such that 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ∈
{rw, dir, lfr, arl, FairOD }. Then the measure is given as

Top-𝑘 Rank Agreement =
|𝜋base

[1:𝑘 ] ∩ 𝜋
𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
[1:𝑘 ] |

|𝜋base
[1:𝑘 ] ∪ 𝜋

𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
[1:𝑘 ] |

. (16)

Supervised parity measures. We next introduce supervised measures of parity — AP-ratio and
P@𝑘-ratio — when the ground-truth labels Y are available for evaluation. The former is the ratio
of Average Precision AP-ratio across groups, defined as

AP-ratio =
AP𝑃𝑉=𝑎

AP𝑃𝑉=𝑏

. (17)

The latter is the ratio of Precision@𝑘 across groups is given as

P@𝑘-ratio =
Precision𝑃𝑉=𝑎

Precision𝑃𝑉=𝑏

. (18)
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Fig. 4. FairOD achieves better Top-𝑘 Rank Agreement compared to the competitors as averaged over
datasets (left). FairOD is on the Pareto front of Top-𝑘 Rank Agreement and Fairness across datasets (right).
Each point on the right plot represents an evaluation for a dataset.

[Q1] Fairness
In Fig. 2 (presented in Introduction), FairOD is compared against base, as well as all the preprocess-
ing baselines across datasets. The methods are evaluated across datasets using the best configuration
of each method. The best hyperparameters for FairOD are the ones for which GroupFidelity and
Fairness5 are closest to the “ideal” point as indicated in Fig. 2.
In Fig. 2 (left), the average of Fairness and GroupFidelity for each method over datasets is

reported. FairOD achieves 9× and 5× improvement in Fairness as compared to base method
and the nearest competitor, respectively. For FairOD, Fairness is very close to 1, while at the
same time the group ranking from the base detector is well preserved where GroupFidelity also
approaches 1. FairOD dominates the baselines (see Fig. 2 (right)) as it is on the Pareto frontier
of GroupFidelity and Fairness. Here, each point on the plot represents an evaluated dataset.
Notice that FairOD preserves the group ranking while achieving SP consistently across datasets.
Fig. 4 reports Top-𝑘 Rank Agreement (computed at top-5% of ranked lists) of each method

evaluated across datasets. The agreement measures the degree of alignment of the ranked results
by a method with the fairness-agnostic base detector. In Fig. 4 (left), as averaged over datasets,
FairOD achieves better rank agreement as compared to the competitors. In Fig. 4 (right), FairOD
approaches ideal statistical parity across datasets while achieving better rank agreement with the
base detector. Note that FairOD does not strive for a perfect Top-𝑘 Rank Agreement (=1) with
base, since base is shown to fall short with respect to our desired fairness criteria. Our purpose
in illustrating it is to show that the ranked list by FairOD is not drastically different from base,
which simply aims for detection performance.

Next we evaluate the competing methods against supervised (label-aware) fairness metrics. Note
that FairOD does not (in fact, cannot) optimize for label-aware fairness measures. Fig. 5a evaluates

5Note that we can do model selection in this manner without access to any labels, since both are unsupervised measures.
See Eq. (14) and (15).
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(a) Fairness vs. AP-ratio
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(b) Fairness vs. Precision@top-5% ratio

Fig. 5. FairOD outperforms all the competitors on the averaged metrics over datasets (left of each sub-figure)
and across individual datasets (right of each sub-figure). (a.) Group AP-ratio vs. Fairness is reported for
each method for the datasets. (b.) Group P@𝑘-ratio vs. Fairness is reported for each method for the datasets.

the methods against Fairness and label-aware parity criterion – specifically, group AP-ratio (ideal
AP-ratio is 1). FairOD approaches ideal Fairness as well as ideal AP-ratio across all datasets.
FairOD outperforms the competitors on the averaged metrics over datasets (Fig. 5a (left)) and
across individual datasets (Fig. 5a (right)). Fig. 5b reports evaluation of methods against Fairness
and another label-aware parity measure – specifically, group P@𝑘-ratio (ideal P@𝑘-ratio = 1). As
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Fig. 6. FairOD approaches ideal Fairness values and matches or improves detection performance, reported
in terms of Average Precision (AP), as compared to base detector. (a) Group AP-ratio vs. Fairness for each
method on individual datasets (right) and on average (left). (b) AP of FairOD vs. base for all datasets.

shown in Fig. 5b (left), FairOD outperforms all the baselines in expectation as averaged over all
datasets. On the other hand, in Fig. 5b (right), FairOD consistently approaches ideal P@𝑘-ratio
across datasets. In contrast, the preprocessing baselines are up to 8× worse than FairOD over
P@𝑘-ratio measure across datasets.

We note that impressively, FairOD approaches parity across different supervised fairness mea-
sures despite not being able to optimize for label-aware criteria explicitly.

[Q2] Fairness-accuracy trade-off
In the presence of ground-truth outlier labels, the performance of a detector could bemeasured using
a ranking accuracy metric such as average precision (AP). First we present the results comparing
only FairOD and base on a label-aware fairness measure – AP-ratio, and then we report their
detection performance in terms of AP. In Fig. 6a, we compare FairOD to base against Fairness
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Fig. 7. FairOD is compared to its variants FairOD-L and FairOD-C across datasets to evaluate the effects of
different regularization components. FairOD-L achieves Fairness comparable to FairOD while suffers on
GroupFidelity due to “laziness". FairOD-C improves Fairness as compared to base, but under-performs
FairOD on most datasets, indicating that preserving entire group rankings may be a harder task.

and group AP-ratio. FairOD outperforms base and attains SP as Fairness nears 1 across datasets
and approaches a group AP-ratio close to 1 on majority of datasets.
Next in Fig. 6b, we compare the AP of FairOD to that of base detector obtained for all the

datasets. Notice that each of the datasets is slightly below the diagonal line indicating that FairOD
achieves equal or sometimes even better (!) detection performance as compared to base. Since
FairOD enforces SP and does not allow “laziness", it addresses the issue of falsely flagged minority
samples (i.e. false positives) from base ranked list, thereby, improving detection performance.

From Fig. 6a- 6b, we conclude that FairOD does not trade-off detection performance much, and
in some cases it even improves performance by eliminating false positives from the minority group,
as compared to the performance-driven, fairness-agnostic base detector.

[Q3] Ablation study
Finally, we evaluate the effect of various components in the design of FairOD’s fairness-aware
objective. Specifically, we compare to the results of two relaxed variants of FairOD, namely
FairOD-L and FairOD-C, described as follows.
• FairOD-L: We retain only the SP-based regularization term from FairOD objective along with
the reconstruction error. This relaxation of FairOD is partially based on the method proposed
in [8], which minimizes the correlation between model prediction and group membership to
the protected variable. In FairOD-L, the reconstruction error term substitutes the classification
loss used in the optimization criteria in [8]. Note that FairOD-L concerns itself with only group
fairness to attain SP which may suffer from “laziness” (hence, FairOD-L) (see Sec. 2).

• FairOD-C: Instead of training with NDCG-based group fidelity regularization, FairOD-C utilizes
a simpler regularization, aiming to minimize the correlation (hence, FairOD-C) of the outlier
scores per-group with the corresponding scores from base detector. Thus, FairOD-C attempts
to maintain group fidelity over the entire ranking within a group, in contrast to FairOD’s
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NDCG-based regularization which emphasizes the quality of the ranking at the top. Specifically,
FairOD-C substitutes L𝐺𝐹 in Eq. (11) with the following.

L𝐺𝐹 = −
∑︁

𝑣∈{𝑎,𝑏 }

����� ( ∑𝑋𝑖 ∈X𝑃𝑉 =𝑣
𝑠 (𝑋𝑖 ) − 𝜇𝑠

) ( ∑
𝑋𝑖 ∈X𝑃𝑉 =𝑣

𝑠base (𝑋𝑖 ) − 𝜇𝑠base
)

𝜎𝑠 𝜎𝑠base

����� (19)

where,

𝜇𝑠base =
1

|X𝑃𝑉=𝑣 |
∑︁

𝑋𝑖 ∈X𝑃𝑉 =𝑣

𝑠base (𝑋𝑖 ), 𝜎𝑠base =
1

|X𝑃𝑉=𝑣 |
∑︁

𝑋𝑖 ∈X𝑃𝑉 =𝑣

(𝑠base (𝑋𝑖 ) − 𝜇𝑠base )2,

𝑣 ∈ {𝑎, 𝑏}, and 𝜇𝑠 , 𝜎𝑠 are defined similarly for FairOD-C.
The comparison of FairOD and its variants are presented in Fig. 7. In Fig. 7 (left), we report the

evaluation against GroupFidelity and Fairness averaged over datasets, and in Fig. 7 (right), the
metrics are reported for all datasets. FairOD-L approaches SP and achieves comparable Fairness
to FairOD except on one dataset as shown in Fig. 7 (right), which results in lower Fairness as
compared to FairOD when averaged over datasets as shown in Fig. 7 (left). However, FairOD-L
suffers with respect to GroupFidelity as compared to FairOD. This is because FairOD-L may
randomly flag instances to achieve SP since FairOD-L does not include any group ranking criterion
in its objective. On the other hand, FairOD-C improves Fairness when compared to base, while
under-performing on the majority of datasets compared to FairOD across metrics. Since FairOD-C
tries to preserve group-level ranking, it trades-off on Fairness as compared to FairOD-L. The
results show that preserving entire group ranking may be a harder task than to preserving top of
the ranking. As a result, we also observe that FairOD outperforms FairOD-C across datasets.

5 RELATEDWORK
Fairness in machine learning has received a considerable attention in the literature in recent years.
A number of different notions of fairness have been considered [5, 16, 67], general impossibility
results have been shown [6, Chapter 2], and numerous algorithmic techniques have been developed
[7, 24, 27, 30, 34, 69, 70]. Most of these works focus on supervised learning problems, and do not
readily apply to our setting, which centers on fairness for unsupervised outlier detection. As such,
we do not elaborate further on these topics. We refer to [6, 49] for an excellent overview of these.

We organize related work in three subareas as they relate to our Fair Outlier Detection problem:
fairness in outlier detection, fairness-aware representation learning, and data de-biasing strategies.

Outlier Detection and Fairness
Outlier detection (OD) is a well-studied problem in the literature [2, 14, 26], and finds numerous
applications in high-stakes domains such as health-care [46], security [25], finance [55], among
others. Therefore, a wide variety of methods addressing various challenges have been proposed that
can be organized into broad categories of statistical based methods [59], density based [12, 36, 53],
distance based [4], angle based [41], reconstruction based [13, 63], model based [61, 65], and
ensemble based detection methods [15, 44, 54, 58].
Despite the vast body of work on designing new detection algorithms, there exists a minimal

amount of work on the fairness aspects of OD. Specifically, we are aware of only two existing pieces
of work [19, 51] on the subject. P and Sam Abraham [51] propose a detector called FairLOF, that
applies an ad-hoc procedure to introduce fairness specifically to the LOF algorithm [12]. However,
this approach suffers from several drawbacks. First, it invites disparate treatment at decision
time that necessitates access to protected variable values, which may not be available in certain
application domains or is otherwise unlawful to use, e.g. in domains like housing, employment, etc.
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Second, it only prioritizes statistical parity, which as we discussed in Sec. 2, may permit “laziness.”
Lastly, since the approach is based on LOF, it is not end-to-end, and therefore cannot optimize a
concrete objective function but is rather a heuristic procedure. The other fairness related work
on OD is by Davidson and Ravi [19], which focuses on quantifying the fairness of an OD model’s
outcomes post hoc (i.e., proceeding detection) rather than tackling the fair outlier detection problem,
which thus has a different scope.

To our knowledge, we are the first to systematically formalize and address the fair OD problem
via an end-to-end, optimization-based solution. We expect the desiderata that we established for
the fair OD problem in this work to yield further studies by the community on the subject. To
facilitate this process, we share the source code of our proposed method as well as the datasets
used in this paper at https://tinyurl.com/fairOD.

Fairness-aware Representation Learning
There is an increasing focus on designing methods for learning fair representations [1, 9, 21, 45,
48, 72, 73] due to their flexibility. Roughly put, those approaches learn new embeddings of the
input samples so as to obfuscate/mask the membership of samples to protected groups. In other
words, they map the input samples to an embedding space in which the new representations are
independent of the protected variable and thus indistinguishable amongst groups.

Most recently, adversarial training processes have been applied to learn fair representations that
obfuscate protected group membership while still enabling accurate classification [1, 9, 21, 48, 73].
While most of these methods fall under supervised learning as they utilize ground-truth labels, they
can be plausibly extended to the OD setting by substituting classification loss with reconstruction
loss. One can then strive to achieve fair detection outcomes by training an OD model on such
masked data representations. However, a common shortcoming is that in all these fair methods,
statistical parity (SP) has been employed as the primary criterion of fairness. In absence of ground-
truth labels, other methods that utilize SP along with some label-aware parity measure, such
as [1, 9, 73], fall back to SP as the default fairness criterion. On the unsupervised side, fair principal
component analysis [50] and fair variational autoencoder [45] are unsupervised representation
learning methods, which however also solely consider SP as their fairness criterion.
In short, fair representation learning techniques exhibit two key drawbacks for the task of

unsupervised OD. First, they employ SP as the sole notion of fairness, which may be insufficient
and prone to “laziness.” Secondly, data embedding as an isolated step prior to detection is oblivious
to the detection task itself, and therefore can yield poor detection performance (as shown in our
experiments in Sec. 4).

Strategies for Data De-Biasing
There exist data manipulation strategies that are designed to modify the input data distribution
in the original space, such that the outcome of a subsequent learning method would be fair with
respect to the protected variables. Some of the popular de-biasing methods [33, 39] draw from
topics in learning with imbalanced data [29] that employ under- or over-sampling or point-wise
weighting of the instances based on the class label proportions to obtain balanced data. Similar
ideas are extended to fairness-aware learning, as introduced in [33], where the sampling/weighting
is instead done based on the protected variable so as to counterbalance the under-representation of
minority samples. Other strategies [23] involve editing feature values such that protected variables
can not be predicted based on other variables (i.e. features), thus targeting group fairness via SP.
These methods apply preprocessing to the data in a manner that is agnostic to the subsequent or
downstream task, and consider only the fairness notion of SP that is prone to “laziness.” In short,
data de-biasing strategies share the same drawbacks as fair representation learning techniques.
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6 CONCLUSIONS
Although fairness in machine learning has become increasingly prominent in recent years, fairness
in the context of unsupervised outlier detection (OD) has received comparatively little study. OD
is an integral data-driven task in a variety of domains including finance, healthcare and security,
where it is used to inform and prioritize auditing measures. Without careful attention, OD as-is
can cause unjust flagging of societal minorities (w.r.t. race, sex, etc.) because of their standing as
statistical minorities, when minority status does not indicate positive-class membership (crime,
fraud, etc.). This unjust flagging can propagate to downstream supervised classifiers and further
exacerbate the issues. Our work tackles the problem of fairness-aware outlier detection. Specifically,
we first introduce guiding desiderata for, and concrete formalization of the fair OD problem.
We next present FairOD, a fairness-aware, principled end-to-end detector which addresses the
problem, and satisfies several appealing properties: (i) detection effectiveness: it is effective, and
maintains high detection accuracy, (ii) treatment parity: it does not suffer disparate treatment
at decision time, (iii) statistical parity: it maintains group fairness across minority and majority
groups, and (iv) group fidelity: it emphasizing flagging of truly high-risk samples within each
group, aiming to curb detector “laziness”. Finally, we show empirical results across diverse real
and synthetic datasets, demonstrating that our approach achieves fairness goals while providing
accurate detection, significantly outperforming unsupervised fair representation learning and data
de-biasing based baselines. We hope that our expository work yields further studies in this area.
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A PROOFS
A.1 Proof of Claim 1

Proof. We want OD to exhibit detection effectiveness i.e. 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1).

Now, 𝑃 (𝑌 = 1|𝑂 = 1) =𝑃 (𝑃𝑉 = 𝑎 |𝑂 = 1) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1)+
𝑃 (𝑃𝑉 = 𝑏 |𝑂 = 1) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1)

Given SP, we have

𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏)
=⇒ 𝑃 (𝑃𝑉 = 𝑎 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑎), and 𝑃 (𝑃𝑉 = 𝑏 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑏)

Therefore, we have
Now, 𝑃 (𝑌 = 1|𝑂 = 1) =𝑃 (𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1)+

𝑃 (𝑃𝑉 = 𝑏) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) (20)

Now,

𝑃 (𝑌 = 1) = 𝑃 (𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) + 𝑃 (𝑃𝑉 = 𝑏) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)

Therefore, if want 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1), then
𝑃 (𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1)+
𝑃 (𝑃𝑉 = 𝑏) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1)

>

𝑃 (𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) + 𝑃 (𝑃𝑉 = 𝑏) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)

(21)

=⇒ ∃𝑣 ∈ {𝑎, 𝑏} 𝑠 .𝑡 . 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣)

□

A.2 Proof of Claim 2
Proof. Without loss of generality, assume that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) i.e. (

i.e. 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1) = 𝐾 ·𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎);𝐾 > 1), and let 𝑃 (𝑌=1 |𝑃𝑉=𝑎)
𝑃 (𝑌=1 |𝑃𝑉=𝑏) =

𝑃 (𝑌=1 |𝑃𝑉=𝑎,𝑂=1)
𝑃 (𝑌=1 |𝑃𝑉=𝑏,𝑂=1) =

1
𝑟
then

Case 1: When 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) < 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)

𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) < 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) < 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) < 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1),

[∵ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)]

This contradicts our assumption that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1),
therefore it must be that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) ≥ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏).
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Case 2: When 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)

𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) < 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1),

[∵ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)]
This contradicts our assumption that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑟 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1),
therefore it must be that 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏).

Case 3: When 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏) i.e. (𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) =

𝐿 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏);𝐿 > 1)
Now, we know that,

𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎,𝑂 = 1)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏) · 𝐾 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) = 𝐾 · 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)
=⇒ 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏,𝑂 = 1) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏)

And, for ratio to be preserved, it must be that 𝐿 = 𝐾 .
Hence, enforcing preservation of ratios implies base-rates in flagged observations are larger than

their counterparts in the population. □
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