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Abstract— Nearly two decades ago Platt introduced the se-
quential minimal optimization (SMO) algorithm [1] to solve the
Support Vector Machine (SVM) dual quadratic programming
optimization problem. SMO belongs to the family of Sequential
Quadratic Programming (SQP) algorithms, and specifically aims
to reduce the quadratic programming (QP) problem to its
minimum at every iteration. As a result, SQP can be solved
analytically and leads to an algorithm with linear time and
space complexity. In 2005, Fan et al. [2] summarized most of
the optimization strategies that can be applied to solve the SVM
QP problem with SMO in the well known LIBSVM library.
Presently, other QP problems with similar form as the SVM QP
dual problem are solved using more time and space consuming
algorithms than mobile computational requirements allow. This
research strives to discern the conditions that allow SMO to be
extended to other QP problems and its complexity of solving the
minimal QP at each iteration.

Index Terms—Quadratic optimization, Support vector ma-
chines, Natural language processing.

I. INTRODUCTION

It is not surprising that problems involving quadratic pro-
gramming (QP) occur frequently in the fields of Machine
Learning, Natural Language Processing, Computer Graphics,
and Computer Vision. Many applications are therefore for-
mulated as graph theory problems, where typical objective
functions to be optimized contain unary potentials related to
nodes and binary potentials related to edges. For the last 50
years, graph theory has simply supported an ocean of computer
science applications [3], [4]. To name a few examples, image
segmentation as been formulated as minimum cut [5], [6],
maximum weight independent set [7], maximum weight clique
[8], [9] and minimum spanning tree [10] problems [11]. Multi-
object tracking has been formulated as maximum weight
independent set [12] and generalized minimum and maximum
clique [13], [14] problems. In addition, SVM and Support
Vector Clustering (SVC) formulation [15] can be viewed as an
independent set problem [16], [17]. That said not all QP prob-
lem are directly related to graph theory, for example [18]–[22].
In the same way that graph problems can be reduced to one
another, QP problems can be reformulated into problems that
can be solved more efficiently. For example, maximum clique,
maximum independent set and graph cut problems are linked
to the vertex separator problem QP formulation [17]. Various
cut problems are reformulated as spectral clustering problems

that can be optimized via weighted kernel k-means algorithms
[6], [23], achieving real-time computation performances. In
Tsang et al.’s work [16], SVM and SVC are formulated as
minimum enclosing ball problems, obtaining provably approx-
imate optimal solutions in linear time, with a space complexity
independent of the problem size. Since graph-theory problems
(and their QP formulation) can be reduced to one another,
many QP problems are re-formulated to optimize a simple
quadratic objective function with linear constraints such as
Eqn. (2). Consequently, it is natural to investigate the extent
to which SMO can be generalized to solve such QP problems
while considering high-speed and low-memory requirements
typically found on mobile platforms.

A. Related Work to Sequential Minimal Optimization

SMO was originally designed to train a support vector
machine that requires the solution of the very large SVM dual
QP optimization problem [1] defined below:

α? ← argmax
α∈[0, C]n

F(α) : 1ᵀα− 1

2
αᵀHα

s.t. yᵀα = 0 with y ∈ {−1, 1}n

Hij = yiyjK(xi, xj) and xk ∈ IRd
(1)

SMO belongs to the family of SQP algorithms [24]. It breaks a
large QP problem into a series of smaller QP problems, each of
which optimizes a quadratic model of the objective subject to
a linearization of the constraints. The method is equivalent to
applying Newton’s method to the KarushKuhnTucker (KKT)
conditions of the QP problem. In SMO, the small QP problems
involve only two variables. These small QP problems are
solved analytically, thus avoiding the use of a time-consuming
numerical QP optimization at each iteration. The amount of
memory required for SMO is linear in the training set size n,
which allows SMO to handle very large input sets.

SMO is not the only algorithm reducing the large SVM
QP problem into a series of smaller problems [25], [26].
However, methods of [25], [26] are not scalable for very
large training set as the small QP problems cannot fit into
memory [1], which is still a problem nowadays, for example
as the scientific community moved research tasks from MNIST
to IMAGENET. A more radical approach than SMO is to
avoid the QP altogether [27]. However, non-linear kernels still



require the inversion of an n×n matrix. SMO is also closely
related to a family of optimization algorithms called Bregman
methods [28] or row-action methods [29]. These methods
solve convex programming problems with linear constraints.
They are iterative methods where each step projects the solu-
tion at each iteration onto each constraint. However, as stated
in [1], unmodified Bregman methods cannot solve general non-
convex QP problems with linear equality constraints directly.
Other algorithms with analytical solutions for the small QP
problems, like in [8], [30], could also be extended to solve the
SVM QP formulation or more generally Eqn. (2). However,
SMO presents a unique advantage: the direction in which
the solution is updated at each iteration is extremely sparse
(involving only two variables). Consequently, SMO reduces
the time complexity of the overall process from O(n2) for
standards algorithms to O(n) while maintaining a linear space
complexity. When the final solution is assumed to be sparse,
SMO only focuses on optimizing the few dimensions that
are not null. However, when the final solution is known to
be dense, it optimizes only the best two dimensions at each
iteration, leading to a sub-optimum solution. While we can
always use other SQP algorithms [24], we offer in this paper
a solution to escape poor local optimum. An extensive study
on SMO applied to SVM can be found in [31]. We summarize
the main contributions of the paper below.

B. Contributions

In the context of SVM, SMO was already extended, for
example, to learn jointly support vectors and kernels [32].
This paper aims at extending SMO to the general form of QP
described in Eqn. (2). More precisely: (1) We prove that the
complexity of the smallest possible problem to be optimized
at each iteration depends on the number of independent linear
equality constraints. (2) We prove that optimizing the small
problem at each iteration is equivalent to analytically solving
a linear system and a bounded D-dimensional conic equation.
(3) We extend the notion of a working set [2], [26] in order
to escape local sub-optimal solutions. (4) We extend the
notion of dimension selection [2], [30] to the general form
of QP in Eqn. (2). (5) We show that SMO can be applied
to QP problems other than the dual formulation of SVM and
SVC, like document summarization. Below, we conclude our
introduction with the set of notations and definitions used
throughout the paper. For the remaining parts of the paper,
we detail our contributions, focus on selected applications,
demonstrate the results of our experiments, and finally present
the conclusions.

C. Notations and definitions

Vectors and matrices are noted in bold, and matrices are
in capital letters. xi and Cij are values at position i and j
in vector x and matrix C. Cj is the jth column of C, Cᵀ

j is
the jth row of C. F is an objective function to be optimized
with respect to x, x(t) represents the solution at iteration t
and x? the final solution when the KKT conditions are met.
In the remaining part of the paper we simplify the notation:

F =F(x), F (t) =F(x(t)), F? =F(x?), δF (t) = δF (t)(δx) and
δx = x(t+1) − x(t). We denote by ∇F the gradient of F with
respect to x and by δF (t) =F (t+1)−F (t) =F(x(t+1))−F(x(t))
the objective function of the small QP problem at iteration t.
In the following x, x(t), x? and δx ∈ IRn. Dx = diag(x) is
the diagonal matrix where (Dx)ii = xi. We define S = {ik}Kk=1

as a set of K indices ik ∈ {1, n}. We define the opera-
tor (.)S so that CS = [Ci1 , ..,Cik ] ∈ IRm×K is the matrix
made of K columns of C, with (CS)k = Cik . Respectively
CSS = (CSᵀ)S

ᵀ ∈ IRK×K and xS = [xi1 , .., xiK ]
ᵀ ∈ IRK .

Definition 1. We callRow(C) the vector space spanned by the
rows of C, and rank(C) = |Row(C)| is the dimension Row(C),
i.e. the number of independent rows of C.

Definition 2. We call Ker(C) = {x ∈ IRn |Cx = 0} the null
space of C, and nullity(C) = |Ker(C)|. Then n = rank(C) +
nullity(C).

II. PROBLEM SETUP

We aim to generalize SMO to optimize the QP problem:

x? ← optimize
x∈[r, R]n

F : xᵀAx + bᵀx s.t. Cx = d (2)

where C ∈ IRm×n and Cx = d forms a “non-over-
constrained” system. Inequality constraints of the form Cx ≤
d can be directly added to the objective function F via
Lagrangian multipliers [33], this solving a dual QP problem of
the same form as Eqn. (2). The problem can also be reformu-
lated using slack variables, leaving only equality constraints
[33]. The iterative formulation of Eqn. (2) aims at solving:

δx? ← optimize
δx

δF (t) : δxᵀAδx +∇F (t)ᵀδx

s.t. Cδx = 0, x(t) + δx ∈ [r, R]n

and ∇F (t) = (A + Aᵀ)x(t) + b

(3)

where we assume that x(0) is initialized so that Cx(0) = d, and
x(t+1) ← x(t) + δx?. The goal of SMO is to constrain δx to be
extremely sparse so that Eqn. (3) can be solved analytically.
While traditional formulation would control the sparsity of
δx by incorporating an additional constraint like ‖δx‖1 < ν,
SMO explicitly controls the sparsity of δx via a set S of K
indices:

δx?S? ← optimize
δx,S

δF (t)
S : δxSᵀASSδxS +∇F (t)

S
ᵀ
δxS

s.t. CSδxS = 0, x(t)
S + δxS ∈ [r, R]K

and ∇F (t)
S = ((A + Aᵀ)x(t) + b)S

(4)

In [1], [2], the later system is first optimized with respect
to S, and then with respect to δx. The update rule is then
∀ ik ∈ S?, x(t+1)

ik
← x(t)ik + (δx?S?)k. In summary, designing a

SMO algorithm involves 3 steps: we need (i) to fix the number
of indices K = |S|, (ii) to design a heuristic to select the best
set of indices S?, and (iii) to solve Eqn. (4) analytically with
respect to δxS? once S? is found.



III. FINDING THE MINIMAL QP PROBLEM SIZE

The minimal QP size is directly related to K, the number
of indices in S. In the context of solving the SVM dual
Eqn. (1), [1] fixed K = 2. If we add a sparsity constraint
1ᵀα = ν to Eqn. (1) to have fewer support vectors, the lin-
ear constraints are summarized by the system Cα = d with
C = [y, 1]

ᵀ
=
[ − 1 − 1 ... 1 1

1 1 ... 1 1

]
and d = [0, ν]

ᵀ. However, if we
maintain K = 2 and if we inadvertently pick the index set
S such that CS =

[ − 1 1
1 1

]
then CSδxS = 0 ⇒ δxS = 0, since

the columns of C are orthogonal, hence independent. This
means the iterative system becomes stationary and the solution
may never converge to an optimum. Previous research [2]
solved the issue by selecting S = {i1, i2} so that yi1 = yi2 , and
extended the selection of K to any matrix C.

Lemma 1. Let K be the number indices in S needed to
optimize Eqn. (4). rank(C) ≤ n − 1⇒ K ≥ rank(C) + 1.

Proof. K ≤ n, hence rank(CS) ≤ rank(C) as we may have
removed some of the independent columns of C during the
projection onto the dimensions selected by S. This leads
to rank(CS) ≤ rank(C) ≤ K − 1. Based on Def. 2, we
have CS ∈ IRm×K ⇒ K = nullity(CS) + rank(CS). Hence
nullity(CS) =K − rank(CS) ≥ rank(CS) + 1 − rank(CS)
leading to nullity(CS) ≥ 1. This means that
∀S with |S| =K, ∃ δx?S ∈ Ker(CS) such that δx?S 6= 0
and δx?S is an optimizer of Eqn. (4) for a fixed S, i.e.
the system Eqn. (4) is not stationary until it reaches an
optimum.

Note that when rank(C) =n, we can directly solve
x? = C−1d if ∀i ∈ {1, n}, x?i ∈ [r, R] (otherwise no valid
solution exists). When C is full rank, we can get C−1 an-
alytically by using the Jordan-Gauss elimination method. In
addition, we show in the supplemental material that Eqn. (4)
can be reformulated so that K ≥ 1 by parameterizing δx as a
linear combination of vectors spanning Ker(C). However, it
is computationally expensive when |Ker(C)| is large.

IV. DIMENSION SELECTION AND WORKING SET

Once we have chosen K, we need to find the set
S = {ik}Kk= 1 before optimizing Eqn. (4) with respect to δxS .
[2], [26] introduced the notion of “working set” related to
the most violating pairs and second order information. Both
are linked to the first and second order approximation of the
objective function F . [30] also chooses the dimensions to
be optimized based on the highest gradient magnitude along
a specific dimension. We propose the following heuristic to
extend the notion of working set. At each iteration t, we
maintain two sets, an active set S(t)A and an inactive set S(t)I .
Let ∇F (t) be the gradient of the objective function at time
t, and η?i be the best potential displacement along the ith

direction of the gradient:

η?i ← optimize
ηi

ηi∇F (t)
i ⇔ w? ← optimize

w=r or R
(w − x(t)i )∇F (t)

i

with η?i = w? − x(t)
i and ∇F (t)

i = ((A + Aᵀ)x(t) + b)i (5)

Algorithm 1 Initializing S with the first K − 1 indices
1: function INITWORKINGSET(x, ∇F(x), ρ)
2: (SA, SI ) ← ({∅}, {∅})
3: v ∈ IRn
4: for i← 1 to n do
5: w? ← optimize

w=r orR
(w − xi)∇F(x)i

6: vi ← (w? − xi)∇F(x)i
7: if vi 6= 0 then SA ← SA ∪ i
8: else SI ← SI ∪ i
9: if |SA| > K then

10: S ← {ik}K−1−ρ
k=1 s.t.

∣∣vik ∣∣k<K−ρ ≥ ∣∣vil ∣∣l≥K−ρ
11: for i← 1 to ρ do S ← S ∪ random i

i∈SA\S

12: else
13: S ← SA
14: for i← 1 to K − 1− |SA| do S ← S ∪ random i

i∈SI

15: return S

In other words, when the QP is maximized, we pick η?i such
that η?i∇F

(t)
i ≥ 0, and when the QP is minimized we pick η?i

such that η?i∇F
(t)
i ≤ 0. Then we define S(t)A = {ik} such that

η?ik∇F
(t)
ik
6= 0 and S(t)I = {jl} such that η?jl∇F

(t)
jl

= 0. The
first K − 1 indices of S are chosen among S(t)A and the last
index is chosen among S(t)A ∪ S

(t)
I . When |S(t)A | ≤ K−1, all

the indices of S(t)A are part of S and the remaining K−1−|S(t)A |
indices are picked randomly from S(t)I . When |S(t)A | > K−1,
we pick the best K−1−ρ indices ik ∈ S(t)A corresponding to the
largest |η?ik∇F

(t)
ik
|. The other ρ indices are picked randomly in

S(t)A . While randomizing a portion of the indices for S(t)A may
slow down the convergence rate a little bit, it prevents falling
into poor local optimum. Typically we choose ρ � |S(t)A |.
Note that when x(0) is sparse and when x? is expected to be
sparse, |S(t)A | decreases quickly, reducing the search space for
S dramatically. For the last index iK , we run a search over
all the unpicked indices and retain the one that offers the best
optimizer δxS∪iK of Eqn. (4). Our heuristic generalizes [2],
[30] as it not only introduces a random selection process in
order to avoid poor local optimum, but also takes into account
the potential displacement η? along each gradient direction.
For ρ = 0, η = ± 1 and K ≤ 2, our heuristic is equivalent to
the one in [2], [30]. Our working set selection algorithm for
the first K−1 indices is summarized in Alg. 1.
Eqn. (3) can also be reformulated to avoid the working set
selection process, leading to the next lemma:

Lemma 2. Eqn. (3) can be reformulated in the null space of
the constraints so that K ≥ 1.

Proof. Let |Ker(C)| =D and U ∈ IRn×D such that the
columns {ui}Di= 1 of U span Ker(C). We can parametrize
δx = Uα since C δx = 0 ⇔ δx ∈ Ker(C). Then Eqn. (3)
becomes:

α? ← optimize
α

αᵀUᵀAUα+ (Ax(t) + Aᵀx(t) + b)
ᵀ
Uα

s.t. r ≤ x(t)
i + (Uα)i ≤ R ∀i ∈ {1, n}

(6)



Indeed ∀α ∈ IRD, CUα = 0, i.e. CU = 0 by construction.
From Lemma 1 CU = 0 ⇔ rank(CU) = 0⇒ K ≥ 1.

The downside of this reformulation is that we need to pay
the space and computation price of processing U and UᵀAU,
unless A is extremely sparse or D extremely low. One clear
advantage is when D = |Ker(C)| ≤ 2, optimizing Eqn. (6)
is equivalent to optimizing a bounded D-dimensional conic
equation, as demonstrated by Eqn. (13) and Eqn. (15) that
have closed form solutions (see next two sections).

V. SOLVING THE MINIMAL QP PROBLEM

Many applications (min/max clique, cut, independent set,
etc) have constraints with rank(C) ≤ 1. Therefore, in the
following we will show how to solve the small QP problem
of Eqn. (4) for special cases where rank(C) = 0, 1 and for
the general case of rank(C) ≥ 2. In the future, we will set
K = rank(C) + 1.

A. Special Case for rank(C) = 0, K = 1

rank(C) = 0 means the linear constraint Cx = d is removed
from Eqn. (2). Since K = 1, S = {k} and δxS =α ∈ IR. At
each iteration t Eqn. (4) becomes:

(k?, α?)← optimize
k, α

α2Akk + α (Ax(t) + Aᵀx(t) + b)k

s.t. x(t)
k + α ∈ [r, R]

(7)

We solve Eqn. (7) with respect to α for every index
k ∈ {1, n}. For each fixed k, Eqn. (7) reduces to op-
timizing a bounded second degree equation of the form
α? ← optimizeβα2 + γα, where alpha’s bounds are defined
as αmin = r − x(t)k and αmax =R − x(t)k . The next section gives
the closed form solution for α?. At iteration t, the complexity
of solving Eqn. (7) is linear.

B. Special Case for rank(C) = 1, K = 2

With rank(C) = 1 the linear constraints in Eqn. (2) reduces to
cT x = d, with c and d ∈ IRn. S = {k, l} and δxS = [αk, αl]

ᵀ ∈
IR2. As described in Section IV, we first conduct a linear
search to find k, then we perform a second linear search to find
l, αk and αl. In order to find k we search the dimension that
would lead to highest potential gradient magnitude along the
dimension k, taking into account the bounds on xk ∈ [r, R]:

k? ← argmax
k∈S(t)

A

∥∥optimize
w=r or R

(w − xk)(Ax + Aᵀx + b)k
∥∥ (8)

With a high probability we keep k?, and with a low probability
we simply randomly pick k ∈ S(t)A such that |η∇F(x)k| 6= 0.
We then perform a second linear search to find the second
dimension l and the coefficients [αk, αl]:

(l?, α?k, α
?
l )← optimize

l6=k,αl,αk

α2
kAkk + α2

lAll + αkαl(Akl + Alk)

+αk(Ax(t) + Aᵀx(t) + b)k + αl(Ax(t) + Aᵀx(t) + b)l

s.t. αkck + αlcl = 0, with x(t)
k + αk and x(t)

l + αl ∈ [r, R] (9)

First let’s assume both ck, l 6=0. Solving the constraints gives:

αk = −αlcl
ck

and αminl ≤ αl ≤ αmaxl

where αminl = max
(
r − x(t)

l ,
(x(t)
k −W )ck

cl

)
and αmaxl = min

(
R− x(t)

l ,
(x(t)
k − w)ck

cl

) (10)

where (w, W ) = (r, R) if ckcl > 0 or (w, W ) = (R, r) if
ckcl < 0. Then, solving Eqn. (9) reduces to optimizing a
bounded second degree equation of the form:

(l?, α?k, α
?
l )← optimize

l 6=k,αl

βlα
2
l + γlαl

s.t. αl ∈ [αminl , αmaxl ] and α?k = −α
?
l cl
ck

(11)

Now let us assume that only one of the coefficients (ck, cl) is
null. We deduce from the linear constraint that ck = 0⇒ αl = 0
and cl = 0 ⇒ αk = 0. In both cases Eqn. (9) reduces again to
optimizing a bounded second degree equation. Finally when
[ck, cl]T = 0 Eqn. (9) reduces to optimizing a bounded conic
equation. The closed form solutions for both the bounded
second degree and the bounded conic equations are shown
in Section VI.

C. General Case for rank(C) ≥ 2, K = rank(C) + 1

As described in Section IV, our algorithm first estimates
the K−1 indices of S and next conducts a line search on
the remaining dimension iK while optimizing Eqn. (4) with
respect to δxS . As a result, for every candidate index iK , we
simply need to optimize Eqn. (4) with respect to δxS . This
ensures that both i?K and δx?S? will be chosen as the best
optimizer of Eqn. (4) at the end.

Lemma 3. If K = rank(C) + 1 and rank(CS) =κ then the
complexity of optimizing Eqn. (4) with respect to δxS is
reduced to the complexity of (i) solving the linear system
CSδxS = 0 and (ii) optimizing a D-dimensional bounded conic
equation with D = nullity(CS) = rank(C) −κ+ 1.

Proof. CS ∈ IRm×K hence from Def. 2
nullity(CS) =K − rank(CS) = rank(C) −κ+ 1. Solving
CSδxS = 0 is equivalent to finding the vector space
[u1, . . . , uD] spanning Ker(CS), with D = nullity(CS).
We can then parametrize δxS =

∑D
k= 1 αkuk and solve Eqn.

(4) with respect to α = [α1, . . . , αD] ∈ IRD:

α? ← optimize
α

D∑
k=1

α2
kAikik +

D∑
k=1,l=1

αkαlAikil +
D∑
k=1

αk∇F (t)
ik

s.t. αk ∈ [αmink , αmaxk ] and ∇F (t) = Ax(t) + Aᵀx(t) + b (12)

Eqn. (12) is a D-dimensional bounded conic equation.

For D = 1, 2 we provide a closed form solution in Sec-
tion VI. When D > 2 we need to optimize iteratively
the D−dimensional bounded conic equation, i.e. we need
to solve a sub-QP problem of dimension D. Note that we
can always randomly pick two linear combinations of vectors



in Ker(CS) and solve a bounded 2D conic equation, which
is the equivalent of one optimization step in the random
projection algorithm in [34]. Finally finding the vector space
spanning Ker(CS) is done analytically via QR decomposition
or SVD of CS . Optimizing the D−dimensional bounded conic
equation can be achieved with time complexity O(D) where
the time complexity for the QR decomposition and Gram-
Schmidt basis completion process is O(m3 +m(K −m)2) or
for the SVD is O(m2K +mK2 +K3). Solving the small QP
problem is summarized in Alg. 2 and our final SMO algorithm
is described in Alg. 3.

Algorithm 2 Solve the small QP problem.
1: function SOLVESMALLQP(x, ∇F (t), A, C, S)
2: Find {uk} ∈ Ker(CS) . Using for example QR on CS
3: Parametrize δxS =

∑
ukαSk

4: Solve Eqn. (4) w.r.t. the {αSk}
5: return (δx?S )

Note that when rank(C) ≥ n − 2, the sub-QP problem can be
solved analytically. More generally when rank(CS) ≥ K − 2,
i.e. when rank(C) ≤ rank(CS) + 1, the bounded conic (or
second degree) equation has a closed form solution described
in Section VI. For D > 2, iterative approaches to optimize
the D-dimensional bounded conic equation are more efficient
then closed form solutions, and one can simply reuse the same
SMO algorithm to solve the sub-QP problem.

VI. OPTIMIZING BOUNDED SECOND DEGREE AND
BOUNDED 2D CONIC EQUATIONS

The bounded second degree equation from the previous
section has the following form:

α? ← optimize
α

βα2 + γα s.t. α ∈ [αmin, αmax] (13)

where α? has a closed form solution depending on the sign
of β and whether the optimization problem Eqn. (2) is a
maximization or minimization problem. When solving the
maximization problem x? ← arg max F(x), α? has the closed
form solution:

α? ←


− γ

2β
if − γ

2β
∈ [αmin, αmax] and β < 0

argmax
α=αmin
or αmax

βα2 + γα otherwise

(14)
When solving the minimization x? ← arg min F(x), α?

has the same closed form solution as Eqn. (14), except that
arg max becomes arg min and β < 0 becomes β > 0. In
some cases, for rank(CS) =K − 2, the QP minimal problem
cannot be reduced to a bounded second degree equation, but
instead to a bounded conic equation of the form:

α? = [α?1, α
?
2]
T ← optimize

α1,α2

β11α
2
1 + β22α

2
2+

(β12 + β21)α1α2 + γ1α1 + γ2α2

s.t. α1 ∈ [αmin1 , αmax1 ] and α2 ∈ [αmin2 , αmax2 ]

(15)

In order to solve Eqn. (15), we first compute the optimum
on the boundaries, i.e we fix α1 =αmin1

and optimize the
second degree equation with respect to α2. We then repeat the

procedure by fixing α1 =αmax1
, α2 =αmin2

and α2 =αmax2
.

Finally, if (β12 +β21)2 − 4β11β22 < 0 we check if there’s
an optimum inside the bounds by solving the 2 × 2 linear
system: 2βα = −γ. Note that (β12 +β21)2 − 4β11β22 < 0⇔
0 ≤ (β12 −β21)2 < det(β), which guarantees β is invertible.
Our final SMO algorithm is described in Alg. 3.

Algorithm 3 General SMO (G-SMO)
1: Initialize:
2: K = rank(C) + 1

3: x(0) such that Cx(0) = d and ∀i ∈ {1, n}, x(0)
i ∈ [r, R]

4: ∇F (0) ← (A + Aᵀ)x(0) + b
5: Main loop:
6: for t← 1 to tmax do
7: S ← INITWORKINGSET(x(t), ∇F (t), ρ)
8: δF? ← 0
9: for j ∈ {1, n} \ S do . Search for the last index of S

10: S ← S ∪ j
11: δx?S ← SOLVESMALLQP(x(t), ∇F (t), A, C, S)
12: δF ←

∥∥δxSᵀASSδxS +∇F (t)
S

ᵀ
δxS

∥∥
13: if δF > δF? then j?, δF?, δx?S? ← j, δF , δx?S
14: S ← S \ j
15: S? ← S ∪ j?
16: x(t+1)

S? ← x(t)
S? + δx?S?

17: ∇F (t+1) ← ∇F (t) + (A + Aᵀ + diag(b))S? δx?S?

18: if δF? < ε then break
19: return x?

VII. APPLICATIONS AND RESULTS

In this section, we apply our algorithm to several problems.
For all experiments, the code was written in C++ with SSE
optimization and ran on an 2.8 GHz Intel Core i7, with 16
GB 1600 MHz DDR3 RAM.

A. Single Doc. Summarization as a Sparse Max Cut

In order to generate summaries of a single document with
the most N relevant sentences, we model the problem as a
sparse maximum cut problem [35], [36]:

x? ← argmax
x

F(x) = (1 − x)ᵀ(A− D)x

s.t. 1ᵀx = N and x ∈ [0, 1]n
(16)

where Aij is the similarity between sentences i and j, with
|Aij | ≤ 1. D is a diagonal matrix such that Dii ≥ maxj Aij .
Hager et al. [37] proved that introducing D yields to a
proper binary solution x for the aforementioned maximum
cut problem. Also note that when Dii =

∑
j Aij the QP

problem becomes equivalent to solving the minimum dominant
set formulation of [38]. In the following we will report results
for Dii = maxj Aij (MCUT), for Dii =

∑
j Aij (MDOM)

and for Dii = 1 (CONST1). We used the following similarity
metric between sentences:

Aij =

∑
k hik ∧ hjk∑
k hik ∨ hjk

with hik =


1, if sentence i contains

the kth word of the
document dictionary

0, otherwise

(17)



In order to evaluate our algorithm adapted to perform sum-
marization, we used the English sub-corpus of Concisus Cor-
pus of Event Summaries [39], which contains 78 event reports
and respective summaries, distributed across three different
types of events: aviation accidents, earthquakes, and train
accidents. To evaluate the quality of the summary, we used
standard ROUGE [40], namely ROUGE-1, which is the most
widely used evaluation measure for this scenario. We generate
3 sentence summaries, commonly found in online news web
sites, like Google News. We compared our algorithms against
LexRank [41] and Centrality [42] for a better understanding of
the improvements. We also measured Max ROUGE-1 which
was obtained by selecting the highest ROUGE-1 value among
all possible combination of three sentences.

Table I outlines the result of our algorithms and the base-
lines on the Concisus dataset. Method CONST1 outperforms
the LexRank and Centrality baselines, as well as the other two
methods MDOM and MCUT.

Alg. LexRank Centrality MDOM MCUT CONST1
ROUGE-1 0.428 0.443 0.482 0.489 0.506

TABLE I
ROUGE-1 RESULTS ON THE CONCISUS DATASET. MAX ROUGE-1: 0.646.

B. Support Vector Machine

We wanted to make sure that our algorithm was still
performing comparably to the LIBSVM for the problem of
SVM, even though we extended SMO to a more general
class of problems. In order to evaluate our algorithm we
used the datasets “adult” (adu.), “webpage” (web.), “cod-rna”
(cod.), and “splice” (spl.) from [43]. The adult dataset is
composed of nine partitions: a1a → a9a and the webpage
dataset is composed of height partitions: w1a → w8a. For
both datasets, each partition starts with a small training set
and a large testing one, and ends with a large training set
and a small testing one. We run our experiments on each
partition. Implementation-wise, we used the standard LIB-
SVM code wrapped in the OpenCv library with the RBF
kernel KRBF (xi, xj) = e− γ‖xi − xj‖2 . For our approach we
used K̄(xi, xj) = 1 −KRBF (xi, xj), ε = 10−5. We initialize
our system with ≤10 random support vectors. We also used
the same grid search (γ ∈ [0, 1], γincr. = 10−5) for both
methods for fair comparison. Note that our implementation
did not account for further optimizations including caching
and shrinking, other heuristics based on the support vector
margins or decision constraints [2]. Table II shows the baseline
on the aforementioned datasets and Table III shows the results
of our algorithm. While our approach provides slightly better
accuracy, our solution is also sparser in terms of numbers
of support vectors. Hence our approach only takes fewer
iterations to converge, leading to a training time smaller than
with the standard LIBSVM approach.

C. Toy Experiments for rank(C) > 2

In order to test our approach for rank(C) > 2, we used an
extended version of the maximum cut problem described in

# feat. train. size test. size
adu. 123 1605 → 32561 30956 → 16281
web. 300 2477 → 49749 47272 → 14951
cod. 8 59535 271617
spl. 60 1000 2175

TABLE II
DATASET SPECIFICATIONS. THE ADU. AND WEB. DATASETS ARE

PARTITIONED IN INCREASING TRAINING SET SIZE AND DECREASING
TESTING SET SIZE. THE SYMBOL “a→ b” INDICATES THE SIZE RANGE.

THE SAME TERMINOLOGY WILL BE USED FOR TABLE III.

adu. web. cod. spl.
acc. LIBSVM (%) 79.5 ± 0.5 97.7 ± 0.3 66.7 83.6
acc. ours (%) 80.4 ± 1 97.3 ± 0.04 85.1 84
#SV LIBSVM 200 ∼200 200 200
#SV ours 137.8 ± 67.9 110 ± 18.9 39 197
t.t. LIBSVM (ms) 28.8 → 683.8 92.9 → 2343.7 176.6 22.9
t.t. ours (ms) 7.82 → 142.3 6.32 → 182.9 70.1 8.3

TABLE III
ACCURACY (ACC.), NUMBER OF SUPPORT VECTORS (#SV) AND TRAINING

TIME (T.T.) FOR THE BEST PARAMETER γ ON SVM BINARY CLASS
DATASETS FOR LIBSVM AND OUR APPROACH.

Eqn. (16). The new QP problem is formulated as follows:

x? ← argmax
x

F(x) = (1 − x)ᵀ(A− I)x

s.t. Cx = d, I = identity, x ∈ [0, 1]n

A ∈ {0, 1}n×n, C ∈ {−1, 1}m×n

where Cᵀ
1 = 1 and d1 = N and ∀i > 1

Cij ∈ {0, 1}n, (C 1)i = 0 and di = 0

(18)

A is randomly initialized with a level of sparsity of 70%, i.e.
only 30% of the values of A are 1s. We fix rank(C) = m, and
to guarantee that C has m independent columns, we build C
as follows:

C =

[
1ᵀ

2I− 11ᵀ 1 R

]
R ∈ {−1, 1}m−1×m−2

=


1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 −1 . . . −1 1 −1 1 . . .

−1 1 . . . −1 1 1 −1 . . .

−1 −1
. . .

...
... 1 1 . . .

−1 −1 . . . 1 1 1 1 . . .


(19)

Here the first m columns of C are guaranteed to be inde-
pendent from the m − 1×m − 1 sub-matrix 2I−11ᵀ. It is also
clear that the mth column is also independent from the first
m−1’s. In order to guarantee that (C 1)i>1 = 0, we define R
such that (R 1)i =m − 4, i.e. each row of R has (m − 2 + n−m

2 )

1’s and (2 + n−m
2 ) -1’s. Since we also want to guarantee

that the constraints Cx = d can be respected in the box space
x ∈ [0, 1]n, for k < m we choose Rk = − (2I − 11ᵀ)k, and for
k ≥ m we simply set Rk to be a random column of 2I − 11ᵀ

and Rk+1 = −Rk. Finally we randomly swap columns and
rows of C to minimize the biased introduced by the sequential
construction of C. The identity matrix I is introduced to push



the values of x to be binary. The additional m − 1 constraints of
C can be viewed at compatibility constraints enforced on the
solution, i.e. while A represents the node connectivity in the
graph, Cᵀ

2<i<m represent sets of hyper-graph edges of node
affinities for the final solution.

We set N = 5 and test two additional variants of Alg. 3
for m = 4 and m =n − 2 with n = 100, 1000, 10000. For each
{m, n} combination we run 100 instances of the QP problem
with different A and C. The algorithm variant “random work-
ing set” (RWS-SMO) is replacing the working set selection
by picking randomly unique indices for S?. The variant “null
space reformulation” (NSR-SMO) is based on the problem
reformulation Eqn. (6) of Lemma 2. Note that we do not
compare with simplex or interior point methods because naive
use of general LP solvers would be computationally too
expensive for large n and m. Table IV and V show the
results of the different algorithms for m = 4 and m =n − 2.
The RWS-SMO is suboptimal as it picks dimensions that

n = 100 n = 1000 n = 10000
F?avg Time F?avg Time F?avg Time

RWS-SMO 110.3 7.14 1301.1 30.2 13832.4 1324.8
NSR-SMO 128.2 5.71 1321.9 441.2 14366.1 1.62 10 5

G-SMO 132.1 1.42 1389.5 9.35 14233.7 121.7

TABLE IV
AVERAGE SCORE F?AVG AND PROC. TIME (MS) FOR m = 4.

n = 100 n = 1000 n = 10000
F?avg Time F?avg Time F?avg Time

RWS-SMO 101.2 32.8 1252.5 8.41 105 − � 1.10 8

NSR-SMO 115.1 8.12 1289.0 684.8 12249.9 4.08 10 5

G-SMO 113.5 7.90 1317.1 4580.4 11975.4 9.52 10 6

TABLE V
AVERAGE SCORE F?AVG AND TIME (MS) FOR m =n− 2.

don’t necessarily need to be optimized, hence it takes more
iterations to converge and the local optimum is worst than the
other two approaches, showing the importance of the working
set selection. For m = 4, the G-SMO algorithm is more efficient
than its variants as it quickly recursively decomposes the small
QP problem into smaller ones until a closed form solution can
be used since m� n. For m =n−2 the NSR-SMO variant is
more efficient as it directly reduces to a bounded 2D conic
equation.

VIII. DISCUSSION

In this section we want to tackle three aspects of our
approach: (i) generalization of our approach to non-convex
problems, (ii) convergence of Algorithm 3 and (iii) scalability
of our approach. First, we do not make any assumption
regarding the nature of the problem to solve, i.e. we do not
take advantage of any particular structure for the matrix in the
objective function (symmetric, positive/negative, semi-definite,
etc), nor for the constraint system. If the problem is non-
convex, the optimum is only guaranteed to be local, as any
other approaches trying to solve NP problems. Other technics,

like simulated annealing, or additional knowledge on the initial
solution can certainly improve the local optimum, but this is
not the scope of the paper. However we do guarantee that
Algorithm 3 converge to an optimum. Indeed, step 13 enforces
that the objective function keeps being optimized and step 18
exits the iterative process when the objective function does not
change any more. Finally our approach inherits from the low
memory cost of the original SMO as it solves iteratively the
minimal QP problems. The memory required at each iteration
is linearly proportional to the rank of the constraints, making
our approach scalable to large dataset when the constraints
have low rank. When the constraints have very high rank (≥
n-1) we also showed that we can reformulate the problem
directly in the null space of the constraints.

IX. CONCLUSION

In this research, we extended SMO to a more general form
of QP problem than the initial SVM one, and used it to derive
novel results in several fields of machine learning including
document summarization and sparse SVM. First, we proved
the conditions under which SMO can be used. Second, we
established strategies and bounds in order to reduce the general
QP problem to optimizing a sequence of smallest possible
QP problems. Third, we show an 18% improvement on
single-document summarization without using any supervised
information. This result will enable substantial improvements
in other summarization tasks, including multi-document sum-
marization. Finally we showed that we can reformulate QP
problems using graph theory problem transformations directly.
Our sparse maximum clique formulation of SVM improves the
accuracy of the original formulation by minimizing the model
memory footprint and training time. In future research, we plan
to explore additional application including schedule and task
planning, Part-of-Speech tagging, image/video segmentation,
and object tracking.
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