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Abstract

Emojis are very common in social media
and understanding their underlying seman-
tics is of great interest from a Natural Lan-
guage Processing point of view. In this work,
we investigate emoji prediction in short text
messages using a multi-task pipeline that si-
multaneously predicts emojis, their categories
and sub-categories. The categories are either
manually predefined in the unicode standard
or automatically obtained by clustering over
word embeddings. We show that using this
categorical information adds meaningful in-
formation, thus improving the performance of
emoji prediction task. We systematically an-
alyze the performance of the emoji prediction
task by varying the number of training sam-
ples and also do a qualitative analysis by using
attention weights from the prediction task.

1 Introduction

Emojis are a popular set of ideograms created in the
late 1990s to enrich written communication by adding
nonverbal expressive power to digital communication.
These symbols can be used by human readers to con-
vey emotions and information in a condensed form. As
Snapchat, Twitter and other social media platforms
have become popular, so has the usage of emojis.

Despite their popularity, there is very little research
work in predicting emojis.
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Over the past few years, the interest in emoji re-
search has increased and several studies has been pub-
lished in the area of distributional semantics [BRS16,
ERA+16, WBSD17b, WBSD17a, BCC18], sentiment
analysis [NSSM15, HGS+17, KK17, RPG+18] and
multimodal systems [CMS15, CSG+18, BBRS18]. In
the past year researchers also focused on the possi-
bility of predicting emojis in a text message [BBS17,
FMS+17]. The emoji prediction task consists in pre-
dicting the original emoji present in a tweet (or snap
caption) given only the non-emoji textual content.
Prior explorations of emoji prediction tended to focus
on less than 2% of the total number (2653) of emojis
in Unicode 6 standard 1 emojis. Another limitation of
those papers was that emoji prediction could be am-
biguous. For example, when the model predicts the
correct label to be , emojis like , , , or can
also be valid predictions.

In this work, we extended the emoji prediction task
to 300 emojis in order to study a larger number of
emojis along with their unicode standard categories,
sub-categories, and the new semantic clusters that we
created. We are not aware of any previous research
work focused on either predicting a large number of
emojis (300), or using a multi-task approach to predict
emojis or emoji categories. We also do a systematic
analysis of how the number of training samples affect
the performance of the emoji prediction task. To mit-
igate the problem of emoji ambiguity, we concentrate
on broad emoji category prediction in addition to that
of individual emoji prediction. We grouped emojis in
two different ways. The first one was defined by the
Unicode consortium2, which groups emojis into seven
categories (e.g., “Smileys & People”, “Nature”) and 74
sub-categories (e.g., “face-positive”, “face-negative”).
The main categories are commonly found on mobile
phone keyboards as shown in Figure 1). Alternatively

1www.unicode.org/emoji/charts/full-emoji-list.html
2www.unicode.org/emoji/charts/emoji-ordering.html



Figure 1: Screenshot of Apple’ Emojis keyboard in-
cluding a subset of Smileys & People category emojis,
and buttons to access the remaining categories.

we also created semantic clusters using embeddings.
We use a Multi-task approach to combine the tasks

of emoji and category prediction. Multi-task ap-
proaches [Car, Car97, Ben12, CW08] improves gen-
eralization by transferring information across different
tasks and improving each task individually. In partic-
ular, multi-task learning with simultaneous training
on multiple tasks has demonstrated promising results
[CW08][FMS+17][Ben12].

Our work performs multi-task learning by training
a single model with multiple outputs (the dataset is
annotated with multiple labels) and we evaluate us-
ing our gold standard created from Twitter and Snap
public posts as described in the Datasets section.
The subjectivity of emoji interpretation makes emoji
prediction a very challenging task. Nevertheless our
work shows that simultaneously predicting emojis,
their categories, and sub-categories in a multitask
framework improves the overall results. It not only
improves emoji prediction, but it also helps with the
identification of emoji categories, which can be partic-
ularly more relevant when the emoji prediction model
is less precise.

The remainder of this work is organized in the fol-
lowing way: The next section describe the datasets
used in our experiments. We then present the Deep
Learning Models explored to solve our research prob-
lem, Finally, we discuss the experiments, results and
then conclude with future research directions.

2 Datasets

In this study we explore emoji prediction for two dif-
ferent datasets: Twitter and Snapchat captions. We
select documents (tweets and snaps) that contain a
single emoji, and at least three tokens apart from the
emoji. We restrict to documents containing a single
emoji so as to minimize the interference of the pres-
ence of other emojis in the emoji prediction task. We
also consider only the documents that include the most
frequent 300 emojis in each dataset. We restrict to the
top 300 emojis only due to lack of meaningful number
of examples beyond that. A subset of the most fre-
quent emojis for each dataset is reported in Table 1.

Note that we remove skin color from the emojis3 to
avoid generating very similar labels. Table 2 includes
statistics on the two datasets. We can see that Snap
captions are shorter than tweets, while average word
length is similar. Another important difference be-
tween the two datasets is the most frequent emojis
used. Table 1 shows the 60 most frequent emojis in
each dataset (on the top Twitter and on the bottom
Snap data), along with the number of documents that
include each emoji. In both datasets the frequency is
very unbalanced: 16% of tweets and 25% of snaps
include one of the three most frequent emojis , ,

. Therefore we use a balanced dataset in our ex-
periments, in order to give same importance to each
emoji, independent of the frequency of usage. We sub-
sample the most frequent emojis in order to match
the same number of examples of the least represented
emoji (1,500 examples for Twitter and 3,000 for Snap
data). We show that using fewer than 1,500 examples
per emoji leads to a drastic decrease in accuracy of
the emoji detection (see Figure 3). We focus our ex-
periments on 300 emojis because we do not have more
than 1,500 tweets per emoji beyond the top 300 emojis
in our Twitter dataset. For our experiments we ran-
domly chose 80% of the documents for training, 10%
for validation and 10% for testing.

2.1 Twitter Dataset

The Twitter dataset contains 50 million tweets re-
trieved using Twitter API. Tweets were posted be-
tween January 2016 and April 2017 and were geo-
localized in the United States. We removed hyperlinks
from each tweet, and lowercased all textual content in
order to reduce noise and sparsity. Since Twitter data
includes a large percentage of bot data, we filter noise
as much as possible, removing repeated tweets (or very
similar ones) and selected a maximum of five tweets
per user. From this dataset, we selected tweets includ-
ing anyone of the 300 most frequently occuring emojis
and at least three tokens (without the emoji), resulting
in a final dataset composed of 2,862,505 tweets.

2.2 SnapCaption

SnapCaption is an in-house Snapchat internal dataset
containing only Snapchat captions. A caption is the
textual overlay component of a snap. These cap-
tions were collected exclusively from snaps submit-
ted to public and crowd-sourced stories (as known
as Live Stories or Our Stories). Examples of such
public crowd-sourced stories are “New York Story” or
“Thanksgiving Story”. All captions were posted in
one year period and do not contain any image or any

3E.g., are mapped to one single label



Table 1: 60 most frequent emoji for the Twitter (top) and Snap (bottom) datasets.

235 112 111 63 52 50 45 41 38 36 35 33 33 31 31 31 29 29 28 28 27 27 27 27 26 24 24 23 23 23

23 22 20 19 19 18 18 18 17 17 16 16 16 16 16 15 15 15 15 15 15 14 14 14 14 13 13 13 13 12

3343 2425 1734 645 617 578 507 433 418 395 391 380 375 364 356 321 315 313 278 273 267 266 234 226 226 225 222 219 212 197

194 194 191 188 187 186 186 181 174 170 169 167 161 157 154 153 153 150 148 147 147 145 139 136 136 134 134 133 124 123

other associated information. This dataset contains
30,004,519 captions.

2.3 Categories and Clusters of Emojis

We also consider broader classes of emojis, such as
unicode categories and semantic clusters. The unicode
consortium defines a set of 7 categories categories and
74 sub-categories.

The problem with Unicode categories and sub-
categories is that they fail to accurately capture se-
mantically related emojis. Emojis like and are
both in the sub-category neutral faces even though
they clearly indicate different emotions. Another ex-
ample is and that are semantically similar, but
they appear in different categories (“Smiling Faces”
and “Emotions”) even though they address nearly
identical meanings. To overcome this limitation, we
propose a second approach to automatically organize
emojis by clustering them using pre-trained word em-
beddings similar to emoji2vec [?]. These clusters have
the advantage of better capturing the semantic infor-
mation of emojis. For example and are in the
same cluster. These clusters are an important aspect
to consider because they are based on how emojis co-
occur in short text messages from tweets and captions
of public snaps. We pretrained two different sets of
skip-gram embeddings [MLS13] for Twitter and Snap.
The first skip-gram model was trained on a dataset
of about 70 million tweets and the second skip-gram
model was trained on about 100 million Snap captions.
Using the embeddings of the 300 most frequent emo-
jis of each dataset, we created two sets of 30 clusters
using a k-means algorithm. The number of clusters
was defined based on qualitative analysis (clusters that
seemed to better organize emojis by semantics). In ad-
dition, the number of clusters was selected such that
each cluster has a similar number of emojis that are
usually displayed on a mobile keyword. As a result, we
would be able to just provide an icon to access directly
each cluster in a similar way as the Figure 1 shows for
the top categories. The resulting clusters will group
semantically similar emojis (like in [BKRS16] where
11 cluster are created for 100 emojis), grouping love,
sad faces, hand/gestures, animals, food, drinks, par-
ties, Christmas, and so on.

Table 2: Average, standard deviation and Median
length of words and characters of the two datasets.

Words Chars
Dataset Avg. Std. Median Avg. Std. Median

Twitter 12.73 4.23 12 91.14 24.67 92
Snap 5.01 2.29 4 25.62 11.75 23

3 Models

Our main architecture, illustrated in Fig. (2), starts
with our character and word embedding modules
whose outputs are fused by our feature attention unit
and the word attention unit. Finally the fully con-
nected layers and the softmax play the role of the final
multi-task classifier.

Previous approaches [BBS17, FMS+17] have suc-
cessfully learned LSTM models for emoji predic-
tion tasks. We experimented different plain LSTMs,
stacked LSTMs [FMS+17], and different word repre-
sentations before solidifying on our final model archi-
tecture Fig. (2). In addition, we explored single task
models and multi-task models. In the case of the
multi-task models, the entire network is shared and
the specialization only occurs at the final stage to pre-
dict specific labels of each task. This specialization is
accomplished through specific linear transformations.
Finally we used a cross entropy loss function for all
classification tasks. In the case of multitask learning,
the final loss is the sum of each single loss4. In the
following subsections, we detail each stage of our main
architecture.

3.1 Word Representation

The word embeddings are learned together with the
updates to the model. For out-of-vocabulary words
(OOVWs), we used a fixed representation that is han-
dled as a separate word. In order to train the fixed
representation for OOVWs, we stochastically replace
(with p = 0.5) each word that occurs only once in the
training data. When we use pre-trained word embed-
dings, that are concatenated with the learned vector.

4We also experimented weighted sum, with various weights,
but the best results are obtained with a simple sum of the losses.



Figure 2: Final architecture of our model

3.2 Char Representation

In addition, we use a character based embedding
[LLM+15, ?] stacked with a B-LSTM [GS05], produc-
ing a character-based word embedding that focuses on
word spelling variants. Indeed, the character-based
word embedding learned similar representations for
words that are orthographically similar, and thus are
expected to handle different alternatives of the same
word types that normally occur in social media.

3.3 Bi-directional LSTMs

Our bi-directional LSTM modules, [GS05] named B-
LSTM in Fig. (2), consists of a forward LSTM that
processes an input message from left to right, while the
backward LSTM processes it in the reverse direction.
As a result, the message representation s is based on
both the forward and backward LSTM encoding:

s = max {0,W[hfw; hbw] + d}

where W is a learned parameter matrix, fw is the for-
ward LSTM encoding of the message, bw is the back-
ward LSTM encoding of the message, and d is a bias
term, and we use a component-wise ReLU as the non-
linear unit. We use B-LSTM modules for both word
and sentence representations, namely Char B-LSTM
and Words B-LSTMs in our architecture Fig. (2). Char
B-LSTM takes a sequence of characters and outputs
a word embedding vector. This output is mixed with
another word representation via our feature attention
module. Then, the stacked Words LSTMs receive se-
quences of word representations from the attention
module, and output sentence embedding vectors.

3.4 Feature Attention

The feature attention module aims to linearly fuse
multiple input signals instead of simply concatenating
them. In our architecture, this module learns a uni-
fied word representation space, i.e. it produces a sin-
gle vector representation with aggregated knowledge
among our multiple input word representations, based
on their weighted importance. We can motivate this
module from the following observations.

Prior work, [BBS17] combines both word rep-
resentation x(w) and character-level representation
x(c) by simply concatenating the word and charac-
ter embeddings at each LSTM decoding step ht =

LSTM([x
(w)
t ; x

(c)
t ]). However, this naive concatena-

tion results in inaccurate decoding, specifically for un-
known word token embeddings, e.g., an all-zero vector

x
(w)
t = 0 or a random vector x

(w)
t = ε ∼ U(−σ,+σ), or

even for out-of-vocabulary words. While this concate-
nation approach does not cause significant errors for
well-formatted text, we observe that it induces perfor-
mance degradation for our social media post datasets
which contain a significant number of slang words, i.e.,
misspelled or out-of-vocabulary words. As a result,
we use a feature attention module, that adaptively
emphasizes each feature representation in a global
manner at each decoding step t. This process pro-
duces a soft-attended context vector xt as an input
token for the next stacked B-LSTM that takes care
of the sentences embedding. [RCP16] introduced a
similar approach, where the character embeddings are
weighted with an attention module. We use the fol-
lowing method:

[a
(w)
t ,a

(c)
t ] = σ

(
Wm · [x(w)

t ;x
(c)
t ] + bm

)
α
(m)
t =

exp(a
(m)
t )∑

m′∈{w,c}
exp(a

(m′)
t )

∀m ∈ {w, c} (1)

where αt = [α
(w)
t ;α

(c)
t ] ∈ R2 is an attention vector at

each decoding step t, and xt is a final context vector
at t that maximizes information gain for xt. Note that
this feature attention requires each feature representa-

tion to have the same dimension (e.g. x
(w)
t ,x

(c)
t ∈ Rp),

and that the transformation via Wm essentially en-
forces each feature representation to be mapped into
the same unified subspace, with the output of the
transformation encoding weighted discriminative fea-
tures for classification of emojis.

3.5 Word Attention

Not all the words have the same importance in the
representation of a document. We use the attention



mechanism introduced in [YYD+16]:

uit = tanh(Wwhit + bw)

αit =
exp(u>ituw)∑
t exp(u

>
ituw)

; di =
∑
t

αithit
(2)

where the final document representation di is a
weighted average of the hidden representation hit of
the LSTM. The weights αit are learned by the use of a
Multi-Layer Perceptron (linear transformation W and
biases b) with tanh as non-linear operation, and a soft-
max to compute the probability of each word.

4 Experiments And Results

We use two main variations for experiments: Single-
Task Prediction of emojis, unicode categories, and
emoji clusters, and Multi-Task Prediction, where
we combine the single tasks in one single model. We
also evaluate the impact of our different modules in-
cluding the combination of word/char LSTMs and the
word attention unit. Finally we investigate the influ-
ence of the number of layers for the LSTMs.

4.1 Single-Task Prediction

We explore three different tasks: (i) the emoji pre-
diction task proposed by [BBS17], (ii) prediction of
unicode emoji categories (the emoji in the text be-
long to the faces, animal, objects) and sub-categories
(positive faces, animal-mammal), and (iii) prediction
of automatic clusters that we previously generated us-
ing pre-trained word embeddings.

4.1.1 Predicting Emojis

Given a set of documents, each document contain-
ing only one emoji class, the task consists of pre-
dicting the emoji from the text. For this task, we
tested the influence of the number of emoji classes
and the number of examples per class. More pre-
cisely, for each experiment, we extract a balanced
dataset ofNclass emoji classes, andNdata examples per
class, with Nclass = {20, 50, 100, 200, 300 and Ndata

= {100, 500, 1000, 1500, 2000, 2500, 3000}. Nclass and
Ndata are tested independently: when we vary Nclass,
we fix Ndata to 3000, and when we vary Ndata we fix
Nclass to 300. Figure 3 shows our experiments with the
Snapchat dataset. It is clear that using more examples
per class improves our model by around 1% absolute
point from 1500 to 3000 examples. For >2000 exam-
ples the system converges to its optimum.

From Figure 4, we observe that Twitter data is eas-
ier to model than Snap data. In the 300 emoji predic-
tion task the best accuracy at top 5 (a@5) on Twitter
data is 40.05% while on Snap data it is 34.25% (see
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Figure 3: Acc@top 5 of the same algo. but variable
nr. of training instances per class (from 100 to 3000
examples for each emoji) on SnapCaptions. Test and
validation set are fixed for each experiment.

Table 3). There are several reasons that could explain
this difference in results. One reason is the length of
the text messages, since in Twitter there are on aver-
age twelve words per message, while on Snap has only
five (see Table 2). Another reason could be the miss-
ing visual context of Snap posts5, while only a small
percentage of tweets is complemented with a visual
content. For this reason, tweets contain typically less
semantic ambiguity.

Table 3 highlights the best performing systems on
the emoji prediction task. For the two datasets state of
the art systems are outperformed by the combination
of additional components. For example, adding a word
attention module improves the baseline of [BBS17].
Finally, there is an important difference when predict-
ing 20 and 300 emojis. We plot on the left of Figure 3
the accuracy of same model architecture (Char + 2
LSTM + word attention) on the emoji prediction task
for different numbers of emojis (20 to 300). Best ac-
curacy at top 5 (a@5) drops from 20 to 100, and then
remains constant. We observe the same drop using F1
(that only considers whether an emoji is predicted as
first option), however, having more than 100 classes
results in improvement. This is probably due the type
of the more rare emoji classes added after the most
100 frequent ones, that are more specific (like , ,
or ) hence easier to predict.

4.1.2 Predicting Unicode Emoji Categories
and Sub-categories

We predict Unicode emojis categories and sub-
categories using the text message that includes only

5Snap text messages are captions of images and videos posted
by Snapchat users, see Datasets section.



Table 3: Emoji prediction results using multiple number of emojis (20 to 300) and different models. We use the
original implementation of [FMS+17], while we implement [BBS17].

20 50 100 200 300
Dataset Models F1 a@5 F1 a@5 F1 a@5 F1 a@5 F1 a@5

Twitter LSTM 25.32 62.17 19.51 46.69 18.03 40.49 19.44 39.11 19.86 38.44
LSTM + Att. 25.51 62.82 19.49 47.21 18.3 40.56 19.61 39.10 19.38 38.41
2 LSTM + Att. [FMS+17] 24.47 62.38 19.64 47.01 18.36 40.60 19.60 39.09 20.09 38.70
Char + LSTM [BBS17] 26.81 63.37 20.21 47.83 18.87 41.41 20.49 40.14 21.27 40.06
Char + LSTM + Att. 27.37 64.33 20.91 48.23 18.88 41.8 21.19 40.65 21.59 40.06
Char + 2 LSTM + Att. 26.85 64.12 20.36 48.51 18.82 41.92 20.66 40.51 20.53 39.22

Snap LSTM 25.46 53.51 18.62 43.96 15.06 34.72 16.08 32.96 17.57 32.44
LSTM + Att. 25.58 53.67 18.86 44.44 15.40 35.20 16.47 32.95 17.46 32.63
2 LSTM + Att. [FMS+17] 24.30 53.01 18.64 43.59 15.40 35.03 16.73 33.26 18.07 32.94
Char + LSTM [BBS17] 24.84 53.37 19.26 44.75 15.50 35.38 17.39 33.89 18.80 33.98
Char + LSTM + Att. 26.01 54.34 19.39 45.1 15.58 35.61 17.44 34.26 18.64 33.86
Char + 2 LSTM + Att. 25.72 53.81 18.95 45.05 16.18 36.03 17.51 33.97 18.87 34.25
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Figure 4: F1 and Acc. @ top 5 for the model “Char
+ 2 LSTM + Word Att.” on Twitter and Snap data.

one emoji as we did in the emoji prediction task.

Table 4 shows the prediction results using macro-
F1 and a@5 evaluation metrics. In the first two blocks
(main and sub lines), we predict the main category and
sub-category respectively. The third block details the
clusters’ evaluation results, and the last block presents
the emoji prediction results. In the first line of each
block are the single-task results and the remaining
lines include the ones using a multi-task framework.

4.1.3 Predicting Clusters

Given a text message containing an emoji e we pre-
dict the cluster that emoji e belongs to. Cluster cre-
ation is described in the dataset section. Cluster re-
sults are reported in Table 4, in the lines correspond-
ing to “Semantic Clusters”. The results are better on
Snap than Twitter for broader classes and our clus-
ters capture better semantics than the categories and

Table 4: Results for single and multi-task predic-
tion of emojis including main unicode categories, sub-
categories, and clusters.
Pred. Twitter Snap
Task Loss F1 A@5 F1 A@5

Main Main 46.56 84.70 45.23 87.90
Category Main + Sub 48.34 85.87 45.07 87.79

Main + Emoji 48.17 85.52 44.54 87.83
Main + sub + Emoji 48.52 85.90 44.64 95.52

Sub Sub 31.62 51.02 32.15 53.81
Category Sub + Main 31.84 51.86 31.72 53.43

Sub + Emoji 32.00 52.23 31.99 53.72
Sub + Main + Emoji 32.24 52.40 31.88 65.19

Semantic Clusters 34.10 53.56 34.77 53.22
Clusters Clusters + Emoji 35.42 55.90 34.90 53.64

Emoji Emoji 21.59 40.06 18.64 33.86
Emoji + Main 21.62 37.80 19.05 34.24
Emoji + Sub 21.58 37.91 18.75 34.27
Emoji + Main + Sub 21.44 37.81 18.78 34.05
Emoji + Clusters 21.30 37.90 19.05 29.78

sub-categories of Unicode Standard.

4.2 Multi-Task Predictions

In Table 4 we show the multi-task prediction re-
sults. We considered multiple multi-task combina-
tions. Learning more than one objective task simul-
taneously helps in the main category prediction, as
macro F1 improves from 46.56% to 48.52% (4.2% rela-
tive improvement) when adding also sub-category and
emoji losses. Sub-categories prediction also improves
when it is learned together with main categories and
emojis.

On Snap data, category and sub-category predic-
tion tasks do not improve using a multitask approach
in terms of macro F1, but we obtain a relative im-
provement of 8.67% and 21.14% using a@5.

The clusters prediction tasks also benefit from
multi-task learning when combined with the emoji pre-
diction. However, emoji prediction seems not to im-
prove much in a multi-task setting for Twitter. Emoji
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Figure 5: Word and Feature attention visualization. The first line highlights in blue word attention, while the
second line shows the feature attention. Uncolored words mean almost zero attention over them.

Table 5: Top and bottom 10 emojis with best accuracy
on the Twitter (top) and on Snap (bottom).

87.5 83.87 83.53 83.33 81.33 80.88 79.86 79.86 79.56 78.95

4.71 4.57 4.43 3.97 1.94 1.94 1.52 1.24 0.63 0.58

89.82 78.27 77.19 76.15 75.72 74.1 73.48 73.03 71.5 71.46

3.46 3.37 3.13 2.92 2.82 2.41 1.86 1.01 0.29 0

prediction on Snap improves from 33.86% to 34.27%
or 1.21% relative improvement in terms of a@5 when
it is learned together with Unicode sub-categories.

4.3 Qualitative Analysis

We analyzed in detail our emoji prediction approach
(char + 2 LSTM + attention) based on the best per-
forming system described in the previous section. This
analysis enumerates the emojis that are easier and
harder to predict. We also include some visualization
examples of where the attention module obtains more
information. These examples provide us with a better
understanding of the importance of the character and
word features in our results.

4.3.1 What emoji is difficult to predict?

Table 5 shows a list of the top and bottom 10 emo-
jis based on the prediction accuracy. We investigated
what emojis are difficult to predict, and we found in-
teresting patterns. As expected, the emojis that are
easier to predict describe specific objects without mul-
tiple meanings (such as, and ) or topics (e.g.,
and ). These emojis, as suggested in [BRS16], could
easily be replaced by a word, such as by key), or are
used when specific words occur in a text message in-
cluding Christmas for and ). In both datasets,
subjective emojis including and obtained low-
est accuracy values. These subjective emojis describe
emotional information, and they can be interpreted
differently among different users and based on the sur-
rounding context. Hence, these emojis do not seem to

have a specific meaning and become difficult to model.

4.3.2 Feature and Word Attention

We previously described the two types of attention ex-
plored. The Feature Attention approach gives more
importance to either the character or word represen-
tation of a word. The Word Attention approach in-
creases the importance of more discriminative words,
for example the word “key” to predict the emoji .

Figure 5 visualizes the weights of each of these two
attention modules using three example messages. For
each of them, we list the gold label (“G”) and the pre-
dicted labels (“P”), along with their prediction proba-
bility. i.e. the output of the softmax layer. The inter-
nal weights of the two attention modules are visualized
using text highlights. Darker color indicates more at-
tention over word (αit from Formula 2 of each word in
the message). In second line of each message the red
highlight shows the weights of the feature attention (α
of Formula 1). Bold text formatting indicate the out
of vocabulary words.

Based on the three examples, and some additional
that we manually evaluated, we verified how these two
attention approaches work. The Word Attention mod-
ule (blue highlight) give us insights on the recognition
of emojis. In the first example the most important
word is “cat” and the predictions are indeed about
cats, apart from the fifth predicted emoji . This
emoji is triggered (probably) because of the presence
of the token “135” as the word attention module also
focuses on this token. In the second example, the at-
tention goes to the word “pregnant”, but in this case
this word misleads the network that incorrectly pre-
dicts baby emojis. However, the correct emoji is then
predicted as fourth option. In the last example, the
network correctly classifies the emoji , based on the
hashtag “#unicorn”.

Regarding the Feature Attention over the word or
character representation of each token in a message,
we observed that the character representation seems
to gain importance on long and less frequent tokens,
namely numbers, hashtags, and as expected, out of



vocabulary words (“135” and “#austinblueroos”).

5 Conclusion

In this paper, we explored emoji prediction in two so-
cial media platforms, Twitter and Snapchat. We ex-
tended the emoji prediction task to a large number of
emojis and showed that the prediction performance
drastically drops between 50 and 100 emojis, while
the addition of more emojis keeps the accuracy of the
model somehow constant (even if it has to predict more
emojis). We attribute these results to the specificity
of the less-used emojis. We also proposed a novel task
that predicts broader classes of emojis, grouping emo-
jis in automatic clusters or predefined categories, as de-
fined by the Unicode consortium. These new tasks al-
low us to better evaluate the predictions of the model,
since plain emoji prediction may be ambiguous. We
also carried out an extensive qualitative analysis in or-
der to understand the importance of the character en-
coding of words in noisy social media text, the number
of training examples, and the difficulties in modeling
specific emojis.

Finally, we proposed a multi-task approach to pre-
dict emojis and emoji group affiliation at the same
time. We showed that the model obtains significant
improvements in the Twitter dataset, while more in-
vestigation is needed for the Snapchat dataset.
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