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Abstract— Quadratic programming (QP) problem reformula-
tion has been a research problem for nearly two decades, but is
seldom linked to Graph Theory. In fact, typical reformulations
convexify a non-convex QP problem. This is accomplished by
making the objective function differentiable, optimizing in the
continuous domain while ensuring the final solution is binary,
or adding regularizers and Lagrangian coefficients to optimize
the dual problem. In this research, we demonstrate that QP
problems can also be reformulated using the same mechanism
as P/NP problem reduction, overcoming speed and memory
footprint limitations from other type of reformulation. We use
SVM to make the demonstration. In the demonstration, we show
that SVM is comparable to a soft weighted edge maximum
independent set problem where the amount of support vectors
per class is balanced. As a result, SVM can also be reformulated
as a maximum clique problem with the same class balancing con-
straint. After transforming the sequential minimal optimization
(SMO) algorithm to our new maximum clique formulation, we
demonstrate that such reformulation leads to improved training
performance, reaching 36 times faster training time, and a
sparser solution for less than one percent accuracy degradation
in some datasets.

Index Terms—Quadratic Optimization, Classification algo-
rithms, Support Vector Machines, Graph Theory, Independent
Set, Maximum Weighted Clique.

I. INTRODUCTION

In the fields of Machine Learning, Natural Language Pro-
cessing, Computer Graphics, and Computer Vision, there
are multiple problems that can be solved using a quadratic
programming (QP) solution. They are usually are formulated
as graph theory problems, where typical objective functions
to be optimized contain unary potentials related to nodes
and binary potentials related to edges. There is a long 50-
years history where graph theory has been at the core of an
ocean of computer science applications [1], [2]. For instance,
image segmentation has been formulated as minimum cut [3],
[4], maximum weight independent set [5], maximum weight
clique [6], [7] and minimum spanning tree [8] problems
[9]. Multi-object tracking has been modeled as maximum
weight independent set [10] and generalized minimum and
maximum clique [11], [12] problems. Nevertheless, not all QP
problems are directly related to graph theory as demonstrated
by [13]–[17]. Since graph problems can be reduced to one
another, QP problems can also be reformulated into problems
that can be solved more efficiently. Several cut problems
are reformulated as spectral clustering problems that can be
optimized via weighted kernel k-means algorithms [4], [18],

achieving real-time computation performances. In the work
of Tsang et al. [19], SVM and Support Vector Clustering
(SVC) are formulated as minimum enclosing ball problems,
obtaining approximate optimal solutions in linear time, with a
space complexity independent of the problem size. This work
focuses on how SVM formulation [20] can be viewed as an
independent set problem [19], [21], and thus be reduced to
other graph problems.

More precisely, we connect the SVM dual QP formulation
Eqn. (1) to a maximum independent set formulation, which
gives a new interpretation on the support vector selection
process. Then, the same way we reduce an independent set
problem to a maximum clique problem by taking the comple-
ment of a graph, we reformulate the SVM dual QP formulation
as a dominant set QP [6], [7], the latter being used to define
the maximum clique (MC1) problem [21], [22]. We show
that our MC formulation involves Mercer distance kernels,
instead of Mercer similarity kernels, and demonstrate how to
construct such kernels, leading to new families of kernels.
Finally, we show that our MC formulation has computational
advantages while preserving comparable accuracy compared
to the standard LIBSVM implementation of the SVM dual
QP formulation.

The remainder of this paper is organized as follows: Sec-
tion II gives a review of the SVM Dual Formulation and SMO,
Section III introduces the Problem and how we reformulated
it, Section IV includes the experiments and result, Section V
presents the conclusions and future work.

II. SVM DUAL FORMULATION AND SMO

SVM aims at learning boundaries between feature vectors
{xk}nk=1 of different classes {yk}nk=1. When classes are bi-
nary, SVM dual formulation has the following form [20], [23]:

α? ← argmax
α∈[0, C]n

F(α) : 1ᵀα− 1

2
αᵀHα

s.t. yᵀα = 0 with y ∈ {−1, 1}n

Hij = yiyjK(xi, xj) and xk ∈ IRd

(1)

where αk > 0 means that xk is a support vector for class
yk. i.e. the boundary is defined as a linear combination of
{xk |αk > 0} in a vector space where the dot product is in-
duced by the kernel function K. SMO was originally designed

1MC = Maximum Clique, not to be confused with Monte Carlo.



to train a support vector machine that requires the solution
of the very large SVM dual QP optimization problem [24],
defined above. SMO belongs to the family of SQP algorithms
[25]. It breaks a large QP problem into a series of smaller
QP problems, each of which optimizes a quadratic model
of the objective subject to a linearization of the constraints.
The method is equivalent to applying Newton’s method to the
Karush-Kuhn-Tucker (KKT) conditions of the QP problem.
In SMO, the small QP problems involve only two variables.
These small QP problems are solved analytically, thus avoiding
the use of a time-consuming numerical QP optimization at
each iteration. The amount of memory required for SMO is
linear in the training set size n, which allows SMO to handle
very large input sets.

III. PROBLEM SETUP AND REFORMULATION

Typical mathematical formulations of graph theory prob-
lems involve optimizing objective functions that contain unary
potentials related to nodes, and binary potentials related to
edges. Unary potentials are embedded in the form of a vector,
and binary potentials in the form of an adjacency matrix. The
latter is symmetric if the graph is undirected and semi-definite
if the graph theory problem to be solved is P-complete. In
the following, we outline how SVM can be interpreted as
a special maximum independent set (MIS), and how it can
be reformulated as a balanced maximum clique (MC). The
two steps reformulation (SVM → MIS → MC) offers several
advantages: it provides another interpretation on the SVM
maximum margin formulation, which helps in designing new
algorithms, and it also gives us the opportunity to take ad-
vantage of 50 years of research and algorithm development of
about the MC problem, like the replicator dynamics approach
from [26]. The MC formulation is particularly interesting as
it provides a natural control over the sparsity of the solution
in terms of number of support vectors.

A. SVM As a Balanced Maximum Independent Set Problem

In graph theory, an independent set (IS) is a set of vertices
in a graph G(V, E), no two of which are adjacent. That is, it is
a set S ⊂ V of vertices such that for every two vertices i, j in
S, there is no edge connecting the two: ∀i, j ∈ S, (i, j) /∈ E .
Equivalently, each edge in the graph has, at most, one endpoint
in S. The size |S| of an independent set is the number of
vertices it contains. A maximum independent set (MIS) is
an independent set of largest possible size for a given graph
G. When each vertex is assigned a weight, the maximum
weighted independent set (MWIS) is the subset of vertices
whose weights sum to the maximum possible value without
any two vertices being adjacent to one another. Both MIS and
MWIS problem are NP-hard [27]. We illustrate the concept of
IS and MIS in Fig. (1). The MIS problem is mathematically
formulated as follows. Let’s assume that a graph G contains
n vertices. We define α ∈ {0, 1}n as the support2 of
S, i.e. ∀i ∈ V, i ∈ S ⇔ αi = 1, otherwise αi = 0. We

2Here we use the symbol α instead of x to draw the parallel with Eqn. (1).

(a) Graph G (b) An IS (c) The MIS

Fig. 1. A 5-vertices graph G, with an independent set of size 2, and
the maximum independent set of size 3. Vertices in the (maximum)
independent set are displayed in green. Best viewed in color.

represent the edge set E by the adjacency matrix A, i.e.
(i, j) ∈ E ⇔ Aij = 1. [21] demonstrates that 1

2α
ᵀAα is the

number of edges between vertices in S and that 1ᵀα = |S|.
Hence, S is an independent set if and only if αᵀAα = 0, and
the maximum independent set problem can be formulated as:

α? ← argmax
α∈{0, 1}n

1ᵀα s.t. αᵀAα = 0 (2)

In addition, [21] shows that the latter equation can be refor-
mulated as:

α? ← argmax
α∈{0, 1}n

1ᵀα− 1

2
αᵀAα (3)

and that we can loosen the binary constraint α ∈ {0, 1}n
to the continuous domain α ∈ [0, 1]n. We can further add a
regularization diagonal matrix D: A ← A + D, such that the
final solution entries α?i are pushed to the domain boundaries
[22], leading to the final MIS problem formulation:

α? ← argmax
α∈[0, 1]n

1ᵀα− 1

2
αᵀ(A− D)α (4)

We can clearly see that Eqn. (1) resembles the independent
set QP formulation Eqn. (3), with three differences. First,
α ∈ [0, 1]n instead of α ∈ [0, C]n in Eqn. (1), second
H ∈ IRn×n whereas A ∈ {0, 1}n×n, and third Eqn. (1)
has an additional constraint yᵀα = 0. Nevertheless, we can
reformulate both Eqn. (1) and Eqn. (3) to establish clearer
correspondences.

In Eqn. (1), we remap α ← 1
C α so that α ∈ [0, 1]n. This

is equivalent to multiplying the kernel K by C. Without a
loss of generality, we can further normalize K so that H ∈
[−1, 1]n×n. Note that the new normalized kernel is still a valid
SVM Mercer kernel, since the normalization is linear, hence
it preserves the convexity of H.

In Eqn. (3), we relax Aij ∈ [0, 1] to represent an edge
probability rather than an hard binary edge connectivity. Then
we remap A← 2A− 1ᵀ1 so that Aij ∈ [−1, 1]. This can be
interpreted as mapping the edge probabilities to a correlation
metric. Moreover, this does not affect the solution of the MIS
formulation as it just adds an additional maximizer (1ᵀx)2 to
the objective function in Eqn. (2) and (3). Indeed, the function
f : z → z + z2 is strictly monotonically increasing on IR+,
hence maximizing f(1ᵀx) is the same as maximizing 1ᵀx. In
the next section we also see that this additional maximizer



(1ᵀx)2 vanishes in the MC formulation Eqn. (5) due to the
MC sparsity constraint.

As illustrated Fig. (2), we see now that support vectors
can be viewed as nodes in G, connected to each other with
a soft correlation weight Hij on edges (instead of an edge
probability), where Hij > 0 means that support vectors i and
j are likely connected on the graph, and Hij < 0 means that
they are likely disconnected on the graph. Hij = 0 would be
equivalent to having an edge probability of 0.5.

(a) 2-classes dataset (b) Graph from H (c) The MIS

Fig. 2. Independent set formulation of SVM. Edges with high Hij

weight are plain, edges with low Hij weight are dashed. Green nodes
represent the support vectors as a MIS. Best viewed in color.

Finally, the additional constraint yᵀα = 0 imposes the solu-
tion to be balanced: the amount of support vectors for each
class should be the same.

B. SVM Interpretation

Relating SVM to a maximum independent set problem
induces the following interpretation: SVM selects support
vectors (i) that are either not from the same class and highly
correlated, or that are from the same class and as dissimilar
as possible, (ii) such that the amount of support vectors for
each class is balanced. It means that SVM aims to maximize
support vectors with small margin (as the original max-
min SVM formulation [28]) between classes that summarize
locally the decision boundary intra classes. The next section
further emphasizes even more the notion of boundary summa-
rization with the additional sparsity constraint on the solution
when Eqn. (1) is reformulated as a maximum weighted clique
problem.

Tsang et al. [19] formulates SVM and SVC as approx-
imations to the minimum enclosing ball problem, allowing
them to train support vectors on very large datasets. Their
algorithm iteratively alternates between refining the center of
the enclosing ball and finding the next support vector as far
away from it as possible. The center is defined implicitly: only
the similarity from a point to the center is defined explicitly
as the linear combination of the support vector kernels. Our
interpretation fully supports their approach as we showed that
support vectors are far away from each other intra-class and
as close as possible to each other extra-class, which is the
essence of the max-margin formulation. It also means that we
can extend the strategy of [19] to initialize the solution by
greedily preselecting a group of pairs of data points as initial
support vectors such that points in each pair are from different
classes, and such that the distance intra-class is maximized
and the distance extra-class is minimized. This strategy helps

reduce the number of iterations and thus the training time as
demonstrated by Table II. Next we show that if SVM is viewed
as an MIS problem, it can also be reduced to a MC problem.

C. SVM As a Balanced Maximum Clique Problem

Given a graph G̃(V, E) with n vertices, a clique is a subset
of vertices S ⊂ V , all connected to each other, i.e. ∀i, j ∈
V, (i, j) ∈ E . The size |S| of a clique is the number of
vertices it contains. A maximum clique (MC) is a clique of
largest possible size for a given graph G. When each vertex
is assigned a weight, the maximum weighted clique (MWC)
is the subset of vertices all adjacent to each other and whose
weights sum to the maximum possible value. Both MC and
MWC problem are NP-hard [27], as well as enumerating all
possible clique in a graph. We illustrate the concept of clique
and MC in Fig. (3).

(a) Graph (b) A clique (c) The MC

Fig. 3. A 5-vertices graph, with a clique of size 2, and the maximum
clique of size 3. Vertices in the (maximum) clique are displayed in
green. Best viewed in color.

In [29], Motzkin and Straus showed that the maximum
clique problem is equivalent to the following continuous
quadratic program:

α? ← argmax
α∈IRn+

1

2
αᵀÃα s.t. 1ᵀα = 1 (5)

where Ã is the adjacency matrix for the graph G̃, and α ∈ IRn+
is the support of S, i.e. ∀i ∈ V, i ∈ S ⇔ αi > 0. More
precisely, there exists a solution α? to Eqn. (5) such that (i)
every nonzero component of α? is equal to 1

k , where k is the
maximum cardinality of a clique in G̃; and (ii) the set S =
supp(α?) is a clique of size k. Typically Ãij ∈ {0, 1}, but
having Ãij ∈ {−1, 1} does not change the formulation, as the
transformation Ã← 2Ã−1ᵀ1 introduces an additional penalty
term −(1ᵀα)2 that vanishes with the constraint 1ᵀα = 1.

The MC and MIS problems are highly correlated: the
solutions of the MIS problem on a graph G are the same as
the solutions of the MC on the complement G̃ of the graph
G, as illustrated Fig. (4). Similarly, we go from Eqn. (3) to
Eqn. (5) by taking the complement Ã of the adjacency matrix
A, i.e. Ã← 11ᵀ −A. Indeed, the objective function of Eqn. (3)
becomes 1ᵀα − 1

2α
ᵀÃα = 1ᵀα(1− 1

21ᵀα)+ 1
2α

ᵀAα. Since a
maximizer α? of αᵀAα is up to a constant factor, and
since the function f : z → z(1− 1

2z) has a strict maximum
at z? = 1, we can eliminate f(1ᵀα) = 1ᵀα(1− 1

21ᵀα) from the
objective function, add the constraint 1ᵀα = 1 and relax α to
the continuous domain, resulting the formulation Eqn. (5).



(a) Graph compl. G̃ (b) A clique (c) The MC

Fig. 4. Graph complement G̃ to the graph G in Fig. (1), with a clique
of size 2, and the maximum clique of size 3. The vertices in G̃’s MC
are the same as the vertices in G’s MIS. Vertices in the (maximum)
clique are displayed in green. Best viewed in color.

The dual SVM formulation is similar to the MIS formulation
[21], with the additional constraint yᵀα = 0 and where the
graph edge weights have soft values (i.e. Hij in Eqn. (1)).
Since we can switch from the MIS problem to MC problem by
taking the complement of the graph, we can then reformulate
the SVM dual formulation in Eqn. (1) as:

α? ← argmax
α∈IRn+

F(α) =
1

2
αᵀH̃α

s.t. yᵀα = 0 and 1ᵀα = ν

with H̃ij = yiyjK̃(xi, xj)

and xk ∈ IRd , y ∈ {−1, 1}n

(6)

where K̃(xi, xj) is now a Mercer kernel representing the
distance between the two vectors xi and xj instead of their
similarity. We illustrate our new formulation in Fig. (5).

(a) 2-classes dataset (b) Graph from H̃ (c) The MC

Fig. 5. Maximum clique formulation of SVM. Edges with high H̃ij

weight are plain, edges with low H̃ij weight are dashed. Green nodes
represent the support vectors as a MC. Best viewed in color.

We generalize the constraint 1ᵀα = 1 to 1ᵀα = ν to have
an additional control on the `1 sparsity of the solution. Note
that like in Eqn. (4), [7] shows that we can add a regularization
diagonal matrix D to H̃ to guide the solution. For the MC
formulation, various choice of D have been proposed by [6],
[7], but we haven’t noticed significant improvements in our
experiments by adding D. Hence for clarity we’ll just focus
on using H̃ only. Next, we demonstrate how to construct a
proper Mercer distance kernel.

D. Mercer Distance Kernels

First of all, we can see that if K(xi, xj) : IRn → IR
is a similarity measure, ∃ ρ, υ ∈ IR such that we can build

a distance metric K̃(xi, xj) : IRn → IR from a similarity
measure using one of the following transformations:

K̃(xi, xj) =
ρ

υ +K(xi, xj)
or K̃(xi, xj) = υ−K(xi, xj) (7)

Note that other transformation functions like x → e−υx
ρ

can
be used as well. Proof and new kernel construction can be
found in [30]. Interestingly enough, we can build a similarity
measure from a distance metric the same way.

Lemma 1. ∃ ρ, υ ∈ IR such that Eqn. (7) always produces a
valid Mercer kernel.
Proof sketch. We base the proof on the Gershgorin circle
theorem. We can find υ and ρ such that:

min eigenvalue ≥ min
i

(
K̃(xi, xi)−

∑
j 6=i

K̃(xi, xj)

)
≥ 0 (8)

Since the Gershgorin bound is very loose, solving Eqn. (8)
will produce a final matrix where |K̃(xi, xi)| � |K̃(xi, xj)|.
Additional knowledge on the domain of α helps to refine
the bound. Since α ∈ IRn+, we can see that ρ > 0 and
υ = maxi,j |K(xi, xj)| ⇒ K̃(xi, xj) ≥ 0 ⇒ ∀α ∈
IRn,

∑
i,j αiαjK̃(xi, xj) ≥ 0.

One may want to normalize the newly constructed distance
kernel K̃, or construct a Mercer distance kernel directly from
a distance metric. Let d(xi, xj) represent an arbitrary distance
metric between the two vectors xi and xj , and let’s define:

K̃(xi, xj) =
ρ+ υ2d(xi, xj)

υ + d(xi, xj)
(9)

Lemma 2. ∃ υ, υ2, ρ ∈ IR such that Eqn. (9) produces a valid
Mercer kernel and K̃(xi, xj) ∈ [0, 1].
Proof sketch. We will parametrize ρ = υ2υ−ρ2. Then Eqn. (9)
becomes:

K̃(xi, xj) =
ρ+ υ2d(xi, xj)

υ + d(xi, xj)
=
υ2υ − ρ2 + υ2d(xi, xj)

υ + d(xi, xj)

=
υ2
(
υ + d(xi, xj)

)
− ρ2

υ + d(xi, xj)
= υ2 −

ρ2
υ + d(xi, xj)

(10)

We recognize the two transformations defined in Eqn. (7). We
find υ and ρ2 such that ρ2

υ+d(xi, xj) is a Mercer similarity kernel,
then we find υ2 such that K̃(xi, xj) is a Mercer distance kernel
and we scale ρ2 and υ2 such that K̃(xi, xj) ∈ [0, 1].

Note that in many cases a simpler version of Eqn. (9) can
be used by setting ρ = 0 and υ2 = 1, allowing a grid search only
with respect to υ with the kernel K̃(xi, xj) = d(xi, xj)

υ+d(xi, xj) .

IV. EXPERIMENTS AND RESULTS

We evaluated our MWC formulation using the following
datasets: “adult” (adu.), “webpage” (web.), “cod-rna” (cod.),
and “splice” (spl.) from [31]. The adult dataset is composed
of nine partitions: a1a→ a9a and the webpage dataset is com-
posed of eight partitions: w1a → w8a. For both datasets, each
partition starts with a small training set and a large testing one,
and ends with a large training set and a small testing one. We
run our experiments on each partition. Implementation-wise,



we used the standard LIBSVM code wrapped in the OpenCv
library with the RBF kernel KRBF (xi, xj) = e−γ‖x

i−xj‖2 , and
we used the default parameters (C = 1). For our approach we
adapted the SMO ν-SVM algorithm of [23] with the MC dy-
namics from [26] and we used K̃(xi, xj) = 1−KRBF (xi, xj),
ε = 10−5. It can be shown that even with our formulation we
can still compute the bias as b =

∑
i,j α

?
iα

?
jyjK̃(xi, xj), and

that the decision function is D(x) = b −
∑
iα

?
i yiK̃(xi, x).

While ν > 100 gives similar results as LIBSVM, we are
interested in taking advantage of the sparsity constraint and
exploring what is the minimum number of support vectors
needed to maintain a comparable accuracy. Hence, we set
ν = 0.1. We initialize our system with ≤10 random support
vectors. We also used the same grid search (γ ∈ [0, 1],
γincr. = 10

−5) for both methods for fair comparison. Table I
shows the baseline on the aforementioned datasets and Table II
includes the results of our algorithm. While our solution
provides comparable accuracy, it is much sparser in terms
of numbers of support vectors and only requires a few it-
erations to converge. This leads to a training time an order
of magnitude smaller than the standard LIBSVM approach, as
illustrated Fig. (7).

# feat. train. size test. size
adu. 123 1605 → 32561 30956 → 16281
web. 300 2477 → 49749 47272 → 14951
cod. 8 59535 271617
spl. 60 1000 2175

TABLE I
DATASET SPECIFICATIONS. THE ADU. AND WEB. DATASETS ARE

PARTITIONED IN INCREASING TRAINING SET SIZE AND DECREASING
TESTING SET SIZE. THE SYMBOL “a→ b” INDICATES THE SIZE RANGE.

THE SAME TERMINOLOGY WILL BE USED FOR TABLE II.

adu. web. cod. spl.
acc. LIBSVM (%) 79.5 ± 0.5 97.7 ± 0.3 66.7 83.6
acc. ours (%) 79.1 ± 1 96.9 ± 0.3 69.8 83.6
#SV LIBSVM 200 ∼200 200 200
#SV ours 13.5 ± 4 7.75 ± 4 18 136
t.t. LIBSVM (ms) 28.8 → 683.8 92.9 → 2343.7 176.6 22.9
t.t. ours (ms) 0.77 → 44.4 5.41 → 65.6 31.2 3.71

TABLE II
ACCURACY (ACC.), NUMBER OF SUPPORT VECTORS (#SV) AND TRAINING

TIME (T.T.) FOR THE BEST PARAMETER γ ON SVM BINARY CLASS
DATASETS FOR LIBSVM AND OUR APPROACH.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrated that it is possible to re-
formulate QP problems using directly graph theory problem
transformations. Our maximum clique formulation of SVM
has similar accuracy as the original formulation. At the same
time, it provides a significantly smaller training time and
number of support vectors. The main advantage of graph
theory QP reformulation is two-fold: (1) it allows the use of
any MWC algorithm to train support vectors, and (2) it applies
SMO-like algorithms to solve other application formulated as a
MWC. This application can also be generalized to other graph
problems, including formulating support vector clustering as a
maximum flow problem or using weighted k-mean for spectral

Maximum clique formulation Standard dual SVM

Fig. 6. 2D toy example to show the sparsity of the solution with
our MWC approach (left) compared to the standard LIBSVM (right)
implementation. Support vectors are circled in white. Training data
is in dark green and red. Classification results are in lighter green
and red. Best viewed in color.

Fig. 7. Training time in ms (Y-axis) on the adult (top) and webpage (bottom)
datasets: LIBSVM vs. our solution. X-axis is the dataset partition size.

clustering. This also applies to a formulation to a more general
problem, as shown in the previous section. In the future, we
plan to tackle other applications including multi-class SVM,
image and video segmentation, and document summarization.
Next, we will briefly explain how to adapt our model to these
new applications.

So far we presented graph theory formulation of SVM for
the binary classification case. In the remaining of this section



we show how we can extend the MWC formulation to the
multi-class problem. Following our SVM interpretation, if
two support vectors are similar and are from the same class,
or dissimilar and from different classes, they are positively
correlated. Otherwise, they should repulse each other. We
modify the edge weight by replacing the product yiyj with
2δ(yi, yj)−1, where δ(yi, yj) = 1 if yi = yj , 0 otherwise. We
also extend the balancing constraint yᵀα by substituting it
with

∑
yi=c

αi ≤ ν
k for every class c, where k is the total

number of classes. We lose the equality as some classes need
more support vectors, depending on the surrounding vectors
of other classes. Indeed, pairs {cl, cm} of classes still need to
be exactly balanced, but not all support vectors from class cl
will contribute to the boundary between class cl and cm, as
they may contribute to the boundary between cl and an other
one than cm. Then final multi-class MWC formulation can be
summarized as:

α? ← argmax
α

F(α) =
1

2
αᵀH̃α

s.t. Cα ≤ ν

k
1, C ∈ IRk×n and α ∈ [0, 1]n

with H̃ij =
(
2 δ(yi, yj)− 1

)
K̃(xi, xj)

y ∈ {1, 2, ..., k}n and xi ∈ IRd

(11)

where Cij = δ(yj , i), i.e. Cij = 1 if yj = i, 0 otherwise. Note
that the extension could have also been applied in the original
formulation Eqn. (1), and that the same ν-SVM algorithm of
[23] can easily be adapted to the multi-class problem. The
initialization strategy described in Section III-B holds as well
for the multi-class problem.
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