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Abstract

`1-Graph, which learns a sparse graph over
the data by sparse representation, has been
demonstrated to be effective in clustering es-
pecially for high dimensional data. Although
it achieves compelling performance, the sparse
graph generated by `1-Graph ignores the geo-
metric information of the data by sparse rep-
resentation for each datum separately. To ob-
tain a sparse graph that is aligned to the un-
derlying manifold structure of the data, we
propose the novel Neighborhood Regularized
`1-Graph (NR`1-Graph). NR`1-Graph learns
sparse graph with locally consistent neigh-
borhood by encouraging nearby data to have
similar neighbors in the constructed sparse
graph. We present the optimization algorithm
of NR`1-Graph with theoretical guarantee on
the convergence and the gap between the sub-
optimal solution and the globally optimal so-
lution in each step of the coordinate descent,
which is essential for the overall optimiza-
tion of NR`1-Graph. Its provable acceler-
ated version, NR`1-Graph by Random Projec-
tion (NR`1-Graph-RP) that employs random-
ized data matrix decomposition, is also pre-
sented to improve the efficiency of the opti-
mization of NR`1-Graph. Experimental re-
sults on various real data sets demonstrate the
effectiveness of both NR`1-Graph and NR`1-
Graph-RP.
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1 INTRODUCTION

Similarity-based clustering methods, e.g. K-means
(Duda et al., 2000), Affinity Propagation (AP) (Frey and
Dueck, 2007) and Spectral Clustering (Ng et al., 2001),
segment the data based on the similarity measure be-
tween data points. In this manner, similarity-based meth-
ods alleviate the difficulty of parameter estimation that
model-based methods face, such as modeling data distri-
bution by a mixture of parameterized distributions (Fra-
ley and Raftery, 2002). Among various similarity-based
clustering methods, sparse graph based methods, which
build sparse graph with only a few edges for each ver-
tex and the data similarity serves as edge weight, are
demonstrated to be effective, especially for clustering
high dimensional data. Examples of sparse graph based
clustering methods include `1-Graph (Yan and Wang,
2009; Cheng et al., 2010) and Sparse Subspace Clus-
tering (SSC) (Elhamifar and Vidal, 2013), which build
the sparse graph by reconstructing each datum with all
the other data by sparse representation. In the sparse
graph produced by `1-Graph or SSC, the vertices repre-
sent the data, and an edge is between two vertices when-
ever one participates the spare representation of the other.
The weight of the edge is the average of the associated
elements in the sparse codes corresponding to the two
vertices. Throughout this paper, data point or data may
also refer to the corresponding vertex or vertices in the
sparse graph if no confusion arises. A sparse similarity
matrix is then obtained as the weighted adjacency ma-
trix of the constructed sparse graph by `1-Graph or SSC,
and spectral clustering is performed on the sparse sim-
ilarity matrix to obtain the data clusters. `1-Graph and
SSC have been shown to be robust to noise and capable
of producing superior results for high-dimensional data,
compared to spectral clustering on similarity computed
by the widely used Gaussian kernel. Such sparse graph
has also been successfully applied to a novel deep neural
network architecture for the first time (Peng et al., 2016).



While `1-Graph demonstrates compelling performance
for clustering, it performs sparse representation for each
datum independently without considering the geometric
information of the data, and consequently the generated
sparse graph ignores the geometric information of the
data. In order to obtain the sparse graph that accounts for
the geometric information and manifold structure of the
data, regularized `1-Graph (Yang et al., 2014) employs
a manifold assumption which imposes local smoothness
on the sparse codes of nearby data, namely nearby data
are encouraged to have similar sparse codes in the sense
of `2-distance. This method is also termed `2-R`1-Graph
in this paper. Moreover, various regularized sparse cod-
ing methods, such as (Liu et al., 2010; He et al., 2011;
Zheng et al., 2011; Gao et al., 2013), also utilize man-
ifold assumption (Belkin et al., 2006) to obtain locally
smooth sparse codes by `2-distance based graph regular-
ization term.

`2-R`1-Graph imposes locally smoothness or consis-
tency on the sparse codes of the data (i.e. the vertices of
the graph), not directly on the local structure of the sparse
graph. Consistency of the sparse codes indicates that the
codes are similar to each other. In this paper, we pro-
pose a novel Neighborhood Regularized `1-Graph, ab-
breviated as NR`1-Graph, which learns locally consis-
tent neighborhood in the sparse graph, i.e. nearby points
have similar neighborhoods. In this manner, manifold
assumption is employed directly on the structure of the
graph so as to obtain the sparse graph that accounts for
the local manifold structure of the data. NR`1-Graph em-
bodies the local consistency on the neighborhood by the
novel neighborhood regularization term in the objective
function. It should be emphasized that the widely used `2

graph regularization term cannot represent the neighbor-
hood consistency. Another benefit of local consistency
on the neighborhood in the sparse graph is that, instead
of choosing neighbors by itself, each data point is en-
couraged to coordinate with its nearby points on the data
manifold (usually specified by its K nearest neighbors by
Euclidean distance) to choose its neighbors in the sparse
graph (See Figure 1). This makes the sparse graph more
robust to outliers while preserving the freedom in the
spare representation of data without constraints on the
magnitude of the sparse codes. We present the efficient
proximal gradient descent (PGD) style iterative method
for the optimization problem of NR`1-Graph with the-
oretical guarantee on the convergence and bounded gap
between the sub-optimal solution and the globally op-
timal solution for each step of coordinate descent for
the optimization. Furthermore, NR`1-Graph by Random
Projection (NR`1-Graph-RP) is proposed to accelerate
the optimization of NR`1-Graph by randomized rank-k
approximation of the data matrix. Such low rank approx-

imation reduces the time complexity of the gradient de-
scent step in the PGD-style iterative method fromO(nd)
toO(nk+ dk), where d and n are dimension and size of
the data, leading to the significantly improved efficiency
when k � min{d, n} compared to the original NR`1-
Graph.

We use bold letters for matrices and vectors, and reg-
ular lower letter for scalars throughout this paper. The
bold letter with superscript indicates the corresponding
column of a matrix, e.g. Zi indicates the i-th column
of the matrix Z, and the bold letter with subscript indi-
cates the corresponding element of a matrix or vector.
‖ · ‖F and ‖ · ‖p denote the Frobenius norm and the `p-
norm, and diag(·) indicates the diagonal elements of a
matrix. σmax(·) and σmax(·) indicate the maximum and
minimum singular value of a matrix.

2 PRELIMINARIES: `1-GRAPH,
`2-R`1-GRAPH

`1-Graph (Yan and Wang, 2009; Cheng et al., 2010)
and SSC (Elhamifar and Vidal, 2009, 2013) apply the
idea of sparse coding where the data similarity is repre-
sented by sparse codes. Given data X = [x1, . . . ,xn] ∈
IRd×n, `1-Graph and SSC solve the following optimiza-
tion problem to obtain a sparse representation for each
data point

min
Zi∈IRn,Zi

i=0
‖Zi‖1 s.t. xi = XZi (1)

SSC (Elhamifar and Vidal, 2009, 2013) also proves that
the above sparse representation recovers the underlying
independent or disjoint subspaces from which the data
are generated when certain conditions on the geometric
properties of the subspaces, such as the principle angle
between different subspaces, hold. Allowing some tol-
erance for inexact representation and robustness to noise
(Wang and Xu, 2013; Soltanolkotabi et al., 2014), the
following Lasso-type problem is solved instead of (1):

min
Zi∈IRn,Zi

i=0
‖xi −XZi‖22 + λ(`

1)‖Zi‖1 i = 1, . . . , n

(2)

for some weighting parameter λ > 0, and Zi ∈ IRn,
Z = [Z1, . . . ,Zn] ∈ IRn×n is the sparse code matrix
with the element Zij = Zji . The diagonal elements of Z
are enforced to be zero, i.e. Zii = 0 for 1 ≤ i ≤ n, so
as to avoid trivial solution Z = In where In is a n × n
identity matrix.

`1-Graph constructs the sparse graph G = (X,W(`1))
where X is the set of vertices, W is the weighted adja-
cency matrix ofG and Wij indicates the edge weight, or



the similarity, between xi and xj . W is set by the sparse
codes:

W
(`1)
ij = (|Zij |+ |Zji|)/2 1 ≤ i, j ≤ n (3)

And there is an edge between xi and xj if and only if

W
(`1)
ij 6= 0, i.e. either xi chooses xj as its neighbor

by nonzero Zji, or xj chooses xi as its neighbor by
nonzero Zij . `1-Graph then performs spectral clustering
on W(`1) to obtain the data clusters, with better perfor-
mance than spectral clustering on the similarity matrix
produced by the widely used Gaussian kernel. `1-Graph
features robustness to data noise and adaptive neighbor-
hood, specified by the non-zero entries in the sparse
codes. It should be emphasized that the above sparse
graph construction method is used for almost all the
sparse graph based clustering methods (Yan and Wang,
2009; Cheng et al., 2010; Elhamifar and Vidal, 2009,
2013, 2011) while the sparse codes are learnt in differ-
ent ways.
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Figure 1: (a) Illustration of the weighted adjacency ma-
trix of the sparse graph shown in (b), where the three
black dots indicate three common neighbors of points
xk, xi and xj . The inner dashed box specifies the scope
of correct neighbors, i.e. the ones in the same ground
truth cluster. The locally consistent neighborhood en-
courages xi to abandon the wrong neighbors marked
with red dots encompassed by the dashed ellipse. (b)
The sparse graph corresponding to the weighted adja-
cency matrix in (a).

The widely adopted manifold assumption assumes that
high-dimensional data always lie on or close to a sub-
manifold of low intrinsic dimension, and clustering the
data according to its underlying manifold structure is im-
portant and challenging in machine learning. While `1-
Graph demonstrates better performance than many tra-
ditional similarity-based clustering methods, it performs
sparse representation for each datum independently with-
out considering the geometric information and manifold
structure of the entire data. On the other hand, in or-
der to obtain the embedding of the data that accounts for
the geometric information and manifold structure of the
data, manifold assumption (Belkin et al., 2006) is usually
employed (Liu et al., 2010; He et al., 2011; Zheng et al.,

2011; Gao et al., 2013). Interpreting the sparse code of a
data point as its embedding, most existing methods that
employ manifold assumption in the sparse representation
literature require that if two points xi and xj are close
in the intrinsic geometry of the manifold, their corre-
sponding sparse codes Zi and Zj are also expected to be
similar to each other in the sense of `2-distance (Zheng
et al., 2011; Gao et al., 2013). In other words, Z varies
smoothly along the geodesics in the intrinsic geometry.

Based on the spectral graph theory (Chung, 1997), ex-
tensive literature uses graph Laplacian to impose lo-
cal smoothness of the embedding and preserve the lo-
cal manifold structure (Belkin et al., 2006; Zheng et al.,
2011; Gao et al., 2013). Given a proper symmetric simi-
larity matrix S that encodes the intrinsic manifold struc-
ture of the data, the sparse code Z in accordance with the
manifold assumption by graph Laplacian minimizes the
following `2 regularization term below:

1

2

n∑
i=1

n∑
j=1

Sij‖Zi − Zj‖22 = Tr(ZLSZ
>) (4)

where the `2-norm is used to measure the distance be-
tween sparse codes. LS = DS − S is the graph Lapla-
cian using the adjacency matrix S, the degree matrix DS
is a diagonal matrix with each diagonal element being
the sum of the elements in the corresponding row of S,

namely (DS)ii =
n∑
j=1

Sij . To the best of our knowl-

edge, such `2 regularization is employed by most meth-
ods that use graph regularization for sparse representa-
tion. Incorporating the `2 graph regularization term into
the objective of `1-Graph, the optimization problem of
`2-R`1-Graph, is presented below:

min
Z∈IRn×n,diag(Z)=0

n∑
i=1

‖xi −XZi‖22 + λ(`2)‖Zi‖1 (5)

+ γ(`2)Tr(ZLSZ
>)

where γ(`
2) > 0 is the weighting parameter for the `2

graph regularization term. Regularized `1-Graph (Yang
et al., 2014) employs the formulation with the same form
as (5. Following the representative `2 graph regularized
sparse coding methods (Zheng et al., 2011; Gao et al.,
2013), S is typically chosen as the adjacency matrix of
K-Nearest-Neighbor (KNN) graph to represent the local
manifold structure of the data, i.e. Sij = 1 if and only
if xi is among the K nearest neighbors of xj . Note that
KNN is extensively used in the manifold learning liter-
ature, such as Locally Linear Embedding (Roweis and
Saul, 2000), Laplacian Eigenmaps (Belkin and Niyogi,
2003) and Sparse Manifold Clustering and Embedding
(Elhamifar and Vidal, 2011), to reveal the local structure
in the manifold. Although S is not symmetric, letting
S′ = S+S>

2 , then a symmetric adjacency matrix can be
used in the graph regularization term without changing
its value: Tr(ZLS′Z

>) = Tr(ZLSZ
>).



In the next section, we propose NR`1-Graph which
learns locally consistent neighborhood in the sparse
graph by a novel neighborhood regularization term rather
than the `2 graph regularization term with superior clus-
tering performance.

Algorithm 1 Learning NR`1-Graph
Input:

The data set X = {xi}ni=1, the number of clusters c, the
parameter λ(`2), γ(`2),K for NR`1-Graph, maximum iter-
ation number Mc for coordinate descent, and maximum it-
eration numberMp for the iterative proximal method, stop-
ping threshold ε.

1: r = 1, initialize the sparse code matrix as Z(0) = Z(`1).
2: while r ≤Mc do
3: Obtain Z(r) from Z(r−1) by coordinate descent. In i-

th (1 ≤ i ≤ n) step of the r-th iteration of coordinate
descent, solve (8) using the PGD-style iterative method
(11), (12) and (13) to update Zi in each iteration of the
iterative proximal method.

4: if |L(Z(r))− L(Z(r−1))| < ε then
5: break
6: else
7: r = r + 1.
8: end if
9: end while

10: Obtain the sub-optimal sparse code matrix Z∗ when the
above iterations converge or maximum iteration number is
achieved.

11: Build the pairwise similarity matrix by symmetrizing Z∗:
W∗ = |Z∗|+|Z∗|>

2
Output: The sparse graph whose weighted adjacency matrix

is W∗.

3 NEIGHBORHOOD REGULARIZED
`1-GRAPH

In this section, we propose Neighborhood Regularized
`1-Graph (NR`1-Graph) which learns locally consistent
neighborhood in the sparse graph. Instead of imposing
local smoothness on the sparse codes in the existing regu-
larized `1-Graph (Yang et al., 2014), NR`1-Graph learns
locally consistent neighborhood so as to capture the lo-
cal manifold structure of the data in the construction of
the sparse graph. In addition, NR`1-Graph benefits from
robustness to noise or outliers by encouraging each point
to choose its neighbors in the sparse graph via coordi-
nating with its nearby points on the manifold. Note that
`2-distance based graph regularization cannot enjoy this
benefit since small `2-distance between the sparse codes
of nearby data points does not guarantee their consis-
tent neighborhood in the sparse graph. The optimization
problem of NR`1-Graph is presented below:

min
Z∈IRn×n,diag(Z)=0

L(Z) =

n∑
i=1

‖xi −XZi‖22 + λ‖Zi‖1

+ γRS(Z) (6)

where RS(Z) =
n∑

i,j=1

Sijd(Zi,Zj) is the novel neigh-

borhood regularization term, S is the adjacency matrix
of the KNN graph, γ > 0 is the weighting parameter.
d(Zi,Zj) indicates the neighborhood distance between
two points xi and xj in terms of the sparse code matrix
Z through the weighted adjacency matrix W (3), which
measures the number of different neighbors these two
points have in the sparse graph:

d(Zi,Zj) =
∑

1≤k≤n,k 6=i,j

(1IWki=0,Wkj 6=0 + 1IWki 6=0,Wkj=0)

(7)

where W = |Z|+|Z>|
2 and 1I is the indicator function. In-

dices i and j are excluded when computing the neighbor-
hood distance between points xi and xj since any point
is not a neighbor of itself in the sparse graph, so it is not
necessary to impose penalty on xi in the calculation of
d(Zi,Zj) if it does choose xj as its neighbor, and vice
versa.

3.1 OPTIMIZATION ALGORITHM

We use coordinate descent to optimize (6). In each itera-
tion of coordinate descent, the optimization is performed
with respect to Zi sequentially for 1 ≤ i ≤ n, while fix-
ing all the other sparse codes {Zj}j 6=i. In the i-th step
of each iteration of coordinate descent, the optimization
problem for Zi is below:

min
Zi∈IRn,Zi

i=0
F (Zi) = ‖xi −XZi‖22 + λ‖Zi‖1 + γRS̃(Zi)

(8)

where RS̃(Zi) =
n∑
j=1

S̃ijd(Zi,Zj), S̃ = S + S>.

We employ proximal gradient descent method (PGD)
to optimize the nonconvex problem (8) inspired by the
proximal linearized method (Bolte et al., 2014). Al-
though the proximal mapping is typically associated with
a lower semicontinuous function (Bolte et al., 2014) and
it can be verified that RS̃ is not always lower semicontin-
uous, we can still derive a PGD-styple iterative method
to optimize (8).

Define FS̃ ∈ IRn×n as FS̃
ki =

∑
j 6=k

S̃ij1IWkj=0 −∑
j 6=k

S̃ij1IWkj 6=0 where 1I is the indicator function, then

FS̃
ki indicates the degree to which Zki is discouraged to



be nonzero and it can be verified that up to a constant
irrelevant to Zi,

RS̃(Zi) =
∑

1≤k≤n,k 6=i

1IZik=0F
S̃
ki1IZki 6=0 =

∑
k∈Λi

FS̃
ki1IZki 6=0

(9)

where Λi is defined as the set comprising all the possible
indices k other than i such that Zik = 0:

Λi , {k : 1 ≤ k ≤ n, k 6= i,Zik = 0} (10)

Since each indicator function 1IZki 6=0 is lower semicon-
tinuous, it can be verified that RS̃ is lower semicontinu-
ous if FS̃

ki ≥ 0 for each k ∈ Λi. In the following text,
we let Q(Zi) = 1

2‖xi −XZi‖22. The superscript with
bracket indicates the iteration number of PGD or the it-
eration number of the coordinate descent without confu-
sion. The PGD-style iterative method for optimizing (8)
is as follows:

Z̃i
(t)

= Zi(t−1) − 2

τs
(X>XZi(t−1) −X>xi) (11)

where τ > 1 is any constant greater than 1 and s is
the Lipschitz constant for the gradient of function Q(·),
namely

‖∇Q(y)−∇Q(z)‖2 ≤ s‖y − z‖2, ∀y, z ∈ IRn

Zii = 0. For all the other k such that k /∈ Λi,

Z
(t)
ki =

{
uk : k 6= i

0 : k = i
(12)

and for all k ∈ Λi

Z
(t)
ki =

 arg min
v∈{uk,0}

Hk(v) : uk 6= 0 or uk = 0 and FS̃
ki ≥ 0

ε : uk = 0 and FS̃
ki < 0

(13)

where ε is any real number such that ε 6= 0 and Hk(ε) ≤
Hk(Z

(t−1)
ki ). For each k ∈ 1 . . . n and k 6= i , Hk is

defined below

Hk(v) =
τs

2
(v − Z̃

(t)
ki )2 + λ|v|+ γ1IZik=0F

S̃
ki1Iv 6=0 (14)

for v ∈ IR. u is defined as

u = max{|Z̃i
(t)
| − λ

τs
, 0} ◦ sign(Z̃i

(t)
) (15)

where ◦ means element-wise multiplication.

Proposition 1 shows that the PGD-style iterative method
decreases the value of the objective function in each iter-
ation.
Proposition 1. Let the sequence {Zi(t)}t be generated
by the PGD-style iterative method with (11), (12) and
(13), then the sequence of the objective {F (Zi

(t)
)}t de-

creases, and the following inequality holds for t ≥ 1:

F (Zi(t)) ≤ F (Zi(t−1)
)− (τ − 1)s

2
‖Zi(t) − Zi(t−1)‖22

(16)

And it follows that the sequence {F (Zi
(t)

)}t converges.

Remark 1. (11), (12) and (13) in each iteration of
the proposed PGD-style iterative method are simi-
lar to the update rules of the ordinary PGD. (11)
performs gradient descent on the differential part,
(12) and (13) can be viewed as an approximate so-
lution to the proximal mapping minv∈IRn H(v) =
τs
2 ‖v − Z̃i

(t)
‖22 + λ‖v‖1 + γRS̃(v). Since RS̃(Zi) is

not always lower semicontinuous, arg minv∈IRn H(v) is
not guaranteed to exist. One can see a simple example
wherein uk = 0 and FS̃

ki < 0 for some k ∈ Λi. In this
case, infv∈IRHk(v) = τs

2 (Z̃
(t)
ki )2 + γFS̃

ki but this infini-
tum can not be achieved.

The PGD-style iterative proximal method starts from t =

1 and continues until the sequence {F (Zi
(t)

)} converges
or maximum iteration number is achieved. When the
proximal method converges or terminates for each Zi,
the step for Zi in one iteration of coordinate descent is
finished and the optimization algorithm proceed to opti-
mize other sparse codes. We initialize Z as Z(0) = Z(`1)

and Z(`1) is the sparse codes generated by solving (2)
with some proper weighting parameter λ(`

1). In all the
experimental results shown in the next section, we em-
pirically set λ = 0.1. The algorithm of learning NR`1-
Graph is described in Algorithm 1.

3.2 TIME COMPLEXITY

Let the maximum iteration number of coordinate descent
be Mc, and maximum iteration number be Mp for the
PGD-style iterative method solving (8), then the time
complexity of running the coordinate descent for NR`1-
Graph is O(McMpn

2d).

3.3 THEORETICAL ANALYSIS FOR
OPTIMIZATION

It can be observed that optimization by coordinate de-
scent in Section 3.1 is essential for the overall optimiza-
tion of NR`1-Graph, and each step of the coordinate de-
scent (8) is a difficult nonconvex problem and crucial for
obtaining the support regularized sparse code, where the
nonconvexity comes from the neighborhood regulariza-
tion term RS̃(Zi) (9). Therefore, the optimization of
(8) plays an important role in the overall optimization of
NR`1-Graph. In the previous section, a PGD-style itera-
tive method is proposed to decrease the value of the ob-
jective in each iteration. In this section, we provide fur-
ther theoretical analysis on the optimization of problem
(8) when FS̃

ki ≥ 0 for all k ∈ Λi. This condition is equiv-
alent to the condition that the neighborhood regulariza-
tion function RS̃(·) is lower semicontinuous. Under this

condition, we prove that the sequence {Zi(t)}t produced



by the PGD-style iterative method converges to the sub-
optimal solution which is a critical point of the objective
(8). By connecting the support regularized function to
the capped-`1 norm and the nonconvexity analysis of the
support regularization term, we present the bound for `2-
distance between the sub-optimal solution and the glob-
ally optimal solution to (8) in Theorem 1. Note that our
analysis is valid for all 1 ≤ i ≤ n.

Therefore, if FS̃
ki ≥ 0 for all k ∈ Λi, the neighbor-

hood regularization term RS̃(Zi) is lower semicontinu-
ous with respect to Zi in (9). In this case, the PGD-style
iterative method proposed in Section 3.1 for each itera-
tion t ≥ 1 becomes

Z̃i
(t)

= Zi(t−1) − 2

τs
(X>XZi(t−1) −X>xi) (17)

Zki
(t) =

{
arg min
v∈{uk,0}

Hk(v) : k ∈ Λi

uk : k /∈ Λi

(18)

which is equivalent to the updates rules in the ordinary
proximal gradient descent method. The supplemetary ex-
plains the meaning of the condition that FS̃

ki ≥ 0 for all
k ∈ Λi.

In the following lemma, we show that the sequence
{Zi(t)}t generated by (11), (12) and (13) converges to
a critical point of F (Zi), denoted by Ẑi. Denote by Zi

∗

the globally optimal solution to the original optimization
problem (8). The following lemma also shows that both
Ẑi and Zi

∗ are local solutions to the capped-`1 regular-
ized problem (19). Before stating the lemma, the follow-
ing definitions are introduced which are essential for our
analysis.

Definition 1. (Critical points) Given the non-convex
function f : IRn → R ∪ {+∞} which is a proper and
lower semi-continuous function.

• for a given x ∈ domf , its Frechet subdifferential of f
at x, denoted by ∂̃f(x), is the set of all vectors u ∈
IRn which satisfy

lim sup
y 6=x,y→x

f(y)− f(x)− 〈u,y − x〉
‖y − x‖ ≥ 0

• The limiting-subdifferential of f at x ∈ IRn, denoted
by written ∂f(x), is defined by

∂f(x) = {u ∈ IRn : ∃xk → x, f(xk)→ f(x),

ũk ∈ ∂̃f(xk)→ u}

The point x is a critical point of f if 0 ∈ ∂f(x).

Also, we are considering the following capped-`1 regu-
larized problem, which replaces the indicator function in

the support regularization term RS̃(Zi) with the contin-
uous capped-`1 regularization term T:

min
β∈IRn,βi=0

Lcapped−`1(β) = ‖xi −Xβ‖22 + λ‖β‖1 + T(β; b)

(19)

where T(β; b) =
∑

1≤k≤n,k 6=i
Tk(βk; b), Tk(t; b) =

γ1IZik=0F
S̃
ki

min{|t|,b}
b for some b > 0. It can be seen

that the objective function of the capped-`1 problem ap-
proaches that of (8) when min{|t|,b}

b approaches the in-
dicator function 1It 6=0 as b → 0+. Define P(·; b) =
λ‖ · ‖1 + T(·; b), the location solution to the capped-`1

problem is defined as follows. In the following,X(−i) is
the matrix comprising all but the i-th columns ofX , and
v−i ∈ IRn−1 indicates the vector comprising of all but
the i-th elements of any vector v ∈ IRn.
Definition 2. (Local solution) A vector β̃ is a local so-
lution to the problem (19) if

‖2X(−i)>(X(−i)β̃−i − xi) + Ṗ(β̃; b)‖2 = 0 (20)

where

Ṗ(β̃; b) = [Ṗ1(β̃1; b) . . . , Ṗi−1(β̃i−1; b)

Ṗi+1(β̃i+1; b) . . . Ṗn(β̃n; b)]>,

Pk(t; b) = λ|t|+ Tk(t; b) for k = 1, . . . , n, k 6= i.

Note that in the above definition and the following text,
Ṗk(t; b) can be chosen as any value between the right
differential ∂Pk

∂t (t+; b) (or Ṗk(t+; b)) and left differen-
tial ∂Pk

∂t (t−; b) (or Ṗk(t−; b)) for k = 1, . . . , n, k 6= i.
Definition 3. (Degree of Nonconvexity of a Regularizer)
For κ ≥ 0 and t ∈ IR, define

θ(t, κ) := sup
s
{−sgn(s−t)(Ṗ (s; b)−Ṗ (t; b))−κ|s−t|}

as the degree of nonconvexity for function P .
If u = (u1, . . . , un)> ∈ IRn, θ(u, κ) =
[θ(u1, κ), . . . , θ(un, κ)]. sgn is the sign function.

Note that θ(t, κ) = 0 for convex function P , and it is also
used in the analysis of sparse estimation with concave
regularization (Zhang and Zhang, 2012).

Let Ŝi = supp(Ẑi) where supp(·) indicates the sup-
port of a vector, i.e. the indices of its nonzero elements.
Denote by Zi

∗ the globally optimal solution to (8), and
S∗i = supp(Zi

∗
), then we have

Lemma 1. For any 1 ≤ i ≤ n, if FS̃
ki ≥ 0 for all k ∈ Λi,

then the sequence {Zi(t)}t generated by (17) and (18)
converges to a critical point of F (Zi), which is denoted
by Ẑi. Moreover, if

0 < b < min{min
k∈Ŝi

|Ẑi
k|, max

k/∈Ŝi,F
S̃
ki
6=0,k∈Λi

γFS̃
ki

( ∂Q

∂Zi
k

|Zi=Ẑi − λ)+

,

(21)



min
k∈S∗i

|Zi
k
∗|, max

k/∈S∗i ,F
S̃
ki
6=0,k∈Λi

γFS̃
ki

( ∂Q

∂Zi
k

|Zi=Zi∗ − λ)+

}

(if the denominator is 0, ·0 is defined to be +∞ in the
above inequality), then both Ẑi and Zi

∗ are local solu-
tions to the capped-`1 regularized problem (19).

Using the degree of nonconvexity of the regularizer P,
we have the following theorem showing that the sub-
optimal solution Ẑi obtained by our PGD-style iterative
method can be close to the globally optimal solution to
the original problem (8), i.e. Zi∗. In the following text,
BI indicates a submatrix of B whose columns corre-
spond to the nonzero elements of I, and σmin(·) indicates
the smallest singular value of a matrix.
Theorem 1. (Sub-optimal solution is close to the glob-
ally optimal solution) For any 1 ≤ i ≤ n, let Ei =

Ŝi ∪ S∗i . Suppose FS̃
ki ≥ 0 for all k ∈ Λi, XEi

is not
singular with κ0 , σmin(XEi) > 0, 2κ20 > κ > 0,
and b is chosen according to (28) as in Lemma 1. Let
Ui = (Ŝi \ S∗i ) ∪ (S∗i \ Ŝi) be the symmetric difference
between Ŝi and S∗i , then

‖Zi∗ − Ẑi‖2

≤ 1

2κ2
0 − κ

(( ∑
k∈Ui∩Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κ|Ẑki − b|})2

+
∑

k∈Ui\Ŝi

(max{0, γ1IZik=0F
S̃
ki

b
− κb})2) 1

2 + ‖t‖2
)

(22)

where t ∈ IRn, tm = 2λ1IZi
m
∗Ẑi

m<0 + 01IZi
m
∗Ẑi

m>0 for

m ∈ Ŝi ∩ S∗i , and tm = 0 for all other m.

Remark 2. Note that the bound for distance between
the sub-optimal solution and the globally optimal solu-
tion presented in Theorem 1 does not require typical Re-
stricted Isometry Property (RIP) conditions as those in

(Candès, 2008). Also, when γ1IZik=0F
S̃
ki

b −κ|Ẑki−b| and
γ1IZik=0F

S̃
ki

b −κb are no greater than 0 and Zi
∗ and Ẑi has

the same sign in the intersection of their support, the sub-
optimal solution Ẑi is equal to the globally optimal solu-

tion. When γ1IZik=0F
S̃
ki

b −κ|Ẑki−b| and γ1IZik=0F
S̃
ki

b −κb
are small positive numbers and Zi

∗ and Ẑi has similar
sign in the intersection of their support, Ẑi is close to the
globally optimal solution.

4 ACCELERATION BY RANDOM
PROJECTION

The gradient descent step (11) in the proposed PGD-style
iterative method has time complexity of O(nd), leading

to the time complexity of O(McMpn
2d) for the overall

optimization of NR`1-Graph. The literature has exten-
sively employed randomized algorithms for accelerating
the numeral computation of different kinds of matrix op-
timization problems including low rank approximation
and matrix decomposition (Frieze et al., 2004; Drineas
et al., 2004; Mahoney and Drineas, 2009; Drineas et al.,
2011; Halko et al., 2011). In order to accelerate the nu-
merical computation involved in the proposed PGD-style
iterative method, we adopt the randomized low rank ap-
proximation by random projection (Halko et al., 2011)
to obtain a low rank approximation of the data matrix
X so as to accelerate the computation of gradient for
PGD. Low rank approximation by random projection has
also employed in the most recent sparse linear regression
method (Zhang et al., 2016). (Zhang et al., 2016) fo-
cuses on the convex `1-regularized sparse linear model,
and it remains interesting to explore the provable effi-
cient PGD-style optimization by low rank approximation
via random projection on the nonconvex and nonsmooth
optimization problem of NR`1-Graph.

Formally, a random matrix Ω ∈ IRn×k is computed such
that each element Ωij is sampled independently from the
Gaussian distribution N (0, 1). With the QR decompo-
sition of XΩ, i.e. XΩ = QR where Q ∈ IRd×k is
an orthogonal matrix of rank k and R ∈ IRk×k is an
upper triangle matrix. The columns of Q form the or-
thogonal basis for the sample matrix XΩ. Then X is
approximated by projecting X onto the range of XΩ:
QQ>X = QW = X̃ where W = Q>X ∈ IRk×n.
ReplacingX with its low rank approximation X̃ , we re-
sort to solve the following reduced NR`1-Graph prob-
lem termed NR`1-Graph by Random Projection (NR`1-
Graph-RP):

min
Z∈IRn×n,diag(Z)=0

L̃(Z) =
n∑

i=1

‖xi − X̃Zi‖22 + λ‖Zi‖1

(23)

+ γRS(Z)

Similar to NR`1-Graph, the PGD-style iterative method
is used in each step of coordinate descent for the opti-
mization of NR`1-Graph-RP which solves the following
reduced problem for Zi:

min
Zi∈IRn,Zi

i=0
F̃ (Zi) = ‖xi − X̃Zi‖22 + λ‖Zi‖1 + γRS̃(Zi)

(24)

And the gradient descent step of the PGD-style iterative
method (11) is reduced to

Z̃i
(t)

= Zi(t−1) − 2

τs
(X̃>X̃Zi(t−1) − X̃>xi) (25)

= Zi(t−1) − 2

τs
(W>Q>QWZi(t−1) −W>Q>xi)



The complexity of this step is reduced from O(nd) to
O(nk + dk) wherein k � min{d, n} and significant
efficiency improvement is achieved. Note that the com-
putational cost of QR decomposition forXΩ is less than
2dk2, which is acceptable with a small k.

The subsequent steps of the PGD-style iterative method
(12), (13) remain unchanged for NR`1-Graph-RP, there-
fore, the overall complexity of the optimization of NR`1-
Graph-RP by the PGD-style iterative method is reduced
fromO(McMpn

2d) toO(McMpn(nk+dk)) using such
randomized low rank decomposition of the data matrix
X .

(Halko et al., 2011) proved that the low rank approxima-
tion X̃ is close toX in terms of the spectral norm:
Lemma 2. (Corollary 10.9 by (Halko et al., 2011) ) Let
k0 ≥ 2 and p = k−k0 ≥ 4, then with probability at least
1− 6e−p, then the spectral norm of X − X̂ is bounded
by

‖X − X̂‖2 ≤ Ck,k0 (26)

where

Ck,k0 =
(
1 + 17

√
1 +

k0
p

)
σk0+1 +

8
√
k

p+ 1
(
∑
j>k0

σ2
j )

1
2

and σ1 ≥ σ2 ≥ . . . are the singular values ofX .

Let Z̃i be the globally optimal solution to (24), and S̃i =

supp(Z̃i). We have the following theorem establishing
the upper bound for the gap between Z̃i and Zi

∗.
Theorem 2. (Optimal solution to the reduced problem
(24) is close to the that to the original problem) For any
1 ≤ i ≤ n, let Gi = S̃i ∪ S∗i . Suppose FS̃

ki ≥ 0 for all
k ∈ Λi,XGi

is not singular with τ0 , σmin(XGi
) > 0,

2τ20 > τ > 0. Then under the conditions of Lemma 2,
with probability at least 1− 6e−p,

‖Zi∗ − Z̃i‖2

≤
(
A1 +A2

) 1
2 + ‖t‖2 + Ck,k0A(2σmax(X) + Ck,k0)

2τ2
0 − τ

(27)

where A1 =
∑

k∈Gi∩Ŝi

(max{0, γ1IZik=0F
S̃
ki

b − κ|Z̃ki −

b|})2, A2 =
∑

k∈Gi\Ŝi

(max{0, γ1IZik=0F
S̃
ki

b − κb})2, t ∈

IRn, tm = 2λ1IZi
m
∗Z̃i

m<0 + 01IZi
m
∗Z̃i

m>0 for m ∈
S̃i ∩ S∗i , and tm = 0 for all other m. Moreover,

A =
(‖xi‖2+

√
RS̃(0)+‖xi‖22)

σmin(XS̃i
)−Ck,k0

, and b satisfies

0 < b < min{min
k∈S̃i

|Z̃i
k|, max

k/∈S̃i,F
S̃
ki
6=0,k∈Λi

γFS̃
ki

( ∂Q

∂Zi
k

|Zi=Z̃i − λ)+

,

(28)

min
k∈S∗i

|Zi
k
∗|, max

k/∈S∗i ,F
S̃
ki
6=0,k∈Λi

γFS̃
ki

( ∂Q

∂Zi
k

|Zi=Zi∗ − λ)+

}

Combining Theorem 1 and Theorem 2, we have the
bounded gap between the sub-optimal solution obtained
by the PGD-style iterative method for the reduced prob-
lem (24) and the globally optimal solution to the original
problem (8) for each step of coordinate descent. To the
best of our knowledge, our result is among the very few
results on the provable efficient optimization by random-
ized matrix decomposition on nonconvex and nonsmooth
optimization problems.

5 EXPERIMENTAL RESULTS

We apply NR`1-Graph to data clustering by performing
spectral clustering on the weighted adjacency matrix W∗

of the sparse graph by Algorithm 1. The superior cluster-
ing performance of NR`1-Graph is demonstrated by ex-
tensive experimental results on various data sets. NR`1-
Graph is compared to K-means (KM), Spectral Cluster-
ing (SC), `1-Graph, Sparse Manifold Clustering and Em-
bedding (SMCE) (Elhamifar and Vidal, 2011), and `2-
R`1-Graph introduced in Section 2. Two measures are
used to evaluate the performance of different clustering
methods, i.e. the Accuracy (AC) and the Normalized
Mutual Information (NMI) (Zheng et al., 2004).

5.1 CLUSTERING ON COIL-20, COIL-100,
FACE DATA SETS AND MNIST DATA

COIL-20 Database has 1440 images of resolution 32×32
for 20 objects with background removed in all images.
The dimensionality of this data is 1024. The extended
version of COIL-20, COIL-100 Database, contains 100
objects with 72 images of resolution 32 × 32 for each
object. The images of each object were taken 5 degrees
apart when each object was rotated on a turntable. we
also demonstrate the clustering result on popular face
data sets including Yale-B, CMU PIE, CMU Multi-PIE,
UMIST Face Data. The Extended Yale Face Database B
contains 64 frontal face images for each of the 38 sub-
jects, and the face images are taken under different illu-
minations for each subject. CMU PIE face data contains
11554 cropped face images of size 32 × 32 for 68 per-
sons, and there are around 170 facial images for each per-
son under different illumination and expressions. CMU
Multi-PIE (MPIE) data (Gross et al., 2010) contains the
facial images captured in four sessions. The UMIST
Face Database consists of 575 images of size 112 × 92
for 20 people. Each person is shown in a range of poses
from profile to frontal views. MNIST is comprised of
60000 training images and 10000 test images of ten dig-



Table 1: Clustering Results on Various Data Sets, the top two results for each measure and data set are in bold.
Data Set Measure KM SC `1-Graph SMCE `2-R`1-Graph NR`1-Graph NR`1-Graph-RP

COIL-20 AC 0.6504 0.4271 0.7854 0.7549 0.7854 0.9174 0.9257
NMI 0.7616 0.6202 0.9148 0.8754 0.9148 0.9671 0.9716

COIL-100 AC 0.4928 0.2833 0.5310 0.5625 0.5625 0.7846 0.7972
NMI 0.7522 0.5913 0.8015 0.8057 0.8059 0.9238 0.9284

Yale-B AC 0.0948 0.1060 0.7850 0.3409 0.7850 0.8111 0.7092
NMI 0.1254 0.1524 0.7760 0.3909 0.7760 0.8095 0.7216

CMU PIE AC 0.0829 0.0718 0.2318 0.1603 0.3012 0.3190 0.2965
NMI 0.1865 0.1760 0.3378 0.3406 0.5121 0.4993 0.5103

MPIE S1 AC 0.1167 0.1309 0.5892 0.1721 0.5892 0.6582 0.5729
NMI 0.5021 0.5289 0.7653 0.5514 0.7653 0.8540 0.8052

MPIE S2 AC 0.1330 0.1437 0.6994 0.1898 0.6994 0.7226 0.6584
NMI 0.4847 0.5145 0.8149 0.5293 0.8149 0.8826 0.8505

MPIE S3 AC 0.1322 0.1441 0.6316 0.1856 0.6316 0.6753 0.6194
NMI 0.4837 0.5150 0.7858 0.5155 0.7858 0.8657 0.8134

MPIE S4 AC 0.1313 0.1469 0.6803 0.1823 0.6803 0.7260 0.6563
NMI 0.4876 0.5251 0.8063 0.5294 0.8066 0.8926 0.8413

UMIST AC 0.4216 0.4174 0.4417 0.4452 0.4991 0.6765 0.7078
NMI 0.6377 0.6095 0.6489 0.6641 0.6893 0.7982 0.8084

MNIST AC 0.5338 0.3557 0.6105 0.6546 0.6110 0.6353 0.6395
NMI 0.4830 0.3713 0.6310 0.6684 0.6315 0.6526 0.6514

its from 0 to 9, and each image is of size 28 × 28 and
represented as a 784-dimensional vector.

All the clustering results on various data sets are shown
in Table 1. For MNIST data, we randomly sample 1000
images from each class to constitute a total number of
10000 images on which clustering is performed. We con-
duct such random sampling by 10 times and record the
average performance. It can be observed from Table 1
that `2-R`1-Graph produces better clustering accuracy
than `1-Graph on COIL-100, since graph regularization
produces locally smooth sparse codes aligned to the local
manifold structure of the data. Using the neighborhood
regularization term to render locally consistent neigh-
borhood in the sparse graph so that the local structure
of the sparse graph is aligned to the manifold structure
of the data, NR`1-Graph and NR`1-Graph-RP always
perform better than all the other clustering methods.
Randomized rank-k decomposition of the data matrix is
employed in NR`1-Graph-RP to accelerate NR`1-Graph
with k = min{d,n}

10 . Compared to NR`1-Graph, we ob-
serve that NR`1-Graph-RP usually exhibits competitive
or even better results, revealing its compelling perfor-
mance with reduced computational complexity. For ex-
ample, NR`1-Graph-RP is around 8.7 times faster than
NR`1-Graph for each iteration of the PGD-style iterative
method on the COIL-100 data, which is consistent to our
complexity analysis in Section 4.

5.2 PARAMETER SETTING

There are two essential parameters for NR`1-Graph, i.e.
γ for the neighborhood induced graph regularization
term and K for building the KNN graph. We use the
sparse codes generated by `1-Graph with weighting pa-
rameter λ(`

1) = 0.1 in (2) to initialize both NR`1-Graph
and `2-R`1-Graph, and set λ = γ = 0.1, K = 5 for

NR`1-Graph (6) empirically throughout all the experi-
ments. The maximum iteration numberM is 100 and the
stopping threshold ε is 10−5. The weighting parameter
for the `1-norm in `1-Graph, λ(`

1), and that in `2-R`1-
Graph, λ(`

2), and the regularization weight for `2-R`1-
Graph, γ(`

2), are chosen from [0.1, 1] for the best per-
formance. Moreover, results on the parameter sensitivity
are included in the supplementary of this paper.

6 CONCLUSION

We propose a novel NR`1-Graph which align the sparse
graph to the local manifold structure of the data by learn-
ing locally consistent neighborhood in the sparse graph.
In contrast to most existing methods that use `2-norm
to measure the distance between sparse codes in graph
regularization, NR`1-Graph employs the novel neigh-
borhood distance to measure the distance between data
points so as to impose the local smoothness on the neigh-
borhood. The optimization algorithm using the proposed
PGD-style iterative method and its theoretical properties
are analyzed. The optimization of NR`1-Graph is fur-
ther accelerated by randomized low rank decomposition
of the data matrix with theoretical guarantee, leading to
the more efficient NR`1-Graph by Random Projection.
The effectiveness of NR`1-Graph and its accelerated ver-
sion for data clustering is demonstrated by experiments
on various data sets.
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