FARE: Schema-Agnostic Anomaly Detection in
Social Event Logs

Neil Shah
Snap Inc.
Santa Monica, CA
nshah@snap.com

Abstract—Online social platforms are constantly under attack
by bad actors. These bad actors often leverage resources (e.g. IPs,
devices) under their control to attack the platform by targeting
various, vulnerable endpoints (e.g. account authentication, sybil
account creation, friending) which may process millions to
billions of events every day. As the scale and multifacetedness of
malicious behaviors grows, and new endpoints and corresponding
events are utilized and processed every day, the development
of fast, extensible and schema-agnostic anomaly detection ap-
proaches to enable standardized protocols for different classes
of events is critical. This is a notable challenge given that
practitioners often have neither time nor means to custom-
build anomaly detection services for each new event class.
Moreover, labeled data is rarely available in such diverse settings,
making unsupervised methods appealing. In this work, we
study unsupervised, schema-agnostic detection of resource usage
anomalies in social event logs. We propose an efficient algorithmic
approach to this end, and evaluate it with promising results
on several log datasets of different event classes. Specifically,
our contributions include a) formulation: a novel articulation of
the schema-agnostic anomaly detection problem for event logs,
b) approach: we propose FARE (Finding Anomalous Resources
and Events), which integrates online resource anomaly detection
and offline event culpability identification components, and c)
efficacy: demonstrated accuracy (100% precision@250 on two
industrial datasets from the Snapchat social platform, with 50%
anomalies previously uncaught by state-of-the-art production
defenses), robustness (high precision/recall over suitable synthetic
attacks and parameter choices) and scalability (near-linear in the
number of events).
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I. INTRODUCTION

The prevalence of abusive behavior on online social plat-
forms has risen considerably in recent years. As social plat-
forms become increasingly omnipresent communication and
information sharing platforms, bad actors are incentivized
to engage in abusive behaviors on behalf of personal or
corporate interests for gain. These behaviors can include
account creation efforts, social spam by propagating content
over a network [1], account hijacking efforts for purposes
of humiliation or exploitation, and more. As a result, the
broader research community has invested substantial resources
on tackling a wide variety of application-specific anti-abuse
anomaly detection problems spanning e-mail phishing attacks
[2], malware detection [3], network intrusion [4], livestream-
ing abuse [5], social and content spam [6], fake account
registration [7], account compromise [8] and more. Most of

these works focus on identifying malicious users, either based
on supervised learning approaches which necessitate a large
quantity and diversity of labeled data, or via unsupervised
approaches which compute suspiciousness scores given a pre-
processed feature set.

Such works meet several major challenges in real-world
anti-abuse scenarios. Firstly, supervised approaches are often
unsuitable due to the sparsity or bias in existing labeled
data, and the challenges associated in collecting new labels
capable of handling constantly changing adversarial behaviors
at test time. Lastly, unsupervised methods which rely on hand-
tailored, application-specific mechanisms are challenging to
curate, unwieldy to update and deprecate over time, and are
prone to missing attack types beyond the biases incorporated
in the rules. Worst of all, such systems are hyper-specialized
to single event classes and unique features by construction
(i.e. different rules for flagging supposed account hijacks, fake
registrations, fake followers, etc.), with poor obvious transla-
tion between systems. Despite these challenges, practitioners
every day are met with the task of deploying new interaction
logging systems which process different event classes with
unique features, potential threats and abuse signatures, and
have limited alternatives other than these to stem attacks. This
is due to the cost and time-prohibitive nature of designing
custom-built anomaly detection solutions, and the lack of
suitably flexible detection frameworks which can adapt to
different schema definitions and data types.

In this work, we take a step back to consider the common-
alities of many such problems: each can be cast as an instance
of detecting anomalous resources (IP, device, user identifiers)
behaviors over the underlying produced events. In this set-
ting, resources represent limited and typically “expensive”
constraints used by bad actors to conduct attacks, and events
are log entries which describe fine-grained actions associated
with a given event class (account created, login attempted, etc.)
Moreover, we consider that while such event classes contain
diverse feature sets (schemas), they often contain the same few
allowable feature types(i.e. numerical like length of session,
categorical like frue, or textual like e-mail address), which
we call the rypeset. We utilize these abstractions to propose
the schema-agnostic anomaly detection problem for event log
mining, as below:

Problem 1 (Schema-Agnostic Anomaly Detection). Given a



log of same-class events £ = {e; ...e,}, where each event
e; € € has an associated resource identifier r;, timestamp t;,
and d > 1 features (f ... fq) allowed by the typeset T, detect
the anomalous resources R 4 and corresponding anomalous
events € 4.

Note that our goal in this work is to propose abstraction and
implementation for a detection framework which enables low-
overhead adaptation to multiple, independent event logs with
potentially different schemas, composed of building blocks of
the aforementioned feature types. This is in order to support
practitioner use-cases of quickly leveraging such a framework
for a flexible, unsupervised anomaly detection solutions for a
wide variety of systems and associated event classes. This is
in stark contrast to traditional solutions with high specificity
but limited extensibility and long development time.

To solve Problem 1, we propose the FARE (Finding
Anomalous Resources and Events) approach which involves
fast, modular and unsupervised components for online de-
tection of anomalous resources, and offline identification of
culprit events — see Figure 1. FARE is designed to flexibly op-
erate on social event log data containing numerical, categorical
and textual types, and with realistic, skewed data distributions
prevalent in social domains in mind. We evaluated FARE on
various kinds of social event logs from the Snapchat platform,
and demonstrate high accuracy, generality and scalability in
detecting resource anomalies and associated abusive events
on event data from notable registration and login flows.
Summarily, our contributions are

1) Novel formulation: We posit a novel formulation of the
schema-agnostic anomaly detection problem, focused on
identifying resource anomalies and culprit events in social
event logs with schemas capable of supporting a wide
range of event classes.

2) Proposed approach: We develop FARE, which incorpo-
rates online resource anomaly detection for near-realtime
actioning using stochastic evaluations, and offline suspi-
cious event detection using a novel event-based metric
learning formulation and subgraph mining techniques.

3) Demonstrated efficacy: We demonstrate that FARE is
accurate (100% manual validation precision on real data),
robust (high precision/recall over realistic attack models)
and scalable in the number of events on a variety of
industrial event log datasets.

II. RELATED WORK

We discuss prior work on two fronts: event log mining, and
anomaly detection for anti-abuse usecases.

Event log mining. Most prior works in log analysis focus on
the task of mining a system or console trace log which overlays
multiple classes of events associated with resource identifier,
thus forming sequential traces. [9] proposes an algorithm for
mining trace logs to infer workflow process models akin to
state machines which are used in describing how users navi-
gate through a system. Several works tackle anomaly detection
in such logs: [10], [11] constructs such models from traces
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Fig. 1: An overview of our approach: Starting with an in-
put event log containing events and associated resources,
FARE enables unsupervised online detection of resource usage
anomalies. Later, FARE’s offline component identifies the sus-
pected abusive events associated with pinpointed anomalous
resources.

and identifies those which violate the model or have too low
support as anomalies. [12] aims to correlate event sequences
with systematic node failures (having encountered the same
error) in cluster environments. [13] featurizes console logs
based on counts of event classes in a trace, and uses offline
principal component analysis to identify resources with odd
class distributions. Several works focus on clustering, in which
the task is to group together textually similar log messages:
[14], [15] use iterative partitioning to extract such message
templates, while [16] tackles this problem by mining frequent
item-sets of message tokens using an apriori-like algorithm.
Our work differs in that we consider logs which contain events
of a single class. Moreover, we aim to mine resources and
events which are anomalous based on the associated statistical
properties of event features, rather than low or no support
given a state model.

Anomaly detection for anti-abuse. Prior work in com-
bating abuse via anomaly detection proposes both individ-
ual and group-based methods. Individual methods focus on
detecting isolated entities (accounts, devices, etc.) [17], [18]
take unsupervised, application-specific tacks at identifying
fraudulent users and products in e-commerce graphs with
probabilistic and information theoretic methods. [19], [20] use
supervised methods to discover spam accounts and knowledge-
base vandals based on specific feature sets. [21], [22] use semi-
supervised learning in graphs to propagate suspiciousness from
known review spammers and misinformative articles in order
to discover others. Several works also tackle intrusion detec-
tion by using packet traffic logs [4]. Group-based methods are
motivated from literature which suggests that abusive behavior
often manifests in synchronous signatures, due to patterns left
by scripts and bot automation. [7], [23], [24] show synchrony
in various abuse contexts, including fake account handles
and social graph connectivity. Most group-based methods are
unsupervised. [25], [26] discern artificially bought reshare
cascades and [5] finds fake livestreaming views. Other works
tackle mining overly densely connected connected groups
from interactions: [6], [27]-[29] use pruning and expansion



techniques to find clusters of synchronous entities in interac-
tion graphs. [30], [31] use graph-based community detection
approaches for the same. Our work differs in that is the
only one able to detect anomalies in event logs, and is also
not dependent on a fixed set of application-specific features.
Moreover, unlike others, our approach merges both individual
and group-based elements for resource detection and event
identification respectively.

III. SCHEMA-AGNOSTIC ANOMALY DETECTION
A. Problem Formulation

Large-scale online systems typically log events of different
classes (i.e. account creation, login) with relevant features
which are associated with certain actions such as endpoint
requests, and capture fine-grained behaviors on the platform.

Formally, we consider a single event log as a multiset
E of same-class events {e;j...e,}, where each event e; is
associated with a resource identifier r; € R, timestamp t;,
and features (f(;,1), f(i,2) - - - f(i,a))» Which are defined on the
schema Fy} x Fy x ...F, given feature domains Fj ... Fj.
Note that two event logs of different classes may share the
same schema given their structures. Fy ... Fy are allowable
given a typeset T, which is to say that each F; € T — in this
work, we consider the typeset to include categorical, numerical
and textual feature types. For convenience, we also define
E(r;) = {e; € €|r; = r;} to index the set of all events
associated with resource identifier ;. While we could consider
any resource identifier (device, user, IP address), we use IP in
this work due to its prevalence. Figure 1 shows a toy example
of such an event log, with a dud field showing the LOGIN
class, and features (Status, User) which could be interpreted
as following the schema Categorical, Textual.

In practice, one major challenge is that given the sheer
number, scale and most notably schema diversity of these
logs across event classes, application-specific anti-abuse so-
lutions are unwieldy to build and manage against diverse
abuse vectors. The features available to leverage for detec-
tion of suspicious login events may be totally different than
those available for registration events, for example, limiting
extensibility of each detection system to others. Moreover,
even if their schemas were alike, the signatures of suspicious
behaviors may be entirely different. Our work aims to mitigate
this extensibility challenge by tackling anomaly detection in
event logs in a schema-agnostic way. In this work, we consider
the schema-agnosticism of a detection framework to reflect
its capacity to handle multiple logs and classes of possibly
distinct schemas.

Our goals are multi-fold. Firstly, we aim to quickly (in
near-realtime) identify the most abnormal resources R 4 which
produce suspiciously different events from their peers, such
that we can action against them (i.e. issue challenges, rate
limits, penalties) and dissuade their abusive activities. More
formally, we have:

Problem 2 (Anomalous Resource Detection). Given an event
log & of events e; = (fun), fuz2)--- fuaq) from resource

R(e;) at time T(e;), discern the most anomalous resources
Ra.

Note that the above problem considers the log £ in a
streaming fashion. Secondly, for those resources in R 4, we
seek to later (offline) discern the suspicious events £4 from
normal ones:

Problem 3 (Culpable Event Identification). Given a set of
anomalous resources R o and associated candidate event set
C={e; € &|ri € Ra}, identify the suspected culpable events
EqeC.

Note that the desired time-to-action for Problems 2 and
3 are different in practical abuse handling (urgent mitigation
but delayed fine-grained, post-mortem analysis), and thus we
address them distinctly.

B. Proposed Approach: FARE

To tackle these two problems, we propose FARE. FARE
has both an online anomalous resource detection component
addressing Problem 2 (see Section III-B1), as well as an offline
culpable event identification component addressing Problem 3
(see Section III-B2).

1) Detecting Resource Anomalies: The first component of
our approach involves online, near-realtime identification of
abnormally behaving resources. This enables us to employ dis-
suasion measures based on early detection results to mitigate
continued and future negative behaviors proactively.

Our high-level approach to this task involves extracting
and maintaining live resource-level representations, which are
summaries of the event-level features associated with each
resource’s events. As we adapt these resource-level represen-
tations, we leverage a trained unsupervised anomaly detector
to identify the outlying resources and are enabled to penalize
these resources until we believe their behavior is sufficiently
normal. We elaborate below.

Choosing summary statistics. We propose to represent a
resource r; with an ensemble of resource-level statistics on
event-level features f(; ... fi,q) of the associated events
&(r;), such that the resulting resource-level representation
7; € R¥. Note that d # k in general, as it is possible to extract
any number of summary statistics from even a single event-
level feature.This leads us to the question, which summary
statistics should we extract?

Recall that event-level features can be categorical, numerical
or textual. In this work, we handle text by constructing
numerical and categorical meta-features. Thus, we limit our
scope to choosing summary statistics for these feature types
only. We consider several common candidate statistics (see
Table I), positing that not all are equally suitable for the
anomalous resource detection task.

Firstly, we consider that sampling distributions are not
invariant to sample size. Although sample statistics converge
in the limit if it exists given the Law of Large Numbers, in
practice we have many small samples. Moreover, given an
arbitrary data distribution and statistic, the sampling distri-
bution may shift with sample size (event count); see Figure



(a) Incoming event stream

(b) Near-realtime resource feature updates
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(c) Anomalous resource detection

Fig. 2: Given a stream of events (a), FARE maintains and rapidly updates multi-dimensional resource (IP) representations with
incoming events (b) to detect abnormal resources in a near-realtime, unsupervised fashion (c).
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Fig. 3: Certain summary statistics can bias anomaly detectors towards marking high event-count resources as most anomalous
in realistic, skewed numerical (left) and categorical (right) data settings, despite fixed event-generating processes. (a)/(b) and
(c)/(d) show that moment and entropy features suffer, while (e)/(f) and (g)/(h) show that quantile and frequency features triumph
in such cases (box-whisker plots show spread of anomaly scores for resources with near-equal # events). These differences
are caused by notable shifts in statistics’ sampling distributions over varying event counts (see legends) in (a)/(c), versus

more-aligned distributions in (e)/(g).

3a for an example. The implication is that when comparing
two resources 7; and r;, 7; and 7; may be significantly
different even if the resources have the same underlying event-
generating process, due to differences in event counts |E(r;)]
and [E(r;)|.

Secondly, resource usage is highly skewed in practice. Most
resources are associated with just a few events (less prolific),
but a few resources are associated with many (more prolific).
Such usage distributions often resemble Zipf’s law, in which
the popularity of resources with k events, py, is inversely pro-
portional to their (exponentiated) frequency ranks: p; o< k~<.
The implication is that there will be many more vectors like
73 than 77, if |E(r;)| < |E(rj)|.

This begets a key observation: assuming skewed resource
usage, if a statistic’s sampling distribution shifts notably with
event count, then more prolific resources will be marked
as anomalous by an unsupervised detector, even if they are

the closest distributional approximation of the underlying
event-generating process. The ramifications of this outcome
are disastrous, and would negatively impact popular, shared
resources like universities, companies and small countries
with limited network infrastructure. Similar analogs exist for
different resource identifier types (i.e. highly-engaged power
users for usernames, shared or common devices).

In reality, a statistic’s sampling distribution, sample size
sensitivity, and anomaly detection impact depends on many
factors.This is a complex interplay, and not the main focus of
this paper. However, we take these considerations into account
in choosing suitable summary statistics, and keep in mind that
many real-world data distributions are highly skewed, and thus
our statistics should robustly handle skewed data. As such, we
experimented with the statistics listed in Table I in a simulated,
but realistic, setting in which both event-level features as well
as underlying resource usage distribution were skewed.



Numerical Categorical

Extrema (min, max)
Moments (mean, variance)

Quantiles (Q1, Q2, Q3)

TABLE I: Candidate statistics for event-level summarization.

Inequality (entropy, gini)
Distincts (unique_prop)
Frequents (mode_prop, sec_prop)

Specifically, we modeled cases in which resource event-
count was Zipf(a = 2.0) distributed, and events had a single
feature f;. We considered skewed categorical and numerical
f1, such that f1 ~ Zipf(a = 2.0) and f; ~ Pareto(a = 2.0)
respectively; previous works [32], [33] show that @ ~ 2.0
holds for many real datasets. We then used a 1-D kernel
density estimator to evaluate anomaly (likelihood) scores of
varying event-count resources.

These scenarios empirically justify our observations regard-
ing the interplay between statistic choice, resource skewness
and anomaly detection performance: Figure 3 reflects how
sampling distributions of mean (a) versus median (e) for nu-
merical data and entropy (c) versus mode_prop (g) for categor-
ical data impacted anomaly score distribution in (b)/(d)/(f)/(h)
over resources with varying event-counts. Specifically, one can
see how the mean and entropy features produced unintuitive
anomaly detection results, where the anomaly score (negative
log-likelihood) increases with the event count in (b)/(d), unlike
for median and mode_prop in (f)/(h). We exclude similar
plots for other features from Table I for space reasons, but
we rationalize similarly for including and excluding other
features for summarization: in line with human intuition, we
chose to use features for which increasing event count resulted
in decreasing anomaly score given fixed event-generating
process.

Numerical. Extrema (min, max) and moments (mean, vari-
ance) showed significant bias against prolific resources. These
features are sensitive to draws from the tail, which are likely
with large samples. Conversely, quantiles performed well,
given lower sensitivity to outliers; this facet better aligns with
our goal to describe the abnormality of a resource’s aggregate
behavior, rather than that of a few events. Thus, we use )1,
()2 and Q3 to describe each numerical feature.

Categorical. Inequality measures such as entropy and gini
(Gini score, and distinct-value statistics such as unique_prop
(ratio of unique values) were in heavily biased against prolific
resources. Conversely, frequency statistics such as mode_prop
and sec_prop (ratios of first and second most-frequent values)
behaved intuitively. We use sec_prop in addition to mode_prop
as [7] showed its use in detecting bimodal abusers who switch
between multiple patterns.

For textual features, we extract three meta-features. Firstly,
we consider enc_pattern (encoding pattern, as described in
[7]), which maps each lowercase character to ‘L’, uppercase to
‘U, digit to ‘D’ and other to ‘O’. This produces a categorical
feature whose distribution describes textual structure, and
can indicate structural similarity. Secondly, we use str_len,
a numerical feature denoting text length, which can identify

excessively long or short texts, as well as too-uniform text.
Finally, we use str_count, which maintains counts of each
unique string over the set of resource events. The distribution
of this feature describes recurrence of the exact same text.
From these features, we extract numerical and categorical
statistics.

Maintaining resource representations. Given chosen
statistics, we next need to efficiently maintain and compute live
representations for all r; € R. We next discuss implementation
choices for handling adaptive computations for each statistic.
We aim to avoid keeping the full stream in memory, as this
would be costly. Moreover, we aim for quick and cheap
computations in terms of time complexity.

Numerical. We could naively compute quantiles on an
evolving data stream by storing all elements and running
the necessary quantile computations as needed. Unfortunately,
this results in O(|E(r;)|) space footprint for a resource with
|E(r;)| events, which can be prohibitive in large datasets.
Moreover, naive quantile computation involves sorting and
iterating through the data, resulting in O(|&(r;)|log(|E(7:)]))
time. In response, a several sketch-based quantile approxima-
tion algorithms approaches have been proposed given fixed
space; [34] gives an overview. Unfortunately, these approaches
become infeasibly space intensive to maintain per resource
when |E(r;)| is generally small, as in real use-cases [35]. As
a result, we avoid sketch-based approaches. In practice, we
find that reservoir sampling [36] is suitable, allowing O(k)
space for a k-size reservoir, and tuning k to minimize space
or maximize accuracy given constraints. Quantiles can then be
computed on the reservoir in O(k) time per resource using a
selection algorithm.

Categorical. As with numerical data, the most naive option
for computing frequencies is to store all elements and evaluate
element proportions by counting as needed, which requires
O(|&(r;)|) space for a resource with |E(r;)| events. The
naive proportion computation method would involve tally-
ing and ordering unique element counts, with time com-
plexity O(|E(r;)| + wlog(w)) for w unique elements. As
noted above, we avoid sketch approximations (for example,
Count-Min [37]) as they pose excessive space overhead for
most resources. We observe that since the number of cate-
gories/uniques is often limited and known a priori in practice,
we can do much better by maintaining a hashmap of uniques
and seen counts on the fly while maintaining a separate
counter for total seen elements, requiring only O(u) space.
This approach works best when distributions are skewed, since
u < |E(r;)|. Frequency statistics can then be computed over
the hashmap using O(ulog(u)) time. Given a sample size and
underlying distribution, we can express E[u] as

Lemma 1 (Categorical Uniques). Given a size-n sample from
a feature with categorical distribution P over j categories,
the expected number of unique elements Elu] = > 1_, 1 —
(1 — p;)", where p; denotes the probability mass on the it"
category of P.



At evaluation time, we can use these strategies to quickly
produce a vector representation r; for each r; € R. This better
aligns our problem with traditional vector-based anomaly
detection.

Pinpointing anomalous resources. Given resource rep-
resentations, our next goal is to leverage these to pinpoint
anomalous resources. As our goal from Problem 2 requires us
to quickly identify misbehaving resources for enforcement, our
approach must detect anomalies on-the-fly. This suggests the
use of a stream-suitable anomaly detection model, in which
we can easily evaluate the abnormality of any single resource
at a given time.

Model Structure. Our approach involves the use of a pre-
trained, windowed detection model. In a nutshell, we partition
the event stream £ into consecutive and non-overlapping time-
windows, such that detection on a current window depends on
a detector built from a prior window. Formally, we consider
that at any given time we are concerned with two subsets of £,
called the model reference window M, 4,y = {e; € Efto <
T(e;) < t1} from which we build an anomaly detector D
over the respective resource representations produced at the
end of R, and the current window C, 1,y = {e; € E|t1 <
T(e;) < t2} in which we are ingesting events in real-time and
maintaining live resource representations. Then, given D,
we can quickly evaluate any 7; in the current window C each
time it changes, accounting for a newly seen event. Upon the
completion of C’s timeframe, we reset resource representations
for the next window.

Practical Considerations. In practice, we posit that the
associated detection model D, need not be updated very
frequently over new reference windows, because aggregate
resource behaviors are not expected to be highly dynamic.
Thus, we could utilize the same Dy, for many subsequent
“current” C windows as time progresses, further amortizing
the model training cost. Moreover, we can augment our
resource evaluation strategy in two ways to trade-off liveness
and scalability: Firstly, we can impose an event-count based
detector training and evaluation threshold 7, which limits our
inputs to only resources with > 7 events. This enables us to
(a) improve our estimates of normal behavior by discarding
noise from low event-count resources, (b) avoid penalizing
lightly used “personal” resources, and (c) greatly cheapen the
computational cost of model training and evaluation. Secondly,
we can introduce stochasticity into the resource evaluation
step so that at each representation update, we evaluate the
resource with a p.,, chance. The main benefit is that we
can avoid frequent evaluations for high event-count resources,
and proportionally reduce runtime at the cost of inducing a
stochastic delay in evaluation. We can express the probability
of the length of such a delay as follows:

Lemma 2 (Skipped Evaluations). Given an evaluation proba-
bility peyql, the probability of waiting “too long” (> s events

Proofs for all lemmas included in Section VI.

beyond the expected) before an evaluation is
P(X —E[X] > 5) = (1 — peyar)* TPevar

This probability decays exponentially in observed event-
count. To further quantify the benefits of adjusting 7 and peyq,
we can write the ratio of expected evaluations to total events:

Lemma 3 (Event Evaluation Ratio). Given n events across m
resources T1 . .. Ty, such that event count |E(r;)| is distributed
as C, an event count evaluation threshold T and probability
Peval, the expected ratio of evaluated to total events is

]E[ne’ual] =n"'-m- Peval * Z [pk : (k -7+ 1)]

where K = max(dom(C)) and py, = P(|€(r;)| = k).

K
k=1

Our approach lets us extensibly use any suitable anomaly
detector as D . In our experiments, we utilize Isolation Forest
[38], due to its fast, near-linear train and test time complexity
with constant model footprint. This approach gracefully han-
dles continuous and discrete data due to its random splitting
strategy, unlike density estimation approaches which suffer
given mixed data. We transform unnormalized resource scores
to (0, 1) using the empirical CDF given by M, enabling us to
flag resources above a threshold (i.e. top €%) in online fashion.
These resources constitute our abnormal set, R 4. They can
then be challenged, rate-limited or otherwise penalized.

2) Identifying Culpable Events: Upon proactively having
identified anomalous resources R 4, our next goal is to identify
the events culpable for abnormality £4 for further investi-
gation. Given that these events have already had to occur
for the resource to be flagged as abnormal, we tackle their
identification in an offline manner, once all events from a
window C have been observed.

Our high-level approach for this task stems from the intu-
ition that groups of too-similar events are suspicious. A con-
siderable amount of prior literature substantiates that actions
taken by bad actors are interrelated and often in “lockstep,”
meaning that they are overtly synchronous. Leveraging this
insight of excessive similarity as a negative signal, our goal
becomes to identify and group together events taken by
resources to isolate suspicious from normal events. Our high-
level approach involves constructing and learning a principled,
event-based distance metric from optionally available practi-
tioner input, and subsequently identifying clusters of events
for which the inferred distance is excessively low (implying
high similarity), as shown in Figure 4. We elaborate below.

Computing event similarity. To quantify similarity, we first
require a notion of distance. Euclidean distance is one of the
most commonly used metrics over points in R?, satisfying
the formally defined metric properties of non-negativity, iden-
tity of indiscernibles, symmetry and subadditivity. However,
Euclidean distance naturally treats all features with equal
weight. In reality, this assumption may not be ideal for the
distance-reliant task in question; in clustering and anomaly
detection applications, “closeness” in certain features often
reflects proximity better than others; for example, tobacco



(a) Event-based distance metric learning

Resource | Event | Status User Time
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224.x.x.x | LOGIN | Failure rajan 12:27
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(b) Identifying highly synchronous event clusters

0.95

Fig. 4: FARE incorporates learning of a between-event distance metric which obeys human intuitions regarding feature
importance (a), and produces coherent clusters of suspected events which are excessively similar (b).

consumption may be more important than age, in computing
distance for the purpose of separating lung cancer-prone and
healthy patients. To make distance metrics sensitive to such
differences, prior work introduces the distance metric learning
problem, which aims to learn distance metrics which respect
human intuition in the form of marked “similar” and “dissim-
ilar” point sets, S and D. [39] proposes learning a weighted
Euclidean (i.e. Mahalanobis) distance metric for points in
R? of the form |7 — §llww = /(& — 9)TW(Z — ), where
identity W reflects equal feature weighting. They propose
a convex objective to learn W such that intra-set distances
in & and D are minimized and maximized, respectively.
Our task of identifying culpable events suggests the use of
such a learned metric sensitive to expert input, but between
complex events rather than points. Recall that events are
defined over numerical, categorical or textual features, such
that e; = (f(;,1)--- f(i,a)) Where f; 4 € Fy. Then, our goal is
to formulate a weighted metric between events, and learn the
weights. In doing so, our metric must obey the aforementioned
properties to allow sensible notions of proximity; without
these, our concept of inter-event distance may be unintuitive.

We can show that in fact, we can devise such a metric
obeying the required properties by construction. Specifically,

Lemma 4 (Event-based Distance Metric). If M ... M define
distance metrics on feature spaces F ... Fy respectively, then
for any two events e; = (a1...aq) and e; = (b1...bg)
where ay, by € Fr, W = diag(wy...wq) = 0 and h =

[\/M(al, by)...\/M(ag, bd)]

Aw(ei, (:’j) = ETWE

defines a distance metric on the event-space Fy X Fy ... X Fy.

With this, we propose a novel objective to learn W:

II‘li\i]H Z Aw (e ej)* —vlog Z Avw (e;,€;)
(6»;,6]')65 (€i76j)€'D
+ B||W/|| & subject to W = 0 and Tr(W) = 1

This objective is solvable globally optimally due to its con-
vexity. We square the first term to avoid producing deficient

solutions. We can tune ~ to increase weight of maximizing
dissimilarity and, 3 to avoid feature over-reliance. In practice,
this enables practitioners to specify S and D in order to guide
the clustering to respect expert intuition (see Figure 4a). From
the inferred metric A, we define a similarity function ow =
1—Aw, which we threshold to establish excessive, suspicious
similarity. In practice, D can be chosen to consist of random
event pairs, while S can be selected from previously caught
abusive events, or curated from events from newly discovered
anomalous resources. Moreover, multiple curated instances of
S can be used to learn multiple notions of similarity between
events, enabling interpretable categorization of downstream
discovered event clusters as different abuse signatures (e.g.
ow may uncover a cluster of events associated with targeted
account hijacking, whereas ow+ may uncover another cluster
associated with distributed account hijacking). If S and D are
unavailable, we can defer to equal weighting using an identity
W.

Note that given the above result, we can utilize any suitable
metric on a particular space F}. This lets us flexibly determine
the suitability of choices according to the appropriateness
on the relevant data. In this work, we use a modified ¢;
metric % on numerical features, the discrete metric
ap#br (0 if equal, 1 if not) on categorical features and the
Jaccard metric 1 — IZZB?:I on textual features. Under these
definitions, each metric is bounded on (0, 1), which is intuitive
and advantageous for optimization.

Extracting suspicious event clusters. Given a similarity
function ow, we next aim to cluster excessively similar events
together for each abnormal resource r; € R 4. To do this, we
construct a cross-event similarity graph G; for each r;, where
an edge between events e; and e; indicates that ow (e, ej) >
1, where 7 is an empirically tuned parameter which controls
clustering aggressiveness. Note that n = 0 and 1.0 correspond
to full density or sparsity, respectively.

Upon constructing such a graph for each resource, we
can apply any suitable subgraph-mining algorithm; we use
connected components, which extracts coherent clusters in
which each event e; has > 7 similarity to at least one other
event e;. Our intuition is that each such cluster corresponds
to the signature of a synchronized attack. For example, a re-
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Fig. 5: FARE discovers many anomalous resources previ-
ously uncaught by existing production-level login/registration
defenses. Reduced overlap with existing systems for “small”
resources indicates our improved ability to detect subtle at-
tacks.

source might have two resulting connected components, which
reflect two brute-force authentication attacks corresponding
to different username patterns. Conversely, if oy does not
highly weight the username feature, then perhaps we would
observe only a single component which consists of the merged
attack events. Further yet, if we find that the input graph has
zero density, then no two events seem similar enough to be
constituted as an attack. Figure 4b shows a toy example of an
inferred attack. All clustered events produced from applying
this approach to resources in R 4 populate the suspected event
set £4. Once such event clusters are flagged, they can be
triaged into manual review tickets, discredited from metrics,
and negative associated actions can be reversed.

IV. EVALUATION

Our evaluation aims to answer three main questions:

e Ql. Accuracy: Can FARE accurately detect re-
source/event anomalies on multiple types of log data?

o Q2. Robustness: How does FARE’s performance shift
with varying parameter choices?

o Q3. Scalability: Does FARE scale amenably in practice?

We discuss these after detailing our experimental setup.

A. Experimental Setup

We first discuss our dataset and computing environment.

Datasets. We consider two production, industrial-scale
event log datasets from the Snapchat social platform, reflecting
(a) 31 million account authentication attempts from 9 million
IPs (LOGIN) over 4 features (username, whether the login
succeeded, whether the target user had an active login, and
a proprietary risk score), and (b) 1./ million account regis-
trations (REGN) from 900 thousand resources over 7 features
and (c) modified registration logs with simulated, synthetic
attacks (SYNTH) over 7 features (username, display name, e-
mail handle/domain, and birth date/month/year).

SYNTH datasets were simulated with a 95/5% split of
5000 total designated normal/abnormal resources, with re-
source event counts Zipf(«a = 2.0) distributed. All resources’
events were initially randomly sampled from real REGN events

(amortizing any inherent abnormalities). Anomalous resources
were then “corrupted” by imputing events as follows (executed
independently for each resource):

1) Randomly generate field value for a template “attacker”

event.

2) Replace atk_scale ratio of benign with attacker

events.

3) For each attacker event besides the template, randomly

generate values for atk_hetero of the other fields.

This let us control for both (a) the “attack scale” and (b)
“attack heterogeneity” for each resource. These simulations
reflect real abusive behavior signatures previously discovered
by domain experts, which suggest that obvious abuse has
low heterogeneity and high blatancy, but intelligently executed
abuse often has high heterogeneity and low-scale. Section
VI-B1 gives more details on simulation parameters and their
implications on attack patterns.

Environment. All experiments were executed using a
Google Compute Engine instance with 64 cores and 400GB
RAM. Prototyping/experimentation was done in Python. Ac-
curacy and runtime results were averaged over 5 iterations,
and reflect offline evaluation.

B. Accuracy

We discuss FARE’s accuracy in two experiments on both
LOGIN and REGN: (a) manual validation, and (b) comparison
with existing, state-of-the-art production defenses.

Manual validation. Given that labeling is a labor-intensive
task, we limit our manual validation to the top-K (K = 250)
resources reported by FARE on each dataset. We obtained
a strong 100% precision@250 on both LOGIN and REGN
datasets, with all top-ranked anomalous resources behaving
abusively according to domain experts. Resources were labeled
according to perceived event similarities, examination of other
(non-processed) account behaviors, too-short inter-event times,
and other proprietary signals. On LOGIN data, we observed
a gamut of abusive behaviors, including brute-force attempts
(high failure rate over many repeated attempts), account
compromises (login attempts from unfamiliar environments
and failed 2FA challenges), and third-party application usage
(frequent account switching or successful same-account logins
every few seconds). On REGN data, we observed attackers
creating fake accounts to send spam or to use at a later time
for nefarious purposes. The accounts were often created with
highly similar features such as names and contact details.

Comparison with existing defenses. Prior work has not
directly tackled the setting we discuss, hence producing no
apparent baselines. In lieu, we compared FARE’s anomalous
resource detection performance with defense logs from exist-
ing, state-of-the-art industrial detection systems, which include
(a) highly specialized and expert-curated detection rules which
leverage numerous additional signals not consumed in our
approach, (b) custom-tailored rate limits, and (c) IP filters
for cloud environments, known botnets and more. Specifically,
we compared the overlap@K between FARE’s ranked results
and the entire (unranked) set of flagged IPs from which we
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rejected endpoint requests (events) on suspicion of abuse from
any of the above defenses over the same time period. More-
over, we computed this metric over ranked lists of resources,
conditioned on varying event count profiles, from very small to
very large (specifics excluded for security reasons), to examine
sensitivity of existing systems and FARE to resource size. Our
results, shown in Figure 5 indicate that while our approach’s

(200), respectively. Moreover, FARE is able to detect smaller-
scale attacks much better than existing defenses, as evidenced
by the lesser overlap with existing systems at smaller resource
size profiles, and our manually validated observations on
resource suspiciousness.

C. Robustness

results are correlated with existing defenses at all resource
sizes, we discover nearly 60-100% more suspicious resources
in LOGIN (REGN) data at conservative values of K = 500

We next discuss FARE’s robustness to varying data and
detection settings. We first study FARE’s performance against
different attack types and evaluation settings. Next, we demon-
strate how performance is improved by event-based metric
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learning. Lastly, we discuss observations about model re-
training.

Performance on SYNTH. We use a suite of SYNTH
datasets with varying atk_scale and atk_hetero to
study performance against varying attack factors. We also vary
Deval (detection stochasticity) to demonstrate the influence
of stochasticity on detection performance and responsiveness.
By default, we use atk_scale= 1.0, peyar = 0.1 and
atk_hetero= 1; while varying each parameter, the other
two are kept fixed.

Figure 6 summarizes results for FARE’s anomalous resource
detection component. 6a shows that performance decreases
when atk_scale decreases; intuitively, tiny attacks do not
sufficiently discern designated anomalous resources. 6b shows
that decreasing p.,q; does not impact detector performance,
but leads to delayed detection (i.e. most attack events occur
before detection). However, if staleness is tolerable, reducing
Peval €an be advantageous computationally. 6¢c shows that
FARE’s is able to detect both simple/diverse attacks with strong
precision and recall.

Figure 7 summarizes the downstream performance of these
parameter settings on FARE’s culpable event identification
component. In all cases, S is populated with 100 randomly
chosen within-resource pairs from the top 5 anomalous re-
sources’ events, and D is populated with 1000 completely
randomly chosen pairs; 7 is chosen as the median pairwise
similarity score in S. Note that these settings are chosen to
promote reproducibility given the attack model; in practice,
curating S and D carefully would greatly improve discrim-
inability and resulting precision and recall. 7a demonstrates
commensurately decreasing performance as atk_scale de-
creases; precision declines because of (a) worsened abilities
to estimate a good similarity threshold (S and D become
very alike given the above selection strategy), and (b) little
discriminability between anomalous and normal resources. 1
can of course be adjusted for higher precision and lower
recall, but we show results here only for a single setting
given space constraints. 7b shows that, as expected, Peya;
does not influence culpable event identification beyond its
influence on anomalous resource detection. Finally, 7c shows
that regardless of attack heterogeneity, FARE can maintain

near-perfect performance due to a suitably learned metric.
Effects of event-based metric learning. One may wonder
what exactly the advantage of learning a suitable event-based
metric is. Figure 8 substantiates this choice. 8a shows the
distribution of pairwise distances between REGN events across
two different features F (left, textual) and F5 (right, categor-
ical) from S and D chosen as above. Note the distributional
asymmetry, due to varying distance definitions between the
two feature types, as well as inherent feature variety (e.g.
many “dissimilar” events may still have the same birth year);
specifically, F> seems to cluster the chosen similar events
together better than [). 8b (top) shows that by ignoring
this intuition and uniformly weighting the features, pairwise
distances within S and D overlap notably, leading to potential
false positives. However, 8b (bottom) shows by learning the
appropriate weights, we can much more easily discriminate
the desired events. The result is shown in 8c, in which we
vary n € {.5,.6,.7,.8} and compare learned and uniform
weighting; we observe that while precision is hardly affected,
recall is drastically higher when using a learned metric.
Model consistency. Section III-B1 mentions that we need
not vary the model window M and detector D, often if
aggregate behaviors are roughly the same. Figure 9 shows
this is true in practice; models over consecutive windows
are highly correlated. 9 (left) shows a correlation matrix
between anomaly scores of the same resources over 7 windows
Mty - - Mzg 1) and their respective detectors. Correla-
tions are all > .95, indicating strong relationships; 9 (right)
shows a scatterplot over Dy, , , and Dy, , .3 note that
the most anomalous resources (near 0) are consistently so.

D. Scalability

Below, we discuss runtime complexity of our approach.

Model training. Figure 10a shows linear scaling for model
training on SYNTH. The cost of model training is primarily
driven by maintaining appropriate data structures in memory
during window M, generating the resource representations
at training time, and lastly training the detector. Dropping
constants, the terms are O(|€]d), O(|€|d) and O(t), for
|€| events and d features, and t isolation trees (assuming
a constant samples per tree) used in Isolation Forest. The
runtime is dominated by the first two steps.

Anomalous resource detection. Figure 10b shows linear
scaling in anomalous resource detection on SYNTH, and
demonstrates the linear reduction of resource evaluation cost
W.I.t Peyg; Shown theoretically in Lemma 3. Runtime consists
of maintaining data structures during window C, generating the
resource representations at a rate of p.,q;, and evaluating the
anomaly score using the eCDF of scores observed in training
(scoring using D 4 and computing percentile). Dropping con-
stants, the terms are O(|€|d), O(|€|d) and O(t + k) assuming
|€| events, d features, ¢ isolation trees and k resources trained
on in D p4. The heaviest cost is the detector evaluation.

Event-based metric learning. Figure 10c shows that this
step exhibits near-linear runtime, using events from SYNTH.
Time complexity is ill-defined in numerical optimization, but is
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embarrassing parallelism.

associated with problem conditioning and the solver used. We
used a splitting conic solver [40] which utilizes the ADMM
method. In practice, the cost is small and amortizes over
detection windows.

Culpable event identification. Figure 10d shows that our
culpable event identification step admits cost quadratic in event
count on SYNTH. This cost is O(n?), dominated by pairwise
distance computation and Kosaraju’s connected components
algorithm, given n events (nodes). However, given that (a)
most resources have few events due to heavy skew, (b) only
the few resources in R 4 are considered for this step, and (c)
this task can be embarrassingly parallelized across resources
and CPUs, the time cost in practice is much lower.

V. CONCLUSION

In this work, we tackle the general problem of mining
anomalies corresponding to suspicious behaviors in social
event logs with multiple feature types. Our contributions
begin with a novel formulation of schema-agnostic anomaly
detection (Problem 1) in event logs, and its dissection into two
components: anomalous resource detection (Problem 2) and
culpable event identification (Problem 3). Next, we propose
FARE, a holistic, unsupervised framework for tackling these
problems by combining online resource detection and offline
event identification modules, capable of mitigating attacks
in near-realtime, and reversing suspected actions in a later
phase. Finally, we demonstrate empirical success in (a) de-
tecting anomalous resources and events with 100% P@250 in
two classes of industrial-scale Snapchat event data (account
login and registrations), where we detect as many as 50%
of anomalies associated with abusive behaviors that were
uncaught by state-of-the-art, tailored platform defenses, (b)
showed robustness across various synthetic attack modes and
detector settings and (c) conducted runtime analysis which
shows that FARE scales suitably to large datasets.
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VI. REPRODUCIBILITY

In this section, we discuss aspects of reproducibility which
cover (a) proofs for mathematical claims in the paper, and (b)
details on experimental settings and implementation choices.

A. Proofs

Below, we include proofs for the lemmas from Sections
III-B1 and III-B2. We reproduce the lemmas here for the
reader’s convenience.

Lemma 3.1 (Categorical Uniques). Given a size-n sample
from a feature with categorical distribution P over j cat-
egories, the expected number of unique elements E[u] =

§=1 1 — (1 — p;)", where p; denotes the probability mass

on the it" category of P.

Proof of Lemma 1 (Categorical Uniques). Let I;  denote
whether an element of the i*" category appears in the size-n
sample. The probability that it does not appear is (1 — p;)™,

meaning that we can write E[/;] = 1 — (1 — p;)™. Since
E[u] = E[}_7_, I;], by the linearity of expectation we have
Elu] =320 EL] =30, 1 — (1 —pa)™ [

Lemma 3.2 (Skipped Evaluations). Given an evaluation prob-
ability peyai, the probability of waiting “too long” (> s events
beyond the expected) before an evaluation is

P(X —E[X] > 8) = (1 — peyar)*Pevar

Proof of Lemma 2 (Skipped Evaluations). Observe that X is
a random variable, distributed as X ~ Geom(peyai), which
has E[X] = p_.,! .. We can write the CDF as F (k) = 1—(1—
Peval)¥. Then, the probability of waiting < E[X] + s events
is Fx(E[X] + s), making the complement 1 — Fx (E[X] +
s) = P(X > E[X]+5) = P(X —E[X] > 5) = (1-

peval)s+pe’”“l . O

Lemma 3.3 (Event Evaluation Ratio). Given n events across
m resources T ...Ty such that event count |E(r;)| is dis-
tributed as C, an event count evaluation threshold T and
probability Deyqi, the expected ratio of evaluated to total events
is

K
E[neval] = n_l * M - Peval * Zk:T [pk : (k -7+ 1)]

where K = max(dom(C)) and pr, = P(|E(r;)| = k).

Proof of Lemma 3 (Event Evaluation Ratio). We can write
the expected number of k-event resources as m - P(|E(r;)| =
k). Since only the last £ — 7 + 1 elements per k-event
resource are considered for evaluation, we can write the
expected considered event-count from all k-event resources
as m - P(|&(r;)] = k) - (k — 7 + 1). Thus, across all
> k-event resources, we have an expected considered event-
count of m - ZkK:T P(|&(r;)| = k) - (kK — 7+ 1). Since
only peyqr Of these events are evaluated in expectation out
of n total events, we have E[meya] = n71 - m - peyar -
S P(E(r) = 1) (k— 7+ 1)]. O

Lemma 3.4 (Event-based Distance Metric). If My ... My de-
fine distance metrics on feature spaces F ... Fy respectively,
then for any two events e; = (a1 ...aq) and e; = (b1...bg)
where ap, b, € Fr, W = diag(wy...wq) = 0 and h =

[\/M(al, b1) .../ M(a, bd)]
Aw(ei, ej) = HTWE

defines a distance metric on the event-space Fy X Fy ... X Fy.

Proof of Lemma 4 (Event-based Distance Metric). It is well-
known that if M; ... M, individually define metrics on spaces
Fy ... Fy, then the product-space F; X Fy... X Fy is also
metrizable with Zld M; defining a metric. Moreover, for any
scalar w > 0 and metric M, wM is also a metric. Thus,
Z? w;M; is a metric for wy ... wq > 0. Noting that M
is also a metric for any metric M, we have that hTWh =
Z? w;M;, hence defining a metric. O

B. Experimental settings

1) Parameter values: For all synthetic experiments, we use
the following “fixed” parameter values, except when varying
a particular parameter to gauge sensitivity.

e We fiX peyqr = 0.1 (evaluation stochasticity), re-running
anomaly scoring on final resource representations after
processing the generated stream to compute anomaly
scores for resources which had not been scored before
due to stochasticity. In cases where resources were scored
numerous times, we used the maximum anomaly score to
rank the resources for measuring detector performance.

o We fix atk_scale = 1.0 (proportion of anomalous resource
attack events), such that all designated, synthetic anoma-
lous resources had only anomalous events, removing the
possibility for variation in that some resources become
more anomalous than others.

o We fix atk_hetero = 1 (number of varying attacker fea-
tures), to reflect that most attackers are somewhat naive
and only manipulate a single feature while leaving other
features constant (i.e. changing their target username, but
leaving contact details the same for registration events).

o We fix n (cross-event similarity threshold) to the median
of pairwise similarity scores in S, under the assumption
that most pairs in S will have considerably high similarity
given the learned metric.

We reiterate that these are simply the standard parameter
choices we considered as fixed, such that we could vary
each parameter individually and study its own sensitivity on
detection performance (reflected in Figures 6 and 7) rather
than the combinatorial number of options.

As for our metric learning objective, we specified v = 1.0,
and 8 = 1.0, as we found they were empirically suitable for
producing inferred W which was not rank-deficient, and also
not trivial/uniform. We found that increasing ~y (dissimilarity
penalty) did not greatly influence the learned weights, but
increasing /3 too much (weight regularization) led to uniform
weighting (as expected) as the regularization term dominated
the objective.



2) Implementation details: We used Python and Jupyter
Notebooks to run all experiments, on a high-memory single-
node Google Cloud compute engine instance. We conducted
the initial simulation experiments on summary statistic selec-
tion using scipy’s built-in distributions and variate gener-
ation functions. In evaluating maintenance and computation
of summary statistics, we simulated streaming LOGIN and
REGN data by iterating over Pandas dataframes extracted
from structured production-level event logs taken over several
days, upon which we wrote custom classes for reservoir sam-
pling and numerical statistic maintenance, and used numpy’s
percentile function which employs an O(k) selection
algorithm for quantile computation. We used the Isolation
Forest implementation available in scikit-learn for un-
supervised resource anomaly detection, and statsmodels
ECDF functionality for detection score normalization into
(0,1). We utilized cvxpy, a Python interface into CVX to
solve the proposed metric objective; we found the splitting
conic solver (SCS) to be the most time-efficient for our
setting, with comparable minimization performance to more
exact solvers. Finally, to extract suspicious event clusters,
we utilized the networkx package for inter-event similarity
graph construction and connected components extraction.



