
SibNet: Sibling Convolutional Encoder for Video Captioning
Sheng Liu

State University of New York at
Buffalo

Buffalo, New York
sliu66@buffalo.edu

Zhou Ren
Snap Research

Los Angeles, California
zhou.ren@snapchat.com

Junsong Yuan
State University of New York at

Buffalo
Buffalo, New York
jsyuan@buffalo.edu

ABSTRACT
Video captioning is a challenging task owing to the complexity of
understanding the copious visual information in videos and describ-
ing it using natural language. Different from previous work that
encodes video information using a single flow, in this work, we
introduce a novel Sibling Convolutional Encoder (SibNet) for video
captioning, which utilizes a two-branch architecture to collabora-
tively encode videos. The first content branch encodes the visual
content information of the video via autoencoder, and the second se-
mantic branch encodes the semantic information by visual-semantic
joint embedding. Then both branches are effectively combined with
soft-attention mechanism and finally fed into a RNN decoder to
generate captions. With our SibNet explicitly capturing both con-
tent and semantic information, the proposed method can better
represent the rich information in videos. Extensive experiments on
YouTube2Text and MSR-VTT datasets validate that the proposed
architecture outperforms existing methods by a large margin across
different evaluation metrics.
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1 INTRODUCTION
Video captioning aims to understand videos and summarize them
concisely using natural language sentences [9, 25, 27, 44–46, 51].
Such an ability, which is a key element of machine intelligence, is
crucial to many multimedia applications such as video retrieval,
human-computer interaction, and video surveillance. By under-
standing the semantics of videos, video captioning characterizes
visual information into languages and provides concise summariza-
tion of video data, which facilitates the effectiveness and efficiency
of indexing, searching, and querying large video corpus.
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Figure 1: Overview of the proposed SibNet, which employs
a two-branch architecture to collaboratively encode videos.
The proposed loss function contains three components: a
content loss Lc , a semantic loss Ls , and a decoder loss Ld .
We leverage autoencoder and visual-semantic joint embed-
ding to impose fine-grained regularization that pushes con-
tent branch to capture visual contents and pushes semantic
branch to encode video semantics.

Motivated by the success of neural machine translation (NMT)
[1] and neural image captioning [34, 54], deep neural network
models with encoder-decoder pipeline have been applied to video
captioning recently and achieved excellent performance [9, 29, 45,
51]. To transfer a sequence of images into a sequence of words,
the encoder, e.g., an LSTM or CNN, compresses a video into a
vector representation, and then a decoder, e.g., a RNN, helps to
further transfer it into a sentence, i.e., a sequence of words following
the syntax. Such a sequence-to-sequence learning pipeline has
shown promising capacity of “translating” videos into sentences.
However, the translation performance often relies on (1) the encoder
that captures the visual information of the video, and also (2) the
decoder that generates the sentence. Although the decoder can help
ensure that the generated sentence is meaningful, we argue that the
encoder would be even more important, because the information
lost in the encoding phase could not be fully recovered by the
decoder, thus resulting in imprecise or incomplete translation.

Existing video encoders choose to represent the whole video by
merging conventional CNN features with average pooling or RNN
that can capture the video’s temporal structures. However, most of
them only consider using one single branch to encode the video
information. Different from a single image, a video is a sequence of
images and conveys much richer information. Therefore, a single-
branch video encoder may not provide sufficient representation of
the video contents. Tomake amore holistic representation of videos,
we propose Sibling Convolutional Encoder (SibNet), which is com-
posed of two branches, i.e., the content branch and the semantic
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Figure 2: Illustration of the proposed Sibling Convolutional Encoder (SibNet), which is composed of the content branch and
the semantic branch, denoted as CNNc and CNNs , respectively. We construct both branches by stacking 3 and 6 identical
temporal convolutional blocks (TCBs) (we will introduce TCB in Section 3.1.2). A soft-attention mechanism is utilized in our
RNN decoder.

branch, to jointly encode the videos. The content branch explic-
itly learns visual representation of a video with an autoencoder,
while the semantic branch encodes a video via visual-semantic joint
embedding, which leverages the ground truth captions in the train-
ing data to generate semantic-specific representation. Finally, both
branches are effectively combined with soft-attention mechanism
and fed into the RNN decoder for caption generation. Our SibNet is
specifically designed for video captioning task and it brings the fol-
lowing two advantages: (1) the content branch is able to faithfully
capture the visual contents of the video. As it is a pure visual en-
coder, it can better capture the video details to provide more precise
video captioning; (2) the semantic branch leverages visual-semantic
joint embedding to produce semantic-specific representation. Such
representation can capture how important certain frame is seman-
tically, thus providing complementary information of the content
branch.

To jointly train the encoder and decoder, we design a new loss
function composed of three loss terms: (1) content loss from the
content branch, (2) semantic loss from the semantic branch, and
(3) decoder loss from the RNN decoder. In our joint optimization
framework, these three loss terms regularize each other to ensure
our SibNet generates an effective video representation that works
well for video captioning. To model the temporal structures of the
video and also make it compatible with our two-branch structure,
our SibNet chooses to use temporal convolutional architecture,
i.e., temporal convolutional block (TCB), to bring efficient video
temporal encoding.

We evaluate the proposed SibNet on two standard video caption-
ing benchmarks, YouTube2Text (MSVD) [3] andMSR-VTT [50]. The
comparisons with previous results validate that although we only
use a basic RNN decoder (LSTM), our SibNet significantly outper-
forms previous state-of-the-art methods across different evaluation
metrics, thanks to the strong encoder that SibNet provides to cap-
ture richer and complementary information of video contents. We
also analyze the contribution of each component and other de-
sign details of SibNet on the overall performance by performing
comprehensive ablation studies, and the results further verify that

the proposed two-branch architecture possesses unique merits for
video captioning.

2 RELATEDWORK
Deep learning-based encoder-decoder architecture [4, 9, 17, 18, 21,
25–27, 31, 34, 41, 48, 52–54, 56] has shown its effectiveness in video
captioning. Specifically, those methods first adopt an encoder to
represent videos into feature vectors and then use a decoder to
generate natural language captions.

Although for the task of image captioning, Convolutional Neu-
ral Networks (CNNs) [12, 14, 38, 39] have become a standard to
encode image content in most state-of-the-art methods [34, 52, 54],
for the task of video captioning, how to effectively encode video
content is still an open problem. Venugopal et al. [46] proposed
to map a sequence of video features to a fixed-length vector with
an average pooling layer. Venugopal et al. [44, 45] also presented
approaches to mine information from large natural language corpus
or utilize temporal information of videos. With the success of atten-
tion mechanism in neural video classification [30], neural machine
translation [1] and neural image captioning [52, 54]. Yao et al. [53]
introduced it into video captioning. Pan et al. [25] proposed a video
encoder composed of hierarchical RNN. Gan et al. [9] and Pan et
al. [27] improved existing models by detecting manually defined
semantic concepts. Comparing with the aforementioned methods,
which mostly encode video information in a single flow, our pro-
posed SibNet learns to explicitly and effectively encode the visual
content and semantic information of videos using a two-branch
architecture.

3 MODEL
In video captioning, the task is to generate a natural language
description, a sentence y for a given input videoV . Let X = [x1, x2,
. . . , xn ] denote the ordered feature vectors of n frames in video
V , X ∈ Rn×d . Given X as input, an encoder generates a compact
embedded representation Z, which is either a fixed-length vector or
a matrix composed of n vectors, to encode the visual information



in X. Then, the decoder decodes the video representation Z into
sentence y = [y1,y2, . . . ,ym ] as a sequence ofm words.

Our method follows the encoder-decoder pipeline but proposes
a novel Sibling Convolutional Encoder (SibNet) to encode videos.

3.1 Sibling Convolutional Encoder (SibNet)
As shown in Figure 2, SibNet is comprised of two branches, namely
the content branch and the semantic branch, which are denoted
as CNNc and CNNs , respectively. The content branch is designed
to encode visual content information, while the semantic branch
is designed to encode video semantic information. Unlike existing
encoders, whose encoded feature Z is either a fixed-length vector or
a matrix, the representation Z in SibNet is composed of twomatrices
Zc and Zs . As we see in Figure 2, CNNc and CNNs share common
properties: firstly, they have the same input X and the number of
their output vectors n are the same. Besides, both branches are
formed by a stack of temporal convolutional blocks (TCBs) (will be
introduced in Section 3.1.2). Now let us introduce both branches in
details.

3.1.1 Content Branch
The role of our content branch is to encode visual content in-

formation. Autoencoders have been widely used for unsupervised
representation learning. It encodes visual content into a vector and
then tries to recover the visual signal from such a vector.

In order to explicitly encode the video content, we propose to
implement our content branch with an autoencoder, as shown
in Figure 3. As we see, the autoencoder takes X as input, then
passes it through the content branch CNNc to encode the video
into representation Zc . Our CNNc is composed of 3 TCBs (will be
introduced in Section 3.1.2). After that, CNNa , which is composed
of 3 temporal convolutional layers, reconstructs the original visual
content from Zc . We use X

′
to denote the reconstructed content

generated by CNNa . Here, X
′ ∈ Rn×d is of the same size as X.

Euclidean distance between each element of the original sequence
X and the reconstructed sequenceX

′
is used to measure the content

reconstruction loss Lc , which is defined as follows:

Lc =
n∑
i=1

| |xi − x
′
i | |, (1)

where xi and x
′
i denote the i-th vectors of X and X

′
, respectively;

| | · | | is the notation for L2-norm. This unsupervised reconstruction
loss of autoencoder is incorporated to the final training loss, which
pushes our content branch to play its role.

3.1.2 Temporal Convolutional Block (TCB)
Now we introduce Temporal Convolutional Block (TCB), which

is the basic component in both our content and semantic branches.
Videos have temporal structures. Therefore, temporal structure
modeling of videos is essential for video representation. Instead of
using a RNN, we choose to use a simpler temporal modeling archi-
tecture, temporal convolutional block (TCB) as shown in Figure 4,
which works effectively in our experiments.

As shown in Figure 2, our content and semantic branches both
consist of a stack of TCBs. Let Xk = [xk1 , x

k
2 , . . . , x

k
n ] denote input

of the k-th TCB in either branch, where each xki is a dk -dimensional

vector, Xk ∈ Rn×dk . Firstly, the k-th TCB passes Xk through TCN,
a temporal convolutional layer with kernel size 3. The output of
TCN is then passed through a ReLU [24] activation layer. To ease
training of our SibNet, we adopt residual connection [12] by adding
the output of ReLU activation layer with the original input of the
k-th TCB Xk :

F(Xk ) = ReLU(Wk ∗ Xk ) ⊕ Xk . (2)

Here F(Xk ) ∈ Rn×dk represents the output of the k-th TCB,Wk ∈
R3×dk denotes learnable parameters of TCN, ∗ and ⊕ represent
convolutional operator and element-wise addition, respectively.
F(Xk ) then becomes the input of the (k + 1)-th TCB.

As shown in Figure 2, our content branch is composed of a stack
of 3 TCBs , while the semantic branch is composed of a stack of
6 TCBs. In Section 4.3, we will investigate the impact of the TCB
numbers in both branches and thus explain why we choose such
numbers as above.

3.1.3 Semantic Branch
The task of our semantic branch is to learn a representation of

X that encodes high-level semantics. Inspired by the success of
visual-semantic joint embedding in image retrieval [33] and image
classification [32], we propose to implement our semantic branch
via visual-semantic embedding.

As shown in Figure 5, our visual-sem.antic joint embedding
model is composed of two sub-modules, video embedding module
and caption embedding module, which map videos and captions
into a common semantic space. In such space, a video and its cor-
responding caption should be embedded closely, thus the distance
in this space is empowered with semantic meaning. As shown in
Figure 5, the video embedding module first maps the input X to the
matrix Zs using our semantic branch CNNs . Then a self-attentive
network (SAN) [20] is employed to map Zs into a video embedding
vector ve . Instead of averaging all the n vectors in Zs as ve , we
use SAN in video embedding module, because it has been proven
that the embedding produced by SAN is better at capturing more
meaningful information contained in certain frames. Thus, given a
sequence Zs = [zs1, z

s
2, . . . , z

s
n ], SAN embeds it into a vector ve by

merging all zsi according to their relative importance to the final
embedding. Similarly, in the caption embedding module, in order to
embed the sentence y = [y1,y2, . . . ,ym ] into a caption embedding
vector ce , it first constructs word vectors wi ∈ Rdw by [42], and
then utilizes another SAN [20] to embed it into vector ce .

In order to make CNNs effectively encode semantic information,
we follow [34] to utilize bi-directional ranking loss as our semantic
training loss. Specifically, we define semantic loss Ls as follows:

Ls =
∑
ve

∑
c−e

max(0,m − ve · ce + ve · c−e ))

+
∑
ce

∑
v−e

max(0,m − ce · ve + ce · v−e )),
(3)

where · designates dot product operation. The margin m is set
to be 0.1 by cross-validation. Given a video V with embedding
vector ve , ce denotes embedding of its ground truth caption, c−e
denotes embedding of a negative caption that describes video other
than ve ; and vice-versa with v−e . This semantic loss, which pushes
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Figure 4: Illustration of our temporal convolutional block
(TCB), which is the basic component of both the content
branch and the semantic branch.

our semantic branch to play its role, is incorporated into our final
training loss.

3.2 Decoder
After we obtain the encoded representation Z, i.e., {Zc ,Zs }, we
follow previous work to use a RNN to decode it into a sentence y.
More specifically, given Zc and Zs , the decoder predicts joint prob-
ability p(y) of caption y by sequentially predicting the probability
of each word yi in y. It can be seen from Figure 2 that our decoder
is auto-regressive, indicating that it takes the output at all previous
time steps as additional inputs. We maximize the probability of
generating ground truth captions by minimizing cross-entropy loss.
Our decoder loss Ld is defined as follows:

Ld = −log(p(y|Zc ,Zs )). (4)

3.2.1 Soft-attention Mechanism
How to effectively combine Zc and Zs is the key problem in de-

coding process. We utilize a soft-attention mechanism. Originally
proposed in [1], variants of soft attention have been successfully
applied to machine translation [1], image captioning [52] and video
captioning [29, 53], etc. Different from standard soft-attentionmech-
anism [1] which returns a fixed-length vector encoding information
of one single matrix, our soft-attention mechanism merges visual
information of two matrices Zc and Zs in a fixed-length vector. At
the i-th decoding time step (when generating the i-th word), our

soft-attention mechanism computes the input vector ui of the RNN
decoder as follows:

ui =
n∑
j=1

softmaxj (si ) · zcj j ∈ [1,n], (5)

where softmaxj (·) denotes the j-th value of the softmax result vector,
zcj is the j-th element of Zc that encodes video content information,
and si = [si,1, si,2, . . . , si,n ] is defined as follows:

si,k =Ws
T tanh(Whhi +Wzzsk ) k ∈ [1,n]. (6)

Here, si,k is a real value; Ws,Wh and Wz are learnable weight
matrices; hi , a fixed-length vector, denotes the hidden state of the
RNN decoder at the i-th time step; zsk is the k-th element of Zs ,
which encodes video semantic information.

As shown in Equation 5 and 6, the soft-attention mechanism
utilizes semantic information in Zs to determine a weighting value
si , which then effectively combine the visual content represen-
tation Zc to generate a input vector ui for RNN decoder. Such
soft-attention mechanism is able to ensure our decoder pay more
“attention” to the visual content of certain frames if they contain
important semantic information. As we can see, by using the pro-
posed soft-attention mechanism, the content and semantic branch
in SibNet are effectively combined in a complementary fashion.

3.3 Training
We jointly train all the components of our model, the content
branch, the semantic branch, and the RNN decoder in an end-to-end
manner. As introduced before, autoencoder and visual-semantic
embedding are utilized to impose more fine-grained supervision
for both branches of SibNet. Thus, we define the final training loss
function by adding three different losses together:

L = Ld + αLc + βLs , (7)

where Ld ,Lc and Ls denote the decoder loss, content loss and
semantic loss, as defined in Equation 4, Equation 1 and Equation 3,
respectively; α and β are two scalars that control the influence of
content loss and semantic loss during training. We set α and β to
be 0.4 and 1 by cross validation.

4 EXPERIMENTS
We test the proposed SibNet on two video captioning benchmarks,
YouTube2Text (MSVD) [3] and MSR-VTT [50]. For fair comparison,
all the reported results are obtained using Microsoft COCO caption
evaluation tool [6]. We utilize Bleu [28], METEOR [7], ROUGE [19]
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and CIDEr [43] as our evaluation metrics, which are commonly
used for performance evaluation of video captioning methods.

4.1 Experiment Setup
Datasets: YouTube2Text is composed of 1970 YouTube videos and
78, 800 captions (40 captions per video, on average) annotated by
Amazon Mechanical Turk (AMT) annotators. For fair comparison,
we adopt the same evaluation scheme proposed in [45], which used
1200 videos for training, 100 videos for validation and 670 videos for
testing. MSR-VTT is a large-scale video captioning dataset, which
is comprised of 10, 000 videos and 200, 000 captions (20 unique
captions per video).We adopt the standard dataset splits proposed in
[50], which used 6513 videos for training, 497 videos for validation
and 2990 videos for testing.

For both YouTube2Text and MSR-VTT datasets, we uniformly
sample the videos with a sampling rate of 3 frames per second. We
then extract visual features using GoogLeNet [38] for YouTube2Text
dataset and Inception [39] for MSR-VTT dataset. Both GoogLeNet
and Inception are trained by Wang et al. [49]. It is worth noting
that most state-of-the-art methods [5, 9, 25–27, 35, 51, 53, 55] take a
combination of multiple complementary features, including frame-
level CNN features (ResNet [12], Inception [39], GoogleNet [38]),
clip-level CNN features (C3D [40]) and audio features (MFCC [22]),
as input to their encoders. We do not adopt feature combination in
our experiments.

Network Architecture: For the content branch and the semantic
branch, we set the output dimension of the TCN, a temporal convo-
lutional layer, in each TCB to be 512. We adopt 1-layer LSTM with
1024-dimensional hidden state as our RNN decoder.1 Many variants
of RNN have been proposed in literature, e.g., GRU. Some state-
of-the-art methods have utilized them and have reported better
performance. Although we choose a basic LSTM as decoder in our
experiments, our method is modular w.r.t. the decoder architecture.

Training Details: We train our model using Adam [16] algorithm
with β1 = 0.9, β2 = 0.999 and ϵ = 1e − 8. For YouTube2Text dataset,
we set the batch size to be 32. The initial learning rates are set
to be 8e-5 for the encoder and 4e-5 for the decoder, respectively.

1Although SibNet, abbreviation for Sibling Convolutional Encoder, only refers to the
encoder of our method, we also use it to refer to a combination of our encoder and the
RNN decoder in the following sections.

Table 1: Performance comparisons on YouTube2Text
(MSVD) dataset. * indicates that external datasets were used
to train these models.

Methods Bleu-4 METEOR CIDEr ROUGE

S2VT [45] 37.0 29.8 - -
Temporal Attention [53] 41.9 29.6 51.7 -
GRU-RCN [2] 43.3 31.6 68.0 -
aLSTM [11] 44.9 30.4 60.1 -
LSTM-E [26] 45.3 31.0 - -
HRNE + Attention [25] 46.7 33.9 - -
p-RNN [55] 49.9 32.6 65.8 -
Latent Topic [5] 48.8 34.4 80.5 -
AF [13] 52.4 32.0 68.8 -
mGRU [57] 49.5 33.4 75.5 -
MA-LSTM [51] 52.3 33.6 70.4 -
RecNet [47] 52.3 34.1 80.3 69.8

GloVe + DeepFussion* [44] 42.1 31.4 - -
LSTM-YT* [46] 31.2 26.9 - -
SCN* [9] 50.2 33.4 77.0 -
LSTM-TSA* [27] 52.8 33.5 74.0 -
Ours 54.2 34.8 88.2 71.7

For MSR-VTT dataset, we set the batch size to be 64. The initial
learning rates are set to be 6e-5 for the encoder and 3e-5 for the
decoder. For both datasets, the learning rates are divided by 5 after
10 epochs. We perform gradient clipping with a threshold of 2,
and adopt weight initialization method proposed in [10]. We also
regularize our model by applying dropout [37] to the output of
each TCB with a rate of 0.2. Additional regularization methods, e.g.,
weight decay, are not utilized.

4.2 Comparison with the State-of-the-Art

On YouTube2Text: In Table 1, we present the results of SibNet
and existing methods on YouTube2Text dataset. As we can see, our
method achieves the best performance across all metrics, improving
Bleu-4 from 52.8 to 54.2, METEOR from 34.4 to 34.8, CIDEr from
80.5 to 88.2 respectively. It is worth noting that large-scale external
datasets (at least two times larger than YouTube2Text dataset) are



Table 2: Performance comparisons on the test set of MSR-
VTT: comparisons with state-of-the-art methods and meth-
ods that rank top-4 on the Leaderboard of MSR-VTT Chal-
lenge. * indicates that extra training data was used dur-
ing training. e indicates that the reported performance was
achieved by an ensemble ofmultiplemodels. (AsWSDC [35]
conducts extensive data augmentation, which none of the
others conducts, we report the performance of [35] achieved
on the validation set under similar settings as our method.)

Methods Bleu-4 METEOR CIDEr ROUGE

Rank1: v2t-navigator [15] 40.8 28.2 44.8 60.9
Rank2: Aalto [36] 39.8 26.9 45.7 59.8
Rank3: VideoLAB [31] 39.1 27.7 44.1 60.6
Rank4: ruc-uva [8] 38.7 26.9 45.9 58.7

Mean Pooling [46] 30.4 23.7 35.0 52.0
Temporal Attention [53] 28.5 25.0 37.1 53.3
S2VT [45] 31.4 25.7 35.2 55.9
MA-LSTM [51] 36.3 26.3 40.1 59.1
aLSTM [11] 38.0 26.1 - -
STAT [41] 37.4 26.6 41.5 -
AF [13] 39.4 25.7 40.4 -
RecNet [47] 39.1 26.6 42.7 59.3
M2M∗e [29] 40.8 28.8 47.1 60.2
WSDCv [35] 39.0 27.7 44.0 60.1

Ours 40.9 27.5 47.5 60.2

utilized by LSTM-TSA [27], SCN [9], LSTM-YT [46] and GloVe +
DeepFussion [44]. Surprisingly, even without using extra training
data, our method significantly outperforms all of them. Besides,
both LSTM-TSA [27] and SCN [9] rely on hundreds of dataset-
specific “semantic attributes”, which are manually selected from
thousands of candidates. The laborious “semantic attribute” se-
lection prevents [9, 27] to be applied to large dataset with more
candidates. On the contrary, our method automatically learns rep-
resentation of high-level semantics using the proposed semantic
branch.

On MSR-VTT: In Table 2, we show a comparison of SibNet and
previous state-of-the-art methods on MSR-VTT dataset. We also
compare SibNet with methods that occupy top-4 positions of the
Leaderboard of MSR-VTT Challenge [23], denoted as Rank1: v2t-
navigator [15], Rank2: Aalto [36], Rank3: VideoLAB [31] and Rank4:
ruc-uva [8]. Our method achieves the best performance across
three of the four metrics. Note that the current best performing
method, M2M [29], not only relies on two large-scale external
datasets UCF101 and SNLI for training, but also utilizes an ensemble
of multiple models. However, our SibNet is trained without extra
training data and tested without ensemble.

From Table 1 and Table 2, it can be seen that SibNet consis-
tently outperforms state-of-the-art methods by a large margin even
without extra training data and model ensemble, which validates
the effectiveness of encoding video contents using the proposed
two-branch architecture.

Qualitative Analysis: Figure 6 shows some qualitative results
of SibNet. It can be seen that our method can generate captions
that correctly describe their corresponding videos. In addition, our
method is able to handle challenging situations, such as scene
changes. As shown in the second example in the second row, our
method generates a correct captionwhose subject “man”, verb “talk”
and object “football game” are extracted from different scene
frames.

4.3 Ablation Study
Since SibNet differs from the encoders employed by existing video
captioning approaches fundamentally, in this section we perform
detailed ablation study to get a better understanding of the proposed
model.

4.3.1 How much does each component contribute?
In order to analyze the impact of different components of our pro-
posed model on the performance of video captioning, we evaluate
five variants of our model, denoted as: Single (3-layer), Single (6-
layer), Ours (Sib-DL), Ours (CL) and Ours (SL), respectively. First of
all, Single (3-layer) and Single (6-layer) denote two single-branch
encoders which only consist of 3 and 6 identical TCBs. These two
variants, which encode visual information using a single branch,
could be viewed as the baseline of our model. And both of them are
trained using decoder loss Ld alone. To validate the superiority of
the proposed two-branch architecture over the baseline, we con-
struct Ours (Sib-DL), which has both the content branch and the
semantic branch. But Ours (Sib-DL) is also trained with decoder loss
Ld alone. To evaluate the effectiveness of our proposed training
scheme which provides more fine-grained training supervision, we
construct two variants: Ours (CL) and Ours (SL). Ours (CL) incor-
porates the autoencoder to impose a content loss Lc as defined
in Equation 1 to Ours (Sib-DL). Likewise, Ours (SL) incorporates
visual-semantic embedding to impose a semantic loss Ls as defined
in Equation 3 toOurs (Sib-DL). Lastly, we evaluateOurs (Full), which
is our full model.

From Table 3 that shows the results of all variants above on both
MSR-VTT and YouTube2Text, we observe that:

(1) Comparing with Ours (Sib-DL), Single (3-layer) and Single
(6-layer) have worse performance. This indicates the neces-
sity of encoding visual information using our proposed two-
branch architecture. It is worth noting that the performance
of Single (3-layer) and Single (6-layer) is on a par with many
existing methods, which validates the effectiveness of mod-
eling video temporal structures of videos using TCB as de-
scribed in Section 3.1.2.

(2) By adding content loss Lc to decoder loss Ld used by Ours
(Sib-DL), Ours (CL) achieves better performance than Ours
(Sib-DL). This verifies the efficiency of regularizing the con-
tent branch using autoencoder. Similarly, by adding semantic
loss Ls , Ours (SL) also outperforms Ours (Sib-DL) by a large
margin. This validates the importance of regularizing the
semantic branch by leveraging visual-semantic joint embed-
ding. Finally, we can see that Ours (Full) performs slightly
better than both Ours (CL) and Ours (SL). Hence, we can con-
clude that our autoencoder and visual-semantic embedding



GT:     a woman is running in the play ground

Ours: a woman in a red shirt is running on a track

GT: a man is about to shoot someone in forest

Ours: a man is shooting a gun

GT: a girl is singing on stage

Ours: a girl is singing on stage

GT: a man is talking about football

Ours: a man is talking about a football game

GT: a crowd of fireworks

Ours: fireworks are exploding in the sky

GT:     a group of people dance on the beach

Ours: a group of people are dancing on the beach

GT: two wrestlers are fighting in the ring

Ours: two men are wrestling in a ring

GT: a man is swimming in the pool

Ours: a man is swimming in the water 

Figure 6: Qualitative results of ourmethod onMSR-VTT dataset. “GT” denotes ground truth captions; “Ours” denotes captions
generated by our method.

Table 3: Performance of different variants of our method on YouTube2Text and MSR-VTT datasets.

Methods Dataset Ld Lc Ls Bleu-4 METEOR CIDEr ROUGE

Single (3-layer)

MSR-VTT

✓ 38.9 26.4 44.8 59.2
Single (6-layer) ✓ 39.0 26.8 43.7 59.4
Ours (Sib-DL) ✓ 39.4 26.9 45.3 59.6
Ours (CL) ✓ ✓ 40.0 27.1 46.2 60.1
Ours (SL) ✓ ✓ 40.4 27.1 46.8 60.0
Ours (Full) ✓ ✓ ✓ 40.9 27.5 47.5 60.2

Ours (Sib-DL)

YouTube2Text

✓ 51.9 33.1 81.9 69.9
Ours (CL) ✓ ✓ 52.8 34.0 85.6 71.1
Ours (SL) ✓ ✓ 53.3 34.5 86.0 71.2
Ours (Full) ✓ ✓ ✓ 54.2 34.8 88.2 71.7



Figure 7: Evaluation of the impact of both branches’ depths on the performance of our method. First row: impact of the TCB
block number in content branch, where the TCB number in semantic branch is fixed to 6. Second row: impact of the TCB block
number in semantic branch, where the TCB number in content branch is fixed to 3.

collaboratively provide complementary training guidance to
the proposed encoder.

4.3.2 Why semantic branch is deeper than content branch?
In this section, we discuss the impact of the depths of the two
branches. We first increase the number of TCB blocks in the content
branch from 1 to 8 while the number of blocks in the semantic
branch to is fixed to 6. As shown in the first row of Figure 7, the
performance drops in a monotonic manner as number of blocks in
the content branch goes from 3 to 1 or from 3 to 8. We notice that
when the number of blocks is 3, our method can achieve the best
performance overall.

We also change the number of blocks in the semantic branch from
1 to 9 while fixing the number of blocks in the content branch as 3.
The results are demonstrated in the second row of Figure 7. We can
see that consistent performance drop exists when number of blocks
in the semantic branch goes from 6 to 1 or from 6 to 9. In particular,
using less than 3 blocks in the semantic branch severely affects
the performance. This validates that in order to encode semantic
information, which has a high level of abstraction, it is better to use
deeper semantic branch. Another benefit for stacking more blocks
is that, as the number of blocks in our semantic branch goes up, the
temporal receptive field of it increases, which enables it to model
longer temporal dynamics of videos. Based on the results shown in
Figure 7, we empirically choose 3 TCBs to form the content branch
and 6 TCBs to form the semantic branch.

4.3.4 Number of parameters
The number of parameters in SibNet and previous state-of-the-art
models are reported in Table 4. The reported numbers do not include
parameters in the decoder’s fully connected layer, whose output
is then normalized by softmax function to generate probability
distribution of words in the vocabulary. Because the number of
parameters in it is proportional to the vocabulary size, it is not
reported in most previous work. It can be seen from Table 4 that
SibNet has much smaller number of parameters than previous state-
of-the-art approaches (44% of [45], 57% of [9], 77% of [29] and 90%
of [27]). It is worth noting that the number of parameters in our
encoder (2.3M) is less than 25% of that of the RNN decoder (9.2M).

Table 4: The number of parameters of SibNet and previous
state-of-the-art models.

Methods Parameters

S2VT [45] 26.4M
SCN [9] 20.1M
M2M [29] 14.9M
LSTM-TSA [27] 12.8M

Ours 11.5M
- CNNs 1.5M
- CNNc 0.8M
- RNNd 9.2M

Our encoder is able to achieve greater representation power with
far less number of parameters than existing encoders employed by
previous methods.

5 CONCLUSIONS
In this paper, we propose SibNet, which encodes rich video infor-
mation using a two-branch architecture. The content branch learns
video representation using visual information with an autoencoder,
while the semantic branch learns video semantic-specific represen-
tation with visual-semantic joint embedding. To jointly optimize
the encoder and decoder, we propose a new loss function that in-
cludes the content loss, semantic loss, and decoder loss. Extensive
experiments conducted on standard video captioning benchmarks
show that by jointly optimizing the proposed loss function, our
SibNet can encode better video representations thus achieving bet-
ter video captioning results. The comparisons with existing results
validate that SibNet outperforms previous state-of-the-art models
by a large margin.
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