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Figure 1. In our approach, party hosts set up stationary 360 video cameras (a) that passively record the entire event (b). We provide a user interface
for extracting regular field-of-view (RFOV) shots from the raw footage (c). The user selects moments and points-of-interest that they want to depict,
and our system automatically generates good RFOV shots using design guidelines motivated by viewer preferences (d).

ABSTRACT
Video summaries are a popular way to share important events,
but creating good summaries is hard. It requires expertise in
both capturing and editing footage. While hiring a professional
videographer is possible, this is too costly for most casual
events. An alternative is to place 360 video cameras around
an event space to capture footage passively and then extract
regular field-of-view (RFOV) shots for the summary. This
paper focuses on the problem of extracting such RFOV shots.
Since we cannot actively control the cameras or the scene, it
is hard to create “ideal” shots that adhere strictly to traditional
cinematography rules. To better understand the tradeoffs, we
study human preferences for static and moving camera RFOV
shots generated from 360 footage. From the findings, we
derive design guidelines. As a secondary contribution, we
use these guidelines to develop automatic algorithms that we
demonstrate in a prototype user interface for extracting RFOV
shots from 360 videos.
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INTRODUCTION
Video has become a pervasive medium for communicating
ideas and sharing moments with friends and family. In par-
ticular, video summaries of important events (also known as
highlight reels) are a popular way to relive or share experi-
ences with others. While event organizers sometimes hire
professional videographers to create high quality summaries
for formal occasions, like weddings or conferences, this option
is too costly and invasive for more casual gatherings like birth-
day celebrations for kids or house parties with friends. For
these informal events, organizers or guests will often create
their own highlight reels to post on social media.

However, authoring high quality video summaries without
relying on a dedicated videographer is challenging. In many
cases, the person responsible for authoring the video is an
amateur who does not know how to frame shots appropriately
or execute effective camera moves. Even for experienced
videographers, capturing an event requires them to be more
of an observer than a participant, which is not ideal. Finally,
creating a high quality edit that combines the best footage
requires time and skill. For these reasons, most “home movies”
of casual events on social media are poorly shot and edited,
with strange framings, awkward camerawork, long boring
shots, and jarring cuts.

The emergence of consumer 360 video cameras offers a poten-
tial alternative for capturing casual events. While 360 videos
are gaining popularity as a new form of audio-visual media,
here we consider the possibility of using 360 cameras to gener-
ate regular field-of-view (RFOV) video summaries. The idea
is to place 360 cameras around the physical location of the
gathering, which makes it possible to capture large portions of
the event space without actively filming the action. Of course,
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as noted above, capturing is only part of the task. In order to
create effective video summaries from the 360 video, we need
to extract usable shots from the large collection of raw footage
and then edit these shots together.

Putting this approach into practice requires addressing a few
key challenges. Setting up the right configuration of cameras
that covers the relevant action at the event in a non-invasive
way is one task. Another challenge is how to extract good
RFOV shots from the large amount of raw footage that gets
capture in this scenario. There are several reasons why the
extraction problem is non-trivial. First, since the idea is to
capture the event passively, there is no way to “stage” a given
shot (e.g., by rearranging the subjects in the scene). This is in
contrast to narrative film, or even situations where a videogra-
pher asks people to reposition themselves for a better shot. In
addition, since the 360 cameras themselves are stationary, it is
not possible to actively capture certain types of shots (e.g., an
over the shoulder shot, or anything that requires a dolly). Fi-
nally, even though 360 cameras provide good spatial coverage,
the nature of the capture setup can produce a lot of unusable
footage. For example, people or objects can inadvertently
block the camera, or a subject of interest may be standing too
close to the camera to produce a distortion-free shot or too far
away to create a high resolution shot.

In this work, we focus on the problem of extracting usable
RFOV shots from 360 event footage. One potential approach
is to use cinematography rules and best practices as a guide
to find good footage. However, many of these rules are not
prescriptive. For example, Arijon [2] recommends framing
subjects with space in the direction of their gaze, but does
not prescribe exactly where to place them. A subject looking
towards the right of the frame can be placed anywhere from
the center to the left edge of the frame while still honoring this
rule. Moreover, for the reasons outlined above, the footage
may not contain the type of “ideal” shots that filmmakers try
to produce. For example, the rule of thirds may suggest that
we place the head of a subject in a specific spot within the
frame, but doing so may cut off the face of another person on
the other side of the frame. For a moving camera shot, the
ideal technique may be to execute a smooth dolly that follows
the subject into a room, but we cannot move the center of
projection of the cameras.

Despite these limitations, it is often possible to extract good
(if not ideal) shots from 360 event footage by strategically
relaxing some of the cinematography rules and trading off
various desirable properties, like maintaining good compo-
sitional balance, keeping subjects entirely within the frame,
and minimizing distracting background content. Our paper
explores how to make such tradeoffs. We describe studies that
examine human preferences for two common types of shots
in event videos: 1) static camera shots that focus mainly on
one subject and 2) moving camera shots that show a larger
scene, follow a specific action, or convey a logical connection
between two people or actions. From these studies, we distill
guidelines for how to generate rectilinear RFOV shots from
equirectangular 360 event videos.

Finally, as a secondary contribution, we present preliminary
algorithms to operationalize some of these guidelines and
demonstrate their usage via a prototype interface to help users
extract usable shots from raw 360 footage.

BACKGROUND
Virtual Videography. Several researchers have developed
techniques to automate capture and editing of RFOV videos
by leveraging cinematography rules. These video creation
methods cover a variety of settings, including virtual 3D en-
vironments [11], lectures [3, 12], sports [5], theatrical perfor-
mances [9], and events captured with first-person cameras [1].
Some of these efforts involve multi-camera capture setups that
are similar to ours. In particular, Heck et al. [12] automatically
cuts together lecture footage from multiple stationary cameras.
In contrast to all of these previous methods, we propose an
approach that uses 360 (rather than RFOV) footage as input.
Moreover, we focus specifically on capturing social events.
Our work demonstrates that 360 event footage has unique char-
acteristics that make it difficult to directly follow traditional
cinematography rules.

Editing 360 Video. Several recent efforts propose methods for
converting 360 to RFOV video: Su and Grauman [20] moves
a RFOV frame to the most salient regions in 360 video; Lai et
al. [15] proposes a similar saliency-driven approach to create
RFOV hyperlapses that summarize 360 content; Hu et al. [13]
uses deep learning to automatically extract an RFOV crop from
360 sport videos; and Pavel et al. [18] proposes saliency based
approaches for aligning viewpoints in two 360 videos played
back to back in a headset. These methods focus on generating
one long moving camera video by utilizing saliency features
(whether learned or designed) to find an optimal RFOV crop
at each frame of an input 360 video. On the other hand, our
goal is to generate short shots that can be compiled into an
event highlight reel. In our setting, aesthetic quality rather
than saliency is the most important factor, and our approach
is to derive design guidelines for extracting pleasing RFOV
shots.

Video Retargetting. The early work of Liu and Gleicher [17]
uses image saliency and optical flow to zoom and pan RFOV
videos for better viewability on smaller displays. Deselaers
et al. [6] proposes a similar approach to convert 16:9 videos
to 4:3 aspect ratio, and vice versa. More recent work by
Jain et al. [14] introduces a gaze-driven method that retargets
RFOV videos to different aspect ratio displays. While these
methods retarget one RFOV video to another, our method
focuses on cropping RFOV regions from 360 videos with the
aim of conveying key moments and points-of-interest rather
than preserving all the salient content.

Automatic Photo Cropping. Creating good RFOV crops
from 360 video is related to the problem of automatic photo
cropping. Recent methods by Zhang et al. [23, 22] and Fang et
al. [7] use machine learning to detect salient regions, encode
visual composition rules, and determine where to place crop
boundaries. However, unlike photo cropping, composing good
shots in video requires additional consideration for the move-
ment within the frame, as well as the potential movement of
the camera.
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DATASETS
To investigate the specific challenges in extracting RFOV shots
from 360 event footage, we collected four different datasets
at social events that we hosted or attended. To capture the
events, we placed two to four 360 video cameras around the
event space. We filmed two events with the Ricoh Theta S
camera at 1080p resolution and two with the Kodak PixPro
at 4K resolution. Following the guidelines of Arijon [2], we
positioned cameras at the height of the average attendee’s
head to capture “natural” shots of the action. We also tried
to place the cameras at areas of interest where we predicted
people would gravitate (e.g., at the centers of tables, close to
the doors, in view of food, etc.). While one or two authors
did attend each of the events, we did not actively monitor
what was happening around the cameras during the gatherings
or provide any specific guidance to other guests on how to
interact with the cameras (e.g., we did not dissuade people
from blocking cameras either intentionally or accidentally).

Two datasets are from separate holiday parties, each of which
had roughly 20 guests scattered across 3-4 rooms in both
seated and standing positions. For these events, we placed
Theta cameras (4 for one party, 3 for the other) in different
rooms. We also captured a poster presentation session with
about fifty standing attendees gathered in a single room and a
recurring set of office tea breaks where about fifteen people
mingled around a dessert table. We used two PixPro cameras
to capture each of these events.

The following sections describe how we used these datasets to
investigate and test different strategies for extracting various
types of RFOV shots from the raw event footage.

STUDY 1: STATIC CAMERA
Social events typically involve many interactions between
people. As a result, a large portion of the content in most
video summaries focuses on such interactions. To capture
these moments, videographers typically use static camera shots
that focus on a primary subject who may be talking, listening
or otherwise engaging with others at the event. For such shots,
the main design decision is how to frame the main subject.

Cinematic guidelines propose some rules, but as mentioned
in the intro, such rules are not always useful for 360 footage.
The specific arrangement of people and objects relative to the
camera often makes it difficult to achieve “ideal” framings of a
given subject without including distractors (e.g., objects, other
people) or cutting people off with the edge of the frame.

Setup
To better understand the impact of these tradeoffs on framing
choices, we conducted a study that compares human prefer-
ences for different framings. From our datasets, we identified
36 “scenes” that have a variety of characteristics:

dialogue. whether the subject is speaking (dT ) or not (dF )

movement. whether the subject is moving (mT ) or not (mF )

gaze. whether the subject is looking to the right (gR), center
(gC), or left (gL) of the frame; shown in the top row of
Figure 3

Code IRR
Preference for centered content. .7961
Preference for content to be offset to the side. .9202
Position of subject in the frame w.r.t. gaze direction. .9156
Artistic intention. 1
Prefer less busy backgrounds. .7973
Distracting content at the edge of the frame. .8765
How much the main subject is cropped out the frame. .9399
Prefer more context in addition to the subject. .8908
Personal preference. .8233

Table 1. Codes from the freeform responses of the pilot static camera
study with Cohen’s Kappa inter-rater reliability scores.

crop. whether the crop around the subject is close (cT ),
medium close (cM), or medium (cW ); shown in the bottom
row of Figure 3

We found these characteristics to be emergent in the profes-
sional highlight reels we viewed and the events we captured.
For each scene, we generated 5 different static camera shots
that position the center of the main subject’s face at differ-
ent locations in the frame: far right ( fR2), right third ( fR1),
centered ( fC), left third ( fL1), far left ( fL2). We vertically posi-
tioned the subject’s head, with a small margin of padding, at
the top of the frame.

We then compared all 10 pairs of framings for each scene.
For each pair, we produced a side-by-side comparison task
and used Amazon Mechanical Turk (AMT) to obtain human
preference judgements for each task. 180 workers did 20
comparisons each, giving us a total of 10 judgements per pair.

To better understand the rationale behind each judgement, we
asked workers to explain the reason for their preference. We
identified the set of potential reasons by running a pilot study
with 43 people and asking them to explain each judgement
with a freeform response. We used an affinity diagram to
identify themes in the responses and converged on 9 codes.
Two authors then coded the data independently. We report the
codes and their inter-rater reliability in Table 1. In the AMT
study, we asked workers to choose from the 9 categories, with
an option of "Other" to specify a freeform response.

Findings
At a high level, we summarize the overall fram-
ing preferences by fitting a Bradley-Terry (B-T)
model to our data and using the ability scores to
define a ranking for the five different framings.

Framing Ability
fC 1.418
fR1 1.059
fL1 0.806
fR2 0.000
fL2 -0.485

As shown on the right, the central
framings were generally preferred
over the extreme framings, with fC
the most preferred. Not surprisingly,
the most frequently cited reason for
choosing fC over any other framing
was “Prefer centered content” (51%).

While the aggregated preferences are
informative, we also wanted to identify situations or scene
types where the preferences deviate from the overall trends.
In deciding how to analyze the data, we note that the half of
our scenes where the subject moves (mT ) is fundamentally
different from the other half (mF ). Since we assign the per-
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Figure 2. Examples of the five framings used in our studies.
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Figure 3. Typical variations for gaze direction (above) and crop (below).

scene gaze value and generate each variation based only on
the first frame of the shot, these characteristics are much more
consistent and meaningful for the mF scenes versus the mT
scenes where the subject may move across the frame or change
their gaze direction. As a result, we analyze the mF and mT
scenes independently using different analysis methodologies.

No Movement
To analyze the mF scenes, we investigate the potential impact
of the other scene characteristics on framing preferences. For
each target characteristic, we first enumerate subsets of scenes
defined by fixing all possible combinations of the non-target
characteristics. Then, we split each of these subsets on the tar-
get characteristic and analyze whether the framing preferences
differ across these splits. For example, if gaze is the target
characteristic, one of the subsets would be (mF , dT , cT ) and
the splits would be (mF , dT , cT , gR), (mF , dT , cT , gC), (mF ,
dT , cT , gL). Note that mF persists across all subsets because
we are only considering the scenes with no subject movement.

For each set of splits, we look at every pairwise comparison be-
tween framings (e.g., fR2 vs. fR1) and perform a Chi Squared
test to determine whether the preferences vary significantly
across the split. Below, we focus on the splits where we found
significant effects for comparisons that involve at least one
preferred framing.

Viewer Preferences across Crop Levels
We found several notable differences when examining how
preferences vary with crop level. If we look at the frequency
of the reasons chosen for all preferences across different crop
levels, we see that “How much of the main subject is cropped
out of the frame” increases from 23% in the widest level (cW )
to 35% in the closest crops (cT ). Conversely, the frequency of
“Prefer less busy backgrounds” drops from 21% in cW to 9%
in cT . These trends align with our expectations that subject

cropping is more likely to be a problem in closer crops, while
distracting backgrounds are more problematic in wider shots.

Looking at the preferences, we observe that the cinemato-
graphic rule to frame subjects with more empty space in the
direction of their gaze becomes less aligned with viewer prefer-
ences as the crop becomes tighter. In scenes where the subject
gazes right (gR), the most preferred framing changes from fL1
to fR1 as we move from cW to cT (Table 2). In other words,
in cW , the preferred framing aligns with the gaze direction
rule because the subject gazes right and is framed on the left.
However, in cT , the preferred framing puts the subject on the
right even though they are looking in that direction. There
is a similar trend in the preferences for gaze left (gL) scenes
where the preferred framing changes from fC to fL1 as we
move from cW to cT . For both the gR and gL scenes, the effect
of crop level on the comparisons between the most preferred
framings is statistically significant, as shown in Table 3. For
the gC scenes, fC is the preferred framing for all crop levels.

cT cM cW
Framing Ability Framing Ability Framing Ability

fR1 1.275 fC 2.197 fL1 0.531
fC 1.030 fR1 1.867 fC 0.501
fL1 0.221 fL1 0.693 fR2 0.000
fR2 0.000 fR2 0.000 fR1 -0.359
fL2 -2.263 fL2 -0.606 fL2 -0.688

Table 2. B-T rankings for framings by crop level. gR is fixed.

Comp.
Pair

Results Per Variation
cT cM cW

fR1, fC* fR1(.65) fC(.56) fC(.83)
fR1, fL1* fR1(.68) fR1(.78) fC(.76)
fC , fL1** fC(.79) fC(.89) fC(.5)

Table 3. Pairwise comparisons that differ significantly across crop lev-
els. We report the preferred framing in each cell with the corresponding
fraction of votes. gR is fixed.

Divergence from Centered Framing for Close Crops
We also see significant effects for gaze direction on viewer
preferences. In particular, as noted in the analysis of crop
levels above, the preferred framings across different gaze di-
rections for close crops appear to break the gaze direction
framing rule, with fR1 preferred for gR and fL1 preferred for
gL. Looking at the effect of gaze direction in cT scenes, we
find that the differences between these preferred framings are
statistically significant, as shown in Table 5.

When examining the reasons for these preferences, we were
surprised to find that “Prefer centered content” was chosen
most frequently even in comparisons where fR1 or fL1 were
preferred over fC, as shown in Table 4. To understand these
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gL gC gR
Framing Ability Framing Ability Framing Ability

fL1 2.737 fC 1.853 fR1 1.275
fC 1.754 fR1 1.026 fC 1.030
fR1 1.268 fL1 0.908 fL1 0.221
fL2 0.284 fR2 0.000 fR2 0.000
fR2 0.000 fL2 -0.706 fL2 -2.263

Table 4. B-T rankings by gaze direction. cT is fixed.

Comp.
Pair

Results Per Variation
gL gC gR

fR2 , fL1* fL1 (.94) fL1 (.53) fL1 (.61)
fR1, fC* fC(.81) fR1(.65) fC(.67)
fC , fL1** fL1(.88) fC(.79) fC(.73)

Table 5. Pairwise comparisons that differ significantly across gaze sub-
sets. cT is fixed.

findings, we manually inspected the videos in each of the gR,
gC and gL subsets and found that for many shots, the subjects
were visually more centered in fR1 or fL1 compared to fC. As
described previously, fC shots are generated by centering the
subject’s face in the frame without taking the rest of the body
into account. However, as shown in Figure 4, when the subject

fR1 fC

Figure 4. fR1 (left) and fL1 (right) framings for a cT scene.

looks left or right, their shoulders are often positioned on the
opposite side of the face with respect to the gaze. Thus, in
cT , where only the head and shoulders are visible, the overall
position of the subject may appear off center even if the face
is centered in the frame. In these situations, shifting the face
towards the gaze direction often makes the subject appear more
centered. In other words, for cT , it may be preferable to center
subjects using their entire upper body (head and shoulders)
rather than just their face. Similar observations are not present
for cM and cW , where the fC was preferred either equally to or
more than all other framings across all gaze conditions.

Exception for Extreme Framings

fR2 fC
Figure 5. fR2(left) and fC framings for a gL, dT , cW scene.

Overall, more central framings ( fR1, fC, fL1) were almost
always preferred over the extreme framings ( fR2, fL2) in our
dataset. This aligns with the general preference for centered
content. However, there was one mF scene in which fR2 was
preferred over the other framings. The scene had the subject

looking to the right (gL), speaking (dT ), and a wide crop (cW ).
Given the gaze direction, the preference for fR2 is surprising
because it strongly violates the gaze direction rule. Looking
more closely at this scene, we see that fR2 not only shows
the main subject but also includes another seated person on
the left side of the frame. All the other framings crop out
this second person either partially or completely, as shown in
Figure 5. Viewers seemed to prefer having the second person
in the shot to add context; “Prefer more context in addition to
the subject in the frame” was specified as a contributing reason
in at least 62% of all comparisons where fR2 was preferred
over another framing for this scene. While this preference
for an extreme framing only arose in this one scene, the data
suggests a plausible motivation for using extreme framings
when it allows relevant context to fit in the frame.

Movement
As noted above, the gaze direction and framing labels for the
movement (mT ) scenes are less reliable than for the mF scenes
due to the motion of the subject. Moreover, across different
scenes, subjects may be moving different distances in different
directions, for different amounts of time. These variations
make it difficult to compare trends in framing preferences
across different scenes. Thus, we analyze the framing com-
parisons for each scene separately and identify all comparison
pairs that exhibit a statistically significant preference using a
Chi-Square Goodness of Fit test. Finally, we aggregate the
contributing reasons for the more preferred framing across all
statistically significant comparison pairs.

The most popular reasons in descending order were “Prefer
centered content” (55%), “How much of the main subject
is cropped out of the frame” (29%), “Position subject in the
frame with respect to their gaze direction” (6%), “Prefer more
context in addition to the subject in the frame” (6%), “Dis-
tracting content at the edge of the frame” (4%), and “Prefer
less busy backgrounds” (4%). This distribution of reasons is
generally consistent with the preferences from the mF scenes.

STUDY 2: MOVING CAMERA
Experienced videographers employ moving camera shots to
guide the viewer’s attention in a specific way. Three specific
categories of moving camera shots, described by Arijon [2],
that are prevalent in highlight reels are

panoramic shots where the frame moves to reveal additional
context in the scene (e.g., panning across a dance floor at a
party or around a dinner table),

tracking shots where the frame follows a subject in motion
(e.g., following someone walking across a room),

logical connection shots where the frame moves from one
subject to another to convey a relationship (e.g., moving
from a fireplace to somebody warming their hands nearby).

Videographers use a variety of camera moves (dolly, pedestal,
pan, zoom, etc.) to execute such shots, but as mentioned ear-
lier, our approach of using static cameras limits us to pans
and zooms. Thus, in this study, we consider how various pan-
ning and zooming strategies affect viewer preferences when
creating panoramic, tracking and logical connection shots.
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Setup

Code IRR
Camera distortion. .9717
Smoothness of camera path. .8041
Smoothness of zooming. .8102
Distracting background content. 8290
Speed of movement. .6498
Better framing of main subject. .8307
Prefer more context of the scene. .8
Personal preference. .8343

Table 6. Codes from the freeform responses of the pilot moving camera
study with Cohen’s Kappa inter-rater reliability scores.

As with Study 1, we selected a set of scenes from our cap-
tured datasets for generating various moving camera shots.
We chose scenes that are suitable for the three different cate-
gories of shots described above. These scenes exhibit many
of the common challenges that arise in 360 event footage.
For panoramic shots, we selected three scenes (P1, P2and P3)
where party attendees were distributed in various configura-
tions around the 360 camera, shown in Figure 6. Framing
these moving camera shots is difficult because the points of
interest (POI), in this case people, are sitting or standing at
different heights or distances away from the camera. For track-
ing shots, we selected two scenes (T1and T2) in which the
POI, a person, walks across a room, either moving towards or
away from the camera. However, these walking actions are
not consistent or smooth in space for time. Finally, for logical
connection shots, we selected two scenes (L1and L2), each
with two POIs such that one is a human subject and the other
is some inanimate object that the subject is about to interact
with. However, as with the panoramic scenes, the POIs are
distributed non-uniformly in front of the 360 camera, such that
they require different FOVs to capture.

For each shot category, we generated three different mov-
ing camera shots by varying the panning trajectory and FOV
(which effectively varies the amount of zoom). For panoramas,
we created 1) a Constant Wide FOV, Smooth Path (CS) shot
that moves in a straight line from the first to last POI with a
fixed FOV wide enough to frame all intermediate POIs; 2) a
Constant Tight FOV, Varying Path (CV ) shot that uses a tighter
fixed FOV and deviates from the straight line path to frame
all intermediate POIs; and 3) a Varying FOV, Smooth Path
(V S) shot that moves in a straight line but varies the FOV to
frame the intermediate POIs more tightly than the CS shot. For
tracking shots, we created analogous shot variations where the
first and last POIs are defined by starting and ending position
of the main subject and the intermediate POIs are defined by
the motion of the subject during the shot. Finally, for logical
connection shots, there is no reason to vary the path since there
are no intermediate POIs. Thus, we generate three different
smooth path shots: 1) a Constant Start FOV, Smooth Path (CsS)
shot with a fixed FOV based on the first POI; 2) a Constant
End FOV, Smooth Path (CeS) shot with a fixed FOV based on
the second POI; and 3) a Varying FOV, Smooth Path (VS) shot
that varies the FOV from the first to last POI.

We adopt the same approach as Study 1 to compare shot varia-
tions. For every pair of shot variations within each scene, we
use AMT to gather human preferences. Since Study 2 involves

far fewer scenes in total, each worker did all 21 comparisons
(3 pairs for each of the 7 scenes). We recruited 30 workers,
giving us 30 judgements per pair. Similar to Study 1, we ran
a pilot study with 40 participants to obtain freeform explana-
tions of their preferences and coded the responses to obtain
the 8 categories listed in Table 6. In the AMT study, we asked
workers to choose a reason for each preference from these
categories, with an “Other” option for freeform responses.

Findings
For each shot category, we aggregate the data across all scenes
in that category and fit a Bradley-Terry model to derive an
overall ranking. We also analyze the variation comparisons
to identify all comparison pairs that exhibit a statistically sig-
nificant preference using a Chi-Square Goodness of Fit test.
We further apply this analysis separately to each scene within
a category. Here, we focus on aggregated data and the com-
parison sets for which there are significant findings that differ
from the trends in the aggregated findings.

Panoramic Shot

P1 P2
Figure 6. We show P1 and P2 for the panoramic shot type. In these scenes,
there are multiple POIs who are distributed non-uniformly throughout.

Var. Ability CS V S CV
CS 0.000 CS - .7222** .5222
CV -0.095 V S .2778** - .3000**
V S -0.949 CV .4778 .7000** -

Table 7. B-T rankings (left) and preference matrix (right) for the aggre-
gated panoramic shot data. Each matrix entry gives the percentage of
preferences for the variation in the corresponding row over the varia-
tion in the column. Entries marked * are significant at p < .05 and **
are highly significant at p < .001.

As shown in Table 7, the constant FOV pans, CS and CV , were
generally preferred over the varying FOV pans, V S, which
suggests that it may be preferable to keep the FOV fixed during
pans. While the general trends show no significant preferences
between CS and CV , the isolated preferences for two of the
panoramic scenes, P1 and P2 suggest that there may be a
tradeoff between the two techniques.

In P1, CS is significantly preferred over CV while the opposite
is true in P2. Looking more closely at these scenes, the spatial
distribution of POIs relative to the camera seems to be an im-
portant factor in what type of constant FOV shot is preferable.
In P1 (Figure 6, left), we observe the POIs standing at very
different distances away from the physical camera, such that
the subject on the left is very close to the camera and the fourth
subject from the left is on the far side of the room. In general,
subjects standing at very different distances from the physical
camera require very different FOVs to be framed tightly by the
virtual camera, which makes it hard to find a single tight FOV
that works well for the entire shot. Moreover, a tight crop will
likely result in a very uneven camera trajectory. Thus, it may
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be preferable to select a constant wider framing for such shots.
Not surprisingly, in this scene, the most cited reasons for favor-
ing CS over CV are “Better framing of the main subject”(60%)
and “Smoothness of the camera motion”(52%).

On the other hand, in P2, we find the opposite preference for
CV over CS. The most frequently cited reason for the pref-
erence is “Amount of stretching or distortion in the frame”
(57%). This distortion occurs as a consequence of the recti-
linear projection that is commonly applied to extract RFOV
crops from 360 video. A key property of this projection is
that straight lines in 3D space will appear as straight lines in
the 2D image. However, this property also has the effect of
causing objects to appear stretched as they near the edge of
the frame in wider FOV shots. In P2 (Figure 6, right), the
second subject from the left is standing while the woman next
to her is sitting. To capture both of them with a consistent
FOV and smooth trajectory requires a very wide angle, which
introduces distortion into the scene. In such instances, it may
be preferable to tighten the FOV.

Tracking Shot

Var. Ability CV V S CS
CV 0.338 CV - .6167 .5833
CS 0.000 V S .3833 - .4667
V S -0.135 CS .4167 .5333 -

Table 8. B-T rankings (left) and preference matrix (right) for the aggre-
gated tracking shot data.

As shown in Table 8, we found no significant general trends
for the preference of one tracking shot variation over another.
However, the data for individual scenes suggests similar trade-
offs as the panoramic shots. In particular, we see the same
aversion to distortion in T1, where there was a significant pref-
erence for the tighter FOV shot, CV , over the wider angle, CS,
with “Amount of stretching or distortion in the frame” one
of the most frequently cited reasons. However, in T2, where
framing the motion of the subject does not require an overly
wide, distortion-inducing shot, viewers significantly prefer the
wider FOV CS shot because of the “Smoothness of camera
motion,” which was the most cited reason for the preference.
These preferences align with the panoramic shot trends; when
distortion is not an issue, viewers seemed to prefer smooth
camera motions where the path and FOV are not varied.

Logical Connection Shot
For logical connection shots, there was a significant preference
for CsS to CeS, both of which maintain a constant FOV and
smooth path. The individual scene data further supports the
takeaways from the panoramic and tracking shots.

For L1, we found that viewers preferred CsS over CeS and VS.
The preference for CsS over VS aligns with our findings for
the panoramic shots, where viewers favored keeping the FOV
constant. Not surprisingly, 48% of viewers cited “Smoothness
of the camera motion” as a reason for making this choice. For
the preference of CsS over CeS, “Prefer to see more of the
scene for context” was the most specified reason. Looking at
the scene, we find that L1 starts with a wide shot of a buffet
table and ends with a tight shot of the person about to eat the

food. Thus, CsS maintains the wider FOV required for the
buffet table, which shows more context in the shot.

In L2, which starts with a tight shot and ends with a wide
shot, we found no significant preferences between any of the
shot variations for the scene. However, in the cases where the
wider CeS shot was not preferred, we found that “Amount of
stretching or distortion in the frame” was cited frequently, in
50% of comparisons against CsS and in 37% of comparisons
against VS. This data agrees with the trends that we saw for
the other shot categories where distortion was not preferred.

DESIGN GUIDELINES
Based on our two studies, we propose the following design
guidelines for extracting RFOV shots from 360 event footage.

Static Camera Shots

Center the subject. The overall preferences argue for keeping
the subject roughly in the center of the frame.
Avoid cropping people. In general, people did not like fram-
ings that cut off people (especially the main subject) around
the edges of the frame.
Gaze matters for wider shots. The traditional gaze direction
rule is preferable for wider shots but less so for tight crops.
More context for wider shots. The data also suggests to in-
clude more context in wider shots. Even extreme framings of
the main subject can be acceptable if they add useful context.
Avoid distractors. While more context is preferable, distract-
ing background objects have a negative impact on the shot.
Center whole subject in tight shots. For tight shots, people
prefer the entire subject (i.e., head and shoulders) to be cen-
tered rather than just the head.

Moving Camera Shots

Make the shot smooth. Constant, wider FOV shots with
smooth trajectories are preferable for most shots.
Avoid distortion. Distorted shots with an overly wide FOV
should be avoided.
Avoid varying FOV. For tighter shots, varying the camera tra-
jectory to include POIs is preferable to varying the FOV.

ALGORITHMS
We use our design implications to formulate initial algorithms
to extract static and moving camera RFOV shots from 360
equirectangular footage. The input to these algorithms is a
temporal segment of the 360 footage from which to extract
the shot and a set of one or more POIs (e.g., the main subject
in a static camera shot). Our current implementation outputs
4:3 aspect ratio shots, but the core algorithms could easily be
extended to handle other form factors. Note that we implement
some, but not all of our design guidelines.

Equirectangular and Rectilinear Projections
The coordinate system for equirectangular video is defined
by an azimuth that ranges from −π to π in the horizontal
dimension and an elevation that ranges from −π/2 to π/2
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Figure 7. Equirect coordinate system. The projection region becomes
the rectilinear crop.

in the vertical dimension. To extract a rectilinear shot, we
define a center azimuth and elevation, as well as horizontal
and vertical FOVs to specify the shot size. We use the method
of Gardner et al. [10] to compute the rectilinear projection.

Preprocessing
Our shot extraction algorithms rely heavily on labeled data
about the human subjects in the 360 scene. We extract this
data by running each input video through a face tracking, face
detection and pose detection pipeline in the preprocessing step.

We first apply the face detection and tracking algorithms of
Li et al. [16] and Saragih et al. [19] to obtain a bounding box
and 68 facial landmark points for every detected face inside
each frame of an input video. We found that these algorithms
do not return reliable results when operating directly on the
equirectangular video due to distortion. To accommodate
this issue, we project the equirectangular video into eight
overlapping rectilinear crops at the same elevation and spaced
45 degrees apart in the azimuthal plane with 60° horizontal and
45° vertical FOV. We then apply face detection and tracking to
each crop and translate these rectilinear results back into the
equirectangular space to obtain a mapping of all the detected
faces for each frame of each input scene.

We then extract the pose of each subject by applying the
method of Cao et al. [4] and Wei et al. [21] on every input
equirectangular video to obtain 18 keypoints around the eyes,
shoulders and joints for every detected person in every frame.

Extracting RFOV Static Camera Shots
To extract static camera shots from the pre-processed footage,
we first generate candidate shots at three different crop lev-
els (close, medium close, medium) that frame the subject at
different horizontal positions without cutting the subject off.
To avoid overly wide shots that introduce distortion, we set
the maximum horizontal FOV, FOVXmax, to 53° and the max-
imum vertical FOV, FOVYmax, to 40° for all of our crops. We
then evaluate each candidate shot based on additional design
objectives and select the best result for each crop level.

Generating Candidate Shots
First, we compute the subject bounding box BS that contains
all of the subject’s movement throughout the specified segment
of the 360 video. This box defines the portion of the input
footage that cannot be cut off by an RFOV shot. To do this,
we examine the face tracking landmarks in every frame and
determine the leftmost and rightmost azimuth (aL,aR) and top
and bottom elevation (eT ,eB) values for the landmarks.

Next, we compute a crop box BC at each crop level that we
use to derive the candidate shots for that level. For each crop
level, we use the recommended framing heights of Arijon [2]
to determine how much of subject to include in the shot. Then,
for a given framing height, we determine the target elevation
and vertical FOV by computing the distance from the top of
BS (i.e., the top of the subject’s head) to the relevant part of
the subject’s body, as defined by the detected pose in the first
frame of the shot. We also align the azimuth of the crop box to
BS. Given the vertical FOV, we compute the horizontal FOV
based on the 4:3 output aspect ratio. If the FOVs are larger
than FOVmax, it means that this crop level is too wide and will
produce undesired distortion. On the other hand, if the FOVs
are smaller than Bs. f ov, the crop level is too tight and will
crop the subject. In both cases, we mark the crop level invalid.

Finally, for each valid crop level, we shift BC horizontally
to generate five candidate shots, defined by bounding boxes
(B1, . . . ,B5), that frame the subject at different uniformly
spaced horizontal positions.

Evaluating Candidate Shots
The algorithm evaluates each candidate shot according to an
objective function

E(B) =C(B)+
N

∑
i

F(i) (1)

where B is the candidate box, C(B) = |BS.azi−B.azi| is a
centering cost that penalizes B as it deviates from the horizon-
tal center of BS, and F(i) = D(i)+ 1/P(i) is a framing cost
that measures the quality of frame i with terms that encode
two of our design guidelines: D(i) is the fraction of pixels in
the frame belonging to distracting objects as detected by the
method of Fried et al. [8], and P(i) is the total number of com-
plete faces within the frame. By penalizing the presence of
distractors and encouraging the presence of faces, the framing
cost favors shots with little visual noise in the background and
more context from other people in the scene.

Extracting RFOV Moving Camera Shots
In our moving camera study, we found that viewers generally
preferred smooth camera paths with a constant trajectory and
FOV. However, this preference did not hold for scenes with
distortion. Thus, our algorithm first computes the minimum
FOV required to capture all POIs with a smooth, linear tra-
jectory. If the FOV does not exceed FOVmax, we generate a
smooth, constant FOV shot. If it does, we use a tighter framing
and compute a trajectory that keeps the POIs in the frame.

Determining the Minimum FOV
To determine the minimum FOVPOI that still frames all POIs,
we compute the crop box (as described previously) at the
medium level for every POI and then take the union of these
boxes. For tracking shots, we treat the position of the main
subject in each frame of the scene as a separate POI. The verti-
cal size of the combined box represents the minimum vertical
FOVYPOI, and the vertical center of the box determines the
elevation for a linear trajectory shot.
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Generating the Camera Move
If FOVYPOI is less than FOVYmax, we calculate the corre-
sponding horizontal FOV and create a linear, constant eleva-
tion shot that slides horizontally across the POIs. We set the
starting and ending azimuths such that the first and last POIs
are horizontally centered. However, if FOVYPOI is greater
than FOVYmax, we clamp FOVYPOI to the maximum allowed
value before computing the corresponding horizontal FOV.
With this tighter framing, we then compute the azimuth and
elevation required to center every POI and construct a B-spline
that interpolates these points. For logical connection shots,
we cannot predict the effect of constraining the FOV for user
specified, non-human POIs. Thus, we vary the shot size by
linearly interpolating between the FOVs of the two POIs.

Pan Timing
For the panoramic and logical connection shots, we adjust the
timing of the camera motion using a sinusoidal easing function
that smoothly increases and decreases the speed of the camera
at the start and end of the trajectory. For tracking shots, the
timing must take into account the subject’s motion. We calcu-
late the subject’s displacement at each frame to interpolate a
B-spline timing function that follows the subject’s pace.

SHOT EXTRACTION INTERFACE
In our initial experiments, we implemented an explicit RFOV
shot extraction interface with simple controls to manually edit
the shot size and position. However, this interface was difficult
to use in situations where either the subject or the virtual
camera moved over time. To address these challenges, we
developed a new user interface that incorporates our automatic
shot extraction algorithms (see Figure 8).

Our interface reads in a set of preprocessed equirectangu-
lar videos with tracked faces and poses. To begin, the user
can select any of these source videos in the Footage Selector
and preview it in the Equirectangular Player, which supports
standard timeline navigation controls. Once she identifies a
temporal segment of the video (i.e., a scene) from which she
wants to extract RFOV shots, she marks that segment with “in”
and “out” markers and then selects the type of shot from the
Shot Controls to activate the corresponding extraction mode.

In extraction mode, a box appears over all automatically de-
tected faces for the scene at the current frame in the Equirect-
angular Player. Figure 8 shows the panoramic extraction mode.
She then uses these boxes to identify the subjects for her shot.
The specific interaction depends on the shot type:

For a static shot, she simply clicks on the face of the main
subject for the shot.

For a panoramic shot, she starts by selecting the first face to
appear in the pan, marked in green, followed by the last face
in the pan, marked in red. She then selects any other faces
that should appear in the shot, marked in blue. She can also
draw a freeform box to specify non-face POIs. Our interface
checks whether all the intermediate POIs are between the
start and end POIs and warns the user if not.

For a tracking shot, she selects a person to follow.

For a logical connection shot, she selects the start and end
POIs for the shot. As with the panoramic shot, she can
either select detected faces or draw freeform boxes.

After she specifies the subjects and POIs for the shot, she
names it and hits the Extract button. The system then runs our
automatic extraction algorithms and displays the generated
shots with the lowest three costs at the top of the Crops Viewer
on the right. The user can playback the shots in the Crops
Viewer and filter them to remove the shots she does not want.

RESULTS
We used our interface to generate a number of static and mov-
ing camera RFOV shots, some of which can be seen in Fig-
ure 9. These shots aligned well with the design guidelines that
we distilled from our studies. For example, as shown for set
1 of Figure 9, our algorithm places the subject on the right
of the frame instead of the more commonly preferred center.
Whereas the central framing crops off a portion of the woman
next to him, creating a distractor, the framing chosen by our
algorithm includes both of them in the scene, adding context.
A similar situation arises in set 2, where our algorithm posi-
tions the subject close to the right edge of the frame despite
the fact that he is also looking to the right. As in the previous
example, the more centered framing in 2b partially cuts off the
man the subject is taking to, only showing his shoulder and
part of his face, which serves as a distractor. Finally, in set 3,
our system decides to generate a pan with an uneven trajectory
to avoid the jarring distortion in the wide shot (3b). We show
these and other results in our paper video and website.

LIMITATIONS AND FUTURE WORK
Our work takes an initial step in exploring the use of 360
cameras for event cinematography. However, there are many
remaining questions and challenges to consider in future work.

Finding Relevant Footage
Although our approach enables users to capture footage pas-
sively and extract usable RFOV from specified “scenes” of
interest, scrubbing through videos to find relevant moments
is nontrivial. Automating this task for large video datasets
remains a challenging problem. As mentioned in our related
work, others have used saliency metrics to distinguish poten-
tially interesting moments. However, it is a more challenging
problem to consider how to detect people or objects that are
not only salient, but also semantically meaningful. We see this
as the next step in using our design guidelines to automate
RFOV shot extraction from 360 event footage.

Editing
Looking beyond the problem of extracting individual shots,
our overall vision is to automatically generate edited summary
videos that compose multiple shots in a pleasing way. Editing
event footage comes with its own set of challenges and trade-
offs. We believe that we can apply our methodologies to better
understand what those tradeoffs are and how to address them.

Scene Generalization
For the studies, we searched through our footage to curate
scenes that we commonly observed in professionally edited
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Figure 8. Our shot extraction interface has three main components: a footage selector where users select their source footage (A); an equirectangular
player where users specify different types of RFOV camera shots (B), and a saved extractions viewer where users can view the extracted crops (C).

1a) Ours 1b) Alternative 2a) Ours 2b) Alternative 3a) Ours 3b) Alternative

Figure 9. Our results (a) and alternatives (b). These alternatives were not selected by our algorithm, though could have been if we adhered strictly to
high level user preferences or cinematography rules.

event highlight reels. We found that people generally con-
verse in a similar way (i.e., sitting or standing in small groups)
across different types of social events; thus, we selected dia-
logue scenes for our static camera and panorama shots. For the
non-dialogue static and logical connection shots, we selected
scenes of people interacting with familiar components of party
environments (e.g., food). For tracking shots, we searched
for people moving through the event space. While we believe
these scenes are representative for social event highlight reels,
considering a broader range of scenes (e.g., "b-roll" that fo-
cuses solely on the environment, variations on the scene types)
would strengthen and expand the applicability of our findings.

Camera Configuration and Human Camera Interaction
We attempted to set up the cameras at areas of interest where
we predicted people would gravitate. However, within these ar-
eas, there are still a number of possible camera configurations.
Considerations include placing the cameras to allow as much
360 capture as possible (i.e., not against walls), while min-
imizing intrusiveness and not physically obstructing guests’
paths. Based on our capture experiences, we observed some
situations where people felt uncomfortable being recorded.
One is when guests are not told ahead of time when they will
be filmed. In another situation, we did not set up the cam-
eras until after the party had started, at which point they were
placed in very conspicuous locations, such as the middle of a
dining table. This turned out to be very obtrusive to the guests.
We alleviated some of this discomfort at later events by setting
up the cameras beforehand.

As noted in the introduction, the question of how to optimally
configure these cameras to be effective, yet non-intrusive, is
an interesting direction for future work. Considering footage
captured using a wider variety of camera configurations could
broaden the scope of our findings.

Evaluation
In this iteration of our work, we were not able to run an
evaluation of our system. An interesting extension would be
to compare the results of our algorithm against those of the
saliency based algorithms mentioned in our related work.

CONCLUSION
The improving quality and diversity of commercial cameras
makes it possible to explore new capture configurations for a
range of different applications. We focus on the task of creat-
ing video summaries of social events and propose the use of
static 360 video cameras to acquire footage. A key advantage
of this setup is that the cameras can capture large portions of
the event in a passive way that does not require a dedicated
videographer. Our work takes initial steps towards identifying
common challenges and tradeoffs in extracting good RFOV
shots from 360 event footage. By analyzing viewer prefer-
ences, we find that central framings and smooth camera moves
are generally preferred, but in many cases, the arrangement
of people and objects in the scene require that we take into
account other objectives, like avoiding distractors, awkward
cropping boundaries, and distortion due overly wide FOVs.
In addition, our automated algorithms provide preliminary
evidence that these design guidelines can be operationalized
to extract good shots from 360 footage with small amounts of
user input. Looking ahead, there are still many open questions
around the best ways to make use of 360 cameras to produce
RFOV video. However, we believe our work represents a
valuable stepping stone for future research on this topic.
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Shen. 2014. Automatic image cropping using visual
composition, boundary simplicity and content
preservation models. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM,
1105–1108.

8. O. Fried, E. Shechtman, D.B. Goldman, and A.
Finkelstein. 2015. Finding distractors in images. In
Computer Vision and Pattern Recognition (CVPR), 2015
IEEE Conference on. 1703–1712.

9. Vineet Gandhi, Remi Ronfard, and Michael Gleicher.
2014. Multi-clip video editing from a single viewpoint. In
Proceedings of the 11th European Conference on Visual
Media Production. ACM, 9.

10. Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer,
Xiaohui Shen, Emiliano Gambaretto, Christian Gagné,
and Jean-François Lalonde. 2017. Learning to Predict
Indoor Illumination from a Single Image. CoRR
abs/1704.00090 (2017). http://arxiv.org/abs/1704.00090

11. Li-wei He, Michael F Cohen, and David H Salesin. 1996.
The virtual cinematographer: a paradigm for automatic
real-time camera control and directing. In Proceedings of
the 23rd annual conference on Computer graphics and
interactive techniques. ACM, 217–224.

12. Rachel Heck, Michael Wallick, and Michael Gleicher.
2007. Virtual videography. ACM Transactions on
Multimedia Computing, Communications, and
Applications (TOMM) 3, 1 (2007), 4.

13. Hou-Ning Hu, Yen-Chen Lin, Ming-Yu Liu, Hsien-Tzu
Cheng, Yung-Ju Chang, and Min Sun. 2017. Deep 360
Pilot: Learning a Deep Agent for Piloting through
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