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ABSTRACT
Online controlled experiments (a.k.a. A/B testing) have been used
as the mantra for data-driven decision making on feature changing
and product shipping in many Internet companies. However, it is
still a great challenge to systematically measure how every code or
feature change impacts millions of users with great heterogeneity
(e.g. countries, ages, devices). The most commonly used A/B test-
ing framework in many companies is based on Average Treatment
Effect (ATE), which cannot detect the heterogeneity of treatment
effect on users with different characteristics. In this paper, we pro-
pose statistical methods that can systematically and accurately
identify Heterogeneous Treatment Effect (HTE) of any user cohort
of interest (e.g. mobile device type, country), and determine which
factors (e.g. age, gender) of users contribute to the heterogeneity of
the treatment effect in an A/B test. By applying these methods on
both simulation data and real-world experimentation data, we show
how they work robustly with controlled low False Discover Rate
(FDR), and at the same time, provides us with useful insights about
the heterogeneity of identified user groups. We have deployed a
toolkit based on these methods, and have used it to measure the
Heterogeneous Treatment Effect of many A/B tests at Snap.
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1 INTRODUCTION
A/B testing, also known as controlled experiment [25], has become
a common practice for evaluating and improving new product ideas
across internet companies. Many IT companies with rich and large-
scale data have built in-house A/B testing platforms to meet their
complex experimentation needs [24, 33]. Some have been discussed
at length in past technical papers such as [24, 32, 33], including the
best practices and pitfalls [14, 23].

At Snap, we have seen significant growth in A/B test usage over
the past two years. The in-house platform now hosts hundreds
of concurrent experiments at any given time. Each experiment
provides automated results for hundreds to thousands of diverse
online metrics, ranging from engagement metrics, app performance
metrics, to metrics used to understand data quality problems such
as missing or duplicated event logging.

As grown experimentation popularity comes with greater needs,
experimenters are no longer satisfied with knowing which metrics
are impacted overall in an A/B test experiment, but have also be-
come interested in knowing "why" metrics move or "who" drives
the changes. Such insights about user heterogeneity can always
help experimenters come up with strategies to improve the prod-
uct. As an example, in a recent experiment we ran, we found that
a metric decline was driven by users with the most snap views.
With that observation we focused on understanding engineering
and design behaviors when a user has large snap stacks to load,
and were able to identify a critical performance issue which led
to the metric decline. In fact, we have seen many cases where our
users react differently to the same experiment treatment. For exam-
ple, an experiment involving a minor feature adjustment received
very different feedback from users in different countries, with the
same engagement metric increasing in some and decreasing in
others. Another example was that code changes to improve app
performance resulted in mixed outcomes across different mobile
devices. Thus, detecting such heterogeneity of treatment effects
in online controlled experiments has received great needs in our
daily practice of using A/B testing to make decisions on product
changes.

On the other hand, with the overly affluent amount of data,
there is a strong threat from false discoveries, largely due to a
statistical artifact known as "multiple testing"1. With the hundreds
of thousands of user characteristics available to internet companies,
one can construct user groups in millions of ways. If we take a
"naive" approach by simply computing and comparing the estimated

1https://en.wikipedia.org/wiki/Multiple_comparisons_problem
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effect based on users within groups, we can always easily find
groups with treatment effects that differ widely from the average
population, regardless of whether there is a real heterogeneity or
not.

The goal of our work is to fill such gap by providing rigorous
statistical methods and a toolkit that can detect Heterogeneous
Treatment Effect (HTE) while dealing with the potential multiple
testing problem by controlling the false positive rate (FDR) 2. This
toolkit has been deployed and used at Snap. In this paper, we dis-
cuss the rationale behind using FDR and compare two statistical
methods that control FDR using simulated results as well as real ex-
perimentation data. Depending on the methods we choose, we will
discuss solutions to two questions experimenters and practitioners
are interested in regarding HTE:

• Systematically find out which subgroups (e.g. countries) of
users have treatment effect significantly different from the
Average Treatment Effect of an A/B test.

• Rigorously figure out which factors (e.g. age, gender, etc.)
contribute to the heterogeneity of the treatment effect in an
A/B test.

Here is a summary of our contributions in this paper:
• We establish the HTE detection problem as an FDR control
problem, and discuss in details why FDR control is important
in large-scale HTE detection problem in practice.

• We apply two methods that can control FDR to our HTE
detection process, and share insightful comparisons of the
two methods based on simulation and real-world empirical
data.

• We share discussions on two critical lessons we learned,
regarding (1) difference of heterogeneity in population v.s.
heterogeneity in treatment effects; and (2) scalability of the
algorithms. These insights should be able to help practition-
ers avoid pitfalls alike.

2 PRELIMINARIES
2.1 Average Treatment Effect vs.

Heterogeneous Treatment Effect
In an A/B test, we randomly split users into a treatment group and
a control group, and observe the metrics of interest for all the users.
The Rubin Causal Model [19] is commonly used in A/B testing as a
statistical framework for causal inference. Define Yi (Ti ) to be the
potential outcome for i-th user, where Ti = 1 if the i-th user is in
the treatment group and Ti = 0 if the i-th user is in the control
group. Therefore, τi = Yi (1) −Yi (0) is the causal effect of taking the
treatment for i-th unit, and the average causal effect of all users τ̄ is
defined as the Average Treatment Effect (ATE). Note that ATE is not
observable since we do not know Yi (0) and Yi (1) at the same time.
This is known as the "fundamental problem of causal inference"
[19]. However, The estimator

Yi |Ti=1 − Yi |Ti=0 (1)

is unbiased for ATE when the following two assumptions hold and
is usually used for estimating ATE in an A/B test.

Assumption 1. Stable unit treatment value assumption (SUTVA):
2https://en.wikipedia.org/wiki/False_discovery_rate

• Only one version of treatment and control, i.e. only one version
of T = 1 and T = 0.

• Treatment applied to one user does not affect the outcome of
other user (no interference).

Assumption 2. Unconfoundedness:

Ti ⊥ (Yi (0),Yi (1)) |Xi , (2)

where Xi is a set of the pre-treatment variables for i-th user, for
example age, gender, country, etc.

However, sometimes the analysis based on ATE only is not
enough for obtaining accurate and meaningful insights. As we
shared in Section 1, we have observed many cases where a single
feature change can impact different users differently. As shown in
Figure 1, the estimation of ATE is not a good measure for a hetero-
geneous population since it is possible for the ATE to exaggerate
the treatment effect of one sub-population while underestimating
the treatment effect of another sub-population. In order to study
heterogeneous treatment effect, we need to consider the conditional
average treatment effect, which is defined as

τ (x) = E [Yi (1) − Yi (0)|Xi = x] , (3)
where Xi is a set of pre-treatment variables for i-th user. Obtaining
accurate estimates of the conditional average treatment effect τ (x)
for all values of x is very useful for heterogeneous treatment effect
detection, because τ (x) gives the conditional average treatment ef-
fect for the subpopulation defined by the covariates x . For example,
if the covariate is ‘country’, then we can partition the covariate
space into countries and τ (x) is the conditional average treatment
effect for the users in country x . If τ (x) is statistically different from
the average treatment effect τ̄ , then the country x is heterogeneous.

There is an increasing demand in rigorous analysis based on
heterogeneous treatment effects (HTE), and this motivates us to
develop a rigorous statistical approach for HTE detection.

Figure 1: An illustration showing that analysis based onATE
only cannot provide accurate insights when the population
is heterogeneous [34].

2.2 Naive Approaches and their Caveats
In this section, we present some commonly used practices by prac-
titioners which could lead to spurious discovery of HTE. Suppose
that we have users from different countries and we want to find
which countries have treatment effects different from ATE with
respect to a metric of interest. There is a naive approach for de-
tecting the heterogeneous countries in this problem: first run a
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two-sample t-test on the observations of each country and get a
two-side p-value for each country; then choose the countries with
p-value < 0.05 as the result. We will refer to this approach as the
“naive approach” from now on.

This naive approach is straightforward and seemingly intuitive
to non-statisticians. In reality, it suffers from the so-called multiple
testing problem. We illustrate the problem with a simple simulation:

• Step 1: Measure treatment effects for all users in 30 randomly
generated subgroups from a standard Gaussian distribution
so that the true ATE is zero.

• Step 2: Apply the naive approach and choose subgroups with
p-values less than 0.05 as heterogeneous.

As Figure 2 shows, 3 out of 30 subgroups are selected as subgroups
with heterogeneous treatment effect, while the truth is that the
ATE estimator is 0 in this simulation and none of the subgroups is
heterogeneous.

Figure 2: A simulation example showing that the naive ap-
proach is suffering multiple testing problem.

Bonferroni correction method [9, 17, 18] can be used to mitigate
the multiple testing problem by controlling the family-wise error
rate (FWER) [9]. The FWER is the probability of rejecting at least
one true hypothesis. However, the Bonferroni method is known to
be very conservative [5, 27], leading to a high rate of false negative
and low statistical power, defined as P(reject H0 |H1), where H0 is
the null hypothesis and H1 is the alternative hypothesis.

3 FALSE DISCOVERY RATE CONTROLLED
HTE DETECTION

Because of the caveats of the methods we have discussed in the
previous section, in this section, we introduce the methods we
propose for HTE detection, which can deal with the multiple testing
problem and maintain large enough power at the same time.

In order to deal with the multiple testing problem and in the
meantime reduce the conservativeness, Benjamini and Hochberg
[5] introduced the false discovery rate (FDR), which is defined as:

Definition 3.1. False Discovery Rate:

Let Q be the proportion of false positives among all the detected
(rejections of the null hypothesis). Then

FDR = E [Q] . (4)

In order to control FDR, we need to control the expected propor-
tion of discoveries that are false. In addition, methods that control
FDR tend to be much less conservative than the Bonferroni method.
Thus in our proposed HTE detection approach, we are able to con-
trol FDR and ensure large enough power at the same time.

3.1 Detection for Heterogeneous Subgroups
When we run an A/B testing experiment, we are often interested in
knowing which subgroups of users have treatment effects different
from ATE. For example, at Snap, we have users from more than
200 countries and we are interested in finding out which countries
have higher or lower treatment effects comparing with the average
with respect to the metric of interest.

In this process, we need to make sure that there are not too many
false discoveries in our result list. To achieve this, we choose to use
the Benjamini-Hochberg (BH) procedure [5] to control the FDR.
The BH procedure is known to control FDR if the test statistics
are independent or obey the positive regression dependence on a
subset property introduced in [7]. It is one of the most popular FDR
control methods due to its simplicity. For example, suppose that we
have p-values fromm independent hypothesis testings H1, . . . ,Hm
that ranks in an ascending order: p(1), . . . ,p(m), and we want to
control FDR level at q. The BH procedure finds the largest k such
that p(k ) ≤ k

mq, and rejects the null hypothesis for allH(i) for i ≤ k .
By doing so, it theoretically guarantees that the FDR is controlled
under q.

To detect heterogeneous subgroups, we need to estimate the con-
ditional average treatment effects defined in (3) for the subgroups.
Although the values of individual treatment effects are not avail-
able due to the fundamental problem of causal inference, we are
able to construct a transformed outcome (TO) for each user as an
alternative measure of individual treatment effect. Let Yobsi be the
observed outcome for i-th unit. In addition, let p be the assignment
probability, which, in practice, is the traffic percentage assigned to
treatment group in an A/B test. The transformed outcome for the
i-th unit, Y ∗

i , is then defined as:

Definition 3.2. (Transformed Outcome):

Y ∗
i = Y

obs
i × (Ti − p)

p(1 − p) . (5)

A desirable property of the TO is that under the unconfounded-
ness assumption the conditional expectation E

[
Y ∗
i |Xi = x

]
equals

the conditional average treatment effect τ (x) [3].
We propose the following method, which combines BH method

and Transformed Outcome, to detect heterogeneous subgroups.
Suppose that we have n users from p subgroups, and we want to
detect the subgroups with heterogeneous treatment effects that are
different from the average treatment effect with controlled FDR.
We propose the following procedure. HTE-BH method:

• Step 1: Construct a n ×p design matrix X such that Xi, j = 1
if the i-th user belongs to the j-th subgroup.

3



• Step 2: Calculate the transformed outcomes Y ∗ for all users
based on the formula in Equation (5), and then subtract the
estimated ATE Ȳ (1) − Ȳ (0) from all transformed outcomes.
Let Y be the vector of the resulted outcomes.

• Step 3: Run a linear regression using Y as the response and X
as the design matrix, and get the p-values for the coefficient
estimates corresponding to all the subgroups.

• Step 4: Apply the BH procedure on the p-values to finalize
the list of selected heterogeneous subgroups.

The design matrix X created in Step 1 is orthogonal in this
case, therefore the p-values derived from the linear regression are
independent, thus the BH procedure can control the FDR at a pre-
specified level q. In Step 2, we subtract the estimated ATE from
the transformed outcomes in order to detect the subgroups with
treatment effects different from the ATE. For simplicity, we assume
the estimated ATE as a parameter. Even though this overlooks the
fact that the estimated ATE is a random variable, it has practical
meanings as practitioners are usually interested observing which
subgroups are statistically different from the observed average
treatment effect over all users in an experiment. Note that getting
p-values from the way described in Step 3 is equivalent to getting
p-values from running independent t-tests for all subgroups.

3.2 Detection for Heterogeneous Factors
Besides detecting heterogeneous subgroups, figuring out which
factors contribute to the treatment effect heterogeneity is another
important task of interest in practice. At Snap, we have constructed
hundreds of user properties anonymously, including user demo-
graphic information such as age, gender, as well as user engagement
levels, such as how users use snaps, stories or discover. Often times
when we are presented with subtle results of an experiment, we
don’t even know which of these factors we should deep dive into.
By identifying the factors contributing to the heterogeneity in treat-
ment effect, we can more effectively dive into the corresponding
factors and derive insights. The HTE-BH method is easy and simple
to implement for detecting heterogeneous subgroups but is not ap-
plicable for detecting heterogeneous factors because in this case we
are not able to construct an orthogonal design matrix in the Step 1
of HTE-BH method. For that reason we consider to use the ‘Knock-
off’ method [4] in our proposal to control FDR for heterogeneous
factors.

The ‘Knockoff’ is a recently proposed FDR control method by
[4]. Suppose that the response of interesty obeys the classical linear
model

y = Xβ + ϵ, (6)
where y ∈ Rn is a vector of y, X ∈ Rn×p is any fixed design
matrix, β is a vector of unknown coefficients, and ϵ ∼ N(0,σ 2I)
is Gaussian error. Note that n is the number of observations and p
is the number of variables. For the Knockoff method, we assume
that n ≥ 2p, which is reasonable in practice because we are likely
to have more observations than variables in most A/B tests.

Let Σ = XT X after normalizing X. The ‘Knockoff’ procedure can
be summarized as the following three steps:

• Step 1: Construct a ‘knockoff’ matrix X̃ of X such that X̃
obeys the following:
X̃T X̃ = XT X = Σ,

XT X̃ = Σ − diag{s},
where s is some non-negative vector that we will construct.

• Step 2: Compute a statisticWj for each pair (X j , X̃ j ) such
that a large positive value of Wj is evidence against the
null hypothesis that j-th variable is not included in the true
model.

• Step 3: Calculate a data-dependent threshold T such that
the FDR of the knockoff selection set Ŝ := {j : Wj ≥ T } is
less than or equal to the pre-specified level q.

In our proposal, we use the equi-correlated method in [4] to
obtain the non-negative vector s used in the Step 1 to construct the
knockoff matrix X̃ . The equi-correalted method suggests using sj =
min{2λmin (Σ), 1} for all j, where λmin is the smallest eigenvalue
of Σ. After getting this s, we then construct X̃ using the formula in
[4]:

X̃ = X(I − Σ−1diag{s}) + ŨC, (7)
where Ũ is an n × p orthonormal matrix satisfying ŨT X = 0,
and C is a Cholesky decomposition satisfying CT C = 2diag{s} −
diag{s}Σ−1diag{s}.

There are many options available for computing the statistics
Wj ’s in the Step 2 as discussed in [4]. We choose to use Lasso
to compute the statisticsWj ’s. Let X∗ = [X X̃] ∈ Rn×2p be the
augmented design matrix. Recall the Lasso problem:

minimizeβ | |y − X∗β | |22 + λ | |β | |1. (8)

Define Z j = sup{λ : β̂j (λ) , 0}, that is, the largest tuning
parameter λ that first allows the j-th variable enters the model.
Note that (Z j ,Z j+p ) is a pair correspondent to the j-th original
variable and its knockoff. Then we calculateWj as:

Wj = (Z j − Z j+p ) ∗ sign(Z j − Z j+p ), (9)

for j = 1, . . . ,p.
LetW be the set {|W1 |, . . . , |Wp |}\{0}. In the Step 3, [4] proposes

to use the threshold

T := min
{
t ∈ W :

1 + #{j : Wj ≤ −t}
max{#{j : Wj ≥ t}, 1} ≤ q

}
. (10)

Theorem 2 in [4] claims that the knockoff selection set Ŝ := {j :
Wj ≥ T } is theoretically guaranteed to have FDR less than q.

We propose the following procedure to detect the variables that
contribute to the heterogeneity in treatment effects while control-
ling FDR.

HTE-Knockoff method:
• Step 1: Construct a design matrix X based on the set of the
pre-treatment variables.

• Step 2: Calculate the transformed outcomes Y ∗ for all users
based on the formula in Equation (5), and then subtract the
estimated ATE Ȳ (1) − Ȳ (0) from all transformed outcomes.
Let Y be the vector of the resulted outcomes.

• Step 3: Create a knockoff matrix X̃ of X.
• Step 3: Run a Lasso regression using Y as the response and

X∗ = [X X̃] as the design matrix.
• Step 4: Follow the procedure of the Knockoff method to get
the knockoff selection set of the heterogeneous variables.

Note that our proposed HTE-Knockoff method can also detect
heterogeneous subgroups because it works for any full-rank design
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Figure 3: Simulation results for the comparison of HTE-Knockoff, HTE-BH, Bonferroni and Naive approach. For (a) and (b),
the outcomes follow Gaussian distribution. For (c) and (d), the outcomes are non-Gaussian distributed. For (e) and (f), the
design matrix is non-orthogonal. The results are averaged over 100 replicates.

matrix regardless of orthogonality. In addition, the HTE-Knockoff
method is applicable when Xi is a set of variables including both
categorical variables and continuous variables, but we need to be
careful in constructing the design matrix when there are more than
one categorical variables in Xi .

To lay out the problem, suppose that Xi contains two categorical
variables and multiple continuous variables. If we construct the

design matrix to be

X∗ = [Xcat1 Xcat2 Xcont ], (11)

where Xcat1 and Xcat2 are constructed to be the design matrices
for subgroups defined by the two categorical variables respectively
and Xcont is the design matrix created as in Step 1 of HTE-Knockoff
method, then this design matrix X∗ is rank-deficient because any
column of [Xcat1 Xcat2] can be represented as a linear combination

5



of the rest of the columns. It is not valid to apply HTE-Knockoff
method using rank-deficient design matrix, since there will be infin-
itely many solutions for the coefficients in a regression if the design
matrix is rank-deficient. So we should not create design matrix in
this way. The implication is that our HTE-Knockoff method is not
able to detect the heterogeneous subgroups defined by more than
one categorical variable (e.g. country and mobile device model)
simultaneously. The set of variables need to be composed of at most
one categorical variable and simultaneously detect other continu-
ous factors, since the design matrix [Xcat1 Xcont ] is full-rank and
can be used in HTE-Knockoff method.

Furthermore, when we have more than one categorical variable
in Xi , a standard way to create a design matrix is to use ‘reference’
level for the categorical variables. For example, suppose that we
have two categorical variables ‘country’ and ‘mobile device type’.
Instead of creating a rank-deficient design matrix as in (11), we
construct a design matrix with all 1’s in the first column for the
reference level where the reference level can be the subgroup for
users in US and using iPhone X. The rest of the design matrix is
constructed as in Step 1 of HTE-BH method except that there are
no columns for the US subgroup and for the iPhone X subgroup.
The resulted design matrix is full rank so that we can apply HTE-
Knockoff. The interpretation of the HTE-Knockoff selecting any
subgroups defined by ‘country’ other than US is that the categorical
variable ‘country’ contributes to the heterogeneity in treatment ef-
fect. Similarly, the interpretation of selecting any subgroups defined
by ‘mobile device type’ other than iPhone X is that the categorical
variable ‘mobile device type’ is a heterogeneous factor.

The wider application of the HTE-Knockoff method is an ad-
vantage over the HTE-BH method though the later is easier to
understand and implement.

3.3 Differences between HTE-BH and
HTE-Knockoff

The HTE-Knockoff method is applicable to the case of detection
for heterogeneous variables due to its validity for any fixed design
matrix X. The orthogonality of design matrix in a linear regression
determines the independence of the p-values. The non-orthogonal
design matrix implies that the p-values from using a linear regres-
sion are not independent. Although the HTE-BH procedure can
also control FDR under the positive regression dependence on a sub-
set property [7], this condition is generally not satisfied when the
design matrix is non-orthogonal. Therefore, the HTE-BH method
is not applicable for detecting variables that contributes to the
heterogeneity in treatment effects.

[4] has done a comparison between the Knockoff method and the
BH procedure for the orthogonal design matrix setting. We are able
to replicate their results and reach the same conclusion: as the signal
varies, both methods control FDR below the pre-specified level and
have almost same powers (see Figure 3 (a) and (b)), however, the
empirical FDR for the HTE-Knockoff method tends to be much
smaller than the HTE-BH method when the signal is so small that
it is hard to detect the heterogeneous subgroups. It is actually
desirable for having smaller FDR when it is hard to detect the true
positives, since it saves cost by not wasting time on investigating
false positives. We refer the readers to look at [4] for more technical

details about the difference in FDR between Knockoff method and
BH procedure.

Figure 3 (a) and (b) present the simulation results of using our
proposed methods. The signal size is the treatment effect size and
it varies from very small (hard to detect) to relatively large (easy to
detect). For a comparison, we also include the results for using the
Naive approach and the Bonferroni method introduced in Section 2.
We can see that the Naive approach fails to control the FDR, while
the Bonferroni method is too conservative that it has much lower
power than our proposed methods.

The transformed outcomes generated from using real data are
usually not Gaussian distributed. Therefore, we also conduct a
simulation where the responses are generated from a distribution
similar to the transformed outcomes we get from a real experiment.
We can see from Figure 3 (c) and (d) that both HTE-BH and HTE-
Knockoff still control FDR empirically, and when the underlying
treatment effect size is large enough, both can detect all the positives
(power=1).

When the design matrix is non-orthogonal, as Figure 3 (e) and
(f) show, the HTE-BH procedure is not able to control FDR under
the targeted level when signal size is relatively small while the
HTE-Knockoff method still gives very small FDR.

3.4 Empirical Results
We apply HTE-BH and HTE-Knockoff on two real experiment
datasets. In the first experiment, HTE-BH and HTE-Knockoff give
almost same selections for heterogeneous subgroups (see Figure
4), and if we use the Naive approach, it will selects a lot more,
which obviously has many false positives. The HTE result shows
the drastically different effects in English speaking countries (col-
ored points below ATE in Figure 4) versus non-English speaking
countries (colored points above ATE in Figure 4), after which we
retrospectively understood that the new layout of the experiment
favors non-English content while suppresses high quality content
in English.

Figure 4: Real data results from using HTE-BH and HTE-
Knockoff. Here we set the pre-specified FDR control level
q = 0.2.
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In the second experiment, we see from Figure 5 that the HTE-BH
method selects one subgroup as heterogeneous, while the HTE-
Knockoff method selects none. This is very likely to be a scenario
that the true treatment effects are too small to be detected, so that
the HTE-Knockoff method tends to be more conservative than the
HTE-BH to avoid making any false positive. This is consistent with
the simulation shown in Figure 3(c).

Figure 5: A real experiment example showing that the
Knockoff tends to be more conservation than the BH when
the signal sizes are very small, in order not to make possible
false positives.

4 DISCUSSION
4.1 Scalability
We have thought about the scalability of our proposed methods.
Instead of running the method on each experiment separately, we
consider to apply either HTE-BH or HTE-Knockoff on multiple
experiments using only one regression model. The first difficulty
we encounter is that one unit can be in a control group in one
experiment but in a treatment group in another experiment. As
we notice from the formula of the transformed outcome, such unit
will have two different transformed outcomes. Therefore, the trans-
formed outcome cannot be used as a response for each unit in the
regression for multiple experiments.

Nonetheless, if the probability of treatment assignment p is 0.5,
this first issue can be solved by using an alternative approach to the
‘transformed outcome’ method, which is called the ‘transformed
design matrix’ method. As the name indicates, instead of transform-
ing the outcomes, we transform the values in the design matrix. We
then can use the observed outcome without transformation as the
response and apply HTE-BH or HTE-Knockoff on the transformed
design matrix.

4.1.1 Transformed Design Matrix. Let p be the proportion of
the participant assigned into the treatment group, and let T be the
indicator of receiving treatment or not. Then by algebra, we can

show that

1
n

n∑
i=1

(Y ∗
i − Xiβ)2 =

1
n

n∑
i=1

wi

(
Yobsi − Xiβ(Ti − p)Vi

)2
, (12)

where β is a vector of unknown coefficients, XT
i is the i-th row

of the design matrix, wi =
1

(1−p)2 ∗ 1{Ti=0} +
1
p2 ∗ 1{Ti=1} , and

Vi =
p

1−p ∗ 1{Ti=0} +
1−p
p ∗ 1{Ti=1} . When p = 0.5, we can reduce

it to a simple equation

1
n

n∑
i=1

(Y ∗
i − Xiβ)2 =

4
n

n∑
i=1

(
Yobsi − Xiβ(Ti − 0.5)

)2
. (13)

It implies that running a linear regression using the transformed
outcome Y ∗ as response and X as design matrix is equivalent to
solving a linear regression problem using the observed outcome
Yobs as response and Z as design matrix, where Zi = Xi (Ti − 0.5)
is the transformed design matrix. We note that [30] has derived a
similar result for the case of p = 0.5. We refer readers to look at the
details about the derivation of this special case result in their paper.
Our generalized result can be derived using similar technique.

4.1.2 Computational Complexity Comparison. The use of the
transformed design matrix enables us to run a linear regression
using Yobs as response and an augmented design matrix Z∗ =
[Z1 . . .Zm ] form experiments together. However, it does not im-
prove the scalability. The computational complexity of running
a linear regression is O(p2(n + p)) if we have n observations and
p columns of Zk for each k = 1, . . . ,m. Therefore, the compu-
tational complexity of running our proposed HTE-BH or HTE-
Knockoff method m times is O(mp2(n + p)), while the computa-
tional complexity of running the transformed design matrix method
on m experiments together is O((mp)2(n + mp)). Unfortunately,
O((mp)2(n +mp)) is bigger than O(mp2(n + p)).

We leave the scalability problem to future research work.

4.1.3 Advice for choices of n and p. We have tested the scala-
bility of our methods using different combinations of n and p. We
implemented our methods in a toolkit at Snap and ran this toolkit
on a data set with n = 24 million and p = 20 and a data set with
n = 7 million and p = 80. In both cases, the task was finished
within one hour on Apple 15" MacBook Pro 2.8GHz Intel Core i7.
We believe that the running time can be much shorter on a more
powerful system.

4.2 Heterogeneity inherent in population v.s.
Heterogeneity in treatment effect

Besides the two methods we propose in this paper, we have also
considered another way of detecting heterogeneous subgroups. The
procedure is as follows:

• Step 1: Calculate the transformed outcomes for all units and
split all the units randomly into Group 1 and Group 2.

• Step 2: Use the transformed outcomes of the units in Group
1 to construct an empirical distribution of the transformed
outcomes for the whole population.

• Step 3: Divide the units in Group 2 into subgroups, e.g. by
countries.
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Figure 6: Left: the histogram of the treatment effects in Group 1. Right: the histogram of the treatments effects for a subgroup
in Group 2.

• Step 4: Compute a degree of the anomalous pattern for each
subgroup’s transformed outcome distribution, comparing
with the empirical distribution for the whole population in
Step 2.

• Step 5: Rank the anomalous pattern degrees and select the
most abnormal subgroups as heterogeneous.

There are many methods available to calculate sensible anoma-
lous pattern degrees in Step 4. We choose to use the Higher Crit-
icism [16, 20]. However, we realize two issues of using this HTE
detection procedure: the first issue is that we cannot control FDR
using the degrees of the anomalous pattern, because we are not
able to obtain a threshold value for the anomalous pattern degrees
as in BH and Knockoff method; the second issue is that this method
identifies the heterogeneity inherent in the population instead of
the heterogeneity in the treatment effects. The second issue can be
illustrated in an example in Figure 6. The left plot shows the distri-
bution of the treatment effect values for the whole population, and
the right plot shows the distribution of the values for one subgroup.
If we use two-sample t-test to compare these two sets of values, the
p-value is very large, indicating that the mean difference between
the two groups is not statistically different from 0. However, if we
use the Higher Criticism, we get a very large degree of anomalous
pattern due to the fact that there are more zeros in the right plot
than in the left plot. Therefore, this method detects a different type
of heterogeneity: the heterogeneity in the distribution of outcomes
for a subgroup, instead of the heterogeneity in the treatment effects
for a subgroup. This type of heterogeneity is inherent in population
and is not affected by treatment.

5 LITERATURE REVIEW
5.1 Average Treatment Effects
The Rubin causal model (RCM) was first proposed in [19] as a sta-
tistical framework for causal inference. Based on the RCM, many
statistical methods have been developed for causal inference and
most of them focus on the estimation and inference on average

treatment effects (ATE). There are matching methods in causal in-
ference for estimating ATE [26, 29], and there also exist methods for
identifying casual effects and estimating ATE using instrumental
variables [1, 2]. Recently, researchers even have developed globally
efficient estimators for ATE in observational studies [12]. In addi-
tion, many digital experimentation works in industry have focused
on the analysis of ATE [13, 22, 24, 32].

5.2 Heterogeneous Treatment Effects
Recently, many researchers have shifted their attention from the
ATE to the heterogeneous treatment effects (HTE). In this section
we review existing related work onHTE. It is commonly understood
by the researchers that a treatment having positive effect on one
subgroup of people may have negative effect on another subgroup,
due to the heterogeneity of the population. Therefore, it is crucial to
ascertain subgroups for which a treatment is harmful or beneficial.
In contrast to the ATE, the HTE is able to tell the A/B test designers
about the treatment effects for subpopulations. The study for HTE
has gained a lot attention over the last couple of years, which leads
to many insightful ideas about learning the HTE.

The work in [21] estimates the treatment effect heterogeneity in
a randomized evaluation program by using Squared Loss Support
Vector Machine (L2-SVM) with L1 penalty (LASSO). The key part
of their approach is to put two separate L1 penalties on the coeffi-
cient estimates for the pre-treatment covariates and the coefficient
estimates for the interaction between treatment and pre-treatment
covariates. The intuition behind it is that the interactions, which
are related to causal heterogeneity, usually have weaker predictive
power than the pre-treatment covariates in the model. If the co-
efficient estimate for the interaction term between the treatment
and a pre-treatment covariate is non-zero, then this pre-treatment
covariate is selected as a variable contributing to the treatment
effect heterogeneity. This method distinguishes between the esti-
mation of treatment effects and the estimation of the impact of other
pre-treatment covariates of units, however, it is only applicable for
randomized trials.
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[15] proposes a total variation regularized regression model to
understand the structure of the HTE. In their regression model, in
addition to the use of LASSO for selecting potential covariates, they
further include a total variation penalty to encourage block-wise
structure for the non-zero coefficients of the potential covariates.
The advantage of this is that the model usually results in actionable
and interpretable conclusions which are well-suited to practitioners.

[3] uses machine learning methods to estimate heterogeneous
treatment effects which are applicable to the data in both random-
ized trials and observational studies. They introduce the idea of
transforming the observed outcomes and using the transformed
outcomes in machine learning models. We put more details about
the transformed outcomes in next section since it is also related to
our proposal. Based on the transformed outcomes, [3] introduces
several Out-of-Sample Goodness-of-fit measures and In-Sample
Goodness-of-fit measures, and then propose the Transformed Out-
come Tree (TOT) method which uses regression tree model based
on the Goodness-of-fit measures. They show in simulations and
empirical datasets that the TOT achieves better estimation on het-
erogeneous treatment effects than many standard methods. How-
ever, this work does not focus on identifying subgroups that differ
from average users.

[31] develops a causal forest method based on the idea of the
causal tree model in [3] and the extension of the well-known ran-
dom forest algorithms proposed in [10]. This paper is, to our best
knowledge, the first one to conduct both the estimation and the
inference on heterogeneous treatment effects. However, this work
also focuses on estimation inference on the HTE instead of un-
derstanding systematically which subgroup do/do not differ from
average users.

Besides, [8] develops a two-stage method for finding HTE, and
[28] proposes to combine observational and experimental data to
study HTE.

Although the above-mentioned works have contributed a lot
into the study of estimating the HTE or drawing inference from the
HTE, to the best of our knowledge, there is no literature trying to
deal with the potential multiple testing problem when we conduct
analysis for the HTE. For example, using L1 penalty in a regres-
sion model may help us to select a set of variables that potentially
causes the heterogeneity in treatment effect, but it is possible that
a large proportion of the selected variables are false positives. It
is important to solve the multiple testing problem, otherwise the
reproducibility of result will be low.

5.3 False Discovery Rate
In our proposal, we focus on controlling the false discovery rate
(FDR) in order to deal with the multiple testing problem. The con-
cept of FDR was first introduced by Benjamini and Hochberg in
[5] and they propose Benjamini and Hochberg (BH) procedure to
control the FDR level under the asusmption that the test statistics
are independent. [7] extends the BH procedure to BH-Y procedure
which allows the test statistics to have positive dependency. [6]
later develop a two-stage method for FDR control under positive
dependency, and they argue that this is the best option when the
degree of dependence is unknown.

Recently, a novel method called ‘Knockoff’ is proposed in [4] to
control FDR. The Knockoff approach serves as a variable selection
and simultaneously control the FDR during the selection procedure.

6 SUMMARY AND FUTUREWORK
In this paper, we propose the HTE-BH method for detecting het-
erogeneous subgroups with treatment effects different from the
average, and propose the HTE-Knockoff method for detecting fac-
tors contributing to the heterogeneity in treatment effects. While
the HTE-BH method is easier to implement, the HTE-Knockoff has
wider application as it can also be used to detect heterogeneous fac-
tors. Our proposed methods have good power for detection and in
the meantime deal with the multiple testing problem by controlling
FDR level.

In spite of their wide application scenarios, our current methods
still have some limitations and thus can be improved in future
research work.

The first limitation of our approach is the assumption of the true
model being a linear regression model with Gaussian error; the
theoretical properties of the original Knockoff method in [4] are
based on this assumption. Although we show in Figure 3 (c) and
(d) that the Knockoff method can still work well in FDR control in
some non-Gaussian error cases, it lacks theoretical proof for such
robustness. In addition, sometimes the true relationship between the
treatment effect and the variables are not linear, therefore, using
a linear regression may not be appropriate. Very recently, [11]
has proposed a model-free knockoff method, which, under some
conditions, can work on any kind of non-linear models. This idea
can be useful if we want to extend the HTE-Knockoff procedure to
a more generalized setting in future work.

Another unsolved problem is the scalability. We have tried the
idea of transformed design matrix to conduct HTE detection on
multiple experiments, but it turns out that the computational com-
plexity even increases. This problem is worth for further study
because most companies have a large number of A/B test results
available and it is not feasible for them to apply the HTE detection
method on the experiments one by one.
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