
Monocular Depth Estimation via Deep Structured Models
with Ordinal Constraints

Daniel Ron∗

CMU / Amazon
dron@alum.mit.edu

Kun Duan
Snap Inc.

kun.duan@snap.com

Chongyang Ma
Snap Inc.

cma@snap.com

Ning Xu
Snap Inc.

ning.xu@snap.com

Shenlong Wang
University of Toronto
slwang@cs.toronto.edu

Sumant Hanumante
Snap Inc.

shanumante@snap.com

Dhritiman Sagar
Snap Inc.

dman@snap.com

Abstract

User interaction provides useful information for solving
challenging computer vision problems in practice. In this
paper, we show that a very limited number of user clicks
could greatly boost monocular depth estimation performance
and overcome monocular ambiguities. We formulate this task
as a deep structured model, in which the structured pixel-
wise depth estimation has ordinal constraints introduced
by user clicks. We show that the inference of the proposed
model could be efficiently solved through a feed-forward
network. We demonstrate the effectiveness of the proposed
model on NYU Depth V2 and Stanford 2D-3D datasets. On
both datasets, we achieve state-of-the-art performance when
encoding user interaction into our deep models.

1. Introduction
Depth prediction from a monocular RGB image is very

useful in applications such as augmented reality, image re-
focusing, face parsing, etc., where coarse depth information
is required but no additional source of signals exists (e.g.,
depth sensor and camera motion). However, estimating
depth from a single image is inherently an ill-posed problem,
due to the ambiguous mapping between the 3D geometry
of shapes and their appearance. State-of-the-art methods
([7, 14, 10, 15, 21, 34, 9, 33]) achieve promising results,
estimating the depth from monocular images through deep
learning algorithms. However, the inherent ambiguities
of monocular depth estimation make predicting detailed
geometry difficult. Even in trivial cases, the insufficient
training data can lead to prediction failure.

People have demonstrated that it is possible to use depth
prediction models for post-capture applications (e.g. refocus,
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Figure 1: Overview of our work: we estimate depth from single
input RGB image (a) while preserving the ordinal constraints
provided by relative depth orders in the form of a click pair
(b). Such ordinal constraints are modeled by our ADMM depth
refinement network and the base network output (c) is passed
through ADMM network modules to generate the refined depth
prediction (d). We show the ground truth depth (e) as comparison.

background blur) that do not require real-time processing. In
this work, we help the system correct and, consequently,
improve the depth estimation result by leveraging user
interactions. Such a semi-automatic system can be effective
because simple user interactions like pairs of clicks can
provide useful prior information about ambiguous regions.

The computer vision community has a long history
of using small amounts of user interactions to remove
ambiguities in computer vision tasks. For example, past
research has investigated interactive image matting [26],
intrinsic image decomposition [3] and image foreground
segmentation [23, 35]. However, there is no existing
work that investigates how user interaction could improve
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monocular depth estimation at test time.
Based on this key observation, we propose a novel

system for interactively predicting depth from a single RGB
image. We formulate the task as a constrained quadratic
programming problem with user interactions modeled as
ordinal constraints. Figure 1 illustrates the idea of such
constrained inference with ordinal relations. To solve the
problem, we derive an iterative ADMM solver which can
be implemented as standard neural network modules. We
augment deep neural networks with this structured model
to refine depth prediction results based on additional hard
constraints.

In summary, our contributions are threefold. First, we
propose including user interaction as ordinal constraints
for monocular depth estimation tasks. Second, we derive
and implement a novel deep structured model that handles
such hard constraints. Lastly, we evaluate our proposed
monocular depth estimation neural network on state-of-the-
art datasets and show that our novel strategy outperforms
baseline methods, both quantitatively and qualitatively.

2. Related Work
Training fully automatic machine learning systems for

monocular depth estimation is a very challenging task. It
requires curating large scale representative training datasets
as well as sophisticated models, such as very deep neural
networks [25, 13, 28]. Recent approaches on end-to-end
deep neural networks for monocular depth estimation try to
leverage extra signals (segmentation, surface normals, depth
gradient or camera aperture [18, 31, 7, 16, 5, 21, 27]) to help
solve such ambiguities. Although these methods explicitly
explore the information hidden inside RGB images or depth
maps, the depth inference problem itself still remains ill-
posed. As discussed below, our work is related to a few
important topics.

Deep structured models. A Markov Random Field
(MRF) captures structured information in label space
through unary potentials (or data terms) and pairwise
potentials (or smoothness terms). MRF models are flexible
to model complex relations with Markov or higher order
relations. Efficient inference exists if potential functions
are of particular forms, and training can be done discrim-
inatively [30, 8]. Recent work on deep neural nets shows
that such MRF inference can be rewritten as neural net layer
operations and therefore the parameters can be learned using
standard backprop gradient descent [11, 32, 36, 22]. For
example, [32] proposes proximal net which rewrites proxi-
mal gradient descent rules as a combination of convolution,
deconvolution, and non-linear activations. Our approach for
modeling user interactions is related to this method because
we formulate such guidance using ordinal pairs in an MRF.
We use a similar primal-dual method and the Alternating
Direction Method of Multipliers (ADMM) framework [36]

Figure 2: Our end-to-end network for monocular depth estimation
with ordinal constraints. Such hard constraints are embedded
into ADMM modules as network forward passes. Each ADMM
module represents one iteration of ADMM update step for y, z, λ
and ξ. Base network can be any network that generates possibly
ambiguous monocular depths. We choose FCRN [15] as our base
network in all our experiments.

to solve the depth prediction problem.
Human-in-the-loop. Our work is related to active

learning or human-in-the-loop [6]. In such a framework,
models are trained in an iterative manner by integrating
user feedback as part of the loss function. In our work, we
model user click pairs as ordinal constraints and use them
to improve depth estimation models learned from single
view RGBD training data. Our method can be formulated
into active learning framework with iteratively added user
click pairs based on the incorrect depths that current model
predicts on a validation set. We simulate user click pairs
from ground truth depths in our experiments and leave the
exploration of active learning framework as worthwhile
future explorations.

Modeling ordinal relations. Past research shows that
humans are good at estimating relative depth order between
points rather than metric depth values [29]. [4] studies
the problem by designing a ranking loss function with such
relative depth orderings, and training their model on a large
set of weakly annotated web images. [37] solves a similar
problem but uses constrained quadratic programming on
superpixel segmentations. Both of these methods rely on
ordinal click pairs only at the training time, while ours
aims at adding such ordinal constraints at inference time
via an MRF, as well as learning the parameters through
neural network backpropagation. We design our own neural
network modules where each forward pass implements one
iteration of the corresponding ADMM update rules. This
allows us to train the network in an end-to-end fashion.

Modeling single view priors. There are other types of
prior information that can also help improve monocular



depth estimation. For example, segmentation cues have
been used to refine depth prediction [31, 17]. Such
segmentation priors provide semantic boundary information
in the scene and are particularly useful in preserving depth
discontinuity at segmentation boundaries. In addition, some
recent methods propose using 3D signals such as surface
normals [7, 5] and depth gradients [16] to train the model for
depth estimation. Our proposed method allows the flexibility
to incorporate such segmentation-aware or gradient-aware
priors in the form of high order potentials. Extra priors can
always augment end-to-end neural nets but do not fit into the
scope of this paper.

Our work is most relevant to [4] which trains an end-
to-end neural network on annotations of relative depth.
Their approach is able to train monocular depth estimation
models on a much larger scale of data even when accurate
ground truth depths are not available. Our proposed method
differs from using annotations of relative depth during the
training process. Instead, we encode relative depth orders
as hard constraints at the inference time. We show that such
interactions provide useful guidance at ambiguous pixels
and significantly improve the depth prediction quality.

3. Approach
The user provides pairs of clicks which specify relative

orders between pairs of pixels in depth direction. We con-
sider such user guidance as pairwise ordinal constraints on
inferred depth estimations. We use a similar approach as [37]
and obtain such user guidance by sampling from ground truth
depth that simulate human perception. We first describe our
problem formulation as quadratic programming with linear
constraints (Section 3.1), and then explain the details of each
step in our proposed ADMM solver (Section 3.2). We show
how to convert our iterative algorithm into computation flow
with neural network operations (Section 3.3).

3.1. Objective Function

Let N be the total number of pixels in an image, x and
y are the vector representations for the input image and
refined depth we want to solve for. We assume our refined
depth values y are bounded within a range [0, D]. Given M
pairs of ordinal constraints from user guidance, our objective
function for optimizing y can be written as:

y∗ = argmin
y

fu(y,x) +
∑
α

fp(yα,x) (1)

s.t.

Ay ≤ B

where A =

−II
P

, B =

 0
D1
0

, I is the identity matrix,

0 and 1 are vectors of all 0s and 1s. fu(y,x) is the unary

potential encoding the prediction from a base deep neural
network. fp(yα,x) is the high-order potential encoding
spatial relationship between neighboring pixels. Ay ≤ B
encodes the hard constraints for ordinal relations. The first
two parts in A and B ensure that the refined depth outputs
are within the valid range [0, D]. P is a M × N matrix
encoding M different ordinal constraints. We use Pkj = 1
and Pkj′ = −1 if (j, j′) is an ordinal pair where k ≤M .

First we assume our unary potentials fu are of the
form fu(y,x;w) = 1

2‖y − h(x;w)‖22 which measures the
squared L2 distance between y and h(x;w). In our case
of estimating depths, h(x;w) indicates the output from a
base depth prediction network (e.g. Eigen [7] or FCRN [15])
parameterized by the network weights w. Minimizing the
unary terms is equivalent to minimizing the mean squared
error between refined depths and base network outputs.

We assume our high-order potentials fp to be of the
form fp(yα,x;w) = hα(x;w)gα(Wαy). Here Wα

denotes a transformation matrix for a filtering operation,
and hα(x;w) provides per-pixel guidance information that
places stronger local smoothness for pixels on low-frequency
edges (similar to bilateral filter [20] or guided filter [12]). In
our implementation, we assume hα(x;w) is constant for all
the pixels since our goal is to demonstrate improvement
from ordinal constraints. We designate edge-aware or
segmentation-aware priors as future work.

3.2. Inference with Deep Structured Network

To solve for refined depth values y, we apply the
ADMM algorithm due to its capability of handling non-
differentiable objectives and hard constraints, as well as
its fast convergence. We introduce auxiliary variables
z = {z1, . . . , zA} and rewrite the above formulation in
Equation 1 as:

y∗ = argmin
y

1

2
‖y − h(x;w)‖22 +

∑
α

hα(x;w)gα(zα) (2)

s.t.

Ay ≤ B

Wαy = zα, zα ∈ z

The augmented Lagrangian of the original objective
function can then be written as:

Lρ(x,y, z,λ, ξ) =
1

2
‖y − h(x;w)‖22 +

∑
α

hα(x;w)gα(zα)

+
∑
α

ρα
2
‖Wαy − zα‖22 + λT (Ay −B)

+
∑
α

ξTα (Wαy − zα)

where ρα is a constant penalty hyperparameter and λ, ξ
are Lagrange multipliers with λ ≥ 0. We iteratively solve



for variables y, z,λ, ξ by alternating between the following
subproblems.

Solve for refined depth y. We calculate the derivative
of Lagrangian function with respect to y to obtain its update
rule:

ỹ = argmin
y

1

2
‖y − h(x;w)‖22 +

∑
α

ρα
2
‖Wαy − zα‖22

+ λT (Ay −B) +
∑
α

ξTα (Wαy − zα)

= (I+
∑
α

ραW
T
αWα)

−1
(
h(x,w)−ATλ

+
∑
α

WT
α (ραzα − ξα)

)
Intuitively, this step uses the term ATλ to encode the

ordinal constraints and adjust the outputs from base network.
The depths are refined iteratively in a forward pass through
ADMM network modules.

Solve for auxiliary variables z. Let gα(·) = ‖ · ‖1
be the L1 smoothness priors on y and S(a, b) be the soft
thresholding function. We solve a Lasso problem to obtain
the update rules for z:

z̃ = argmin
{zα}

hα(x;w)gα(zα) +
ρα
2
‖Wαy − zα‖22

+
∑
α

ξTα (Wαy − zα)

And for each zα, we have:

z̃α = argmin
zα

hα(x;w)gα(zα) +
ρα
2
‖Wαy − zα‖22

+ ξTα (Wαy − zα)

= S(Wαy +
ξα
ρα
,
hα(x;w)

ρα
)

Solve for Lagrange multipliers λ and ξ. We can obtain
a update rule for λ using gradient ascent as below:

λ̃ = max(argmax
λ

λ(Ay −B), 0)

= max(λ+ η(Ay −B), 0)

Similarly for each ξα, we have gradient ascent update
rule:

ξ̃α = argmax
ξα

ξTα (Wαy
(n) − zα)

= ξα + τα(Wαy − zα)

where η and τα are the hyperparameters denoting gradient
update step sizes.

Our ADMM solver is iterative, and can be precisely
implemented using a recurrent neural network. In practice,

we do not share the weights in ADMM modules and we fix
the number of iterations. This change allows us to implement
our ADMM solver using a standard convolutional neural
network with customized activation functions. A sketch of
our end-to-end network with ADMM modules is shown in
Figure 2.

3.3. Implementation Details

Here we discuss the implementation details of each step in
our ADMM solver. We design an ADMM network module
to run one iteration of the above update rules (Section 3.2).
We learn the filters that encode the transformation Wα using
standard back propagation. zα, ξα and λ are data tensors
and are initialized as zeros. We describe each layer in our
ADMM module and their forward pass as below.

The first layer in our ADMM module is used to solve for
refined depth y. Calculating the numerator corresponds to
applying a deconvolution (i.e. transposed convolution) step
on each ραzα − ξα and taking the sum of results together.
Calculating the denominator can be done by converting the
deconvolution kernels to optical transfer functions [36] and
taking the sum. It is possible to calculate the final output by
first applying fast Fourier transform (FFT) on the numerator
followed by an inverse FFT on the division result.

The second layer in our ADMM module is used to
solve for auxiliary variables z. This can be done with a
convolution layer on y, using the same filters shared with
the deconvolution layer. The convolution layer output is
passed through a non-linear activation layer that implements
a standard soft thresholding function S(a, b). In practice, we
implement this soft thresholding function using two ReLU
functions: S(a, b) = ReLU(a−b)−ReLU(−a−b). We also
do not force the convolution layer to share weights with the
deconvolution layer in order to increase network capacity.

The third and fourth layers in our ADMM module
correspond to gradient ascent steps that solve for Lagrange
multipliers λ and ξ. These steps can be implemented as
tensor subtraction and summation operations. We pass
the updated result of λ after gradient ascent through an
additional ReLU layer to satisfy the non-negative constraint
on λ.

In our experiments, we use five such modules for
our ADMM network, which corresponds to running our
solver for five iterations. Each ADMM module in our
implementation contains 64 transformations Wα, i.e. we
have 64 filters in each convolution and deconvolution layers.
All the operations in our ADMM modules are differentiable
and therefore the entire network (base net with ADMM
network) can be learned end to end using gradient descent.
We choose standard mean squared error (MSE) as the loss
function in our experiments.



Figure 3: Root Mean Squared Error (RMSE) on NYU Depth V2
dataset with different numbers of click pairs K = 0, 1, 3, 5. For
an image with total sampled click pairs fewer than K, we simply
use all the click pairs available on that image. When K = 0,
our network runs without any ordinal constraints and becomes
equivalent to L1 regularized depth refinement network.

4. Experiments
4.1. Datasets

We evaluate our proposed approach on two state-of-the-
art RGBD datasets: NYU Depth V2 [19] and Stanford 2D-
3D-S [2]. We choose the state-of-art FCRN [15] as our
base network for predicting initial depth value. On the
NYU Depth V2 dataset, we finetune our end-to-end depth
refinement network on 795 training images using the pre-
trained FCRN network weights provided by the authors.
Stanford 2D-3D-S is much larger and contains 70 496 RGBD
images from five different indoor areas in total. We use a
subset of area 2, area 4 and area 5 for training and a subset of
area 1, area 3 and area 6 for testing [19]. Stanford 2D-3D-S
also provides a binary mask for invalid raw depth pixels.
We use such a binary mask to calculate loss only on valid
pixels at the training phase. At the testing phase, we also
mask out invalid pixels and only evaluate on valid pixels.
Standard data augmentation including random left/right flip
and random color distortion is applied when training our
models on the two datasets.

On both datasets, we also use the same configuration
for ADMM network modules. We set the constant penalty
hyperparameter ρ to be 0.5 and set the filter size in both
convolution and deconvolution layers to be 3. We initialize
z and ξ as all zeros, and initialize λ as all ones. The gradient
ascent step sizes for updating ξ and λ are set to be 1.5 and
10−6 respectively.

4.2. Sampling Click Pairs

We generate user click pairs as pairwise ordinal con-
straints, using a sampling strategy similar to [37]. Specif-
ically, we first divide the RGB input into regions via
superpixel segmentation [1] and create a graph by connecting

the centers of adjacent superpixels. We discard those
connections whose edge lengths are either shorter than 5%
or longer than 20% of the image diagonal length. For each
superpixel region, we compute the ground truth median
depth value and compare it with the median depth value
predicted by the base network. The superpixel pairs whose
relative median depth values are inconsistent between the
ground truth and base network predictions are retained as
click pair simulations.

Our sampling strategy preserves human perception, as
our goal is to allow humans to interactively refine the depth
predictions. In our implementation, sampled constraints are
represented as (0,+1,−1) ternary masks of input image size.
We use +1 and −1 to indicate the ordinal relation between
pixels in two superpixel regions, while 0 indicates no ordinal
constraint exists on the pixel.

We apply the sampling strategy described above on
both NYU Depth V2 and Stanford 2D-3D-S datasets. The
simulated click pairs are sparse. On average, 5.8 click pairs
are sampled on NYU Depth V2 and 12.6 click pairs are
sampled on Stanford 2D-3D-S for each image. During
training time, we randomly pick sampled click pairs as
ordinal constraints into our system.

4.3. Evaluation

Evaluation criteria. We compute the results on both
datasets using standard error metrics used by previous work,
including mean relative absolute error (MRAE), mean
absolute error in log space (Log10) and root mean squared
error (RMSE). We show that our proposed method performs
better quantitatively in terms of these error metrics. We also
show that the depth estimation results have been improved
qualitatively (Figure 5). In addition, we show that the
performance of our system improves as more user click
pairs are used.

We compare the performance of our proposed ADMM
network against baseline results. FCRN are the results
of the base network [15] evaluated on both datasets.
FCRN+ADMM(L1) are the results of using ADMM
modules with L1 smoothness priors on generated depth
map. FCRN+ADMM(L1+Ordinal) are our results of using
ADMM modules with one randomly sampled click pair
on input image as ordinal constraints together with L1
smoothness priors. The quantitative results are summarized
in Table 1.

Discussions. On both datasets, FCRN+ADMM(L1)
improves over the baseline FCRN method. Compared with
the output generated from base network, L1 terms help
improve the quality at depth discontinuity boundaries and
tend to make the output look more crisp (Figure 4). Among
all the methods, FCRN+ADMM(L1+Ordinal) achieves
the best results. We compare the visual quality of refined
depths generated by FCRN+ADMM(L1+Ordinal) against



NYU Depth V2 Stanford 2D-3D-S
MRAE Log10 RMSE MRAE Log10 RMSE

Wang et al., [31] 0.220 0.094 0.745 – – –
Eigen and Fergus, [7] 0.158 – 0.641 – – –
Roy and Todorovic, [24] 0.187 0.078 0.744 – – –
FCRN, [15] 0.127 0.055 0.573 – – –
FCRN, [15]* 0.147 0.063 0.657 0.226 0.096 0.848
FCRN + ADMM (L1) 0.147 0.062 0.647 0.221 0.094 0.831
FCRN + ADMM (L1 + Ordinal) 0.146 0.062 0.636 0.219 0.094 0.825

Table 1: Depth estimation results on NYU Depth V2 (left) and Stanford 2D-3D-S (right) datasets. *Our own evaluation of the FCRN
network on both of the datasets. We evaluated the TensorFlow model released by [15] on NYU Depth V2 dataset but were not able to
reproduce the numbers reported in the paper.

(a) Input (b) FCRN (c) FCRN+ADMM(L1) (d) Ground truth

Figure 4: Qualitative comparisons between (b) the base network output (FCRN) and (c) our ADMM network with L1 priors
(FCRN+ADMM(L1)) on input images shown in (a).

the predicted depth generated by base network (Figure 5).
We further experiment with different number of click pairs
as extra input on NYU Depth V2 dataset (Figure 3). Our
network structure is flexible enough to take any number of
constraints as input at runtime. The performance of our
system will be increasingly improved as more click pairs are
added.

5. Conclusion
In this paper, we present an end-to-end neural network

for monocular depth estimation that takes click pairs as extra
input to allow for user interactions. We formulate such
click pairs using pairwise ordinal constraints into a quadratic
program problem and propose an ADMM solver to itera-

tively generate refined depth predictions constrained by such
ordinal relations. Our proposed network shows competitive
performance compared to state-of-the-art baselines on two
challenging benchmark datasets. In future work, we will
explore using prior terms with edge information or semantic
segmentation masks from input images to integrate into our
ADMM network modules. One limitation of our approach
is that we need to pre-generate the click pairs for training.
We will study how to use an active learning or human-in-
the-loop approach to dynamically feed the network with
ordinal constraints, that are generated on the fly during the
training stage. Another interesting direction is to relax the
hard constraints into weighted soft constraints, in case there
are some inaccurate ordinal pairs from user interactions.



(a) Input (b) FCRN (c) Our results (d) Ground truth

Figure 5: Qualitative results on NYU Depth V2 (top three rows) and Stanford 2D-3D-S (bottom two rows) datasets. (a) Ordinal constraints
are visualized as red arrows pointing from a closer click to another further point. We compare (c) our ADMM network with ordinal
constraints and L1 priors (FCRN+ADMM(L1+Ordinal)) to (b) the FCRN base network.
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