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ABSTRACT

For chroma intra prediction, previous methods exemplified
by the Linear Model method (LM) usually assume a linear
correlation between the luma and chroma components in a
coding block. This assumption is inaccurate for complex im-
age content or large blocks, and restricts the prediction ac-
curacy. In this paper, we propose a chroma intra prediction
method by exploiting both spatial and cross-channel correla-
tions using a hybrid neural network. Specifically, we utilize
a convolutional neural network to extract features from the
reconstructed luma samples of the current block, as well as
utilize a fully connected network to extract features from the
neighboring reconstructed luma and chroma samples. The ex-
tracted twofold features are then fused to predict the chroma
samples–Cb and Cr simultaneously. The proposed chroma
intra prediction method is integrated into HEVC. Preliminary
results show that, compared with HEVC plus LM, the pro-
posed method achieves on average 0.2%, 3.1% and 2.0% BD-
rate reduction on Y, Cb and Cr components, respectively, un-
der All-Intra configuration.

Index Terms— Chroma intra prediction, convolutional
neural network, fully connected network, hybrid neural net-
work.

1. INTRODUCTION

Recently, the constantly increasing video resolution raises
more and more severe challenge to video compression tech-
niques. High Efficiency Video Coding (HEVC), which is
finalized by experts from the Joint Collaborative Team on
Video Coding, is the state-of-the-art video coding standard
[1]. Compared to its predecessor, H.264 [2], HEVC achieves
approximately the same subjective quality with around 50%
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less bit rate. Despite the superior performance of HEVC, effi-
ciency of video compression techniques still cannot meet the
bandwidth and storage demand for the explosively growing
video contents. Advanced video compression methods are in
urgent need.

The chroma intra prediction in HEVC consists of three
directional prediction modes, one direct current (DC) mode
and one planar mode [3]. Directional prediction modes gen-
erate prediction of the current block by a directional extrapo-
lation from the neighboring reconstructed samples at the up-
per and left boundaries. During the development of HEVC,
some advanced chroma intra prediction methods have been
investigated. For example, considering the built-in coding
order of the three channels, i.e. luma component is com-
pressed and reconstructed before chroma components, Kim et
al. proposed the Linear Model method (LM) for chroma intra
prediction [4]. LM assumes a linear correlation between the
luma and chroma components in a coding block, and predicts
chroma samples from reconstructed luma samples using lin-
ear regression. The regression parameters are not transmitted,
but rather derived from the reconstructed neighboring luma
and chroma samples. LM reported promising results, which
inspired following-up researches on improving LM [5, 6, 7].
However, these subsequent improved versions all inherit the
linear correlation assumption, which is inaccurate for com-
plex image content or large coding blocks.

Recent years have witnessed a great success of convo-
lutional neural network (CNN) in computer vision and im-
age processing, such as image recognition [8], image super-
resolution [9] and image recoloring [10], etc. For example, in
image recoloring, the objective is to infer color information
from grayscale images. Iizuka et al. proposed an end-to-
end CNN for automatic recoloring of grayscale images [10].
They used a combination of global image priors, which are
extracted from the entire image, and local image features,
which are computed from small image patches, in the pro-
posed CNN.

Inspired by the image recoloring using CNN, we would
like to investigate a neural network-based approach for
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chroma intra prediction. However, different from image
recoloring where luma information of the entire image is
available, chroma intra prediction in video coding usually
operates at block level. Thus, the CNN needs redesign. We
are then motivated by the LM method that exploits not only
cross-channel correlation but also spatial correlation, in ac-
cordance to the block-based coding scheme.

In this paper, we propose a chroma intra prediction
method using a hybrid neural network. Specifically, we
utilize a convolutional neural network to extract features
from the reconstructed luma samples of the current block,
as well as utilize a fully connected network to extract fea-
tures from the neighboring reconstructed luma and chroma
samples. The extracted twofold features are then fused to
predict the chroma samples. The fusion is empirically de-
signed as element-wise product in network. The two chroma
components–Cb and Cr–are predicted in a single network to
reduce complexity. To deal with variable block size in HEVC,
we adopt the same network structure but empirically set dif-
ferent hyperparameters for different sized blocks. Owing to
the powerful learning capacity of neural network, the pro-
posed method outperforms LM and its variants and achieves
significant BD-rate reduction.

The remainder of this paper is organized as follows. Sec-
tion 2 elaborates the structure of the proposed hybrid neural
network. Section 3 discusses the integration of the proposed
method into HEVC. Experimental results and analyses are
presented in Section 4, followed by conclusions in Section 5.

2. THE PROPOSED HYBRID NEURAL NETWORK

Although both LM and the proposed method predict chroma
components from luma samples, our prediction pipeline dif-
fers from LM in two folds. On the one hand, we adopt fully
connected layers to extract useful information from neighbor-
ing samples, while LM simply “reuses” the linear regression
parameters. On the other, instead of modeling a linear rela-
tion between luma and chroma components like in LM, we
embrace more complex convolutional layers to model the un-
derlying correlation between the luma and chroma compo-
nents.

The structure of the proposed hybrid neural network is
illustrated in Fig. 1. We will discuss the detailed structure
of the fully connected layers, the convolutional layers and the
fusion layer in the following.

2.1. Convolutional layers

We apply two convolutional layers to extract feature maps
from the reconstructed luma samples of the current block.
In this section, we take the block of 32×32 luma samples
and YUV 4:2:0 format as example. The cases of other block
sizes are similar and will be detailed in Section 3. The recon-
structed luma samples are down-sampled by a factor of 2 to

have the same resolution with the chroma samples, and then
fed into the convolutional neural network. Denote the down-
sampled luma samples as X ∈ R16×16, the output of the first
convolutional layer (equipped with ReLU non-linearity) will
be

C1(X) = max(0,W1 ∗X +B1) (1)

where W1 and B1 represent the convolutional filters and bi-
ases of the first layer, respectively, C1 ∈ R128×16×16 indi-
cates the 128 feature maps of the first layer, and ∗ stands for
convolution. Note that proper padding is applied to ensure the
feature maps are of the same resolution as input.

The feature maps extracted by the first layer are taken as
input to the second layer, while the second layer is represented
as

C2(X) =

{
C21(X) = max(0,W21 ∗C1(X) +B21)

C22(X) = max(0,W22 ∗C1(X) +B22)

(2)
where (C21(X),C22(X)), (W21,W22), (B21,B22) are the
extracted feature maps, convolutional filters, and biases, re-
spectively. Here we explicitly employ two sets of convolu-
tional kernels with different kernel sizes in the second layer,
since the combination of different sized kernels is capable in
effectively aggregating multi-scale information [11, 12], The
output feature maps C21 and C22 by different sized kernels
are directly concatenated into C2 ∈ R128×16×16, which is
then fed into the next layer.

The third convolutional layer has a similar mapping func-
tion to the second convolutional layer except that the multi-
scale kernel sizes are different. Finally, the predicted chroma
samples are derived using the fourth convolutional layer. Note
that the two chroma components are predicted using a single
network to reduce complexity.

2.2. Fully connected layers

As depicted in Fig. 1, three successive fully connected lay-
ers are adopted to extract information from the neighboring
reconstructed samples. The neighboring reconstructed luma
samples are down-sampled by a factor of 2, and the samples at
the upper and left boundaries, in total 33 samples are used as
input. Similarly, the neighboring reconstructed chroma sam-
ples at the upper and left boundaries, in total 33×2 samples,
are also used as input. Thus the input consists of 99 samples,
and is denoted by Y ∈ R99. The output of the last fully con-
nected layer is a 128-dimensional feature vector, denoted as
F3 ∈ R128.

2.3. Fusion layer

The fusion layer integrates the neighboring information, i.e.
F3, with the feature maps of the luma samples of the current
block, i.e. C2. First, we tile the vector F3 into the matrix
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Fig. 1. The structure of the proposed hybrid neural network, where the numbers and sizes (lengths) of feature maps (vectors)
are shown on top of them, and “+” stands for concatenation of feature maps.

T ∈ R128×16×16:

T i
u,v = F i

3 , i ∈ [1, 128], u, v ∈ [1, 16] (3)

Then we perform the fusion by element-wise product. Ac-
cording to our empirical results, this simple operation is easy
to train and works well:

Fusioni
u,v = T i

u,v × (C2)
i
u,v, i ∈ [1, 128], u, v ∈ [1, 16]

(4)
Another interpretation of the fusion operation is a piecewise
linear modeling of the correlation between the luma and
chroma components in the embedded feature space.

3. INTEGRATION INTO HEVC

3.1. Dealing with variable block size

In HEVC, intra prediction operates according to the transform
block (TB) size [1]. Since the TB sizes vary from 4 × 4 up
to 32 × 32, and the chroma TB size is half of the luma TB
size (YUV 4:2:0), the prediction sizes of chroma components
actually include 4 × 4, 8 × 8 and 16 × 16. To handle input
blocks with different sizes, we use the same network structure
as shown in Fig. 1 but with different hyperparameters for
different sized blocks.

While there are several kinds of hyperparameters, such
as the amount of feature maps, the size of kernels, etc, to
consider when dealing with different sized blocks, our pre-
liminary results suggest that the amount of feature maps (or
nodes in the fully connected layers) is the most important fac-
tor. Therefore, we fix the other hyperparameters, and attempt
to adjust the proper amount of feature maps (nodes) for each
network. The final settings are shown in Table 1. We empiri-
cally set fewer feature maps (nodes) for smaller sized blocks,
since small blocks typically contain relatively simple content
for which simple network with less parameters can capture
the underlying correlation between the luma and chroma com-
ponents.

Table 1. The amount of feature maps (nodes) in each layer
of the networks for different sized blocks: 4 × 4, 8 × 8 and
16× 16.

Type # Feature Maps (Nodes)
4× 4 8× 8 16× 16

conv. 32 64 128
conv. 24,8 48,16 96,32
conv. 24,8 48,16 96,32
conv. 2 2 2
FC 64 128 256
FC 49 98 196
FC 32 64 128

3.2. Integration into HEVC

To evaluate the proposed chroma intra prediction method, two
new prediction modes including the LM and the proposed one
are integrated into HEVC for chroma component intra coding,
in addition to the existing ones. When the proposed mode
is used, the Cb and Cr components are predicted simultane-
ously using the trained hybrid neural network. The encoder
will choose the best prediction mode for each prediction unit,
according to the minimum rate-distortion cost criterion.

4. EXPERIMENTAL RESULTS

In order to train the proposed hybrid neural network, we use
the DIV2K [13], which is a newly released high-quality high-
resolution image dataset containing 800 training images, to
generate training data. The Caffe software [14] is used to
train CNN models. We do not distinguish QP when generat-
ing training data, so in total we have 3 models corresponding
to the 3 possible TB sizes.

We have integrated both LM and the proposed method
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Table 2. BD-rate results of the proposed method. We com-
pare HM plus LM and the proposed method, with the scheme
of HM plus LM.

Class Sequence Y U V

Class A

Traffic –0.0% –2.1% –0.7%
PeopleOnStreet –0.2% –2.4% –2.5%
Nebuta –0.6% –9.2% –0.8%
SteamLocomotive –0.0% –9.1% 1.5%

Class B

Kimono –1.2% –5.4% 0.1%
ParkScene –0.7% –8.9% –0.7%
Cactus –0.0% –4.0% –3.8%
BQTerrace –0.2% 0.4% –1.9%
BasketballDrive –0.2% –3.6% –4.2%

Class C

BasketballDrill –0.3% –1.6% 0.7%
BQMall –0.1% –5.7% –3.4%
PartyScene –0.2% –4.6% –0.9%
RaceHorsesC –0.1% 0.6% –0.3%

Class D

BasketballPass –0.9% –1.3% –4.2%
BQSquare 0.4% 0.6% –0.3%
BlowingBubbles 0.4% –3.2% –7.8%
RaceHorses 0.4% –2.0% –1.8%

Class E
FourPeople –0.1% –1.8% –0.2%
Johnny 0.6% 0.4% –3.8%
KristenAndSara –0.4% 1.2% –5.2%
Average –0.2% –3.1% –2.0%

Table 3. Comparison with the results in [7], both results are
anchored on the scheme of HM plus LM.

Class The results in [7] Our results
Y U V Y U V

Class A 0.0% –2.2% –0.5% –0.2% –5.7% –0.6%
Class B –0.2% –1.2% –0.9% –0.5% –4.3% –2.1%
Class C –0.1% –1.2% –1.3% –0.2% –2.8% –1.0%
Class D –0.2% –0.8% –1.9% 0.1% –1.5% –3.5%
Class E –0.2% –0.9% –1.6% 0.1% –0.1% –3.1%
Average –0.2% –1.2% –1.3% –0.2% –3.1% –2.0%

Fig. 2. This figure shows the CUs that choose different
modes. CUs with blue boundary are predicted using the pro-
posed method, CUs with red boundary are predicted with LM.

into the HEVC reference software–HM version 12.01. For
experiments, we use the all-intra configuration suggested by
the common test conditions [15]. The QP is set to 27, 32, 37,
42. We adopt BD-rate [16] to evaluate the relative compres-
sion efficiency. Test sequences include 20 video sequences
of different resolutions known as Classes A, B, C, D, E [15].
Class F consists of screen content videos and thus is excluded
as the CNN models are trained with natural images.

The overall results are summarized in Table 2. Here,
we compare the scheme of HM plus LM and the proposed
method, with the scheme of HM plus LM. That is, the gain
is achieved by our method on top of LM. It can be observed
that our proposed method achieves on average 0.2%, 3.1%,
and 2.0% BD-rate reduction on Y, U, and V, respectively.
Reasonably the BD-rate is more significant for the chroma
components. It is worth noting that the proposed method
performs especially well on Classes A and B, which we con-
jecture is due to the similar resolutions of the Classes A, B
and the training images.

To the best of our knowledge, the method in [7] achieves
the best performance among those improved versions of LM.
In Table 3, we compare our results with those reported in
[7] under the same experimental setting. It can be observed
that the proposed method outperforms the method in [7] with
a large margin, especially for high-resolution sequences, i.e.
Classes A and B.

For visual inspection, Fig. 2 displays the selected chroma
prediction modes for the sequence BQMall. We can observe
that our proposed mode is selected mostly for the regions
with rich textures or structures. Also, our proposed mode can
be selected for quite large blocks but LM is mostly used for
smaller blocks. Such results demonstrate that our proposed
method can better predict chroma components where the sim-
ple linear correlation assumption does not hold true.

5. CONCLUSION

We have proposed a hybrid neural network, which consists
of a fully connected network and a convolutional neural net-
work, for chroma intra prediction. The feature vector com-
puted by the fully connected network serves as spatial in-
formation to weigh the feature maps extracted by the con-
volutional neural network. Experimental results show the ef-
fectiveness of the proposed method. Visual inspection fur-
ther demonstrates that the proposed method is more efficient
than the previous linear correlation assumption-based meth-
ods. Currently, our proposed method incurs a high computa-
tional complexity due to the neural network. In the future, we
will investigate more simple network structures to reduce the
complexity while maintain the prediction accuracy.

1https://hevc.hhi.fraunhofer.de/svn/svn_
HEVCSoftware/tags/HM-12.0/
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