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ABSTRACT
Why is a given point in a dataset marked as an outlier by
an off-the-shelf detection algorithm? Which feature(s) ex-
plain it the best? What is the best way to convince a hu-
man analyst that the point is indeed an outlier? We pro-
vide succinct, interpretable, and simple pictorial explana-
tions of outlying behavior in multi-dimensional real-valued
datasets while respecting the limited attention of human an-
alysts. Specifically, we propose to output a few pictures
(focus-plots, ie., pairwise feature plots) from a few, carefully
chosen feature sub-spaces. The proposed LookOut makes
four contributions: (a) problem formulation: we intro-
duce an “analyst-centered” problem formulation for explain-
ing outliers via focus-plots, (b) explanation algorithm:
we propose a plot-selection objective and the LookOut al-
gorithm to approximate it with optimality guarantees, (c)
generality: our explanation algorithm is both domain- and
detector-agnostic, and (d) scalability: LookOut scales lin-
early with the size of input outliers to explain and the expla-
nation budget. Our experiments show that LookOut per-
forms near-ideally in terms of maximizing explanation objec-
tive on several real datasets, while producing fast, visually
interpretable and intuitive results in explaining groundtruth
outliers from several real-world datasets.

1. INTRODUCTION
Given a multi-dimensional dataset of real-valued features,

e.g., sensor measurements, and a list of outliers (identified
by an off-the-shelf“black-box”detector or any other external
mechanism), how can we explain the outliers to a human
analyst in a succinct, effective, and interpretable fashion?

Outlier detection is a widely studied problem. Numer-
ous detectors exist for point data [1, 5, 19], time series
[12], as well as graphs [2, 3]. However, the literature on
outlier explanation or description is perhaps surprisingly
sparse. Given that the outcomes (alerts) of a detector often
go through a “vetting” procedure by human analysts, it is
extremely beneficial to provide explanations for such alerts
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!Name ! ! !Score!
!****************** ! !********!
!Skilling,!Jeff ! !0.893!
!Lay,!Kenneth ! !0.761!
!Fastow,!Andrew !0.442!
!Mark,!Rebecca !0.429!
!Smith,!John ! !0.331!
!Cooper,!Stephen !0.308!
!Tomson,!Mary! !0.232!
!... ! ! ! !...!

TradiMonal:!
!!"verbal"
"!"lengthy"
"!"no"explana1on"

Proposed:!
!!"visual"
"!"succinct"
"!"interpretable"

Figure 1: LookOut explains Enron founder/CEO “Ken
Lay” and COO “Jeff Skilling” by two “pair plots” in which
they are most salient. Compared to traditional ranked
list output (left), LookOut produces simpler, more inter-
pretable explanations (right).

which can empower analysts in sensemaking and reduce their
efforts in troubleshooting and recovery. Moreover, such ex-
planations should justify the outliers succinctly in order to
save analyst time.

Our work sets out to address precisely the above outlier
explanation problem. Consider the following example sit-
uation: Given performance metrics from hundreds of ma-
chines within a large company, an analyst could face two
relevant scenarios.
• Detected outliers: For monitoring, s/he could use any

“black-box” outlier detector to spot machines with sus-
picious values of metric(s). Here, we are oblivious to
the specific detector, knowing only that it flags out-
liers, but does not produce any interpretable explana-
tion.
• Dictated outliers: Alternatively, outlying machines may

get reported to the analyst externally (e.g., they crash
or get compromised).

In both scenarios, the analyst would be interested in under-
standing in what ways the pre-identified outlying machines
(detected or dictated) differ from the rest.

In this work, we propose a new approach called LookOut,
for explaining a given set of outliers, and apply it to various,
relational and non-relational, settings. At its heart, Look-
Out provides interpretable pictorial explanations through
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simple, easy-to-grasp focus-plots (Definition 1), which “in-
criminate” the given outliers the most. We summarize our
contributions as follows.
• Outlier Explanation Problem Formulation: We

introduce a new formulation that explains outliers through
“focus-plots” (Definition 1). In a nutshell, given the
list of outliers from a dataset with real-valued fea-
tures, we aim to find a few 2D plots on which the
total “blame” that the outliers receive is maximized.
Our emphasis is on two key aspects: (a) interpretabil-
ity : our plots visually incriminate the outliers, and
(b) succinctness: we show only a few plots to respect
the analyst’s attention; the analysts can then quickly
interpret the plots, spot the outliers, and verify their
abnormality given the discovered feature pairs.
• Succinct Quantifiable Explanation Algorithm Look-

Out: We propose the LookOut algorithm to solve
our explanation problem. Specifically, we develop a
plot selection objective, which quantifies the ‘good-
ness’ of an explanation and lends itself to monotone
submodular function optimization, which we solve effi-
ciently with optimality guarantees. Figure 1 illustrates
LookOut’s performance on the Enron communica-
tions network, where it discovers two focus-plots which
maximally incriminate the given outlying nodes: En-
ron founder “Ken Lay” and CEO “Jeff Skilling.” Note
that the outliers stand out visually from the normal
nodes.
• Generality: LookOut is general in two respects: it is

(a) domain-agnostic, meaning it is suitable for datasets
from various domains, and (2) detector-agnostic, mean-
ing it can be employed to explain outliers produced by
any detector or identified through any other mecha-
nism (e.g., crash reports, customer complaints, etc.)
• Scalability: We show that LookOut requires time

linear on (i) the number of plots to choose explanations
from, (ii) the number of outliers to explain and (iii)
the user-specified budget for explanations (see Lemma
5 and Fig. 5).

We experiment with several real-world datasets from di-
verse domains including e-mail communications and astron-
omy, which demonstrate the effectiveness, interpretability,
succinctness and generality of our approach.

Reproducibility: Our datasets are publicly available
(See Section 5.1) and LookOut is open-sourced at
https://github.com/NikhilGupta1997/Lookout.

2. RELATED WORK
While there is considerable prior work on outlier detec-

tion [6, 3, 12], literature on outlier description is comparably
sparse. Several works aim to find an optimal feature sub-
space which distinguishes outliers from normal points. [14]
aims to find a subspace which maximizes differences in out-
lier score distributions of all points across subspaces. [17] in-
stead takes a constraint programming approach which aims
to maximize differences between neighborhood densities of
known outliers and normal points. An associated problem
focuses on finding minimal, or optimal feature subspaces for
each outlier. [15] aims to give “intensional knowledge” for
each outlier by finding minimal subspaces in which the out-
liers deviate sufficiently from normal points using pruning
rules. [7, 8] use spectral embeddings to discover subspaces
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Budget-conscious 4 4
Visually interpretable 4
Scalable 4 4 4 4

Figure 2: Comparison with other outlier description ap-
proaches, in terms of four desirable properties.

which promote high outlier scores, while aiming to preserve
distances of normal points. [20] instead employs sparse clas-
sification of an inlier class against a synthetically-created
outlier class for each outlier in order to discover small fea-
ture spaces which discern it. [16] proposes combining deci-
sion rules produced by an ensemble of short decision trees
to explain outliers. [4] augments the per-outlier problem to
include outlier groups by searching for single features which
differentiate many outliers.

All in all, none of these works meet several key desiderata
for outlier description: (a) quantifiable explanation quality,
(b) budget-consciousness towards analysts (returning expla-
nations which do not grow with size of the outlier set), (c)
visual interpretability, and (d) a scalable descriptor, which
is sub-quadratic on the number of nodes and at worst poly-
nomial on (low) dimensionality. Fig. 2 shows that unlike
existing approaches, our LookOut approach is designed to
give quantifiable explanations which aim to maximize in-
crimination, respect human attention-budget and visual in-
terpretability constraints, and scale linearly on the number
of graph edges.

3. PRELIMINARIES AND PROBLEM STATE-
MENT

3.1 Notation
Let V be the set of input data points, where each point

v ∈ V originates from Rd and n = |V| is the total number
of points. Here, d = |F| is the dimensionality of the dataset
and F = {f1, f2, . . . , fd} is the set of real-valued features
(either directly given, or extracted, e.g., from a relational
dataset). The set of outlying points given as input is denoted
by A ⊆ V, |A| = k. Typically, k � n.

3.2 Intuition & Proposed Problem
The explanations we seek to generate should be simple

and interpretable. Moreover, they should be easy to illus-
trate to humans who will ultimately leverage the explana-
tions. To this end, we decide to use focus-plots (Definition 1)
for outlier justification, due to their visual appeal and inter-
pretability. A formal definition is given below.

Definition 1 (Focus-plot). Given a dataset of points
V, a pair of features fx, fy ∈ F (where F is the set of real-
valued features) and an input set of outliers A, focus-plot
p ∈ P is a 2-d scatter plot of all points with fx on x-axis, fy
on y-axis with ‘drawing attention’ to the set of “maxplained”

https://github.com/NikhilGupta1997/Lookout


Table 1: Symbols and Definitions

Symbol Definition

V Set of data points, |V| = n
A Input set of outliers, |A| = k
F Set of features, |F| = d
P Set of focus-plots, |P| = d(d− 1)/2 = l
si,j Outlier score of ai ∈ A in plot pj ∈ P
S Subset of selected focus-plots

f(S) Explanation objective function
∆f (p | S) Marginal gain of plot p w.r.t S

b Budget, i.e., maximum cardinality of S

(maximally explained) outliers Ap ⊆ A best explained by this
feature pair.

Intuitively, our pictorial outlier explanation is a set of
focus-plots, each of which “blames” or “explains away” a sub-
set of the input outliers, whose outlierness is best showcased
by the corresponding pair of features. That is, we consider(
d
2

)
= d(d−1)

2
2-d spaces by generating all pairwise feature

combinations. Within each 2-d space, we then score the
points in A by their outlierness (Section 4.1).

Let us denote the set of all
(
d
2

)
focus-plots by P. Even

for small values of d, showing all the focus-plots would be
too overwhelming for the analyst. Moreover, some outliers
could redundantly show up in multiple plots. Ideally, we
would identify only a few focus-plots, which could “blame”
or “explain away” the outliers to the largest possible extent.
In other words, our goal would be to output a small subset
S of P, on which points in A receive high outlier scores
(Section 4.2).

Given this intuition, we formulate our problem:

Problem 1 (Outlier Explanation).
• Given (a) a dataset on points V consisting of real-

valued features F ,
(b) a list of outliers A ⊆ V, either (1) detected by an

off-the-shelf detector or (2) dictated by external
information, and

(c) a fixed budget of b focus-plots,
• find the best such focus-plots S ⊆ P, |S| = b
• to maximize the total maximum outlier score of out-

liers that we can “blame” through the b plots.

4. PROPOSED ALGORITHM LookOut

In this section, we detail our approach for scoring the
input outliers by focus-plots, our plot selection objective and
algorithm for choosing focus-plots, the overall complexity
analysis of LookOut, and conclude with discussion.

4.1 Scoring by Feature Pairs
Given all the points V, with marked outliers A ⊆ V, and

their given (or extracted) features F ∈ Rd, our first step is to
quantify how much “blame” we can attribute to each input
outlier in R2. As previously mentioned, 2-d spaces are easy
to illustrate visually with focus-plots. Moreover, outliers in
2-d are easy to interpret: e.g.,“point a has too many/too few
y=dollars for its x=number of accounts”. Given a focus-plot,
an analyst can easily discern the outliers visually and come
up with such explanations without any further supervision.

We construct 2-d spaces (fx, fy) by pairing the features
∀x, y = {1, . . . , d}, x 6= y (order does not matter). Each
focus-plot pj ∈ P corresponds to such a pair of features, j =
{1, . . . ,

(
d
2

)
}. For scoring, we consider two different scenarios,

depending on how the input outliers were obtained.
If the outliers are detected by some “black-box” detector

available to the analyst, we can employ the same detector
on all the nodes (this time in 2-d) and thus obtain the scores
for the nodes in A.

If the outliers are dictated, i.e. reported externally, then
the analyst could use any off-the-shelf detector, such as LOF
[5], DB-outlier [15], etc. In this work, we use the Isolation
Forest (iForest) detector [19] for two main reasons: (a) it
boasts constant training time and space complexity (i.e., in-
dependent of n) due to its sampling strategy, and (b) it has
been shown empirically to outperform alternatives [9] and
is thus state-of-the-art. However, note that none of these
existing detectors has the ability to explain the outliers, es-
pecially iForest, as it is an ensemble approach.

By the end of the scoring process, each outlier receives
|P| = l =

(
d
2

)
scores.

4.2 Plot Selection Objective
While scoring in small, 2-d spaces is easy and can be

trivially parallelized, presenting all such focus-plots to the
analyst would not be productive given their limited atten-
tion budget. As such, our next step is to carefully select a
short list of plots that best blame all the outliers collectively,
where the plot budget can be specified by the user.

While selecting plots for justification, we aim to incorpo-
rate the following criteria:
• incrimination power; such that the outliers are scored

as highly as possible,
• high expressiveness; where each plot incriminates

multiple outliers, so that the explanation is sublinear
in the number of outliers, and
• low redundancy; such that the plots do not explain

similar sets of outliers.

We next introduce our objective criterion which satisfies the
above requirements.

4.2.1 Objective function

Figure 3: LookOut with k=4 outliers, l=3 focus-plots,
and budget b=2. p1 is picked first due to maximum total
incrimination (sum of edge weights = 2.9). Next p3 is chosen
over p2, due to its higher marginal gain (0.4 vs 0.2).

At this step of the process, we can conceptually think of
a complete, weighted bipartite graph between the k input



Algorithm 1 LookOut

Input: dataset of points V, outliers A, set of all possible
focus-plots P, budget b

Output: pictorial outlier explanation S, which is a set of
focus-plots

1: for pj ∈ P do
2: Dj ← iForest constructed using V and the two fea-

tures used in plot pj
3: for ai ∈ A do
4: si,j ← anomaly score given by detector Dj to point

ai
5: end for
6: end for
7: initialize S ← ∅
8: while |S| < b do
9: recompute marginal gain ∆f (p | S) ∀ p ∈ P \ S using

Eq. (4) / lines 9-10 can be

10: p∗ ← arg maxp∈P\S ∆f (p | S) efficiently implemented

using

11: S ← S ∪ {p∗} lazy greedy heuristic (e.g., [18])

12: end while
13: return S

outliers A = {a1, . . . , ak} and l focus-plots P = {p1, . . . , pl},
in which edge weight si,j depicts the outlier score that ai
received from pj , as illustrated in Fig. 3.

We formulate our objective to maximize the total maxi-
mum outlier score of each outlier amongst the selected plots:

maximize
S⊆P,|S|=b

f(S) =
∑
ai∈A

max
pj∈S

si,j (1)

Here, our objective function, f(S), can be considered the
total incrimination score given by subset S. Since we are
limited with a budget of plots, we aim to select those which
explain multiple outliers to the best extent. Note that each
outlier receives their maximum score from exactly one of
the plots among the selected set (excluding ties), which ef-
fectively partitions the explanations and avoids redundancy.
In the example from Fig. 3, focus-plots p1 and p3 “explain
away” outliers {a1, a2, a3} and {a4} respectively, where the
maximum score that each outlier receives is highlighted in
red font.

Concretely, we denote by Ap the set of maxplained (max-
imally explained) outliers by focus-plot p, i.e., outliers that
receive their highest score from p, i.e. Ap = {ai|p = maxpj∈S si,j},
where we break ties at random. Note that Ap ∩ Ap′ =
∅, ∀ p, p′ ∈ P. In depicting a plot p to the analyst, we
mark the set of maxplained outliers Ap in red and the rest
in A\Ap in blue – see Fig. 1.

4.3 Approximation Algorithm LookOut

Having defined our plot selection objective, we need to
devise a subset selection algorithm to optimize Eq. (1), for
a budget b. Notice that the optimal subset selection is a
combinatorial task which we can show to be NP-hard.

Lemma 1. The focus-plot selection problem in Eq. (1) is
NP-hard.

Proof. We sketch the proof by a reduction from the
Maximum Coverage (MaxCover) problem, which is known
to be NP-hard [10]. An instance of MaxCover involves an in-

teger k and a collection of sets {S1, . . . , Sl} each containing a
list of elements, where the goal is to find k sets such that the
total number of covered elements is maximized. The Max-
Cover problem instance maps to an instance of our problem,
where each set Sj corresponds to a focus-plot pj , each ele-
ment ei maps to an outlier ai, and the elements (outliers)
inside each set has the same unit score (si,j = 1 for ei ∈ Sj)
while the others outside the set has score zero (si,j = 0 for
ei /∈ Sj) on the corresponding focus-plot. Since MaxCover
is equivalent to a special case of our problem, we conclude
that Eq. (1) is at least as hard as MaxCover. �

Therefore, our aim is to find an approximation algorithm
to optimize Eq. (1).

4.3.1 Properties of our objective
Fortunately, our objective f(·) exhibits three key prop-

erties that enable us to use a greedy algorithm with an ap-
proximation guarantee. Specifically, our objective f : 2|P| →
R+ ∪ {0} is (i) non-negative, since the outlier scores take
non-negative values, often in [0, 1], e.g., using iForest [19],
(ii) non-decreasing (see Lemma 2) and (iii) submodular (see
Lemma 3).

Lemma 2 (Monotonicity). f is non-decreasing, i.e.,
for any S ⊆ T , f(S) ≤ f(T ).

Proof.

f(S) =
∑
ai∈A

max
pj∈S

si,j ≤
∑
ai∈A

max
pj∈T

si,j = f(T )

�

Lemma 3 (Submodularity). f is submodular, i.e., for
any two sets S ⊆ T and a focus-plot pj∗ ∈ P \ T , f(S ∪
{pj∗})− f(S) ≥ f(T ∪ {pj∗})− f(T ).

Proof.

f(S ∪ {pj∗})− f(S)

=
∑
ai∈A

[
max

pj∈S∪{pj∗}
si,j −max

pj∈S
si,j

]

=
∑
ai∈A

(
si,j∗ −max

pj∈S
si,j

)
· I
[
si,j∗ > max

pj∈S
si,j

]

≥
∑
ai∈A

(
si,j∗ − max

pj∈T
si,j

)
· I
[
si,j∗ > max

pj∈S
si,j

]
(2)

≥
∑
ai∈A

(
si,j∗ − max

pj∈T
si,j

)
· I
[
si,j∗ > max

pj∈T
si,j

]
(3)

=f(T ∪ {pj∗})− f(T )

where I [·] is the indicator function and Eq. (2) and Eq. (3)
follow from the fact that maxpj∈S si,j ≤ maxpj∈T si,j when-
ever S ⊆ T . �

4.3.2 Proposed LookOut algorithm
Submodular functions which are non-negative and non-

decreasing admit approximation guarantees under a greedy
approach identified by Nemhauser et al. [22]. The greedy
algorithm starts with the empty set S0. In iteration t, it
adds the element (in our case, focus-plot) that maximizes
the marginal gain ∆f in function value, defined as

∆f (p|St−1) = f(St−1 ∪ {p})− f(St−1) (4)



That is,

St := St−1 ∪ { arg max
p∈P\St−1

∆f (p|St−1) } .

This leads to LookOut explanation algorithm, given in Al-
gorithm 1. Its approximation guarantee is given in Lemma 4.

Lemma 4 (63% approximation guarantee). Given A,P
and budget b, let Ŝ be the output of LookOut (Algorithm 1).
Suppose S∗ = arg maxS⊆P,|S|=b f(S) is an optimal set of
focus-plots. Then:

f(Ŝ) ≥
(

1− 1

e

)
f(S∗) (5)

Proof. This follows from [22] since by design, our plot se-
lection objective f is non-negative, non-decreasing and sub-
modular. �

4.4 Computational Complexity Analysis

Lemma 5. LookOut total time complexity is O(l logn′(k+
n′) + klb), for sample size n′ < n, and is sub-linear in total
number of input points n.

Proof. We study complexity in two parts: (1) scoring
the given outliers (Section 4.1) and (2) selecting focus-plots
to present to the user (Section 4.2).

(1) For each focus-plot, we train an iForest model [19] in
2-d. Following their recommended setup, we sub-sample n′

points and train t (100 in [19]) randomized isolation trees.
The depth of each tree is O(logn′), where each point is eval-
uated at each level for the threshold/split conditions. There-
fore, training iForest with t trees takes O(tn′ logn′). Then,
scoring |A| = k outliers takes O(tk logn′). Total complexity
of training and scoring on all plots is O(lt logn′(k + n′)).
Note that this can also be done per plot independently in
parallel to reduce time.

(2) At each iteration of the greedy selection algorithm,
we compute the marginal gain for each yet-unselected plot
of being added to our select-set in O(kl). Marginal gain
per plot can also be computed independently in parallel.
Among the remaining plots, we pick the one with the largest
marginal gain. Finding the maximum among all gains takes
O(l) via a linear scan. We repeat this process b times until
the budget is exhausted. Total selection complexity is thus
O(klb).

The overall complexity of both parts is effectivelyO(l logn′(k+
n′) + klb), since t is a constant. �

Notice that the total number of focus-plots, l=d2, is quadratic
in number of features. Typically, d is small (<100). In high
dimensions, we could either use parallelism (multi-core ma-
chines are commodity), or drop features with low kurtosis
as done earlier [19] or other feature selection criteria [13].

4.5 Discussion
Here we answer some questions that may be in the reader’s

mind.
1. How do we define “outlier?” We defer this question to the
off-the-shelf outlier detection algorithm (iForest [19], LOF
[5], etc.) Our focus here is to succinctly and interpretably
explain what makes the pre-selected items stand out from
the rest.

2. Why focus-plots? Using focus-plots for justification is
an essential, concious choice we make for several reasons:

Table 2: Datasets with labeled outliers (that we explain)
studied in this work.

Dataset Type # points # features Description

Enron1 graph 151 12 e-mail communications
Dblp2 graph 1.3M 12 co-authorship
Htru3 feature 17.9K 8 pulsar identification
Glass4 feature 213 9 glass composition

(a) scatterplots are easy to look at and quickly interpret
(b) they are universal and non-verbal, in that we need not
use language to convey the outlierness of points – even peo-
ple unfamiliar with the context of Enron will agree that the
point “Jeff Skilling” in Fig. 1 is far away from the rest, and
(c) they show where the outliers lie relative to the normal
points – the contrastive visualization of points is more con-
vincing than stand-alone rules.

3. How do we choose the budget b? We designed our objec-
tive function to be budget-conscious, and let the budget be
specified by the analyst (user). If not specified, we use b=7,
since humans have a working memory of size “seven, plus or
minus two” [21].

4. Why not decision trees to separate outliers from the rest?
While arguably interpretable, decisions trees are not easy to
visualize the points when higher than depth 3. Moreover,
they try to find balanced splits which would try to cluster
the outliers – which is unlikely for outliers. Also, decision
trees are not budget-conscious, i.e. they would not necessar-
ily produce the minimum description. Finally, they do not
provide any quantifiable explanations, i.e. incrimination per
outlier like our si,j scores – the splits are binary.

5. EXPERIMENTS
In this section, we empirically evaluate LookOut on three,

diverse datasets. Our experiments were designed to answer
the following questions:
[Q1] Quality of Explanation: How well can LookOut

“explain” or “blame” the given outliers?
[Q2] Scalability: How does LookOut scale with the in-

put graph size and the number of outliers?
[Q3] Discoveries: Does LookOut lead to interesting and

intuitive explanations on real world data?
These are addressed in Sec. 5.3, 5.4 and 5.5 respectively. Be-
fore detailing our empirical findings, we describe the datasets
used and our experimental setup.

5.1 Dataset Description
To illustrate the generality of our proposed domain-agnostic

pictorial outlier explanations algorithm LookOut, we short-
list our datasets from diverse domains: - e-mail communi-
cation (Enron), coauthorship (Dblp), pulsar identification
(Htru), and glass composistion (Glass). All datasets are
publicly available and the first two are unipartite, directed
and undirected respectively, time evolving graph datasets.
The latter two are multi-feature datasets consisting of con-
tinuous values. A brief description is given below and a
summary is provided in Table 2.

1
http://networkdata.ics.uci.edu/netdata/html/EnronMailUSC1.

html
2
http://konect.uni-koblenz.de/networks/dblp coauthor

3
https://archive.ics.uci.edu/ml/datasets/Glass+Identification

4
https://archive.ics.uci.edu/ml/datasets/HTRU2

http://networkdata.ics.uci.edu/netdata/html/EnronMailUSC1.html
http://networkdata.ics.uci.edu/netdata/html/EnronMailUSC1.html
http://konect.uni-koblenz.de/networks/dblp_coauthor
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/HTRU2


Enron: This dataset consists of 19K emails exchanged be-
tween 151 Enron employees during the period surrounding
the scandal5 (May 1999-June 2002). The communications
are on daily granularity.
Dblp: This dataset contains the co-authorship network of
1.3M authors over 25 years from 1990 to 2014. The networks
are collected at yearly granularity.
Htru: This dataset describes a sample of pulsar candidates
collected during the High Time Resolution Universe Survey.
Samples have been binary classified as either noise or pulsars
(rapidly rotating neutron star). Features are extracted from
the radio emission pattern curves and profiles.
Glass: This dataset consists of a multiclass classification of
glass samples with element-wise composisions of each sample
as features. There are a total of seven classes which are
clustered into two distinct types: (Class 1-4) window glass
and (Class 5-7) non-window glass.

5.2 Experimental Setup
Graph feature extraction: We extract the following

intuitive and easy-to-understand features from our graph
datasets (Enron, Dblp) in order to generate pictorial ex-
planations: (1) indegree and (2) outdegree for the num-
ber of unique in- and out- neighbors of every node, (3)
inweight-v and (4) outweight-v for the total weight of
in- and out- edges incident on each node, (5) inweight-r

and (6) outweight-r for the count of in- and out- edges
(including repetitions) incident on each node, (7) average-

IAT, (8) IAT-variance, (9 - 11) minimum-IAT, median-IAT,
and maximum-IAT to capture various statistics of inter-arrival
time (IAT) between edges and finally, (12) lifetime- for the
time gap between the first and the last edge [11, 23, 2].

Groundtruth: To obtain“ground-truth”outliers for Look-
Out input, we use the iForest [19] algorithm on given or
extracted features. This yields a ranked list of points with
scores in [0, 1] (higher value suggests higher abnormality),
from which we pick the desired top k. Analogously, we use
iForest for computing the outlier score in each focus-plot.
We note that the analyst is free to choose any outlier de-
tector(s) for both/either of the above stages, making Look-
Out detector-agnostic. However, it is recommended that
the same methods be used for both stages to ensure ranking
similarities.

Evaluation metric: We quantify the quality of expla-
nation provided by a set of plots S using its incrimination
score which is a normalized form of our objective:

incrimination(S) =
1

C
· f(S) (6)

where C is the normalization constant equal to the maxi-
mum achievable objective (see Eq. (1)) when all plots are
selected, i.e., C = f(P).

Baselines: Due to the lack of comparable prior works,
we use a näıve version of our approach, called LookOut-
Näıve which ignores the submodularity of our objective.
Instead, LookOut-Näıve assigns a score to each plot by
summing up scores for all given outliers and chooses the top
b plots for a given budget b. For the sake of comparison,
we compare both LookOut and LookOut-Näıve with a
Random baseline in which random b plots are chosen for
the given budget b.

All experiments were performed on an OSX personal com-

5
https://en.wikipedia.org/wiki/Enron scandal

Enron (a) Enron (b)

Htru (c) Glass (d)

Figure 4: LookOut explains away top 10-20 outliers with
4-5 plots. Results shown on Enron (a-b) with k = {10, 20}
outliers (left to right), Htru (c) with 32 outliers and Glass
(d) with 28 outliers.

Figure 5: LookOut scales linearly with (left) number
of focus-plots to consider and (right) number of outliers.

puter with 16GB memory. Runtimes were averaged over 10
trials.

5.3 Quality of Explanation
Fig. 4 compares the incrimination scores of both LookOut-

Näıve and LookOut on the Enron, Htru and Glass
datasets for several choices of k and b. The red dotted
line indicates the ideal value, f(P), i.e., the highest achiev-
able incrimination (by selecting all plots). Fig. 4 shows that
LookOut consistently outperforms LookOut-Näıve and
rapidly converges to the ideal incrimination with increas-
ing budget. Results on Dblp were similar, but excluded for
space constraints.

5.4 Scalability
We empirically studied how LookOut runtime varies with

(i) number of focus-plots l and (ii) the number of outliers k.
To study the variation of runtime with the number of

focus-plots, we vary the number of features which are taken
into consideration. Fig. 5 (left) illustrates linear scaling with
respect to number of focus-plots for the Glass dataset.

We also study the variation of runtime with the number
of outliers, as feature extraction incurs a constant overhead
on each dataset. Fig. 5 (right) illustrates linear scaling with
respect to number of outliers for a Dblp subgraph with 10K
edges.

https://en.wikipedia.org/wiki/Enron_scandal


(a) (b)

Figure 6: Discoveries using LookOut on detected
outliers: LookOut partitions and explains outlier detec-
tion results from iForest on Dblp (a-b).

Htru Glass

(a) (d)

(b) (e)

(c) (f)

Figure 7: Discoveries using LookOut on dictated
outliers: LookOut explains outlier characteristics on
Htru (a-c) and Glass (d-f) for budget b = 3.

5.5 Discoveries
In this section, we present our discoveries using Look-

Out on all four real world datasets. Scoring in 2-d was
performed using iForest with t = 100 trees and sample size
ψ = 64 (Enron, Htru, Glass) and ψ = 256 (Dblp). We
use dictated outliers for Enron, Htru and Glass, and de-
tected outliers for Dblp dataset to demonstrate performance
in both settings.

Enron (CEO & CFO explained by large outdegree)
We used two top actors in the Enron scandal, Kenneth
Lay (CEO) and Jeff Skilling (CFO) as dictated outliers
for LookOut and sought explanations for their abnormal-
ity based on internal e-mail communications. With b =
2, LookOut produced the plots shown in Fig. 1 (right).
Explanations indicate that Jeff Skilling had an unsually

large IAT-max for the number of employees he communi-
cated with (outdegree). On the other hand, Kenneth Lay
sent emails to an abnormally large number of employees
(outdegree) given the time range during which he emailed
anyone (lifetime).

Dblp (high h-index authors explained by large lifetime and
high co-authorships)
We obtained ground truth outliers by running iForest on
the high-dimensional space spanned by the extracted graph
features. With k = 5, the detected outlying authors were
Jack Dongarra, Thomas S. Huang, Alberto L. Sangiovanni-
Vincentelli, H. Vincent Poor, and Hao Wang. The expla-
nations provided by LookOut with b = 2 are shown in
Fig. 6a-b. Thus, the outlying authors users are partitioned
into two groups. The members of the first group, Jack Don-
garra, Thomas S. Huang, Alberto L. Sangiovanni-
Vincentelli, and H. Vincent Poor are outlying because they
had usually high duration during which they published pa-
pers (lifetime) and total number of co-authorships (inweight-
r). This is consistent with their high h-indices obtained
from their respective google scholar pages (see brackets in
Fig. 6a). The second group consists of only Hao Wang,
who was also outlying in this plot, but is best explained by
very high IAT-variance for his inweight-r value, shown in
Fig. 6b.

Htru (pulsars correlated with skewness and extra kurtosis
of integrated profile)
We were given radio emmision samples classified as either
random noise or produced from a pulsar. We subsampled
32 datapoints labeled as pulsars and considered them as
our set of dictated outliers. We ran LookOut on this
dataset with b = 3 and obtained the explainations shown
in Fig. 7a-c. We immediately observe a striking correla-
tion of skewness of the integrated profile and excess

kurtosis of the integrated profile with the samples la-
beled as pulsars. High values of skewness and excess kur-

tosis seem to strongly indicate the radio emmision was pro-
duced from a pulsar. We observe that only the first plot,
Fig. 7a, succeeds to provide an explanation for pulsars. This
is quantitatively explained in Fig. 4c where budget b = 1
has a high incrimination score and on further increasing the
budget a small marginal gain is observed.

Glass (headlamp glass explained by high Aluminium and
Barium content)
We were given seven classes pertaining to different types
of glass. Broadly these seven classes are split into two cate-
gories: window based glass (class 1-4) and non-window based
glass (class 5-7). We stitched together a subset of the orig-
inal dataset by including only classes 1, 2, 3, 4 & 7, where
class 7 (headlamps) is considered the set of dictated outliers.
The explanations provided by LookOut, on the newly con-
structed dataset, with b = 3 are shown in Fig. 7d-f. We ob-
serve general trends such as higher aluminium and barium

concentrations in headlamps as compared to window glass.
Aluminium is used as a reflective coating and the presence of
barium, in the form of oxides (borosilicate glass), helps in-
duce heat resistant properties. Also, we observe a very low or
nearly zero concentration of potassium in headlamp glass.
Potassium is to used to toughen glass and is observed in
window glass which needs to be resistant to adverse weather
conditions.

Note that on all datasets, outlying points are clearly vi-



sually distinguishable, and often complementary between
focus-plots. This is in line with our desired explanation task,
and achieved as a result of our LookOut subset selection
objective and approach.

6. CONCLUSIONS
In this work, we formulated and tackled the problem of

succinctly and interpretably explaining outliers to human
analysts. We made the following contributions: (a) prob-
lem formulation: we formulate our goal for explaining out-
liers using a budget of visually interpretable focus-plots, (b)
explanation algorithm: we propose a submodular objec-
tive to quantify explanation quality and propose the Look-
Out method for solving it approximately with guarantees,
(c) generality: we show that LookOut can work with di-
verse domains and any detection algorithm, and (d) scal-
ability: we show theoretically and empirically that Look-
Out scales linearly in the number of input outliers. We con-
duct experiments on real e-mail communication, co-authorship,
pulsar idenification and glass composition and demonstrate
that LookOut produces qualitatively interpretable expla-
nations for“ground-truth”outliers and achieves strong quan-
titative performance in maximizing our proposed objective.
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