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ABSTRACT
Sentiment analysis of online user generated content is im-
portant for many social media analytics tasks. Researchers
have largely relied on textual sentiment analysis to devel-
op systems to predict political elections, measure econom-
ic indicators, and so on. Recently, social media users are
increasingly using additional images and videos to express
their opinions and share their experiences. Sentiment anal-
ysis of such large-scale textual and visual content can help
better extract user sentiments toward events or topics. Mo-
tivated by the needs to leverage large-scale social multimedia
content for sentiment analysis, we propose a cross-modality
consistent regression (CCR) model, which is able to utilize
both the state-of-the-art visual and textual sentiment anal-
ysis techniques. We first fine-tune a convolutional neural
network (CNN) for image sentiment analysis and train a
paragraph vector model for textual sentiment analysis. On
top of them, we train our multi-modality regression model.
We use sentimental queries to obtain half a million training
samples from Getty Images. We have conducted extensive
experiments on both machine weakly labeled and manually
labeled image tweets. The results show that the proposed
model can achieve better performance than the state-of-the-
art textual and visual sentiment analysis algorithms alone.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Vision and Scene Understand-
ing; I.5.4 [Pattern Recognition]: Applications—Comput-
er vision

Keywords
sentiment analysis, cross-modality regression, multimodality
analysis

1. INTRODUCTION
The increasing popularity of social networks attracts more

and more people to share their experiences and to express
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PD Achilles meets a new 
friend. Special post for 
one of our followers who 
I met last night and had a 
good chat to

If anyone woke up in 
edinburgh this morning 
to discover their car 
missing i think i know 
where it is

Hello there sweetie. :)

(a) (b) (c)

Figure 1: Examples of image tweets from Twitter.

their opinions on virtually all events and subjects in online
social network platforms. Each day, billions of messages
and posts are generated. In this study, we focus on deriving
people’s opinions or sentiments towards topics and events
happening in real world. In other words, we are interest-
ed in automatical detection of sentiment from online user
generated content.

Figure 1 shows several example image tweets from Twit-
ter. Image tweets refer to those tweets that contain images.
If we take a look at these three example image tweets, we
can observe that in example (a), both image and the tex-
t indicate that this tweet carries a positive sentiment; in
(b) while it is difficult to tell the sentiment from the image
in the middle image tweet, however, we can tell that this
tweet expresses positive sentiment from the text; in (c) on
the contrary, it is hard to tell the sentiment from the text,
however the worn-out car in the image suggest an overall
negative sentiment. These examples explain the motivation
for our work. We would like to learn people’s overall senti-
ment over the same object from different modalities of the
object provided by the user. In particular, we focus on in-
ferring people’s sentiment according to the available images
and the short and informal text.

Many researchers have contributed to sentiment analysis.
For instance, there are related works on detecting users’ sen-
timent and applying sentiment analysis to predict box-office
revenues for movies [1], political elections [23, 29] and eco-
nomic indicators [3, 35]. In particular, recently published
works started to focus on analyzing sentiment of informally
user generated content from online social networks. How-
ever, current techniques are mostly based on the analysis
of textual content to detect sentiment. On the other hand,



visual content, including both images and videos, are be-
coming increasingly popular in all mainstream online social
network platforms. For example, Twitter’s support of im-
age tweets and Vine as well as Facebook’s Instagram are all
designed to support people to share and post more visual
content. More interestingly, statistics show that the usage
of image in a tweet is able to increase the popularity of this
tweet in terms of clicks , retweets, and favorites1. This can
encourage Twitter users to post more visual content. We
cannot ignore the prevalently available visual content in an-
alyzing online users’ sentiment.

To the best of our knowledge, little attention has been
paid to the sentiment analysis of visual content as well as
multi-modality sentiment analysis. Only a few recent works
attempted to predict visual sentiment using features from
images [25, 5, 4, 34] and videos [21]. Visual sentiment anal-
ysis is extremely challenging, as image sentiment involves
a much higher level of abstraction and subjectivity in the
human recognition process [16], on top of a wide variety
of visual recognition tasks including object, scene, action
and event recognition. However, Convolutional Neural Net-
works [19, 7, 17] have been proved to be very powerful in
solving computer vision related tasks. Due to the challenges
of visual sentiment analysis, we propose a multi-modality
framework to analyze sentiment on top of state-of-the-art
techniques in both visual and textual analysis.

To that end, we address in this work two major challenges
as follows: 1) we propose a novel multi-modality regression
model, which can integrate different modality features for
sentiment analysis, and 2) we demonstrate the feasibility of
using weakly labelled data for multi-modal sentiment anal-
ysis and how to easily transfer models from one domain to
another domain. The contributions of this paper include

• We employ the state-of-the-art machine learning algo-
rithms to a solve a challenging novel problem, multi-
modality sentiment analysis. In particular, we adopt
Convolutional Neural Networks [17, 32] to visual sen-
timent analysis and employ the state-of-the-art dis-
tributed representation of documents [18] for textual
sentiment analysis.

• We propose a novel multi-modality regression mod-
el, CCR, which tries to impose consistent constraints
across related but different modalities. The formula-
tion of the model is simple yet generalizable and can
be easily implemented. The analysis and experimental
results on sentiment analysis validate the effectiveness
of the proposed model.

• Our model can be trained on a large scale data set in
a mini-batch mode. In particular, we show that it is
possible to employ weakly labeled data to learn models
for highly abstract tasks, such as sentiment analysis
and achieve satisfying performance.

• To evaluate our model against competing algorithms,
we build a manually labeled sentiment data set using
Amazon Mechanical Turk. This data set will be re-
leased to the research community to promote further
investigations on both textual and visual sentiment.

1http://tinyurl.com/lb4xkak

2. RELATED WORK
For sentiment analysis of online user generated textual

content, dictionaries based approaches [29, 2, 8, 13] have
been widely used due to its efficiency and simplicity. Very
recently, distributed representation of words started to at-
tract research attention due to its ability in learning robust
features for words [20]. Le and Mikolov [18] further pro-
posed an approach to learn distributed representation for
documents. They applied their document representations
to sentiment analysis and achieve the best performance over
existing competing algorithms.

There are also several recent works on visual sentiment
analysis. The work in [25] is a machine learning algorithm
to predict the sentiment of images using pixel-level color his-
togram and SIFT bag of words visual features. Motivated
by the fact that sentiment involves high-level abstraction,
which may be easier to explain by objects or attributes in
images, both [4] and [34] proposed to employ visual entities
or attributes as features for visual sentiment analysis. In [4],
1200 adjective noun pairs (ANP) are extracted to crawl im-
ages from Flickr. The responses of the trained 1200 ANP
classifiers can be considered as mid-level features for visu-
al sentiment analysis. The work in [34] employed a similar
mechanism but using 102 scene attributes instead. More
recently, You et al. [32] proposed a progressively trained
Convolutional Neural Network for visual sentiment analy-
sis. Compared with other approaches that employ low-level
or mid-level features, CNN achieved the state-of-the-art per-
formance in predicting image sentiments. A bench-marking
analysis of CNN on emotion analysis is proposed in [33].

There are only a few publications on analyzing sentiment
using multi-modalities, such as text and images. Both [30]
and [6] employed both text and images for sentiment anal-
ysis, where late fusion is employed to combine the predic-
tion results of using n-gram textual features and mid-level
visual features [4]. In addition, researchers have investigat-
ed cross-modal issues in other multimedia retrieval related
tasks. Rasiwasia et al. [24] employed canonical correlation
analysis (CCA) to learn the correlations between visual fea-
tures and textual features for image retrieval. Besides that,
Feng et al. [10] further developed so-called correspondence
autoencoder for cross-modal retrieval, where a code layer is
shared between the visual and textual autoencoder for un-
supervised learning of parameters. Ngiam et al. [22] also
proposed a multimodal unsupervised deep learning model,
which achieved the best published results in visual speech
classification. Meanwhile, Nitish and Ruslan [28] employed
multimodal deep Boltzmann machine to learn joint repre-
sentation of images and text by the sharing of high-level ab-
stract representation. On the other hand, learning semantic
mappings between visual and textual feature spaces has be-
come popular due to the success of deep learning. Socher et
al. [26] learned the semantic mappings in order to classify
unseen visual classes. Frome et al. [11] employed hinge loss
instead of using squared loss in their objective function to
learn the semantic mapping between words and deep visu-
al features for image annotation. Socher et al. [27] tried to
even learn the transformation between sentence description-
s and images by margin based loss function on Recursive
Neural Network and Convolutional Neural Network. More
recently, Gong et al. [12] employed largely weakly annotat-
ed images to help learn the visual and textual embedding in
their proposed stacked auxiliary embedding.



Inspired by these works on learning joint visual and tex-
tual models, we also rely on the recently successful deep
learning techniques to extract features from images and tex-
t. However, different from the previously mentioned works,
all of which are intended for unsupervised learning of shared
feature embedding space between images and short text for
image annotation or retrieval, our work intends to use super-
vised learning to enforce the consistency between the predic-
tion labels of different features for sentiment analysis.

3. CROSS-MODALITY CONSISTENT RE-
GRESSION (CCR)

In this section, we describe the details of our proposed
model. Our main motivation is that different modalities
should be consistent in terms of depicting the same subject.
In sentiment analysis, given multiple modalities, we expect
the utilization of features extracted from different modali-
ties, such as images and text, to achieve more accurate sen-
timent analysis results.

3.1 Cross-modality consistent regression
Our model accepts input from different modalities of the

same subject. The penalties between the predicted label
distributions of different modality features need to be taken
into consideration. To measure the penalty between any
two different predicted label distributions, we employ KL
divergence. In particular, let p and q denote two probability
distributions of the same length. We define D(p ‖ q) as the
sum of KL divergence between them.

D(p ‖ q) = DKL(p ‖ q) +DKL(q ‖ p) (1)

Assume we have a total of M different modalities and
a total of N training instances. If we consider a pair-wise
penalty of the given M modalities, we have to solve a total of(
M
2

)
penalty terms between any pair of modalities, which

may be too complicated for a relatively large M . Instead,
we first concatenate all the features from the M modalities
and add penalty terms between the M individual modality
features and the concatenated features. In this way, only
M penalty terms need to be added. Motivated by these ob-
servations, the objective function is formulated in Eqn. (2).
We denote by xm

i (for m ∈ {1, · · · ,M}) the m-th modality
features of the i-th instance and by xc

i the concatenated fea-
tures from all the M modality features of the i-th instance.
Θ = {θc, θ1, · · · , θM} are the parameters that needs to be
learned. λ and γs are the hyper parameters to control the
weights of different components in the proposed model.

min
Θ,λ,γ1,··· ,γM

J(Θ) =
1

N

N∑
i=1

D(yi ‖ pθc(x
c
i )) +

λ

2
θcT θc

+
λ

2

M∑
m=1

θmT θm +

M∑
m=1

γm
N

N∑
i=1

D(pθc(x
c
i ) ‖ pθm(xm

i ))

(2)

Let pθ(xi) be the prediction function for the label distribu-
tion of xi given the parameter vector θ. We use softmax
function to evaluate the probability distribution, which is
defined as

pθ(xi) =
1∑K

k=1 e
θT
k
xi

[e(θ
T
1 xi), e(θ

T
2 xi), · · · , e(θTKxi)]T , (3)

where K is the number of classes and θk is the parameter
vector for the k-th class, i.e. θk is a sub-vector of θ and
θk = θ[(k−1)|x|,k|x|) (we use |x| to denote the length of the
feature vector).

The first component of the objective function is the consis-
tency constraint between the ground-truth label and the pre-
dicted label distribution using concatenated features. Next,
regularization terms are added to the framework to prevent
overfitting. The last component considers the predicted dis-
tribution consistency between each single modality features
and the concatenated features. In this way, we hope that
it is possible to propagate knowledge learned from different
modalities to each other to improve the overall performance
of the system.

3.2 Relation to softmax regression
The proposed model is closely related to softmax regres-

sion, where the objective is to minimize the loss function
in Eqn. (4). Similarly, θ = [θ1; θ2; . . . ; θK ] is the parameter
vector, δ(·) is the indicator function and xi is the feature
vector for the i-th instance.

min
θ

− 1

N

(
N∑
i=1

K∑
k=1

δ(yi = k) ln
exp(θTk xi)∑K
j=1 exp(θ

T
j xi)

)
(4)

Indeed, softmax regression is a special case of the first com-
ponent 1

N

∑N
i=1 D(yi ‖ pθc(x

c
i )) of our proposed model. E-

qn. (5) shows more details of this loss term, where C1 and
C2 are constants determined by yi. We use pθ(k|xi) to rep-
resent the probability of assigning xi to class k, i.e. the k-th
element in Eqn. (3). If we are given a hard label for each
instance, i.e. yik only has one and only one non-zero entry,
then the term −yik ln pθc(k|xi) in Eqn. (5) is the same with
the loss objective of softmax regression.

D(yi ‖ pθc(x
c
i )) =

K∑
k=1

pθc(k|xc
i ) ln pθc(k|xc

i )

− yik ln pθc(k|xc
i ) + C1pθc(k|xc

i ) + C2

(5)

In addition, there are two other terms related to pθc(xi)k in
Eqn. (5), which are related to cross entropy. This is the main
reason to use KL divergence instead of softmax regression for
the first component of our model, which is favorable for tasks
with noisy and uncertain labels, such as sentiment analysis.

3.3 Parameter learning
Even though KL divergence is convex, the proposed ob-

jective function is not convex on its parameters Θ. In this
section, we explain in detail how to learn the parameters in
our model.

3.3.1 Gradient descent
We resort to gradient descent to optimize the objective

function J(Θ) in Eqn. (2). The gradient of the J(Θ) with
respect to θc is

∂J(Θ)

∂θc
=

1

N

N∑
i=1

∂D(yi ‖ pθc(x
c
i ))

∂θc
+ λθc

+

M∑
m=1

γm
N

N∑
i=1

∂D(pθc(x
c
i ) ‖ pθm(xm

i ))

∂θc
.

(6)
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Figure 2: The framework for multi-modality sentiment analysis. Left: We fine-tune a CNN visual sentiment
analysis model, which is employed to extract visual features for testing images. Right: We train a distributed
paragraph vector model on the related titles and descriptions of the images to learn textual features. Middle:
The proposed cross-modality consistent regression model is trained on the visual and textual features to learn
the final sentiment classifier.

For last derivative term
∂D(pθc (x

c
i )‖pθm (xm

i ))

∂θc
, we have2

∂DKL(pθc(x
c
i ) ‖ pθm(xm

i )) +DKL(pθm(xm
i ) ‖ pθc(x

c
i ))

∂θcjl

=

K∑
k=1

(
1− pθm(k|xm

i )

pθc(k|xc
i )

− ln
pθm(k|xm

i )

pθc(k|xc
i )

)
∂pθc(k|xc

i )

∂θcjl
.

(7)

where

∂pθc(k|xc
i )

∂θcjl
=

∂
exp(θck

T xc
i )∑K

k=1
exp(θc

k
T xc

i )

∂θcjl

= (δ(k = j)− pθc(k|xc
i )) pθc(j|xc

i )x
c
il

(8)

We can also calculate the first derivative term
∂D(yi‖pθc (xc

i ))

∂θc
,

which is similar to Eqn. (7).
The gradient of the objective function J(Θ) with respect

to θm for m ∈ {1, 2, . . . ,M} is

∂J(Θ)

∂θm
= λθm +

M∑
m=1

γm
N

N∑
i=1

∂D(pθc(x
c
i ) ‖ pθm(xm

i ))

∂θm
. (9)

Since D(pθc(x
c
i ) ‖ pθm(xm

i )) is symmetric in terms of θm

and θc, we can apply Eqn. (7) to calculate the derivatives of
Eqn. (9).

3.3.2 Learning algorithm and convergence analysis
There are two groups of parameters in our model, namely

θc and {θ1, θ2, · · · , θM}. In our implementation, we learn
those two groups of parameters iteratively. Specifically, in
each iteration, the learning algorithm will try to update the
two groups of parameters sequentially. Since, we built a
large data set for our experiments, we employ mini-batch
L-BFGS to learn the parameters3.

Algorithm 1 summarizes the main steps forCross-modality
Consistent Regression (CCR). The proposed objective func-
tion is differentiable, thus the function is smooth in terms
of Θ. Meanwhile, it is easy to prove that J(Θ) ≥ 0. The
objective function is lower-bounded. During each iteration
of the learning algorithm, we are trying to find a smaller

2Recall that θcj is a sub-vector of θc, we use θcjl to represent
the l-th element of θcj .
3When the whole data set can fit into the machine’s memory,
it is also possible to employ full-batch L-BFGS.

Algorithm 1 Cross-modality consistent regression (CCR)

Require: X1, X2, · · · , XM a total of M different modality
features on a collection of objects X.
Y = {y1, y2, . . . , yN} sentiment labels of X

1: Randomly split the objects into mini-batches
2: Concatenate the M modality features to get Xc

3: Randomly initialize Θ = {θc, θ1, . . . , θM}
4: repeat
5: Randomly select one mini-batch Xb

6: Apply L-BFGS to update θc on Xb with derivative in
Eqn. (6) and objective function in Eqn. (2)

7: for m from 1 to M do
8: Randomly select one mini-batch Xb

9: Apply L-BFGS to update θm on Xb with derivative
in Eqn. (9) and objective function in Eqn. (2)

10: end for
11: until Convergent or reach the maximum numbers of

iterations
12: return Θ

J(Θ) using L-BFGS. It is possible that mini-batch training
may lead to oscillations of the objective function between
different batches. However, overall we are still able to con-
clude that the iterative learning algorithm in Algorithm 1
converges when there is enough number of iterations.

We will discuss in the experimental section on how to
select the hyper-parameters of our model, i.e. λ and γs.

3.3.3 Prediction algorithm
We can employ the learned model for prediction of testing

instances given their M modality features. Recall that our
training objective is to enforce the consistency of prediction
results using different sets of modality features. Similarly,
in the prediction stage, we also intend to obtain the same
objective. Let p denote the desired label distribution of the
testing instances, then we have

min
p

J(p|pθ1 , pθ2 , . . . , pθM ) =

M∑
k=1

∑
i

p(i) ln
p(i)

pθk (i)

s.t .
∑
i

p(i) = 1. (10)



Theorem 1. The optimal solution to J(p|pθ1 , pθ2 , . . . , pθM )

is that p(i) =
M
√

Πkpθk (i)
∑

j
M
√

Πkpθk (j)
.

Proof. The Lagrange function for the above problem is

Λ(p, λ) =

M∑
k=1

∑
i

p(i) ln
p(i)

pθk (i)
+ λ(

∑
i

p(i)− 1).

Derivative of Λ with respect to p(i) is

∂Λ

∂p(i)
= M ln p(i)−

M∑
k=1

ln pθk (i) +M + λ.

Let the derivative equal 0, we have

M ln p(i) =

M∑
k=1

ln pθk (i)−M − λ.

From the constraint
∑

i p(i) = 1, we conclude that

p(i) =
M
√

Πkpθk (i)∑
j

M
√

Πkpθk (j)

4. MULTI-MODALITY SENTIMENT ANAL-
YSIS

In this section, we describe in details on how to apply the
proposed model to multi-modality sentiment analysis. In
particular, we focus on how to extract the state-of-the-art
visual and textual features and apply them to the proposed
model. Figure 2 shows the framework for multi-modality
sentiment analysis. The recent developed Convolutional Neu-
ral Network (CNN) [17] has achieved the state-of-the-art
performance on a wide range of vision tasks. You et al. [32]
conducted experiments on deploying CNN for visual senti-
ment analysis and achieved better performance than both
low-level [25] features and mid-level [4, 34] features. In-
spired by their conclusion, we propose to use CNN for the
extraction of visual features. In particular, we employ the
pre-trained CNN model on imagenet [15] to fine-tune a CN-
N model for visual sentiment analysis. The details on fine-
tuning the CNN model will be discussed in the experimental
section. Next, the fine-tuned CNN model is employed to ex-
tract visual features from the second to the last layer of the
neural network.

For textual features, Le and Mikolov [18] developed an
unsupervised language model to learn distributed represen-
tations for documents. They applied the learned representa-
tions to analyze textual sentiment, which achieved the best
performance compared with other existing state-of-the-art
textual sentiment analysis models. We employed the pro-
posed model to learn distributed representations for related
text of each image. In particular, We use descriptions and
titles of each image as the body of a document to learn the
textual features of each image.

Given the visual and textual features, we are able to train
a cross-modality consistent regression model for sentiment
analysis. Meanwhile, the trained visual and textual model
can extract visual and textual features for testing images
and text individually, which next can be used to predict
the sentiment distribution for the image and related text
respectively.

5. EXPERIMENTS
In this section, we conduct experiments to evaluate the

performance of the proposed cross-modality consistent re-
gression model on sentiment analysis. To train the visual
and textual model in Figure 2, we choose to crawl data from
Getty Images4. The main reasons to use Getty Images are
its relatively formal descriptions of images and its convenient
and powerful query based searching system.

5.1 Training visual and textual models
To fine-tune the pre-trained CNN model for sentiment

analysis, we need a relatively large labeled data set, which
can cost huge human efforts. Meanwhile, different people
may have somewhat different opinions on the sentiment of
the same object, which makes it harder to have a well la-
beled training data set. In our implementation, we propose
to use weakly labeled data to train our neural network. To
be more specific, we use a list of keywords for both posi-
tive and negative sentiment.5 We query Getty Images with
these keywords and all the returned images are labeled us-
ing the sentiment labels of these keywords. In this way, we
are able to collect a large weakly labeled data set consist-
ing of both images and text, which is employed to fine-tune
the CNN model and learn the paragraph vector for related
text of each image. Table 1 summarizes the statistics of our
collected data set from Getty Images. In total, there are
101 keywords. We collect a total of over half million weakly
labeled images as well as their titles and descriptions.

Table 1: Summary of the dataset from Getty Image.

Sentiment Num of Keywords Num of Images
Positive 37 311,940
Negative 64 276,281
Sum 101 588,221

Given the above collected data set, we randomly split
them into 80% for training and 20% for testing. We fine-
tune the CNN model on the publicly available implemen-
tation Caffe [15]. We run the GPU accelerated version of
Caffe implementation with a total iteration of 200, 000 on
a Linux X86 64 machine with 32G RAM and two NVIDIA
GTX Titan GPUs. The fine-tuned model is then employed
to extract features for both training and testing images.

For textual model, the title and description of each image
are concatenated as a single document. We use the algorithm
in [31] to pre-process the textual data. First, numbers and
special characters are removed. Then, we tokenize the text
using the tokenizer model from NLTK (http://www.nltk.
org). We also remove those words that appear less than
5 times in all the documents. The size of the paragraph
vectors is 400 and the size of the nearby word window is 5,
which are the default settings in [18].

We compare the performance of the proposed model with
several baseline algorithms, including the following several
different approaches. We also tried to use canonical corre-
lation analysis (CCA) on this task. However, due to the
scalability issue of CCA, we cannot fit all the training data
into memory to learn the correlation using CCA. Table 2

4http://www.gettyimages.com
5http://www.sci.sdsu.edu/CAL/wordlist/origwordlist.html



Table 2: Performance of CCA on different testing
data (see following sections for detailed description
of the data).

Testing Data Precision Recall F1 Accuracy
Getty 0.697 0.718 0.708 0.687
Twitter 0.769 0.698 0.731 0.727
AMT Twitter 0.66 0.52 0.559 0.526

summarizes the results of CCA on different sets of testing
data using the same visual and textual features with oth-
er approaches using a single randomly selected mini-batch
(10,240 instances). The results suggest poor performance
compared with other approaches (see following details for
details of the testing data and results of other approaches).
Thus, we do not further compare the results of CCA with
other approaches in the following experimental sections.

For all the following results of CCR, we run the algorithm
10 times with randomized initialization of the parameter-
s. The averaged results are reported. The results of the
following baselines are also reported and analyzed.

• Single visual model. We only use the visual fea-
tures to build a logistic regression model, which out-
performs models on both low-level and mid-level visual
features [32].

• Single textual model. The paragraph feature vec-
tors are also fed to a logistic classifier to predict the
sentiment [18].

• Early fusion. We concatenate both visual and tex-
tual features and build a logistic regression model on
these concatenated features.

• Late fusion. The average of the prediction sentiment
score of visual and textual models is used as the pre-
diction score of the late fusion model [30, 6].

5.2 Performance on Getty Images testing data
set

We extract visual features for the 20% testing images giv-
en the fine-tuned CNN model. In this paper, we use the
second to the last layer to extract features, which has a to-
tal of 4096 features for each image. For textual features,
since the training is unsupervised, all documents are given
to the model to learn their features [18].

Following the steps in Algorithm 1, we split the training
data into mini-batches and train all visual, textual logistic
regression model and CCR model on the same collection of
mini-batches. In our implementation, we use a batch size
of 10240, which is a trade-off between memory load and
convergence rate.

Figure 3 shows the changes of the objective loss function-
s with the increase of mini-batch iteration numbers. The
results show that the loss function value changes on some
randomly chosen validation data set and training data set
are comparable. Meanwhile, since we employ L-BFGS, the
loss function converges after about 10 iterations, i.e. run-
ning on 10 mini-batches.

Since we have about 4, 000 visual features and 4, 00 textual
features for each image, we try to balance the two modalities
in selecting the hyper-parameters. In all of our experiments,
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Figure 3: Changes of the objective loss function on
both training and validating data set.

Table 3: Performance on the testing data set by
different approaches.

Algorithm Precision Recall F1 Accuracy
Textual 0.806 0.544 0.655 0.696
Visual 0.747 0.745 0.746 0.732
Early Fusion 0.778 0.769 0.774 0.763
Late Fusion 0.785 0.775 0.780 0.769
CCR 0.846 0.759 0.800 0.800

we set λ to be 1, γv for visual features also to be 1 and γt for
textual features to be 56. Table 3 shows the performance of
different approaches on the 20% weakly labeled testing data
from Getty Images. The results show that visual features
may have comparable precision and recall on these data.
Textual features can achieve higher precision but lower re-
call. Both early fusion and late fusion can produce improved
results over single modalities. However, both fail to improve
the performance of precision than the single textual model.
On the other hand, the proposed CCR model can improve
the performance of both precision and recall than the two
single models. Meanwhile, CCR performs best among all
the methods in terms of both F1 and accuracy score.

5.3 Performance on Twitter data set
We also build a new data set from image tweets. In par-

ticular, we employ the Twitter streaming API to collect a
large number of Tweets. In total, we collected about 15
million Tweets. Next, we keep Tweets that contain both
images and English text. In total, we collect 220, 000 image
tweets. In our implementation, we employ the recent pro-
posed VADER [14] to weakly label these tweets, which is a
rule based textual sentiment analysis and attuned to Twit-
ter contexts. Next, we select the top ranked positive and
negative image tweets according to the VADER score. We
manually filter out duplicates, low-quality, porn and all-text
images. In this way, we collect a total of 31, 584 weakly la-
beled image tweets, 16, 844 of them are positive tweets and
the rest are negative.

Since images from Twitter are much more diverse and d-
ifferent from Getty Images and tweets are also much more
informal, we could not directly apply the trained model from
Getty Images to these image tweets. Instead, we randomly

6Indeed, there is no significant different when we set γt ∈
[5, 10], which is close to the proportion of feature size |xv|
and |xt|.



RT @PicturesEarth: This 
is so sad

RT @ICurvedYou: This 
why I be sad all the time

RIP to the off duty 
officer killed on Recker 

and Baseline today

MVA in Khutsong left 2 
critical on scene 

unfortunately 1passed 
away in hospitl

More Than 30 People 
Died And Several 

Injured In Gombe Bus 
Station Explosion 

 I hate Leesville so much 

WHAT IS WRONG 
WITH PEOPLE this is 
MAD AF I'd cry if that 
happens to my brothers 

(3-bros 0-sis)

i am so sad

Sad afternoon in 
Mozambique, 2 dead 
female rhino found, 

horns &amp; front legs 
removed.

@PinkMiruku your 
making me cry

RT @PupsPorn: Cutest 
little corgi ever ~ 

Happy Halloween from 
my little punkin and I!! :) 

http://t.co/d53jBR1bIv

@GrubRestaurant thank 
you for an awesome 

meal for our anniversary! 
3 years of bliss and it 

started there @heidijoypj

T-6 hours till I see this 
beauty

Best Friends Always.... 
@iHrithik @udaychopra 

...! Who said In 
Bollywood true 

friendship doesn't exists?

You're so kind my friend I love me some Canton 
girls!

Happy birthday Molly 
Weasley! One of the 
strongest, yet loving, 

characters of the entire 
series. 

u make me happy toooo 
&lt;3

Bike and gear bags 
checked in! Time to put 

up my feet and try to 
relax! Epic day 

tomorrow!!! 

Figure 4: Top confidently ranked examples by AMT workers. Top row (in blue rectangle) shows positive
examples and bottom row (in red rectangle) shows negative examples.

Happy #Halloween 
#Sven #Frozen 

#homemade

Bob Marley enjoys a 
beer after a football 

match
He looks so good

HI TAYLOR I LOVE 
YOU SO SO MUCH 
#taylurking #ts1989

 - Street. - My World 
Tour. - Believe Tour.  So 

proud. 
#EMABiggestFansJustin

Bieber

Happy Halloween! 
#RealMilkPaint 

#Pumpkins!

She really does love her 
costume, it's just nap 

time ;) Happy 
Halloween!

Happy Halloween from 
BakingBar! Check out 
the @marksandspencer 
treats we're enjoying!

 'Got your noseeee!' 
@KELLYROWLAND 
LMFAO gets me every 

time xD #FreddyvsJason

was waiting for u to say 
that !  check this the sexy 

beast !

 When your phone dies 
but it didnt even reach 0 

yet

I see these scary clowns 
on a daily basis driving 
on the 400 eh day let 
alone on Halloween 

day.......Booooooo B safe

Seriously i hate waiting 

Why is you messin up 
my photos  I bet if I 

messed up yo photo you 
wouldn't like it

My son's Halloween 
costume was epic as hell 
but apparently his school 
doesn't seem to think so

This makes me kinda sad
I no longer wonder why 

boys were never 
interested in me

im still upset over this
:((((((((((((((( RT 

@ISupportOnikaM Still 
makes me sad

MY HEART HURTS 

Figure 5: Ambiguously ranked examples by AMT workers. Top row (in blue rectangle) shows positive
examples and bottom row (in red rectangle) shows negative examples. See text for explanation.

split this data set into batches with the same size of 10240.
We use the first batch the testing data set and the rest the
training data set to fine-tune both CNN and paragraph vec-
tor model. In particular, we slightly fine-tune the CNN
model previously trained on the Getty Images with 2, 000
iterations with the learning rate set to 0.001. For paragraph
vector model, we feed both the descriptions from Getty Im-
ages and the tweet text of the 31, 584 image tweets to this
model to learn the vector representation for each tweet. For
the tweets, we preprocessed them by further replacing hash-
tags, url links and user ids with special string sequences.
Table 4 shows the results on the randomly selected 10240
testing image tweets. It is interesting to find that the textu-
al features works better than the visual features. This may
be due to the fact that we obtain the weak labels from text
based system VADER and an insufficient number of images
for CNN to find a relatively good local optima. However,
the proposed CCR are able to improve the performance on
the same set of visual and textual features.

5.3.1 Performance on manually labeled tweets
Meanwhile, in order to have more accurate labels for these

image tweets, we employed crowd intelligence, Amazon Me-
chanical Turk (AMT), to generate sentiment labels for se-
lected image tweets, in a similar fashion to [5]. We recruited
5 AMT workers for each of the candidate image tweet. We

Table 4: Performance on the Twitter testing data
set by different approaches.

Algorithm Precision Recall F1 Accuracy
Textual 0.746 0.693 0.727 0.722
Visual 0.584 0.561 0.573 0.553
Early Fusion 0.730 0.744 0.737 0.717
Late Fusion 0.634 0.610 0.622 0.604
CCR 0.831 0.805 0.818 0.809

test the performance of different models on this manually
labeled data using the previously fine-tuned models on the
weakly labeled image tweets. We randomly select 2, 000 im-
age tweets and post them in AMT for sentiment annotation.
After receiving the batch results from AMT, we keep those
that have at least 4 agreements on the sentiment label and
also exclude those that appears in the previously weakly la-
beled image tweets for fine-tuning. Eventually, we have 613
image tweets, of which 389 are labelled positive and 224 are
labelled negative by 5 AMT workers.

Table 5 gives the performance of different approaches. C-
CR performs best in terms of precision, F1 and accuracy.
However, it has a slightly lower recall. Compared with the
results in Table 4, visual features show significant improve-
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Figure 6: Machine performance on confident and uncertain examples labelled by AMT workers.

Table 5: Performance on the AMT manually labeled
data set by different approaches.

Algorithm Precision Recall F1 Accuracy
Textual 0.832 0.638 0.722 0.688
Visual 0.762 0.715 0.737 0.677
Early Fusion 0.776 0.740 0.758 0.700
Late Fusion 0.799 0.738 0.767 0.716
CCR 0.886 0.730 0.800 0.769

ment, which may be due to the fact that AMT workers take
both text and image to label the sentiment. Meanwhile,
it is possible that the labels by AMT workers are biased
compared with the weak labels given by VADER, causing
relatively poor performance of both CCR and Early Fusion
compared with the results in Table 4.

5.3.2 Analysis of top ranked examples
We also compare and analyze the top ranked examples

of both AMT workers and machines. Since each image is
labeled by 5 AMT workers into one of strongly negative (-
2), negative (-1), positive (1) and strongly positive (2), we
rank images according to the sum of their scores by these 5
workers. Next, we select the top ranked positive and nega-
tive examples as well as some borderline examples. Figure 4
shows the top 10 ranked negative and positive examples by
AMT workers. For negative examples, most of them are re-
lated to some bad experienced topics, such as car accident,
environmental change and so on. Most of the positive exam-
ples are kind of cute, happy images along with some funny
short descriptions. For comparison, ambiguously ranked ex-
amples are also selected and shown in Figure 5, where most
of these examples also seem reasonable. It seems that the
disagreement of these borderline examples may come from
the inconsistency between the text and the visual content of
an image tweet. Meanwhile, some of these image tweets may
have celebrity related topic, which may also cause different
opinions among different groups of fans.

Next, we conduct experiments on the performance of dif-
ferent machine approaches on these selected human labeled
examples. Figure 6 shows the predicted results of different
approaches on the two selected groups of example images
in Figure 4 and Figure 5. It is interesting to note that for
negative examples, machines seem to be uncertain on the
confident examples given by AMT workers. However, they
are confident on those uncertain examples. For positive ex-
amples, it seems that machine is kind of having similar recog-
nition ability on both the confident and uncertain examples.
These results demonstrate that the trained machine mod-
el and human beings may have different recognition ability

Table 6: Top 100 most confident sentiment predic-
tion distribution of different algorithms.
Senti Alg 5 Agree 4 Agree 4 Obj 5 Obj

Neg

Textual 22 52 7 19
Visual 23 45 13 19
Early 23 50 9 18
Late 28 52 7 13
CCR 29 58 4 9

Pos

Textual 61 24 12 3
Visual 62 20 13 5
Early 66 20 11 3
Late 69 24 6 1
CCR 71 22 7 0

towards the sentiment of the same group of images, which
may be due to difference between the limited training sam-
ples for machines and the constantly learning process for
human beings.

We also extract the top 100 positive and top 100 negative
image tweets by AMT workers. The prediction results of
different approaches are given in Table 6. Overall, CCR
outperforms other approaches in both negative and positive
categories in terms of accuracy. Meanwhile, all approaches
seem to be more likely to agree with AMT workers on the
positive category. This may be due to the biased nature of
social networks, where users are more likely to post positive
content than negative content.

In addition, we extract the most confident prediction ex-
amples of different approaches on the manually labeled im-
age tweets by AMT workers. We rank the images by the
prediction score of each model. Figure 7 shows the top
ranked 5 images of each model on both positive and negative
categories respectively (red circles indicate wrongly predict-
ed samples). All the image tweets are ranked from left to
right in a decreasing order. There are many common high-
ly ranked examples between different approaches. However,
different approaches have different ranking orders. In par-
ticular, highly ranked examples using textual features seems
to have strong discriminative words than those using visual
features, which explains the main reason of the two wrong-
ly predicted examples. Similarly, only using visual features
may also lead to wrong confident examples due to the lack
of knowledge from the text data. Meanwhile, we note that
there are no shared top ranked examples with that given
by human beings in Figure 4. Again, these differences may
come from different learning scenarios for both human be-
ings and machines. Meanwhile, this also suggests the chal-
lenging nature of visual sentiment analysis.

6. CONCLUSIONS
Sentiment analysis, in particular visual sentiment analy-

sis, is a challenging and interesting problem. In this work,



'were sorry lauren' 'no 
this cant be' 'lauren she's 

gone'

Blue Mountain Dark 
Hollow barrel aged is 

off. So sad but Terrapin 
Moo Hoo Stout is on. So 

delicious!!

These are ugly af but 
those wannabe tumblr 

fake sad cyber slut 
bitches gonna go crazy 

over em

i was gonna be niall but i 
had to wear my cheer 
uniform so now i'm 

wearing a sweater and 
calling myself sacajawea

She may be back but he's 
gonna make it really 

obvious that he hates this

(a) Negative examples using textual features

Passing out candy at 
kaiser  children's hospital 

with  and having an 
awesome words

if u r in #DTLA 
tomorrow night-come 
out and see me..also 

special announcement 
tomorrow morning!!!

Nothing says, 'Welcome 
to LA!' like this guy! 

#Smart2014

- Street. - My World 
Tour. - Believe Tour.  So 

proud. 
#EMABiggestFansJustin

Bieber

Thanks for the amazing 
memories, #Royals.  My 

dad made sure I was a 
fan so I made sure he 

could be there last night.

(b) Positive examples using textual features

School nurses be like 
'come back after lunch if 

it still hurts'
This is so sad

These are ugly af but 
those wannabe tumblr 

fake sad cyber slut 
bitches gonna go crazy 

over

This kinda makes me sad

no everything is not 'ok'  
I'm showing you how 

close I am to losing my 
shit w/ you

(c) Negative examples using visual features

Getting bored now. 
Booooo.

Happy Halloween 
everyone!

HBD to the only chick as 
short and cool as me!!Ily 

so much and hope you 
have a fab day!! Eat lots 

of fab food get fat

Happy #Halloween from 
New Orleans! Will you 
be dressing up today?

A Happy Halloween 
from @GoShockersBSB 

and @GoShockersSB 
#HalloweenU

(d) Positive examples using visual features

Know why City didn't 
get any penalties? 

Michael Oliver still 
haven't forgiven Hart for 

this.

no everything is not 'ok'  
I'm showing you how 

close I am to losing my 
shit w/ you

This kinda makes me sad

'i hate everyone'  'black 
like my soul'  'stressed 

depressed but well 
dressed' 'sad but hella 

rad'

IM SCARED OKAY IM 
SORRY

(e) Negative examples using early fusion

Getting bored now. 
Booooo.  Gorgeous View!

HBD to the only chick as 
short and cool as me!!Ily 

so much and hope you 
have a fab day!! Eat lots 
of fab food&amp;get fat

Happy Halloween from 
@GoShockersBSB and 

@GoShockersSB

 Happy Halloween 
everyone! 

(f) Positive examples using early fusion

Know why City didn't 
get any penalties? 

Michael Oliver still 
haven't forgiven Hart for 

this.

IM SCARED OKAY IM 
SORRY

'i hate everyone'  'black 
like my soul'  'stressed 

depressed but well 
dressed' 'sad but hella 

rad'

no everything is not 'ok'  
I'm showing you how 

close I am to losing my 
shit w/ you

Even my pups are upset 
over the Thunder injury 

situation

(g) Negative examples using late fusion

HBD to the only chick as 
short and cool as me!!Ily 
so much and hope you 

have a fab day!! Eat lots 
of fab food&amp;get fat

Spade must be acting 
like trailer trash forgot to 
attach the pic. My baby 
dressed for work shes so 

beautiful.

How I enjoy my morning 
cup of coffee. I love it.

Salute to men ! who take 
their wives to IK's Jalsa 
to shown them their first 

love :)

Passing out candy at 
kaiser  children's hospital 
with @gremlinskids and 
having an awesome ...

(h) Positive examples using late fusion

These are ugly af but 
those wannabe tumblr 

fake sad cyber slut 
bitches gonna go crazy 

over em 

'i hate everyone'  'black 
like my soul'  'stressed 

depressed but well 
dressed' 'sad but hella 

rad'

Every Sunday without 
fail I get handed 

religious shit... I must 
need saving or 

something... #prasejesus

no everything is not 'ok'  
I'm showing you how 

close I am to losing my 
shit w/ you

The walk of shame after 
Halloween is always the 

worst...

(i) Negative examples using CCR

How I enjoy my morning 
cup of coffee. I love it.

Passing out candy at 
kaiser  children's hospital 
with @gremlinskids and 
having an awesome ...

Thanks for the amazing 
memories, #Royals.  My 
dad made sure I was a 
fan so I made sure he 

could be there last night.

HBD to the only chick as 
short and cool as me!!Ily 

so much and hope you 
have a fab day!! Eat lots 

of fab food get fat

Salute to men ! who take 
their wives to IK's Jalsa 
to shown them their first 

love :)

(j) Positive examples using CCR

Figure 7: Examples of most confident image tweets of different approaches. Left column shows the most
confident negative examples. Right column shows the most confident positive examples.

we aim to analyze sentiment via both visual and textual con-
tent. The recently developed machine learning algorithms
lead to the availability of robust visual and textual features
for abstract tasks, such as sentiment analysis. Due to the
largely easily accessible weakly labeled data, we can train
both visual and textual models to extract robust features
for sentiment analysis. We develop a cross modality consis-
tency regression model, which tries to enforce the agreement
between sentiment labels predicted by different modality fea-
tures. The experimental results suggest that the proposed
multi-modality regression model outperforms both the state-
of-the-art single textual and visual sentiment analysis mod-
els and two fusion models.

Meanwhile, the main advantage of using convolutional
neural networks and unsupervised paragraph vector mod-
el is that we can transfer the knowledge to other domains
using a much simpler fine-tuning technique than those in
the literature i.e., [9]. We also hope our sentiment analysis
results can encourage further research on online user gener-
ated multimedia content.
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