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Abstract

Deep learning techniques have been successfully ap-

plied in many areas of computer vision, including low-level

image restoration problems. For image super-resolution,

several models based on deep neural networks have been

recently proposed and attained superior performance that

overshadows all previous handcrafted models. The question

then arises whether large-capacity and data-driven models

have become the dominant solution to the ill-posed super-

resolution problem. In this paper, we argue that domain

expertise represented by the conventional sparse coding

model is still valuable, and it can be combined with the key

ingredients of deep learning to achieve further improved

results. We show that a sparse coding model particularly

designed for super-resolution can be incarnated as a neural

network, and trained in a cascaded structure from end to

end. The interpretation of the network based on sparse

coding leads to much more efficient and effective training,

as well as a reduced model size. Our model is evaluated on

a wide range of images, and shows clear advantage over ex-

isting state-of-the-art methods in terms of both restoration

accuracy and human subjective quality.

1. Introduction

Single image super-resolution (SR) aims at obtaining

a high-resolution (HR) image from a low-resolution (LR)

input image by inferring all the missing high frequency

contents. With the known variables in LR images greatly

outnumbered by the unknowns in HR images, SR is a highly

ill-posed problem and the current techniques are far from

being satisfactory for many real applications [2, 21].

To regularize the solution of SR, people have exploited

various priors of natural images. Analytical priors, such as

bicubic interpolation, work well for smooth regions; while

image models based on statistics of edges [11] and gradients

[17, 1] can recover sharper structures. In the patch-based

SR methods, HR patch candidates are represented as the

sparse linear combination of dictionary atoms trained from

external databases [36, 35], or recovered from similar exam-

ples in the LR image itself at different locations and across

different scales [13, 12, 32]. A comprehensive review of

more SR methods can be found in [33].

More recently, inspired by the great success achieved by

deep learning [18, 27, 30] in other computer vision tasks,

people begin to use neural networks with deep architec-

ture for image SR. Multiple layers of collaborative auto-

encoders are stacked together in [6] for robust matching of

self-similar patches. Deep convolutional neural networks

(CNN) [8] and deconvolutional networks [25] are designed

that directly learn the non-linear mapping from LR space

to HR space in a way similar to coupled sparse coding

[35]. As these deep networks allow end-to-end training

of all the model components between LR input and HR

output, significant improvements have been observed over

their shadow counterparts.

The networks in [6, 8] are built with generic architec-

tures, which means all their knowledge about SR is learned

from training data. On the other hand, people’s domain

expertise for the SR problem, such as natural image prior

and image degradation model, is largely ignored in deep

learning based approaches. It is then worthy to investigate

whether domain expertise can be used to design better

deep model architectures, or whether deep learning can be

leveraged to improve the quality of handcrafted models.

In this paper, we extend the conventional sparse coding

model [36] using several key ideas from deep learning,

and show that domain expertise is complementary to large

learning capacity in further improving SR performance.

First, based on the learned iterative shrinkage and threshold-

ing algorithm (LISTA) [14], we implement a feed-forward

neural network whose layers strictly correspond to each step

in the processing flow of sparse coding based image SR.

In this way, the sparse representation prior is effectively

encoded in our network structure; at the same time, all

the components of sparse coding can be trained jointly

through back-propagation. This simple model, which is

named sparse coding based network (SCN), achieves no-

table improvement over the generic CNN model [8] in terms
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of both recovery accuracy and human perception, and yet

has a compact model size. Moreover, with the correct

understanding of each layer’s physical meaning, we have

a more principled way to initialize the parameters of SCN,

which helps to improve optimization speed and quality.

A single network is only able to perform image SR by

a particular scaling factor. In [8], different networks are

trained for different scaling factors. In this paper, we also

propose a cascade of multiple SCNs to achieve SR for

arbitrary factors. This simple approach, motivated by the

self-similarity based SR approach [13], not only increases

the scaling flexibility of our model, but also reduces artifacts

for large scaling factors. The cascade of SCNs (CSCN) can

also benefit from the end-to-end training of deep network

with a specially designed multi-scale cost function.

In short, the contributions of this paper include:

• combine the domain expertise of sparse coding and the

merits of deep learning to achieve better SR perfor-

mance with faster training and smaller model size;

• use network cascading for large and arbitrary scaling

factors;

• conduct a subjective evaluation on several recent state-

of-the-art methods.

In the following, we will first review related work in

Sec. 2. The SCN and CSCN models are introduced in Sec. 3

and Sec. 4, with implementation details in Sec. 5. Extensive

experimental results are reported in Sec. 6, and conclusions

are drawn in Sec. 7.

2. Related Work

2.1. Image SR Using Sparse Coding

The sparse representation based SR method [36] mod-

els the transform from each local patch y ∈ R
my in

the bicubic-upscaled LR image to the corresponding patch

x ∈ R
mx in the HR image. The dimension my is not

necessarily the same as mx when image features other than

raw pixel is used to represent patch y. It is assumed that

the LR(HR) patch y(x) can be represented with respect

to an overcomplete dictionary Dy(Dx) using some sparse

linear coefficients αy(αx) ∈ R
n, which are known as

sparse code. Since the degradation process from x to y is

nearly linear, the patch pair can share the same sparse code

αy = αx = α if the dictionaries Dy and Dx are defined

properly. Therefore, for an input LR patch y, the HR patch

can be recovered as

x = Dxα, s.t. α = argmin
z

∥y−Dyz∥
2
2+λ∥z∥1, (1)

where ∥ · ∥1 denotes the ℓ1 norm which is convex and

sparsity-inducing, and λ is a regularization coefficient. The

dictionary pair (Dy,Dx) can be learned alternatively with

the inference of training patches’ sparse codes in their joint

space [36] or through bi-level optimization [35].
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Figure 1. A LISTA network [14] with 2 time-unfolded recurrent

stages, whose output α is an approximation of the sparse code

of input signal y. The linear weights W , S and the shrinkage

thresholds θ are learned from data.

2.2. Network Implementation of Sparse Coding

There is an intimate connection between sparse coding

and neural network, which has been well studied in [16,

14]. A feed-forward neural network as illustrated in Fig. 1 is

proposed in [14] to efficiently approximate the sparse code

α of input signal y as it would be obtained by solving (1)

for a given dictionary Dy . The network has a finite number

of recurrent stages, each of which updates the intermediate

sparse code according to

zk+1 = hθ(Wy + Szk), (2)

where hθ is an element-wise shrinkage function defined as

[hθ(a)]i = sign(ai)(|ai| − θi)+ with positive thresholds θ.

Different from the iterative shrinkage and thresholding

algorithm (ISTA) [7, 26] which finds an analytical rela-

tionship between network parameters (weights W , S and

thresholds θ) and sparse coding parameters (Dy and λ),

the authors of [14] learn all the network parameters from

training data using a back-propagation algorithm called

learned ISTA (LISTA). In this way, a good approximation

of the underlying sparse code can be obtained within a fixed

number of recurrent stages.

3. Sparse Coding based Network for Image SR

Given the fact that sparse coding can be effectively

implemented with a LISTA network, it is straightforward to

build a multi-layer neural network that mimics the process-

ing flow of the sparse coding based SR method [36]. Same

as most patch-based SR methods, our sparse coding based

network (SCN) takes the bicubic-upscaled LR image Iy as

input, and outputs the full HR image Ix. Fig. 2 shows the

main network structure, and each of the layers is described

in the following.

The input image Iy first goes through a convolutional

layer H which extracts feature for each LR patch. There

are my filters of spatial size sy×sy in this layer, so that our

input patch size is sy×sy and its feature representation y

has my dimensions.

Each LR patch y is then fed into a LISTA network with

a finite number of k recurrent stages to obtain its sparse

code α ∈ R
n. Each stage of LISTA consists of two linear

layers parameterized by W ∈ R
n×my and S ∈ R

n×n,
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Figure 2. Top left: the proposed SCN model with a patch extraction layer H , a LISTA sub-network for sparse coding (with k recurrent

stages denoted by the dashed box), a HR patch recovery layer Dx, and a patch combination layer G. Top right: a neuron with an

adjustable threshold decomposed into two linear scaling layers and a unit-threshold neuron. Bottom: the SCN re-organized with unit-

threshold neurons and adjacent linear layers merged together in the gray boxes.

and a nonlinear neuron layer with activation function hθ .

The activation thresholds θ ∈ R
n are also to be updated

during training, which complicates the learning algorithm.

To restrict all the tunable parameters in our linear layers, we

do a simple trick to rewrite the activation function as

[hθ(a)]i = sign(ai)θi(|ai|/θi − 1)+ = θih1(ai/θi). (3)

Eq. (3) indicates the original neuron with an adjustable

threshold can be decomposed into two linear scaling layers

and a unit-threshold neuron, as shown in the top-right of

Fig. 2. The weights of the two scaling layers are diagonal

matrices defined by θ and its element-wise reciprocal, re-

spectively.

The sparse code α is then multiplied with HR dictionary

Dx ∈ R
mx×n in the next linear layer, reconstructing HR

patch x of size sx×sx = mx.

In the final layer G, all the recovered patches are put

back to the corresponding positions in the HR image Ix.

This is realized via a convolutional filter of mx channels

with spatial size sg×sg . The size sg is determined as

the number of neighboring patches that overlap with the

same pixel in each spatial direction. The filter will assign

appropriate weights to the overlapped recoveries from dif-

ferent patches and take their weighted average as the final

prediction in Ix.

As illustrated in the bottom of Fig. 2, after some simple

reorganizations of the layer connections, the network de-

scribed above has some adjacent linear layers which can

be merged into a single layer. This helps to reduce the

computation load as well as redundant parameters in the

network. The layers H and G are not merged because

we apply additional nonlinear normalization operations on

patches y and x, which will be detailed in Sec. 5.

Thus, there are totally 5 trainable layers in our network:

2 convolutional layers H and G, and 3 linear layers shown

as gray boxes in Fig. 2. The k recurrent layers share the

same weights and are therefore conceptually regarded as

one. Note that all the linear layers are actually implemented

as convolutional layers applied on each patch with filter

spatial size of 1×1, a structure similar to the network in

network [20]. Also note that all these layers have only

weights but no biases (zero biases).

Mean square error (MSE) is employed as the cost func-

tion to train the network, and our optimization objective can

be expressed as

min
Θ

∑

i

∥SCN(I(i)
y ;Θ)− I(i)

x ∥22, (4)

where I(i)
y and I(i)

x are the i-th pair of LR/HR training data,

and SCN(Iy;Θ) denotes the HR image for Iy predicted

using the SCN model with parameter set Θ. All the param-

eters are optimized through the standard back-propagation

algorithm. Although it is possible to use other cost terms

that are more correlated with human visual perception than

MSE, our experimental results show that simply minimizing

MSE leads to improvement in subjective quality.

Advantages over Previous Models

The construction of our SCN follows exactly each step

in the sparse coding based SR method [36]. If the network

parameters are set according to the dictionaries learned in

[36], it can reproduce almost the same results. Howev-

er, after training, SCN learns a more complex regression

function and can no longer be converted to an equivalent

sparse coding model. The advantage of SCN comes from its

ability to jointly optimize all the layer parameters from end

to end; while in [36] some variables are manually designed

and some are optimized individually by fixing all the others.

Technically, our network is also a CNN and it has similar

layers as the CNN model proposed in [8] for patch extrac-

tion and reconstruction. The key difference is that we have a

LISTA sub-network specifically designed to enforce sparse
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representation prior; while in [8] a generic rectified linear

unit (ReLU) [24] is used for nonlinear mapping. Since

SCN is designed based on our domain knowledge in sparse

coding, we are able to obtain a better interpretation of the

filter responses and have a better way to initialize the filter

parameters in training. We will see in the experiments that

all these contribute to better SR results, faster training speed

and smaller model size than a vanilla CNN.

4. Network Cascade for Scalable SR

Like most SR models learned from external training ex-

amples, the SCN discussed previously can only upscale im-

ages by a fixed factor. A separate model needs to be trained

for each scaling factor to achieve the best performance,

which limits the flexibility and scalability in practical use.

One way to overcome this difficulty is to repeatedly enlarge

the image by a fixed scale until the resulting HR image

reaches a desired size. This practice is commonly adopted

in the self-similarity based methods [13, 12, 6], but is not

so popular in other cases for the fear of error accumulation

during repetitive upscaling.

In our case, however, it is observed that a cascade of

SCNs (CSCN) trained for small scaling factors can generate

even better SR results than a single SCN trained for a large

scaling factor, especially when the target scaling factor is

large (greater than 2). This is illustrated by the example

in Fig. 3. Here an input image is magnified by ×4 times

in two ways: with a single SCN×4 model through the

processing flow (a) → (b) → (d); and with a cascade of two

SCN×2 models through (a) → (c) → (e). It can be seen that

the input to the second cascaded SCN×2 in (c) is already

sharper and contains less artifacts than the bicubic×4 input

to the single SCN×4 in (b), which naturally leads to the

better final result in (e) than the one in (d). Therefore,

each SCN in the cascade serves as a “relaying station”

which progressively recovers some useful information lost

in bicubic interpolation and compensates for the distortion

aggregated from previous stages.

The CSCN is also a deep network, in which the output

of each SCN is connected to the input of the next SCN

with bicubic interpolation in the between. To construct the

cascade, besides stacking several SCNs trained individually

with respect to (4), we can also optimize all of them jointly

as shown in Fig. 4. Without loss of generality, we assume

each SCN in the cascade has the same scaling factor s. Let

I0 denote the input image of original size, and Îj (j>0)

denote the output image of the j-th SCN upscaled by a total

of ×sj times. Each Îj can be compared with its associated

ground truth image Ij according to the MSE cost, leading

to a multi-scale objective function:

min
{Θj}

∑

i

∑

j

∥

∥

∥
SCN(Î

(i)

j−1↑s;Θj)− I
(i)
j

∥

∥

∥

2

2
, (5)

(a) LR image

(b) bicubic×4 (28.52) (c) SCN×2 & bicubic×2 (30.27)

(d) SCN×4 (30.22) (e) SCN×2 & SCN×2 (30.72)

Figure 3. SR results for the “Lena” image upscaled by 4 times. (a)

→ (b) → (d) represents the processing flow with a single SCN×4

model. (a) → (c) → (e) represents the processing flow with two

cascaded SCN×2 models. PSNR is given in parentheses.

SCN
1

bicubic SCN
2

bicubic

MSE MSE

scale 1 scale scale 

Figure 4. Training cascade of SCNs with multi-scale objectives.

where i denotes the data index, and j denotes the SCN

index. I↑s is the bicubic interpolated image of I by a

factor of s. This multi-scale objective function makes full

use of the supervision information in all scales, sharing a

similar idea as heterogeneous networks [19, 5]. All the layer

parameters {Θj} in (5) could be optimized from end to

end by back-propagation. We use a greedy algorithm here

to train each SCN sequentially from the beginning of the

cascade so that we do not need to care about the gradient

of bicubic layers. Applying back-propagation through a

bicubic layer or its trainable surrogate will be considered

in future work.

5. Implementation Details

We determine the number of nodes in each layer of our

SCN mainly according to the corresponding settings used

in sparse coding [35]. Unless otherwise stated, we use
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input LR patch size sy=9, LR feature dimension my=100,

dictionary size n=128, output HR patch size sx=5, and

patch aggregation filter size sg=5. All the convolution

layers have a stride of 1. Each LR patch y is normalized

by its mean and variance, and the same mean and variance

are used to restore the final HR patch x. We crop 56×56
regions from each image to obtain fixed-sized input samples

to the network, which produces outputs of size 44×44.

To reduce the number of parameters, we implement

the LR patch extraction layer H as the combination of

two layers: the first layer has 4 trainable filters each of

which is shifted to 25 fixed positions by the second layer.

Similarly, the patch combination layer G is also split into

a fixed layer which aligns pixels in overlapping patches

and a trainable layer whose weights are used to combine

overlapping pixels. In this way, the number of parameters

in these two layers are reduced by more than an order, and

there is no observable loss in performance.

We employ a standard stochastic gradient descent al-

gorithm to train our networks with mini-batch size of 64.

Based on the understanding of each layer’s role in sparse

coding, we use Harr-like gradient filters to initialize layer

H , and use uniform weights to initialize layer G. All the

remaining three linear layers are related to the dictionary

pair (Dx,Dy) in sparse coding. To initialize them, we first

randomly set Dx and Dy with Gaussian noise, and then

find the corresponding layer weights as in ISTA [7]:

w1 = C·DT
y , w2 = I−DT

y Dy, w3 = (CL)−1·Dx (6)

where w1, w2 and w3 denote the weights of the three

subsequent layers after layer H . L is the upper bound on

the largest eigenvalue of DT
y Dy , and C is the threshold

value before normalization. We empirically set L=C=5.

The proposed models are all trained using the CUDA

ConvNet package [18] on a workstation with 12 Intel Xeon

2.67GHz CPUs and 1 GTX680 GPU. Training a SCN

usually takes less than one day. Note that this package is

customized for classification networks, and its efficiency

can be further optimized for our SCN model.

In testing, to make the entire image covered by output

samples, we crop input samples with overlap and extend

the boundary of original image by reflection. Note we

shave the image border in the same way as [8] for objective

evaluations to ensure fair comparison. Only the lumi-

nance channel is processed with our method, and bicubic

interpolation is applied to the chrominance channels. To

achieve arbitrary upscaling factors using CSCN, we upscale

an image by ×2 times repeatedly until it is at least as large

as the desired size. Then a bicubic interpolation is used to

downscale it to the target resolution if necessary.

When reporting our best results in Sec. 6.2, we also

use the multi-view testing strategy commonly employed in

image classification. For patch-based image SR, multi-view

Figure 5. The four learned filters in the first layer H .
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Figure 6. The PSNR change for ×2 SR on Set5 during training

using different methods: SCN; SCN with random initialization;

CNN. The horizontal dash lines show the benchmarks of bicubic

interpolation and sparse coding (SC).

testing is implicitly used when predictions from multiple

overlapping patches are averaged. Here, besides sampling

overlapping patches, we also add more views by flipping

and transposing the patch. Such strategy is found to im-

prove SR performance for general algorithms at the sheer

cost of computation.

6. Experiments

We evaluate and compare the performance of our models

using the same data and protocols as in [28], which are

commonly adopted in SR literature. All our models are

learned from a training set with 91 images, and tested on

Set5 [3], Set14 [37] and BSD100 [23] which contain 5,

14 and 100 images respectively. We have also trained on

a different larger data set, and observe little performance

change (less than 0.1dB). The original images are down-

sized by bicubic interpolation to generate LR-HR image

pairs for both training and evaluation. The training data are

augmented with translation, rotation and scaling.

6.1. Algorithm Analysis

We first visualize the four filters learned in the first layer

H in Fig. 5. The filter patterns do not change much from

the initial first and second order gradient operators. Some

additional small coefficients are introduced in a highly

structured form that capture richer high frequency details.

The performance of several networks during training is

measured on Set5 in Fig. 6. Our SCN improves significantly

over sparse coding (SC) [35], as it leverages data more

effectively with end-to-end training. The SCN initialized

according to (6) can converge faster and better than the

same model with random initialization, which indicates that
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Figure 7. PSNR for ×2 SR on Set5 using SCN and CNN with

various network sizes.

Table 1. PSNR of different network cascading schemes on Set5,

evaluated for different scaling factors in each column.

upscale factor ×1.5 ×2 ×3 ×4
SCN×1.5 40.14 36.41 30.33 29.02

SCN×2 40.15 36.93 32.99 30.70

SCN×3 39.88 36.76 32.87 30.63

SCN×4 39.69 36.54 32.76 30.55

CSCN 40.15 36.93 33.10 30.86

the understanding of SCN based on sparse coding can help

its optimization. We also train a CNN model [8] of the

same size as SCN, but find its convergence speed much

slower. It is reported in [8] that training a CNN takes

8×108 back-propagations (equivalent to 12.5×106 mini-

batches here). To achieve the same performance as CNN,

our SCN requires less than 1% back-propagations.

The network size of SCN is mainly determined by the

dictionary size n. Besides the default value n=128, we

have tried other sizes and plot their performance versus the

number of network parameters in Fig. 7. The PSNR of

SCN does not drop too much as n decreases from 128 to

64, but the model size and computation time can be reduced

significantly. Fig. 7 also shows the performance of CNN

with various sizes. Our smallest SCN can achieve higher

PSNR than the largest model (CNN-L) in [9] while only

using about 20% parameters.

Different numbers of recurrent stages k have been tested

for SCN, and we find increasing k from 1 to 3 only improves

performance by less than 0.1dB. As a tradeoff between

speed and accuracy, we use k=1 throughout the paper.

In Table 1, different network cascade structures (in each

row) are compared at different scaling factors (in each

column). SCN×a denotes the simple cascade of SCN with

fixed scaling factor a, where an individually trained SCN

is applied one or more times for scaling factors other than

a. It is observed that SCN×2 can perform as well as

the scale-specific model for small scaling factor (1.5), and

much better for large scaling factors (3 and 4). Note that

the cascade of SCN×1.5 does not lead to good results since

artifacts quickly get amplified through many repetitive up-

scalings. Therefore, we use SCN×2 as the default building

block for CSCN, and drop the notation ×2 when there is

no ambiguity. The last row in Table 1 shows that a CSCN

trained using the multi-scale objective in (5) can further

improve the SR results for scaling factors 3 and 4, as the

second SCN in the cascade is trained to be robust to the

artifacts generated by the first one.

6.2. Comparison with State of the Arts

We compare the proposed CSCN with other recent SR

methods on all the images in Set5, Set14 and BSD100

for different upscaling factors. Table 2 shows the PSNR

and structural similarity (SSIM) [31] for adjusted anchored

neighborhood regression (A+) [29], CNN [8], CNN trained

with larger model size and more data (CNN-L) [9], the

proposed CSCN, and CSCN with our multi-view testing

(CSCN-MV). We do not list other methods [35, 28, 37, 17,

15] whose performance is worse than A+ or CNN-L.

It can be seen from Table 2 that CSCN performs consis-

tently better than all previous methods in both PSNR and

SSIM, and with multi-view testing the results can be further

improved. CNN-L improves over CNN by increasing model

parameters and training data. However, it is still not as good

as CSCN which is trained with a much smaller size and on

a much smaller data set. Clearly, the better model structure

of CSCN makes it less dependent on model capacity and

training data in improving performance. Our models are

generally more advantageous for large scaling factors due

to the cascade structure.

The visual qualities of the SR results generated by sparse

coding (SC) [35], CNN and CSCN are compared in Fig. 8.

Our approach produces image patterns with shaper bound-

aries and richer textures, and is free of the ringing artifacts

observable in the other two methods.

Fig. 9 shows the SR results on the “chip” image com-

pared among more methods including the self-example

based method (SE) [12] and the deep network cascade

(DNC) [6]. SE and DNC can generate very sharp edges

on this image, but also introduce artifacts and blurs on

corners and fine structures due to the lack of self-similar

patches. On the contrary, the CSCN method recovers all the

structures of the characters without any distortion.

We also compare CSCN with other sparse coding ex-

tensions [22, 10, 38], and consider the blurring effect

introduced in downscaling. A PSNR gain of 0.3∼1.6dB

is achieved by CSCN in general. Experiment details and

source codes are available online1.

6.3. Subjective Evaluation

We conducted a subjective evaluation of SR results

for several methods including bicubic, SC [35], SE [12],

1www.ifp.illinois.edu/˜dingliu2/iccv15
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Table 2. PSNR (SSIM) comparison on three test data sets among different methods. Red indicates the best and blue indicates the second

best performance. The performance gain of our best model over all the others’ best is shown in the last row.

Data Set Set5 Set14 BSD100

Upscaling ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

A+ [29]
36.55 32.59 30.29 32.28 29.13 27.33 30.78 28.18 26.77

(0.9544) (0.9088) (0.8603) (0.9056) (0.8188) (0.7491) (0.8773) (0.7808) (0.7085)

CNN [8]
36.34 32.39 30.09 32.18 29.00 27.20 31.11 28.20 26.70

(0.9521) (0.9033) (0.8530) (0.9039) (0.8145) (0.7413) (0.8835) (0.7794) (0.7018)

CNN-L [9]
36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90

(0.9542) (0.9090) (0.8628) (0.9067) (0.8215) (0.7513) (0.8879) (0.7863) (0.7103)

CSCN
36.93 33.10 30.86 32.56 29.41 27.64 31.40 28.50 27.03

(0.9552) (0.9144) (0.8732) (0.9074) (0.8238) (0.7578) (0.8884) (0.7885) (0.7161)

CSCN-MV
37.14 33.26 31.04 32.71 29.55 27.76 31.54 28.58 27.11

(0.9567) (0.9167) (0.8775) (0.9095) (0.8271) (0.7620) (0.8908) (0.7910) (0.7191)

Our 0.48 0.51 0.55 0.26 0.25 0.26 0.18 0.17 0.21

Improvement (0.0023) (0.0077) (0.0147) (0.0028) (0.0056) (0.0107) (0.0029) (0.0047) (0.0088)

S
C

C
N

N
C

S
C

N

Figure 8. SR results given by SC [35] (first row), CNN [8] (second row) and our CSCN (third row). Images from left to right: the “monarch”

image upscaled by ×3; the “zebra” image upscaled by ×3; the “comic” image upscaled by ×3.

self-example regression (SER) [34], CNN [8] and CSCN.

Ground truth HR images are also included when they are

available as references. Each of the participants in the

evaluation is shown a set of HR image pairs, which are
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(a) bicubic (b) SE [12] (c) SC [35]

(d) DNC [6] (e) CNN [8] (f) CSCN

Figure 9. The “chip” image upscaled by ×4 times using different methods.

bicubic SC SE SER CNN CSCN
0

0.05

0.1

0.15

0.2

s
c
o
re

Figure 10. Subjective SR quality scores for different methods

including bicubic, SC [35], SE [12], SER [34], CNN [8] and the

proposed CSCN. The score for ground truth result is 1.

upscaled from the same LR images using two randomly

selected methods. For each pair, the subject needs to decide

which one is better in terms of perceptual quality.

We have a total of 270 participants giving 720 pairwise

comparisons over 6 images with different scaling factors.

Not every participant completed all the comparisons but

their partial responses are still useful. All the evaluation

results can be summarized into a 7×7 winning matrix for 7

methods (including ground truth), based on which we fit a

Bradley-Terry [4] model to estimate the subjective score for

each method so that they can be ranked.

Fig. 10 shows the estimated scores for the 6 SR methods

in our evaluation, with the score for ground truth method

normalized to 1. As expected, all the SR methods have

much lower scores than ground truth, showing the great

challenge in SR problem. The bicubic interpolation is

significantly worse than other SR methods. The proposed

CSCN method outperforms other previous state-of-the-art

methods by a large margin, demonstrating its superior vi-

sual quality. It should be noted that the visual difference

between some image pairs is very subtle. Nevertheless,

the human subjects are able to perceive such difference

when seeing the two images side by side, and therefore

make consistent ratings. The CNN model becomes less

competitive in the subjective evaluation than it is in PSNR

comparison. This indicates that the visually appealing

image appearance produced by CSCN should be attributed

to the regularization from sparse representation, which can

not be easily learned by merely minimizing reconstruction

error as in CNN.

7. Conclusions

We propose a new model for image SR by combining

the strengths of sparse coding and deep network, and make

considerable improvement over existing deep and shallow

SR models both quantitatively and qualitatively. Besides

producing good SR results, the domain knowledge in the

form of sparse coding can also benefit training speed and

model compactness. Furthermore, we propose a cascaded

network for better flexibility in scaling factors as well as

more robustness to artifacts.

In future work, we will apply the SCN model to other

problems where sparse coding can be useful. The inter-

action between deep networks for low-level and high-level

vision tasks will also be explored.
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