
npm Packages as Ingredients: a Recipe-based Approach

Kyriakos C. Chatzidimitriou, Michail D. Papamichail, Themistoklis Diamantopoulos,
Napoleon-Christos Oikonomou, and Andreas L. Symeonidis

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece
{kyrcha, mpapamic, thdiaman, noikon}@issel.ee.auth.gr, asymeon@eng.auth.gr

Keywords: Dependency Networks, Software Reuse, JavaScript, npm, node.

Abstract: The sharing and growth of open source software packages in the npm JavaScript (JS) ecosystem has been
exponential, not only in numbers but also in terms of interconnectivity, to the extend that often the size of de-
pendencies has become more than the size of the written code. This reuse-oriented paradigm, often attributed
to the lack of a standard library in node and/or in the micropackaging culture of the ecosystem, yields interest-
ing insights on the way developers build their packages. In this work we view the dependency network of the
npm ecosystem from a “culinary” perspective. We assume that dependencies are the ingredients in a recipe,
which corresponds to the produced software package. We employ network analysis and information retrieval
techniques in order to capture the dependencies that tend to co-occur in the development of npm packages and
identify the communities that have been evolved as the main drivers for npm’s exponential growth.

1 INTRODUCTION

The popularity of JS is constantly increasing, and
along is increasing the popularity of frameworks for
building server (e.g. Node.js), web (e.g. React, Vue.js,
Angular, etc.), desktop (e.g. Electron) or mobile ap-
plications (e.g. React Native, NativeScript, etc.), even
IoT solutions (e.g. Node-RED). A common denom-
inator to this explosive growth has been the launch
of the npm registry (i.e. the package manager of JS)
in 2010. The npm ecosystem is often seen as one of
the JS revolutions1 that have transformed JavaScript
from “a language that was adding programming ca-
pabilities to HTML” into a full-blown ecosystem. In
fact, the growth is so rapid that terms like “JS frame-
work fatigue” have become common among develop-
ers. Indicatively, the June 2018 Redmonk survey2,
the GitHub status report3, and the 2018 Stack Over-
flow survey4 position JS as the most popular program-
ming language, while Module Counts5 depicts an ex-
ponential growth of npm modules against repositories
of other languages.

1https://youtu.be/L-fx2xXSVso
2https://redmonk.com/sogrady/2018/08/10/language-

rankings-6-18/
3https://octoverse.github.com/
4https://insights.stackoverflow.com/survey/2018/
5http://www.modulecounts.com/

Given that dependencies and reusability have be-
come very important in today’s software develop-
ment process, npm registry has become a “must”
place for developers to share packages, defining code
reuse as a state-of-the-practice development paradigm
(Chatzidimitriou et al., 2018). A white paper by Con-
trast Security (Williams and Dabirsiaghi, 2014) men-
tions that up to 80% of the code in today’s software
applications comes from libraries and frameworks.
This is evident in the npm ecosystem, where the num-
ber of dependencies for a package has been shown to
grow with time (Wittern et al., 2016). There are even
extreme cases, where one-liner libraries have more
than 70 dependencies (Haney, 2016). Such extreme
reusability is usually attributed to the lack of a stan-
dard library in node.js and to the micropackaging cul-
ture of the npm ecosystem.

Against this background, in this work we extract
the collective knowledge and preferences when creat-
ing JavaScript (node.js) packages through mining the
most proliferate module repository, the npm registry.
Inspired by (Teng et al., 2012), we treat packages as
recipes and dependencies as ingredients. Just like a
recipe comprises a list of ingredients along with a pro-
cess on how to combine them, one can consider an
npm package as a recipe: a list of core dependencies
and a list of development dependencies, also known
as devDependencies in the npm lingo, that are com-
bined together with some code that uses them. And

https://youtu.be/L-fx2xXSVso
https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/
https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/
https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2018/
http://www.modulecounts.com/

just like online recipes receive reviews and comments,
npm packages have repository stars, forks, watchers
and package downloads, GitHub issues, Stack Over-
flow posts, and so on. This type of information can
provide insights not only about package popularity or
quality but also about user preferences, development
tendencies, and which dependencies go well with oth-
ers. We focus on the following research questions:

• RQ1: Are there any interesting communities (clus-
ters) developed by dependencies that tend to co-
occur together in “recipes”?

• RQ2: Is the same true for devDependencies?

• RQ3: Can we identify the scope these communi-
ties are used for?

• RQ4: What are the similarities or differences be-
tween package recipes (node.js packages of the
npm registry) and application recipes (node.js ap-
plications that are not part of the npm registry)?

By providing answers to these questions we aim to get
a better understanding of how packages work when
used together as dependencies. We can also answer
questions as to which packages mix well together and
for what purpose.

2 BACKGROUND

The npm registry6 is the largest and fastest grow-
ing module (or packages in the JS terminology) repos-
itory of all programming languages. At the moment
of writing it includes more than 800K packages, while
more than 500 are added every day. Packages pub-
lished to the registry must contain a package.json
file. The main goals of the package.json7 file are:

1. to list the packages that the project depends on.

2. to allow specifying the versions of a package that
the project can use via semantic versioning rules.

3. to make one’s build reproducible, and therefore
much easier to share with other developers.

Among other things, this file holds information, such
as the package name and version, its description, the
authors, keywords, license, repository, and more.

Besides the dependencies, the package.json file
contains a devDependencies list that accounts for
packages used while developing the software project
and not included in the “production” build of the
product. Most often, the npm packages are associated
with a GitHub repository, which contains the source

6https://www.npmjs.com/
7https://docs.npmjs.com/getting-started/using-a-

package.json

code under development and other information (is-
sues, commits, stars, forks, watchers etc.). All the
above hold true for node.js applications as well. That
is, end-user applications that too have dependencies
and devDependencies and allow us to see package us-
age from an application developer viewpoint.

3 METHODOLOGY

The target of our methodology is to distill the
knowledge found in the package.json files of the
npm registry, with respect to their declared depen-
dencies. To do so, we parse them and extract the de-
pendencies and devDependencies, the description and
keywords that denote their functionality, along with
certain meta-data regarding package popularity.

We construct four networks in order to capture
developers’ practices about how they combine them:
one that reflects the relationships between dependen-
cies and one for devDependencies. This is performed
twice one for npm packages and one for node.js ap-
plications. Upon creating the networks, we employ
cluster detection algorithms in order to find communi-
ties of packages that are often used together and apply
information retrieval techniques to the keywords and
description fields in order to assign keywords of func-
tionality to the communities. Last but not least, we try
to identify if employing frequently used dependencies
has any impact to the popularity of the produced pack-
age in terms of GitHub stars or package downloads.

3.1 The Dataset

In such big open databases like npm, the quality and
usefulness of the packages usually follows a Power
Law8 or the Pareto Principle9. So in order to mine
useful, quality packages, we augmented each pack-
age with its monthly download count gathered from
npms.io10 and the GitHub stars from the repository
mentioned in the package.json file.

Using popularity thresholds of 5,000 monthly
downloads and 70 GitHub stars, we extracted 8,732
packages. The aforementioned thresholds were not
arbitrarily selected, but were investigated using the
elbow method based on the number of packages that
satisfy them. This number is exponentially increasing
when we further decrease those thresholds. For each
package (recipe) we kept the name, its dependencies
(ingredients), its devDependencies (another type of

8https://en.wikipedia.org/wiki/Power law
9https://en.wikipedia.org/wiki/Pareto principle

10https://api-docs.npms.io/

https://www.npmjs.com/
https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Pareto_principle
https://api-docs.npms.io/

ingredients), the keywords and the description fields
found in the package.json file, augmented with its
monthly downloads and the GitHub stars of the repos-
itory declared in its package.json file. We only kept
the name of the package and the names of its de-
pendencies and didn’t consider any declared semantic
version. As for the applications, by crawling GitHub,
we downloaded package.json files that were con-
tained in the root folder of repositories with more
than 70 stars and their package names did not exist
in the npm registry. Upon applying the aforemen-
tioned methodology, we gathered 13,884 application
package.json files. The value of the threshold in
the number of stars was chosen again using the elbow
methods as shown in Figure 111.

Figure 1: Choosing the star threshold visually.

We then generated a list sorted by frequency of
dependency occurrence in packages, and selected the
top 1000 most frequent dependencies as our final de-
pendency list. In Figure 2 one can see the top 10 most
frequent dependencies, with lodash making an ap-
pearance in 8.1% of the 8686 packages. These de-
pendencies also accounted for 16.8% of dependency
entries in the dataset. For devDependencies, depen-
dency mocha appeared in 2558 packages (29.4%).

lo
da

sh

ch
al

k

de
bu

g

pr
op

-ty
pe

s

ba
be

l-r
un

tim
e

se
m

ve
r

gl
ob

m
kd

irp

co
m

m
an

de
r

as
yn

c0

100

200

300

400

500

Nu
m

be
r o

f P
ac

ka
ge

s

8%

5%

4% 4%

3% 3% 3% 3% 3% 3%

Figure 2: Top dependencies of high quality packages.

11The dataset with the package.json information
of the retrieved packages and applications can be
found in https://github.com/AuthEceSoftEng/icsoft-2019-
npm-recipes.

3.2 Package Dependencies Complement
Network

We constructed a dependency complement network
based on the Pointwise Mutual Information (PMI) cri-
terion, defined on pairs of dependencies (a,b) as fol-
lows:

PMI(a,b) = log
p(a,b)

p(a)p(b)
(1)

where p(a) and p(b) denote the frequency of pack-
ages containing a and b, respectively, and p(a,b) de-
notes the frequency of packages where a and b co-
occur. More specifically:

p(a,b) =
o f packages containing a and b

o f packages
(2)

p(a) =
o f packages containing a

o f packages
(3)

p(b) =
o f packages containing b

o f packages
(4)

The PMI is the probability that two dependencies
occur together against the probability that the same
two dependencies occur separately. A high PMI ex-
pects dependencies to occur together far more often
than by chance. After calculating PMI for the top
1000 dependencies in the dataset, we kept only de-
pendencies with high PMI, i.e. a value of more than
6 (maximum PMI was 10.77 between d and es5-ext
and minimum PMI was −3.76 between prop-types
and mkdirp packages). Figure 3 depicts the depen-
dency complementary network12.

Upon examining Figure 3 without the comple-
mentary colors, it is obvious that the communities are
not clearly visible through plain visualization. In or-
der to make our approach systematic, we have em-
ployed the Girvan-Newman network clustering al-
gorithm (Girvan and Newman, 2002), a hierarchical
method used to detect communities, by progressively
removing edges from the original network. The top-7
in size (number of packages belonging to a commu-
nity), distinct communities are colored in Figure 3.
Each one of them represents a population of more
than 2% of the nodes.

We use the members of the formulated commu-
nities in order to extract their domain of use. To-
wards this direction, we apply information retrieval
techniques on the meta-data of package.json files.

12Graph visualizations and network analyses were per-
formed using the Gephi open source graph visualization
platform (Bastian et al., 2009).

https://github.com/AuthEceSoftEng/icsoft-2019-npm-recipes
https://github.com/AuthEceSoftEng/icsoft-2019-npm-recipes

Figure 3: Dependencies complementary network. Larger
nodes correspond to nodes with higher degree (nodes with
more connections to other nodes).

In specific, we use the tf–idf (term frequency − in-
verse document frequency) algorithm, which quanti-
fies how important a word is to a document in a corpus
(Salton and Buckley, 1988).

Every cluster corresponds to a corpus, while
its members (packages) correspond to documents.
Each document contains the name (split in keywords
on dashes and slashes), description and keywords
of a package.json file. Upon removing all stop
words and the keywords npm, node, js, javascript,
package, plugin, we employ tf-idf for each clus-
ter and compute the significance of each word as the
average of the corresponding values included in the
term-document matrix. Finally, we apply the elbow
method on the calculated significance values to ex-
tract the top keywords that describe the domain. Fig-
ure 4 visualizes the elbow method towards deriving
the top 5 keywords for one of the communities, while
Table 1 depicts the keywords for each community.

Table 1: Keywords of function of complement dependency
communities with more than 2% support

Com. Keywords

C1 webpack, babel, loader, css, module
C2 http, methods, content, parse, utility
C3 stack, line, string, cli, ansi
C4 opcua, sdk, iot, internet, module
C5 lodash, exported, method, module

modularized
C6 simple, authentication, session, web, zip
C7 d3, time, format, module, data

Figure 4: Decision boundary for the keywords to keep.

The main communities that accounted for more
than 2% of ingredients are those of: general node.js
packages related to webpack and babel (C1), pack-
ages related to web development (C2), cli related
recipes that involve string manipulation (C3), a spe-
cialized community revolving around a node.js IoT
framework, opcua (C4), the lodash community (C5),
the community of tools about web plugins for authen-
tication of session manipulation (C6) and the commu-
nity around d3 development (C7).

In addition, for each package, we calculated the
minimum, average and maximum pairwise PMI be-
tween dependencies, in order to check if complemen-
tary dependencies would yield a better downloads
count or GitHub star count. We have only found
statistically significant correlation (statistical signif-
icance 0.043 with a p-value of 0.003) between the
monthly downloads count and the minimum PMI.
This may suggest that having at least two complemen-
tary dependencies could boost the package’s popular-
ity prospects. On the other hand, uncommon depen-
dencies used together do not cause any harm.

3.3 Package Development Dependencies
Complement Network

We repeated the procedure for development de-
pendencies of packages. Again, after calculating
the PMI for the top 1000 devDependencies, we
kept only dependencies with a PMI of 6. The
maximum PMI = 9.92 was found between the
@babel/plugin-proposal-do-expressions and
the @babel/plugin-proposal-logical-assign-
ment-operators packages, while the min-
imum PMI = −5.34 was found between the
@babel/preset-env and the babel-cli packages).
A high PMI value accounts for packages that proba-
bly have been are separated to increase modularity.
Figure 5 shows the devDependencies complementary
network for packages. Table 2 presents the keywords
for the top-10 development dependency communities
identified.

Figure 5: DevDependencies complementary network.

As for statistical correlations, minimum PMI was
found positively correlated with downloads, maxi-
mum PMI was found positively correlated with stars
and negatively correlated with downloads, while av-
erage PMI was found positively correlated with stars.

Table 2: Keywords of function of complement development
dependency communities with more than 5% support.

Com. Keywords

C1 loader, vue, webpack, css, eslint
C2 eslint, babel, flow, cli, react
C3 gulp, gulpplugin, stream, git, coverage
C4 grunt, gruntplugin, karma, css, files
C5 typescript, karma, loader, reporter, copy
C6 ember, cli, addon, eslint, sass
C7 tslint, react, prettier, rules, file

In devDependencies the communities seem eas-
ier to distinguish, both in terms of the visualization
and in terms of keywords: the vue development re-
lated dependencies (C1), the react ones (C2), the
gulp automation ecosystem (C3), the grunt automa-
tion ecosystem (C4), development packages related to
typescript (C5), the ember web development platform
ecosystem (C6), and a community related to type-
script, linting and react (C7). This is probably due to
the fact that devDependencies are usually added for
the same reasons: task automation, transpiling, com-

piling, bundling, testing, linting etc., whereas produc-
tion dependencies follow the application domain of
the developed package.

3.4 Application Complement Networks

We repeated the same procedure for dependen-
cies found in node.js applications that too have a
package.json file, although not uploaded in the
npm registry. We crawled 13822 package.json
files using the GitHub search API. Dependency
react was the top package in appearances found in
2414 applications and eslint was the top appearing
package in devDependencies found in 3141 applica-
tions. Furthermore, the top PMI for dependencies
was achieved by pair grunt-sails-linker and
include-all with 9.67, and pair @babel/plugin-
proposal-nullish-coalescing-operator and
@babel/plugin-proposal-pipeline-operator
with 9.36 for devDependencies. Top pairs exhibit
the micropackaging approach, where developers
split features into smaller and smaller packages
performing simpler and simpler tasks. The lowest
PMI were achieved by the pairs angular-forms-
react-dom with −5.72 for dependencies and
eslint-plugin-import-grunt-contrib-jshint
with −6.32 for devDependencies. These values are
explainable as one would use angular or react for
web development, and eslint of jshint for linting.

Figure 6 and Figure 7 depict the complementary
networks for node.js application dependencies and
devDependencies, respectively. From the figures one
can observe that communities are easier to distinguish
in applications than in package complementary net-
works, since applications are usually developed for a
specific sector and use specific plugins, while pack-
ages are as broadly applicable as possible in order for
the to be as reusable as possible.

Figure 6: Dependencies complementary network for appli-
cations.

Figure 7: DevDependencies complementary network for
applications.

Table 3 depicts the 7 largest communities iden-
tified for application dependencies and Table 4 for
application devDependencies. For the first case we
have: general web development utilities like webpack
and babel (C1), react-ethereum applications (C2), re-
act web applications with graphql (C3), desktop ap-
plications developed with electron (C4), grunt au-
tomation ecosystem dependencies (C5), gulp automa-
tion ecosystem dependencies (C6) and mobile appli-
cations developed with the cordova framework (C7).
For the devDependencies case we have: ember re-
lated application development (C1), grunt automation
for angular development (C2), babel helper packages
(C3), react development utilities (C4), gulp automa-
tion (C5), angular related application development
(C6) and even more application development utilities
for loading modules dynamically (C7).

Table 3: Function keywords of application dependencies
communities with more than 5% support.

Com. Keywords

C1 webpack, loader, babel, css, eslint
C2 react, ethereum, component, library, utility
C3 react, graphql, apollo, json, link
C4 electron, file, windows, module, app
C5 gruntplugin, contrib, files, grunt, express
C6 gulp, browserify, gulpplugin, require

transform
C7 cordova, android, animations, whitelist

ionic

3.5 Graph Analysis

Last but not least, in an effort to further validate our
results we also examine the networks from a pure
graph analysis perspective. Towards this direction,
we compute the degree, the closeness centrality and
the betweenness centrality metrics.

Table 4: Function keywords of application devDependen-
cies communities with more than 4% support.

Com. Keywords

C1 ember, cli, addon, loader, eslint
C2 karma, grunt, angularjs, gruntplugin

angular
C3 babel, es2015, preset, eslint, markdown
C4 react, create, webpack, fetch, preset
C5 bower, html, gulp, gulpplugin, inject
C6 zones, angular (absence of more keywords)
C7 static, css, module, systemjs, build

The closeness centrality quantifies the degree to
which a node is able to spread information through
a graph, while betweenness centrality measures the
importance of nodes in terms of maintaining the in-
tegrity of the formulated network. From a software
engineering perspective, the nodes (packages) that ex-
hibit high closeness centrality are the ones that despite
being direct dependencies of a small number of pack-
ages, these packages appear to be of great importance
and thus indirectly influence a large number of pack-
ages/applications. As for the betweenness centrality,
the packages that exhibit high values can be consid-
ered the ones that are integral for certain combina-
tion of operations. For instance, the high betweenness
centrality in a middleware package that is required for
back-end testing denotes that whenever a developer
wants to test the back-end of an application, it is vital
to use that certain package. The graph metrics regard-
ing the degree and the betweenness centrality for all
four networks are presented in Table 5. The presented
values refer to the 3 packages with the highest val-
ues for each case. Given that the values for closeness
centrality are normalized, the top packages in all four
networks have a value of 1 and as a result they are not
included.

Upon examining the packages that have the high-
est values regarding both degree and betweenness
centrality, the results that occur are reasonable and
expected from a software engineering perspective.
For instance, in the case of the package dependen-
cies, the package object.values appears to exhibit
the highest betweenness centrality. This is expected
as this package provides an ES2017 spec-compliant
Object.values shim (code that enables two not en-
tirely matching components to work together) and
thus is used by major leading packages. This is also
evident by its number of monthly downloads, which is
more than 15 million. The same applies for the find-
ings based on the degree of packages in all four net-
works. In the case of package dependencies, the pack-
ages webpack-dev-server and react-hot-loader

Table 5: Packages with high valued graph analysis metrics.

Package Degree Package Betweeness

Package dependencies

webpack-dev-server 115 object.values 22865.477
react-hot-loader 115 http-proxy-middleware 8864.721
raw-loader 112 react-hot-loader 7513.229

Package devDependencies

ember-cli-blueprint-test-helpers 43 karma-phantomjs-shim 12521.219
ember-load-initializers 41 karma-ng-html2js-preprocessor 11042.628
ember-resolver 41 jasmine-jquery 10723.319

Application dependencies

gatsby-plugin-google-analytics 37 resize-observer-polyfill 32193.66
gatsby-plugin-catch-links 36 babel-plugin-add-module-exports 29276.75
gatsby-plugin-feed 36 @fortawesome/free-brands-svg-icons 25307.09

Application devDependencies

broccoli-assert-rev 29 detect-port 124.16
ember-cli-dependency-checker 29 filesize 104.85
ember-cli-htmlbars-inline-precompile 29 karma-ng-scenario 95.13

appear to have the highest degree, which is reasonable
as those two packages provide functionality that is vi-
tal in web development such as live reloading and real
time changes in components. Consequently, given the
aforementioned results, the findings based on graph
analysis metrics come in harmony with the ones ex-
pected from a software engineering perspective.

4 RELATED WORK

There are several works that mine dependency
networks of different languages and development
platforms to understand their properties and evolu-
tion. However, as different ecosystems do not share
the same properties (Decan et al., 2016) and since our
focus is on the npm registry, we review here the re-
lated work only on the npm dependency network.

Wittern et al. (2016) analyzed the evolution of
packages in the npm registry, their dependencies,
their popularity, and the creation and adoption of new
packages. What was particularly interesting and con-
nects to our case is that at that time, 81% of the
packages depended on at least one dependency, while
32.5% of them depended on 6 or more packages with
a steady increase. For our snapshot, at the time of
writing, we found that 61% depended on at least one
dependency and 14% on 6 or more. These may be
fewer packages in terms of percentages but far more
in terms of absolute numbers.

In (Abdalkareem et al., 2017), authors analyzed
the use of trivial npm packages (less that 35 lines of
code and less than 10 McCabe’s cyclomatic complex-
ity) as dependencies in packages and applications.
They found that trivial packages are increasing, while
using them as dependencies is not considered a bad
practice by the majority of developers, especially if
they are well implemented and increase productivity.

Decan et al. (2016) try to identify the differ-
ences in software package ecosystems (CRAN, PyPI,
NPM), though package dependency graphs. Based on
their results, NPM is the one ecosystem that supports
the extreme re-usability and micropackaging culture
by following the single-responsibility principle to the
package level. In (Kikas et al., 2017) authors exhib-
ited that indeed the JS ecosystem is the fastest grow-
ing and has high inter-connectivity between packages.
Finally, Bogart et al. (2016) identified through inter-
views that developers, in order to make sure their
packages do not break and since they are not al-
ways aware of the status of their dependencies, try to
limit their exposure to them and adopt “best-practice”
packages.

In the context of our work, we view network anal-
ysis of npm dependencies from a completely different
perspective, that of being ingredients to recipes (other
packages). Moreover, our work focuses on identify-
ing packages that work well together as dependencies
in popular packages and thus can help package main-
tainers make their choices, through “trusted ingredi-
ents”.

5 CONCLUSIONS

In this work, we have analyzed dependencies
as ingredients and packages/applications as recipes,
which is not far from the truth considering the high
utilization of software reuse in npm packages, and the
trivial packaging phenomenon. For each dependency
complement network we have identified 7 big clusters
used for various purposes. Moreover, we have found
that using development dependencies with high aver-
age complementarity has a positive correlation (0.06)
with the popularity in star counts of npm packages as
a statement of “you know what you are doing”.

From the applications’ analysis, one can observe
as main communities those of web development, mo-
bile development and desktop development. In addi-
tion, no community with respect to data science and
data processing projects was identified as those are
mainly supported by the Python and R ecosystems.
Other applications of such an approach could be use-
ful in recommender software systems, for instance:

• Through information retrieval techniques devel-
opers can identify packages that work well to-
gether in a domain (for example in linting or test-
ing) using keywords in a search engine.

• If a developer saves packageA as a dependency in
the package.json file, the system could suggest
to “use packageB along with packageA”.

• We could use the complementary networks to cal-
culate a metric of how well-together our depen-
dencies fit together by summing up the PMI of all
combinations between our “ingredients”.

Last but not least, a common question among devel-
oper forums is which development platform to use,
for example for web application development (e.g.
React?, Vue?, Angular? Ember?). Such an analy-
sis could reveal which platforms are more popular or
the ones that create a closed community that can only
use platform-specific packages, or even ones that are
more open to connections with third-party libraries.
An idea for future work would be to mine Stack Over-
flow in order to find packages that can substitute other
packages and build package substitute networks.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Regional Development Fund of the European Union
and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and In-
novation, under the call RESEARCH – CREATE –
INNOVATE (project code: T1EDK-02347).

REFERENCES

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S.,
and Shihab, E. (2017). Why do developers use trivial
packages? an empirical case study on npm. In Proc.
of the 11th Joint Meeting on Foundations of Software
Engineering, pages 385–395, NY, USA. ACM.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi:
An Open Source Software for Exploring and Ma-
nipulating Networks. In Proc. of the Third Interna-
tional AAAI Conference on Weblogs and Social Me-
dia, ICWSM 2009, pages 361–362, Menlo Park, CA,
USA. AAAI Press.

Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. (2016).
How to break an api: Cost negotiation and community
values in three software ecosystems. In Proceedings
of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2016, pages 109–120, New York, NY, USA. ACM.

Chatzidimitriou, K. C., Papamichail, M. D., Diamantopou-
los, T., Tsapanos, M., and Symeonidis, A. L. (2018).
Npm-miner: An infrastructure for measuring the qual-
ity of the npm registry. In Proc. of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR ’18, pages 42–45, New York, NY, USA. ACM.

Decan, A., Mens, T., and Claes, M. (2016). On the topology
of package dependency networks: A comparison of
three programming language ecosystems. In Procced-
ings of the 10th European Conference on Software Ar-
chitecture Workshops, ECSAW ’16, pages 21:1–21:4,
New York, NY, USA. ACM.

Girvan, M. and Newman, M. E. J. (2002). Com-
munity structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826.

Haney, D. (2016). NPM & left-pad: Have we forgotten how
to program? https://www.davidhaney.io/npm-left-
pad-have-we-forgotten-how-to-program/. Accessed:
2019-01-16.

Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017).
Structure and evolution of package dependency net-
works. In Proceedings of the 14th International Con-
ference on Mining Software Repositories, MSR ’17,
pages 102–112, Piscataway, NJ, USA. IEEE Press.

Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information pro-
cessing & management, 24(5):513–523.

Teng, C.-Y., Lin, Y.-R., and Adamic, L. A. (2012). Recipe
recommendation using ingredient networks. In Pro-
ceedings of the 4th Annual ACM Web Science Con-
ference, WebSci ’12, pages 298–307, New York, NY,
USA. ACM.

Williams, J. and Dabirsiaghi, A. (2014). The unfortunate
reality of insecure libraries. Technical report, Contrast
Security.

Wittern, E., Suter, P., and Rajagopalan, S. (2016). A look at
the dynamics of the javascript package ecosystem. In
Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 351–
361, New York, NY, USA. ACM.

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/

