QATCH - An adaptive framework for software product quality
assessment™

Miltiadis G. Siavvas?®, Kyriakos C. Chatzidimitriou®*, Andreas L. Symeonidis®

@ Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece

Abstract

The subjectivity that underlies the notion of quality does not allow the design and devel-
opment of a universally accepted mechanism for software quality assessment. This is why
contemporary research is now focused on seeking mechanisms able to produce software
quality models that can be easily adjusted to custom user needs. In this context, we
introduce QATCH, an integrated framework that applies static analysis to benchmark
repositories in order to generate software quality models tailored to stakeholder specifica-
tions. Fuzzy multi-criteria decision-making is employed in order to model the uncertainty
imposed by experts’ judgments. These judgments can be expressed into linguistic values,
which makes the process more intuitive. Furthermore, a robust software quality model,
the base model, is generated by the system, which is used in the experiments for QATCH
system verification. The paper provides an extensive analysis of QATCH and thoroughly
discusses its validity and added value in the field of software quality through a number
of individual experiments.

Keywords: Software quality assessment, Software engineering, Multi-criteria decision
making, Fuzzy analytic hierarchy process, Software static analysis, Quality metrics

*QATCH home page: http://issel.ee.auth.gr/qatch.

*Corresponding Author. Address: Electrical and Computer Engineering Department, Aristotle Uni-
versity of Thessaloniki, GR 54124, Thessaloniki, Greece. Tel.: +30 2310 99 6349; fax: +30 2310 99
6398

Email addresses: siavvasm@ece.auth.gr (Miltiadis G. Siavvas), kyrcha@issel.ee.auth.gr
(Kyriakos C. Chatzidimitriou), asymeon@eng.auth.gr (Andreas L. Symeonidis)

Preprint submitted to Journal of Expert Systems with Applications May 22, 2017

http://issel.ee.auth.gr/qatch

10

15

20

25

30

1. Introduction

Our era is characterized by major technological advancements and constant digitiza-
tion of information. Software is practically everywhere; web, mobile, desktop, embedded,
or distributed software is developed in order to assist people in achieving their goals eas-
ier, faster and more efficiently. This inevitably raises the issue of software quality as
a major concern for both end users that want to do their job as best as possible, as
well as software development companies that aspire to offer their customers high quality
services, and maintain (or optimally increase) their market pool.

A great number of software quality models have been proposed the last decades,
however none of them has managed to become widely accepted and applied across ap-
plication domains. The main reason that universal software quality models fail is the
subjectivity that underlies the notion of quality. Furthermore, the application domain
plays an important role on the definition of software quality. For instance, an enterprise
that produces online services may pay more attention on the reliability and the security of
its products, while an enterprise that develops software for embedded systems may care
chiefly for performance efficiency. As a result, the different stakeholders define quality
from different perspectives.

For this reason, a lot of research has been carried out in recent years targeted to
develop a mechanism that will allow the derivation of custom quality models. The main
question that these research efforts try to answer may be summarized as follows:

Is it possible to develop a system that may allow the derivation of quality models totally
adjusted to custom needs and may be able to directly assess the quality of software
products?

In this context, we introduce QAT CHE|7 a complete tool chain that allows (i) the
generation of software quality models that reflect stakeholder specifications by employ-
ing static analysis to a desired benchmark repository, and (ii) the quality evaluation of
software products by using previously generated models. The pivotal characteristics of
the proposed framework are:

e The adoption of benchmarking and static analysis for thresholds derivation, thus
automating and adding objectivity to the quality assessment process.

e The simplicity of the derived quality models, which increases confidence to the
QATCH framework.

e The adoption of an enhanced fuzzy multi-criteria decision-making technique for
weights elicitation, in order to model the uncertainty imposed by human judgments.

LQATCH, or better Q.A.T.CH., stands for Quality Assessment Tool Chain

2

40

45

50

55

60

e The ability of the experts to express their judgments in the form of linguistic values,
thus making the QATCH process more intuitive.

The rest of the paper is structured as follows: Section [2| discusses the related work
in the field of software quality by presenting various state-of-the-art frameworks, tools
and models. Section [3] provides a description of the methodologies that QATCH follows
for the derivation of quality models and the evaluation of software products. The main
structure of the derived models is presented as well. Section [4 gives a high-level overview
of QATCH, along with a brief description of the implemented modules, while Section
[] examines both the validity of the system and its added value in the field of software
quality through a set of experiments. Finally, Section [f] summarizes the work conducted,
discusses ideas for future improvements and concludes the paper.

2. Related Work

2.1. Quality Assessment Models

Quality assessment models, as their name indicates, assess the quality of the soft-
ware under investigation and are based on quality definition models (i.e. ISO 25010
, the most prominent definition model and the one we will employ).
Such models strive to gather metrics related to software quality, map these metrics to
quality characteristics as these are defined by a quality definition model and, through nor-
malization and aggregation, assess the overall software quality. The first quality models
were published by the teams of Boehm (Boehm et all |1976]) and McCall
1977). These models used hierarchical decomposition in order to decompose quality into

simpler characteristics and sub-characteristics that were easier to manage. These models
were the predecessors of ISO 9126 , which in turn was the predeces-
sor of ISO 25010. The latest set of quality characteristics proposed by ISO 25010 are:
Functional suitability, Performance efficiency, Compatibility, Usability, Reliability, Secu-
rity, Maintainability, and Portability, which are further split into 31 sub-characteristics

(Figure [T).

‘ Software Product Quality ‘

Performance Compatibility Usability ‘Reliability ‘ ‘Security ‘ ‘Maintainability ‘ ‘Pcrtability ‘
s e orriees:

Efficiency

Functional
Suitability

[Maturity | Confidentiality Modularity Adaptability
Functional Availability Itnegrit Reusabili Installabilit
] et = sy v

H{Fault Tolerance | Non-repudiation | Analyseability | Replaceability |
unc
Correctness Y | Authenticity | Modifiability |
Functional el L oD LT Accountability | L Testabiliy |
| Appropriateness | User Interface Aesthetics
[Accessibility

Figure 1: The ISO 25010 software quality standard from a product standpoint

The main problem with ISO 25010 (ISO/IEC] is that, even though it has

a nice hierarchy of characteristics and sub-characteristics, it does not define how they
3

65

70

75

80

85

20

95

are assessed and measured. Software quality measurement is needed, quantifying to
what extent a software application or system rates along each of these eight dimensions.
That is why many projects, teams and authors have used the ISO 9126 and the ISO
25010 as a theoretical model and then resolved to their own interpretation of how each
characteristic is measured. Aggregated measures of software quality are computed ad-
hoc through qualitative, quantitative or mixed scoring schemes, and then a weighting
system reflects their priorities.

Preliminary approaches include work by Dromey (Dromey), (1995)), that hierarchi-
cally decomposes software into its constituents (programs, modules, objects, variables
etc.) and gives quality properties to each one of them. They also include the main-
tainability index (Coleman, [1992) that quantifies the characteristic of maintainability
through the following equation:

MI =171-5.21n(aveVol)—0.23aveV (g) —16.2 In(ave LOC) 450 sin(+/2.46perC M) (1)

where aveVol, aveV (g), aveLOC and perC M are the average Halstead’s volume metric,
the extended cyclomatic complexity, the average lines of code and the percentage of
comments of a software product respectively. On top of that, the QMOOD approach
(Bansiya & Davis, |2002) provides a quality model for object-oriented systems based on
Dromey’s model.

Other approaches may use software complexity metrics, i.e. lines of code with and
without comments, number of characters, number of comments, McCabe’s cyclomatic
complexity (McCabel 1976]), Belady’s bandwidth metric etc., to derive models that pre-
dict the number (Chiu, 2009)) or the existence of faults (Chiu, 2011)), or use metrics like
those in [Bansiya & Davis| (2002) and in [Chidamber & Kemerer| (1994) for mining gener-
alized thresholds that predict the fault-proneness of a software product (Arar & Ayanl
2016)). Such models, in the view of the ISO standard, can be thought of as estimators of
a sub-characteristic of the reliability component and thus cannot be used to classify or
rank the software product quality holistically.

Contemporary work in software quality models includes work presented by SIG
(Heitlager et al., |2007)), (Baggen et al., |2012)), which is specifically focused on main-
tainability. Instead of using the ISO characteristics that are not easily observable and
measurable, SIG employs its own -tangible- quality properties to assess maintainability,
i.e. Volume, Duplication, Unit Size, Unit Complexity, Unit Interfacing, Module Cou-
pling, Component Balance and Component Independence. It is worth noticing that the
SIG model incorporates a benchmark repository in order to calibrate the system, which
practically contains their quality system knowledge. For assessing software maintainabil-
ity, the model takes the software system as input, calculates its metrics and performs two
levels of aggregation: at the first level, all quality properties are transferred to the system
level by calculating their quality profiles, while at the second level SIG applies the quality

profiles in order to extract cumulative quality profiles for each property. At every level,
4

105

120

130

the profiles are compared with thresholds calculated from the benchmark repository and
each quality property is given a quality score both in continuous and discrete (5-star)
form. The individual quality scores of the properties are aggregated to first calculate
the quality scores of the model’s sub-characteristics, and in turn to produce the overall
quality level of the product under evaluation.

Although of particular interest, the main disadvantage of software quality models
is that, since there is no clear definition of which metrics should be mapped into which
characteristics, they require quality experts to map the metrics to quality characteristics,
assess their contribution and decide how to aggregate all the characteristics and sub-
characteristics to produce a single value of the software quality. Therefore, the model
generation process inevitably includes subjectivity and is not fully-automated as it is
based on experts’ judgments.

2.2. Software quality tools and frameworks

The SQALEE (Software Quality Assessment based on Lifecycle Expectations) method
encompasses two models: a ranked uniform quality model and an analysis model based
on remediation costs (Letouzey & Codl 2010). The former model defines the quality
characteristics and sub-characteristics, taking into account the lifecycle of source code
(coding, testing, evolving, delivering, maintaining and reusing). It is structured in ranked
layers - bottom up: testability, reliability, changeability, efficiency, maintainability and
reusability - that are taken from previous models of Boehm et al.| (1976]), McCall et al.
(1977) and ISO 9126 (ISO/IEC, [2001) and directly map to software lifecycle steps. The
SQALE model constitutes a requirement document. To detect a non-conformance, both
the developer’s and the user’s point of view is taken into account. If a non-conformance
is detected this implies the absence of quality and induces technical debt (i.e. the effort
required for the resolution of all the issues that a software product comprises) (Ster-
ling| 2010). The latter model (analysis model) defines the rules to characterize or rate
products based on the measurements obtained on the control points.

The SQUALEE project (Mordal-Manet et al., [2009) defines a qualimetry platform
that allows to analyze multi-language software applications in order to give a sharp and
comprehensive perception of their quality. It is inspired by existing standards (e.g. ISO
9126) and approaches (e.g. McCall et al.| (1977)), and it is open-source. SQUALE
aspires to help developers assess software and improve quality with respect to high level
Architecture, Conformity, Evolutionary, Maintainability, Reliability and Reuse capacity.
In order to do so, SQUALE aggregates raw information (metrics) from third party tools
(commercial or open-source) into its quality models.

The Quamocdﬂ project (Wagner et al. [2012)) (Quality Modelling and Assessment
Approach), aims at bridging the gap between abstract quality attributes of software

%http://www.sqale.org/
Shttp://www.squale.org
4http://www.quamoco.de/

http://www.sqale.org/
http://www.squale.org
http://www.quamoco.de/

145

155

165

quality models and concrete quality assessments. For this reason, the Quamoco team
has developed a meta-quality model specifying general concepts, a quality base model
covering the most important quality factors, and a quality assessment approach. Again,
the base model uses the ISO 25010 quality attributes, which comprises 200 factors and
600 measures for Java and C#. Especially for the maintainability aspect, empirical
analysis has shown that it has high correlation against human expert rating. Also, its
modular approach gives the user the ability to match the needs of each respective software
product.

Apart from small-medium scale projects, several tools have been developed for
measuring and subsequently improving the quality of source code components. CKJ
and the Metrics Eclipse plugirﬁ7 focus on computing static analysis metrics for source
code, provide metrics values along with recommended thresholds. More complex tools
employ static analysis to measure certain aspects of the source code. PMHZ] is a popular
source code analyzer that detects bad practices in source code, including e.g. naming
conventions, unused variables, duplicate code fragments etc. The rulesets used to define
these violations are written in XML, and the user can add custom rules or modify existing
ones. FindBugsﬁ (Hovemeyer & Pugh, 2004) is another tool that also checks for bad
coding practices, however its main focus is on bug detection using static analysis. The
tool performs syntactic checks and dataflow analysis in Java bytecode in order to detect
defect-prone source code. Maintaining a consistent code style throughout a project and
complying with certain coding standards is also important, a function performed by
Checkstyleﬂ The latest versions of the tool additionally support detecting bad design
decisions.

Several frameworks combine information from multiple tools and present it to the
user in a unified manner. Coverity Code Advisoﬂ incorporates both its in-house quality
advisor and the FindBugs tool to provide an in-depth analysis of code issues. Although
it is a proprietary commercial solution, Coverity is quite promising, since it offers an
intuitive web interface where issues can be assigned to developers, marked according to
their priority, etc.

Finally, the SonarQubE platform is an open source platform for continuous in-
spection of code quality. It supports languages like Java, C/C++, Objective-C, C+#,
PHP, Flex, Groovy, JavaScript, Python, PL/SQL, COBOL, etc. and it offers reports
on duplicated code, coding standards, unit tests, code coverage, code complexity, po-
tential bugs, comments and design and architecture. It aggregates the results produced

Shttp://www.spinellis.gr/sw/ckjm/
Shttp://metrics.sourceforge.net/
"https://pmd.github.io/
8http://findbugs.sourceforge.net/
9http://checkstyle.sourceforge.net/
Ohttp://www.coverity.com/products/code-advisor/
Mhttps://wuw.sonarqube.org/

http://www.spinellis.gr/sw/ckjm/
http://metrics.sourceforge.net/
https://pmd.github.io/
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.coverity.com/products/code-advisor/
https://www.sonarqube.org/

175

180

185

195

205

by static analysis tools to provide an estimation of software product quality expressed
in terms of technical debt. For technical debt (Sterling, 2010) evaluation the SQALE
methodology is used. SonarQube allows integration with several tools, including PMD,
FindBugs (Hovemeyer & Pugh, [2004)), and Checkstyle. The platform offers a dashboard
in the form of a web interface and allows several configurations, which refer to all the
available tools-plugins that are included. A similar platform is the SQUORE platform
(Baldassari, [2013)).

2.8. Contributions

From the above discussion on the state-of-practice, it becomes eminent that the
existing projects, tools and frameworks are quite capable of providing measurable in-
formation for the quality characteristics of a software project. However, their offerings
are often overwhelming to the developers; metrics values, either low-level (e.g. McCabe
complexity (McCabe, [1976)) or high-level (e.g. Technical Debt (Sterling, [2010)), are
not always comprehensive, especially if they are not accompanied by quality thresholds.
Defining these thresholds is a non-trivial task, thus most organizations need to resort to
the help of quality experts. Moreover, even when expert help is available, it is highly
improbable that the designed configurations are flexible enough to effectively describe
diverse classes of software components. Only few approaches have focused on training
quality models that can provide such adaptable quality estimations, however such sys-
tems are still limited by the definition of certain quality thresholds, imposed by ground
truth (possibly expert-defined) values used for training, while the resulting models are
usually too complex.

This lack of the transparency of the existing quality approaches, along with the
absence of sophisticated techniques for objective weights elicitation, are the major draw-
backs that the current research tries to tackle. We introduce QATCH, an integrated
framework that assists the user throughout the whole quality assessment process, from
model derivation to quality evaluation. QATCH is a holistic approach that combines the
pivotal characteristics of the existing efforts in order to allow the derivation of simple-
three-layer hierarchical models. The produced models employ a weighted average aggre-
gation scheme to calculate the overall quality score of the product under evaluation, the
weights of which are defined based on experts’ judgments.

The following subsections discuss the advances of QATCH with respect to the
drawbacks identified in the related state-of-the-art research.

2.3.1. Transparency

The internal structure of the existing quality models is not always clear, due to
the fact that they are either proprietary, and therefore closed source, or they are open
source, but they have become obsolete with lack of support (e.g. for deriving aggregation
weights). In addition, many of the quality models proposed in the literature utilize

Machine Learning (ML) techniques in order to calculate the quality scores of the software
7

215

235

products under assessment (Al-Jamimi & Ahmed, 2013). However, these models do not
provide any insight on how a specific quality score is calculated, and therefore they are
viewed as black box techniques, not allowing experts to incorporate their knowledge and
comment on the validity of the assessment approach under question.

Opposed to related work, QATCH constitutes an open source{E and fully trans-
parent quality modeling and assessment mechanism, which is freely available for use or
further testing and experimentation. The quality models produced by QATCH are math-
ematical and statistical models and not based on black box classification and regression
techniques (e.g. neural network architectures). Thus, each model decision during the
assessment procedure can be traced and justified. As a result, users can understand how
a specific quality score was derived and validate the outcome. This leads to an increased
confidence of the produced models, as the users are more likely to trust a transparent
approach.

2.3.2. Weights Elicitation

Contrary to the derivation of thresholds that is based on benchmark data (Deis-
senboeck et al.|2011)), (Alves et al.|2010)), weights elicitation cannot be data-driven. It is
based exclusively on the opinion of experts in the field of software quality, and therefore
the produced weights are inevitably characterized by subjectivity. Additionally, existing
quality models and frameworks adopt rather naive techniques for weights elicitation.

Towards this end, QATCH facilitates the weights elicitation procedure by the adop-
tion of two multi-criteria decision making techniques, Analytic Hierarchy Process (AHP)
(Saatyl 2008) and its fuzzy alternative. The fuzzy AHP approach allows quality ex-
perts to express uncertainties in the significance of specific evaluation criteria, while the
subjectivity that their judgments inevitably encompass is also modeled. This informa-
tion is automatically taken into consideration during the weights elicitation process, and
therefore the expert opinions are effectively reflected in the produced weights.

Another novelty of the proposed technique compared to the related work that
adopts fuzzy logic for the assessment of software products (e.g. (Yuen & Lau, 2011),
(Chang et all |2008)) and (Biiyikozkan et all [2004))), is that the assessment procedure
is fully automated due to the adoption of static analysis, while it also allows experts to
express their judgments, along with their associated uncertainty, into linguistic values
instead of fuzzy numbers. This makes the process more intuitive and easier to use. The
weights elicitation techniques are thoroughly described in Section [3] as they form the
major contribution of this research effort.

Zhttps://github.com/AuthEceSoftEng/qatch

https://github.com/AuthEceSoftEng/qatch

255

3. Methodologies

3.1. Quality Model Structure

Figure [2] illustrates the structure of the quality models derived by the proposed
framework. It is obvious that the quality models adopt the classic hierarchical structure
previously discussed in Section 2] More specifically, they have a simple three-layer form,
similar to the one proposed by SIG (Heitlager et al [2007).

Quality Quality Quality Characteristics
Characteristic 1 Characteristic 2 Characteristic N Layer

Quality Property 1 Quality Property 2 Properties Layer

Figure 2: The general structure of a quality model derived by the proposed framework.

A quality model produced by QATCH comprises three layers: (i) the layer of char-
acteristics, (ii) the layer of properties and (iii) the layer of measures. The first two layers
correspond to the notions of characteristics and properties described in Section In
brief, the quality properties are evaluated directly through a set of well-chosen mea-
sures, while the quality characteristics are indirectly evaluated by exploiting the impact
that properties have on them. As far as the layer of measures is concerned, the system

distinguishes two individual types of measures as in (Lochmann & Heinemann) [2011)),

which are: (i) metrics and (ii) findings. Metrics are well-established source-code metrics
proposed in the literature, such as cyclomatic complexity ; findings, also
called violations, are the results produced by different types of static analysis tools such
as bug pattern detectors and rule-based tools. QATCH employs CKJM Extendecﬂ and
PMqu for the quantification of the metrics and findings, respectively. This way QATCH

3http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
14http ://pmd.sourceforge.net

9

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
http://pmd.sourceforge.net

265

270

280

295

supports almost all the state-of-the-art metrics proposed over the years in the literature,
while the derived quality models are highly customizable due to the fact that PMD also
allows the incorporation of custom rulesets.

For simplicity purposes, each quality property is quantified by a single measure,
while only one level of hierarchy is allowed for each layer. This practice, which is widely
used in the literature (e.g. SIG Maintainability Model (Heitlager et all 2007))), ensures
the hierarchical models:

e are more intuitive and comprehensible, even by people with little or no technical
knowledge (Wagner et al.| [2012).

e are easily extensible as their extension needs only the addition of new nodes, and
easily reducible via appropriate cropping.

e can be effectively and easily represented by markup languages, such as XML, given
their tree structure. Thus, they can be easily exploited by third party systems
through the implementation of simple parsers.

From all the above, it is evident that the QATCH quality models are highly cus-
tomizable. They are not restricted to a specific facet of software quality, nor to a partic-
ular standard or definition model. Furthermore, the wide range of metrics available to
the stakeholders, along with the ability to define completely custom rulesets for the find-
ings, make the quality model derivation process flexible and the derived models highly
adaptable to custom needs. Last but not least, the simplicity of the model structure
builds confidence to the model and enables root-cause analysis as will be discussed in the
following sections.

8.2. Quality Assessment

Quality assessment is the process of assigning a value to the software product under
evaluation that indicates its quality according to a specific quality model. This value is
called quality score or rating. The convention we follow for the quality score is that it
lies in the interval between 0 and 1, where O corresponds to the worst possible quality,
while 1 to excellent quality. Thus, the higher the rating, the better the quality of the
software product against a specific quality model.

The overall rating of a software product is obtained from the quality scores of
the properties and the characteristics of the quality model applied. QATCH divides
the quality assessment process into two sequential levels: the first level of assessment
is responsible for the evaluation of the properties, while the second for the evaluation
of the characteristics and, in turn, of the overall quality of the software product. With
the term “evaluation” we refer to the assignment of a quality score to each property or
characteristic of the model. The two levels are thoroughly discussed in the following
subsections.

10

310

320

325

3.2.1. Properties Assessment Level

The first level of assessment is responsible for the evaluation of the properties of the
quality model, from the normalized values of the measures used for their quantification.
Initially, the system receives as input the software product that should be evaluated
and the QATCH quality model it should be evaluated against. QATCH identifies the
different measures that should be calculated and invokes the appropriate static analysis
tools with the appropriate configuration.

It should be mentioned that the absolute values of the measures (as calculated by
the static analysis tools) are not suitable for the evaluation of the properties, since they
are calculated at the source-code level (i.e. class level) and are highly dependent on the
size of the product they refer to. Thus, aggregation and normalization is applied in order
to bring them to the system level and make them size-independent. The normalized
value M of a specific metric is calculated by applying the following formula:

N

+LOC;
M= 21LOCT + 29 LOCo + ... + xnLOC N . i:1$(7

B TLOC - TLOC

(2)
where:
z; : the absolute value of the metric for the i-th class of the software product
LOC; : the lines of code of the i-th class of the software product
TLOC : the total lines of code of the software product
N : the total number of classes that the software product comprises

The numerator of the aforementioned formula is the aggregation of the values of
the metric for each class of the system under evaluation. These values are weighted by
the lines of code of their corresponding class. This sum is divided by the total lines of
code of the system in order to make the value size-independent. For the aggregation and
normalization of findings the following formula is used:

5

Z V;W;

VW, + vows + ... + vsws =1

F= TLOC ~ TLOC

where:
F : the normalized value of a specific finding
v; : the number of violations that belong to the i-th severity category
w; : the weight that reflects the importance of the i-th severity category

TLOC : the total lines of code of the software product
11

330

335

345

In brief, for a specific finding (i.e. PMD ruleset) the system calculates the number
of violations that fall into each of the five severity categories as defined by the PMD.
Subsequently, it calculates the sum of the violations weighted by a set of weights that
reflect the importance of each severity category. In order to make the value independent
of the product size, the sum is divided by the total lines of code (TLOC) of the system.
The weights for each severity category can be defined by the user.

Next, the quality score of each property is calculated. For this purpose, we adopt
the concept of utility functions initially proposed in (Wagner et al.,[2012). Two examples
of such functions are illustrated in Figure

A A
1 |

> ! >
< ! IS
S ! S
3 | S
< I <
> ‘ >
T ! T
) !)
s ; :
= =
A ! ! ~

| |

! !
0.27 ; ;

| |

t t ts

% oas3 ?

Measure (Normalized Value) Measure (Normalized Value)
(a) Negative Slope (b) Possitive Slope

Figure 3: Examples of utility functions. The values in the left graph are depicted for demonstration

purposes based on an example in the end of this section.

The utility functions adopted have a partially linear form and the score of the
property is calculated through linear interpolation applied between a set of measure-
specific thresholds (i.e. t1, t2 and t3). The slope of the function indicates the impact that
the corresponding property has on the overall quality. If the function has an ascending
slope, then the property has a positive impact on the overall quality. Conversely, if it
has a descending slope, then the corresponding property has a negative influence on the
overall quality.

The slope parameters and the thresholds of the utility functions are specified during
the quality model derivation process which is described in subsection [3.3] In particular,
the slope is determined by software quality experts, while the thresholds via benchmark-
ing.

The main difference between the utility functions used by QATCH and those pro-

12

355

365

375

posed in (Wagner et al} [2012)) is that in our case the utility functions correspond directly
to the properties rather than to the measures. In other words, due to the fact that a
single measure is used for the evaluation of each property, the utility function assigns a
quality score directly to the corresponding property. Thus, the weighted average used
in (Wagner et al., [2012) is not needed for the evaluation of the properties. This makes
the quality models derived by our framework simpler to understand and to produce.
The quality assessment process is also straightforward as the quality score assigned to a
certain property indicates the quality level of its corresponding measure.

After the first level of assessment, a quality score is assigned to each property of
the quality model. These scores are exploited by the second level of assessment in order
to evaluate the quality model’s characteristics and, in turn, the overall quality of the
software product under evaluation.

For better understanding of the quality evaluation process for a specific property, a
simple example is provided. Suppose that we want to evaluate the property of Complex-
ity, which is quantified by the normalized value of the metric Cyclomatic Complexity.
As the Complexity property has a negative impact on the overall quality, the first type
of utility functions (lets assume that the utility function is that of Figure is used for
its evaluation. Let the thresholds ¢1, to and t3 be 0.13, 0.16 and 0.21 respectively (as
derived by the quality model derivation process described in Section and the nor-
malized value of the Cyclomatic Complexity be 0.183, which lies in the interval between
the second and the third threshold. Thus, the utility function applies linear interpolation
and assigns the appropriate quality score to the property of Complexity, which is 0.27.

3.2.2. Aggregate Assessment Level

The second level of assessment is responsible for the calculation of the overall quality
score of software products. This is achieved by aggregating the quality scores of the
quality model’s properties and characteristics.

The aggregation function used by QATCH is the weighted average, an approach
that is highly intuitive and comprehensible. The weights are a quantitative expression
of the impact that the properties have on the characteristics and that the characteristics
have on the overall quality. The overall quality @ of the software product under evalua-
tion is calculated by the following formula:

N
Q= chiqci = wciger + weaqes + ...+ wenqgn (4)
i=1

where:
qc; : the quality score of the i-th characteristic

we; ¢ the weight that corresponds to the i-th characteristic, ranging in [0,1]

13

N : the number of the quality model’s characteristics

380 Similarly, the quality score of each characteristic is obtained by averaging the quality
scores of the model’s properties. The formula used for the calculation of the quality score
qc; of the i-th characteristic is presented below:

M

gei = Y wpijqp; = wpigp + wpiaqp2 + - + wpiniqpar, Vi € [1, M] (5)
j=1

where:
gp; : the quality score of the j-th property

385 wp;; © the weight that corresponds to the impact of the j-th property on the i-th
characteristic, ranging in [0,1]

M : the number of the quality model’s properties

The overall process is depicted in Figure [l It is quite obvious that the quality
assessment procedure follows a bottom up approach.

Quality

Characteristic 1 Characteristic N

9P, Property 1 Property 2 Property M
Measure 1 Measure 2 Measure M
Figure 4: The overall aggregation process
300 The outcome of the quality assessment process, as stated previously, is the as-

signment of a software quality score that lies in the [0,1] interval. However, for better
comprehensibility, a discrete rating is provided as well. QATCH rating has a 5-star
mapping, based on the intervals presented in Table [I]

14

395

Table 1: Quality Score Mapping

Quality Score Stars
(0.8,1.0] * Kk * ok Kk
(0.6,0.8] * * K *
(0.4,0.6] * ok x
(0.2,0.4] * *

[0,0.2] *

At this point we should state that, by default, each property is considered to have
impact on more than one characteristics of the given quality model. This is why each
property is linked to all the characteristics of the model as depicted in Figure 2] If a
property does not influence a specific characteristic, this is represented quantitatively
with the assignment of a zero or of a really small weight. Thus, the quality score of this
property is not taken into consideration during the evaluation of the specific characteristic
(Figure {)).

The exact wc; and wp;; values are calculated based on the opinions of experts
in the field of software quality by applying both deterministic and fuzzy multi-criteria
decision-making techniques. These techniques are discussed in the next subsection.

3.3. QATCH Quality Models

From the above discussion, it is quite obvious that the basic design parameters of
a quality model are the thresholds and the weights used by the properties and aggregate
assessment levels. The process of specifying these design parameters is called calibration.
Following the same approach as with quality assessment, QATCH defines two levels of
calibration. The first level is responsible for deriving the thresholds of the model (Section
, while the second for eliciting the weights of the model (Section[3.3.2]). The QATCH
calibration approach follows an approach similar to (Alves et al., 2011)), (Alves et al.
2010) and (Baggen et al.l 2012)); however, our approach differentiates at the second
level of calibration, where we calculate the weights of the model and not metric-specific
thresholds.

3.8.1. Threshold Calibration

QATCH calculates the thresholds by applying statistical analysis techniques to a
manually constructed benchmark set of software products (i.e. a benchmark repository).
The process is as follows.

Initially, a benchmark repository of quality software products is carefully con-
structed by the user. For each software product found in the repository, the system
performs properties assessment. As a result, the normalized values of the quality model’s
measures are calculated for each benchmark product.

15

425

430

435

440

Subsequently, for each measure, the system selects three thresholds based on the
distribution of their normalized values observed between the different products. In par-
ticular, the framework adopts the formulas introduced in (Lochmann, [2012):

t1 = min({z : & > Qa5% (21, ..., ©n) — 1.5 - IRQ(21, ..., ¥p) })
to = median(x1, ..., T,) (6)
ts = max({z : ¢ < Qs (21, ..o, Tn) + 1.5 - IRQ(21, ..., Tn) })

where:
x; denotes the normalized value of the measure x of the i-th benchmark product
Qp denotes the p-percentile

IRQ(x1,...,x,) denotes the inter-quartile-range:

IRQ(xlv axn) = Q75%(‘I17 ,In) - QQS%(Ilv 7:1771) (7)

In simple words, the framework selects as thresholds of each measure the minimum,
the median and the maximum observations after removing outliers. Thus, the selected
thresholds bring out the maximum variability of the measures observed between the
systems of the benchmark repository.

The reasoning behind the adoption of benchmarking for the thresholds derivation
is that:

e The threshold derivation process is data-driven, and therefore thresholds are based
on data and not on experts’ opinions. Thus, the quality assessment process is
highly objective, while the validity of the model is enhanced.

e The derivation of thresholds is fully automated.

e Comparison of two software products, with respect to their quality is now feasi-
ble, since they are evaluated against the same reference system (i.e. benchmark
repository).

e It is a technique widely used in the literature for thresholds derivation of source-
code measures (e.g. Quamoco (Wagner et al., 2012)) and SIG Maintainability Model
(Heitlager et al., 2007)).

The basic disadvantage of such a benchmarking process is that it is an extremely
time-consuming process. Both static and statistical analysis techniques have to applied to
a wide range of software products in order to ensure the validity of the derived models.
This problem can be solved via parallelization and, towards this end, we have imple-
mented a simple approach that adopts multi-threading in order to accelerate the quality

model derivation process.
16

475

3.3.2. Weight Calibration

As described in Section [2] the major shortcoming of the existing quality assessment
models and frameworks is the lack of a sophisticated method for the elicitation of the
quality model’s weights. Contrary to the thresholds derivation, the weights elicitation
process cannot be data-driven. It is based on the opinions of experts in the field of
software quality. The main reason for this is that the notion of quality is highly subjective
and the extend to which a property or a characteristic influences the overall quality
depends on how the individual stakeholders perceive the notion of quality. As a result,
the weights are also characterized by subjectivity, and therefore they should be elicited
with care.

Towards this end, QATCH provides two approaches for weights elicitation: a) it
employs the Analytic Hierarchy Process (AHP) (Saaty}, 2008) and b) it introduces a fuzzy
alternative in order to model the experts’ judgments uncertainties. The latter method
is enhanced in order to support judgments expressed in natural language, making the
whole process easier and more intuitive.

3.8.2.1 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) (Saaty, |2008) is an approach followed for
decision making that reduces decisions complexity when it comes to pair-wise compar-
isons. It can be applied to hierarchical multi-criteria decision-making problems that
consist of an overall goal, a set of criteria that influence the final choice and a set of
alternatives. In brief, the AHP is employed to assist decision makers in choosing the best
among a set of alternatives. An example of the general form of the problems solved by
the AHP approach is depicted in Figure [5}

Goal

| House A | ‘ House B ‘ | House C |

Figure 5: An example of a hierarchical multi-criteria decision-making problem - The selection of the
optimal house

We argue that, given its hierarchical structure, the problem of weights elicitation of

17

480

485

495

a quality model can be treated as a multi-criteria decision making problem; thus, AHP
can be applied in order to elicit the quality model’s weights based on the opinions of

software quality experts. Inspired chiefly by the idea proposed in (Kanellopoulos et al.l
2010), we equipped QATCH with the AHP technique for eliciting the quality model’s
weights. In particular, the AHP approach is applied to both levels of assessment in order

to reflect the importance of properties and characteristics in the overall quality score.

I e S e)

5/1 a1 3/2

Maintainability [l 0.5178

Reliability 1/5 1 5/3 1/2 # 0.1168

Security 1/9 3/5 il 1/6 00588

Performance 2/3 21 6/1 1 0.3066

Figure 6: An example of applying the AHP approach for weights elicitation

For better understanding of AHP, an example is provided and presented in Figure
[(l Suppose that we have a quality model that consists of four quality attributes, namely
maintainability, reliability, performance efficiency and security. In order to elicit the
weights used for the calculation of the overall quality score (Q) from the quality scores
of the characteristics, a matrix, normally known as pair-wise comparison matrix, is con-
ducted. An expert in the field of software quality completes the upper triangular part
of the matrix with his/her judgments, stating how one quality attribute affects (relates
to) another. The judgments are values of the form w;ow /Weor, Where the wyey,, and wey
receive an integer value between 1 and 9. For instance, the entry 5/1 of the example
(cell [1,2]) denotes that maintainability is five times more important than reliability with
respect to the overall quality of the system, as perceived by the software experts for this
particular software product. Subsequently, the framework completes the main diagonal
of the matrix with ones and the lower triangular part with the reciprocal values of the
transpose cells. Eventually, the principal eigenvector (i.e. the eigenvector that corre-
spond to the maximum eigenvalue) normalized by the sum of its entries is selected to be
the desired weights vector of the corresponding pair-wise comparison matrix. Normal-

ization is important, since the weights should have a sum of 1. The approach guarantees
18

505

515

525

535

that the derived weights reflect the expert’s judgments and therefore the impacts that
the characteristics have on the overall quality.

The same approach is applied for the elicitation of the weights used for the evalu-
ation of the model’s characteristics from the ratings of the model’s properties. For each
characteristic a pair-wise comparison matrix is constructed. The difference is that table
rows and columns are now the properties of the quality model and the comparison matrix
refers to a specific characteristic and not to overall software quality.

3.83.2.2 Fuzzy AHP

Although the AHP approach constitutes a reliable and mathematically justified ap-
proach for weights elicitation, the derived weights are still based on human judgments.
As a result, AHP, and therefore the whole assessment, will be characterized by subjectiv-
ity, which is an inherent characteristic of AHP as stated in (Kanellopoulos et al., 2010)).
Furthermore, AHP does not take into consideration the uncertainty that inevitably un-
derlies in the experts’ judgments. For instance, if an expert believes that a property is
almost five times more important than another, he/she cannot express this uncertainty
to the system. Thus, an extension of this approach is necessary in order to allow the
modeling of such uncertainties.

To this end, fuzzy logic is applied. Numerous fuzzy extensions to AHP have been
proposed ((Van Laarhoven & Pedryczl [1983), (Buckleyl [1985), (Boender et al.l [1989),
(Wang & Chin, [2011))), all arguing that they lead to more realistic results compared to the
original non-fuzzy approach. However, in these cases, experts have to provide much more
information which makes the whole process time-consuming, while relevant mathematical
background is necessary in order to understand the process. Thus, a more intuitive
approach is needed in order to facilitate the experts in their decision-making tasks. This
can be achieved by allowing the experts to express their opinions into linguistic values,
rather than by obliging them to directly define the parameters of the fuzzy numbers.
The linguistic values have the advantage of being more comprehensive and acceptable
by the decision-makers, as the human brain is more efficient in manipulating qualitative
than quantitative values.

In (Yuen & Lau, [2011), which is an improvement of (Buytkozkan et al.l 2004)
and (Chang et al, |2008), a fuzzy group AHP method is proposed in order to assess
the quality of software products based on experts’ judgments. However, the quality
score provided by the model is a fuzzy triangular number, and not a numeric score,
which constitutes the communication of its meaning to stakeholders with no relevant
mathematical background difficult. Other drawbacks of this model are that it is based
exclusively on ISO/TEC 9126, not allowing much tailoring, while the quality assessment
process is not automated, since the fuzzy AHP (FAHP) approach has to be applied both
for the weights elicitation and for the evaluation of characteristics through measures.
This means that the presence of experts is necessary even during the quality evaluation

19

540

565

process. Finally, the model allows the experts to choose one of only nine (9) available
predefined and labeled fuzzy numbers in order to express each one of their judgments,
restricting in this way their options, and in turn, the calculation capabilities of the overall
approach. QATCH tackles these shortcomings by (i) providing a crisp expression of the
final calculated quality score, (ii) evaluating the model’s properties via static analysis
in order to automate the assessment process, (iii) allowing the production of custom
quality models, in order to satisfy specific needs imposed by the stakeholders and, (iv)
by allowing the experts to express both their judgments and their associated uncertainty
into linguistic values, information that is exploited for the definition of the parameters
of the corresponding fuzzy numbers, making in this way the weights elicitation process
more robust.

The QATCH proposed approach adopts the widely used Fuzzy Logarithmic Least
Squares method (described in Section in order to derive a set of fuzzy weights
from pair-wise comparison matrices completed with judgments expressed in fuzzy trian-
gular numbers. It is enhanced in order to (i) allow the experts express their opinions
into linguistic variables and (ii) produce crisp weights that can be directly used by the
quality models derived by the framework. In QATCH, the fuzzy AHP is employed only
once for the elicitation of the quality model’s weights; as a result, quality assessment is
fully automated.

The proposed technique comprises three steps as depicted in Figure[7] These steps
are (1) fuzzification, (ii) fuzzy weights calculation, and (iii) defuzzification. In brief, the
expert is asked to complete a set of pair-wise comparison matrices with linguistic variables
expressing both his/her opinion and his/her uncertainty. During the fuzzification step, a
fuzzifier receives each matrix as input and constructs the corresponding fuzzy pair-wise
comparison matrix containing the appropriate fuzzy triangular numbers (see definition
below). The Fuzzy Logarithmic Least Squares method is applied and a vector of fuzzy
weights is exported for each matrix. These weights are inserted into a defuzzifier and the
corresponding crisp weights are produced. These steps are thoroughly described in the
following subsections.

20

570

575

580

TQl intainability Functi i iability Security Performance Usability

Maintainability - High, C Moderate Very High, C Low High, C
Functionality - - Moderate, U Very Low, U Moderate, C Low
Reliability - - - Low High, C Low, C
Security - - - - Low, U Very Low, U
Performance - - - - - Moderate
Usability

N Defuzzification

Calculation

0.4309
0.2493
0.1497
0.0887
0.0511
0.0303

Figure 7: The fuzzy AHP weights elicitation process

3.3.2.2.1 Background of fuzzy triangular numbers

At this point, it should be stated that we consider triangular fuzzy numbers in the

form of F; = (I;,m;,u;), following the definition given by (1997). For better
understanding, this definition is given below:

Definition 1. We define a fuzzy number M on R = (—o0,400) to be a triangular fuzzy
number if its membership function ppr 2 R — [0,1] 4s equal to:

0, othrerwise

with [< m < u, where [, m and u stand for the lower, modal and upper value of the
triangular number, respectively. The support of M is the set of elements {z € R|l < z <
u}. The triangular number M is depicted in Figure[8|and we refer to it as M = (I, m, u).

Additionally, we extend the algebraic operations to triangular fuzzy numbers ac-
cording to the principle proposed by Zadeh and the characteristics of
fuzzy triangular numbers presented by [Liang & Wang| (1991). In particular, considering
two triangular fuzzy numbers Fy = (I3, m1,u1) and Fy = (l2, ma, ua), the extension of

21

585

595

Figure 8: The membership function of a fuzzy triangular number

algebraic operations to triangular fuzzy numbers can be expressed as follows:

Fy+ Fy = (I1 + l2,my + ma, uy + ug)
Fi x Fy = (11 X lg,ml X mao, U1 X UQ)
Fy + Fy = (1 /uz, my/ma,u1 /I2)
1 (1 1 1
Fr 7 \ui’mq’ Iy
After the definition of these operations, the extension of the AHP in the field of
fuzzy numbers is a straightforward process. These operations are used for the calculation

9)

of the fuzzy weights from the fuzzy pair-wise comparison matrices by applying the Fuzzy
Logarithmic Least Squares method described in subsection [3.3.2.2.2

3.3.2.2.2 Weights Elicitation Process

The first step of the weights elicitation process, as depicted in Figure is the
derivation of the fuzzy pair-wise comparison matrices that are required for the application
of the fuzzy AHP approach from the corresponding matrices containing the linguistic
values provided by the expert. For this purpose, the software quality expert is asked
to complete a set of pair-wise comparison matrices. In particular, the expert has to
complete each cell of the matrix with a linguistic value, selecting one of Very Low, Low,
Moderate, High and Very High, which expresses his/her judgment. For instance, if the
expert selects a Very High value, he/she states that the property (or characteristic) of
the corresponding row is far more important (quality-wise) compared to the property (or
characteristic) of the corresponding column of the matrix. QATCH also allows experts
to express the certainty of their decision. U, D and C stand for Uncertain, Default
and Certain, respectively. Thus, each pair-wise comparison matrix consists of pairs of
(judgment, certainty) linguistic variables.

22

605

615

625

635

In order to construct the fuzzy pair-wise comparison matrices from the pair-wise
comparison matrices containing linguistic values, a Fuzzification module is employed
(see Figure . For each pair of linguistic values (e.g. < High,C >) the fuzzifier assigns
an appropriate fuzzy triangular number of the form r = (I, m,u), where [, m and u
correspond to the low-, modal- and upper-value respectively. Suppose ¢ a constant that
defines the distance of the lower and upper border of a fuzzy triangular number from its
modal value. As this constant defines the range of the triangular set, it is an indicator
of the judgment’s uncertainty. Thus, the fuzzy numbers derived from the fuzzifier have
the form r = (m — o, m,m + o).

Consequently, the fuzzifier has to determine the modal (m) and the uncertainty
(o) values for each triangular fuzzy number. The linguistic variable values provided by
the experts concerning their judgments are used for determining the center of the fuzzy
triangular numbers, while the linguistic variable values concerning the certainty of each
judgment are used for determining the o of each fuzzy number. In particular, each one
of the allowed linguistic values used for expressing the expert judgments (i.e. Very Low,
Low, Moderate, High and Very High), leads to a fuzzy triangular number with modal
m that receives an integer value among 1 and 5 respectively (i.e. the integer values are
assigned based on the order of the linguistic values). Similarly, a completely uncertain
judgment (i.e. a judgment with certainty = U) corresponds to a triangular fuzzy number
with o = 0.9. Accordingly, judgments with certainty values of D and C, correspond to
fuzzy triangular numbers with a o value of 0.5 and 0.1, respectively.

The system iterates through all the pairs of the linguistic variable values and cal-
culates the corresponding fuzzy number according to the aforementioned process. The
outcome is a fuzzy pair-wise comparison matrix that contains the corresponding fuzzy
judgments. QATCH applies this process for each pair-wise comparison matrix created
by the system for the elicitation of all the weights needed by the quality model.

The fuzzy pair-wise comparison matrices produced by the previous step are pro-
vided as inputs to the Fuzzy Weights Calculation module (see Figure . This module is
responsible for calculating a set of fuzzy weights for each one of the received matrices, by
applying the Fuzzy Logarithmic Least Square method (see the definition below), which
is commonly used in the literature for similar purposes (e.g. [Yuen & Lau| (2011)). For
comprehension reasons, a formal mathematical description of the approach is provided
below.

Suppose a fuzzy pair-wise comparison matrix R, which was generated during the
fuzzification phase (see Figure [7), and r;; is an entry of this matrix (a fuzzy triangular
number of the form r;; = (l;;, mij;,u;;)) that corresponds to the expert’s judgment con-
cerning the properties P; and P; (or the characteristics C; and C}). The fuzzy logarithmic
least squares method is employed for the calculation of the desired fuzzy weights. In par-
ticular, according to (Boender et al.l [1989) the challenge is to calculate the fuzzy weights

23

640

645

655

660

ai,asg, . ..,a, that minimize the fuzzy version of the logarithmic regression function:

f: En: {In(rij) — In(aq) + In(az,)}

i=1j=i+1
+{In(rijm) — (aim) + In(ajm)}> (10)
+H{In(riju) — In(az,) +In(a;)}”

According to Boender et al.| (1989)) and [Buckley| (1985)), the solution of the opti-
mization problem is expected to converge to the geometric mean. Thus, the fuzzy weights
obtained by this method have the following lower, modal and upper values:

ﬁ (rij) ™™ ﬁ (rijm)"/™ ﬁ (riju) "

(aila Aimy aiu) - nj:L) nj:1n 9 7{:171 (11)
1/n 1/n
I riga) ™ 32 T Grigen)™ 32 T (rign)
1=175=1 1=17=1 i=17=1

The value n used in the formulas above corresponds to the number of the derived weights.

This approach is applied for each comparison matrix produced by the system in
order to determine their corresponding fuzzy weights. Thus, the outcome of this module
is a vector of fuzzy weights for each one of the received matrices.

Due to the fact that the weights derived by the previous process are fuzzy triangular
numbers, they cannot be directly used by the derived quality model for the conduction
of quality assessments. The produced weights should be in a crisp form in order to be
used in the weighted average formulas. Thus, the fuzzy weights are passed through the
Deffuzzification module (see Figure , which is responsible for the calculation of the
corresponding exact values.

For the defuzzification of the fuzzy weights, the center of mass approach is applied,
which was proposed by Dimiter Driankov| (1996]). This method is expressed by the

F/ﬁmw@//p@m£ (12)

As mentioned previously, the proposed crisp weights constitute the parameters of

following formula:

the weighted average formulas of the produced quality model. This implies that they
should sum to 1. However, the deffuzzification step may introduce a small error (i.e.
computation error) to the resulting crisp weights, leading their sum to slightly diverge
from the desired value. Therefore, the weights are divided by their sum, which guarantees
that the sum of the final weights will be equal to 1.

Finally, with respect to the normalization procedure, suppose that w is the weights
vector derived by the previously described process and w; corresponds to its ¢-th weight.

24

665

670

675

Also, suppose that the length of the vector is n. Each element (i.e. weight) w] of the
normalized weights vector w’ is calculated using the following equation:

w; = - (13)

4. QATCH architecture

The overall QATCH architecture is illustrated in Figure@ where four modules (i.e.
subsystems) can be identified:

a The Quality Model Designer (QMD)
b The Single Project Evaluator (SPE)
¢ The Multi Project Evaluator (MPE)

d The Quality Certification App (QCA)

Project

Benchmark Comparison
Repository Matrices L
=
{'\i‘f Projects
Single Project
Evaluator J SON }

B .)
GitHub ;j
Multi Project ,
Evaluator | @
i

Quality Model Quality

Quality Model 4
Designer Model

Description

Quality DB

Quality Certification
Service

Figure 9: The overall structure of QATCH

In brief, the QMD, based on the specifications provided by the user, exports the
desired quality model in XML format. The XML file containing the quality model is used
by the other three subsystems for the evaluation of both proprietary and open source
software products. In the following sub-sections the main features and functionalities of

the aforementioned modules are analyzed.
25

680

690

695

700

710

4.1. The Quality Model Designer

The Quality Model Designer (QMD) constitutes the cornerstone of the framework,
since all the other modules are highly dependent on it. It is responsible for the deriva-
tion of a quality model based on user specifications. The QMD receives as an input: (1)
the description of a quality model in XML format, (2) the desired benchmark reposi-
tory needed for the thresholds derivation and (3) the appropriate pair-wise comparison
matrices needed for the weights elicitation. QMD), based on the analysis performed as
discussed in the previous section, exports an XML file containing the desired software
quality model.

QATCH offers a QMD GUI wizard that guides the user throughout the whole model
derivation process. Through the GUI the user is able, among others, to:

e Create/Store/Load/Update a description of the desired quality model.
e Define the benchmark repository to be used for thresholds generation.

e Define the weights elicitation technique (i.e. AHP or fuzzy AHP) and generate the
appropriate pair-wise comparison matrices.

e Define the parallelization parameters for the static analysis process.

The aforementioned features constitute the basic configuration that the user should pro-
vide for the derivation of the desired quality model. Validation checks are performed
whenever new data are provided, thus guaranteeing input quality.

4.2. Offline Quality Assessment Tools

For the offline quality assessment process two individual subsystems were built, the
Single Project Evaluator (SPE) and the Multi Project Evaluator (MPE). The former is
responsible for the quality assessment of a locally stored software product according to a
desired quality model, previously derived by QMD, while the latter performs evaluation
on a group of locally stored software products. Instantiations of SPE and MPE have
been developed for Java projects. However, the system is language agnostic and can
be instantiated for other programming languages, if the appropriate language-specific
rulesets are selected for the PMD tool or if other static analysis tools specialized in
calculating source code metrics for common languages are added to the system.

SPE and MPE evaluate the software products by applying the methodologies de-
scribed in Section As depicted in Figure [0 the evaluation results are stored in the
QATCH database, while they can be exported in widely used formats such as JSON
and XLS. Thus, the results can be easily transferred and analyzed, while they can be
easily exploited by third-party applications via implementation of simple parsers or via
querying the database.

26

4.8. The QATCH Certification application

The QATCH Certification App (QCA) is a web application that allows the quality

715 assessment of open source software Java products residing on GitHuHEl The QCA
landing page is available at: http://issel.ee.auth.gr/qatch.

In order to perform software evaluation, a user has to provide the following input:

e The GitHub url of his/her Java project that he/she would like to evaluate.

e The desired quality model (one of the available) that should be used for the quality
720 assessment of the desired product.

Upon the selection of the “Fvaluate Project” button, the server clones the desired
project locally, compiles it by using Mavewlfl and performs quality assessment. After the
successful execution of the evaluation, an HTML page is printed on the user’s screen,
presenting the quality score of the product and the model’s properties and characteristics

725 scores. An example of such a page is illustrated in Figure

Quality Evaluator g

Evaluation Results

(0.62)

Characteristics
Name Value Score

Maintainability ISO/IEC 25010 064

#

1

2 Reliability ISO/IEC 25010 06
3 Security ISO/IEC 25010 055
4

Performance_Efficiency ISO/IEC 25010 0.61

Properties

Name Value Score
1 Bad_Function 0.0107404383 0.44

2 Comprehensibility 0.0956825497 0.65

Figure 10: An example of the results page of the online service

Bhttps://github.com/
6https://maven.apache.org/

27

http://issel.ee.auth.gr/qatch
https://github.com/
https://maven.apache.org/

730

755

5. Experiments and Discussion

In order to prove the validity of the proposed framework and investigate its added
value in the field of software quality, six individual experiments were performed. A
carefully calibrated baseline quality model, the basic model, was derived in order to help
us conduct the experiments and reach useful conclusions. The experiments presented
in this section also helped us to identify the strong points, but also the weaknesses of
the proposed framework. Before proceeding to their description, a brief reference to the
basic model is provided.

5.1. Basic Model

The basic model consists of 4 characteristics retrieved from the ISO/IEC 25010 stan-
dard and 11 properties. The properties are evaluated both by state-of-the-art metrics
(e.g. Cyclomatic Complexity (McCabel[1976)) and by custom PMD rulesets constructed
by us in order for their rules to reflect the corresponding properties. For the calibration
of the model, a benchmark repository of 100 Java products was constructed. The soft-
ware products were retrieved from the Maven Repositoryiﬂ In particular, the top 100
Java libraries (based on their reputation) were selected for the benchmarking purposes.
The benchmark repository comprises almost 6.5 million LOC. The pair-wise comparison
matrices required for the weights elicitation of the quality model were completed by the
authors to their best of their knowledge, as experts in the field of software quality. In
particular, the pair-wise comparison matrices were completed with linguistic values (like
in the first table presented in Figure , and subsequently the fuzzy AHP approach was
employed for the derivation of the model’s weights.

The reasoning behind the selection of Java libraries as benchmark products for
the derivation of the basic model is threefold. First of all, we chose Java as a proof of
concept because it is a very popular object oriented programming language with official
guides for developerﬂ and best practices concerning how to enhance the quality of
the product source code. Secondly, the selected libraries are widely used by millions of
developers for the implementation of their own applications, and therefore, it is likely that
their development and maintenance to be based on best practices and coding standards,
which acts as an inherent indicator of quality. Last but not least, the Maven Repository
provides both the sources and the binaries of the libraries, which are needed for the
calibration of the quality model.

5.2. Minimum Benchmark Repository Size

In order to ensure the validity of the basic model, we have to make sure that
the benchmark repository used for its calibration is of the appropriate size. In other

"https://mvnrepository.com/
18http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-139411.
html

28

https://mvnrepository.com/
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-139411.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-139411.html

765

780

words, we had to check if the size of the benchmark repository influences significantly
the derived thresholds. For this purpose, hypothesis testing was applied. Specifically, we
tested whether the thresholds derived by using all the 100 products of the benchmark
repository are statistically similar to those produced by using a subset of them. We
defined the following null hypothesis:

H, ,: There is no statistical difference between the thresholds derived by the first n
products and those derived by the whole benchmark repository.

Thus, the question that we had to answer is the following:
“For confidence level 95% can we reject the null hypothesis?”

We executed the hypothesis test repeatedly for benchmark repositories of various
sizes. In particular, for each experiment we initially applied F-test in order to investigate
the homogeneity of the thresholds variability. Based on the results of this test we applied
Student’s t-test if the variability was homogenous and Welch’s t-test otherwise.

Table 2: The p-values against benchmark repository size in terms of number of products and lines of
code

Lines of

Number of Products (n) Code (LOC) p-value
90 5,057,202 0.1704
80 4,792,348 0.1482
70 4,590,831 0.1124
60 3,738,618 0.1392
50 3,265,838 0.06411
40 2,346,764 0.05925
30 1,691,153 0.05687
25 1,347,993 0.04859
20 1,064,100 0.04719
15 959,179 0.04981
10 414,563 0.03738

Table 2] depicts the p-values of the tests concerning the lower thresholds of the
model. From this table one can easily notice that the p-value is inversely proportional
to the benchmark repository size. We can also see that it falls below 0.05 for the first
time when the benchmark repository comprises 25 software products, which corresponds
to 1,347,993 LOC. For even smaller repositories the p-value declines even more. Thus,
we can conclude that the minimum LOC that the benchmark repository should contain
in order for the null hypothesis not to be rejected is almost 1.5 million in this case. The
benchmark repository used for the calibration of the basic model comprises 6.5 million

LOC, and therefore it highly satisfies the minimum requirements.
29

785

795

5.8. Comparison of weights elicitation techniques

In order to ensure the validity of the modified fuzzy AHP technique, the produced
weights should be closely related to those derived by AHP. A set of experiments were
performed for this purpose. An example of such an experiment is presented in Figure

intainability Bad Function C¢ hensibili dund. Cohesion Volume redness _Resource Handling ion Handling Coupling C ity Inhert
Bad Function - High, C High, C High,C Moderate,C Moderate, C Moderate, C Low, C Moderate, C
Comprehensibility - - High,C Moderate,C High, C High, C Moderate, C High, C Moderate, C
Redundancy - Low, C Low, C Moderate, C Low, C Moderate, C High, C
Cohesion - - - - Vvery low,C Verylow, C very Low, C Vvery Low, C Vvery Low, C
Volume 2 2 E = E very Low, C Low, C Low, C Very Low, C
Structuredness " Low, C High, C Low, C
Resource Handling 23 = E: & 5 = = Low, C Low, C
Exception Handling Very Low, C
Coupling - - E = 5 E - - -
Complexity Very High, € VeryHigh,C VeryHigh,C High,C Moderate, C Moderate, C High, € High, C Very High, C <

i Very Low, C Very Low, C Low, C Moderate, C Moderate, C Low, C Low, C Low, C Low, C Low, C

Bad Function C ibili Cohesion Volume Structuredness Resource Handling Exception Handling Coupling s

Bad Function . 7 7 7 5 S] 3 5 0.1111 1
Comprehensibility m = 7 5 7 7 5 5 0.1111 1
Redundancy a o K 3 3 5 3 5 g 0.1111 0.3333
Cohesion 1 1 1 3 1 0.142857 02
Volume 1 3 1 1 0.2 02
Structuredness 3 3 3 0.2 0.3333
Resource Handling - 3 3 0.142857 0.3333
Exception Handling 1, 0.142857 03333
Coupling - - - - - - - - - 0.1111 033333
Complexity - - - - - - - - - - 03333

Figure 11: Comparison matrices that are supposed to lead to same weights

Suppose we have a deterministic pair-wise comparison matrix and three appropri-
ate comparison matrices completed with linguistic values that they are supposed to lead
to similar weights. More specifically, we have three additional pair-wise comparison ma-
trices, where the second linguistic value of all their cells is U, D and C respectively.
Weights elicitation is applied and the correlation between the derived weights vector of
each of these three matrices with the weights produced by AHP is calculated. Table
contains the exact weights derived from each matrix by applying the appropriate weights
elicitation technique and the corresponding correlation with the weights derived by AHP.

30

800

810

815

Table 3: Comparison of the weights derived through the application of the AHP and the fuzzy AHP
techniques for a specific characteristic

Property Name Wanup Wranp,c,o0=0.0000 Wranp,c Wranp,D Wranpu
Bad Function 0.1745 0.1712 0.1712 0.1758 0.1768
Comprehensibility 0.1232 0.1341 0.1341 0.1406 0.1383
Redundancy 0.0610 0.0702 0.0703 0.0672 0.0664
Structuredness 0.0217 0.0298 0.0298 0.0283 0.0282
Assignment 0.0298 0.0371 0.0358 0.0364 0.0388
Resource Handling 0.0390 0.0442 0.0442 0.0495 0.0517
Cohesion 0.0262 0.0317 0.0327 0.0331 0.0340
Coupling 0.0194 0.0217 0.0220 0.0212 0.0228
Complexity 0.0192 0.0244 0.0239 0.0263 0.0314
Messaging 0.3289 0.2852 0.2847 0.2807 0.2685
Encapsulation 0.1569 0.1505 0.1513 0.1408 0.1432
Correlation - 0.9961299 0.9960122 0.9927116 0.9906083

The results of this experiment indicate that the thresholds derived by fuzzy AHP
are closely related to those calculated by AHP, even to the extreme case where all the
judgments are uncertain (i.e. the second linguistic value of all the cells is U). The third
column of Table [3] contains the weights derived from the corresponding pair-wise com-
parison matrix, where all the provided judgments are certain (i.e. the second linguistic
value of all its cells is C'), but the corresponding o is set to 0.0001. In other words, the
fuzzy triangular numbers have an extremely small range, and therefore they converge to
singletons. In this extreme case, the derived weights are almost equivalent to those pro-
duced by the AHP approach, as the correlation is approximately equal to 1 and has its
highest value compared to the other three cases, which is the desired behavior. However,
in all the cases the correlation is close to 1, which indicates that the proposed fuzzy AHP
technique constitutes a valid fuzzy alternative of the original AHP approach.

5.4. Quality Assessment of Software Products

The basic model was employed to assess the quality of the software products stored
in the benchmark repository. The products were ranked in a descending order according
to their overall quality score provided by the basic model. Table [4| and Table [5| show the
first and last 10 products of the aforementioned ranking, respectively.

31

820

Table 4: The top 10 benchmark products according to their quality

Product Name LOC Q

Annotations Plugin 58 0.8149

Hamcrest 48890 0.79
Apache Commons 24907 0.7465
Javac 120726 0.7425
Joda Convert 6542 0.7158
Findbugs 491 0.6954
Persistence 1422 0.6767
Jpa 3286 0.6705
Maven Model 35684 0.6702
Google Protobuf 78046 0.6527

Table 5: The last 10 benchmark products according to their quality

Product Name LOC Q
HyperSQL 361948 0.3934
Hamcrest Core 2557 0.3765
Beel 72470 0.3714
Jackson Data Mapper 69508 0.3590
Jcommander 6231 0.3489
Osgi 18326 0.3249
Compentium 2272 0.3220
Domd4j 38022 0.3217
Jackson 22035 0.3200
Slf4j 2983 0.2912

From the assessment results presented in these tables, one may easily identify that
quality assessment is independent of product size. For instance, the products Apache
Commons and Javac receive almost the same quality score even though the latter is
approximately 6 times bigger than the former. Moreover, the Annotations Plugin receives
almost the same rating with Hamcrest despite the fact that it consists of only one class
and it comprises significantly fewer LOC. Thus, one may argue that QATCH can be used
for the evaluation of individual classes, as well as for entire systems, avoiding the major
threat to validity of quality assessment models, i.e. to be influenced by the size of the
products under evaluation (both in terms of number of classes and of LOC).

5.5. Quality Improvement

Another research question answered in our analysis is whether the quality models
derived by QATCH can assist in monitoring, and therefore improving software product

quality. For this purpose, two case studies were conducted.
32

840

850

855

5.5.1. Case Study 1: Auto-generated Products Evaluation

Within the context of the first case study, a set of software products containing
exclusively auto-generated code were constructed. Snippets of code that violate specific
(previously known) rules were added to these products. In other words, a logic similar
to error seeding, which is widely applied for testing purposes, is adopted. As a result,
quality assessment against the basic model leads to relatively low quality scores. Through
inspection of the evaluation results, we realized that the quality model identified all the
deliberately added violations, along with other violations caused by the auto-generated
code. After solving these issues and re-assessing software, the products received the
highest possible rating, which is the value of 1.

The usage of the auto-generated codes has the advantage that we have apriori
knowledge of the issues that will arise during the evaluation. This way, a totally controlled
environment is created for evaluating the validity of the quality models and, in turn, of
the framework as a whole.

From the above, we argue that the quality model derived by QATCH was able to
identify all the potential violations that underlie in the software products under evalua-
tion. The derived quality models also support root-cause analysis; one may identify the
issues that cause a reduced quality score and take the appropriate corrective actions in
order to improve the overall software quality.

5.5.2. Case Study 2: Real Product Evaluation

Within the context of the second case study, the basic model was employed for the
quality assessment of different versions of the QMD itself. The evaluation results for each
QMD version, along with their LOCs, are presented in Table[6] For better understanding
the results are also depicted in Figure [I12]in a line graph form.

33

Table 6: The results of the quality assessment of different versions of Quality Model Designer according

to basic model

Version (n) LOC Q
v0.1 725 0.7541
v0.2 1647 0.6374
v0.3 10853 0.6538
v0.4 10853 0.6538
v0.5 10742 0.6459
v0.6 14298 0.6492
v0.7 17354 0.6446
v1.0 18365 0.6644
vl.l 19519 0.6654
v1.3 12930 0.6438
vl.4 12930 0.7234
v1.5 13159 0.8115
1
0.9 o
=
= 0.8} |
=)
c
=
é 0.7} 2
0.6 |- 1
0.5 L
02 04 06 10 13 1.5

Product Version

Figure 12: The evolution of the Quality Model Designer rating throughout its development

One may notice that initially the product had relatively high quality (i.e. 0.75).
After the addition of the needed components, the quality fell until version v1.3. Version
v1.3 is the final version of the product after the deletion of unnecessary classes that were
used for testing purposes or as alternative solutions. No corrective actions for quality
improvement were taken until this version.

Between v1.3 and v1.4, corrective actions were taken according to the evaluation
results provided by the basic model. This led to an increase of the overall quality score to

34

870

880

890

9200

0.71. Violations concerning naming conventions and comments structure were fixed (the
reason why the LOCs did not change between these two versions). Subsequently, more
advanced quality improvement actions, such as refactoring, were performed, leading the
overall quality to reach the value of 0.81 at the final version of the product (i.e. version
v1.5).

The regular application of quality assessment may help in the identification of
quality problems early enough in the software development lifecycle of a software product,
when their correction is relatively easy and cheap. Thus, less refactoring will be required
in the future. In other words, QATCH helps to the establishment of a Continuous Quality
Control paradigm.

5.6. Relation between quality and reputation

The software products of the benchmark repository are ranked in a descending order
according to the quality score provided by the basic model. This ranking is compared to
the corresponding ranking of the aforementioned products according to their reputation
provided by the Maven Repository. For this purpose we measure the Spearman’s rank
correlation coefficient (r) (Spearman) [1987)) between these two rankings. A high positive
correlation, which is the desired outcome of this experiment, means close relation between
the two rankings.

In our case, the calculated Spearman’s rho correlation is » = —0.2616742, which is
a negative and rather small correlation. This result is statistically significant due to the
small p-value, which is 0.008708.

From this result we may conclude that no positive relation exists between the
reputation of software products and their quality. Therefore, high reputation does not
necessarily mean high quality.

5.7. Comparative Analysis of Quality Assessment Approaches

The purpose of this experiment is to evaluate whether the assessment results pro-
vided by the basic model reflect the real quality of the assessed software products. A
positive outcome of this experiment will indicate that the quality models produced by
the proposed framework are reliable and can used in practice for the quality evaluation
of software products.

For this purpose, a comparison of the QATCH assessment results against com-
petitive approaches is necessary. However, no quality evaluation data of real-world open
source or commercial software products are publicly available in the literature, so as to be
used for such a comparison. Thus, similarly to (Deissenboeck et al.| [2011)) and (Wagner
et al.,|2015)), we decided to base our comparison on quality assessment results of software
products offered by experts in the field of software quality. In particular, we used the
quality ranking of five open source Java products, provided by nine Java experts during
the Linzer Software-Verkostung (Gruber et all |2010) (LSV). The investigated software

products were: JabRef, Checkstyle, Log4j, RSSOwl and TV-Browser. In order for our
35

905

910

920

comparison to be as precise as possible, we selected the versions that were closer to the
date of the LSV conference (October 2008).

Initially, we employed the QATCH basic model for the quality evaluation of the
five selected software products, and ranked them based on the produced quality scores.
Subsequently, we retrieved the product ranking offered by the experts of the LSV and
the one produced by the Quamoco framework. It should be noted that the authors of
Quamoco have resulted to two slightly different rankings of the selected products in two
different publications (i.e. (Deissenboeck et al.| 2011)) and (Wagner et al., 2015))). For
completeness reasons we have used both for the comparison. The quality scores of the
products, which were calculated by the basic model, and the resulting product ranking,
along with the two individual rankings produced by the Quamoco framework and the
one offered by the experts are presented in Table [7}

Table 7: The evaluation results produced by the basic model and the rankings provided by the basic
model, the Quamoco framework and the experts of "Linzer Software-Verkostung"

QATCH Quamoco Quamoco

Broduet version Quaity BRCH 200153 AL Rating
Score Ranking Ranking

Checkstyle 5.3 0.57201 1 1 1 1

Log4j 1.2.15 0.47829 2 3 2 2

RSSOwl 2.0 0.47490 3 2 2 3

TV-Browser 2.2.6 0.47466 4 4 4 4

JabRef 2.4 0.45239 5 5 5 5

All products are ranked on the exact quality scores assigned by QATCH. It is
obvious that QATCH ranking perfectly matches the ranking provided by the experts.
This indicates that the QATCH basic model accurately ranks the assessed products with
respect to their quality, as it is perceived by the experts in the field.

Additionally, the Spearman’s rank correlation coefficient (r) (Spearmanl [1987) is
employed in order to ensure that the investigated rankings are consistent. A positive
and close to one correlation value indicates that the two investigated rankings are highly
consistent. Additionally, in order to ensure that a resulting positive correlation is statis-
tically significant, similarly to (Deissenboeck et al., |2007) and [Wagner et al.| (2015), we
formulate the following hypothesis (and its corresponding null hypothesis):

Hy: There is a statistically significant positive correlation between the investigated
rankings.

Hy: There is not a statistically significant positive correlation between the investigated
rankings.

which is tested with confidence level 95% (a=0.05). This hypothesis is tested for the
product ranking provided by QATCH against the three individual rankings provided by

the Quamoco framework and the experts. The calculated correlations, along with their
36

935

940

950

955

9260

965

p-values are presented in Table [8]

Table 8: The Spearman’s rank correlation coefficient (r) between the ranking provided by the basic model
and the corresponding rankings provided by the experts and the Quamoco framework respectively

Ranking of Reference r p — value
Experts 1 0
Quamoco 2015 0.9 0.0374
Quamoco 2011 0.97 0.0048

From the results presented in Table [§]it is obvious that the correlation between the
ranking derived by QATCH and the expert-based ranking receives the highest possible
value (i.e. the value of 1), indicating that the assessment results provided perfectly match
those provided by the experts. The calculated correlation between the ranking obtained
by QATCH and those derived by the assessment results of the Quamoco framework
were found to be 0.9 and 0.97, respectively. Thus, there is a high positive correlation
between the rankings, which indicates that our ranking of the software products is highly
consistent with the corresponding product orderings derived by the Quamoco. The p-
values of the calculated correlations were found to be below 0.05 in all three cases, which
means that the null hypothesis can be rejected.

Overall, from the results we may conclude that the evaluation results provided
by QATCH adequately reflect the experts’ opinion regarding the quality of the selected
software products and is in high accordance with those provided by the Quamoco tool
chain. Thus, quality models produced by QATCH may constitute a reliable solution for
the evaluation of software product quality.

6. Conclusion

In this paper we introduced QATCH, an integrated framework that allows the
derivation of reliable custom quality models that can be used for the evaluation of soft-
ware products. The framework adopts state-of—the-art approaches, in order to produce
readable and understandable three-layered hierarchical quality models. Static analysis
and benchmarking is performed for threshold derivation, which makes the assessment
process automatic and highly objective. Two individual multi-criteria decision-making
techniques are provided by the framework for weights elicitation. In particular, QATCH
supports the Analytic Hierarchy Process and proposes its fuzzy alternative in order to
model the uncertainties that underlie in experts’ judgments. This method is further
enhanced in order to offer the experts the opportunity to express both their opinions
and their uncertainty into linguistic values, making the weights elicitation process easier
and more intuitive. Finally, a GUI facilitates the user in performing the quality model
derivation process in three clearly defined steps.

37

970

980

9290

1000

QATCH assesses the quality of software products in a holistic manner, based on the
international standard, ISO 25010. It offers objectivity and automation in the derivation
of thresholds through crowd-sourcing of open source repositories, and transparency in
the calculation of the final quality assessment and all the intermediary steps. It is an
expandable framework in the sense that metrics from dynamic analyses can be added
to the model and contribute to the final outcome. Moreover, QATCH facilitates weight
elicitation with techniques accessible to both experts and non-experts in order to easily
customize the models to their requirements.

In order to investigate both the validity and the added value of the proposed frame-
work in the field of software quality, a set of experiments were performed. A carefully cal-
ibrated quality model, the basic model, was derived, based on widely used Java projects,
and was employed for the quality assessment of software products written in the Java
programming language. The performed experiments ascertained the proper system oper-
ation and the independence of the models with regards to the size of the software product
under assessment. By assessing both automatically generated and user-developed soft-
ware products, the contribution of quality models towards the incorporation of root-cause
analysis, and therefore the improvement of software product quality, was highlighted. A
comparison of the fuzzy weight generation technique with its deterministic counterpart
showed a close correlation between the results of these two methods, leading to the con-
clusion that the proposed fuzzy AHP technique constitutes a valid fuzzy alternative of
the deterministic AHP approach. No correlation was found between the reputation of
the benchmark products and their quality score, which led to the conclusion that the
reputation is not an indicator of software product quality at least in the investigated
case. Finally, QATCH results were evaluated against other competitive approaches and
expert evaluations, and were found valid.

Future research and development efforts may include:

e The expansion of the system so that it will be able to assess the quality of software
products developed in different programming languages other than Java.

e The extension of the framework in order to support other multi-criteria decision-
making techniques for weights elicitation.

e The addition of other static analysis tools.
e The addition of dynamic analysis metrics.

e The adoption of more advanced parallel techniques (such as MPI, CUDA, Map-
Reduce etc.) for the acceleration of the static analysis.

e The development of a dashboard for the offline quality evaluation tools that will
facilitate the developers in the quality control and monitoring of their software
products.

38

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

7. Acknowledgments

This research did not receive any specific grant from any agencies in the public,
commercial, or not-for-profit sectors.

References

Al-Jamimi, H. A., & Ahmed, M. (2013). Machine learning-based software quality prediction models:
State of the art. In 2013 International Conference on Information Science and Applications (ICISA)
(pp. 1-4). doi:10.1109/ICISA.2013.6579473.

Alves, T. L., Correia, J. P., & Visser, J. (2011). Benchmark-based aggregation of metrics to ratings.
In Proceedings - Joint Conference of the 21st International Workshop on Software Measurement,
IWSM 2011 and the 6th International Conference on Software Process and Product Measurement,
MENSURA 2011 (pp. 20-29). doi{10.1109/TWSM-MENSURA.2011. 15|

Alves, T. L., Ypma, C., & Visser, J. (2010). Deriving metric thresholds from benchmark data. In IEEE
International Conference on Software Maintenance, ICSM. doi:10.1109/ICSM.2010.5609747.

Arar, O., & Ayan, K. (2016). Deriving thresholds of software metrics to predict faults on open source
software: Replicated case studies. Fxpert Systems with Applications, 61, 106-121.

Baggen, R., Correia, J. P.; Schill, K., & Visser, J. (2012). Standardized code quality benchmark-
ing for improving software maintainability. Software Quality Journal, 20, 287-307. doi;10.1007/
s11219-011-9144-9.

Baldassari, B. (2013). SQuUORE: a new approach to software project assessment. International Confer-
ence on Software € Systems Engineering and their Applications, .

Bansiya, J., & Davis, C. (2002). A hierarchical model for object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28, 4-17. doi:10.1109/32.979986| larXiv:arXiv:1011.1669v3.

Boehm, B., Brown, J., Kaspar, H., Lipow, M., Macleod, G., & Merrit, M. (1976). Characteristics of
Software Quality. Amsterdam, Netherlands: North-Holland.

Boender, C., de Graan, J., & Lootsma, F. (1989). Multi-criteria decision analysis with fuzzy pairwise
comparisons. Fuzzy Sets and Systems, 29, 133-143. URL: http://www.sciencedirect.com/science/
article/pii/0165011489901875. doi;10.1016/0165-0114(89)90187-5.

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233-247. do0i:10.1016/
0165-0114(85)90090-9.

Biiyiikozkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software
development strategy selection. International Journal of General Systems, 33, 259—280. doi;10.1080/
03081070310001633581.

Chang, C. W., Wu, C. R., & Lin, H. L. (2008). Integrating fuzzy theory and hierarchy concepts to
evaluate software quality. Software Quality Journal, 16, 263—276. doi;10.1007/s11219-007-9035-2.

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design. IEEE Trans.
Softw. Eng., 20, 476-493. URL: http://dx.doi.org/10.1109/32.295895. doii10.1109/32.295895,

Chiu, N.-H. (2009). An early software-quality classification based on improved grey relational classifier.
Ezxpert Systems with Applications, 34, 10727-10734.

Chiu, N.-H. (2011). Combining techniques for software quality classification: An integrated decision
network approach. Ezxpert Systems with Applications, 38, 4618—-4625.

Coleman, D. (1992). Assessing Maintainability. In Proceedings 1992 Software Engineering Productivity
Conference, Hewlett-Packard (pp. 525-532).

Deissenboeck, F., Heinemann, L., Herrmannsdoerfer, M., Lochmann, K., & Wagner, S. (2011). The
quamoco tool chain for quality modeling and assessment. 2011 33rd International Conference on
Software Engineering (ICSE), (pp. 1007-1009). doi{10.1145/1985793.1985977.

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., & Girard, J. F. (2007). An activity-based quality
model for maintainability. In IEEE International Conference on Software Maintenance, ICSM (pp.
184-193). doi:10.1109/ICSM.2007.4362631.

39

http://dx.doi.org/10.1109/ICISA.2013.6579473
http://dx.doi.org/10.1109/IWSM-MENSURA.2011.15
http://dx.doi.org/10.1109/ICSM.2010.5609747
http://dx.doi.org/10.1007/s11219-011-9144-9
http://dx.doi.org/10.1007/s11219-011-9144-9
http://dx.doi.org/10.1007/s11219-011-9144-9
http://dx.doi.org/10.1109/32.979986
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.sciencedirect.com/science/article/pii/0165011489901875
http://www.sciencedirect.com/science/article/pii/0165011489901875
http://www.sciencedirect.com/science/article/pii/0165011489901875
http://dx.doi.org/10.1016/0165-0114(89)90187-5
http://dx.doi.org/10.1016/0165-0114(85)90090-9
http://dx.doi.org/10.1016/0165-0114(85)90090-9
http://dx.doi.org/10.1016/0165-0114(85)90090-9
http://dx.doi.org/10.1080/03081070310001633581
http://dx.doi.org/10.1080/03081070310001633581
http://dx.doi.org/10.1080/03081070310001633581
http://dx.doi.org/10.1007/s11219-007-9035-2
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/1985793.1985977
http://dx.doi.org/10.1109/ICSM.2007.4362631

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

Dimiter Driankov, M. R., Hans Hellendoorn (1996). An Introduction to Fuzzy Control. Springer-Verlag
Berlin Heidelberg. doii10.1007/978-3-662-03284-8.

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on Software Engi-
neering, 21, 146-162. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
345830. doii10.1109/32.345830.

DuBois, D. (1997). Fuzzy Sets and Systems: Theory and Applications. Orlando, FL, USA: Academic
Press, Inc.

Gruber, H., Plosch, R., & Saft, M. (2010). On the validity of benchmarking for evaluating code quality.
In International Conferences on Software Measurement IWSM/MetriKon/Mensura.

Heitlager, 1., Kuipers, T., & Visser, J. (2007). A Practical Model for Measuring Maintainabil-
ity. 6th International Conference on the Quality of Information and Communications Technol-
ogy (QUATIC 2007), (pp- 30-39). URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4335232. doi:10.1109/QUATIC.2007.8.

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. ACM SIGPLAN Notices, 39, 92. doii10.
1145/1052883.1052895.

ISO/IEC (2001). ISO/IEC 9126-1: Software engineering — Product quality — Part 1: Quality model.
Geneva, Switzerland.

ISO/IEC (2011). ISO/IEC 25010: Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models. Geneva, Switzerland.

Kanellopoulos, Y., Antonellis, P., Antoniou, D., Makris, C., Theodoridis, E., Tjortjis, C., & Tsir-
akis, N. (2010). Code Quality Evaluation Methodology Using The ISO/IEC 9126 Standard. CoRR,
abs/1007.5. URL: http://arxiv.org/abs/1007.5117.

Letouzey, J. L., & Coq, T. (2010). The sqale analysis model: An analysis model compliant with the
representation condition for assessing the quality of software source code. In 2010 Second International
Conference on Advances in System Testing and Validation Lifecycle (pp. 43-48). doiz10.1109/VALID.
2010.31.

Liang, G.-S., & Wang, M.-J. J. (1991). A fuzzy multi-criteria decision-making method
for facility site selection. International Journal of Production Research, 29, 2313-2330.
URL: http://dx.doi.org/10.1080/00207549108948085. doii10.1080/00207549108948085.
arXiv:http://dx.doi.org/10.1080/00207549108948085.

Lochmann, K. (2012). A Benchmarking-inspired Approach to Determine Threshold Values for Metrics.
SIGSOFT Softw. Eng. Notes, 37, 1-8. URL: http://doi.acm.org/10.1145/2382756.2382782, doi:10.
1145/2382756.2382782.

Lochmann, K., & Heinemann, L. (2011). Integrating quality models and static analysis for comprehensive
quality assessment. Proceeding of the 2nd international workshop on Emerging trends in software
metrics - WETSoM ’11, (p.5). URL: http://portal.acm.org/citation.cfm?doid=1985374.1985378,
doii10.1145/1985374.1985378.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering, SE-2,
308-320. doi:10.1109/TSE.1976.233837.

McCall, J., Richards, P., & Walters, G. (1977). Factors in Software Quality. Springfield: National
Technical Information Service.

Mordal-Manet, K., Balmas, F., Denier, S., Ducasse, S., Wertz, H., Laval, J., Bellingard, F., & Vaillergues,
P. (2009). The squale model - A practice-based industrial quality model. In IEEE International
Conference on Software Maintenance, ICSM (pp. 531-534). doii10.1109/ICSM.2009.5306381.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of
Services Sciences, 1, 83. doii10.1504/IJSSCI.2008.017590.

Spearman, C. (1987). The proof and measurement of association between two things. By C. Spearman,
1904. The American journal of psychology, 100, 441-471. doi;10.1037/h0065390.

Sterling, C. (2010). Managing Software Debt: Building for Inevitable Change. (1st ed.). Addison-Wesley
Professional.

Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy

40

http://dx.doi.org/10.1007/978-3-662-03284-8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=345830
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=345830
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=345830
http://dx.doi.org/10.1109/32.345830
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4335232
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4335232
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4335232
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1145/1052883.1052895
http://arxiv.org/abs/1007.5117
http://dx.doi.org/10.1109/VALID.2010.31
http://dx.doi.org/10.1109/VALID.2010.31
http://dx.doi.org/10.1109/VALID.2010.31
http://dx.doi.org/10.1080/00207549108948085
http://dx.doi.org/10.1080/00207549108948085
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207549108948085
http://doi.acm.org/10.1145/2382756.2382782
http://dx.doi.org/10.1145/2382756.2382782
http://dx.doi.org/10.1145/2382756.2382782
http://dx.doi.org/10.1145/2382756.2382782
http://portal.acm.org/citation.cfm?doid=1985374.1985378
http://dx.doi.org/10.1145/1985374.1985378
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/ICSM.2009.5306381
http://dx.doi.org/10.1504/IJSSCI.2008.017590
http://dx.doi.org/10.1037/h0065390

1105

1110

1115

Sets and Systems, 11, 199-227. doii10.1016/S0165-0114(83)80082-7.

Wagner, S., Goeb, A., Heinemann, L., Klds, M., Lampasona, C., Lochmann, K., Mayr, A., Plosch, R.,
Seidl, A., Streit, J., & Trendowicz, A. (2015). Operationalised product quality models and assessment:
The Quamoco approach. Information and Software Technology, 62, 101-123. URL: http://www.
sciencedirect.com/science/article/pii/S0950584915000452. doi;10.1016/j.infsof.2015.02.009.

Wagner, S., Lochmann, K., Heinemann, L., Klas, M., Trendowicz, A., Plosch, R., Seidi, A., Goeb, A., &
Streit, J. (2012). The Quamoco product quality modelling and assessment approach. 2012 34th Inter-
national Conference on Software Engineering (ICSE), (pp. 1133-1142). URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6227106. doi:10.1109/ICSE.2012.6227106.

Wang, Y. M., & Chin, K. S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference
programming methodology. International Journal of Approximate Reasoning, 52, 541-553. doi:10.
1016/j.ijar.2010.12.004.

Yuen, K. K. F., & Lau, H. C. W. (2011). A fuzzy group analytical hierarchy process approach for
software quality assurance management: Fuzzy logarithmic least squares method. Ezxpert Systems
with Applications, 38, 10292-10302. doi:10.1016/j.eswa.2011.02.057.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338-353. doii10.1016/S0019-9958(65)
90241-X.

41

http://dx.doi.org/10.1016/S0165-0114(83)80082-7
http://www.sciencedirect.com/science/article/pii/S0950584915000452
http://www.sciencedirect.com/science/article/pii/S0950584915000452
http://www.sciencedirect.com/science/article/pii/S0950584915000452
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6227106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6227106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6227106
http://dx.doi.org/10.1109/ICSE.2012.6227106
http://dx.doi.org/10.1016/j.ijar.2010.12.004
http://dx.doi.org/10.1016/j.ijar.2010.12.004
http://dx.doi.org/10.1016/j.ijar.2010.12.004
http://dx.doi.org/10.1016/j.eswa.2011.02.057
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

	Introduction
	Related Work
	Quality Assessment Models
	Software quality tools and frameworks
	Contributions
	Transparency
	Weights Elicitation

	Methodologies
	Quality Model Structure
	Quality Assessment
	Properties Assessment Level
	Aggregate Assessment Level

	QATCH Quality Models
	Threshold Calibration
	Weight Calibration

	QATCH architecture
	The Quality Model Designer
	Offline Quality Assessment Tools
	The QATCH Certification application

	Experiments and Discussion
	Basic Model
	Minimum Benchmark Repository Size
	Comparison of weights elicitation techniques
	Quality Assessment of Software Products
	Quality Improvement
	Case Study 1: Auto-generated Products Evaluation
	Case Study 2: Real Product Evaluation

	Relation between quality and reputation
	Comparative Analysis of Quality Assessment Approaches

	Conclusion
	Acknowledgments

