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Abstract During the last few years, the REST architectural style has dras-
tically changed the way web services are developed. Due to its transparent
resource-oriented model, the RESTful paradigm has been incorporated into
several development frameworks that allow rapid development and aspire to
automate parts of the development process. However, most of the frameworks
lack automation of essential web service functionality, such as authentication
or database searching, while the end product is usually not fully compliant to
REST. Furthermore, most frameworks rely heavily on domain specific mod-
eling and require developers to be familiar with the employed modeling tech-
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nologies. In this paper, we present a Model-Driven Engineering (MDE) engine
that supports fast design and implementation of web services with advanced
functionality. Our engine provides a front-end interface that allows developers
to design their envisioned system through software requirements in multimodal
formats. Input in the form of textual requirements and graphical storyboards
is analyzed using natural language processing techniques and semantics, to
semi-automatically construct the input model for the MDE engine. The engine
subsequently applies model-to-model transformations to produce a RESTful,
ready-to-deploy web service. The procedure is traceable, ensuring that changes
in software requirements propagate to the underlying software artefacts and
models. Upon assessing our methodology through a case study and measuring
the effort reduction of using our tools, we conclude that our system can be
effective for the fast design and implementation of web services, while it allows
easy wrapping of services that have been engineered with traditional methods
to the MDE realm.

Keywords RESTful Web Services · Model-Driven Engineering · Software
Requirements · Automated Software Engineering

1 Introduction

Lately, offering software in the form of web services has gained popularity
due to the evolution of cloud architectures and the introduction of Internet
of Things concepts. As expected, next generation web services have been de-
veloped that have revolutionized the way software is developed. Ever since its
introduction by Fielding (2000), the REpresentational State Transfer (REST)
architectural style has been increasingly preferred by developers for its simplic-
ity and scalability, and has practically grown to be the state-of-the-practice for
creating web services. REST comprises a set of rules and practices offering sim-
ple comprehensible APIs, clear representations, and scalable services (Richard-
son and Ruby, 2007).

Meanwhile, from an automated software engineering perspective, Model
Driven Engineering (MDE) is gaining popularity. MDE and its most promi-
nent instance, Model Driven Architecture (MDA)1 introduced by the Open
Management Group (OMG)2, do bring some benefits to its practitioners. Ac-
cording to Liebel et al (2014) and Hutchinson et al (2011), MDE practitioners
report that it leads to a higher degree of automation and improved productiv-
ity, an important aspect of which is code generation. Additionally, they report
that MDE results to improved quality and reduced defects, which are detected
earlier in the lifecycle of the project, hence they can be fixed at a lower cost.
Finally, others have argued that MDE accelerates the implementation of new
requirements and increases understandability.

1 http://www.omg.org/mda/
2 http://www.omg.org
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Due to its transparent resource-oriented model, the RESTful paradigm has
been incorporated into several development frameworks, some of which embed
MDE methodologies that allow rapid development and aspire to automate
parts of the development process. Some of those systems (Ed-Douibi et al,
2015; Parastatidis et al, 2010) aim at creating a skeleton and in some cases
a database schema for resources, while others construct fully functional web
services. However, most of them require developer input in some form of a
model/language, therefore exposing the developer to the most prominent MDE
pitfalls. According to Liebel et al (2014) and Hutchinson et al (2011), these
pitfalls are the significant training overhead needed in order to successfully use
the technique, and the complexity of the modeling process which is considered
challenging and requires too much effort.

In this paper we attempt to mitigate the aforementioned drawbacks of
RESTful service frameworks, which also lack wide-spread requirements engi-
neering techniques. Hence, we present the synergy of upper and lower CASE3

AI technologies and tools, such as Natural Language Processing (NLP), Ontolo-
gies and First Order Predicate Logic with several upper/lower CASE Software
Engineering staple facilities, namely Multi-modal Requirements Management,
Domain Specific Meta-modeling and MDE transformation chains. The out-
come is a coherent mechanism that allows rapid prototyping and development
of functional RESTful services, whilst the developer is able to model his/her
envisioned system using comprehensive requirements representations, i.e. tex-
tual requirements and visual storyboards, without requiring further training
on Domain Specific Languages or being exposed to complex modeling activities
that pure MDE techniques embed.

Specifically, we present a two-fold mechanism that aids developers in build-
ing RESTful services. Its lower CASE back-end employs an MDE engine that
automates the generation of RESTful services that abide by the 3rd level of
Richardson’s Maturity Model (RMM)4. It offers automatic Basic Authentica-
tion5 functionality, it automates the process of popular database keyword-
searching and ensures the interoperability of the envisioned RESTful service
with existing 3rd party services.

Additionally, as already mentioned, in contrast to most transformation en-
gines that receive input in the form of a model or language, our MDE engine
is coupled with an upper CASE front-end interface that allows developers to
design their envisioned system through software requirements in multimodal
formats. In specific, the upper CASE effectively models the static and dynamic
views of the envisioned system, and employs NLP techniques and semantics
to transform functional requirements and dynamic system scenarios to system
specifications. The derived representations are instantiated in software ontolo-
gies using tools specifically designed and developed for constructing REST-
compliant models from functional requirements and storyboards (i.e. graphi-

3 https://en.wikipedia.org/wiki/Computer-aided_software_engineering
4 http://martinfowler.com/articles/richardsonMaturityModel.html
5 https://en.wikipedia.org/wiki/Basic_access_authentication
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cal scenarios). Functional requirements are parsed and semantically annotated
to compose RESTful resources and properties, while storyboards are used to
determine the hypermedia connections among resources.

The combination of the requirements-to-specifications (Reqs2Specs) mod-
ule with the MDE engine results in a comprehensive and effective system with
multiple advantages. It introduces increased automation in RESTful service
development by using NLP and semantics to construct the input model of
the MDE engine. Less effort is required for translating requirements to spec-
ifications, while the construction of web service prototypes is easy, even with
minimal knowledge of the MDE and the RESTful paradigms. Furthermore,
our methodology eases the migration of legacy software systems engineered
with traditional methods to the MDE realm, since it is capable of taking as
input their textual requirements. Finally, note that changes in software re-
quirements are instantly propagated to the underlying software artefacts and
models, thus providing high model consistency and traceability.

The rest of this paper is structured as follows. Section 2 reviews the current
state-of-the-art in the area of specification extraction from software require-
ments and MDE transformation engines. Section 3 introduces the framework
behind our approach and describes the modules of our system, including the
design of the ontologies for describing the components of the envisioned service
and the methods used for automatically processing functional requirements
and storyboards to instantiate them. Section 4 introduces the MDE engine
we designed and developed, focusing on the essential meta-models and the
transformations between them. Finally, Section 5 illustrates how our system
can be used to create a RESTful web service and provides assessment of the
effort reduction by using our mechanism, and Section 6 concludes this paper,
summarizing our contributions and providing useful insight for future research.

2 Related Work

Several research efforts aspire to help developers minimize the cost and devel-
opment time and maximize their effectiveness. In the context of Computer
Aided Software Engineering (CASE), several tools, known as lower CASE
tools, require as input a model that undergoes subsequent transformations in
order to provide the source code of the envisioned system. On the other hand,
extraction of specifications, i.e. the initial model, from software requirements,
is traditionally handled by upper CASE tools. Subsections 2.1 and 2.2 discuss
upper and lower CASE efforts and illustrate their relation to our approach.

2.1 Upper CASE Approaches

Translating software requirements to models involves designing meaningful
representations for system specifications and instantiating them using input
from software requirements. Concerning the type of the input, most approaches
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propose specialized languages that can be easily translated to models. The
tools of the ReDSeeDS project (Kaindl et al, 2007; Smialek, 2012) use a con-
strained language named Requirements Specification Language (RSL) (Kaindl
et al, 2007) in order to extract specifications from use cases and domain mod-
els. Cucumber (Wynne and Hellesoy, 2012) and JBehave (North, 2003) are two
other popular frameworks based on the Behavior-Driven Development (BDD)
paradigm. These tools allow defining scenarios using a GIVEN-WHEN-THEN
approach and aspire to construct testable behavioral models. Other notable
examples using specialized languages include Tropos, a requirements-driven
methodology designed by Mylopoulos et al (2000), which is based on the no-
tions of actors and goals of the i* modeling framework (Yu, 1995).

Although the aforementioned approaches can be quite useful for construct-
ing precise models, their compliance to UML and/or other standards is some-
times limited. Using them may require training in a new language, which
is sometimes frustrating for the developers. As a result, current literature
also includes employing semantics and NLP techniques on natural (or semi-
structured) language functional requirements and UML diagrams to extract
specifications. One of the first rule-based methods for extracting data types,
variables and operators from requirements were introduced by Abbott (1983),
according to which nouns are identified as objects and verbs as operations be-
tween them. Subsequently, Abbott’s approach was extended to object-oriented
development by Booch (1986).

Saeki et al (1989) were among the first to construct a system for extract-
ing object-oriented models from informal requirements. Their system uses NLP
methods to extract nouns and verbs from functional requirements and deter-
mines whether they are relevant to the model by means of human intervention.
The work by Mich (1996) also involved a semantics module using a knowledge
base in order to further assess the retrieved syntactic terms. In a more recent
approach, Harmain and Gaizauskas (2003) developed CM-Builder, a natural
language upper CASE tool in order to identify object classes, attributes and
relationships in the analysis stage using functional requirements.

As noted in the previous paragraphs, there are several upper CASE tools
that can be used to extract specifications from models. However, most of
these tools focus on object-oriented development and use specialized languages.
Hence, most of them are not oriented towards MDE (with the exception of
ReDSeeDS (Smialek, 2012)), while none of them, and no other to the best
of our knowledge, complies with the main characteristics of the RESTful
paradigm. In contrast to the object-oriented paradigm, the building blocks
of a RESTful web service are the resources. Each resource provides an object
of the system that can be addressed using a Create, Read, Update, or Delete
(CRUD) operation and connects to other objects via hypermedia links. In
this work, we employ NLP techniques in a domain-agnostic context to extract
resources as structural system elements from functional requirements. Addi-
tionally, we develop a dynamic representation that can describe the dynamic
view of RESTful services effectively and provide action flows and hypermedia
links for the resources.
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Concerning model representations, most of the aforementioned systems
use either known literature standards including UML models or ontologies,
which have been used extensively in Requirements Engineering (RE) for stor-
ing and validating information extracted from requirements (Castañeda et al,
2010; Siegemund et al, 2011). Ontologies are also useful for storing domain
specific knowledge and are known to integrate well with software modeling
languages (Happel and Seedorf, 2006)6. They provide a structured means of
organizing information, are particularly useful for storing linked data, allow
retrieving stored data via queries, and allow reasoning over implied relation-
ships between data items. Thus, we also employ ontologies to store the con-
cepts extracted from functional requirements and storyboards and construct
the specifications of the envisioned service.

2.2 Lower CASE Approaches

Although there is lack of upper CASE tools that model software requirements
for RESTful services, there is a plethora of lower CASE tools that aim to
help the developer model RESTful services in some way. However, most of
them fall short in some way. The majority does not fully support the RESTful
design, as they either do not support the hypermedia concept of REST or do
it partially since developer intervention is necessary. Others, although they are
excellent at modeling the REST design, do not provide essential functionality
that is necessary for a web service, such as Basic Authentication, automated
keyword-searching or interoperation with existing 3rd party services.

More specifically, EMF-REST (Ed-Douibi et al, 2015) models really well
the REST domain and supports hypermedia structurally, however it is too
data-centric and thus does not model and automate any non-CRUD function-
ality. RESTfulie (Parastatidis et al, 2010) also models the REST concepts
adequately, including hypermedia, however it does not include any common
web service functionality either. In a more research-wise work, Schreier (2011)
models both structurally and behaviorally the REST architectural style, al-
though any other functionality such as authentication etc. is left as future
work. In the same manner, several other popular tools such as Persevere7,
Restlet8, Django-REST9 and Rails10 also fall short in some way, for example
by not supporting hypermedia or by not being able to take into account User
Software Requirements in the wide-spread textual format, since their operat-
ing mode is based on a API-specification development logic. Most of the other
tools and frameworks of this category11 illustrate such issues as well.

6 See (Dermeval et al, 2015) for a systematic review on the use of ontologies in RE.
7 http://www.persvr.org/
8 http://restlet.com
9 http://www.django-rest-framework.org

10 http://rubyonrails.org
11 https://code.google.com/p/implementing-rest/wiki/ByLanguage
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Other efforts, concern the modeling of RESTful services formally or con-
ceptually. Hernández and Garćıa (2010) formally model the REST design using
tuples and process calculi, while Zuzak et al (2011) employ Finite State Ma-
chines (FSMs). On the other hand, Rauf et al (2010) and Zhao and Doshi
(2009) formalize compositions of several RESTful services to form a compos-
ite one. All these attempts mostly focus on conceptual modeling of RESTful
services, rather than aiming to directly support their development.

Finally, other lower CASE tools or languages model semantically RESTful
services in the form of a textual description language. These mostly build on
top of the WADL12 standard and attempt to better describe the behavior of
a RESTful service, so that it will be easier consumable by others. Tavares
and Vale (2013) apply an MDA methodology to produce textual description
of RESTful services in several popular formats, such as WADL, WSDL 2.0,
SA-REST and OWL-S, while Porres and Rauf (2011) describe a way to include
in the textual description of a RESTful service interface behavioral aspects as
well, which are not tackled by the WADL standard.

Further extending previous work, our approach attempts to properly model
all the REST design concepts in regard to RMM and in the same time offer
modeling capabilities for essential functionality that is used in any web ser-
vice. Additionally, our approach actively supports development rather than
conceptual or language modeling. Finally, the proposed two-fold RESTful de-
velopment mechanism exploits textual User Requirements in order to ease the
modeling effort of the developer, instead of following a pure modeling path.

3 From Requirements to Specifications

3.1 System Overview

The conceptual architecture of our system is shown in Figure 1.

MDE

Reqs2Specs MDE Engine

plugins

Requirements Editor
Storyboard Creator

RESTful
Web Service

Customers

Developer

Functional
Requirements

Storyboards

Fig. 1 Overview of the Conceptual Architecture of our System

Our system comprises two modules: the Reqs2Specs module and the MDE
engine. The Reqs2Specs module includes a set of tools for developers to enter
the multi-modal representations (functional requirements, storyboards) of the

12 http://www.w3.org/Submission/wadl/
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envisaged software application as well as a methodology for transforming these
representations to specifications, i.e. models of the envisioned system. The
MDE engine performs a series of model-to-model transformations, while also
allowing refinements to these transformations by the developer, in order to
subsequently produce the final source code of the envisioned service.

In specific, we have designed two ontologies to capture the static and
dynamic view of software projects, which are subsequently aggregated to a
REST-compliant ontology to produce the specifications of a RESTful web ser-
vice. Additionally, we have developed front-end tools that allow developers to
insert requirements in the form of semi-structured text and storyboards, i.e. di-
agrams depicting the flow of actions in the system. Using the specifications
extracted from these ontologies, the MDE engine constructs a Computationally
Independent Model (CIM) for the envisioned service. Applying model-to-model
transformations, the engine produces a fully-functional web service, including
a database for the resources of the system and an API for the produced service.

The combination of these technologies allows the developer to significantly
reduce the manual effort required to build RESTful services. Firstly, input
is provided in the form of requirements and storyboards instead of complex
models, while a semi-automated annotation methodology is used to expedite
the process of importing them in our mechanism. Secondly, our mechanism
embeds First Order Predicate Logic to help the developer refine the initial
produced CIM model. Thirdly, the required expertise is reduced, since as sec-
tion 4 discusses, our mechanism automatically produces source code for widely
used functionality (authentication, search, 3rd party service integration), hence
the developer does not have to be familiar with several related libraries and
frameworks. Finally, our mechanism provides RESTful wrappers for the non-
automatable aspects of the envisioned service, so that the developer only has
to fill in manual code fragments in a compilable and executable template.

Most of the steps required to produce a RESTful service using our mech-
anism are automated. In specific, the user has to intervene only to refine the
annotations of the imported requirements and/or storyboards, refine the pro-
duced CIM model, from which the MDE engine will automatically generate the
corresponding code. A more elaborate presentation of the semi-automated and
automated actions of our mechanism are shown in subsection 5.1, upon having
presented the components of our system including any required terminology.

3.2 Extracting Artefacts from Software Requirements

This section concerns the design of ontologies for storing information derived
from software requirements. In the context of our work we employ the Web
Ontology Language (OWL)13 for representing information, since it is a well-
known established standard of current research and industry communities.
Although we don’t rely on OWL inference capabilities explicitly, they are
useful for expressing integrity conditions over the ontology, such as ensuring
that certain properties have inverse properties (e.g. is actor of/has actor).

13 http://www.w3.org/TR/2004/REC-owl-guide-20040210/
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We have designed three ontologies, hereafter named the static ontology,
the dynamic ontology, and the aggregated ontology. The static ontology rep-
resents the static view of software projects. It holds information about the
objects and the resources of the system derived from static requirements rep-
resentations, such as functional requirements or UML use case diagrams. The
dynamic ontology stores dynamic information about software projects. It in-
cludes information about the activities and action/data flows throughout the
system, while it can be instantiated by different types of dynamic representa-
tions, such as storyboards or UML activity diagrams. Finally, the aggregated
ontology links the information provided by the two ontologies and provides a
unified view of a software project, which is modeled to be REST-compliant.

In the following subsections, we initially present the static ontology and
describe how it can be instantiated the ontology using functional requirements.
In the same manner, we present the dynamic ontology and illustrate how it
can be instantiated using storyboards. After that, the aggregated ontology is
presented and its instantiation is discussed. Finally, the extraction of a YAML
representation from the aggregated ontology is presented that is used as input
for the MDE engine module. A YAML representation was considered so that
it is more developer and eye friendly than an OWL file.

3.2.1 Static View of Software Projects

An Ontology for the Static View of Software Projects Concerning the static
aspects of requirements elicitation, i.e. functional requirements and use case
diagrams, the design of the ontology revolves around the concept of an acting
unit (e.g. user) performing some action(s) on some object(s). Following the
methodology defined by Roth et al (2014, 2015), the ontology was designed
to support information extracted from Subject-Verb-Object (SVO) sentences.
The class hierarchy of the ontology is shown in Figure 2.

Anything entered in the ontology is a Concept. Instances of Concept are
further classified into Project, Requirement, ThingType, and OperationType.
The Project and Requirement classes are used to store the requirements of
the system, so that our methodology is traceable, since any instance can be
traced back to the originating requirement. ThingType and OperationType are
the main types of objects found in any requirement. ThingType refers to acting
units and units acted upon, while OperationType involves the types of actions
performed by the acting units. Each ThingType instance can be an Actor, an
Object, or a Property. Actor refers to the actors of the project, including
users, the system itself or any external systems. Instances of type Object in-
clude any object or resource of the system that receives some action, while
Property instances include all modifiers of objects or actions. OperationType
includes all possible operations, including Ownership that expresses possession
(e.g. “each user has an account”), Emergence that implies passive transforma-
tion (e.g. “the posts are sorted”), State that describes the status of an Actor

(e.g. “the user is logged in”), and Action describes an operation performed
by an Actor on some Object (e.g. “the user creates a profile”).
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Project

Requirement

Concept

ThingType

Property

Object

Actor

OperationType

Ownership

Emergence

Action

State

Fig. 2 Static Ontology of Software Projects

The possible interactions between the different concepts of the ontology,
i.e. the relations between the ontology (sub)classes, are defined using proper-
ties. The properties of the static ontology are shown in Figure 3. Note that each
property also has its inverse one (e.g. has actor has the inverse is actor of).
Figure 3 includes only one of the inverse properties and excludes properties
involving Project and Requirement for simplicity.

ThingType

acts_on

has_actor owns
occurs

OperationType

OwnershipEmergenceActionState

Property ObjectActor

acts_on

Fig. 3 Properties of the Static Ontology

An instance of Project can have many instances of Requirement, while
each Requirement connects to several ThingType and OperationType in-
stances. The remaining properties define relations between these instances.
OperationType instances connect with instances of Actor via the has actor

property. Operations also connect to objects if are transitive. Thus, each
Action is connected to instances of type Object or Property via the acts on

property, while Emergence occurs on an Object and Ownership is connected
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with objects via the owns and owned by properties. Finally, the non-transitive
State operation does not connect to any Object or Property.

Extracting Artefacts from Functional Requirements The ontology described
in the previous paragraph is instantiated using functional requirements. The
requirements have to be annotated and the annotations are used to map to
the OWL classes of the ontology. Although annotation schemes similar to the
one in (Roth et al, 2015) integrate valuable NLP information, they are too
complex for the user. Thus, we use the second level of the hierarchical annota-
tion scheme defined by Roth et al (2014). As a result, our annotation scheme
includes only four types of entities and three types of relations among them. In
specific, any entity can be an Actor, an Action, an Object, or a Property. The
defined relations include: IsActorOf declared from Actor to Action, ActsOn
defined from Action to Object or from Action to Property, and HasProperty
defined from Actor to Property or from Object to Property or from Property
to Property. Thus, using this annotation scheme, we have developed a tool
for adding, modifying, and annotating functional requirements. Our tool is
called Requirements Editor and is built as an Eclipse plugin using the SWT.
A screenshot is shown in Figure 4.

Fig. 4 Screenshot of the Requirements Editor

The tool is a multi-page editor for files with .rqs format. In the first page
(shown in the top left of Figure 4), the user can add, delete, or modify func-
tional requirements. The second page of the editor (shown in the bottom right
of Figure 4) refers to the annotations of the requirements. The supported func-
tionality includes adding and deleting entity and relationship annotations.

Given that the structure of functional requirements usually follows the SVO
motif (as in Figure 4), annotating them is intuitive. However, the procedure
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of annotating several requirements can be tiresome for the user. Therefore, we
have constructed an NLP parser to automatically map software requirements
to concepts and relations in the ontology. The parser, which is thoroughly
described in (Roth et al, 2015), operates in two stages. The first stage is
the syntactic analysis for each requirement. Input sentences are initially split
into tokens, the grammatical category of these tokens is identified and their
base types are extracted, to finally identify the grammatical relations between
the words. The second stage involves the semantic analysis of the parsed
sentences. This stage extracts semantic features for the terms (e.g. part-of-
speech, relation to parent lemma, etc.) and employs a classification algorithm
to classify each term to the relevant concept or operation of the ontology.

Upon annotation, the user can select the option to export the annotations
to the static ontology. The mapping from the annotation scheme to the con-
cepts of the static ontology is straightforward. Actor, Action, and Object and
Property annotations correspond to the relevant OWL classes. Concerning
relations, IsActorOf instantiates the is actor of and has actor properties,
ActsOn instantiates acts on and receives action, and HasProperty corre-
sponds to the has property and is property of properties. The rest of the
properties (e.g. project has, consists of) are instantiated using the infor-
mation of each functional requirement and of the name of the software project.

3.2.2 Dynamic View of Software Projects

An Ontology for the Dynamic View of Software Projects In this paragraph,
we present an ontology that captures the dynamic view of a system. The main
elements of dynamic representations are flows of actions among system objects.
Using OWL, actions can be represented as classes and flows can be described
using properties. The class hierarchy of the ontology is shown in Figure 5.

Anything entered in the ontology is a Concept. Instances of class Concept
are further divided in the types of Project, ActivityDiagram, AnyActivity,
Actor, Action, Object, Condition, Transition and Property. The class
Project refers to the project analyzed while ActivityDiagram stores each
diagram of the system, including not only activity diagrams, but also story-
boards and generally any diagrams with dynamic flows of actions. As in the
static ontology, Project and ActivityDiagram can be used to ensure that the
concepts extracted from the ontology can be traced in the original diagram
representations, allowing even to reconstruct them.

Activities are the main building blocks of dynamic system representations.
The activities of a diagram instantiate the OWL class AnyActivity. This class
is further distinguished in the subclasses InitialActivity, FinalActivity,
and Activity. InitialActivity refers to the initial state of the diagram
and FinalActivity refers to the final state of the diagram, while Activity

holds any other activities of the system. Any action of the system may also
require one or more input properties, stored in class Property. For instance,
performing a “Create account” may require a “username” and a “password”.
In this case, “username” and a “password” are instances of class Property.
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Action

Concept

AnyActivity

Activity

InitialActivity

FinalActivity

Condition

PreCondition

PostCondition

GuardCondition

Project

ActivityDiagram

Object

Actor

Transition

Fig. 5 Dynamic Ontology of Software Projects

The flow of activities in storyboards or activity diagrams is described us-
ing transitions. The OWL class Transition describes the flow from one in-
stance of Activity to the next instance of Activity as derived by the corre-
sponding diagram. Each Transition may also have a Condition. The ontol-
ogy has three subclasses of Condition: PreCondition, PostCondition, and
GuardCondition. The first two refer to conditions that have to be met before
(PreCondition) or after (PostCondition) the execution of the activity flow
of the diagram, while GuardCondition is a condition that “guards” the exe-
cution of an activity of the system along with the corresponding answer. For
example, “Create account” may be guarded by the condition “is the username
unique? Yes”, while the opposite GuardCondition “is the username unique?
No” shall not allow executing the “Create account” activity.

The properties of the ontology define the possible interactions between
the different classes, involving interactions at inter-diagram level and rela-
tions between elements of a diagram. The properties of the dynamic ontology
are illustrated in Figure 6, including only one of the inverse properties and
excluding the Project and ActivityDiagram properties for simplicity. Each
project can have one or more diagrams and each diagram has to belong to
a project. Additionally, each diagram may have a PreCondition and/or a
PostCondition. An instance of ActivityDiagram has elements of the five
classes Actor, AnyActivity, Transition, Property, and Condition.
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Condition

has_actor

AnyActivity

FinalActivityActivityInitialActivity

TransitionPostCondition GuardConditionPreCondition

ActionActor Object Property

has_condition

has_source has_target

has_targethas_source

has_action has_object
has_property

Fig. 6 Properties of the Dynamic Ontology

The different relations of ontology classes are actually forming the main
flow as derived from diagram elements. Thus, Activity instances are con-
nected with each other via instances of type Transition. Any Transition has
a source and a target Activity (properties has source and has target, re-
spectively), and it may also have a GuardCondition (property has condition).
Finally, any Activity is related to instances of type Property, while any
GuardCondition has an opposite one, connected to each other via the bidi-
rectional property is opposite of. Finally, any Activity is connected to an
Actor, an Action, and an Object via the corresponding properties has actor,
activity has action, and activity has object.

Extracting Dynamic Flow from Storyboards As already discussed, we require
a representation for the dynamic view of the system that is compliant with
the RESTful paradigm. Therefore, we design this representation in the form
of storyboards. Storyboards are dynamic system scenarios that describe flows
of actions in software systems. A storyboard diagram is structured as a flow
from a start node to an end node. Between the start and the end node, there
are actions with their properties, and conditions. All nodes are connected with
edges/paths. We have designed and implemented a tool for creating and edit-
ing storyboard diagrams, as an Eclipse plugin using the Graphical Modeling
Framework (GMF), named Storyboard Creator. A screenshot of the tool in-
cluding a storyboard is shown in Figure 7.

Storyboard Creator is a graphical editor for files with .sbd format. The
tool includes a canvas for drawing storyboards, a palette that can be used to
create nodes and edges, and an outline view that can be used to scroll when
the diagram does not fit into the canvas. It also supports validating diagrams
using several rules, such as the fact that each diagram must have at least one
action node, each property must connect to exactly one action, etc.
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Fig. 7 Screenshot of the Storyboard Creator

The storyboard of Figure 7 includes an action “Login to account” which
also has two properties that define the elements of “account”, a “username”
and a “password”. Conditions have two possible paths. For instance condition
“Credentials are correct?” has the “Yes” path that leads to the end node and
the “No” path that leads back to the login action requiring new credentials.

Mapping storyboard diagrams to the dynamic ontology is straightforward.
Storyboard actions are mapped to the OWL class Activity and they are
further split into instances of Action and Object. Properties become instances
of the Property class and they are connected with the respective Activity

instances via the has property relation. The paths and the condition paths of
storyboards become instances of Transition, while the storyboard conditions
split into two opposite GuardConditions. An example instantiation for the
storyboard of Figure 7 is shown in Table 1.

Table 1 Example Instantiated OWL Classes for the Storyboard of Figure 7

OWL Class OWL Instances

Activity Login to account

Property Username,Password
Transition FROM StartNode TO Login to account,

FROM Login to account TO EndNode

FROM Login to account TO Login to account

GuardCondition Credentials are correct PATH Yes,
Credentials are correct PATH No

Action login

Object account
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3.3 Aggregated Ontology of Software Projects

Upon having constructed the two ontologies for the dynamic and static view
of the system, an aggregated ontology that composes the concepts of those
ontologies is needed. The elements of the aggregated ontology actually form
an initial version of the Computationally Independent Model (CIM) of the
software project that is provided as input to the MDE engine module. Thus,
the main building block of this ontology is the RESTful resource. Additionally,
since resources are created, retrieved, and deleted via actions, the ontology
includes the main actions that are performed on resources, as well as any
parameters required for these actions. The class hierarchy of the aggregated
ontology is shown in Figure 8.

Project

Requirement

Concept

Element

Activity

Action

Property

ActivityDiagram

Resource

Condition

Fig. 8 Aggregated Ontology of Software Projects

Instances of Concept are divided in the classes Project, Requirement,
ActivityDiagram, and Element. Project refers to the software project in-
stantiated, while Requirement and ActivityDiagram are used to hold the re-
quirements and diagrams of the static and the dynamic ontology respectively.
These instances ensure that the results of the ontology are traceable.

Any other ontology Concept is an Element of the project. Instances of
type Element are divided into the subclasses Resource, Activity, Action,
Property, and Condition. The Resource is the building block of any REST-
ful system, while Action is used to hold the CRUD actions performed on re-
sources. Activity refers to an activity of the system (e.g. “create bookmark”)
that is connected to a Resource (e.g. “bookmark”) and a CRUD Action

(e.g. “create”). Property refers to a parameter required for a specific activity
(e.g. “bookmark name” may be required for the “create bookmark”). Finally,
an instance of Condition holds criteria that have to be met for an Activity to
be executed. The properties of the aggregated ontology are shown in Table 2.
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Table 2 Properties of the Aggregated Ontology

OWL Class Property OWL Class

Project has requirement Requirement

Requirement is requirement of Project

Project has activity diagram ActivityDiagram

ActivityDiagram is activity diagram of Project

Project has element Element

Element is element of Project

Requirement/ contains element Element

ActivityDiagram

Element element is contained in Requirement/

ActivityDiagram

Resource has activity Activity

Activity is activity of Resource

Resource has property Property

Property is property of Resource

Activity has action Action

Action is action of Activity

Activity has condition Condition

Property is condition of Activity

Activity has next activity Activity

Activity has previous activity Activity

The properties of the aggregated ontology cover the main structure of
the software project. The instances of the class Element along with these
properties have to be as expressive as possible since they will be used to form
the YAML file and subsequently the CIM of the project.

The properties including Project, Requirement, ActivityDiagram, and
Element are used to ensure that any element of the diagram is traceable in the
other two ontologies. The relations of the ontology classes are formed around
two main subclasses of Element, Resource and Activity. This is quite ex-
pected since these two elements form the basis of a RESTful system. Any sys-
tem Resource may be connected to instances of type Property and Activity,
using has property/is property of and has activity/is activity of re-
spectively. The class Activity is connected to instances of type Action (via
the properties has action/is action of) and of type Condition (via the
properties has condition/is condition of), since it is necessary to keep
track of the CRUD verbs to be used as well as any conditions that have to
be met in order for the activity to be valid. Transitions are handled using the
properties has next activity/has previous activity.

The properties are also visualized in Figure 9 (excluding the properties
relevant to Project, Requirement, and ActivityDiagram and including only
one of the inverse properties for simplicity), where it is clear that Resource

and Activity have central roles in the aggregated ontology.

The aggregated ontology is instantiated using the information provided by
the static and dynamic ontologies of software projects. The static ontology
contains several classes that refer to the static view of the system. Among
them, we focus on actions performed on objects and any properties of these
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Fig. 9 Properties of the Aggregated Ontology

objects. In the static ontology, these elements are represented by the OWL
classes OperationType, Object, and Property. Concerning the dynamic ele-
ments of a software system, the corresponding ontology covers not only actions,
objects, and properties, but also the conditions of actions. The corresponding
OWL classes are Action, Object, Property, and GuardCondition. Apart from
the above classes, we also keep track of the Project that is instantiated, as
well as the instances of type Requirement and ActivityDiagram derived from
the static and dynamic ontologies respectively. These three classes ensure that
our ontologies are traceable and strongly linked to one another. The map-
ping of OWL classes from the static and dynamic ontologies to the aggregated
ontology is shown in Table 3.

Table 3 Classes Mapping from Static and Dynamic Ontologies to Aggregated Ontology

OWL Class of OWL Class of OWL Class of
Static Ontology Dynamic Ontology Aggregated Ontology

Project Project Project

Requirement - Requirement

- ActivityDiagram ActivityDiagram

OperationType Action Activity

- GuardCondition Condition

Object Object Resource

Property Property Property

As shown in this Table, instances of Requirement and ActivityDiagram

are propagated to the aggregated ontology, while Project is used to ensure
that the two ontology instantiations refer to the same project. Concerning the
remaining classes of the aggregated ontology, several of them require merging
the elements from the two ontologies. Thus, any Object of the static ontology
and any Object of the dynamic ontology are added to the aggregated ontology
one after another. If at any point an instance already exists in the aggregated
ontology then it is simply not added. However, any properties of this instance
are also added (again if they do not exist); this ensures that the ontology is
fully descriptive, yet without any redundant information. The mapping for
OWL properties is shown in Table 4.
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Table 4 Properties Mapping from Static and Dynamic Ontologies to Aggregated Ontology

OWL Property of OWL Property of OWL Property of
Static Ontology Dynamic Ontology Aggregated Ontology

project has - has requirement

is of project - is requirement of

- project has diagram has activity diagram

- is diagram of project is activity diagram of

consists of diagram has contains element

consist is of diagram element is contained in

receives action is object of has activity

acts on has object is activity of

has property has property∗ has property

is property of is property of∗ is property of

- has action has action

- is action of is action of

- has condition∗ has condition

- is condition of∗ is condition of

- has target has next activity

- has source has previous activity
∗ derived property

Note that some properties are not directly mapped among the ontolo-
gies. In such cases, properties can be derived from intermediate instances.
For example, the aggregated ontology property has property is directed from
Resource to Property. In the case of the dynamic ontology, however, prop-
erties are connected to activities. Thus, for any Activity, e.g. “Create book-
mark”, we have to first find the respective Object (“bookmark”) and then
upon adding it to the aggregated ontology, we have to find the Property

instances of the Activity (e.g. “bookmark name”) and add them to the on-
tology along with the respective connection. This also holds for the condition
properties has condition and is condition of, which are instantiated using
the instances of GuardCondition of the preceding Transition.

3.4 Ontology Software Artefacts to a YAML Representation

Upon instantiating the aggregated ontology, the next step is the transforma-
tion from the ontology to the CIM of the envisioned service. Since a CIM may
be overwhelming for the end-user, we first design a representation in YAML14,
which shall effectively describe the conceptual elements of the CIM and provide
the user with the ability to modify (fine-grain) the model. YAML was selected
as the representation since it is intuitive, human-readable (i.e. in comparison
to XML) and is supported by several tools. YAML supports several well-known
data structures, since it is designed to be easily mapped to programming lan-
guages. In our case, we use lists and associative arrays (i.e. key-value struc-
tures) to create a structure for resources, their properties and the different
types of information that have to be stored for each resource. The schema
of our representation is shown in Figure 10, where the main element is the
RESTful resource (cim.Resource). A project consists of a list of resources.

14 http://yaml.org/
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- !!cim.Resource

Name: String

IsAlgorithmic: Boolean

CRUDActivities: List of Create, Read, Update, and/or Delete

Properties:

- Name: String

Type: Integer/Float/String/Boolean/null

Unique: Boolean

NamingProperty: Boolean

- ...

RelatedResources: List of String

Fig. 10 Schema of the YAML Representation

Several fields are defined for each resource, each with its own type and
allowed values. At first, each resource must have a name, which also has to
be unique. Additionally, every resource may be either algorithmic (i.e. re-
quiring some code to be written or some external service to be called) or
non-algorithmic. This is represented using the IsAlgorithmic boolean field.
CRUD verbs/actions (or synonyms that can be translated to a CRUD verb)
are usually not applied on algorithmic resources. There are four types of activ-
ities that can be applied to resources, in compliance with the CRUD actions
(Create, Read, Update, and Delete). Each resource may support one or more
of these actions, represented as a list (CRUDActivities).

Resources also have properties, which are defined as a list of objects. Each
property has a Name, which is alphanumerical, as well as a Type, which cor-
responds to the common data types of programming languages, i.e. integers,
float, strings, and booleans. Furthermore, each property has two boolean fields:
Unique and NamingProperty. The former denotes whether the property has a
unique value for each instance of the resource, while the latter denotes whether
the resource is named after the value of this property. For example, a resource
“user” could have the properties “username” and “email account”. In this
case, the “username” would possibly be unique, while “email account” could
or could not be unique (e.g. a user may be allowed to declare more than one
email accounts). Any instance of “user”, however, should also be uniquely
identified in the system. Thus, if we do not allow two users to have the same
username, we could declare “username” as a naming property. Finally, each
resource may have related resources. The field RelatedResources is a list of
alphanumerical values corresponding to the names of other resources.

Extracting information from the aggregated ontology and creating the cor-
responding YAML file is a straightforward procedure. At first, instances of
the OWL class Resource can directly be mapped to YAML objects of type
cim.Resource. Each resource is initially considered non-algorithmic. The flow
of activities and conditions is used to find the types of verbs that are used
on any resource as well as the related resources. Thus, for example, given an
activity “Add bookmark” followed by an activity “Add tag”, one may identify
two resources, “bookmark” and “tag”, where “tag” is also a related resource
for “bookmark”. Additionally, both “bookmark” and “tag” must have the
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“Create” CRUD activity enabled, since the verb “add” implies creating a new
instance. The type for each verb is recognized using a lexicon.

Whenever an action verb cannot be classified as any of the four CRUD
types, a new algorithmic resource is created. Thus, for example, an activity
“Search user“ would spawn the new algorithmic resource “userSearch”, and
connecting it as a related resource of the resource “user”. Upon applying the
transformations of the MDE engine, it would then be possible to manually
write code for the function of this algorithmic resource. Finally, the properties
of the resources are mapped to the Properties list field.

4 Model-Driven Engineering Module

Model Driven Engineering (MDE) is the cornerstone technology used in the
presented two-fold mechanism to introduce automation. More specifically, our
MDE engine follows our novel 2D MDE architecture, which is illustrated in
Figure 11 (its full theoretical definition is out of the scope of this paper).
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Fig. 11 Abstract 2D MDE Engine Architecture.

Our engine embeds end-to-end the benefits of problem space Domain Com-
partmentalization, which allows MDE designers and users to work with smaller
models, meta-models and transformations, hence lowering the perceived com-
plexity during the construction of MDE engines as well as their use (Störrle,
2014; Moody, 2009). The need for cross domain expertise is also decreased,
while meta-modeler effectiveness is increased, since the initial complex do-
main is split in simpler congruent ones (Sweller, 1994). Productivity is further
improved by introducing parallelism in both the MDE engine development
phase as well as its usage, because independent subdomains yield independent
meta-models and corresponding transformation chains.
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In summary the 2D MDE architecture evolves over two axis. The hori-
zontal one, the Realization Phase Axis, concerns the phases of Model Driven
Engineering to be included in the 2D MDE engine. The connecting elements
along this Axis are the model-to-model or model-to-text transformations. The
type of the desired MDE methodology to be used determines the number of
the realization phases. In this case MDA is used, as introduced by the Open
Management Group (OMG) and up-to-date is the most popular case of MDE.

2
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PIM

PSM	A

Code	A Code	B Code	N

PSM	B PSM	N…

…

CIM	to	PIM	
transformation
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Fig. 12 Model Driven Architecture Phases

Hence, the Realization Phase Axis (or in short the Realization Axis) comprises
the four MDA phases (illustrated in Figure 12), namely:

– Computational Independent Model (CIM): During the first phase the devel-
oper models the system using an abstract domain specific language, which
hides the design and implementation details. The outcome of this process
is the CIM model of the envisioned system that contains all the domain
concepts to be included in it as well as their conceptual interconnections.

– Platform Independent Model (PIM): Once the developer concludes with
the CIM model of the system, an automated chain of transformations takes
place. Firstly, the MDA engine performs a Model-to-Model (M2M) trans-
formation in order to produce the corresponding PIM model. This CIM-
to-PIM transformation refines all the CIM model elements by applying
the envisioned system design and architecture. However, this is done in an
abstract way, without targeting any specific implementation platform at
this stage. That is, an architectural style is applied, such as Client-Server,
without any specific programming language/platform design idioms. Usu-
ally, there is one to one relationship between CIM and PIM models; every
CIM model is transformed to one PIM model of a specific architecture.

– Platform Specific Model (PSM): Once the PIM model is in place, a second
M2M transformation takes place, the PIM-to-PSM. This time the archi-
tecture of the system is further refined by taking into account the target
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execution platform of the envisioned system e.g. Java Application with an
underlying SQL database. For example, some PIM elements are further
revised using some of the target language design idioms, available libraries
etc. At this stage, there is usually a one-to-many relationship between one
PIM and several possible target platform PSMs.

– Code generation: The final step is the production of the envisioned system’s
code. Hence, a Model-to-Text (M2T) transformation takes place. Its input
is a PSM model and its output is the generated code, where may need
to fill in extra code for additional/case specific functionality. The level of
completeness, is greatly affected by how effectively the envisioned system
can be modeled using the CIM meta-model (domain specific language).

On the other hand, the vertical axis or the Subdomain Axis comprises the
meta-models of each subdomain that are derived after applying Domain Com-
partmentalization to a complex domain. In Figure 11 for example, there are
three such meta-models X, Y and Z that together constitute the initial complex
domain. Along the Subdomain Axis, the connecting elements are references
from one meta-model to the others. Concepts that belong to meta-models Y
and Z refer to concepts of meta-model X, while there are no references towards
or among them. That is, meta-model X is independent of Y and Z since its
definition does not need their concepts, Y and Z depend on X, while they are
independent to each other. Of course, there can be many simpler or more com-
plex scenarios. For example some subdomains may depend on multiple other
ones, referencing multiple other meta-models. The conceptual clarity of each
meta-model and the population of cross-meta-model relationships depend on
successful domain compartmentalization.

The domain upon which our MDE engine brings automation is compart-
mentalized to four subdomains. The first one is the REST subdomain, which
provides the structural concepts for the producible systems. The second is
the Basic-Authentication that alters the behavior of the underlying referenced
REST components so as to embed authentication capabilities or not. The third
subdomain concerns common database keyword searching, whilst the fourth
automates interconnection of envisioned systems with existing Web Services in
the web. The following subsections present in more depth these aforementioned
meta-models in more depth.

4.1 The REST architectural Style

Since this two-fold mechanism aims to produce RESTful services, it embeds
to the produced services primarily the REST architectural style. In this case,
the Richardson’s Maturity Model (RMM) is used as a model of the REST
architectural Style. According to this model, a web service lies at the 3rd level
of RMM (in other words it is said to be RESTful) if and only if the following
design rules are not violated (illustrated in Figure 13).

– Rule 1: The web service building block has to be a resource with a unique
URI. Hence, in this resource oriented approach each service comprises sev-
eral resources, each of which models a small part of the service functionality.
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Level 3: Hypermedia Controls

Level 2: HTTP Verbs

Level 1: Resources

Level 0: The Swamp of POX

Fig. 13 Richardson’s Maturity Model15

– Rule 2: The web API of each resource respects the semantics of each HTTP
verb. That is, the POST verb is used to create new resources, PUT to
update existing ones, GET to retrieve existing ones and DELETE to delete
existing resources.

– Rule 3: The resources have to be semantically interwoven to each other with
hypermedia links. That is, every time the server sends back a response to
its client, it embeds into this response some URIs with possible follow-up
actions for this client.

The last RMM rule, the so called HATEOAS, is the feature of REST
style that differentiates it the most from other Web Architectures and greatly
helps to avoid coupling between services and their clients. Namely, the service
does not need to publish a predefined interface, but rather responds to client
requests that also embed hypermedia links, linking to resources the client
can access. Hence, by complying to the RMM REST model, the server may
change its interface, e.g. by adding or removing hypermedia links to/from its
responses, however the client will still be able to find these available links
that match its communication protocol and advance the application state.
The trade-off of this reduced coupling is that server/client communication can
be sometimes too interactive, however such side effects can be contemplated
using server-side optimizations (Newman, 2015).

4.2 Modeling RESTful Services

The CIM meta-models that comprise the domain specific language of the pre-
sented 2D MDE engine, are four specific purpose meta-models. As already dis-
cussed, our MDE engine models RESTful services that may embed essential
non-CRUD functionality, such as Basic Authentication, interoperability with
existing 3rd party services as well as database keyword-searching functionality.
That non-CRUD functionality is meta-modeled within the corresponding three
meta-models that refer to the core REST one, which provides the structure of
the produced services.

15 http://martinfowler.com/articles/richardsonMaturityModel.html



From Requirements to Source Code: An MDE Approach for RESTful Services 25

Our mechanism includes this essential non-CRUD functionality in order
to increase the developer productivity in several ways. Firstly, the selected
non-CRUD functionality is wide-spread and very common in most Web Ser-
vices, hence automating its implementation reduces the development effort.
Secondly, it reduces the need for cross-domain expertise, since developers that
do not know how to implement searching mechanisms or are not acquainted
with Authentication mechanisms, can embed such functionality in their ser-
vices with minimal domain knowledge. Lastly, since this essential functionality
part is automated, it always embeds the same code qualities and its correctness
and validity does not depend of day-to-day developer programming habits. The
following subsections present these meta-models and explain their elements
and their semantics.

4.2.1 REST CIM Meta-Model

The primal meta-model has to embed the needed concepts to model resources,
their common web API and their web interweaving. Figure 14 illustrates the
principal REST CIM meta-model part elements, which are explained below,
modeled with the Ecore meta-model16.

Fig. 14 S-CASE MDE primal CIM Meta-Model.

16 https://eclipse.org/modeling/emf/
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The RESTfulServiceCIM element is the root element of the core meta-
model. It pretty much embeds the whole CIM. It comprises the envisioned
system’s name, the output code folder and the necessary login information
for the database scheme that is going to be created and used as a local data
repository. That is, a valid username/password combination of the database
server that runs at the provided Port:IP combination.

The Resource element models an RMM resource. Obviously, this is the
most important concept to allow resource-oriented modeling, and is associated
with concepts that model the resource data, representations and possible ac-
tions. It embeds the resource’s name and a boolean value to indicate whether
the resource will model data and its primitive CREATE, READ, UPDATE
or DELETE operations, or otherwise will embed in RESTful wrapper some
sort of non-CRUD algorithm (e.g. calculate shortest path, pay by credit card
etc.). One may notice the absence of a URI attribute for every resource. It
is not necessary, since the MDE engine automatically computes the service’s
URIs, whilst the developer simply has to decide only where the service will
be deployed. Each resource may also have some Representation elements that
model various acceptable media formats available in the MediaType enumera-
tion e.g. JSON or XML.

The Property element represents an attribute of a resource. Each such
attribute must have a name and a type of type string and a boolean value
that indicates whether the property is single-valued (multiplicity 1) or multi-
valued. Moreover, each resource must have exactly one naming property. That
value of the naming property is included in resource lists retrieved by the
clients, in order to be able to differentiate among different resources and pick
the ones they wish to fully retrieve or act upon. Table 5 illustrates some
hypermedia links of a shopping list. Without the naming property attribute,
only the HTTP Verb and the Link would be included in the response. However,
in this case, the developer who designed this resource selected its name as a
naming property, thus the ”Black/Red T-shirt” values are also included in the
server response and help the client to decide on which item to act.

Table 5 Illustrative RESTful service’s hypermedia links, included in response to a shopping
list GET Request

HTTP Verb Hypermedia Link Naming Property Value

GET http://www.example.com/list/85/item101 Black T-Shirt

DELETE http://www.example.com/list/85/item101 Black T-Shirt

GET http://www.example.com/list/85/item102 Red T-Shirt

PUT http://www.example.com/list/85/item102 Red T-Shirt

The CRUDActivity element models an abstract form of each CRUD verb
and can take any value modeled with the CRUDVerb enumeration. These
elements form the common web API of any resource, strictly following the
appropriate REST style semantics. Table 6 provides the intuitive mapping
between the CRUD and HTTP verbs.
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Table 6 CRUD to HTTP verbs mapping

CRUD Verb HTTP Verb

CREATE POST

READ GET

UPDATE PUT

DELETE DELETE

The Hypermedia links, as dictated by the 3rd rule of RMM, are modeled
with the two kinds of associations a resource element might have. These are the
hasRelatedResource and isRelatedResource associations. The former models
the capability of one resource to have zero or more related resources, whilst
the latter models the capability of a resource to be related to zero or more other
resources. Based on these relationships, when a client retrieves a representation
of one resource, it also gets a list of hypermedia links of that resource’s related
resources, which allow the application state to forward in the RESTful manner.
Table 5 illustrates for such hypermedia links each of which comprise the needed
HTTP verb, the unique URI of the resource to be reached and its naming
property as already discussed. Table 7 summarizes the core concepts of this
CIM meta-model that model the principal REST design concepts.

Table 7 Modelling of principal REST design concepts

REST Concept Satisfied by CIM element(s)

Resource Oriented Design Resource and Representations

Common Web API CRUDActivity

Hypermedia hasRelatedResource and isRelatedResource

Apart from the structural constraints embedded in the presented meta-
model, our MDE engine embeds also behavioral constraints designed using
First Order Predicate Logic (FOL17), so as to be able to reason about the
well formed-ness of instance models and impose validation checks to runtime
instances. These behavioral constraints have been developed using the equiva-
lent, to the FOL formulas, OCL18 expressions within the Ecore meta-models.

Table 8 presents a few of the FOL formulas used in our MDE engine,
the predicates of which are defined in Table 9. For example, the first one
defines the uniqueness of each CRUD activity type a Resource may have. In
FOL terminology it unambiguously states that: “For any x, for any y, x is
a resource and y is a Create Activity and y is Create Activity of Resource x,
if and only if for any y1, if y1 is a Create Activity and y1 is Create Activity
of Resource x, implies that y1 equals y”. That way, the lower CASE of our
mechanism is able to actively identify inconsistencies in developer input and
guide him/her to correct them.

17 https://en.wikipedia.org/wiki/First-order_logic
18 https://en.wikipedia.org/wiki/Object_Constraint_Language
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Table 8 Illustrative First Order Predicate Logic formulas

Nr. First Order Predicate Logic

1 (∀x)(∀y)(Rx & Cy & Fyx ≡ (∀y1)(Cy1 & Fy1x ⊃ y1 = y))
2 (∀x)(Rx & (∃y)(Py & Hyx) ≡ ¬Ax)
3 (∀x)(Rx & ¬Ax ≡ (∃y)(Py & Hyx & Iy & (∀y1)(Py1 & Hy1x & Iy1

⊃ y1 = y)))
4 (∀x)(∀y)(∀z)(Mx & Ry & Kyx & Nz & Lzy ≡ (∀y1)(Ry1 & Ky1x & Lzy1

⊃ y1 = y))

Table 9 Predicate Symbol Explanation

Predicate Symbol Meaning

R is Resource

C is Create Activity

F is Create Activity of

P is Property

H is Property of

A is Algorithmic Resource

I is Naming Property

M is RESTful CIM

K is Resource of

N is Resource Name

L is Resource Name of

On the other hand, Table 10 defines the corresponding OCL expressions
that model this FOL formula. For example, OCL constraint 1 validates that
each resource has unique activity types, constraint 2 checks whether all non-
algorithmic resources have at least one property, constraint 3 makes sure that
every non algorithmic resource has at least one naming property and finally
constraint 4 validates the uniqueness of resource names a CIM may contain.

Table 10 Illustrative OCL constraints

Nr. OCL constraint OCL constraint definition
of CIM element

1 Resource self.hasCRUDActivity->isUnique(CRUDVerb)

2 Resource (self.isAlgorithmic = false) implies

self.hasProperty->notEmpty()

3 Resource self.hasProperty->notEmpty() implies

self.hasProperty->one(isNamingProperty = true)

4 RESTfulServiceCIM self.hasResources->isUnique(name)

4.2.2 Basic Authentication Meta-Model

The Basic Authentication CIM meta-model part models the necessary secu-
rity concepts in order to be able to embed automatically an authentication
mechanism to the envisioned system. Specifically, these concepts allow the
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developer to incorporate a password/username type authentication scheme.
Since RESTful services are stateless (e.g. there is no session cookie), the pass-
word/username combination is communicated using the authorization HTTP
header of client requests. Figure 15 illustrates the authentication meta-model.
The grayed elements are the referenced REST CIM meta-model ones, already
presented in Figure 14, hence are simplified in this diagram.

Fig. 15 Basic Authentication CIM Meta-Model.

The core authentication concept is the AuthenticationModel one. A REST-
ful service with an authentication scheme must have exactly one Authentica-
tionModel, which is a specialization of the Resource concept. The Authentica-
tionModel dictates that one of the service resources and two of its properties
will be used as authentication tokens. Thus, since the Basic Authentication
scheme is used, each AuthenticationModel has exactly two Authentication-
Tokens, which are a specialization of the aforementioned Property concept.
Moreover, AuthenticationTokens are further specialized to be either a Pass-
word or a Username. Table 11 illustrates such an AuthenticationModel.

Table 11 Illustrative Resource that is used as AuthenticationModel

Resource Name Property Name Basic Authentication Specialization

UserAccount username Username AuthenticationToken

UserAccount pass Password AuthenticationToken

UserAccount email -
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One should note that an AuthenticationModel may also have other prop-
erties beyond its AuthenticationTokens, such as an email property etc., as in
the example of Table 11.

Since the web API of each Resource, as already discussed, comprises its
CRUDActivities, the remaining concepts concern the fine tuning of the Basic
Authentication scheme to be used per CRUDActivity. If Basic Authentica-
tion is applied to a RESTful service, then each CRUDActivity must have
exactly one AuthenticationMode. This mode precisely defines whether a client
has to be authenticated or not in order to use the functionality of an un-
derlying CRUDActivity. In our CIM meta-model 3 modes have been defined.
The GuestMode does not perform any authentication checks and allows any
client to make requests. The AuthenticationOnlyMode performs authentication
checks and allows only successfully authenticated clients to make requests. Fi-
nally, there is a mixed mode (BothMode), which allows guest clients to make
requests but also performs authentication checks if a client has its authoriza-
tion HTTP header set. Table 12 illustrates some CRUDActivities of a Product
resource and their Authentication Mode.

Table 12 Authentication modes of several CRUDActivities example

Resource Name CRUDActivity CRUDVerb Authentication Mode

Product createProduct CREATE BothMode

Product updateProduct UPDATE AuthenticationOnlyMode

Product readProduct READ BothMode

Product deleteProduct DELETE AuthenticationOnlyMode

Like in the core REST meta-model, OCL constraints are defined to check
the well-formedness of an instance CIM model regarding its Basic Authenti-
cation concepts. Such constraints ensure that only one AuthenticationModel
exists, which has exactly two AuthenticationTokens, one of which is a User-
name and the other one is a Password. Other constraints validate whether
there is exactly one AuthenticationMode for every CRUDActivity of the envi-
sioned system etc.

4.2.3 Database Searching Meta-Model

The database searching CIM meta-model part, models the necessary concepts
to automate widely-used keyword searching. It comprises concepts that allow
the developer to model some resources to be able to search other resources’
properties given a keyword. Hence, the generated service will embed automat-
ically the needed functionality to handle client search requests and send back
links of any matched artefacts. Figure 16 illustrates these Search meta-model.
Again, the referenced REST CIM meta-model concepts, already presented in
previous subsection, are grayed out and simplified.
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Fig. 16 Database Searching CIM Meta-Model.

The most important concept of this non-CRUD functionality layer is the
SearchResource one. This concept is a specialization of Resource and models
algorithmic resources that embed a non-CRUD algorithm, which is able to
handle incoming keyword search requests, make the appropriate queries to the
database and bundle a list of links to matched artefacts. The SearchableRe-
source is also a specialization of the Resource concept that models a resource,
whose properties (some or all) will be searchable by some SearchResource.
These properties are modeled with the SearchableProperty concept, which is a
specialization of the Property one. The defined OCL constraints validate that
every SearchResource searches at least one SearchableResource, which in turn
has at least one SearchableProperty.

Table 13 illustrates two SearchResources and the SearchableResources’
SearchableProperties they search. One may note that a SearchResource may
search properties of different SearchableResources and that a SearchableProp-
erty might be searchable by more than one SearchResource.

Table 13 Database-Searching modelling example

SearchResource Name SearchableResource Name SearchableProperty Name

ProductSearch Product description

ProductSearch Product name

ProductSearch Tag tagName

TagSearch Tag tagName

4.2.4 3rd Party Wrapper Meta-Model

The remaining concepts of the CIM meta-model, concern the interoperabil-
ity with existing 3rd party RESTful services. In other words, this part of the
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CIM meta-model allows the developer to model some of his/her envisioned
system resources as RESTful clients, each of which will make requests to one
specific 3rd party RESTful service. Additionally, it is possible to model the
input/output of each service and decide whether its responses should be stored
in the local database. Figure 17 illustrates these concepts and their associa-
tions. The REST CIM meta-model referenced concepts are grayed out and
simplified.

Fig. 17 3rd Party Services Wrapper CIM Meta-Model.

The core concept of this part is the RESTClientResource. It is a specializa-
tion of the Resource concept with exposed web API. Each such RESTClien-
tResource has a TargetRESTService, which embeds the URL of the 3rd party
service and the expected CRUD verb that has to be used. Should there ex-
ist query parameters, they are modeled with the QueryParam concept. The
InputDataModel and OutputDataModel concepts model the input and out-
put data of the target RESTful service. Both of them are specializations of
the Resource concept and as such, they have a media format Representation
and some Properties that model the data of the input or output model. Fi-
nally, there are three specializations of the OutputDataModel. The first one,
the NonPersistentOutput models output data that will not be persisted in
the local database but will only be sent back to the client. The AutoPersis-
tentOutput uses the OutputDataModel meta-data to automatically create a
fully persistent resource with a web API, whilst the third specialization, the
ExistentCRUDPersistentOutput uses an existing Resource of the system as an
OutputDataModel. Table 14 provides an example of an instantiated model.



From Requirements to Source Code: An MDE Approach for RESTful Services 33

Table 14 3rd Party Interoperation Modelling example

CIM Meta-Model Concept Value

RESTClientResource LocalWeather

TargetRESTService - targetURL http://www.example.com/LocalWeather/REST

TargetRESTService - CRUDVerb READ

QueryParam Country

QueryParam City

InputDataModel WeatherDate

InputDataModel - Property Year

InputDataModel - Property Month

InputDataModel - Property Day

InputDataModel - Representation application/JSON

NonPersistentOutput Forecast

NonPersistentOutput - Property Temperature

NonPersistentOutput - Property Humidity

NonPersistentOutput - Representation application/XML

4.3 Transformation Chain: From YAML input to code

Having parsed the static and dynamic view of the service all information is
stored to the aggregated ontology (see Subsection 3.3). As already said, this
information is then used to produce the service’s YAML file. The next step is
to instantiate the envisioned system CIM model from the YAML input. Figure
18 illustrates the straightforward mapping between the YAML input file and
the CIM meta-model concepts.

12

YAML	Concept CIM	ConceptAutomatic	Mapping

Fig. 18 YAML to CIM Metamodel concept mapping.

This mapping creates a semi-complete CIM meta-model that provides the
developer with a head start that decreases the necessary manual modeling
effort. Moreover, the aforementioned OCL validation mechanisms support the
whole modeling process by indicating errors in the envisioned system CIM
model, thus guiding the developer towards a valid CIM instance model of
his/her envisioned service. This will be further illustrated in the case study
that follows in the next section.
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4.4 M2M ATL Transformations

After the developer has provided the missing information to the CIM meta-
model of the envisioned RESTful service, the common model-to-model MDA
transformation chain takes place. This chain comprises two ATL19 transfor-
mations, one for the CIM-to-PIM transformation and another for the PIM-to-
PSM one. Both of them follow the transformation scheme shown in Figure 19.

3

CIM	Meta-Model ATL	Meta-Model PIM	Meta-Model

Service	A	CIM	
Model

CIMToPIM	
Transformation

Service	A	PIM	
Model

Conforms	To Conforms	To Conforms	To

Input	to Produces

Source TargetTransformation	
Engine

Fig. 19 Overview of the CIM-to-PIM Model-to-Model ATL transformation.

The CIM-to-PIM transformation needs as input the envisioned system’s
CIM model, which conforms to the presented CIM meta-model and by applying
a chain of ATL rules to CIM concepts, it produces the envisioned system’s
PIM model. Figure 20 illustrates such an ATL rule which transforms a CIM
Property to its PIM counterpart.

unique lazy rule addRModelProperties{
from

CIMProperty: CIM!Property

to

PIMRModelProperty: PIM!PIMComponentProperty(

name <- CIMProperty.name,

type <- CIMProperty.type,

isUnique <- CIMProperty.isUnique,

isNamingProperty <- CIMProperty.isNamingProperty,

isPrimaryIdentifier <- false,

isMappedToRDBMSColumn <- thisModule.

createRDBMSTableColumn(CIMProperty)

)

}

Fig. 20 ATL Transformation Rule of the CIM Property concept

In this case the name, type, multiplicity and naming attributes remain
unchanged. Moreover, the transformation rule marks these properties as non-

19 https://eclipse.org/atl/
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identifiers, since they are not used as database primary keys and maps them to
the corresponding database table column by calling the createRDBMSTableCol-
umn rule. The full definition of these transformations and the PIM/PSM meta-
models is omitted due to space limitations. Both can be retrieved online20.

4.5 M2T Acceleo Transformation

The final step the MDE engine takes is the PSM-to-Code Model-to-Text trans-
formation. This is usually done by employing some sort of code templates. The
proposed engine employs the Acceleo21 template language. In total there are
33 template files, each of which uses several PSM concepts to produce one java
code file or a web service configuration/maven file. Figure 21 illustrates the
simplest template used to produce the web.xml file of the envisioned system.

[module webXML(’../PSMMetamodel.ecore’)]

[template public webXMLConfigurationFile(aPSM : PSM)]

[file (aPSM.name + ’/src/main/webapp/WEB-INF/web.xml’, false, ’UTF-8’)]

<web-app id="WebApp ID" version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd">

<display-name> [aPSM.name/] </display-name>

<servlet>

<servlet-name>jersey</servlet-name>

<servlet-class>com.sun.jersey.spi.container.servlet.

ServletContainer</servlet-class>

<init-param>

<param-name>javax.ws.rs.Application</param-name>

<param-value> eu.fp7.scase.[aPSM.name.toLowerCase()/].

utilities.JAXRSPublisher</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>jersey</servlet-name>

<url-pattern>/*</url-pattern>

</servlet-mapping>

</web-app>

[/file]

[/template]

Fig. 21 Acceleo template that produces the envisioned system’s web.xml file.

The only PSM concept needed to produce the output is the name of the
service (highlighted with blue). The whole package of the acceleo templates
can be found at the MDE engine’s online source code repository22.

20 http://s-case.github.io/publications/ase2015/S-CASE_D2.2.pdf
21 https://eclipse.org/acceleo/
22 https://github.com/s-case/mde/tree/master/eu.scasefp7.eclipse.mde.m2t/src/

LayeredPSMToText/files
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The output of this Model-to-Text transformation is a folder structure
that contains all the java source code of the envisioned system alongside
the pom.xml Maven23 build file, a web.xml service configuration file and the
persistence storage with Hibernate24 and Lucene25 configuration files hiber-
nate.cfg.xml and persistence.xml respectively. Figure 22 illustrates the MDE
engine schema output. All these together form a ready to compile bundle.

-[serviceName]

|

pom.xml

src/main/java/eu/fp7/scase/[serviceName]

| |

| [utilities]

| [resourceName] (one per resource)

| |

| *.java (resource’s java files)

webapp

|

WEB-INF

|

web.xml

classes

|

hibernate.cfg.xml

META-INF

|

persistence.xml

Fig. 22 MDE engine output folder structure outline

However, in most cases the developer will have to add manual code for
functionality that is not automatable by this engine. The amount of manual
code needed varies, of course, and depends on how well the service is modeled
using the CIM meta-model domain specific language. For example envisioned
services that are pure data-handling, with Basic Authentication, alongside
simple database keyword-searching and interoperation with existing 3rd party
services are fully automatable. Moreover, the aforementioned functionality is
implemented using technologies that lie in the concrete technology set of the
PSM. While currently the PSM set of the proposed engine is being expanded
with another .NET26 and Doxygen27 PSM, the primal PSM used comprises:

– Java28 language as programming language
– JAXB29 framework for XML to java classes binding

23 https://maven.apache.org
24 http://hibernate.org
25 https://lucene.apache.org
26 http://www.microsoft.com/net
27 http://www.stack.nl/~dimitri/doxygen/
28 http://www.oracle.com/technetwork/java/index.html
29 https://jaxb.java.net
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– JAX-RS30 framework to expose resource web API and Jersey31 as its im-
plementation

– Hibernate framework for Object-Relational-Mapping (ORM)
– Lucene

On the other hand, any other functionality is wrapped in a Java template-
file placeholder, that is compilable and executable, but without any functional-
ity within it. The developer has to fill in these “empty” template files in order
to create a service that is fully compliant with the input user requirements.
In this task, the developer may reuse any common, automatically produced,
functionality that lies within the utilities folder. This is especially helpful for
local database data-handling.

As a final note, the automation achieved by our mechanism depends on the
desired functionality that the envisioned service must embed. All services that
model a data structure that needs to be exposed through a web API, including
authentication capabilities, keyword searching and/or interoperation with ex-
isting 3rd party services, are expected to be fully automatable. In cases where
common web service functionality is desired alongside some custom algorith-
mic functionality, our mechanism produces the largest part of the envisioned
service and creates RESTful wrapper templates for any manual code that the
developer has to add. In the extreme case of web services that do not em-
bed any data structures and only comprise custom functionality that is also
not available as 3rd party service, our mechanism is expected to create a set
of RESTful templates to which manual code has to be added in order to be
fully functional. However, in any of the aforementioned cases, the outcome is
a compilable and executable service that is ready for deployment. Table 15
illustrates these cases.

Table 15 Outcome of the proposed mechanism in various functionality scenarios

REST Basic Keyword 3rd party Custom
Model Auth Searching interoperation Functionality

Automated REST API Auto Auto Wrapper that Template

Work and login Searching interoperates REST

Database mechanism mechanism with 3rd party Wrappers

Manual - - - - Fill in

Work custom code

5 Illustrating the Functionality of the Mechanism

The modules of our system include two tools for entering multimodal require-
ments, the Requirements Editor and the Storyboard Creator, which also in-
stantiate the ontologies to construct the first model representation, as well as

30 https://jax-rs-spec.java.net
31 https://jersey.java.net
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an MDE engine that applies model-to-model and model-to-text transforma-
tions to finally produce the envisioned service’s executable source code. All
tools, including installation and usage instructions, can be found at:

http://s-case.github.io/

In the following subsections, we assess the effectiveness of our methodology
for constructing fully functional RESTful web services using multimodal input
from software requirements. At first, we provide an overview of the action flow
a developer has to follow in order to produce a web service. Then, we illustrate
the application of our methodology using an actual case study. Finally, we
provide some metrics of using our mechanism either in our case examples or
in user studies that span various application domains.

5.1 Flow of Actions

The flow of actions of our system is shown in Figure 23.

Functional
Requirements

Storyboards

Static Ontology

Dynamic Ontology

Aggregated Ontology

CIMPIMPSMSource Code

Requirements Editor

Storyboard Creator

YAML
Specification

Ontology
Aggregation

M2M
Transformation

M2M
Transformation

YAML
Generation

Model Inspection
and Refinement

MDE Engine

Reqs2Specs

S

A

Semi-automated

Automated

M Manual

Task Automation

A

Annotation using

Annotation using

S

S

A

S

AAA

M Code
Refinement

Code Generation

Fig. 23 Overview of the Action Flow of our System

At first, the developer uses the Requirements Editor and the Storyboard
Creator plugins in order to construct the functional requirements and the sto-
ryboards that describe the envisioned service. These artefacts are syntactically
and semantically annotated and the annotations are subsequently refined by
the user. After that, the static ontology and the dynamic ontology of the
system are automatically instantiated and aggregated to produce an instance
of the REST-compliant aggregated ontology. The YAML file is automatically
generated from that instance and provided to the developer, so that he/she
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may inspect it and make any refinements using the wizard of the MDE plu-
gin. The MDE Engine performs automated M2M transformations from CIM
to PIM and from PIM to PSM, and finally produces the source code of the
envisioned service given the PSM. The generated service is fully functional, in-
cluding also a database for its resources as well as an API for its endpoints. The
source code for all resources of the service is generated automatically, while
the developer may only need to refine the code for algorithmic resources.

5.2 RESTMarks Case Study

In this subsection, we provide a case study for the example project Restmarks.
Consider Restmarks as a service that allows users to store and retrieve online
their bookmarks, share them with other users and search for bookmarks by
using tags. One could think of it as a social service for bookmarks. In the
following paragraphs, we illustrate how one can use our system to create such
a product easily, while at the same time ensure that the produced service is
fully functional and traceable. All elements required to reproduce our case
study are provided at http://s-case.github.io/publications/ase2015,
including requirements, storyboards, MDE models, and the produced code.

The first step of the process includes entering and annotating functional
requirements. An illustrative part of the requirements of Restmarks, annotated
and refined using the Requirements Editor, are depicted in Figure 24.

Fig. 24 Excerpt of the Annotated Functional Requirements of Project Restmarks

Upon adding the requirements, the user also has to enter information about
the dynamic view of the system. In this example, dynamic system represen-
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tation is given in the form of storyboards. Let us assume Restmarks has the
following dynamic scenarios:

1. Add Bookmark: The user adds a bookmark to his/her collection and op-
tionally adds a tag to the newly added bookmark.

2. Create Account: The user creates a new account.
3. Delete Bookmark: The user deletes one of his/her bookmarks.
4. Login to Account: The user logs in to his/her account.
5. Search Bookmark by Tag System Wide: The user searches for bookmarks

by giving the name of a tag. The search involves all public bookmarks.
6. Search Bookmark by Tag User Wide: The user searches for bookmarks by

giving the name of a tag. The search a user’s public and private bookmarks.
7. Show Bookmark: The system shows a specific bookmark to the user.
8. Update Bookmark: The user updates the information on one of his/her

bookmarks.

The storyboards of the above scenarios are created using the Storyboard Cre-
ator. An example storyboard diagram using the tool is shown in Figure 25.
The storyboard of this Figure refers to the first scenario of adding a new book-
mark. The rest of the requirements and storyboards of the project are omitted
due to space limitations; the reader is referred to http://s-case.github.io/

publications/ase2015 for the storyboards of the project.

Fig. 25 Storyboard Diagram “Add bookmark” of Project Restmarks

Upon having composed the annotated requirements and the storyboards,
the next step involves creating the static and dynamic ontologies. The two
ontologies are combined to provide the instances of the aggregated ontology.
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An illustrative instantiation of the OWL classes Resource, Property, and
Activity of the aggregated ontology is shown in Table 16.

Table 16 Instantiated Classes Resource, Property, and Activity for Project Restmarks

OWL Class OWL Instances

Resource bookmark, tag, account, password
Property username, password, private, public, user
Activity search bookmark, add tag, add bookmark, delete bookmark, update tag,

update password, login account, retrieve bookmark, update bookmark,
get bookmark, delete tag, mark bookmark, create account

Finally, the YAML representation that describes the project is exported
from the aggregated ontology. For Restmarks, the YAML file is shown in Fig-
ure 26, tweaked using the CIM wizard to produce a more complete CIM.

- !!cim.Resource

Name: account

IsAlgorithmic: false

CRUDActivities: [Create, Read, Update, Delete]

Properties: [username, password]

RelatedResources: [bookmark]

- !!cim.Resource

Name: tagSearch

IsAlgorithmic: true

CRUDActivities: []

Properties: []

RelatedResources: []

- !!cim.Resource

Name: tag

IsAlgorithmic: false

CRUDActivities: [Create, Read, Update, Delete]

Properties: [name, description]

RelatedResources: [tagSearch]

- !!cim.Resource

Name: bookmark

IsAlgorithmic: false

CRUDActivities: [Create, Read, Update, Delete]

Properties: [url, scope]

RelatedResources: [tag]

Fig. 26 Example YAML File for Project Restmarks

Once the YAML representation of the envisioned system is produced, the
MDE takes action by giving the developer the capability to refine the parsed
software artefacts and/or define new functionality. The MDE engine module
provides a set of self-explanatory screens, each of which modifies concepts
of the CIM (principal REST part, Basic Authentication, etc.). Figure 27 de-
picts the principal REST CIM meta-model part screen and some of the re-
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finements the developer has done in order to produce a valid model of the
system, e.g. adding new resources (bookmarkShare), specifying datatypes, in-
put/output representation media formats and inter-resource relationships.

Fig. 27 REST CIM Meta-model UI.

Figures 28 and 29 present the Authentication UI’s through which the devel-
oper can choose his envisioned system’s Authentication Model and Tokens and
then fully define the Authentication Mode for the service’s CRUDActivities.

Fig. 28 Selecting Authentication Model with the Basic Authentication UI.
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Fig. 29 Defining the desired authentication of each CRUDActivity

Figure 30 depicts the UI for offering search capabilities. In this case, the
developer specialized the TagSearch resource as a Search Resource, which
searches the description property of the Tag resource.

Fig. 30 Defining the TagSearch Search Resource.

Finally, Figure 31 depicts the UI for defining interoperation with 3rd party
services. In this case, the developer specialized the bookmarkShare Resource
to be able to interoperate with Facebook and share a bookmark.
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Fig. 31 Defining the bookmarkShare Resource.

Once the developer steps through all the aforementioned screens, the MDE
engine Module lower CASE produces the services code. For this illustrative
example, it created 38 Java files that sum up to 3843 lines of code plus the
maven pom.xml file to build the service.

5.3 Evaluation

Apart from Restmarks which serves as a case study presented in the previous
subsection, we further evaluate our methodology and specifically assess the
effort reduction using our mechanism in four more projects. One of them is
project RESTReviews, which we created as a sample online shop that sup-
ports buying products, writing reviews, etc. For the three other projects, we
conducted a study based on the methodology that follows.

Study Goal The goal of our study is to assess whether our mechanism re-
sults in developer productivity gain in development teams within a corporate
environment.
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Study Design We provided our mechanism to three distinct teams of profes-
sional developers, each designing and producing its own domain application in
its corporate environment, in the context of their work in the S-CASE project.
These three user studies span various application domains: one of them is an
Internet of Things (IoT) application, one is a mini Social Network and the
last is an Internet as a Service (IaaS) application. More information on the
applications can be retrieved online32.

Initially, we trained each development team using webinars (2 hours), spe-
cialized topic tutorials (2 hours) and interactive coaching sessions (2 hours)
for a total of 6 hours of training per team. Then each of the teams developed
its application using our mechanism (Phase A) and then without it (Phase B),
using their preferred methodology. Our goal was to measure the effort reduc-
tion. All the teams used the Goal Question Metric method (Basili and Weiss,
1984) to define a methodology for evaluating our mechanism and then report
the measured software development process improvements.

Study Results Table 17 summarizes the evaluation results for the two sample
projects and the three user studies.

Table 17 Effort reduction using the presented mechanism

Metric RESTMarks RESTReviews IoT app Social Net- IaaS
work app app

Assessment Authors Authors User User User

Type Study Study Study

Number of

Requirements/ 21 10 13 14 12

Storyboards

Java LoC 3843 2888 7430 8115 6466

generated

MU Coefficient N/A N/A 2 2.4 1.4
(hours)

MD Coefficient N/A N/A 10.5 10.8 9.3
(hours)

Effort N/A N/A 23.81% 22.2% 20.4%

Reduction (%)

Effort Reduction

without Learning N/A N/A 80.9% 77.8% 85%

Curve (%)

The first row provides the type of assessment performed, namely either
assessment as case studies by the authors or assessment in user studies. The
second row of the table provides information on the number of software re-
quirements that the developers had to add to our mechanism in the form of

32 http://s-case.github.io/publications/ase2015/S-CASE_D6.2.pdf
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functional requirements and/or storyboards. The third row presents the au-
tomatically produced lines of code (LoC) in the Java language. The fourth
row presents the MU coefficient, which stands for the time needed to gen-
erate the desired service using our mechanism, while the fifth row presents
the MD coefficient that stands for the Manual Development effort required to
provide the same functionality that has been automatically generated with our
mechanism, e.g. creating the interface of the service, setting up its database,
embedding searching capabilities and building interoperations with external
services, testing and debugging respectively. The last two rows present the
effort reduction. In the second-to-last row, the effort reduction value for the
provided case projects is calculated by taking into account also the learning
curve of our mechanism. In the last row, the effort reduction is also provided
without the learning curve, to illustrate the productivity gain once a developer
has learned to use our mechanism.

The Effort Reduction metric (ER) is computed as a percentage using the
following formula:

ER =
(LC + MU)−MD

MD
· 100% (1)

where the LC coefficient stands for the Learning Curve estimation in hours,
which includes the aforementioned activities performed in order to train the
developer teams. For example, for the team developing the IoT app, the re-
ported effort has been 10.5 hours. Hence, using equation (1) and given that
the values for MU and MD are 2 hours and 10.5 hours respectively, the effort
reduction including the LC coefficient (with value equal to 6 hours) is 23.81%,
whilst excluding it (LC set to 0) concludes that the effort reduction is 80.9%.

Threats to validity A threat to validity of the aforementioned study results is
that the three developer teams have self-reported the results for the produc-
tivity improvement. However, we consider the self-reporting threat negligible
since the teams established and applied a solid methodology to measure the
productivity gain, based on the Goal Question Metric method. Another possi-
ble threat is that the teams used their preferred methodology for the manual
round of building the system (Phase B). However, since each developer team
used technologies and tools that they are highly familiar with, they peaked
their productivity during this phase, thus minimizing this threat. Finally, the
ordering of the development experiment, first using our mechanism (Phase A)
and then without it (Phase B), does not favor our methodology either; on the
contrary, it might favor the manual round, as the development teams had to
re-solve an already familiar development problem to them.

As a final note, in comparison to other popular frameworks such as RAML33,
our mechanism enhances developer productivity in two ways. At first, our
mechanism supports the developer through the typical Requirements to De-
sign phase of Software Engineering, since it receives input in the form of soft-
ware requirements and automates the production of the design model. By

33 http://raml.org
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contrast, in other popular frameworks, the developer has to manually create
an initial model (e.g. RAML model) by thoroughly examining the envisioned
system’s requirements, which requires a significant amount of effort. Secondly,
the outcome of such Web-API automators is usually a scaffolding of resources,
rather than fully deployable code that may also embed common web service
functionality, as is the case with our mechanism.

6 Conclusion

Lately, the problem of automating the software development process has at-
tracted the attention of several researchers. Although MDE has been proven
effective for constructing prototypes of REST-compliant web services, current
tools do not fully cover the features of the RESTful paradigm. In this paper,
we have designed a methodology that allows developers to model their envi-
sioned system using software requirements from multimodal formats, and an
MDE engine that applies model-to-model transformations in order to produce
a ready-to-deploy RESTful web service.

Our system receives input in the form of functional requirements and ac-
tion flows in the form of storyboards, thus covering both the structural and
the behavioral views of the envisioned system. The use of NLP and seman-
tics facilitates the extraction of specifications from these requirements, while
the designed ontologies produce a traceable model that is highly compliant
to the RESTful paradigm. The produced model (YAML file) comprises all
the required elements of the service, including resources, CRUD actions and
properties, and support for hypermedia links.

Additionally, the proposed MDE lower CASE, in contrast with most other
approaches, goes beyond REST modeling by also embedding common function-
ality that is needed in many web services. It supports Basic Authentication
functionality, popular database keyword-searching and interoperability with
existing 3rd party RESTful services. Moreover, it models the necessary, com-
pilable and executable, placeholder code in order to guide the developer in his
manual programming effort for the parts of his envisioned system that cannot
be automated.

Summarizing the contributions of this work, we have created a set of tools
for developers to extract specifications from functional requirements and story-
boards and transform these specifications to the source code of the envisioned
system. Upon assessing our tools and our methodology in a case study for
project Restmarks (see Section 5), we may conclude that our system provides
an intuitive traceable solution for semi-automatically producing a web service
prototype from software requirements. Further evaluating our methodology in
user studies with regard to reducing development time, it is indicated that our
system can greatly facilitate the development of RESTful web services.

Future work on our methodology may lie in several directions. At first, con-
cerning the Reqs2Specs module, the continuous improvement of the tools by
receiving feedback from users is in our immediate plans. Concerning the MDE
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lower CASE, further evolution includes exploration of developer’s manual code
handling after the first MDE engine run, automation of non-functional aspects
as well as the automated production of a matching web client. Finally, future
research includes further assessing our methodology in industrial settings and
evaluating its effectiveness both for the quality of the produced service and for
reducing development time.
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