
Cenote: A Big Data Management and Analytics Infrastructure
for the Web of Things

Kyriakos C. Chatzidimitriou, Michail D. Papamichail, Napoleon-Christos I. Oikonomou, Dimitrios
Lampoudis, and Andreas L. Symeonidis

{kyrcha,mpapamic,noikon}@issel.ee.auth.gr,ldim@olympus.ee.auth.gr,asymeon@eng.auth.gr
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki

Thessaloniki, Greece

ABSTRACT
In the era of Big Data, Cloud Computing and Internet of Things,
most of the existing, integrated solutions that attempt to solve their
challenges are either proprietary, limit functionality to a predefined
set of requirements, or hide the way data are stored and accessed. In
this work we propose Cenote, an open source Big Data management
and analytics infrastructure for the Web of Things that overcomes
the above limitations. Cenote is built on component-based software
engineering principles and provides an all-inclusive solution based
on components that work well individually.

CCS CONCEPTS
• Software and its engineering→ Data flow architectures.

KEYWORDS
web of things, internet of things, analytics, infrastructure, apache
kafka, restful api, apache storm, cockroachdb
ACM Reference Format:
Kyriakos C. Chatzidimitriou, Michail D. Papamichail, Napoleon-Christos
I. Oikonomou, Dimitrios Lampoudis, and Andreas L. Symeonidis. 2019.
Cenote: A Big Data Management and Analytics Infrastructure for the Web
of Things. In IEEE/WIC/ACM International Conference on Web Intelligence
(WI ’19), October 14–17, 2019, Thessaloniki, Greece. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3350546.3352531

1 INTRODUCTION
One of the most prominent intersections in the modern computing
landscape is that of the Big Data, Cloud Computing and Internet
of Things (IoT) disciplines (BCI). It is now common practice for
sensing, real-world devices to send their data over a networked
cloud computing system for information to further be processed.
Processing usually implies analyzing the data, a task facilitated
by some cloud computing environment and the intelligent - often
autonomously made - decisions are propagated to the application
at hand through actuating, real-world objects, closing the loop
and providing value to the application chain. Besides the Value,
the other four V’s of Big Data are also present in these types of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WI ’19, October 14–17, 2019, Thessaloniki, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6934-3/19/10. . . $15.00
https://doi.org/10.1145/3350546.3352531

applications: Volume (scale), Velocity (speed), Veracity (certainty)
and Variety (diversity). With the addition of Artificial Intelligence
and Machine Learning algorithms, such cyber-physical systems
are expected to cover the basic needs of all kinds of modern so-
ciety organizations: business, finance, manufacturing, health and
environment among others. Example applications include e-Health,
smart cities, smart home, smart metering, video surveillance, smart
mobility, environmental monitoring, smart logistics and more [14].

One of the main challenges between IoT and Cloud Computing
is that of interoperability [15], due to competing standards and
custom solutions. The Web of Things [16, 17] has been proposed as
a way to mitigate this issue by mingling real-world things into the
Web and at the same time taking advantage of the Web’s merits.
Moreover, on the integration of Big Data with Cloud Computing
disciplines, typical challenges include: data storage and manage-
ment, data transmission and curation, data processing and analysis
and data privacy and security [20]. At the intersection of all these
challenges, we propose Cenote, a Big Data Management System
(BDMS) with analytics capabilities for the Web of Things provid-
ing (near) real-time analytics capacities to event streams coming
in from any kind of web source. Cenote is a system that: (i) is
open source, following a component-based development approach,
(ii) can be considered as a general-scope, out-of-the-shelf, BDMS,
supporting analytics out-of-the-box in many scenarios that involve
event stream processing, (iii) combines both (near) real-time analyt-
ics and batch processing, and (iv) is deployed in a distributed and
scalable manner.

2 CENOTE ARCHITECTURE
Cenote’s architecture is depicted in Figure 1. Data transmission is
split into twomain flows: the write flow and the read flow. The write
flow is concerned with writing data from “web-enabled things” to
Cenote, while the read flow is concerned with returning answers to
analytics-related API calls [5] coming from HTTP-enabled clients.
Cenote uses the following components:

NGINX [10] is a popular, high performance load balancer, web
server and reverse proxy.

MEN stack API server. MEN stack stands for a technology
stack that is composed of MongoDB [9], Express web framework [7]
and Node.js [11]. It is a very popular stack for building API servers.

Apache Kafka [1] is a distributed streaming platform that can
publish and subscribe to streams of records (topics). Additionally it
stores these streams of records using a fault-tolerant durable way.

Apache Storm [3] is an open source distributed real-time com-
putation system. A Storm topology - a directed graph where each

https://doi.org/10.1145/3350546.3352531
https://doi.org/10.1145/3350546.3352531

WI ’19, October 14–17, 2019, Thessaloniki, Greece Chatzidimitriou, et al.

Figure 1: Cenote’s architectural diagram depicting the components involved in both write and read flows.

vertex represents a computational element - consumes streams of
data and can processes those streams in arbitrarily complex ways.

CockroachDB [6] is distributed CAP-consistent, SQL, ACID
compliant database with automatic scaling, rebalancing and repair-
ing mechanisms.

Apache Spark [2] is a unified analytics engine for large-scale
data processing. We selected because of its merits as a batch pro-
cessing engine.

Redis [12] is an open source, in-memory data structure store,
used as a database, cache and message broker.

Apache Zookeeper [4] is used to coordinate clusters of com-
ponents like Storm and Kafka.

2.1 Data modelling
The main data entity of Cenote is that of an event. Events are
individual timestamped collections of data points. Each data point
contains a set of properties and their values in a specific point in
time. Similar events are organized in event collections. Events are
modelled as JSON documents that do not have an enforced schema.
An example is shown in Listing 1. The schemaless nature of the
events offers easier extensibility in the expense that one must strive
to store similar events in each event collection. From a technical
perspective, each event collection is stored in a single CockroachDB
table, with each column corresponding to a single JSON property.

Listing 1: JSON load example
1 {"cenote": {
2 "created_at": "2012 -12 -14 T20 :24:01" ,
3 "timestamp": "2012 -12 -14 T20 :24:01" ,
4 "id": "asd9fadifjaqw9asdfasdf939"
5 },"device": {
6 "id": "1234567890 abcdef",
7 "model": "H09 Beta",
8 "temperature": 29.5}}

2.2 Write flow
The write flow is found on the upper half of Figure 1. HTTP requests
for writing data arrive in Cenote to the load balancer, which routes
the requests in a round-robin fashion to the web API nodes. From
there the requests are queued in Kafka. From this point on fault-
tolerance starts. Storm Spouts consume messages from Kafka and
transmit them to the processing Storm Bolts. Each processing Bolt
is responsible for updating running statistics for outlier detection
and writing the events to the data store.

2.3 Read flow
The read flow is found on the lower half of Figure 1. HTTP GET re-
quests are received by Cenote that correspond to analytics queries.
Whatever calculations can be handled by CockroachDB are handled
by the database, to reduce data transfer volumes, and after some
post-processing in the web servers the responses are sent to the
clients. Cenote supports the following types of analytics queries
for a given property, event collection and timeframe of reference:
(i) average (ii) sum (iii) count unique (iv) count (v) maximum (vi) me-
dian (vii) minimum (viii) percentile (ix) select unique. In addition
the API supports filtering and group-by capabilities for querying
and extraction capabilities of large chunks of events for external
processing.

2.3.1 Outlier Detection. Anomaly detection enhances the veracity
of the data andmay prove to be a highly valuable addition, especially
in real-time mode of operations. This requirement imposes the need
for an online, inside a streaming context, outlier detection algorithm.
To this end we have examined a lot of different alternatives [21] and
have picked the algorithm found in [13] that is based on Chebysev’s
inequality. This algorithm was selected due to: a) its simplicity,
with the implication that it will not increase the latency between
request-response in velocity terms, b) the ability to work without
making any assumption on the distributions. One limitation is that
we examined only algorithms that perform outlier detection in
numerical values. As a threshold we chose the p−value to be 0.05.

In the write flow the algorithm calculates two pairs of running
averages and variances of a numeric property based on [23] using

Cenote BDMS for the Web of Things WI ’19, October 14–17, 2019, Thessaloniki, Greece

Lua scripting inside Redis. Listing 2 displays the script for the
calculations. KEYS[1] contains the triplet n (count),m (mean) and
m2 (squared distance from the mean) and ARGV[1] contains the
new numerical value.

Listing 2: Running mean and variance calculation.
l o ca l agg r eg a t e = r e d i s . c a l l (' ge t ' , KEYS [1])
l o ca l decode = c j s o n . d e c o d e (a gg r e g a t e)
l o ca l n = decode [' n ']
n = n + 1
l o ca l m = decode ['m ']
l o ca l m2 = decode ['m2 ']
l o ca l d e l t a = ARGV[1] − m
m = m + d e l t a / n
m2 = m2 + d e l t a ∗ (ARGV[1] − m)
decode [' n '] = n
decode ['m '] = m
decode ['m2 '] = m2
l o ca l encoded = c j s o n . e n c o d e (decode)
r e d i s . c a l l (' s e t ' , KEYS [1] , encoded)

In the write flow and for a given numeric property:
(1) update running mean and variance based on Listing 2
(2) if the numeric property is more extreme than the ODV (Out-

lier Detection Value) the property is an outlier
(3) else, the numeric property is not an outlier and update the

2nd pair of running average and variance.
(4) continue with storage as all the data are written to Cenote

whether they are outliers or not.
The ODV lower (ODVL) and upper (ODVU) thresholds are cal-

culated based on the equations below:

ODVU = µ +
1
√
p
× σ ,ODVL = µ −

1
√
p
× σ (1)

In the read flow, in all API calls there will be a query parameter
named outliers. The default value will be include, but there will
be two other values: exclude and only. The value include will
include all outliers in the queries, exclude will exclude them and
only will only use the outliers. In the write flow the ODV values
are based on the 2nd pair of running averages and variance. In the
read flow a lower p−value should be used, i.e. 0.01.

3 EXPERIMENTATION
For experimentation Cenote was installed on a cluster that consists
of one master node and three workers (Table 1). We evaluated
Cenote on two axes: (i) measure the scalability of the system in
terms of handling the incoming traffic (web part) and serving the
incoming requests (write pipeline), (ii) quantify the capabilities of
our system while performing certain analytics operations such as
outlier detection and summation computations.

3.1 Incoming traffic experiment
The main objective of the first experiment is to measure the perfor-
mance efficiency of Cenote in handling a big amount of incoming
traffic. Table 2 presents the results.

Table 1: Cluster Specifications

Node CPU RAM Memory

master 2x vCPUs 9GB 100GB HDD
worker 2x Intel Xeon 4114 64GB 1.6TB SSD
worker 2x Intel Xeon 4114 64GB 1.6TB SSD
worker 2x Intel E5-2630 v3 9GB 1.8TB HDD

3.2 Analytics experiments

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

50 100 150 250 500 750 1,000

Av
er
ag
e
re
sp
on

se
 ti
m
e
(s
ec
on

ds
)

Number of requests per batch

Without outlier detection (1 node)

Without outlier detection (3 nodes)

With outlier detection (1 node)

With outlier detection (3 nodes)

Figure 2: Comparative analysis results for findingmaximum
operation

We conducted two analytics experiments. Figure 2 illustrates the
results for the operation of finding the maximum on a table that
contains 450, 000 events. As shown in the figure, Cenote is able
to serve 250 requests in less than 20 seconds. It is worth noting
that the impact of enabling outlier detection remains constant and
causes an overhead which lies in the interval from 14% to 16% of
the response time. This is expected as the operations are performed
inside the database and thus this is what determines the execution
time. This fact is demonstrated in Table 3, where we compared the
measured response times between having 2 and 3 CockroachDB
instances. The results showed that increasing the number of DB
instances improved the average response time in all cases.

4 RELATEDWORK
When building a BDMS, two of the most influential architectures
are known as lambda and kappa architectures. In the lambda ar-
chitecture [19], a series of layers (batch, serving, speed) is built in
order to satisfy Big Data properties and to facilitate the next layer
to build upon it. One of the problems of the lambda architecture is
that the code needs to be maintained in two complex distributed
systems and produce the same results [18]. This has led to the kappa
architecture that uses only a stream processing engine to handle the
full problem. Cenote has acquired features from both architectures.
The data storage is immutable and constantly growing, there is
only one codebase and we have targeted more specifically (near)
real-time analytics.

Cenote is heavily influenced by the commercial analytics service
of keen.io [8]. Keen.io receives events in the form of JSONmessages

WI ’19, October 14–17, 2019, Thessaloniki, Greece Chatzidimitriou, et al.

Table 2: Incoming traffic benchmarks. The scaling factor refers to API servers and Storm supervisors. In the last row with
3 Storm supervisors the system has reached its limit, degrading its performance. At this traffic levels, the cluster should be
upgraded.

Incoming throughput Scaling Av. Response Av. Response
(requests/second) factor Rate API (req/sec) Rate Storm (req/sec)

25,000 1 154 534
25,000 2 161 1,273
25,000 3 362 754

Table 3: Database scaling results

Req Response Time (sec) Diff2 DB instances 3 DB instances

50 4.40 3.34 -31.61%
100 6.36 6.23 -2.06%
150 9.51 9.12 -4.26%
250 16.18 14.97 -8.09%
750 47.09 43.78 -7.57%
1,000 62.64 57.43 -9.07%

that can be analyzed and visualized for taking informative decisions.
Themain difference between keen.io and Cenote is that Cenote is an
open source BDMS. It includes also a batch processing component
along with an online outlier detection algorithm.

In [22] the authors use the combination of the components Kafka,
Storm and MongoDB to store the sensor data from the manufac-
turing process. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)-based outlier detection and Random Forest
classification were used to remove outlier sensor data and provide
fault detection during the manufacturing process, respectively. The
main difference is that Cenote is a general-case BDMS that can
work in multiple domains, organizations and projects, while its
outlier detection algorithm is online.

5 CONCLUSIONS AND FUTUREWORK
In this work we proposed Cenote, an open source BDMS focusing
on Big Data management and (near) real-time analytics for the Web
of Things.We have extensively tested both the design principles and
the cluster deployment, where our production cluster was able to
handle 1K requests per second end-to-end, meaning from receiving
to persisting the request. In addition, it is capable of handling much
bigger loads - we have tested it with 25K requests/second - in its
current state, with increased latency. The querying operations were
found to be also scalable, while the selection of the online outlier
detection algorithm was proven to have a small impact on the
response times. Our future plans include the ad-hoc fusion of batch
and real-time querying.

ACKNOWLEDGMENTS
This research has been co–financed by the European Regional De-
velopment Fund of the European Union and Greek national funds

through the Operational Program Competitiveness, Entrepreneur-
ship and Innovation, under the call RESEARCH–CREATE–INNOVATE
(project code:T1EDK-04045).

REFERENCES
[1] 2019. Apache Kafka. Retrieved July 22, 2019 from https://kafka.apache.org
[2] 2019. Apache Spark. Retrieved July 22, 2019 from https://spark.apache.org/
[3] 2019. Apache Storm. Retrieved July 22, 2019 from https://storm.apache.org/
[4] 2019. Apache Zookeper. Retrieved July 22, 2019 from https://zookeeper.apache.

org/
[5] 2019. Cenote documentation. Retrieved July 22, 2019 from http://issel.ee.auth.

gr/cenote
[6] 2019. CockroachDB. Retrieved July 22, 2019 from https://www.cockroachlabs.

com/
[7] 2019. Express. Retrieved July 22, 2019 from https://expressjs.com/
[8] 2019. keen.io. Retrieved July 22, 2019 from https://keen.io/
[9] 2019. MongoDB. Retrieved July 22, 2019 from https://www.mongodb.com/
[10] 2019. NGINX. Retrieved July 22, 2019 from https://nginx.org/
[11] 2019. node.js. Retrieved July 22, 2019 from https://nodejs.org
[12] 2019. Redis. Retrieved July 22, 2019 from https://redis.io/
[13] B. G. Amidan, T. A. Ferryman, and S. K. Cooley. 2005. Data outlier detection

using the Chebyshev theorem. In 2005 IEEE Aerospace Conference. 3814–3819.
[14] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescap?? 2016. In-

tegration of Cloud computing and Internet of Things: A survey. Future Generation
Computer Systems 56 (2016), 684–700.

[15] Manuel Diaz, Cristian Martin, and Bartolome Rubio. 2016. State-of-the-art,
challenges, and open issues in the integration of Internet of things and cloud
computing. Journal of Network and Computer Applications 67 (2016), 99–117.

[16] Dominique Guinard and Vlad Trifa. 2009. Towards the Web of Things: Web
Mashups for Embedded Devices. InWWW (International World Wide Web Confer-
ences), Enterprise Mashups and Lightweight Composition on the Web (MEM 2009)
Workshop. Madrid, Spain.

[17] Dominique Guinard and Vlad Trifa. 2015. Building the Web of Things. Manning.
[18] Jay Kreps. 2014. Questioning the Lambda Architecture. Retrieved July 22, 2019

from https://www.oreilly.com/ideas/questioning-the-lambda-architecture
[19] Nathan Marz and James Warren. 2013. Big Data: Principles and best practices of

scalable realtime data systems. Manning.
[20] Georgios Skourletopoulos, Constandinos X Mavromoustakis, George Mastorakis,

Jordi Mongay Batalla, Ciprian Dobre, Spyros Panagiotakis, and Evangelos Pallis.
2017. Big Data and Cloud Computing: A Survey of the State-of-the-Art and
Research Challenges. 22 (2017).

[21] Imen Souiden, Zaki Brahmi, and Hajer Toumi. 2017. A Survey on Outlier Detec-
tion in the Context of StreamMining: Review of Existing Approaches and Recom-
madations. In Intelligent Systems Design and Applications, Ana Maria Madureira,
Ajith Abraham, Dorabela Gamboa, and Paulo Novais (Eds.). Springer Interna-
tional Publishing, Cham, 372–383.

[22] Muhammad Syafrudin, Ganjar Alfian, Norma Latif Fitriyani, and Jongtae Rhee.
2018. Performance Analysis of IoT-Based Sensor, Big Data Processing, and
Machine Learning Model for Real-Time Monitoring System in Automotive Man-
ufacturing. Sensors 18, 9 (2018).

[23] B. P. Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares
and Products. Technometrics 4, 3 (1962), 419–420.

https://kafka.apache.org
https://spark.apache.org/
https://storm.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
http://issel.ee.auth.gr/cenote
http://issel.ee.auth.gr/cenote
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
https://expressjs.com/
https://keen.io/
https://www.mongodb.com/
https://nginx.org/
https://nodejs.org
https://redis.io/
https://www.oreilly.com/ideas/questioning-the-lambda-architecture

	Abstract
	1 Introduction
	2 Cenote Architecture
	2.1 Data modelling
	2.2 Write flow
	2.3 Read flow

	3 Experimentation
	3.1 Incoming traffic experiment
	3.2 Analytics experiments

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

