
LavaMoat Webpack Plugin
Security Assessment

October 12th, 2024 — Prepared by OtterSec

Bruno Halltari bruno@osec.io

Caue Obici caue@osec.io

mailto:bruno@osec.io
mailto:caue@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-LMT-ADV-00 | Package Enforcement Bypass via ContextModules 6

OS-LMT-ADV-01 | Malicious Imports via Webpack Assets Module 7

OS-LMT-ADV-02 | Nodejs Package Policy Bypass via Builtins 8

General Findings 10

OS-LMT-SUG-00 | Inadequate Source Validation 11

OS-LMT-SUG-01 | Path Traversal in Webpack Chunks 12

Appendices

Vulnerability Rating Scale 13

Procedure 14

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 14

01 — Executive Summary

Overview

Metamask engaged OtterSec to assess the @lavamoat/webpack package@lavamoat/webpack package . This assessment was con-
ducted between October 1st and October 10th, 2024. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 5 findings throughout this audit engagement.

In particular, we identified a vulnerability inside ContextModules, since those are excluded from the

lavamoat runtime wrapper, allowing compromised modules to import restricted modules (OS-LMT-ADV-

00). Furthermore, we discovered that is possible to exploit Webpack’s handling of assets when utilizing

the URL()URL() constructor to import malicious files. (OS-LMT-ADV-01).

We also made a recommendation to incorporate more stringent validation to prevent arbitrary code

execution outside the sandbox (OS-LMT-SUG-00) and advised verifying all chunk names during the

build process to ensure they do not contain any path traversal sequences (OS-LMT-SUG-01).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 14

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/LavaMoat/LavaMoat. This

audit was performed against a859f9f.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

@lavamoat/webpack

package

LavaMoat Webpack Plugin wraps each module in the bundle in a Com-

partment and enforces LavaMoat Policies independently per package.

Below is the list of attack vectors we covered as part of the audit:

1. Abuses of runtime __webpack_require____webpack_require__ exposed functions (including type confusions such as

passing objecsobjecs and proxiesproxies).

2. Bugs in policy parsing and matching.

3. aaaa algorithm inconsistencies.

4. ContextModuleContextModule bypasses, as it is excluded from wrapping.

5. Webpack build-time functions abuses (requirerequire , importimport , require.ensurerequire.ensure ...).

6. Code executions in other modules to gain global permissions.

7. Bypasses utilizing module types other than javascript/esmjavascript/esm , javascript/autojavascript/auto and

javascript/dynamicjavascript/dynamic (checked all default rules and module types associated with these rules).

8. Lockdown bypasses, including methods to prevent execution or trigger errors during execution.

9. Techniques to gain access to the original globalThisglobalThis .

10. Methods to access and globally alter other module objects by reference.

11. Magic comments in importimport .

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 14

https://github.com/LavaMoat/LavaMoat
https://github.com/LavaMoat/LavaMoat/commit/a859f9fac4c4dc26eb3057412d21b727e353b5a8

03 — Findings

Overall, we reported 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 3

MEDIUMMEDIUM 0

LOWLOW 0

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 14

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-LMT-ADV-00
HIGHHIGH RESOLVEDRESOLVED

ContextModulesContextModules are excluded from

lavamoat runtime wrapper, allowing com-

promised modules to import restricted

modules.

OS-LMT-ADV-01
HIGHHIGH RESOLVEDRESOLVED

Webpack’s asset/resourceasset/resource mod-

ule type may be exploited by utilizing the

URL()URL() constructor to import malicious

files.

OS-LMT-ADV-02
HIGHHIGH RESOLVEDRESOLVED

wrapRequireWithPolicywrapRequireWithPolicy does not val-

idate whether the provided specifierspecifier
is a string literal, allowing to exploit this by

utilizing objects as specifiers to overwrite

toStringtoString .

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 14

LavaMoat Webpack Plugin Audit 04 — Vulnerabilities

Package Enforcement Bypass via ContextModules HIGHHIGH OS-LMT-ADV-00

Description

There is a package enforcement bypass issue related to ContextModulesContextModules , a Webpack feature that

handles imports that contain expressions. Since these modules are not wrapped by LavaMoat’s runtime

protection, they can bypass the security restrictions defined in LavaMoat’s policy. Generated during

Webpack bundling, ContextModulesContextModules manage expression imports. Consequently, it allows a compromised
module to request and load restricted modules that should otherwise be inaccessible, weakening the

security model provided by LavaMoat.

Proof of Concept

>_ poc javascript

// node_modules/<compromised_module>/index.js
(async () => {

const x = "index";

const y = await import(`@ethereumjs/util/dist/${x}.js`);
console.log(y);

})();

In the provided Proof-of-Concept, a compromised module imports an expression

(which translates to @ethereumjs/util/dist/index.js@ethereumjs/util/dist/index.js) that is not permitted in its policy. The

expression import mechanism bypasses LavaMoat’s restrictions because the runtime enforcement is not

applied to the generated function utilized for loading the module.

Remediation

Ensure that ContextModulesContextModules are wrapped to apply LavaMoat’s runtime protection. Also, special care

should be taken to handle both lazy loading (import()import()) and static loading (require()require()), taking into

account that each one of them utilizes different __webpack_require____webpack_require__ runtime functions.

Patch

Fixed in 0d69202.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 14

https://github.com/LavaMoat/LavaMoat/pull/1494/commits/0d692023dc1f3cb8c245eb794621647e5aaf5a90

LavaMoat Webpack Plugin Audit 04 — Vulnerabilities

Malicious Imports via Webpack Assets Module HIGHHIGH OS-LMT-ADV-01

Description

It is possible to exploit Webpack’s handling of assets when utilizing the URL()URL() constructor to import files.

Webpack treats certain imported assets, such as HTML files when included via the URL()URL() constructor,

as asset/resourceasset/resource types, which implies they are bundled into the final dist/dist/ directory of a web

application or browser extension. Consequently, a malicious NPM package may be introduced into

the project’s dependency tree. In the below example, the package contains malicious HTML content,

specifically utilizing the URL()URL() constructor to import an HTML file (a.htmla.html).

>_ poc javascript

// node_modules/<compromised_module>/index.js
const x = new URL('./a.html', import.meta.url);

// node_modules/<compromised_module>/a.html
<html>
<body>
<script>alert(document.cookie)</script>

</body>
</html>

Since a.htmla.html is considered an asset/resource module type, Webpack will copy it into the final bun-

dle. Once bundled into the application, it becomes accessible through the web application or browser

extension. In this case, opening the HTML file in a browser will execute the <script><script> tag containing

alert(document.cookie)alert(document.cookie) .

Remediation

Filter the types of files that can be imported via the URL()URL() constructor. Specifically, for modules

designated as asset/resource, limit imports to only trusted file types.

Patch

Fixed in PR#1451.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 14

https://github.com/LavaMoat/LavaMoat/pull/1451

LavaMoat Webpack Plugin Audit 04 — Vulnerabilities

Nodejs Package Policy Bypass via Builtins HIGHHIGH OS-LMT-ADV-02

Description

There is a flaw in wrapRequireWithPolicywrapRequireWithPolicy , where it fails to validate the type of the specifierspecifier
argument passed to __webpack_require____webpack_require__ . It does not validate if the specifier provided by the module

is a string literal, so it is possible to exploit it utilizing objects as the specifier and overwriting toStringtoString .
This implies that even if a module is restricted by policy from accessing certain built-ins, this exploit may

be utilized to load the unauthorized module, compromising Lavamoat’s security policy.

Proof of Concept

>_ poc.js javascript

let count = 0;
const toStringExploit = () => {

count++;
if (count == 1){

return "crypto"
}

return "./node_modules/buffer/index.js"
}
const x = {toString: toStringExploit}
const r = __webpack_require__(x)

console.log(r)

The Proof-of-Concept given above illustrates this issue, simulating the bypass by compromising a package

that has access to cryptocrypto builtin module and does not have access to the bufferbuffer module, by creating

an object (xx) with a custom method (toStringExploittoStringExploit), which returns the string: "crypto""crypto" , the

first time it is called. Once the access to cryptocrypto is granted, the toStringExploittoStringExploit returns the path to

the bufferbuffer module ("./node_modules/buffer/index.js""./node_modules/buffer/index.js"), which is not authorized, but it still gets
loaded as a result of the bypass. This POC shows how it would be possible bypass the policy enforcement

if the module has access to the crypto builtin module.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 14

LavaMoat Webpack Plugin Audit 04 — Vulnerabilities

Remediation

Ensure that the specifierspecifier is a string:

>_ example.js javascript

const specifier = `${specifier}`

Patch

Fixed in 501d14d.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 14

https://github.com/LavaMoat/LavaMoat/pull/1454/commits/501d14d33352137fb24dcc9a582956a3f2e95f42

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-LMT-SUG-00

The current approach to validating JavaScript source (relying on the in-

tegrity of the sesCompatibleSourcesesCompatibleSource), may be manipulated through

vulnerabilities, allowing arbitrary code execution outside the sandbox.

OS-LMT-SUG-01
It may be possible to utilize path traversal in Webpack’s import magic com-

ments to write chunk files outside the intended directory.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 14

LavaMoat Webpack Plugin Audit 05 — General Findings

Inadequate Source Validation OS-LMT-SUG-00

Description

validateSourcevalidateSource checks the entire function (before + sesCompatibleSource + afterbefore + sesCompatibleSource + after). However,

if sesCompatibleSourcesesCompatibleSource is manipulated, it may be possible to inject malicious code, which may break

out of the sandbox if it is crafted in a specific way (such as closing with()with() statements or escaping

contexts).

Remediation

Validate sesCompatibleSourcesesCompatibleSource separately to ensure it contains only valid code and does not in-

clude malicious injections before it gets combined with the rest of the function. Additionally, enable the

runChecksrunChecks flag by default, ensuring that these validation checks are always performed.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 14

LavaMoat Webpack Plugin Audit 05 — General Findings

Path Traversal in Webpack Chunks OS-LMT-SUG-01

Description

It is possible tomisusewebpack’s import magic comments, specifically the webpackChunkNamewebpackChunkName comment,
which allows defining a custom name for the chunk created for dynamically imported modules. If the

chunk name contains a path traversal sequence, it may result in the chunk to be written to directories

outside the intended dist/dist/ folder, such as parent directories, resulting in unintended file creation.

>_ example.js javascript

// node_modules/<compromised_module>/index.js
import(

/* webpackChunkName: "../a" */
'./x.js'

);

// x.js must exist
);

In this example, the chunk "../a""../a" would be generated and written outside the dist/dist/ directory.

Although the content is wrapped with LavaMoat’s runtime sandbox and ends with .js.js , this behavior still
seems unintended.

Remediation

Validate all chunk names during the build process to ensure they do not contain any path traversal

sequences.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 14

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 14

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 14

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-LMT-ADV-00 | Package Enforcement Bypass via ContextModules
	[8.75em][l]OS-LMT-ADV-01 | Malicious Imports via Webpack Assets Module
	[8.75em][l]OS-LMT-ADV-02 | Nodejs Package Policy Bypass via Builtins

	General Findings
	[8.75em][l]OS-LMT-SUG-00 | Inadequate Source Validation
	[8.75em][l]OS-LMT-SUG-01 | Path Traversal in Webpack Chunks

	Appendices
	Vulnerability Rating Scale
	Procedure

