ENVIRONMENTAL PRODUCT DECLARATION IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930 ## Master X-Seed 100 Master Builders Solutions Deutschland GmbH **EPD HUB, HUB-0037** Publishing date 17 May 2022, last updated date 03 November 2022, valid until 17 May 2027 # **GENERAL INFORMATION** ### MANUFACTURER | Manufacturer | Master Builders Solutions Deutschland GmbH | |-----------------|---| | Address | Dr-Albert-Frank-Strasse 32, 83308 Trostberg,
Germany | | Contact details | Sustainability-team@masterbuilders.com | | Website | www.master-builders-solutions.com | ## **EPD STANDARDS, SCOPE AND VERIFICATION** | Program operator | EPD Hub, hub@epdhub.com | |--------------------|--| | Reference standard | EN 15804+A2:2019 and ISO 14025 | | PCR | EPD Hub Core PCR version 1.0, 1 Feb 2022 | | Sector | Construction product | | Category of EPD | Third party verified EPD | | Scope of the EPD | Cradle to gate with options, A5, and modules C1-C4 and D | | EPD author | Annika Bantle - Master Builders Solutions
Deutschland GmbH | | EPD verification | Independent verification of this EPD and data, according to ISO 14025: | | | ☐ Internal certification ☑ External verification | | EPD verifier | E.A as an authorized verifier acting for EPD Hub
Limited | The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context. ## **PRODUCT** | Product name | Master X-Seed 100 | |---------------------|--------------------| | Place of production | Trostberg, Germany | | Period for data | 2021 | | Averaging in EPD | No averaging | ### **ENVIRONMENTAL DATA SUMMARY** | LIVINOIVILIVIAL DATA SOIVIIVIA | · · · · · · · · · · · · · · · · · · · | |---------------------------------|---------------------------------------| | Declared unit | 1 kg | | Declared unit mass | 1 kg | | GWP-fossil, A1-A3 (kgCO2e) | 7,23E-1 | | GWP-total, A1-A3 (kgCO2e) | 7,26E-1 | | Secondary material, inputs (%) | 2,68E-1 | | Secondary material, outputs (%) | 0E0 | | Total energy use, A1-A3 (kWh) | 2,09E0 | | Total water use, A1-A3 (m3e) | 1,47E-1 | # PRODUCT AND MANUFACTURER ### **ABOUT THE MANUFACTURER** The Master Builders Solutions brand brings all of our expertise together to create chemical solutions for new construction, maintenance, repair and renovation of structures. Master Builders Solutions is built on the experience gained from more than a century in the construction industry. The know-how and experience of a global community of construction experts form the core of Master Builders Solutions. We combine the right elements from our portfolio to solve your specific construction challenges. We collaborate across areas of expertise and regions and draw on the experience gained from countless construction projects worldwide. We leverage global technologies, as well as our in-depth knowledge of local building needs, to develop innovations that help make you more successful and drive sustainable construction. The comprehensive portfolio under the Master Builders Solutions brand encompasses concrete admixtures. cement additives, solutions for underground construction, waterproofing solutions, sealants, concrete repair & protection solutions, performance grouts, performance flooring and solutions for on- and offshore wind energy. #### PRODUCT DESCRIPTION Master X-Seed admixtures are hardening accelerators that boost the hydration process of early age cement. Master X-Seed 100 is added to concrete in order to accelerate the strength development of the concrete mix across all temperature ranges. Master X-Seed consists of synthetically produced crystalline particles suspended in aqueous solution. Master X-Seed is introduced in small amounts (0.5-5 % by mass of the cement content) to concrete in order to accelerate the hardening process. Master X-Seed is optimized for all kind of concretes, especially for structural precast elements and ready-mix concrete. Further information can be found at www.master-builders-solutions.com ### PRODUCT RAW MATERIAL MAIN COMPOSITION | Raw material category | Amount, mass- % | Material origin | |-----------------------|-----------------|-----------------| | Metals | - | - | | Minerals | 32 | Netherlands | | Fossil materials | 9 | Germany | | Bio-based materials | - | - | | Water | 59 | Germany | ### **BIOGENIC CARBON CONTENT** Product's biogenic carbon content at the factory gate. | Biogenic carbon content in product, kg C | 0 | |--|---| | Biogenic carbon content in packaging, kg C | 0 | ### **FUNCTIONAL UNIT AND SERVICE LIFE** | Declared unit | 1 kg | |------------------------|------| | Mass per declared unit | 1 kg | ### **SUBSTANCES, REACH - VERY HIGH CONCERN** The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm). # **PRODUCT LIFE-CYCLE** #### SYSTEM BOUNDARY This EPD covers the life-cycle modules listed in the following table. | | rodu
stage | | Asser
sta | | | | | | | | | | | | | s | Beyond the
system
boundarie | | | |---------------|---------------|---------------|--------------|----------|----------------------------------|-------------|--------|-------------|---------------|------------------------|-----------------------|------------------|-----------|------------------|----------|-------|-----------------------------------|-----------|--| | A1 | A2 | А3 | A4 | A5 | B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 | | | | | | | | | | | | D | | | | X | x | x | MND | x | MND х | x | MNR | x | | х | | | | Raw materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Deconstr./demol. | Transport | Waste processing | Disposal | Reuse | Recovery | Recycling | | Modules not declared = MND. Modules not relevant = MNR. ### **MANUFACTURING AND PACKAGING (A1-A3)** The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission. The production of the hardening accelerators involves batch mixing of the various ingredients. The raw materials are added into a batch reactor and transported after mixing to a filling station. The process follows standards described in /EN 934-6:2001/ Admixture for concrete, mortar and grout. Master X-Seed hardening accelerators are delivered as aqueous solutions in intermediate bulk containers (IBC) with 1140 kg product. For larger applications the product is delivered in bulk by tank trucks. The IBCs consist of plastic containers (typically HDPE) surrounded by a metal cage (typically steel) supported by an integrated plastic pallet (typically HDPE). Empty containers can be reused or recycled. ### **TRANSPORT AND INSTALLATION (A4-A5)** Transportation impacts occurred from final products delivery to the batching plant (A4) are not considered. During concrete manufacture, hardening accelerators are usually added along with the mixing water. Health and safety measures (eye protection, hand protection, possibly respiratory equipment and body protection) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site. This scenario is not considered in the LCA for module A5. The treatment of packaging waste (IBC) is covered in the A5 module. ## **PRODUCT USE AND MAINTENANCE (B1-B7)** This EPD does not cover the use phase. Air, soil, and water impacts during the use phase have not been studied. ### PRODUCT END OF LIFE (C1-C4, D) The building deconstruction (demolition process) takes place in C1 module which considers energy for dismantling, particulate matter emissions from dismantling and handling. After the demolition, the admixture is transported to the end-of-life processing (C2 module) where all the impacts related to the transport processes are considered. For precautionary principle and as worst-case scenario, disposal is the only end of life scenario considered. This is modelled by landfill process (module C4) where admixtures end their life cycle. # **MANUFACTURING PROCESS** # LIFE-CYCLE ASSESSMENT ### **CUT-OFF CRITERIA** The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass. No cut-off was applied in the LCA calculation. All raw materials used were taken into consideration. Manufacture of machinery, buildings, and other infrastructure was not included in the LCA. ### **ALLOCATION, ESTIMATES AND ASSUMPTIONS** Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. In this study, as per the reference standard, allocation is conducted in the following order; - 1. Allocation should be avoided. - 2. Allocation should be based on physical properties (e.g., mass, volume) when the difference in revenue is small. - 3. Allocation should be based on economic values. All inputs of materials and utilities for production of Master X-Seed 100 were considered. <u>Transport</u>: it was assumed that all raw materials are transported 500 km by truck to the distribution centre. <u>Packaging</u>: typical intermediate bulk containers (IBC) were assumed, consisting of 20 kg steel cages, 21 kg HDPE integrated pallet and 15 kg HDPE "bottle" (the holding volume) containing a total of 1140 kg of Master X-Seed product. Furthermore, it was assumed that the bottle is not reused; for the steel cage and integrated HDPE pallet 10 use cycles were assumed. The production of Master X-Seed does not involve any co-products. Therefore, no allocation was necessary. Allocation used in environmental data sources is aligned with the above. ### **AVERAGES AND VARIABILITY** This EPD is product and factory specific and does not contain average calculations. ### LCA SOFTWARE AND BIBLIOGRAPHY This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data. # **ENVIRONMENTAL IMPACT DATA** ## CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF | Impact category | Unit | A1 | A2 | А3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2 | СЗ | C4 | D | |-----------------------------|------------|---------|---------|---------|---------|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|---------|-----|---------|-----------| | GWP – total | kg CO₂e | 6,3E-1 | 6,05E-2 | 3,51E-2 | 7,26E-1 | MND | 1,67E-3 | MND 4E-3 | 4,55E-3 | MNR | 5,28E-3 | -6,51E-3 | | GWP – fossil | kg CO₂e | 6,28E-1 | 6,04E-2 | 3,41E-2 | 7,23E-1 | MND | 1,68E-3 | MND 4E-3 | 4,54E-3 | MNR | 5,27E-3 | -6,78E-3 | | GWP – biogenic | kg CO₂e | 1,69E-3 | 4,39E-5 | 9,99E-4 | 2,73E-3 | MND | -7,54E-6 | MND 1,11E-6 | 3,3E-6 | MNR | 1,04E-5 | 2,67E-4 | | GWP – LULUC | kg CO₂e | 2,71E-4 | 1,82E-5 | 1,71E-5 | 3,06E-4 | MND | 9,79E-7 | MND 3,38E-7 | 1,37E-6 | MNR | 1,56E-6 | 5,26E-7 | | Ozone depletion pot. | kg CFC-11e | 7,22E-8 | 1,42E-8 | 5,57E-9 | 9,2E-8 | MND | 1,24E-10 | MND 8,64E-10 | 1,07E-9 | MNR | 2,17E-9 | -3,41E-11 | | Acidification potential | mol H+e | 2,9E-3 | 2,54E-4 | 1,02E-4 | 3,26E-3 | MND | 4,92E-6 | MND 4,18E-5 | 1,91E-5 | MNR | 5E-5 | -2,36E-5 | | EP-freshwater ³⁾ | kg Pe | 1,18E-5 | 4,92E-7 | 2,23E-6 | 1,45E-5 | MND | 2,84E-8 | MND 1,62E-8 | 3,7E-8 | MNR | 6,36E-8 | -3,76E-8 | | EP-marine | kg Ne | 5,95E-4 | 7,65E-5 | 1,77E-5 | 6,89E-4 | MND | 1,35E-6 | MND 1,85E-5 | 5,75E-6 | MNR | 1,72E-5 | -3,65E-6 | | EP-terrestrial | mol Ne | 8,06E-3 | 8,45E-4 | 2,21E-4 | 9,13E-3 | MND | 1,48E-5 | MND 2,03E-4 | 6,35E-5 | MNR | 1,9E-4 | -4,16E-5 | | POCP ("smog") | kg NMVOCe | 1,32E-3 | 2,72E-4 | 6,91E-5 | 1,66E-3 | MND | 4,78E-6 | MND 5,57E-5 | 2,04E-5 | MNR | 5,51E-5 | -2,58E-5 | | ADP-minerals & metals | kg Sbe | 1,36E-5 | 1,03E-6 | 6,11E-8 | 1,47E-5 | MND | 2,11E-8 | MND 6,11E-9 | 7,75E-8 | MNR | 4,81E-8 | -4,35E-8 | | ADP-fossil resources | MJ | 6,08E0 | 9,4E-1 | 7,11E-1 | 7,73E0 | MND | 1,66E-2 | MND 5,51E-2 | 7,07E-2 | MNR | 1,47E-1 | -2,86E-1 | | Water use ²⁾ | m³e depr. | 2,27E-1 | 3,5E-3 | 7,58E-3 | 2,38E-1 | MND | 3,53E-4 | MND 1,03E-4 | 2,63E-4 | MNR | 6,81E-3 | -5,73E-3 | ## ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF | Impact category | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2 | С3 | C4 | D | |----------------------------------|-----------|----------|----------|----------|----------|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|-----|----------|-----------| | Particulate matter | Incidence | 1,46E-7 | 5,47E-9 | 7,74E-10 | 1,53E-7 | MND | 8,44E-11 | MND 5,08E-9 | 4,11E-10 | MNR | 9,72E-10 | -1,85E-10 | | Ionizing radiation ⁵⁾ | kBq U235e | 1,18E-2 | 4,11E-3 | 7,38E-3 | 2,32E-2 | MND | 5,03E-5 | MND 2,36E-4 | 3,09E-4 | MNR | 6,04E-4 | 1,7E-5 | | Ecotoxicity (freshwater) | CTUe | 1,2E1 | 7,19E-1 | 2,54E-1 | 1,3E1 | MND | 1,79E-2 | MND 3,23E-2 | 5,4E-2 | MNR | 9,29E-2 | -1,6E-2 | | Human toxicity, cancer | CTUh | 2,18E-10 | 1,84E-11 | 1,16E-11 | 2,48E-10 | MND | 1,77E-12 | MND 1,16E-12 | 1,38E-12 | MNR | 2,2E-12 | 3,31E-16 | | Human tox. non-cancer | CTUh | 6,26E-9 | 8,51E-10 | 2,97E-10 | 7,41E-9 | MND | 2,53E-11 | MND 2,85E-11 | 6,4E-11 | MNR | 6,79E-11 | 9,08E-11 | | SQP | - | 5,24E-1 | 1,42E0 | 1,38E-2 | 1,96E0 | MND | 1,01E-2 | MND 1,41E-3 | 1,07E-1 | MNR | 2,5E-1 | 8,37E-3 | ## **USE OF NATURAL RESOURCES** | Impact category | Unit | A1 | A2 | А3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | С3 | C4 | D | |--------------------------|------|---------|---------|---------|---------|-----|---------|-----|-----|-----|-----|-----|-----|-----|---------|---------|-----|---------|----------| | Renew. PER as energy | MJ | 4,62E-1 | 1,18E-2 | 3E-2 | 5,04E-1 | MND | 8,28E-4 | MND 2,98E-4 | 8,9E-4 | MNR | 1,19E-3 | -6,62E-4 | | Renew. PER as material | MJ | 1,02E-2 | 0E0 | 0E0 | 1,02E-2 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Total use of renew. PER | MJ | 4,72E-1 | 1,18E-2 | 3E-2 | 5,14E-1 | MND | 8,28E-4 | MND 2,98E-4 | 8,9E-4 | MNR | 1,19E-3 | -6,62E-4 | | Non-re. PER as energy | MJ | 5,57E0 | 9,4E-1 | 4,96E-1 | 7,01E0 | MND | 1,66E-2 | MND 5,51E-2 | 7,07E-2 | MNR | 1,47E-1 | -7,07E-2 | | Non-re. PER as material | MJ | 5,05E-1 | 0E0 | 2,15E-1 | 7,2E-1 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | -2,15E-1 | | Total use of non-re. PER | MJ | 6,08E0 | 9,4E-1 | 7,11E-1 | 7,73E0 | MND | 1,66E-2 | MND 5,51E-2 | 7,07E-2 | MNR | 1,47E-1 | -2,86E-1 | | Secondary materials | kg | 2,32E-3 | 0E0 | 3,63E-4 | 2,68E-3 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 4,77E-3 | | Renew. secondary fuels | MJ | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Non-ren. secondary fuels | MJ | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Use of net fresh water | m³ | 3,22E-3 | 1,96E-4 | 1,44E-1 | 1,47E-1 | MND | 4,99E-6 | MND 4,86E-6 | 1,47E-5 | MNR | 1,61E-4 | -1,36E-5 | ⁶⁾ PER = Primary energy resources ## **END OF LIFE – WASTE** | Impact category | Unit | A1 | A2 | А3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | С3 | C4 | D | |---------------------|------|---------|---------|---------|---------|-----|---------|-----|-----|-----|-----|-----|-----|-----|---------|---------|-----|---------|----------| | Hazardous waste | kg | 2,02E-2 | 9,14E-4 | 1,05E-3 | 2,21E-2 | MND | 9,01E-5 | MND 5,93E-5 | 6,87E-5 | MNR | 1,37E-4 | -9,87E-5 | | Non-hazardous waste | kg | 5,71E-1 | 1,01E-1 | 8,88E-2 | 7,61E-1 | MND | 2,4E-3 | MND 6,33E-4 | 7,6E-3 | MNR | 1E0 | -2,42E-4 | | Radioactive waste | kg | 7,25E-5 | 6,45E-6 | 1,29E-6 | 8,02E-5 | MND | 6,28E-8 | MND 3,86E-7 | 4,85E-7 | MNR | 9,74E-7 | 2,08E-8 | ## **END OF LIFE – OUTPUT FLOWS** | Impact category | Unit | A1 | A2 | А3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | С3 | C4 | D | |--------------------------|------|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Components for re-use | kg | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Materials for recycling | kg | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Materials for energy rec | kg | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | | Exported energy | MJ | 0E0 | 0E0 | 0E0 | 0E0 | MND | 0E0 | MND 0E0 | 0E0 | MNR | 0E0 | 0E0 | ## ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930 | Impact category | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1 | C2 | C3 | C4 | D | |----------------------|------------------------------------|---------|---------|---------|---------|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|-----|---------|-----------| | Global Warming Pot. | kg CO₂e | 4,9E-1 | 5,99E-2 | 3,35E-2 | 5,83E-1 | MND | 1,64E-3 | MND 3,97E-3 | 4,5E-3 | MNR | 5,17E-3 | -6,03E-3 | | Ozone depletion Pot. | kg CFC-11e | 9,72E-8 | 1,13E-8 | 5,14E-9 | 1,14E-7 | MND | 1,03E-10 | MND 6,84E-10 | 8,49E-10 | MNR | 1,72E-9 | -3,39E-11 | | Acidification | kg SO₂e | 2,06E-3 | 1,23E-4 | 8,51E-5 | 2,26E-3 | MND | 3,09E-6 | MND 5,91E-6 | 9,25E-6 | MNR | 2,08E-5 | -2,07E-5 | | Eutrophication | kg PO ₄ ³e | 5,8E-4 | 2,48E-5 | 6,79E-5 | 6,73E-4 | MND | 3,49E-6 | MND 1,04E-6 | 1,87E-6 | MNR | 4,03E-6 | 1,59E-7 | | POCP ("smog") | kg C ₂ H ₄ e | 6,25E-5 | 7,79E-6 | 5,93E-6 | 7,63E-5 | MND | 2,88E-7 | MND 6,08E-7 | 5,86E-7 | MNR | 1,53E-6 | -2,68E-6 | | ADP-elements | kg Sbe | 1,36E-5 | 1,03E-6 | 6,11E-8 | 1,47E-5 | MND | 2,11E-8 | MND 6,11E-9 | 7,75E-8 | MNR | 4,81E-8 | -4,35E-8 | | ADP-fossil | MJ | 6,08E0 | 9,4E-1 | 7,11E-1 | 7,73E0 | MND | 1,66E-2 | MND 5,51E-2 | 7,07E-2 | MNR | 1,47E-1 | -2,86E-1 | ## **ENVIRONMENTAL IMPACTS – TRACI 2.1. / ISO 21930** | Impact category | Unit | A1 | A2 | A3 | A1-A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | С3 | C4 | D | |---------------------|------------|---------|---------|---------|---------|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|---------|-----|---------|-----------| | Global Warming Pot. | kg CO₂e | 4,92E-1 | 5,98E-2 | 3,36E-2 | 5,85E-1 | MND | 1,64E-3 | MND 3,95E-3 | 4,5E-3 | MNR | 5,14E-3 | -6,08E-3 | | Ozone Depletion | kg CFC-11e | 7,6E-8 | 1,51E-8 | 3,33E-9 | 9,44E-8 | MND | 1,35E-10 | MND 9,12E-10 | 1,13E-9 | MNR | 2,29E-9 | -4,02E-11 | | Acidification | kg SO₂e | 2,15E-3 | 2,21E-4 | 8,44E-5 | 2,45E-3 | MND | 4,34E-6 | MND 3,84E-5 | 1,66E-5 | MNR | 4,43E-5 | -1,93E-5 | | Eutrophication | kg Ne | 1,97E-4 | 3,11E-5 | 3,27E-5 | 2,61E-4 | MND | 5,89E-7 | MND 3,38E-6 | 2,34E-6 | MNR | 5,31E-6 | -6,43E-7 | | POCP ("smog") | kg O₃e | 2,45E-2 | 4,85E-3 | 1,12E-3 | 3,04E-2 | MND | 8,37E-5 | MND 1,18E-3 | 3,65E-4 | MNR | 1,09E-3 | -2,49E-4 | | ADP-fossil | MJ | 3,8E-1 | 1,35E-1 | 8,43E-2 | 5,99E-1 | MND | 2,04E-3 | MND 8,14E-3 | 1,01E-2 | MNR | 2,13E-2 | -4,28E-2 | ## **VERIFICATION STATEMENT** ### **VERIFICATION PROCESS FOR THIS EPD** This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for: - This Environmental Product Declaration - The Life-Cycle Assessment used in this EPD - The digital background data for this EPD Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the ED Hub. ### THIRD-PARTY VERIFICATION STATEMENT I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard. I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance. I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification. I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification. Elma Avdyli as an authorized verifier acting for EPD Hub Limited 17.05.2022